Msx homeobox genes inhibit differentiation through upregulation of cyclin D1.
Hu, G; Lee, H; Price, S M; Shen, M M; Abate-Shen, C
2001-06-01
During development, patterning and morphogenesis of tissues are intimately coordinated through control of cellular proliferation and differentiation. We describe a mechanism by which vertebrate Msx homeobox genes inhibit cellular differentiation by regulation of the cell cycle. We show that misexpression of Msx1 via retroviral gene transfer inhibits differentiation of multiple mesenchymal and epithelial progenitor cell types in culture. This activity of Msx1 is associated with its ability to upregulate cyclin D1 expression and Cdk4 activity, while Msx1 has minimal effects on cellular proliferation. Transgenic mice that express Msx1 under the control of the mouse mammary tumor virus long terminal repeat (MMTV LTR) display impaired differentiation of the mammary epithelium during pregnancy, which is accompanied by elevated levels of cyclin D1 expression. We propose that Msx1 gene expression maintains cyclin D1 expression and prevents exit from the cell cycle, thereby inhibiting terminal differentiation of progenitor cells. Our model provides a framework for reconciling the mutant phenotypes of Msx and other homeobox genes with their functions as regulators of cellular proliferation and differentiation during embryogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Hugh D.; Markillie, Lye Meng; Chrisler, William B.
The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells “overloaded” while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. Here we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantum dots (QDs),more » showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with upregulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly downregulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong upregulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis and organelle activities. In contrast, strategies unique to carboxylated QDs showed upregulation of DNA repair and RNA activities, and decreased regulation of cell division, coupled in some cases with upregulation of stress responses and ATP related functions. Together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified, proactive defenses or repairs of the NP insults.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Hugh D.; Markillie, Lye Meng; Chrisler, William B.
The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells “overloaded” while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. In this paper, we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantummore » dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with up-regulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly down-regulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong up-regulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis, and organelle activities. In contrast, strategies unique to carboxylated QDs showed up-regulation of DNA repair and RNA activities and decreased regulation of cell division, coupled in some cases with up-regulation of stress responses and ATP-related functions. Finally, together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified proactive defenses or repairs of the NP insults.« less
Mitchell, Hugh D.; Markillie, Lye Meng; Chrisler, William B.; ...
2016-10-27
The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells “overloaded” while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. In this paper, we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantummore » dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with up-regulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly down-regulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong up-regulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis, and organelle activities. In contrast, strategies unique to carboxylated QDs showed up-regulation of DNA repair and RNA activities and decreased regulation of cell division, coupled in some cases with up-regulation of stress responses and ATP-related functions. Finally, together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified proactive defenses or repairs of the NP insults.« less
Cd²⁺-induced alteration of the global proteome of human skin fibroblast cells.
Prins, John M; Fu, Lijuan; Guo, Lei; Wang, Yinsheng
2014-03-07
Cadmium (Cd(2+)) is a toxic heavy metal and a well-known human carcinogen. The toxic effects of Cd(2+) on biological systems are diverse and thought to be exerted through a complex array of mechanisms. Despite the large number of studies aimed to elucidate the toxic mechanisms of action of Cd(2+), few have been targeted toward investigating the ability of Cd(2+) to disrupt multiple cellular pathways simultaneously and the overall cellular responses toward Cd(2+) exposure. In this study, we employed a quantitative proteomic method, relying on stable isotope labeling by amino acids in cell culture (SILAC) and LC-MS/MS, to assess the Cd(2+)-induced simultaneous alterations of multiple cellular pathways in cultured human skin fibroblast cells. By using this approach, we were able to quantify 2931 proteins, and 400 of them displayed significantly changed expression following Cd(2+) exposure. Our results unveiled that Cd(2+) treatment led to the marked upregulation of several antioxidant enzymes (e.g., metallothionein-1G, superoxide dismutase, pyridoxal kinase, etc.), enzymes associated with glutathione biosynthesis and homeostasis (e.g., glutathione S-transferases, glutathione synthetase, glutathione peroxidase, etc.), and proteins involved in cellular energy metabolism (e.g., glycolysis, pentose phosphate pathway, and the citric acid cycle). Additionally, we found that Cd(2+) treatment resulted in the elevated expression of two isoforms of dimethylarginine dimethylaminohydrolase (DDAH I and II), enzymes known to play a key role in regulating nitric oxide biosynthesis. Consistent with these findings, we observed elevated formation of nitric oxide in human skin (GM00637) and lung (IMR-90) fibroblast cells following Cd(2+) exposure. The upregulation of DDAH I and II suggests a role of nitric oxide synthesis in Cd(2+)-induced toxicity in human cells.
Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J
2003-12-01
Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.
James, Emma L; Lane, James A E; Michalek, Ryan D; Karoly, Edward D; Parkinson, E Kenneth
2016-12-07
Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease.
James, Emma L.; Lane, James A. E.; Michalek, Ryan D.; Karoly, Edward D.; Parkinson, E. Kenneth
2016-01-01
Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease. PMID:27924925
Epstein-Barr Virus EBNA1 Protein Regulates Viral Latency through Effects on let-7 MicroRNA and Dicer
Mansouri, Sheila; Pan, Qun; Blencowe, Benjamin J.; Claycomb, Julie M.
2014-01-01
ABSTRACT The EBNA1 protein of Epstein-Barr virus (EBV) plays multiple roles in EBV latent infection, including altering cellular pathways relevant for cancer. Here we used microRNA (miRNA) cloning coupled with high-throughput sequencing to identify the effects of EBNA1 on cellular miRNAs in two nasopharyngeal carcinoma cell lines. EBNA1 affected a small percentage of cellular miRNAs in both cell lines, in particular, upregulating multiple let-7 family miRNAs, including let-7a. The effects of EBNA1 on let-7a were verified by demonstrating that EBNA1 silencing in multiple EBV-positive carcinomas downregulated let-7a. Accordingly, the let-7a target, Dicer, was found to be partially downregulated by EBNA1 expression (at the mRNA and protein levels) and upregulated by EBNA1 silencing in EBV-positive cells. Reporter assays based on the Dicer 3′ untranslated region with and without let-7a target sites indicated that the effects of EBNA1 on Dicer were mediated by let-7a. EBNA1 was also found to induce the expression of let-7a primary RNAs in a manner dependent on the EBNA1 transcriptional activation region, suggesting that EBNA1 induces let-7a by transactivating the expression of its primary transcripts. Consistent with previous reports that Dicer promotes EBV reactivation, we found that a let-7a mimic inhibited EBV reactivation to the lytic cycle, while a let-7 sponge increased reactivation. The results provide a mechanism by which EBNA1 could promote EBV latency by inducing let-7 miRNAs. IMPORTANCE The EBNA1 protein of Epstein-Barr virus (EBV) contributes in multiple ways to the latent mode of EBV infection that leads to lifelong infection. In this study, we identify a mechanism by which EBNA1 helps to maintain EBV infection in a latent state. This involves induction of a family of microRNAs (let-7 miRNAs) that in turn decreases the level of the cellular protein Dicer. We demonstrate that let-7 miRNAs inhibit the reactivation of latent EBV, providing an explanation for our previous observation that EBNA1 promotes latency. In addition, since decreased levels of Dicer have been associated with metastatic potential, EBNA1 may increase metastases by downregulating Dicer. PMID:25031339
Mercado, Francisco; Almanza, Angélica; Rubio, Nazario; Soto, Enrique
2018-06-11
Multiple sclerosis (MS) is a high prevalence degenerative disease characterized at the cellular level by glial and neuronal cell death. The causes of cell death during the disease course are not fully understood. In this work we demonstrate that in a MS model induced by Theiler's murine encephalomyelitis virus (TMEV) infection, the inward rectifier (Kir) 4.1 potassium channel subunit is overexpressed in astrocytes. In voltage clamp experiments the inward current density from TMEV-infected astrocytes was significantly larger than in mock-infected ones. The cRNA hybridization analysis from mock- and TMEV-infected cells showed an upregulation of a potassium transport channel coding sequence. We validated this mRNA increase by RT-PCR and quantitative PCR using Kir 4.1 specific primers. Western blotting experiments confirmed the upregulation of Kir 4.1, and alignment between sequences provided the demonstration that the over-expressed gene encodes for a Kir family member. Flow cytometry showed that the Kir 4.1 protein is located mainly in the cell membrane in mock and TMEV-infected astrocytes. Our results demonstrate an increase in K + inward current in TMEV-infected glial cells, this increment may reduce the neuronal depolarization, contributing to cell resilience mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Govindarajan, Parameswari; Böcker, Wolfgang; El Khassawna, Thaqif; Kampschulte, Marian; Schlewitz, Gudrun; Huerter, Britta; Sommer, Ursula; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Szalay, Gabor; Wenisch, Sabine; Lips, Katrin S; Schnettler, Reinhard; Langheinrich, Alexander; Heiss, Christian
2014-03-01
In estrogen-deficient, postmenopausal women, vitamin D and calcium deficiency increase osteoporotic fracture risk. Therefore, a new rat model of combined ovariectomy and multiple-deficient diet was established to mimic human postmenopausal osteoporotic conditions under nutrient deficiency. Sprague-Dawley rats were untreated (control), laparatomized (sham), or ovariectomized and received a deficient diet (OVX-Diet). Multiple analyses involving structure (micro-computed tomography and biomechanics), cellularity (osteoblasts and osteoclasts), bone matrix (mRNA expression and IHC), and mineralization were investigated for a detailed characterization of osteoporosis. The study involved long-term observation up to 14 months (M14) after laparotomy or after OVX-Diet, with intermediate time points at M3 and M12. OVX-Diet rats showed enhanced osteoblastogenesis and osteoclastogenesis. Bone matrix markers (biglycan, COL1A1, tenascin C, and fibronectin) and low-density lipoprotein-5 (bone mass marker) were down-regulated at M12 in OVX-Diet rats. However, up-regulation of matrix markers and existence of unmineralized osteoid were seen at M3 and M14. Osteoclast markers (matrix metallopeptidase 9 and cathepsin K) were up-regulated at M14. Micro-computed tomography and biomechanics confirmed bone fragility of OVX-Diet rats, and quantitative RT-PCR revealed a higher turnover rate in the humerus than in lumbar vertebrae, suggesting enhanced bone formation and resorption in OVX-Diet rats. Such bone remodeling caused disturbed bone mineralization and severe bone loss, as reported in patients with high-turnover, postmenopausal osteoporosis. Therefore, this rat model may serve as a suitable tool to evaluate osteoporotic drugs and new biomaterials or fracture implants. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Diab, Heba I.; Kane, Patricia M.
2013-01-01
Vacuolar H+-ATPases (V-ATPases) acidify intracellular organelles and help to regulate overall cellular pH. Yeast vma mutants lack V-ATPase activity and allow exploration of connections between cellular pH, iron, and redox homeostasis common to all eukaryotes. A previous microarray study in a vma mutant demonstrated up-regulation of multiple iron uptake genes under control of Aft1p (the iron regulon) and only one antioxidant gene, the peroxiredoxin TSA2 (Milgrom, E., Diab, H., Middleton, F., and Kane, P. M. (2007) Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J. Biol. Chem. 282, 7125–7136). Fluorescent biosensors placing GFP under transcriptional control of either an Aft1-dependent promoter (PFIT2-GFP) or the TSA2 promoter (PTSA2-GFP) were constructed to monitor transcriptional signaling. Both biosensors were up-regulated in the vma2Δ mutant, and acute V-ATPase inhibition with concanamycin A induced coordinate up-regulation from both promoters. PTSA2-GFP induction was Yap1p-dependent, indicating an oxidative stress signal. Total cell iron measurements indicate that the vma2Δ mutant is iron-replete, despite up-regulation of the iron regulon. Acetic acid up-regulated PFIT2-GFP expression in wild-type cells, suggesting that loss of pH control contributes to an iron deficiency signal in the mutant. Iron supplementation significantly decreased PFIT2-GFP expression and, surprisingly, restored PTSA2-GFP to wild-type levels. A tsa2Δ mutation induced both nuclear localization of Aft1p and PFIT2-GFP expression. The data suggest a novel function for Tsa2p as a negative regulator of Aft1p-driven transcription, which is induced in V-ATPase mutants to limit transcription of the iron regulon. This represents a new mechanism bridging the antioxidant and iron-regulatory pathways that is intimately linked to pH homeostasis. PMID:23457300
Rogers, Scott W; Gahring, Lorise C
2015-01-01
High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.
Autophagy and ageing: implications for age-related neurodegenerative diseases.
Carroll, Bernadette; Hewitt, Graeme; Korolchuk, Viktor I
2013-01-01
Autophagy is a process of lysosome-dependent intracellular degradation that participates in the liberation of resources including amino acids and energy to maintain homoeostasis. Autophagy is particularly important in stress conditions such as nutrient starvation and any perturbation in the ability of the cell to activate or regulate autophagy can lead to cellular dysfunction and disease. An area of intense research interest is the role and indeed the fate of autophagy during cellular and organismal ageing. Age-related disorders are associated with increased cellular stress and assault including DNA damage, reduced energy availability, protein aggregation and accumulation of damaged organelles. A reduction in autophagy activity has been observed in a number of ageing models and its up-regulation via pharmacological and genetic methods can alleviate age-related pathologies. In particular, autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing. Indeed, in certain situations, reduced autophagosome induction may actually provide benefits to ageing cells. Future studies will undoubtedly improve our understanding of exactly how the multiple signals that are integrated to control appropriate autophagy activity change during ageing, what affect this has on autophagy and to what extent autophagy contributes to age-associated pathologies. Identification of mechanisms that influence a healthy lifespan is of economic, medical and social importance in our 'ageing' world.
Transcriptomics Modeling of the Late-Gestation Fetal Pituitary Response to Transient Hypoxia
Wood, Charles E.; Chang, Eileen I.; Richards, Elaine M.; Rabaglino, Maria Belen; Keller-Wood, Maureen
2016-01-01
Background The late-gestation fetal sheep responds to hypoxia with physiological, neuroendocrine, and cellular responses that aid in fetal survival. The response of the fetus to hypoxia represents a coordinated effort to maximize oxygen transfer from the mother and minimize wasteful oxygen consumption by the fetus. While there have been many studies aimed at investigating the coordinated physiological and endocrine responses to hypoxia, and while immunohistochemical or in situ hybridization studies have revealed pathways supporting the endocrine function of the pituitary, there is little known about the coordinated cellular response of the pituitary to the hypoxia. Results Thirty min hypoxia (from 17.0±1.7 to 8.0±0.8 mm Hg, followed by 30 min normoxia) upregulated 595 and downregulated 790 genes in fetal pituitary (123–132 days’ gestation; term = 147 days). Network inference of up- and down- regulated genes revealed a high degree of functional relatedness amongst the gene sets. Gene ontology analysis revealed upregulation of cellular metabolic processes (e.g., RNA synthesis, response to estrogens) and downregulation of protein phosphorylation, protein metabolism, and mitosis. Genes found to be at the center of the network of upregulated genes included genes important for purine binding and signaling. At the center of the downregulated network were genes involved in mRNA processing, DNA repair, sumoylation, and vesicular trafficking. Transcription factor analysis revealed that both up- and down-regulated gene sets are enriched for control by several transcription factors (e.g., SP1, MAZ, LEF1, NRF1, ELK1, NFAT, E12, PAX4) but not for HIF-1, which is known to be an important controller of genomic responses to hypoxia. Conclusions The multiple analytical approaches used in this study suggests that the acute response to 30 min of transient hypoxia in the late-gestation fetus results in reduced cellular metabolism and a pattern of gene expression that is consistent with cellular oxygen and ATP starvation. In this early time point, we see a vigorous gene response. But, like the hypothalamus, the transcriptomic response is not consistent with mediation by HIF-1. If HIF-1 is a significant controller of gene expression in the fetal pituitary after hypoxia, it must be at a later time. PMID:26859870
Lin, William; Wadlington, Natasha L; Chen, Linan; Zhuang, Xiaoxi; Brorson, James R; Kang, Un Jung
2014-02-19
Parkinson's disease (PD) has multiple proposed etiologies with implication of abnormalities in cellular homeostasis ranging from proteostasis to mitochondrial dynamics to energy metabolism. PINK1 mutations are associated with familial PD and here we discover a novel PINK1 mechanism in cellular stress response. Using hypoxia as a physiological trigger of oxidative stress and disruption in energy metabolism, we demonstrate that PINK1(-/-) mouse cells exhibited significantly reduced induction of HIF-1α protein, HIF-1α transcriptional activity, and hypoxia-responsive gene upregulation. Loss of PINK1 impairs both hypoxia-induced 4E-BP1 dephosphorylation and increase in the ratio of internal ribosomal entry site (IRES)-dependent to cap-dependent translation. These data suggest that PINK1 mediates adaptive responses by activating IRES-dependent translation, and the impairments in translation and the HIF-1α pathway may contribute to PINK1-associated PD pathogenesis that manifests under cellular stress.
Increased CYFIP1 dosage alters cellular and dendritic morphology and dysregulates mTOR.
Oguro-Ando, A; Rosensweig, C; Herman, E; Nishimura, Y; Werling, D; Bill, B R; Berg, J M; Gao, F; Coppola, G; Abrahams, B S; Geschwind, D H
2015-09-01
Rare maternally inherited duplications at 15q11-13 are observed in ~1% of individuals with an autism spectrum disorder (ASD), making it among the most common causes of ASD. 15q11-13 comprises a complex region, and as this copy number variation encompasses many genes, it is important to explore individual genotype-phenotype relationships. Cytoplasmic FMR1-interacting protein 1 (CYFIP1) is of particular interest because of its interaction with Fragile X mental retardation protein (FMRP), its upregulation in transformed lymphoblastoid cell lines from patients with duplications at 15q11-13 and ASD and the presence of smaller overlapping deletions of CYFIP1 in patients with schizophrenia and intellectual disability. Here, we confirm that CYFIP1 is upregulated in transformed lymphoblastoid cell lines and demonstrate its upregulation in the post-mortem brain from 15q11-13 duplication patients for the first time. To investigate how increased CYFIP1 dosage might predispose to neurodevelopmental disease, we studied the consequence of its overexpression in multiple systems. We show that overexpression of CYFIP1 results in morphological abnormalities including cellular hypertrophy in SY5Y cells and differentiated mouse neuronal progenitors. We validate these results in vivo by generating a BAC transgenic mouse, which overexpresses Cyfip1 under the endogenous promotor, observing an increase in the proportion of mature dendritic spines and dendritic spine density. Gene expression profiling on embryonic day 15 suggested the dysregulation of mammalian target of rapamycin (mTOR) signaling, which was confirmed at the protein level. Importantly, similar evidence of mTOR-related dysregulation was seen in brains from 15q11-13 duplication patients with ASD. Finally, treatment of differentiated mouse neuronal progenitors with an mTOR inhibitor (rapamycin) rescued the morphological abnormalities resulting from CYFIP1 overexpression. Together, these data show that CYFIP1 overexpression results in specific cellular phenotypes and implicate modulation by mTOR signaling, further emphasizing its role as a potential convergent pathway in some forms of ASD.
Monoyios, Andreas; Patzl, Martina; Schlosser, Sarah; Hess, Michael; Bilic, Ivana
2018-02-01
The current study focused on Histomonas meleagridis, a unicellular protozoan, responsible for histomonosis in poultry. Recently, the occurrence of the disease increased due to the ban of effective chemotherapeutic drugs. Basic questions regarding the molecular biology, virulence mechanisms or even life cycle of the flagellate are still puzzling. In order to address some of these issues, we conducted a comparative proteomic analysis of a virulent and an attenuated H. meleagridis strain traced back to a single cell and propagated in vitro as monoxenic mono-eukaryotic cultures. Using two-dimensional electrophoresis (2-DE) for proteome visualization with computational 2-DE gel image and statistical analysis, upregulated proteins in either of the two H. meleagridis strains were detected. Statistical analysis fulfilling two criteria (≥threefold upregulation and P < 0.05) revealed 119 differentially expressed protein spots out of which 62 spots were noticed in gels with proteins from the virulent and 57 spots in gels with proteins from the attenuated culture. Mass spectrometric analysis of 32 protein spots upregulated in gels of the virulent strain identified 17 as H. meleagridis-specific. The identification revealed that these spots belonged to eight different proteins, with the majority related to cellular stress management. Two ubiquitous cellular proteins, actin and enolase, were upregulated in multiple gel positions in this strain, indicating either post-translational modification or truncation, or even both. Additionally, a known virulence factor named legumain cysteine peptidase was also detected. In contrast to this, mass spectrometric analysis of 49 protein spots, upregulated in gels of the attenuated strain, singled out 32 spots as specific for the flagellate. These spots were shown to correspond to 24 different proteins that reflect the increased metabolism, in vitro adaptation of the parasite, and amoeboid morphology. In addition to H. meleagridis proteins, the analysis identified differential expression of Escherichia coli DH5α proteins that could have been influenced by the co-cultivated H. meleagridis strain, indicating a reciprocal interaction of these two organisms during monoxenic cultivation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Diab, Heba I; Kane, Patricia M
2013-04-19
Vacuolar H(+)-ATPases (V-ATPases) acidify intracellular organelles and help to regulate overall cellular pH. Yeast vma mutants lack V-ATPase activity and allow exploration of connections between cellular pH, iron, and redox homeostasis common to all eukaryotes. A previous microarray study in a vma mutant demonstrated up-regulation of multiple iron uptake genes under control of Aft1p (the iron regulon) and only one antioxidant gene, the peroxiredoxin TSA2 (Milgrom, E., Diab, H., Middleton, F., and Kane, P. M. (2007) Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J. Biol. Chem. 282, 7125-7136). Fluorescent biosensors placing GFP under transcriptional control of either an Aft1-dependent promoter (P(FIT2)-GFP) or the TSA2 promoter (P(TSA2)-GFP) were constructed to monitor transcriptional signaling. Both biosensors were up-regulated in the vma2Δ mutant, and acute V-ATPase inhibition with concanamycin A induced coordinate up-regulation from both promoters. PTSA2-GFP induction was Yap1p-dependent, indicating an oxidative stress signal. Total cell iron measurements indicate that the vma2Δ mutant is iron-replete, despite up-regulation of the iron regulon. Acetic acid up-regulated P(FIT2)-GFP expression in wild-type cells, suggesting that loss of pH control contributes to an iron deficiency signal in the mutant. Iron supplementation significantly decreased P(FIT2)-GFP expression and, surprisingly, restored P(TSA2)-GFP to wild-type levels. A tsa2Δ mutation induced both nuclear localization of Aft1p and P(FIT2)-GFP expression. The data suggest a novel function for Tsa2p as a negative regulator of Aft1p-driven transcription, which is induced in V-ATPase mutants to limit transcription of the iron regulon. This represents a new mechanism bridging the antioxidant and iron-regulatory pathways that is intimately linked to pH homeostasis.
Cao, Yueyu; Qiao, Jing; Lin, Zhen; Zabaleta, Jovanny; Dai, Lu; Qin, Zhiqiang
2017-02-28
Primary effusion lymphoma (PEL) is a rare and highly aggressive B-cell malignancy with Kaposi's sarcoma-associated herpesvirus (KSHV) infection, while lack of effective therapies. Our recent data indicated that targeting the sphingolipid metabolism by either sphingosine kinase inhibitor or exogenous ceramide species induces PEL cell apoptosis and suppresses tumor progression in vivo. However, the underlying mechanisms for these exogenous ceramides "killing" PEL cells remain largely unknown. Based on the microarray analysis, we found that exogenous dhC16-Cer treatment affected the expression of many cellular genes with important functions within PEL cells such as regulation of cell cycle, cell survival/proliferation, and apoptosis/anti-apoptosis. Interestingly, we found that a subset of tumor suppressor genes (TSGs) was up-regulated from dhC16-Cer treated PEL cells. One of these elevated TSGs, Thrombospondin-1 (THBS1) was required for dhC16-Cer induced PEL cell cycle arrest. Moreover, dhC16-Cer up-regulation of THBS1 was through the suppression of multiple KSHV microRNAs expression. Our data demonstrate that exogenous ceramides display anti-cancer activities for PEL through regulation of both host and oncogenic virus factors.
Cyclophilin B facilitates the replication of Orf virus.
Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng
2017-06-15
Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID 50 ) assay and qRT-PCR detection. In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.
Peng, Hong; Yang, Jiao; Li, Guangyi; You, Qing; Han, Wen; Li, Tianrang; Gao, Daming; Xie, Xiaoduo; Lee, Byung-Hoon; Du, Juan; Hou, Jian; Zhang, Tao; Rao, Hai; Huang, Ying; Li, Qinrun; Zeng, Rong; Hui, Lijian; Wang, Hongyan; Xia, Qin; Zhang, Xuemin; He, Yongning; Komatsu, Masaaki; Dikic, Ivan; Finley, Daniel; Hu, Ronggui
2017-01-01
Alterations in cellular ubiquitin (Ub) homeostasis, known as Ub stress, feature and affect cellular responses in multiple conditions, yet the underlying mechanisms are incompletely understood. Here we report that autophagy receptor p62/sequestosome-1 interacts with E2 Ub conjugating enzymes, UBE2D2 and UBE2D3. Endogenous p62 undergoes E2-dependent ubiquitylation during upregulation of Ub homeostasis, a condition termed as Ub+ stress, that is intrinsic to Ub overexpression, heat shock or prolonged proteasomal inhibition by bortezomib, a chemotherapeutic drug. Ubiquitylation of p62 disrupts dimerization of the UBA domain of p62, liberating its ability to recognize polyubiquitylated cargoes for selective autophagy. We further demonstrate that this mechanism might be critical for autophagy activation upon Ub+ stress conditions. Delineation of the mechanism and regulatory roles of p62 in sensing Ub stress and controlling selective autophagy could help to understand and modulate cellular responses to a variety of endogenous and environmental challenges, potentially opening a new avenue for the development of therapeutic strategies against autophagy-related maladies. PMID:28322253
Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche
Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting
2015-01-01
Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche. DOI: http://dx.doi.org/10.7554/eLife.08174.001 PMID:26452202
Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats
Aseer, Kanikkai Raja; Kim, Sang Woo; Choi, Myung-Sook; Yun, Jong Won
2015-01-01
Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ)-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ) and its targets (TNFα, Il6, CRP, and Fn1) as well as myeloperoxidase (Mpo) and C-X-C chemokine receptor type 2 (Cxcr2). Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels. PMID:26110898
Mali, Aniket V; Joshi, Asavari A; Hegde, Mahabaleshwar V; Kadam, Shivajirao S
2017-04-01
Background: To enhance their own survival, tumor cells can manipulate their microenvironment through remodeling of the extra cellular matrix (ECM). The urokinase-type plasminogen activator (uPA) system catalyzes plasmin production which further mediates activation of matrix metalloproteinases (MMPs) and plays an important role in breast cancer invasion and metastasis through ECM remodeling. This provides a potential target for therapeutic intervention of breast cancer treatment. Enterolactone (EL) is derived from dietary flax lignans in the human body and is known to have anti-breast cancer activity. We here investigated molecular and cellular mechanisms of EL action on the uPA-plasmin- MMPs system. Methods: MTT and trypan blue dye exclusion assays, anchorage-dependent clonogenic assays and wound healing assays were carried out to study effects on cell proliferation and viability, clonogenicity and migration capacity, respectively. Real-time PCR was employed to study gene expression and gelatin zymography was used to assess MMP-2 and MMP-9 activities. All data were statistically analysed and presented as mean ± SEM values. Results: All the findings collectively demonstrated anticancer and antimetastatic potential of EL with antiproliferative, antimigratory and anticlonogenic cellular mechanisms. EL was found to exhibit multiple control of plasmin activation by down-regulating uPA expression and also up-regulating its natural inhibitor, PAI-1, at the mRNA level. Further, EL was found to down-regulate expression of MMP-2 and MMP-9 genes, and up-regulate TIMP-1 and TIMP-2; natural inhibitors of MMP-2 and MMP-9, respectively. This may be as a consequence of inhibition of plasmin activation, resulting in robust control over migration and invasion of breast cancer cells during metastasis. Conclusions: EL suppresses proliferation, migration and metastasis of MDA-MB-231 breast cancer cells by inhibiting induced ECM remodeling by the ‘uPA-plasmin-MMPs system’. Creative Commons Attribution License
Artier, Juliana; da Silva Zandonadi, Flávia; de Souza Carvalho, Flávia Maria; Pauletti, Bianca Alves; Leme, Adriana Franco Paes; Carnielli, Carolina Moretto; Selistre-de-Araujo, Heloisa Sobreiro; Bertolini, Maria Célia; Ferro, Jesus Aparecido; Belasque Júnior, José; de Oliveira, Julio Cezar Franco; Novo-Mansur, Maria Teresa Marques
2018-01-01
Citrus canker is a plant disease caused by Gram-negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm-enriched fraction was performed for XAC cells grown in pathogenicity-inducing (XAM-M) and pathogenicity-non-inducing (nutrient broth) media using two-dimensional electrophoresis combined with liquid chromatography-tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up-regulated proteins related to cellular envelope metabolism included glucose-1-phosphate thymidylyltransferase, dTDP-4-dehydrorhamnose-3,5-epimerase and peptidyl-prolyl cis-trans-isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real-time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up-regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60-kDa chaperonin and glyceraldehyde-3-phosphate dehydrogenase were identified, suggesting the presence of post-translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence-related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Lin, Zhen; Zabaleta, Jovanny; Dai, Lu; Qin, Zhiqiang
2017-01-01
Primary effusion lymphoma (PEL) is a rare and highly aggressive B-cell malignancy with Kaposi's sarcoma-associated herpesvirus (KSHV) infection, while lack of effective therapies. Our recent data indicated that targeting the sphingolipid metabolism by either sphingosine kinase inhibitor or exogenous ceramide species induces PEL cell apoptosis and suppresses tumor progression in vivo. However, the underlying mechanisms for these exogenous ceramides “killing” PEL cells remain largely unknown. Based on the microarray analysis, we found that exogenous dhC16-Cer treatment affected the expression of many cellular genes with important functions within PEL cells such as regulation of cell cycle, cell survival/proliferation, and apoptosis/anti-apoptosis. Interestingly, we found that a subset of tumor suppressor genes (TSGs) was up-regulated from dhC16-Cer treated PEL cells. One of these elevated TSGs, Thrombospondin-1 (THBS1) was required for dhC16-Cer induced PEL cell cycle arrest. Moreover, dhC16-Cer up-regulation of THBS1 was through the suppression of multiple KSHV microRNAs expression. Our data demonstrate that exogenous ceramides display anti-cancer activities for PEL through regulation of both host and oncogenic virus factors. PMID:28146424
Metabolic Features of Multiple Myeloma.
El Arfani, Chaima; De Veirman, Kim; Maes, Ken; De Bruyne, Elke; Menu, Eline
2018-04-14
Cancer is known for its cellular changes contributing to tumour growth and cell proliferation. As part of these changes, metabolic rearrangements are identified in several cancers, including multiple myeloma (MM), which is a condition whereby malignant plasma cells accumulate in the bone marrow (BM). These metabolic changes consist of generation, inhibition and accumulation of metabolites and metabolic shifts in MM cells. Changes in the BM micro-environment could be the reason for such adjustments. Enhancement of glycolysis and glutaminolysis is found in MM cells compared to healthy cells. Metabolites and enzymes can be upregulated or downregulated and play a crucial role in drug resistance. Therefore, this review will focus on changes in glucose and glutamine metabolism linked with the emergence of drug resistance. Moreover, metabolites do not only affect other metabolic components to benefit cancer development; they also interfere with transcription factors involved in proliferation and apoptotic regulation.
Giffin, Louise; West, John A.
2015-01-01
ABSTRACT Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi’s sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman’s disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6’s impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. PMID:26646010
Yang, Kai-Chien; Tseng, Yi-Tang; Nerbonne, Jeanne M.
2012-01-01
In contrast with pathological hypertrophy, exercise-induced physiological hypertrophy is not associated with electrical abnormalities or increased arrhythmia risk. Recent studies have shown that increased cardiac-specific expression of phosphoinositide-3-kinase-α (PI3Kα), the key mediator of physiological hypertrophy, results in transcriptional upregulation of ion channel subunits in parallel with the increase in myocyte size (cellular hypertrophy) and the maintenance of myocardial excitability. The experiments here were undertaken to test the hypothesis that Akt1, which underlies PI3Kα-induced cellular hypertrophy, mediates the effects of augmented PI3Kα signaling on the transcriptional regulation of cardiac ion channels. In contrast to wild-type animals, chronic exercise (swim) training of mice (Akt1−/−) lacking Akt1 did not result in ventricular myocyte hypertrophy. Ventricular K+ current amplitudes and the expression of K+ channel subunits, however, were increased markedly in Akt1−/− animals with exercise training. Expression of the transcripts encoding inward (Na+ and Ca2+) channel subunits were also increased in Akt1−/− ventricles following swim training. Additional experiments in a transgenic mouse model of inducible cardiac-specific expression of constitutively active PI3Kα (icaPI3Kα) revealed that short-term activation of PI3Kα signaling in the myocardium also led to the transcriptional upregulation of ion channel subunits. Inhibition of cardiac Akt activation with triciribine in this (inducible caPI3Kα expression) model did not prevent the upregulation of myocardial ion channel subunits. These combined observations demonstrate that chronic exercise training and enhanced PI3Kα expression/activity result in transcriptional upregulation of myocardial ion channel subunits independent of cellular hypertrophy and Akt signaling. PMID:22824041
Human APOBEC3B interacts with the heterogenous nuclear ribonucleoprotein A3 in cancer cells.
Mishra, Nawneet; Reddy, K Sony; Timilsina, Uddhav; Gaur, Deepak; Gaur, Ritu
2018-04-25
Human APOBEC3B (A3B), like other APOBEC3 members, is a cytosine deaminase which causes hypermutation of single stranded genome. Recent studies have shown that A3B is predominantly elevated in multiple cancer tissues and cell lines such as the bladder, cervix, lung, head and neck, and breast. Upregulation and activation of A3B in developing tumors can cause an unexpected cluster of mutations which promote cancer development and progression. The cellular proteins which facilitate A3B function through direct or indirect interactions remain largely unknown. In this study, we performed LC-MS-based proteomics to identify cellular proteins which coimmunoprecipitated with A3B. Our results indicated a specific interaction of A3B with hnRNP A3 (heterogeneous nuclear ribonucleoprotein). This interaction was verified by co-immunoprecipitation and was found to be RNA-dependent. Furthermore, A3B and hnRNP A3 colocalized as evident from immunofluorescence analysis. © 2018 Wiley Periodicals, Inc.
Benatti, Paolo; Basile, Valentina; Dolfini, Diletta; Belluti, Silvia; Tomei, Margherita; Imbriano, Carol
2016-07-19
The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.
Adhesion-mediated self-renewal abilities of Ph+ blastoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funayama, Keiji; Saito-Kurimoto, Yumi; Ebihara, Yasuhiro
2010-05-28
The Philadelphia chromosome-positive blastoma, maintained by serial subcutaneous transplantation in nude mice, is a highly proliferating biological mass consisting of homogenous CD34{sup +}CD38{sup -} myeloblastoid cells. These cells newly evolved from pluripotent leukemia stem cells of chronic myeloid leukemia in the chronic phase. Therefore, this mass may provide a unique tool for better understanding cellular and molecular mechanisms of self-renewal of leukemia stem cells. In this paper, we demonstrated that intravenously injected blastoma cells can cause Ph+ blastic leukemia with multiple invasive foci in NOD/SCID mice but not in nude mice. In addition, using an in vitro culture system, wemore » clearly showed that blastoma cell adhesion to OP9 stromal cells accelerates blastoma cell proliferation that is associated with up-regulation of BMI1 gene expression; increased levels of {beta}-catenin and the Notch1 intra-cellular domain; and changed the expression pattern of variant CD44 forms, which are constitutively expressed in these blastoma cells. These findings strongly suggest that adhesion of leukemic stem cells to stromal cells via CD44 might be indispensable for their cellular defense against attack by immune cells and for maintenance of their self-renewal ability.« less
The Reverse Transcription Inhibitor Abacavir Shows Anticancer Activity in Prostate Cancer Cell Lines
Molinari, Agnese; Parisi, Chiara; Bozzuto, Giuseppina; Toccacieli, Laura; Formisano, Giuseppe; De Orsi, Daniela; Paradisi, Silvia; Grober, OlÌ Maria Victoria; Ravo, Maria; Weisz, Alessandro; Arcieri, Romano; Vella, Stefano; Gaudi, Simona
2010-01-01
Background Transposable Elements (TEs) comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1) and Human Endogenous Retroviruses (HERVs) that code for their own endogenous reverse transcriptase (RT). Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs) induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC), a nucleoside reverse transcription inhibitor (NRTI), on PC3 and LNCaP prostate cancer cell lines. Principal Findings ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. Conclusions Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications. PMID:21151977
Overexpression of the Cytokine BAFF and Autoimmunity Risk.
Steri, Maristella; Orrù, Valeria; Idda, M Laura; Pitzalis, Maristella; Pala, Mauro; Zara, Ilenia; Sidore, Carlo; Faà, Valeria; Floris, Matteo; Deiana, Manila; Asunis, Isadora; Porcu, Eleonora; Mulas, Antonella; Piras, Maria G; Lobina, Monia; Lai, Sandra; Marongiu, Mara; Serra, Valentina; Marongiu, Michele; Sole, Gabriella; Busonero, Fabio; Maschio, Andrea; Cusano, Roberto; Cuccuru, Gianmauro; Deidda, Francesca; Poddie, Fausto; Farina, Gabriele; Dei, Mariano; Virdis, Francesca; Olla, Stefania; Satta, Maria A; Pani, Mario; Delitala, Alessandro; Cocco, Eleonora; Frau, Jessica; Coghe, Giancarlo; Lorefice, Lorena; Fenu, Giuseppe; Ferrigno, Paola; Ban, Maria; Barizzone, Nadia; Leone, Maurizio; Guerini, Franca R; Piga, Matteo; Firinu, Davide; Kockum, Ingrid; Lima Bomfim, Izaura; Olsson, Tomas; Alfredsson, Lars; Suarez, Ana; Carreira, Patricia E; Castillo-Palma, Maria J; Marcus, Joseph H; Congia, Mauro; Angius, Andrea; Melis, Maurizio; Gonzalez, Antonio; Alarcón Riquelme, Marta E; da Silva, Berta M; Marchini, Maurizio; Danieli, Maria G; Del Giacco, Stefano; Mathieu, Alessandro; Pani, Antonello; Montgomery, Stephen B; Rosati, Giulio; Hillert, Jan; Sawcer, Stephen; D'Alfonso, Sandra; Todd, John A; Novembre, John; Abecasis, Gonçalo R; Whalen, Michael B; Marrosu, Maria G; Meloni, Alessandra; Sanna, Serena; Gorospe, Myriam; Schlessinger, David; Fiorillo, Edoardo; Zoledziewska, Magdalena; Cucca, Francesco
2017-04-27
Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug-targetable pathways. Using case-control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus-specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence-based fine mapping, cross-population and cross-phenotype analyses, and gene-expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. A variant in TNFSF13B, encoding the cytokine and drug target B-cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease-risk allele was also associated with up-regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion-deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up-regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.).
Durani, L W; Jaafar, F; Tan, J K; Tajul Arifin, K; Mohd Yusof, Y A; Wan Ngah, W Z; Makpol, S
2015-01-01
Tocotrienols have been known for their antioxidant properties besides their roles in cellular signalling, gene expression, immune response and apoptosis. This study aimed to determine the molecular mechanism of tocotrienol-rich fraction (TRF) in preventing cellular senescence of human diploid fibroblasts (HDFs) by targeting the genes in senescence-associated signalling pathways. Real time quantitative PCR (qRT-PCR) was utilized to evaluate the expression of genes involved in these pathways. Our findings showed that SOD1 and CCS-1 were significantly down-regulated in pre-senescent cells while CCS-1 and PRDX6 were up-regulated in senescent cells (p<0.05). Treatment with TRF significantly down-regulated SOD1 in pre-senescent and senescent HDFs, up-regulated SOD2 in senescent cells, CAT in young HDFs, GPX1 in young and pre-senescent HDFs, and CCS-1 in young, pre-senescent and senescent HDFs (p<0.05). TRF treatment also caused up-regulation of FOXO3A in all age groups of cells (p<0.05). The expression of TP53, PAK2 and CDKN2A was significantly increased in senescent HDFs and treatment with TRF significantly down-regulated TP53 in senescent cells (p<0.05). MAPK14 was significantly up-regulated (p<0.05) in senescent HDFs while no changes was observed on the expression of JUN. TRF treatment, however, down-regulated MAPK14 in young and senescent cells and up-regulated JUN in young and pre-senescent HDFs (p<0.05). TRF modulated the expression of genes involved in senescence-associated signalling pathways during replicative senescence of HDFs.
Scholtissek, B; Ferring-Schmitt, S; Maier, J; Wenzel, J
2017-08-01
Dermatomyositis (DM) is an autoimmune disorder associated with a dysregulation of immune homeostasis of both the innate and adaptive immune system. Earlier data suggested that these two arms of the immune system interconnect in DM. In the current study, we analysed the association of autoantigen expression [adaptive system components: Mi2, transcriptional intermediary factor (TIF)1γ, small ubiquitin-like modifier 1 activating enzyme subunit (SAE)1, melanoma differentiation-associated protein (MDA)5] with markers of cellular stress (innate system components: MxA, p53) in skin and muscle (immunohistology and gene expression data, respectively). We found that distinctive self-antigens of DM were elevated in both skin and muscle tissue. In particular, TIF1γ expression was seen in autoimmune diseases including DM, but not in other inflammatory skin disorders. This upregulation was closely associated with p53 expression and type I interferon-regulated inflammation, suggesting that upregulation of autoantigens in the skin and muscle of patients with DM might be driven by cellular stress. Better understanding of these mechanisms could pave the way for new therapeutic concepts focusing on stress reduction. © 2017 British Association of Dermatologists.
27-Hydroxycholesterol upregulates the production of heat shock protein 60 of monocytic cells.
Kim, Bo-Young; Son, Yonghae; Choi, Jeongyoon; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi
2017-09-01
Investigating differentially expressed proteins in a milieu rich in cholesterol oxidation products, we found via mass spectrometry-based proteomics that surface levels of heat shock protein 60 (HSP60) were upregulated on monocytic cells in the presence of 27-hydroxycholesterol (27OHChol). The elevated levels of cytoplasmic membrane HSP60 were verified via Western blot analysis and visualized by confocal microscopy. Treatment with 27OHChol also resulted in increased levels of cellular HSP60 without altering its transcription. Cholesterol, however, did not affect cell-surface levels and cellular amount of HSP60. GSK 2033, an LXR antagonist, inhibited expression of live X receptor α, but not of HSP60, induced by 27OHChol. Treatment with 27OHChol also resulted in increased release of HSP60 from monocytic cells, but the release was significantly reduced by inhibitors of endoplasmic reticulum-Golgi protein trafficking, brefeldin A and monensin. Results of the current study indicate that 27OHChol upregulates not only cell-surface and cellular levels of HSP60 but also its release from monocytic cells, thereby contributing to activation of the immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.
Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C
2014-11-01
Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.
Ligaba-Osena, Ayalew; Subramani, Mayavan; Brown, Adrianne; Melmaiee, Kalpalatha; Hossain, Khwaja
2017-01-01
Histone deacetylases (HDACs) are important regulators of gene transcription thus controlling multiple cellular processes. Despite its essential role in plants, HDA6 is yet to be validated in common bean. In this study, we show that HDA6 is involved in plant development and stress response. Differential expression of HDA6 was determined in various tissues and the expression was seen to be upregulated with plant age (seedling < flowering < maturity). Higher expression was observed in flowers and pods than in stem, leaf, and root. Upregulation of HDA6 gene during cold stress implies its prominent role in abiotic stress. Furthermore, the HDA6 gene was isolated from three common bean genotypes and sequence analyses revealed homology with functionally characterized homologs in model species. The 53 kDa translated product was detected using an HDA6 specific antibody and recombinant protein overexpressed in Escherichia coli showed HDAC activity in vitro. To our knowledge, this is the first report in the agriculturally important crop common bean describing the functional characterization and biological role of HDA6. PMID:28127547
Stacpoole, Peter W
2017-11-01
The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol
Nde, Chantal W; Jang, Hyeung-Jin; Toghrol, Freshteh; Bentley, William E
2008-01-01
Background Pseudomonas aeruginosa (P. aeruginosa) is the most common opportunistic pathogen implicated in nosocomial infections and in chronic lung infections in cystic fibrosis patients. Ortho-phenylphenol (OPP) is an antimicrobial agent used as an active ingredient in several EPA registered disinfectants. Despite its widespread use, there is a paucity of information on its target molecular pathways and the cellular responses that it elucidates in bacteria in general and in P. aeruginosa in particular. An understanding of the OPP-driven gene regulation and cellular response it elicits will facilitate more effective utilization of this antimicrobial and possibly lead to the development of more effective disinfectant treatments. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses of P. aeruginosa exposed to 0.82 mM OPP for 20 and 60 minutes. Our data indicated that OPP upregulated the transcription of genes encoding ribosomal, virulence and membrane transport proteins after both treatment times. After 20 minutes of exposure to 0.82 mM OPP, genes involved in the exhibition of swarming motility and anaerobic respiration were upregulated. After 60 minutes of OPP treatment, the transcription of genes involved in amino acid and lipopolysaccharide biosynthesis were upregulated. Further, the transcription of the ribosome modulation factor (rmf) and an alternative sigma factor (rpoS) of RNA polymerase were downregulated after both treatment times. Conclusion Results from this study indicate that after 20 minutes of exposure to OPP, genes that have been linked to the exhibition of anaerobic respiration and swarming motility were upregulated. This study also suggests that the downregulation of the rmf and rpoS genes may be indicative of the mechanism by which OPP causes decreases in cell viability in P. aeruginosa. Consequently, a protective response involving the upregulation of translation leading to the increased synthesis of membrane related proteins and virulence proteins is possibly induced after both treatment times. In addition, cell wall modification may occur due to the increased synthesis of lipopolysaccharide after 60 minutes exposure to OPP. This gene expression profile can now be utilized for a better understanding of the target cellular pathways of OPP in P. aeruginosa and how this organism develops resistance to OPP. PMID:18847467
Mali, Aniket V; Joshi, Asavari A; Hegde, Mahabaleshwar V; Kadam, Shivajirao S
2017-01-01
Background: To enhance their own survival, tumor cells can manipulate their microenvironment through remodeling of the extra cellular matrix (ECM). The urokinase-type plasminogen activator (uPA) system catalyzes plasmin production which further mediates activation of matrix metalloproteinases (MMPs) and plays an important role in breast cancer invasion and metastasis through ECM remodeling. This provides a potential target for therapeutic intervention of breast cancer treatment. Enterolactone (EL) is derived from dietary flax lignans in the human body and is known to have anti-breast cancer activity. We here investigated molecular and cellular mechanisms of EL action on the uPA-plasmin-MMPs system. Methods: MTT and trypan blue dye exclusion assays, anchorage-dependent clonogenic assays and wound healing assays were carried out to study effects on cell proliferation and viability, clonogenicity and migration capacity, respectively. Real-time PCR was employed to study gene expression and gelatin zymography was used to assess MMP-2 and MMP-9 activities. All data were statistically analysed and presented as mean ± SEM values. Results: All the findings collectively demonstrated anticancer and antimetastatic potential of EL with antiproliferative, antimigratory and anticlonogenic cellular mechanisms. EL was found to exhibit multiple control of plasmin activation by down-regulating uPA expression and also up-regulating its natural inhibitor, PAI-1, at the mRNA level. Further, EL was found to down-regulate expression of MMP-2 and MMP-9 genes, and up-regulate TIMP-1 and TIMP-2; natural inhibitors of MMP-2 and MMP-9, respectively. This may be as a consequence of inhibition of plasmin activation, resulting in robust control over migration and invasion of breast cancer cells during metastasis. Conclusions: EL suppresses proliferation, migration and metastasis of MDA-MB-231 breast cancer cells by inhibiting induced ECM remodeling by the ‘uPA-plasmin-MMPs system’. PMID:28545187
Dimastrogiovanni, Giorgio; Córdoba, Marlon; Navarro, Isabel; Jáuregui, Olga; Porte, Cinta
2015-08-01
This work investigates the suitability of the rainbow trout liver cell line (RTL-W1) as an in-vitro model to study the ability of model endocrine disrupters, namely TBT, TPT, 4-NP, BPA and DEHP, to act as metabolic disrupters by altering cellular lipids and markers of lipid metabolism. Among the tested compounds, BPA and DEHP significantly increased the intracellular accumulation of triacylglycerols (TAGs), while all the compounds -apart from TPT-, altered membrane lipids - phosphatidylcholines (PCs) and plasmalogen PCs - indicating a strong interaction of the toxicants with cell membranes and cell signaling. RTL-W1 expressed a number of genes involved in lipid metabolism that were modulated by exposure to BPA, TBT and TPT (up-regulation of FATP1 and FAS) and 4-NP and DEHP (down-regulation of FAS and LPL). Multiple and complex modes of action of these chemicals were observed in RTL-W1 cells, both in terms of expression of genes related to lipid metabolism and alteration of cellular lipids. Although further characterization is needed, this might be a useful model for the detection of chemicals leading to steatosis or other diseases associated with lipid metabolism in fish. Copyright © 2015 Elsevier B.V. All rights reserved.
Autophagic Regulation of p62 is Critical for Cancer Therapy
Islam, Md. Ariful; Sooro, Mopa Alina
2018-01-01
Sequestosome1 (p62/SQSTM 1) is a multidomain protein that interacts with the autophagy machinery as a key adaptor of target cargo. It interacts with phagophores through the LC3-interacting (LIR) domain and with the ubiquitinated protein aggregates through the ubiquitin-associated domain (UBA) domain. It sequesters the target cargo into inclusion bodies by its PB1 domain. This protein is further the central hub that interacts with several key signaling proteins. Emerging evidence implicates p62 in the induction of multiple cellular oncogenic transformations. Indeed, p62 upregulation and/or reduced degradation have been implicated in tumor formation, cancer promotion as well as in resistance to therapy. It has been established that the process of autophagy regulates the levels of p62. Autophagy-dependent apoptotic activity of p62 is recently being reported. It is evident that p62 plays a critical role in both autophagy and apoptosis. Therefore in this review we discuss the role of p62 in autophagy, apoptosis and cancer through its different domains and outline the importance of modulating cellular levels of p62 in cancer therapeutics. PMID:29738493
Autophagic Regulation of p62 is Critical for Cancer Therapy.
Islam, Md Ariful; Sooro, Mopa Alina; Zhang, Pinghu
2018-05-08
Sequestosome1 (p62/SQSTM 1) is a multidomain protein that interacts with the autophagy machinery as a key adaptor of target cargo. It interacts with phagophores through the LC3-interacting (LIR) domain and with the ubiquitinated protein aggregates through the ubiquitin-associated domain (UBA) domain. It sequesters the target cargo into inclusion bodies by its PB1 domain. This protein is further the central hub that interacts with several key signaling proteins. Emerging evidence implicates p62 in the induction of multiple cellular oncogenic transformations. Indeed, p62 upregulation and/or reduced degradation have been implicated in tumor formation, cancer promotion as well as in resistance to therapy. It has been established that the process of autophagy regulates the levels of p62. Autophagy-dependent apoptotic activity of p62 is recently being reported. It is evident that p62 plays a critical role in both autophagy and apoptosis. Therefore in this review we discuss the role of p62 in autophagy, apoptosis and cancer through its different domains and outline the importance of modulating cellular levels of p62 in cancer therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Ekhtear; Ota, Akinobu, E-mail: aota@aichi-med-u.ac.jp; Karnan, Sivasundaram
Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, anmore » anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.« less
Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner.
Brumm, Andrew J; Nunez, Stefanie; Doroudchi, Mehdi M; Kawaguchi, Riki; Duan, Jinhzu; Pellegrini, Matteo; Lam, Larry; Carmichael, S Thomas; Deb, Arjun; Hinman, Jason D
2017-08-01
Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.
Su, Hsun-Cheng; Ramkissoon, Kevin; Doolittle, Janet; Clark, Martha; Khatun, Jainab; Secrest, Ashley; Wolfgang, Matthew C.; Giddings, Morgan C.
2010-01-01
Microbes have developed resistance to nearly every antibiotic, yet the steps leading to drug resistance remain unclear. Here we report a multistage process by which Pseudomonas aeruginosa acquires drug resistance following exposure to ciprofloxacin at levels ranging from 0.5× to 8× the initial MIC. In stage I, susceptible cells are killed en masse by the exposure. In stage II, a small, slow to nongrowing population survives antibiotic exposure that does not exhibit significantly increased resistance according to the MIC measure. In stage III, exhibited at 0.5× to 4× the MIC, a growing population emerges to reconstitute the population, and these cells display heritable increases in drug resistance of up to 50 times the original level. We studied the stage III cells by proteomic methods to uncover differences in the regulatory pathways that are involved in this phenotype, revealing upregulation of phosphorylation on two proteins, succinate-semialdehyde dehydrogenase (SSADH) and methylmalonate-semialdehyde dehydrogenase (MMSADH), and also revealing upregulation of a highly conserved protein of unknown function. Transposon disruption in the encoding genes for each of these targets substantially dampened the ability of cells to develop the stage III phenotype. Considering these results in combination with computational models of resistance and genomic sequencing results, we postulate that stage III heritable resistance develops from a combination of both genomic mutations and modulation of one or more preexisting cellular pathways. PMID:20696867
Rapid and efficient nonviral gene delivery of CD154 to primary chronic lymphocytic leukemia cells.
Li, L H; Biagi, E; Allen, C; Shivakumar, R; Weiss, J M; Feller, S; Yvon, E; Fratantoni, J C; Liu, L N
2006-02-01
Interactions between CD40 and CD40 ligand (CD154) are essential in the regulation of both humoral and cellular immune responses. Forced expression of human CD154 in B chronic lymphocytic leukemia (B-CLL) cells can upregulate costimulatory and adhesion molecules and restore antigen-presenting capacity. Unfortunately, B-CLL cells are resistant to direct gene manipulation with most currently available gene transfer systems. In this report, we describe the use of a nonviral, clinical-grade, electroporation-based gene delivery system and a standard plasmid carrying CD154 cDNA, which achieved efficient (64+/-15%) and rapid (within 3 h) transfection of primary B-CLL cells. Consistent results were obtained from multiple human donors. Transfection of CD154 was functional in that it led to upregulated expression of CD80, CD86, ICAM-I and MHC class II (HLA-DR) on the B-CLL cells and induction of allogeneic immune responses in MLR assays. Furthermore, sustained transgene expression was demonstrated in long-term cryopreserved transfected cells. This simple and rapid gene delivery technology has been validated under the current Good Manufacturing Practice conditions, and multiple doses of CD154-expressing cells were prepared for CLL patients from one DNA transfection. Vaccination strategies using autologous tumor cells manipulated ex vivo for patients with B-CLL and perhaps with other hematopoietic malignancies could be practically implemented using this rapid and efficient nonviral gene delivery system.
Induction of Interferon-Stimulated Genes by Simian Virus 40 T Antigens
Rathi, Abhilasha V.; Cantalupo, Paul G.; Sarkar, Saumendra N.; Pipas, James M.
2010-01-01
Simian virus 40 (SV40) large T antigen (TAg) is a multifunctional oncoprotein essential for productive viral infection and for cellular transformation. We have used microarray analysis to examine the global changes in cellular gene expression induced by wild-type T antigen (TAgwt) and TAg-mutants in mouse embryo fibroblasts (MEFs). The expression profile of approximately 800 cellular genes was altered by TAgwt and a truncated TAg (TAgN136), including many genes that influence cell cycle, DNA-replication, transcription, chromatin structure and DNA repair. Unexpectedly, we found a significant number of immune response genes upregulated by TAgwt including many interferon stimulated genes (ISGs) such as ISG56, OAS, Rsad2, Ifi27 and Mx1. Additionally, we also observed activation of STAT1 by TAgwt. Our genetic studies using several TAg mutants reveal an unexplored function of TAg and indicate that the LXCXE motif and p53 binding are required for the upregulation of ISGs. PMID:20692676
JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis
2012-07-01
necessary because, although global pSTAT upregulation has been identified after status epilepticus following pilocarpine treatment in rats (Kim et...100 mg/kg, i.p.) in pilocarpine-treated rats indicated that it was able to suppress pSTAT3 upregulation after status epilepticus , this procedure had...cellular responses n status epilepticus models (Schauwecker and Steward, 1997), nd/or are often used in transgenic studies. Severe brain injury was
Biotechnological approaches to study plant responses to stress.
Pérez-Clemente, Rosa M; Vives, Vicente; Zandalinas, Sara I; López-Climent, María F; Muñoz, Valeria; Gómez-Cadenas, Aurelio
2013-01-01
Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized.
Biotechnological Approaches to Study Plant Responses to Stress
Pérez-Clemente, Rosa M.; Vives, Vicente; Zandalinas, Sara I.; López-Climent, María F.; Muñoz, Valeria; Gómez-Cadenas, Aurelio
2013-01-01
Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized. PMID:23509757
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeeyong; Kim, Hyun-Ji; Yi, Jae Youn, E-mail: yjy_71@kcch.re.kr
Studies have shown that γ-irradiation induces various biological responses, including oxidative stress and apoptosis, as well as cellular repair and immune system responses. However, most such studies have been performed using traditional two-dimensional cell culture systems, which are limited in their ability to faithfully represent in vivo conditions. A three-dimensional (3D) environment composed of properly interconnected and differentiated cells that allow communication and cooperation among cells via secreted molecules would be expected to more accurately reflect cellular responses. Here, we investigated γ-irradiation–induced changes in the secretome of 3D-cultured keratinocytes. An analysis of keratinocyte secretome profiles following fractionated-dose γ-irradiation revealed changes inmore » genes involved in cell adhesion, angiogenesis, and the immune system. Notably, peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. This upregulation was associated with an increase in the transcription of known PPARα target genes in secretome, including angiopoietin-like protein 4, dermokine and kallikrein-related peptide 12, which were differentially regulated by fractionated-dose γ-irradiation. Collectively, our data imply a mechanism linking γ-irradiation and secretome changes, and suggest that these changes could play a significant role in the coordinated cellular responses to harmful ionizing radiation, such as those associated with radiation therapy. This extension of our understanding of γ-irradiation-induced secretome changes has the potential to improve radiation therapy strategies. - Highlights: • γ-irradiation induced changes of cell adhesion, angiogenesis, and immune system in secretome of 3D-cultured keratinocytes. • Peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. • The known PPARα target genes were differentially regulated by fractionated-dose γ-irradiation.« less
Hirayama, Mio; Kobayashi, Daiki; Mizuguchi, Souhei; Morikawa, Takashi; Nagayama, Megumi; Midorikawa, Uichi; Wilson, Masayo M; Nambu, Akiko N; Yoshizawa, Akiyasu C; Kawano, Shin; Araki, Norie
2013-05-01
Neurofibromatosis type 1 (NF1) tumor suppressor gene product, neurofibromin, functions in part as a Ras-GAP, and though its loss is implicated in the neuronal abnormality of NF1 patients, its precise cellular function remains unclear. To study the molecular mechanism of NF1 pathogenesis, we prepared NF1 gene knockdown (KD) PC12 cells, as a NF1 disease model, and analyzed their molecular (gene and protein) expression profiles with a unique integrated proteomics approach, comprising iTRAQ, 2D-DIGE, and DNA microarrays, using an integrated protein and gene expression analysis chart (iPEACH). In NF1-KD PC12 cells showing abnormal neuronal differentiation after NGF treatment, of 3198 molecules quantitatively identified and listed in iPEACH, 97 molecules continuously up- or down-regulated over time were extracted. Pathway and network analysis further revealed overrepresentation of calcium signaling and transcriptional regulation by glucocorticoid receptor (GR) in the up-regulated protein set, whereas nerve system development was overrepresented in the down-regulated protein set. The novel up-regulated network we discovered, "dynein IC2-GR-COX-1 signaling," was then examined in NF1-KD cells. Validation studies confirmed that NF1 knockdown induces altered splicing and phosphorylation patterns of dynein IC2 isomers, up-regulation and accumulation of nuclear GR, and increased COX-1 expression in NGF-treated cells. Moreover, the neurite retraction phenotype observed in NF1-KD cells was significantly recovered by knockdown of the dynein IC2-C isoform and COX-1. In addition, dynein IC2 siRNA significantly inhibited nuclear translocation and accumulation of GR and up-regulation of COX-1 expression. These results suggest that dynein IC2 up-regulates GR nuclear translocation and accumulation, and subsequently causes increased COX-1 expression, in this NF1 disease model. Our integrated proteomics strategy, which combines multiple approaches, demonstrates that NF1-related neural abnormalities are, in part, caused by up-regulation of dynein IC2-GR-COX-1 signaling, which may be a novel therapeutic target for NF1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X.; Li, L.; Zhang, L.
Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidativemore » stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H{sub 2}O{sub 2} generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H{sub 2}O{sub 2} generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H{sub 2}O{sub 2} accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.« less
Villegas, Victoria E; Rahman, Mohammed Ferdous-Ur; Fernandez-Barrena, Maite G; Diao, Yumei; Liapi, Eleni; Sonkoly, Enikö; Ståhle, Mona; Pivarcsi, Andor; Annaratone, Laura; Sapino, Anna; Ramírez Clavijo, Sandra; Bürglin, Thomas R; Shimokawa, Takashi; Ramachandran, Saraswathi; Kapranov, Philipp; Fernandez-Zapico, Martin E; Zaphiropoulos, Peter G
2014-07-01
Non-coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non-coding RNA located head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer-associated signaling pathways. The expression of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels. siRNAs knockdown of GLI1AS up-regulated GLI1 and increased cellular proliferation and tumor growth in a xenograft model system. Conversely, GLI1AS overexpression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of the GLI1 transcription factor. Activation of TGFβ and Hedgehog signaling, two known regulators of GLI1 expression, conferred a concordant up-regulation of GLI1 and GLI1AS in cancer cells. Finally, analysis of the mechanism underlying the interplay between GLI1 and GLI1AS indicates that the non-coding RNA elicits a local alteration of chromatin structure by increasing the silencing mark H3K27me3 and decreasing the recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate the existence of a novel non-coding RNA-based negative feedback loop controlling GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of this oncogenic transcription factor. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Li, Wen-Ru; Shi, Qing-Shan; Dai, Huan-Qin; Liang, Qing; Xie, Xiao-Bao; Huang, Xiao-Mo; Zhao, Guang-Ze; Zhang, Li-Xin
2016-01-01
The antifungal activity, kinetics, and molecular mechanism of action of garlic oil against Candida albicans were investigated in this study using multiple methods. Using the poisoned food technique, we determined that the minimum inhibitory concentration of garlic oil was 0.35 μg/mL. Observation by transmission electron microscopy indicated that garlic oil could penetrate the cellular membrane of C. albicans as well as the membranes of organelles such as the mitochondria, resulting in organelle destruction and ultimately cell death. RNA sequencing analysis showed that garlic oil induced differential expression of critical genes including those involved in oxidation-reduction processes, pathogenesis, and cellular response to drugs and starvation. Moreover, the differentially expressed genes were mainly clustered in 19 KEGG pathways, representing vital cellular processes such as oxidative phosphorylation, the spliceosome, the cell cycle, and protein processing in the endoplasmic reticulum. In addition, four upregulated proteins selected after two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) analysis were identified with high probability by mass spectrometry as putative cytoplasmic adenylate kinase, pyruvate decarboxylase, hexokinase, and heat shock proteins. This is suggestive of a C. albicans stress responses to garlic oil treatment. On the other hand, a large number of proteins were downregulated, leading to significant disruption of the normal metabolism and physical functions of C. albicans. PMID:26948845
Li, Jingfeng; Sun, Yu; Li, Yuying; Liu, Ximeng; Yue, Qi; Li, Zhaofei
2018-05-07
Fatty acid synthase (FASN) catalyzes the synthesis of palmitate, which is required for formation of complex fatty acids and phospholipids that are involved in energy production, membrane remodeling and modification of host and viral proteins. Presently, the roles of cellular fatty acid synthesis pathway in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection is not clear. In this study, we found that the transcripts level of fasn was significantly up-regulated at the early stage of AcMNPV infection. Treatment of AcMNPV-infected Spodoptera frugiperda Sf9 cells with C75, a specific inhibitor of FASN, did not affect the internalization of budded virions into cells, but dramatically reduced the infectious AcMNPV production. Further analysis revealed that the presence of C75 significantly decreased the expression level for two reporter genes, beta-galactosidase and beta-glucuronidase, that were separately directed by the early and late promoter of AcMNPV. Similarly, Western blot analysis showed that, in C75-treated cells, the expression of viral gp64 was delayed and decreased. Additionally, treatment with C75 also resulted in a significant reduction in the accumulation of viral genomic DNA. Together, these results demonstrate that the fatty acid synthesis pathway is required for efficient replication of AcMNPV, but it might not be necessary for AcMNPV entry into insect cells. Copyright © 2018 Elsevier B.V. All rights reserved.
SUZ12 is a novel putative oncogene promoting tumorigenesis in head and neck squamous cell carcinoma.
Wu, Yaping; Hu, Huijun; Zhang, Wei; Li, Zhongwu; Diao, Pengfei; Wang, Dongmiao; Zhang, Wei; Wang, Yanling; Yang, Jianrong; Cheng, Jie
2018-04-18
The suppressor of zest 12 (SUZ12), one of the core polycomb repressive complex 2 (PRC2) components, has increasingly appreciated as a key mediator during human tumorigenesis. However, its expression pattern and oncogenic roles in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored yet. Here, we sought to determine its expression pattern, clinicopathological significance and biological roles in HNSCC. Through data mining and interrogation from multiple publicly available databases, our bioinformatics analyses revealed that SUZ12 mRNA was significantly overexpressed in multiple HNSCC patient cohorts. Moreover, SUZ12 protein was markedly up-regulated in primary HNSCC samples from our patient cohort as assessed by immunohistochemical staining and its overexpression significantly associated with cervical node metastasis and reduced overall and disease-free survival. In the 4-nitroquinoline 1-oxide (4NQO)-induced HNSCC mouse model, increased SUZ12 immunostaining was observed along with disease progression from epithelial hyperplasia to squamous cell carcinoma in tongue. Furthermore, shRNA-mediated SUZ12 knock-down significantly inhibited cell proliferation, migration and invasion in HNSCC cells, and resulted in compromised tumour growth in vivo. Collectively, our data reveal that SUZ12 might serve as a putative oncogene by promoting cell proliferation, migration and invasion, and also a novel biomarker with diagnostic and prognostic significance for HNSCC. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Autefage, Hélène; Littmann, Elena; Hedegaard, Martin A. B.; Von Erlach, Thomas; O’Donnell, Matthew; Burden, Frank R.; Winkler, David A.; Stevens, Molly M.
2015-01-01
Despite the increasing sophistication of biomaterials design and functional characterization studies, little is known regarding cells’ global response to biomaterials. Here, we combined nontargeted holistic biological and physical science techniques to evaluate how simple strontium ion incorporation within the well-described biomaterial 45S5 bioactive glass (BG) influences the global response of human mesenchymal stem cells. Our objective analyses of whole gene-expression profiles, confirmed by standard molecular biology techniques, revealed that strontium-substituted BG up-regulated the isoprenoid pathway, suggesting an influence on both sterol metabolite synthesis and protein prenylation processes. This up-regulation was accompanied by increases in cellular and membrane cholesterol and lipid raft contents as determined by Raman spectroscopy mapping and total internal reflection fluorescence microscopy analyses and by an increase in cellular content of phosphorylated myosin II light chain. Our unexpected findings of this strong metabolic pathway regulation as a response to biomaterial composition highlight the benefits of discovery-driven nonreductionist approaches to gain a deeper understanding of global cell–material interactions and suggest alternative research routes for evaluating biomaterials to improve their design. PMID:25831522
Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells.
Shiratsuki, Shogo; Hara, Tomotaka; Munakata, Yasuhisa; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka
2016-12-05
The present study addresses molecular backgrounds underlying low oxygen induced metabolic changes and 1.2-fold change in bovine granulosa cell (GCs) proliferation. RNA-seq revealed that low oxygen (5%) upregulated genes associated with HIF-1 and glycolysis and downregulated genes associated with mitochondrial respiration than that in high oxygen level (21%). Low oxygen level induced high glycolytic activity and low mitochondrial function and biogenesis. Low oxygen level enhanced GC proliferation with high expression levels of HIF-1, VEGF, AKT, mTOR, and S6RP, whereas addition of anti-VEGF antibody decreased cellular proliferation with low phosphorylated AKT and mTOR expression levels. Low oxygen level reduced SIRT1, whereas activation of SIRT1 by resveratrol increased mitochondrial replication and decreased cellular proliferation with reduction of phosphorylated mTOR. These results suggest that low oxygen level stimulates the HIF1-VEGF-AKT-mTOR pathway and up-regulates glycolysis, which contributes to GC proliferation, and downregulation of SIRT1 contributes to hypoxia-associated reduction of mitochondria and cellular proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cellular consequences of sleep deprivation in the brain.
Cirelli, Chiara
2006-10-01
Several recent studies have used transcriptomics approaches to characterize the molecular correlates of sleep, waking, and sleep deprivation. This analysis may help in understanding the benefits that sleep brings to the brain at the cellular level. The studies are still limited in number and focus on a few brain regions, but some consistent findings are emerging. Sleep, spontaneous wakefulness, short-term, and long-term sleep deprivation are each associated with the upregulation of hundreds of genes in the cerebral cortex and other brain areas. In fruit flies as well as in mammals, three categories of genes are consistently upregulated during waking and short-term sleep deprivation relative to sleep. They include genes involved in energy metabolism, synaptic potentiation, and the response to cellular stress. In the rat cerebral cortex, transcriptional changes associated with prolonged sleep loss differ significantly from those observed during short-term sleep deprivation. However, it is too early to draw firm conclusions relative to the molecular consequences of sleep deprivation, and more extensive studies using DNA and protein arrays are needed in different species and in different brain regions.
Nie, Mei; Balda, Maria S.; Matter, Karl
2012-01-01
A central component of the cellular stress response is p21WAF1/CIP1, which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1–associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB’s activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3′-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival. PMID:22711822
Biofuels. Engineering alcohol tolerance in yeast.
Lam, Felix H; Ghaderi, Adel; Fink, Gerald R; Stephanopoulos, Gregory
2014-10-03
Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation. Copyright © 2014, American Association for the Advancement of Science.
Cellular Chaperonin CCTγ Contributes to Rabies Virus Replication during Infection
Zhang, Jinyang; Wu, Xiaopeng; Zan, Jie; Wu, Yongping; Ye, Chengjin; Ruan, Xizhen
2013-01-01
Rabies, as the oldest known infectious disease, remains a serious threat to public health worldwide. The eukaryotic cytosolic chaperonin TRiC/CCT complex facilitates the folding of proteins through ATP hydrolysis. Here, we investigated the expression, cellular localization, and function of neuronal CCTγ during neurotropic rabies virus (RABV) infection using mouse N2a cells as a model. Following RABV infection, 24 altered proteins were identified by using two-dimensional electrophoresis and mass spectrometry, including 20 upregulated proteins and 4 downregulated proteins. In mouse N2a cells infected with RABV or cotransfected with RABV genes encoding nucleoprotein (N) and phosphoprotein (P), confocal microscopy demonstrated that upregulated cellular CCTγ was colocalized with viral proteins N and P, which formed a hollow cricoid inclusion within the region around the nucleus. These inclusions, which correspond to Negri bodies (NBs), did not form in mouse N2a cells only expressing the viral protein N or P. Knockdown of CCTγ by lentivirus-mediated RNA interference led to significant inhibition of RABV replication. These results demonstrate that the complex consisting of viral proteins N and P recruits CCTγ to NBs and identify the chaperonin CCTγ as a host factor that facilitates intracellular RABV replication. This work illustrates how viruses can utilize cellular chaperonins and compartmentalization for their own benefit. PMID:23637400
Fujino, Hiromichi; Toyomura, Kaori; Chen, Xiao-bo; Regan, John W; Murayama, Toshihiko
2011-02-01
An important event in the development of tumors is angiogenesis, or the formation of new blood vessels. Angiogenesis is also known to be involved in tumor cell metastasis and is dependent upon the activity of the vascular endothelial growth factor (VEGF) signaling pathway. Studies of mice in which the EP3 prostanoid receptors have been genetically deleted have shown a role for these receptors in cancer growth and angiogenesis. In the present study, human colon cancer HCA-7 cells were used as a model system to understand the potential role of EP3 receptors in tumor cell migration. We now show that stimulation of HCA-7 cells with PGE₂ enhanced the up-regulation of VEGF receptor-1 (VEGFR-1) expression by a mechanism involving EP3 receptor-mediated activation of phosphatidylinositol 3-kinase and the extracellular signal-regulated kinases. Moreover, the PGE₂ stimulated increase in VEGFR-1 expression was accompanied by an increase in the cellular migration of HCA-7 cells. Given the known involvement of VEGFR-1 in cellular migration, our results suggest that EP3 receptors may contribute to tumor cell metastasis by increasing cellular migration through the up-regulation of VEGFR-1 signaling. Copyright © 2010 Elsevier Inc. All rights reserved.
Serratos, Iris N.; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Reyes-Espinosa, Francisco; Díaz-Garrido, Paulina; López-Macay, Ambar; Martínez-Flores, Karina; López-Reyes, Alberto; Sánchez-García, Aurora; Cuevas, Elvis; Santamaria, Abel
2015-01-01
The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor involved in neurodegenerative and inflammatory disorders. RAGE induces cellular signaling upon binding to a variety of ligands. Evidence suggests that RAGE up-regulation is involved in quinolinate (QUIN)-induced toxicity. We investigated the QUIN-induced toxic events associated with early noxious responses, which might be linked to signaling cascades leading to cell death. The extent of early cellular damage caused by this receptor in the rat striatum was characterized by image processing methods. To document the direct interaction between QUIN and RAGE, we determined the binding constant (Kb) of RAGE (VC1 domain) with QUIN through a fluorescence assay. We modeled possible binding sites of QUIN to the VC1 domain for both rat and human RAGE. QUIN was found to bind at multiple sites to the VC1 dimer, each leading to particular mechanistic scenarios for the signaling evoked by QUIN binding, some of which directly alter RAGE oligomerization. This work contributes to the understanding of the phenomenon of RAGE-QUIN recognition, leading to the modulation of RAGE function. PMID:25757085
Chen, Zhongwen; Oh, Dongmyung; Biswas, Kabir H; Yu, Cheng-Han; Zaidel-Bar, Ronen; Groves, Jay T
2018-06-19
Recent studies have revealed pronounced effects of the spatial distribution of EphA2 receptors on cellular response to receptor activation. However, little is known about molecular mechanisms underlying this spatial sensitivity, in part due to lack of experimental systems. Here, we introduce a hybrid live-cell patterned supported lipid bilayer experimental platform in which the sites of EphA2 activation and integrin adhesion are spatially controlled. Using a series of live-cell imaging and single-molecule tracking experiments, we map the transmission of signals from ephrinA1:EphA2 complexes. Results show that ligand-dependent EphA2 activation induces localized myosin-dependent contractions while simultaneously increasing focal adhesion dynamics throughout the cell. Mechanistically, Src kinase is activated at sites of ephrinA1:EphA2 clustering and subsequently diffuses on the membrane to focal adhesions, where it up-regulates FAK and paxillin tyrosine phosphorylation. EphrinA1:EphA2 signaling triggers multiple cellular responses with differing spatial dependencies to enable a directed migratory response to spatially resolved contact with ephrinA1 ligands.
Welle, Kevin A.; Zhang, Tian; Hryhorenko, Jennifer R.; Shen, Shichen; Qu, Jun; Ghaemmaghami, Sina
2016-01-01
Recent advances in mass spectrometry have enabled system-wide analyses of protein turnover. By globally quantifying the kinetics of protein clearance and synthesis, these methodologies can provide important insights into the regulation of the proteome under varying cellular and environmental conditions. To facilitate such analyses, we have employed a methodology that combines metabolic isotopic labeling (Stable Isotope Labeling in Cell Culture - SILAC) with isobaric tagging (Tandem Mass Tags - TMT) for analysis of multiplexed samples. The fractional labeling of multiple time-points can be measured in a single mass spectrometry run, providing temporally resolved measurements of protein turnover kinetics. To demonstrate the feasibility of the approach, we simultaneously measured the kinetics of protein clearance and accumulation for more than 3000 proteins in dividing and quiescent human fibroblasts and verified the accuracy of the measurements by comparison to established non-multiplexed approaches. The results indicate that upon reaching quiescence, fibroblasts compensate for lack of cellular growth by globally downregulating protein synthesis and upregulating protein degradation. The described methodology significantly reduces the cost and complexity of temporally-resolved dynamic proteomic experiments and improves the precision of proteome-wide turnover data. PMID:27765818
Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin
2016-01-01
Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis. PMID:27213594
Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin
2016-06-28
Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis.
Vadassery, Jyothilakshmi; Scholz, Sandra S.; Mithöfer, Axel
2012-01-01
In plant cells, diverse environmental changes often induce transient elevation in the intracellular calcium concentrations, which are involved in signaling pathways leading to the respective cellular reactions. Therefore, these calcium elevations need to be deciphered into specific downstream responses. Calmodulin-like-proteins (CMLs) are calcium-sensing proteins present only in higher plants. They are involved in signaling processes induced by both abiotic as well as biotic stress factors. However, the role of CMLs in the interaction of plants with herbivorous insects is almost unknown. Here we show that in Arabidopsis thaliana a number of CMLs genes (CML9, 11,12,16,17 and 23) are upregulated due to treatments with oral secretion of larvae of the herbivorous insect Spodoptera littoralis. We identified that these genes belong to two groups that respond with different kinetics to the treatment with oral secretion. Our data indicate that signaling networks involving multiple CMLs very likely have important functions in plant defense against insect herbivores, in addition to their involvement in many other stress-induced processes in plants. PMID:22902684
Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García
2013-01-01
Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung development in mice. Results revealed novel target genes and gene networks mediators of IGF1 action on pulmonary cellular proliferation, differentiation, adhesion and immunity, and on vascular and distal epithelium maturation during prenatal lung development. PMID:24391734
NASA Astrophysics Data System (ADS)
Bakshi, Achala; Moin, Mazahar; Kumar, M. Udaya; Reddy, Aramati Bindu Madhava; Ren, Maozhi; Datla, Raju; Siddiq, E. A.; Kirti, P. B.
2017-02-01
The target of Rapamycin (TOR) present in all eukaryotes is a multifunctional protein, regulating growth, development, protein translation, ribosome biogenesis, nutrient, and energy signaling. In the present study, ectopic expression of TOR gene of Arabidopsis thaliana in a widely cultivated indica rice resulted in enhanced plant growth under water-limiting conditions conferring agronomically important water-use efficiency (WUE) trait. The AtTOR high expression lines of rice exhibited profuse tillering, increased panicle length, increased plant height, high photosynthetic efficiency, chlorophyll content and low Δ13C. Δ13C, which is inversely related to high WUE, was as low as 17‰ in two AtTOR high expression lines. These lines were also insensitive to the ABA-mediated inhibition of seed germination. The significant upregulation of 15 stress-specific genes in high expression lines indicates their contribution to abiotic stress tolerance. The constitutive expression of AtTOR is also associated with significant transcriptional upregulation of putative TOR complex-1 components, OsRaptor and OsLST8. Glucose-mediated transcriptional activation of AtTOR gene enhanced lateral root formation. Taken together, our findings indicate that TOR, in addition to its multiple cellular functions, also plays an important role in response to abiotic stress and potentially enhances WUE and yield related attributes.
Lee, Soh-Hyun; Ha, Sun-Ok; Koh, Ho-Jin; Kim, KilSoo; Jeon, Seon-Min; Choi, Myung-Sook; Kwon, Oh-Shin; Huh, Tae-Lin
2010-02-28
Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.
Minelli, Alba; Conte, Carmela; Grottelli, Silvia; Bellezza, Maria; Cacciatore, Ivana; Bolaños, Juan P
2009-01-01
Hystidyl-proline [cyclo(His-Pro)] is an endogenous cyclic dipeptide produced by the cleavage of thyrotropin releasing hormone. Previous studies have shown that cyclo(His-Pro) protects against oxidative stress, although the underlying mechanism has remained elusive. Here, we addressed this issue and found that cyclo(His-Pro) triggered nuclear accumulation of NF-E2-related factor-2 (Nrf2), a transcription factor that up-regulates antioxidant-/electrophile-responsive element (ARE-EpRE)-related genes, in PC12 cells. Cyclo(His-Pro) attenuated reactive oxygen species production, and prevented glutathione depletion caused by glutamate, rotenone, paraquat and β-amyloid treatment. Moreover, real-time PCR analyses revealed that cyclo(His-Pro) induced the expression of a number of ARE-related genes and protected cells against hydrogen peroxide-mediated apoptotic death. Furthermore, these effects were abolished by RNA interference-mediated Nrf2 knockdown. Finally, pharmacological inhibition of p-38 MAPK partially prevented both cyclo(His-Pro)-mediated Nrf2 activation and cellular protection. These results suggest that the signalling mechanism responsible for the cytoprotective actions of cyclo(His-Pro) would involve p-38 MAPK activation leading to Nrf2-mediated up-regulation of antioxidant cellular defence. PMID:18373731
Aomatsu, Keiichi; Arao, Tokuzo; Abe, Kosuke; Kodama, Aya; Sugioka, Koji; Matsumoto, Kazuko; Kudo, Kanae; Kimura, Hideharu; Fujita, Yoshihiko; Hayashi, Hidetoshi; Nagai, Tomoyuki; Shimomura, Yoshikazu; Nishio, Kazuto
2012-02-16
The involvement of the epithelial mesenchymal transition (EMT) in the process of corneal wound healing remains largely unclear. The purpose of the present study was to gain insight into Slug expression and corneal wound healing. Slug expression during wound healing in the murine cornea was evaluated using fluorescence staining in vivo. Slug or Snail was stably introduced into human corneal epithelial cells (HCECs). These stable transfectants were evaluated for the induction of the EMT, cellular growth, migration activity, and expression changes in differentiation-related molecules. Slug, but not Snail, was clearly expressed in the nuclei of corneal epithelial cells in basal lesion of the corneal epithelium during wound healing in vivo. The overexpression of Slug or Snail induced an EMT-like cellular morphology and cadherin switching in HCECs, indicating that these transcription factors were able to mediate the typical EMT in HCECs. The overexpression of Slug or Snail suppressed cellular proliferation but enhanced the migration activity. Furthermore, ABCG2, TP63, and keratin 19, which are known as stemness-related molecules, were downregulated in these transfectants. It was found that Slug is upregulated during corneal wound healing in vivo. The overexpression of Slug mediated a change in the cellular phenotype affecting proliferation, migration, and expression levels of differentiation-related molecules. This is the first evidence that Slug is regulated during the process of corneal wound healing in the corneal epithelium in vivo, providing a novel insight into the EMT and Slug expression in corneal wound healing.
Chaudhary, Amrita; Bag, Swarnendu; Mandal, Mousumi; Krishna Karri, Sri Phani; Barui, Ananya; Rajput, Monika; Banerjee, Provas; Sheet, Debdoot; Chatterjee, Jyotirmoy
2015-05-26
In traditional medicines honey is known for healing efficacy and vividly used as "Anupan" in Ayurvedic medicines appreciating roles in dilutions. Validating efficacy of physico-chemically characterized honey in dilutions, studies on in vitro wound healing and attainment of cellular confluence epithelial cells including expressions of cardinal genes is crucial. To evaluate effects of characterized honey in varied dilutions on cellular viability, in vitro wound healing and modulation of prime epithelial gene expressions. Six Indian honey-samples from different sources were physico-chemically characterized and optimal one was explored in dilutions (v/v%) through in vitro studies on human epithelial (HaCaT) cells for viability, wound healing and expressions of genes p63, E-cadherin, β-catenin, GnT-III and GnT-V. Studied honey samples (i.e. A-F) depicted range of pH (2-4), water (12.48-23.95), electrical conductivity (2.57-14.34), carbohydrate (68.73-98.65), protein (.316-5.36) and antioxidant potential. Though sample A and F showed physico-chemical proximity, but overall bio-impact of the earlier was better, thus studied in 8-.1% (v/v) dilution range. Four dilutions (.01, .04, .1, .25 v/v%) augmented cellular viability but in vitro wound healing was fastest (p<.05) under .1%. Such efficacy was further documented for p63 up-regulation by immunocytochemistry and mRNA studies. The E-cadherin and β-catenin mRNA-expressions were also up-regulated and their proteins were predominantly cytoplasmic. E-cadherin up-regulation was corroborative with down-regulation and up-regulation of GnT-III and GnT-V respectively. Present study illustrated efficacy of particular honey dilution (.1%) with characteristic free radical scavenging activity in facilitating cell proliferation and attainment of confluence towards faster wound healing and modulation of cardinal epithelial genes (viz. p63, E-cadherin, β-catenin, Gnt-III and V). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
PINK1 deficiency enhances autophagy and mitophagy induction.
Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M S; Bravo-San Pedro, José M; Pizarro-Estrella, Elisa; Rodríguez-Arribas, Mario; Climent, Vicente; Martin-Cano, Francisco E; González-Soltero, María E; Tandon, Anurag; Fuentes, José M; González-Polo, Rosa A
2016-03-01
Parkinson's disease (PD) is a neurodegenerative disorder with poorly understood etiology. Increasing evidence suggests that age-dependent compromise of the maintenance of mitochondrial function is a key risk factor. Several proteins encoded by PD-related genes are associated with mitochondria including PTEN-induced putative kinase 1 (PINK1), which was first identified as a gene that is upregulated by PTEN. Loss-of-function PINK1 mutations induce mitochondrial dysfunction and, ultimately, neuronal cell death. To mitigate the negative effects of altered cellular functions cells possess a degradation mechanism called autophagy for recycling damaged components; selective elimination of dysfunctional mitochondria by autophagy is termed mitophagy. Our study indicates that autophagy and mitophagy are upregulated in PINK1-deficient cells, and is the first report to demonstrate efficient fluxes by one-step analysis. We propose that autophagy is induced to maintain cellular homeostasis under conditions of non-regulated mitochondrial quality control.
PINK1 deficiency enhances autophagy and mitophagy induction
Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M S; Bravo-San Pedro, José M; Pizarro-Estrella, Elisa; Rodríguez-Arribas, Mario; Climent, Vicente; Martin-Cano, Francisco E; González-Soltero, María E; Tandon, Anurag; Fuentes, José M; González-Polo, Rosa A
2016-01-01
Parkinson's disease (PD) is a neurodegenerative disorder with poorly understood etiology. Increasing evidence suggests that age-dependent compromise of the maintenance of mitochondrial function is a key risk factor. Several proteins encoded by PD-related genes are associated with mitochondria including PTEN-induced putative kinase 1 (PINK1), which was first identified as a gene that is upregulated by PTEN. Loss-of-function PINK1 mutations induce mitochondrial dysfunction and, ultimately, neuronal cell death. To mitigate the negative effects of altered cellular functions cells possess a degradation mechanism called autophagy for recycling damaged components; selective elimination of dysfunctional mitochondria by autophagy is termed mitophagy. Our study indicates that autophagy and mitophagy are upregulated in PINK1-deficient cells, and is the first report to demonstrate efficient fluxes by one-step analysis. We propose that autophagy is induced to maintain cellular homeostasis under conditions of non-regulated mitochondrial quality control. PMID:27308585
A cellular, molecular, and pharmacological basis for appendage regeneration in mice
Leung, Thomas H.; Snyder, Emily R.; Liu, Yinghua; Wang, Jing; Kim, Seung K.
2015-01-01
Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1–Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine. PMID:26494786
Qiu, Ye; Ye, Xin; Hanson, Paul J; Zhang, Huifang Mary; Zong, Jeff; Cho, Brian; Yang, Decheng
2016-03-01
Coxsackievirus B3 (CVB3) is the primary pathogen of viral myocarditis. Upon infection, CVB3 exploits the host cellular machineries, such as chaperone proteins, to benefit its own infection cycles. Inducible heat shock 70-kDa proteins (Hsp70s) are chaperone proteins induced by various cellular stress conditions. The internal ribosomal entry site (IRES) within Hsp70 mRNA allows Hsp70 to be translated cap-independently during CVB3 infection when global cap-dependent translation is compromised. The Hsp70 protein family contains two major members, Hsp70-1 and Hsp70-2. This study showed that Hsp70-1, but not Hsp70-2, was upregulated during CVB3 infection both in vitro and in vivo. Then a novel mechanism of Hsp70-1 induction was revealed in which CaMKIIγ is activated by CVB3 replication and leads to phosphorylation of heat shock factor 1 (HSF1) specifically at Serine 230, which enhances Hsp70-1 transcription. Meanwhile, phosphorylation of Ser230 induces translocation of HSF1 from the cytoplasm to nucleus, thus blocking the ERK1/2-mediated phosphorylation of HSF1 at Ser307, a negative regulatory process of Hsp70 transcription, further contributing to Hsp70-1 upregulation. Finally, we demonstrated that Hsp70-1 upregulation, in turn, stabilizes CVB3 genome via the AU-rich element (ARE) harbored in the 3' untranslated region of CVB3 genomic RNA.
Cole, Steven W.; Capitanio, John P.; Chun, Katie; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cacioppo, John T.
2015-01-01
To define the cellular mechanisms of up-regulated inflammatory gene expression and down-regulated antiviral response in people experiencing perceived social isolation (loneliness), we conducted integrative analyses of leukocyte gene regulation in humans and rhesus macaques. Five longitudinal leukocyte transcriptome surveys in 141 older adults showed up-regulation of the sympathetic nervous system (SNS), monocyte population expansion, and up-regulation of the leukocyte conserved transcriptional response to adversity (CTRA). Mechanistic analyses in a macaque model of perceived social isolation confirmed CTRA activation and identified selective up-regulation of the CD14++/CD16− classical monocyte transcriptome, functional glucocorticoid desensitization, down-regulation of Type I and II interferons, and impaired response to infection by simian immunodeficiency virus (SIV). These analyses identify neuroendocrine-related alterations in myeloid cell population dynamics as a key mediator of CTRA transcriptome skewing, which may both propagate perceived social isolation and contribute to its associated health risks. PMID:26598672
Weissenborn, S J; Neale, R; de Koning, M N C; Waterboer, T; Abeni, D; Bouwes Bavinck, J N; Wieland, U; Pfister, H J
2009-11-01
In view of the low loads of beta human papillomaviruses in skin samples, amounts of cellular DNA used in qualitative PCR may become limiting for virus detection and introduce variations in prevalence and multiplicity. This issue was explored within the context of a multicentre study and increasing prevalence and multiplicity was found with increasing input amounts of cellular DNA extracted from hair bulbs. To improve the quality and comparability between different epidemiologic studies ideally equal amounts of cellular DNA should be employed. When cellular DNA input varies this should be clearly taken into account in assessing viral prevalence and multiplicity.
Burnett, Bruce P.; Bitto, Alessandra; Altavilla, Domenica; Squadrito, Francesco; Levy, Robert M.; Pillai, Lakshmi
2011-01-01
The multiple mechanisms of action for flavocoxid relating to arachidonic acid (AA) formation and metabolism were studied in vitro. Flavocoxid titrated into rat peritoneal macrophage cultures inhibited cellular phospholipase A2 (PLA2) (IC50 = 60 μg/mL). In in vitro enzyme assays, flavocoxid showed little anti-cyclooxygenase (CO) activity on COX-1/-2 enzymes, but inhibited the COX-1 (IC50 = 12.3) and COX-2 (IC50 = 11.3 μg/mL) peroxidase (PO) moieties as well as 5-lipoxygenase (5-LOX) (IC50 = 110 μg/mL). No detectable 5-LOX inhibition was found for multiple traditional and COX-2 selective NSAIDs. Flavocoxid also exhibited strong and varied antioxidant capacities in vitro and decreased nitrite levels (IC50 = 38 μg/mL) in rat peritoneal macrophages. Finally, in contrast to celecoxib and ibuprofen, which upregulated the cox-2 gene, flavocoxid strongly decreased expression. This work suggests that clinically favourable effects of flavocoxid for management of osteoarthritis (OA) are achieved by simultaneous modification of multiple molecular pathways relating to AA metabolism, oxidative induction of inflammation, and neutralization of reactive oxygen species (ROS). PMID:21765617
Burnett, Bruce P; Bitto, Alessandra; Altavilla, Domenica; Squadrito, Francesco; Levy, Robert M; Pillai, Lakshmi
2011-01-01
The multiple mechanisms of action for flavocoxid relating to arachidonic acid (AA) formation and metabolism were studied in vitro. Flavocoxid titrated into rat peritoneal macrophage cultures inhibited cellular phospholipase A2 (PLA(2)) (IC(50) = 60 μg/mL). In in vitro enzyme assays, flavocoxid showed little anti-cyclooxygenase (CO) activity on COX-1/-2 enzymes, but inhibited the COX-1 (IC(50) = 12.3) and COX-2 (IC(50) = 11.3 μg/mL) peroxidase (PO) moieties as well as 5-lipoxygenase (5-LOX) (IC(50) = 110 μg/mL). No detectable 5-LOX inhibition was found for multiple traditional and COX-2 selective NSAIDs. Flavocoxid also exhibited strong and varied antioxidant capacities in vitro and decreased nitrite levels (IC(50) = 38 μg/mL) in rat peritoneal macrophages. Finally, in contrast to celecoxib and ibuprofen, which upregulated the cox-2 gene, flavocoxid strongly decreased expression. This work suggests that clinically favourable effects of flavocoxid for management of osteoarthritis (OA) are achieved by simultaneous modification of multiple molecular pathways relating to AA metabolism, oxidative induction of inflammation, and neutralization of reactive oxygen species (ROS).
Young, Travis W; Mei, Fang C; Yang, Gong; Thompson-Lanza, Jennifer A; Liu, Jinsong; Cheng, Xiaodong
2004-07-01
Cellular transformation is a complex process involving genetic alterations associated with multiple signaling pathways. Development of a transformation model using defined genetic elements has provided an opportunity to elucidate the role of oncogenes and tumor suppressor genes in the initiation and development of ovarian cancer. To study the cellular and molecular mechanisms of Ras-mediated oncogenic transformation of ovarian epithelial cells, we used a proteomic approach involving two-dimensional electrophoresis and mass spectrometry to profile two ovarian epithelial cell lines, one immortalized with SV40 T/t antigens and the human catalytic subunit of telomerase and the other transformed with an additional oncogenic ras(V12) allele. Of approximately 2200 observed protein spots, we have identified >30 protein targets that showed significant changes between the immortalized and transformed cell lines using peptide mass fingerprinting. Among these identified targets, one most notable group of proteins altered significantly consists of enzymes involved in cellular redox balance. Detailed analysis of these protein targets suggests that activation of Ras-signaling pathways increases the threshold of reactive oxidative species (ROS) tolerance by up-regulating the overall antioxidant capacity of cells, especially in mitochondria. This enhanced antioxidant capacity protects the transformed cells from high levels of ROS associated with the uncontrolled growth potential of tumor cells. It is conceivable that an enhanced antioxidation capability may constitute a common mechanism for tumor cells to evade apoptosis induced by oxidative stresses at high ROS levels.
Exosomes: an overview of biogenesis, composition and role in ovarian cancer
2014-01-01
Exosomes are tiny membrane-bound vesicles that are over produced by most proliferating cell types during normal and pathological states. Their levels are up-regulated during pregnancy and disease states such as cancer. Exosomes contain a wide variety of proteins, lipids, RNAs, non-transcribed RNAs, microRNAs and small RNAs that are representative to their cellular origin and shuttle from a donor cell to a recipient cell. From intercellular communication to tumor proliferation, exosomes carry out a diverse range of functions, both helpful and harmful. Useful as biomarkers, exosomes may be applicable in diagnostic assessments as well as cell-free anti-tumor vaccines. Exosomes of ovarian cancer contain different set of proteins and miRNAs compared to exosomes of normal, cancer-free individuals. These molecules may be used as multiple “barcode” for the development of a diagnostic tool for early detection of ovarian cancer. PMID:24460816
Dewald, Oliver; Ren, Guofeng; Duerr, Georg D.; Zoerlein, Martin; Klemm, Christina; Gersch, Christine; Tincey, Sophia; Michael, Lloyd H.; Entman, Mark L.; Frangogiannis, Nikolaos G.
2004-01-01
Large animal models have provided much of the descriptive data regarding the cellular and molecular events in myocardial infarction and repair. The availability of genetically altered mice may provide a valuable tool for specific cellular and molecular dissection of these processes. In this report we compare closed chest models of canine and mouse infarction/reperfusion qualitatively and quantitatively for temporal, cellular, and spatial differences. Much like the canine model, reperfused mouse hearts are associated with marked induction of endothelial adhesion molecules, cytokines, and chemokines. Reperfused mouse infarcts show accelerated replacement of cardiomyocytes by granulation tissue leading to a thin mature scar at 14 days, when the canine infarction is still cellular and evolving. Infarcted mouse hearts demonstrate a robust but transient postreperfusion inflammatory reaction, associated with a rapid up-regulation of interleukin-10 and transforming growth factor-β. Unlike canine infarcts, infarcted mouse hearts show only transient macrophage infiltration and no significant mast cell accumulation. In correlation, the growth factor for macrophages, M-CSF, shows modest and transient up-regulation in the early days of reperfusion; and the obligate growth factor for mast cells, stem cell factor, SCF, is not induced. In summary, the postinfarction inflammatory response and resultant repair in the mouse heart shares many common characteristics with large mammalian species, but has distinct temporal and qualitative features. These important species-specific differences should be considered when interpreting findings derived from studies using genetically altered mice. PMID:14742270
Chen, Meimei; Yang, Fafu; Kang, Jie; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing
2016-11-29
In this study, in silico approaches, including multiple QSAR modeling, structural similarity analysis, and molecular docking, were applied to develop QSAR classification models as a fast screening tool for identifying highly-potent ABCA1 up-regulators targeting LXRβ based on a series of new flavonoids. Initially, four modeling approaches, including linear discriminant analysis, support vector machine, radial basis function neural network, and classification and regression trees, were applied to construct different QSAR classification models. The statistics results indicated that these four kinds of QSAR models were powerful tools for screening highly potent ABCA1 up-regulators. Then, a consensus QSAR model was developed by combining the predictions from these four models. To discover new ABCA1 up-regulators at maximum accuracy, the compounds in the ZINC database that fulfilled the requirement of structural similarity of 0.7 compared to known potent ABCA1 up-regulator were subjected to the consensus QSAR model, which led to the discovery of 50 compounds. Finally, they were docked into the LXRβ binding site to understand their role in up-regulating ABCA1 expression. The excellent binding modes and docking scores of 10 hit compounds suggested they were highly-potent ABCA1 up-regulators targeting LXRβ. Overall, this study provided an effective strategy to discover highly potent ABCA1 up-regulators.
Huang, Yuehua; Tai, Andrew W; Tong, Shuping; Lok, Anna S F
2013-06-01
Hepatitis B virus (HBV) core promoter (CP) mutations have been associated with an increased risk of hepatocellular carcinoma (HCC) in clinical studies. We previously reported that a combination of CP mutations seen in HCC patients, expressed in HBx gene, increased SKP2 (S-phase kinase-associated protein 2) expression, thereby promoting cellular proliferation. Here, we investigate the possible mechanisms by which CP mutations upregulate SKP2. We used immunoblotting and ATPlite assay to validate the effect of CP mutations in full-length HBV genome on cell cycle regulator levels and cell proliferation. Activation of SKP2 mRNA was assessed by quantitative real-time PCR in primary human hepatocytes (PHH) and HCC cell lines. Effect of CP mutations on SKP2 promoter activity was determined by luciferase assay. Target regulation of E2F1 on SKP2 was analyzed by siRNAs. CP mutations in full-length HBV genome upregulated SKP2 expression, thereby downregulating cell cycle inhibitors and accelerating cellular proliferation. CP mutations enhanced SKP2 promoter activity but had no effect on SKP2 protein stability. Mapping of the SKP2 promoter identified a region necessary for activation by CP mutations that contains an E2F1 response element. Knocking down E2F1 reduced the effects of CP mutations on SKP2 and cellular proliferation. The effect of CP mutations on E2F1 might be mediated through hyperphosphorylation of RB. HBV CP mutations enhance SKP2 transcription by activating the E2F1 transcription factor and in turn downregulate cell cycle inhibitors, thus providing a potential mechanism for an association between CP mutations and HCC. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Huang, Yuanshen; Wang, Yang; Yu, Jie; Gao, Min; Levings, Megan; Wei, Shencai; Zhang, Shengquan; Xu, Aie; Su, Mingwan; Dutz, Jan; Zhang, Xuejun; Zhou, Youwen
2012-01-01
Background Vitiligo is characterized by the death of melanocytes in the skin. This is associated with the presence of T cell infiltrates in the lesional borders. However, at present, there is no detailed and systematic characterization on whether additional cellular or molecular changes are present inside vitiligo lesions. Further, it is unknown if the normal appearing non-lesional skin of vitiligo patients is in fact normal. The purpose of this study is to systematically characterize the molecular and cellular characteristics of the lesional and non-lesional skin of vitiligo patients. Methods and Materials Paired lesional and non-lesional skin biopsies from twenty-three vitiligo patients and normal skin biopsies from sixteen healthy volunteers were obtained with informed consent. The following aspects were analyzed: (1) transcriptome changes present in vitiligo skin using DNA microarrays and qRT-PCR; (2) abnormal cellular infiltrates in vitiligo skin explant cultures using flow cytometry; and (3) distribution of the abnormal cellular infiltrates in vitiligo skin using immunofluorescence microscopy. Results Compared with normal skin, vitiligo lesional skin contained 17 genes (mostly melanocyte-specific genes) whose expression was decreased or absent. In contrast, the relative expression of 13 genes was up-regulated. The up-regulated genes point to aberrant activity of the innate immune system, especially natural killer cells in vitiligo. Strikingly, the markers of heightened innate immune responses were also found to be up-regulated in the non-lesional skin of vitiligo patients. Conclusions and Clinical Implications As the first systematic transcriptome characterization of the skin in vitiligo patients, this study revealed previously unknown molecular markers that strongly suggest aberrant innate immune activation in the microenvironment of vitiligo skin. Since these changes involve both lesional and non-lesional skin, our results suggest that therapies targeting the entire skin surface may improve treatment outcomes. Finally, this study revealed novel mediators that may facilitate future development of vitiligo therapies. PMID:23251420
Robitaille, Stephan; Mailloux, Ryan J; Chan, Hing Man
2016-08-10
Methylmercury (MeHg) is a neurotoxin that binds strongly to thiol residues on protein and low molecular weight molecules like reduced glutathione (GSH). The mechanism of its effects on GSH homeostasis particularly at environmentally relevant low doses is not fully known. We hypothesized that exposure to MeHg would lead to a depletion of reduced glutathione (GSH) and an accumulation of glutathione disulfide (GSSG) leading to alterations in S-glutathionylation of proteins. Our results showed exposure to low concentrations of MeHg (1μM) did not significantly alter GSH levels but increased GSSG levels by ∼12-fold. This effect was associated with a significant increase in total cellular glutathione content and a decrease in GSH/GSSG. Immunoblot analyses revealed that proteins involved in glutathione synthesis were upregulated accounting for the increase in cellular glutathione. This was associated an increase in cellular Nrf2 protein levels which is required to induce the expression of antioxidant genes in response to cellular stress. Intriguingly, we noted that a key enzyme involved in reversing protein S-glutathionylation and maintaining glutathione homeostasis, glutaredoxin-1 (Grx1), was inhibited by ∼50%. MeHg treatment also increased the S-glutathionylation of a high molecular weight protein. This observation is consistent with the inhibition of Grx1 and elevated H2O2 production however; contrary to our original hypothesis we found few S-glutathionylated proteins in the astrocytoma cells. Collectively, MeHg affects multiple arms of glutathione homeostasis ranging from pool management to protein S-glutathionylation and Grx1 activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ferreyra, Gabriela A.; Elinoff, Jason M.; Demirkale, Cumhur Y.; Starost, Matthew F.; Buckley, Marilyn; Munson, Peter J.; Krakauer, Teresa; Danner, Robert L.
2014-01-01
Background Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB) challenge was investigated in six tissues. Results The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC), spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN)/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN)-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. Conclusion Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes. PMID:24551153
Berard, Jennifer L; Zarruk, Juan G; Arbour, Nathalie; Prat, Alexandre; Yong, V Wee; Jacques, Francois H; Akira, Shizuo; David, Samuel
2012-07-01
Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of multiple sclerosis (MS), an inflammatory, demyelinating disease of the central nervous system (CNS). EAE pathogenesis involves various cell types, cytokines, chemokines, and adhesion molecules. Given the complexity of the inflammatory response in EAE, it is likely that many immune mediators still remain to be discovered. To identify novel immune mediators of EAE pathogenesis, we performed an Affymetrix gene array screen on the spinal cords of mice at the onset stage of disease. This screening identified the gene encoding lipocalin 2 (Lcn2) as being significantly upregulated. Lcn2 is a multi-functional protein that plays a role in glial activation, matrix metalloproteinase (MMP) stabilization, and cellular iron flux. As many of these processes have been implicated in EAE, we characterized the expression and role of Lcn2 in this disease in C57BL/6 mice. We show that Lcn2 is significantly upregulated in the spinal cord throughout EAE and is expressed predominantly by monocytes and reactive astrocytes. The Lcn2 receptor, 24p3R, is also expressed on monocytes, macrophages/microglia, and astrocytes in EAE. In addition, we show that EAE severity is increased in Lcn2(-/-) mice as compared with wild-type controls. Finally, we demonstrate that elevated levels of Lcn2 are detected in the plasma and cerebrospinal fluid (CSF) in MS and in immune cells in CNS lesions in MS tissue sections. These data indicate that Lcn2 is a modulator of EAE pathogenesis and suggest that it may also play a role in MS. Copyright © 2012 Wiley Periodicals, Inc.
Cytokines and brain excitability
Galic, Michael A.; Riazi, Kiarash; Pittman, Quentin J.
2012-01-01
Cytokines are molecules secreted by peripheral immune cells, microglia, astrocytes and neurons in the central nervous system. Peripheral or central inflammation is characterized by an upregulation of cytokines and their receptors in the brain. Emerging evidence indicates that pro-inflammatory cytokines modulate brain excitability. Findings from both the clinical literature and from in vivo and in vitro laboratory studies suggest that cytokines can increase seizure susceptibility and may be involved in epileptogenesis. Cellular mechanisms that underlie these effects include upregulation of excitatory glutamatergic transmission and downregulation of inhibitory GABAergic transmission. PMID:22214786
Guo, Jingjing; Sun, Xiahui; Yin, Huiquan; Wang, Ting; Li, Yan; Zhou, Chunxue; Zhou, Huaiyu; He, Shenyi; Cong, Hua
2018-01-01
Multiple antigenic peptide (MAP) vaccines have advantages over traditional Toxoplasma gondii vaccines, but are more susceptible to enzymatic degradation. As an effective delivery system, chitosan microspheres (CS) can overcome this obstacle and act as a natural adjuvant to promote T helper 1 (Th1) cellular immune responses. In this study, we use chitosan microparticles to deliver multiple antigenic epitopes from GRA10 (G10E), containing three dominant epitopes. When G10E was entrapped within chitosan microparticles (G10E-CS), adequate peptides for eliciting immune response were loaded in the microsphere core and this complex released G10E peptides stably. The efficiency of G10E-CS was detected both in vitro , via cell culture, and through in vivo mouse immunization. In vitro , G10E-CS activated Dendritic Cells (DC) and T lymphocytes by upregulating the secretion of costimulatory molecules (CD40 and CD86). In vivo , Th1 biased cellular and humoral immune responses were activated in mice vaccinated with G10E-CS, accompanied by significantly increased production of IFN-γ, IL-2, and IgG, and decreases in IL-4, IL-10, and IgG1. Immunization with G10E-CS conferred significant protection with prolonged survival in mice model of acute toxoplasmosis and statistically significant decreases in cyst burden in murine chronic toxoplasmosis. The results from this study indicate that chitosan microspheres used as an effective system to deliver a linked antigenic peptides is a promising strategy for the development of efficient vaccine against T. gondii .
He, Yixin; Du, Min; Gao, Yan; Liu, Hongshuai; Wang, Hongwei; Wu, Xiaojun; Wang, Zhengtao
2013-01-01
Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.
Lipka, A; Paukszto, L; Majewska, M; Jastrzebski, J P; Myszczynski, K; Panasiewicz, G; Szafranska, B
2017-09-01
The Eurasian beaver is one of the largest rodents that, despite its high impact on the environment, is a non-model species that lacks a reference genome. Characterising genes critical for pregnancy outcome can serve as a basis for identifying mechanisms underlying effective reproduction, which is required for the success of endangered species conservation programs. In the present study, high-throughput RNA sequencing (RNA-seq) was used to analyse global changes in the Castor fiber subplacenta transcriptome during multiple pregnancy. De novo reconstruction of the C. fiber subplacenta transcriptome was used to identify genes that were differentially expressed in placentas (n=5) from two females (in advanced twin and triple pregnancy). Analyses of the expression values revealed 124 contigs with significantly different expression; of these, 55 genes were identified using MegaBLAST. Within this group of differentially expressed genes (DEGs), 18 were upregulated and 37 were downregulated in twins. Most DEGs were associated with the following gene ontology terms: cellular process, single organism process, response to stimulus, metabolic process and biological regulation. Some genes were also assigned to the developmental process, the reproductive process or reproduction. Among this group, four genes (namely keratin 19 (Krt19) and wingless-type MMTV integration site family - member 2 (Wnt2), which were downregulated in twins, and Nik-related kinase (Nrk) and gap junction protein β2 (Gjb2), which were upregulated in twins) were assigned to placental development and nine (Krt19, Wnt2 and integrin α 7 (Itga7), downregulated in twins, and Nrk, gap junction protein β6 (Gjb6), GATA binding protein 6 (Gata6), apolipoprotein A-I (ApoA1), apolipoprotein B (ApoB) and haemoglobin subunit α 1 (HbA1), upregulated in twins) were assigned to embryo development. The results of the present study indicate that the number of fetuses affects the expression profile in the C. fiber subplacental transcriptome. Enhancement of transcriptomic resources for C. fiber will improve understanding of the pathways relevant to proper placental development and successful reproduction.
Giffin, Louise; West, John A; Damania, Blossom
2015-12-08
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi's sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman's disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6's impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with the development of three human malignancies, Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. KSHV expresses many factors that enable the virus to manipulate the host environment in order to persist and induce disease. The viral interleukin-6 (vIL-6) produced by KSHV is structurally and functionally homologous to the human cytokine interleukin-6, except that vIL-6 is secreted slowly and functions primarily from inside the host cell. To investigate the unique intracellular role of vIL-6, we analyzed the impact of vIL-6 on endothelial cell gene expression. We report that vIL-6 significantly alters the expression of genes associated with cell movement, including that for CEACAM1. The gene for CEACAM1 was upregulated by vIL-6 and by latent and primary KSHV infection and promotes vIL-6-mediated endothelial cell migration. This work advances the field's understanding of vIL-6 function and its contribution to KSHV pathogenesis. Copyright © 2015 Giffin et al.
Wang, Fengping; Qiu, Ye; Zhang, Huifang M; Hanson, Paul; Ye, Xin; Zhao, Guangze; Xie, Ronald; Tong, Lei; Yang, Decheng
2017-07-01
We previously demonstrated that coxsackievirus B3 (CVB3) infection upregulated heat shock protein 70 (Hsp70) and promoted CVB3 multiplication. Here, we report the underlying mechanism by which Hsp70 enhances viral RNA translation. By using an Hsp70-overexpressing cell line infected with CVB3, we found that Hsp70 enhanced CVB3 VP1 translation at two stages. First, Hsp70 induced upregulation of VP1 translation at the initiation stage via upregulation of internal ribosome entry site trans-acting factor lupus autoantigen protein and activation of eIF4E binding protein 1, a cap-dependent translation suppressor. Second, we found that Hsp70 increased CVB3 VP1 translation by enhancing translation elongation. This was mediated by the Akt-mammalian target of rapamycin complex 1 signal cascade, which led to the activation of eukaryotic elongation factor 2 via p70S6K- and cell division cycle protein 2 homolog (Cdc2)-mediated phosphorylation and inactivation of eukaryotic elongation factor 2 kinase. We also determined the position of Cdc2 in this signal pathway, indicating that Cdc2 is regulated by mammalian target of rapamycin complex 1. This signal transduction pathway was validated using a number of specific pharmacological inhibitors, short interfering RNAs (siRNAs) and a dominant negative Akt plasmid. Because Hsp70 is a central component of the cellular network of molecular chaperones enhancing viral replication, these data may provide new strategies to limit this viral infection. © 2017 John Wiley & Sons Ltd.
Yang, Qian; Nanayakkara, Gayani K.; Drummer, Charles; Sun, Yu; Johnson, Candice; Cueto, Ramon; Fu, Hangfei; Shao, Ying; Wang, Luqiao; Yang, William Y.; Tang, Peng; Liu, Li-Wen; Ge, Shuping; Zhou, Xiao-Dong; Khan, Mohsin; Wang, Hong; Yang, Xiaofeng
2017-01-01
Background: Low-intensity ultrasound (LIUS) was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders. Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS. Results: Our data revealed following interesting findings: (1) LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2) LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells), MSCs (mesenchymal stem cells), B1-B cells and Treg (regulatory T cells); (3) LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4) LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5) Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6) LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways. Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair. PMID:29109687
George, Joseph; Banik, Naren L.; Ray, Swapan K.
2011-01-01
Human telomerase reverse transcriptase (hTERT) is the catalytic component of telomerase that facilitates tumor cell invasion and proliferation. Telomerase and hTERT are remarkably upregulated in majority of cancers including glioblastoma. Interferon-gamma (IFN-γ) modulates several cellular activities including cell cycle and multiplication through transcriptional regulation. The present investigation was designed to unravel the molecular mechanisms of the inhibition of cell proliferation, migration, and invasion of human glioblastoma SNB-19 and LN-18 cell lines after knockdown of hTERT using a plasmid vector based siRNA and concurrent treatment with IFN-γ. We observed more than 80% inhibition of cell proliferation, migration, and invasion of both cell lines after the treatment with combination of hTERT siRNA and IFN-γ. Our studies also showed accumulation of apoptotic cells in subG1 phase and an increase in cell population in G0/G1 with a reduction in G2/M phase indicating cell cycle arrest in G0/G1 phase for apoptosis. Semiquantitative and real-time RT-PCR analyses demonstrated significant downregulation of c- Myc and upregulation of p21 Waf1 and p27 Kip1. Western blotting confirmed the downregulation of the molecules involved in cell proliferation, migration, and invasion and also showed upregulation of cell cycle inhibitors. In conclusion, our study demonstrated that knockdown of hTERT siRNA and concurrent treatment with IFN-γ effectively inhibited cell proliferation, migration, and invasion in glioblastoma cells through downregulation of the molecules involved in these processes and cell cycle inhibition. Therefore, the combination of hTERT siRNA and IFN-γ offers a potential therapeutic strategy for controlling growth of human glioblastoma cells. PMID:20394835
Zikaki, Kyriaki; Aggeli, Ioanna-Katerina; Gaitanaki, Catherine; Beis, Isidoros
2014-06-01
Curcumin derived from the rhizome of turmeric (Curcuma longa L.), is a well known coloring culinary agent, that has therapeutic properties against diverse pathologies such as cancer, atherosclerosis and heart failure. Given the salutary potential of curcumin, deciphering its mode of action particularly in cardiac cells, is of outstanding value. Accumulating evidence implicates curcumin in the regulation of multiple signaling pathways leading to cell survival or apoptosis. Therefore, the present study aimed at elucidating the molecular mechanisms triggered by curcumin in H9c2 cells. Curcumin was found to activate p38-mitogen-activated protein kinase (p38-MAPK) as well as c-jun NH2 terminal kinases (JNKs), in a dose- and time-dependent manner. We also observed curcumin to impair cell survival by promoting apoptosis, evidenced by chromatin condensation, poly(ADP-ribose) polymerase (PARP) and caspase-3 cleavage, as well as Bax translocation and cytochrome c release into the cytosol. Curcumin-induced apoptosis was ascribed to JNKs, since hindering their activity abolished PARP fragmentation. Furthermore, we identified curcumin to exert a pro-oxidative activity, with 2',7'-dichlorofluorescin diacetate (DCFH-DA) staining revealing up-regulation of reactive oxygen species (ROS) levels and anti-oxidants found to abrogate PARP cleavage. In conclusion, curcumin was found to stimulate the apoptotic cell death of H9c2 cells by upregulating ROS generation and triggering activation of JNKs. With reports underscoring the capacity of curcumin to perturb the cellular redox balance ensuring survival or enhancing apoptosis, determination of its mode of action appears to be critical. Future studies should assess the appropriate administration conditions of curcumin, so as to optimize its therapeutic potential against cardiovascular pathologies.
Tsuchiya, Naoto; Ochiai, Masako; Nakashima, Katsuhiko; Ubagai, Tsuneyuki; Sugimura, Takashi; Nakagama, Hitoshi
2007-10-01
Colon cancers have been shown to develop after accumulation of multiple genetic and epigenetic alterations with changes in global gene expression profiles, contributing to the establishment of widely diverse phenotypes. Transcriptional and posttranscriptional regulation of gene expression by small RNA species, such as the small interfering RNA and microRNA and the RNA-induced silencing complex (RISC), is currently drawing major interest with regard to cancer development. SND1, also called Tudor-SN and p100 and recently reported to be a component of RISC, is among the list of highly expressed genes in human colon cancers. In the present study, we showed remarkable up-regulation of SND1 mRNA in human colon cancer tissues, even in early-stage lesions, and also in colon cancer cell lines. When mouse Snd1 was stably overexpressed in IEC6 rat intestinal epithelial cells, contact inhibition was lost and cell growth was promoted, even after the cells became confluent. Intriguingly, IEC6 cells with high levels of Snd1 also showed an altered distribution of E-cadherin from the cell membrane to the cytoplasm, suggesting loss of cellular polarity. Furthermore, the adenomatous polyposis coli (Apc) protein was coincidentally down-regulated, with no significant changes in the Apc mRNA level. Immunohistochemical analysis using chemically induced colonic lesions developed in rats revealed overexpression of Snd1 not only in colon cancers but also in aberrant crypt foci, putative precancerous lesions of the colon. Up-regulation of SND1 may thus occur at a very early stage in colon carcinogenesis and contribute to the posttranscriptional regulation of key players in colon cancer development, including APC and beta-catenin.
Constitutive upregulation of chaperone-mediated autophagy in Huntington's disease.
Koga, Hiroshi; Martinez-Vicente, Marta; Arias, Esperanza; Kaushik, Susmita; Sulzer, David; Cuervo, Ana Maria
2011-12-14
Autophagy contributes to the removal of prone-to-aggregate proteins, but in several instances these pathogenic proteins have been shown to interfere with autophagic activity. In the case of Huntington's disease (HD), a congenital neurodegenerative disorder resulting from mutation in the huntingtin protein, we have previously described that the mutant protein interferes with the ability of autophagic vacuoles to recognize cytosolic cargo. Growing evidence supports the existence of cross talk among autophagic pathways, suggesting the possibility of functional compensation when one of them is compromised. In this study, we have identified a compensatory upregulation of chaperone-mediated autophagy (CMA) in different cellular and mouse models of HD. Components of CMA, namely the lysosome-associated membrane protein type 2A (LAMP-2A) and lysosomal-hsc70, are markedly increased in HD models. The increase in LAMP-2A is achieved through both an increase in the stability of this protein at the lysosomal membrane and transcriptional upregulation of this splice variant of the lamp-2 gene. We propose that CMA activity increases in response to macroautophagic dysfunction in the early stages of HD, but that the efficiency of this compensatory mechanism may decrease with age and so contribute to cellular failure and the onset of pathological manifestations.
Grinyer, Jasmine; Hunt, Sybille; McKay, Matthew; Herbert, Ben R; Nevalainen, Helena
2005-06-01
Trichoderma atroviride has a natural ability to parasitise phytopathogenic fungi such as Rhizoctonia solani and Botrytis cinerea, therefore providing an environmentally sound alternative to chemical fungicides in the management of these pathogens. Two-dimensional electrophoresis was used to display cellular protein patterns of T. atroviride (T. harzianum P1) grown on media containing either glucose or R. solani cell walls. Protein profiles were compared to identify T. atroviride proteins up-regulated in the presence of the R. solani cell walls. Twenty-four protein spots were identified using matrix-assisted laser desorption ionisation mass spectrometry, liquid chromatography mass spectrometry and N-terminal sequencing. Identified up-regulated proteins include known fungal cell wall-degrading enzymes such as N-acetyl-beta-D: -glucosaminidase and 42-kDa endochitinase. Three novel proteases of T. atroviride were identified, containing sequence similarity to vacuolar serine protease, vacuolar protease A and a trypsin-like protease from known fungal proteins. Eukaryotic initiation factor 4a, superoxide dismutase and a hypothetical protein from Neurospora crassa were also up-regulated as a response to R. solani cell walls. Several cell wall-degrading enzymes were identified from the T. atroviride culture supernatant, providing further evidence that a cellular response indicative of biological control had occurred.
Kihara, Kumiko; Mori, Kotaro; Suzuki, Shingo; Ono, Naoaki; Furusawa, Chikara; Yomo, Tetsuya
2009-05-01
Escherichia coli and the cellular slime mold Dictyostelium discoideum form stable viscous symbiotic colonies in the laboratory. To examine changes in E. coli gene expression during establishment of this symbiotic relationship, cells of symbiotic co-cultures and monocultures at various time points were subjected to microarrays analysis. Genes changed significantly over time compared to the initial gene expression level were determined as characteristics of GO function categories. The categories that appeared significantly at the same sampling time points between the two cultures were also identified. Up-regulation of genes from several GO categories associated with polysaccharide synthesis, cell wall degradation, and iron acquisition as well as down-regulation of genes from GO categories associated with biosynthesis through starvation response were observed in co-cultures, indicating exchange of molecules between the two organisms. Up-regulation of genes from several GO categories associated with anaerobic respiration and flagella biosynthesis were also observed, indicating that the environment inside symbiotic colonies was similar to that in developed biofilms. Up-regulation of genes associated with energy-generating systems indicated that E. coli prolonged survival within the symbiotic colony. Thus, E. coli showed not only molecule exchange but also altered expression of various genes in symbiosis with D. discoideum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko
2008-07-18
NAD{sup +}-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H{sub 2}O{sub 2}. Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H{sub 2}O{sub 2}, Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H{sub 2}O{sub 2}-induced apoptosis through the upregulation of catalase. H{sub 2}O{sub 2} induced the nuclear accumulation of forkhead transcription factor, FoxO3a and themore » gene silencing of FoxO3a enhanced H{sub 2}O{sub 2}-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.« less
Calprotectin and the Initiation and Progression of Head and Neck Cancer.
Argyris, P P; Slama, Z M; Ross, K F; Khammanivong, A; Herzberg, M C
2018-06-01
Calprotectin (S100A8/A9), a heterodimeric complex of calcium-binding proteins S100A8 and S100A9, is encoded by genes mapping to the chromosomal locus 1q21.3 of the epidermal differentiation complex. Whereas extracellular calprotectin shows proinflammatory and antimicrobial properties by signaling through RAGE and TLR4, intracytoplasmic S100A8/A9 appears to be important for cellular development, maintenance, and survival. S100A8/A9 is constitutively expressed in myeloid cells and the stratified mucosal epithelia lining the oropharyngeal and genitourinary mucosae. While upregulated in adenocarcinomas and other cancers, calprotectin mRNA and protein levels decline in head and neck squamous cell carcinoma (HNSCC). S100A8/A9 is also lost during head and neck preneoplasia (dysplasia). Calprotectin decrease does not correlate with the clinical stage (TNM) of HNSCC. When expressed in carcinoma cells, S100A8/A9 downregulates matrix metalloproteinase 2 expression and inhibits invasion and migration in vitro. S100A8/A9 regulates cell cycle progression and decelerates cancer cell proliferation by arresting at the G2/M checkpoint in a protein phosphatase 2α-dependent manner. In HNSCC, S100A8 and S100A9 coregulate with gene networks controlling cellular development and differentiation, cell-to-cell signaling, and cell morphology, while S100A8/A9 appears to downregulate expression of invasion- and tumorigenesis-associated genes. Indeed, tumor formation capacity is attenuated in S100A8/A9-expressing carcinoma cells in vivo. Hence, intracellular calprotectin appears to function as a tumor suppressor in head and neck carcinogenesis. When compared with S100A8/A9-low HNSCC based on analysis of TCGA, S100A8/A9-high HNSCC shows significant upregulation of apoptosis-related genes, including multiple caspases. Accordingly, S100A8/A9 facilitates DNA damage responses in HNSCC, promotes apoptotic cell death, and confers sensitivity to cisplatin and X-radiation in vitro. In the tumor milieu, loss of S100A8/A9 strongly associates with poor squamous differentiation and higher tumor grading, EGFR upregulation, increased DNA methylation, and, finally, poorer overall survival for patients with HNSCC. Hence, intracellular calprotectin shows a multifaceted protective role against the development of HNSCC.
Kitahara, Atsuko; Takahashi, Kazuto; Morita, Naru; Murashima, Toshitaka; Onuma, Hirohisa; Sumitani, Yoshikazu; Tanaka, Toshiaki; Kondo, Takuma; Hosaka, Toshio; Ishida, Hitoshi
2017-06-20
Astaxanthin, an antioxidant agent, can protect pancreatic β-cells of db/db mice from glucotoxicity and resolve chronic inflammation in adipose tissue. Nonetheless, the effects of astaxanthin on free-fatty-acid-induced inflammation and cellular stress in β-cells remain to be demonstrated. Meanwhile, palmitate enhances the secretion of pro-inflammatory adipokines monocyte chemoattractant protein-1 (MCP-1) and VEGF 120 (vascular endothelial growth factor). We therefore investigated the influence of astaxanthin on palmitate-stimulated MCP-1 and VEGF 120 secretion in mouse insulinoma (MIN6) pancreatic β-cells. Furthermore, whether astaxanthin prevents cellular stress in MIN6 cells was also assessed. Pre-treatment with astaxanthin or with N -acetyl-cysteine (NAC) which is an antioxidant drug, significantly attenuated the palmitate-induced MCP-1 release through downregulation of phosphorylated c-Jun NH₂-terminal protein kinase (JNK) pathways, and suppressed VEGF 120 through the PI3K/Akt pathways relative to the cells stimulated with palmitate alone. In addition, palmitate significantly upregulated homologous protein (CHOP) and anti-glucose-regulated protein (GRP78), which are endoplasmic reticulum (ER) stress markers, in MIN6 cells. On the other hand, astaxanthin attenuated the increased CHOP content, but further up-regulated palmitate-stimulated GRP78 protein expression. By contrast, NAC had no effects on either CHOP or GRP78 enhancement induced by palmitate in MIN6 cells. In conclusion, astaxanthin diminishes the palmitate-stimulated increase in MCP-1 secretion via the downregulation of JNK pathways in MIN6 cells, and affects VEGF 120 secretion through PI3K/Akt pathways. Moreover, astaxanthin can prevent not only oxidative stress caused endogenously by palmitate but also ER stress, which NAC fails to attenuate, via upregulation of GRP78, an ER chaperon.
Kitahara, Atsuko; Takahashi, Kazuto; Morita, Naru; Murashima, Toshitaka; Onuma, Hirohisa; Sumitani, Yoshikazu; Tanaka, Toshiaki; Kondo, Takuma; Hosaka, Toshio; Ishida, Hitoshi
2017-01-01
Astaxanthin, an antioxidant agent, can protect pancreatic β-cells of db/db mice from glucotoxicity and resolve chronic inflammation in adipose tissue. Nonetheless, the effects of astaxanthin on free-fatty-acid-induced inflammation and cellular stress in β-cells remain to be demonstrated. Meanwhile, palmitate enhances the secretion of pro-inflammatory adipokines monocyte chemoattractant protein-1 (MCP-1) and vascular endothelial growth factor (VEGF120). We therefore investigated the influence of astaxanthin on palmitate-stimulated MCP-1 and VEGF120 secretion in mouse insulinoma (MIN6) pancreatic β-cells. Furthermore, whether astaxanthin prevents cellular stress in MIN6 cells was also assessed. Pre-treatment with astaxanthin or with N-acetyl-cysteine (NAC) which is an antioxidant drug, significantly attenuated the palmitate-induced MCP-1 release through downregulation of phosphorylated c-Jun NH2-terminal protein kinase (JNK) pathways, and suppressed VEGF120 through the PI3K/Akt pathways relative to the cells stimulated with palmitate alone. In addition, palmitate significantly upregulated homologous protein (CHOP) and anti-glucose-regulated protein (GRP78), which are endoplasmic reticulum (ER) stress markers, in MIN6 cells. On the other hand, astaxanthin attenuated the increased CHOP content, but further up-regulated palmitate-stimulated GRP78 protein expression. By contrast, NAC had no effects on either CHOP or GRP78 enhancement induced by palmitate in MIN6 cells. In conclusion, astaxanthin diminishes the palmitate-stimulated increase in MCP-1 secretion via the downregulation of JNK pathways in MIN6 cells, and affects VEGF120 secretion through PI3K/Akt pathways. Moreover, astaxanthin can prevent not only oxidative stress caused endogenously by palmitate but also ER stress, which NAC fails to attenuate, via upregulation of GRP78, an ER chaperon. PMID:28632169
Induction of cyto-protective autophagy by paramontroseite VO2 nanocrystals
NASA Astrophysics Data System (ADS)
Zhou, Wei; Miao, Yanyan; Zhang, Yunjiao; Liu, Liang; Lin, Jun; Yang, James Y.; Xie, Yi; Wen, Longping
2013-04-01
A variety of inorganic nanomaterials have been shown to induce autophagy, a cellular degradation process critical for the maintenance of cellular homeostasis. The overwhelming majority of autophagic responses elicited by nanomaterials were detrimental to cell fate and contributed to increased cell death. A widely held view is that the inorganic nanoparticles, when encapsulated and trapped by autophagosomes, may compromise the normal autophagic process due to the inability of the cells to degrade these materials and thus they manifest a detrimental effect on the well-being of a cell. Here we show that, contrary to this notion, nano-sized paramontroseite VO2 nanocrystals (P-VO2) induced cyto-protective, rather than death-promoting, autophagy in cultured HeLa cells. P-VO2 also caused up-regulation of heme oxygenase-1 (HO-1), a cellular protein with a demonstrated role in protecting cells against death under stress situations. The autophagy inhibitor 3-methyladenine significantly inhibited HO-1 up-regulation and increased the rate of cell death in cells treated with P-VO2, while the HO-1 inhibitor protoporphyrin IX zinc (II) (ZnPP) enhanced the occurrence of cell death in the P-VO2-treated cells while having no effect on the autophagic response induced by P-VO2. On the other hand, Y2O3 nanocrystals, a control nanomaterial, induced death-promoting autophagy without affecting the level of expression of HO-1, and the pro-death effect of the autophagy induced by Y2O3. Our results represent the first report on a novel nanomaterial-induced cyto-protective autophagy, probably through up-regulation of HO-1, and may point to new possibilities for exploiting nanomaterial-induced autophagy for therapeutic applications.
De Schryver, Marjorie; Leemans, Annelies; Pintelon, Isabel; Cappoen, Davie; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L
2017-06-01
Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab') 2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can impact the activity of antibody-based therapeutic interventions via Sn. Copyright © 2016 Elsevier GmbH. All rights reserved.
Mapping of oxidative stress response elements of the caveolin-1 promoter.
Bartholomew, Janine N; Galbiati, Ferruccio
2010-01-01
According to the "free radical theory" of aging, normal aging occurs as the result of tissue damages inflicted by reactive oxygen species (ROS). ROS are known to induce cellular senescence, and senescent cells are believed to contribute to organismal aging. The molecular mechanisms that mediate the cellular response to oxidants remain to be fully identified. We have shown that oxidative stress induces cellular senescence through activation of the caveolin-1 promoter and upregulation of caveolin-1 protein expression. Here, we describe how reactive oxygen species activate the caveolin-1 promoter and how the signaling may be assayed. These approaches provide insight into the functional role of caveolin-1 and potentially allow the identification of novel ROS-regulated genes that are part of the signaling machinery regulating cellular senescence/aging.
Lung, Jrhau; Chen, Kuan-Liang; Hung, Chien-Hui; Chen, Chih-Cheng; Hung, Ming-Szu; Lin, Yu-Ching; Wu, Ching-Yuan; Lee, Kuan-Der; Shih, Neng-Yao; Tsai, Ying Huang
2017-01-01
Unlimited growth of cancer cells requires an extensive nutrient supply. To meet this demand, cancer cells drastically upregulate glucose uptake and metabolism compared to normal cells. This difference has made the blocking of glycolysis a fascinating strategy to treat this malignant disease. α-enolase is not only one of the most upregulated glycolytic enzymes in cancer cells, but also associates with many cellular processes or conditions important to cancer cell survival, such as cell migration, invasion, and hypoxia. Targeting α-enolase could simultaneously disturb cancer cells in multiple ways and, therefore, is a good target for anticancer drug development. In the current study, more than 22 million chemical structures meeting the criteria of Lipinski’s rule of five from the ZINC database were docked to α-enolase by virtual screening. Twenty-four chemical structures with docking scores better than that of the enolase substrate, 2-phosphoglycerate, were further screened by the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties prediction. Four of them were classified as non-mutagenic, non-carcinogenic, and capable of oral administration where they showed steady interactions to α-enolase that were comparable, even superior, to the currently available inhibitors in molecular dynamics (MD) simulation. These compounds may be considered promising leads for further development of the α-enolase inhibitors and could help fight cancer metabolically. PMID:29180852
A cellular, molecular, and pharmacological basis for appendage regeneration in mice.
Leung, Thomas H; Snyder, Emily R; Liu, Yinghua; Wang, Jing; Kim, Seung K
2015-10-15
Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1-Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine. © 2015 Leung et al.; Published by Cold Spring Harbor Laboratory Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hongxing, E-mail: Hongxing.Zhao@igp.uu.se; Chen, Maoshan; Lind, Sara Bergström
The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phasemore » and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. - Highlights: • The expression of 398 lncRNAs showed a distinct temporal pattern during Ad2 infection. • 80% of the deregulated lncRNAs were up-regulated during the late phase of infection. • The deregulated lncRNAs potentiallyinteract with 33 cellular RNA binding proteins. • These RBPs are involved in RNA splicing, nuclear export and translation. • Adenovirus exploits the cellular lncRNA network to optimize its replication.« less
Jin, Xinchun; Sun, Yanyun; Xu, Ji; Liu, Wenlan
2015-03-01
Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation. © 2015 International Society for Neurochemistry.
Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu
2012-07-15
Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that Ir-induced G2/M arrest contributed to the increase in the mitochondrial ROS level by accumulating cells in the G2/M phase. Copyright © 2012 Elsevier Inc. All rights reserved.
Puri, Krishna D; Yan, Changhui; Leng, Yueqiang; Zhong, Shaobin
2016-01-01
Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) in barley and wheat in North America. The fungus not only causes yield loss of the crops but also produces harmful trichothecene mycotoxins [Deoxynivalenol (DON) and its derivatives-3-acetyldeoxynivalenol (3ADON) and 15-acetyldeoxynivalenol (15ADON), and nivalenol (NIV)] that contaminate grains. Previous studies showed a dramatic increase of 3ADON-producing isolates with higher aggressiveness and DON production than the 15ADON-producing isolates in North America. However, the genetic and molecular basis of differences between the two types of isolates is unclear. In this study, we compared transcriptomes of the 3ADON and 15ADON isolates in vitro (in culture media) and in planta (during infection on the susceptible wheat cultivar 'Briggs') using RNA-sequencing. The in vitro gene expression comparison identified 479 up-regulated and 801 down-regulated genes in the 3ADON isolates; the up-regulated genes were mainly involved in C-compound and carbohydrate metabolism (18.6%), polysaccharide metabolism (7.7%) or were of unknown functions (57.6%). The in planta gene expression analysis revealed that 185, 89, and 62 genes were up-regulated in the 3ADON population at 48, 96, and 144 hours after inoculation (HAI), respectively. The up-regulated genes were significantly enriched in functions for cellular import, C-compound and carbohydrate metabolism, allantoin and allantoate transport at 48 HAI, for detoxification and virulence at 96 HAI, and for metabolism of acetic acid derivatives, detoxification, and cellular import at 144 HAI. Comparative analyses of in planta versus in vitro gene expression further revealed 2,159, 1,981 and 2,095 genes up-regulated in the 3ADON isolates, and 2,415, 2,059 and 1,777 genes up-regulated in the 15ADON isolates at the three time points after inoculation. Collectively, our data provides a foundation for further understanding of molecular mechanisms involved in aggressiveness and DON production of the two chemotype isolates of F. graminearum.
2015-12-01
found with Tukey’s HSD post hoc analysis. Several target genes such as Oct4, Sox2, TGFB, and Col1A1 were generally up-regulated in all sections. In...expression analysis from the Aim 1 samples presented several upregulated target genes such as Oct4, Sox2, TGFB, and Col1A1 in all sections. No...TGFB, and Col1A1 . • Data from cellular analysis, histology, gene expression analysis and microCT are being assembled for the predictive model
2004-04-01
cycling, anaerobic enzymes and kinase enzymes as well as specific cellular channel or receptor components. However, the most striking revelation of the...degradation. Most notably up-regulated were the genes for the enzymes essential in the ubiquitin-proteoasome pathway (UPP) shown to be up-regulated in response...to oxidative stress in eye tissue (1). These were ubiquitin [2.0], 3 ubiquitin-conjugating enzyme genes E2 [2.3], E2D2 [2.3] and E2D3 [2.8]. Also up
Mollica, Peter A; Zamponi, Martina; Reid, John A; Sharma, Deepak K; White, Alyson E; Ogle, Roy C; Bruno, Robert D; Sachs, Patrick C
2018-06-13
Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat (TNR) expansion within the HTT gene. The mechanisms underlying HD-associated cellular dysfunction during pluripotency and neurodevelopment, are poorly understood. Here we tested the hypothesis that hypomethylation during cellular reprogramming leads to up-regulation of DNA repair genes and stabilization of TNRs in HD cells. We sought to determine how the HD TNR region is affected by global epigenetic changes through cellular reprogramming and early neurodifferentiation. We find that early-stage HD-affected neural stem cells (NSCs) contain increased levels of global 5-hydroxymethylation (5-hmC) and normalized DNA repair gene expression. We confirm TNR stability is induced during pluripotency, and maintained in HD-NSCs. We also identify up-regulation of 5-hmC catalyzing ten-eleven translocation (TET1/2) proteins, and show their knockdown leads to a corresponding decrease in select DNA repair gene expression. We further confirm decreased expression of TET regulating miR-29 family members in HD-NSCs. Our findings demonstrate that mechanisms involved in pluripotency recover the selected DNA repair gene expression and stabilizes pathogenic TNRs in HD. © 2018. Published by The Company of Biologists Ltd.
The quantification of cellular viability and inflammatory response to stainless steel alloys.
Bailey, LeeAnn O; Lippiatt, Sherry; Biancanello, Frank S; Ridder, Stephen D; Washburn, Newell R
2005-09-01
The biocompatibility of metallic alloys is critical to the success of many orthopedic therapies. Corrosion resistance and the immune response of the body to wear debris products ultimately determine the performance of these devices. The establishment of quantitative tests of biocompatibility is an important issue for biomaterials development. We have developed an in vitro model to measure the pro-inflammatory cytokine production and in this study investigated the cellular responses induced by nitrogenated and 316L stainless steel alloys in both particulate and solid form. We utilized a murine macrophage cell line, RAW 264.7, to characterize and compare the mRNA profiles of TNF-alpha and IL-1beta in these cells using real time-polymerase chain reaction (RT-PCR). Fluorescence microscopy and flow cytometry were used to probe the viability of the population and to examine the apoptotic pathway. The goals of this work were to develop improved measurement methods for the quantification of cellular inflammatory responses to biomaterials and to obtain data that leads to an enhanced understanding of the ways in which the body responds to biomaterials. Using these techniques, we observed evidence for an association between the upregulation of IL-1beta and reversible apoptosis, and the upregulation of TNF-alpha and irreversible apoptosis.
SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition
Stary, Victoria; Puppala, Dheeraj; Scherrer-Crosbie, Marielle; Dillmann, Wolfgang H.
2016-01-01
Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca2+ ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca2+ indicators to selectively measure mitochondrial and cytosolic Ca2+ using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 − (small Ca2+ intensity)/(large Ca2+ intensity)]. Blocking of complex I and II, cytochrome-c oxidase, F0F1 synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P < 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P < 0.04). N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P < 0.001). CGP, an antagonist of the mitochondrial Na+-Ca2+ exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P < 0.0001). The major findings of this study are that impairment of mitochondrial Ca2+ cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca2+ content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca2+ signaling in myocytes from diseased hearts, leading to new therapeutic targets. PMID:26846549
Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans
MJ, Falk; Z, Zhang; Rosenjack; Nissim; E, Daikhin; Nissim; MM, Sedensky; M, Yudkoff; PG, Morgan
2008-01-01
C. elegans affords a model of primary mitochondrial dysfunction that provides insight into cellular adaptations which accompany mutations in nuclear gene that encode mitochondrial proteins. To this end, we characterized genome-wide expression profiles of C. elegans strains with mutations in nuclear-encoded subunits of respiratory chain complexes. Our goal was to detect concordant changes among clusters of genes that comprise defined metabolic pathways. Results indicate that respiratory chain mutants significantly upregulate a variety of basic cellular metabolic pathways involved in carbohydrate, amino acid, and fatty acid metabolism, as well as cellular defense pathways such as the metabolism of P450 and glutathione. To further confirm and extend expression analysis findings, quantitation of whole worm free amino acid levels was performed in C. elegans mitochondrial mutants for subunits of complexes I, II, and III. Significant differences were seen for 13 of 16 amino acid levels in complex I mutants compared with controls, as well as overarching similarities among profiles of complex I, II, and III mutants compared with controls. The specific pattern of amino acid alterations observed provides novel evidence to suggest that an increase in glutamate-linked transamination reactions caused by the failure of NAD+ dependent oxidation of ketoacids occurs in primary mitochondrial respiratory chain mutants. Recognition of consistent alterations among patterns of nuclear gene expression for multiple biochemical pathways and in quantitative amino acid profiles in a translational genetic model of mitochondrial dysfunction allows insight into the complex pathogenesis underlying primary mitochondrial disease. Such knowledge may enable the development of a metabolomic profiling diagnostic tool applicable to human mitochondrial disease. PMID:18178500
Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E.; Feldmann, Heinz; Jahrling, Peter B.
2014-01-01
ABSTRACT Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. IMPORTANCE Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted “mesenchyme-like” phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis. PMID:24942569
Aging as an Epigenetic Phenomenon
Ashapkin, Vasily V.; Kutueva, Lyudmila I.; Vanyushin, Boris F.
2017-01-01
Introduction: Hypermethylation of genes associated with promoter CpG islands, and hypomethylation of CpG poor genes, repeat sequences, transposable elements and intergenic genome sections occur during aging in mammals. Methylation levels of certain CpG sites display strict correlation to age and could be used as “epigenetic clock” to predict biological age. Multi-substrate deacetylases SIRT1 and SIRT6 affect aging via locus-specific modulations of chromatin structure and activity of multiple regulatory proteins involved in aging. Random errors in DNA methylation and other epigenetic marks during aging increase the transcriptional noise, and thus lead to enhanced phenotypic variation between cells of the same tissue. Such variation could cause progressive organ dysfunction observed in aged individuals. Multiple experimental data show that induction of NF-κB regulated gene sets occurs in various tissues of aged mammals. Upregulation of multiple miRNAs occurs at mid age leading to downregulation of enzymes and regulatory proteins involved in basic cellular functions, such as DNA repair, oxidative phosphorylation, intermediate metabolism, and others. Conclusion: Strong evidence shows that all epigenetic systems contribute to the lifespan control in various organisms. Similar to other cell systems, epigenome is prone to gradual degradation due to the genome damage, stressful agents, and other aging factors. But unlike mutations and other kinds of the genome damage, age-related epigenetic changes could be fully or partially reversed to a “young” state. PMID:29081695
El-Halawany, Medhat S; Ohkouchi, Susumu; Shibata, Hideki; Hitomi, Kiyotaka; Maki, Masatoshi
2004-06-01
Family 1 cystatins are cytosolic inhibitors of cysteine proteases, and they are conserved in higher eukaryotes. We characterized two newly identified family 1 cystatins of the cellular slime mold Dictyostelium discoideum, cystatin A1 and A2. Their recombinant proteins showed specific inhibitory activity against papain and cathepsin B, respectively. Using specific polyclonal antibodies, we found that cystatin A1 is stably expressed throughout the life cycle of Dictyostelium, whereas cystatin A2 expression is up-regulated during the course of development.
Müller, T; Loosse, C; Schrötter, A; Schnabel, A; Helling, S; Egensperger, R; Marcus, K
2011-08-01
AICD is the intracellular subdomain of the amyloid precursor protein thought to play a pivotal role as a potential transcription factor that might be of relevance for the pathophysiology of Alzheimer's disease. For its signal transduction potential AICD requires interacting proteins like FE65 and TIP60. However, many other proteins were described being able to bind to AICD. Here, we studied mRNA levels of AICD interacting proteins and found one of them (DAB1) strongly up-regulated in human post-mortem frontal cortex brain samples of AD patients. Subsequent cell culture experiments revealed that elevated DAB1 level results in the deregulation of the cellular proteome. We found the proliferation associated protein 2G4 as well as the guanine monophosphate synthetase (GMPS) significantly up-regulated in DAB1 over-expressing cells. Both proteins can be involved in cellular transcription processes supporting the hypothesis that DAB1 acts via modification of the AICD-dependent transcriptionally active complex. Of note, expression of the three components of the putative transcription complex (AICD, FE65, and TIP60 (AFT)) also revealed deregulation of the GMPS protein in an opposite fashion. Our results point to a putative relevance of AICD-dependent mechanisms in AD, caused by protein abundance changes of AICD interacting proteins, as shown for DAB1 in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jiang-Tian; Li, Yan; Yu, Bing
2015-08-21
To explore how Girdin/GIV is regulated by cyclic tension and propagates downstream signals to affect cell proliferation and migration. Human osteoblast-like MG-63 cells were exposed to cyclic tension force at 4000 μstrain and 0.5 Hz for 6 h, produced by a four-point bending system. Cyclic tension force upregulated Girdin and Akt expression and phosphorylation in cultured MG-63 cells. Girdin and Akt each promoted the phosphorylation of the other under stimulated tension. In vitro MTT and transwell assays showed that Girdin and Akt are required for cell proliferation and migration during cellular quiescence. Moreover, STAT3 was determined to be essential for Girdin expression undermore » stimulated tension force in the physiological condition, as well as for osteoblast proliferation and migration during quiescence. These findings suggest that the STAT3/Girdin/Akt pathway activates in osteoblasts in response to mechanical stimulation and may play a significant role in triggering osteoblast proliferation and migration during orthodontic treatment. - Highlights: • Tension force upregulates Girdin and Akt expression and phosphorylation. • Girdin and Akt promotes the phosphorylation of each other under tension stimulation. • Girdin and Akt are required for MG-63 cell proliferation and migration. • STAT3 is essential for Girdin expression after application of the tension forces.« less
Go, Yoon Young; Park, Moo Kyun; Kwon, Jee Young; Seo, Young Rok; Chae, Sung-Won; Song, Jae-Jun
2015-12-01
The primary aim of this study is to evaluate the gene expression profile of Asian sand dust (ASD)-treated human middle ear epithelial cell (HMEEC) using microarray analysis. The HMEEC was treated with ASD (400 µg/mL) and total RNA was extracted for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed. For selected genes, the changes in gene expression were confirmed by real-time polymerase chain reaction. A total of 1,274 genes were differentially expressed by ASD. Among them, 1,138 genes were 2 folds up-regulated, whereas 136 genes were 2 folds down-regulated. Up-regulated genes were mainly involved in cellular processes, including apoptosis, cell differentiation, and cell proliferation. Down-regulated genes affected cellular processes, including apoptosis, cell cycle, cell differentiation, and cell proliferation. The 10 genes including ADM, CCL5, EDN1, EGR1, FOS, GHRL, JUN, SOCS3, TNF, and TNFSF10 were identified as main modulators in up-regulated genes. A total of 11 genes including CSF3, DKK1, FOSL1, FST, TERT, MMP13, PTHLH, SPRY2, TGFBR2, THBS1, and TIMP1 acted as main components of pathway associated with 2-fold down regulated genes. We identified the differentially expressed genes in ASD-treated HMEEC. Our work indicates that air pollutant like ASD, may play an important role in the pathogenesis of otitis media.
CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells
Walters, Denise K; Arendt, Bonnie K; Jelinek, Diane F
2013-01-01
Increased use of the glycolytic pathway, even in the presence of oxygen, has recently been recognized as a key characteristic of malignant cells. However, the glycolytic phenotype results in increased lactic acid production and, in order to prevent cellular acidosis, tumor cells must increase proton efflux via upregulation of pH regulators such as proton-pumps, sodium-proton exchangers, and/or monocarboxylate transporters (MCT) (e.g., MCT1, MCT4). Interestingly, expression of MCT1 and MCT4 has been previously shown to be dependent upon expression of the transmembrane glycoprotein CD147. Recently, we demonstrated that primary patient multiple myeloma (MM) cells and human MM cell lines (HMCLs) overexpress CD147. Therefore, the goal of the current study was to specifically determine if MCT1 and MCT4 were also overexpressed in MM cells. RT-PCR analysis demonstrated both primary patient MM cells and HMCLs overexpress MCT1 and MCT4 mRNA. Notably, primary MM cells or HMCLs were found to express variable levels of MCT1 and/or MCT4 at the protein level despite CD147 expression. In those HMCLs positive for MCT1 and/or MCT4 protein expression, MCT1 and/or MCT4 were found to be associated with CD147. Specific siRNA-mediated downregulation of MCT1 but not MCT4 resulted in decreased HMCL proliferation, decreased lactate export, and increased cellular media pH. However, western blot analysis revealed that downregulation of MCT1 also downregulated CD147 and vice versa despite no effect on mRNA levels. Taken together, these data demonstrate the association between MCT1 and CD147 proteins in MM cells and importance of their association for lactate export and proliferation in MM cells. PMID:24013424
CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells.
Walters, Denise K; Arendt, Bonnie K; Jelinek, Diane F
2013-10-01
Increased use of the glycolytic pathway, even in the presence of oxygen, has recently been recognized as a key characteristic of malignant cells. However, the glycolytic phenotype results in increased lactic acid production and, in order to prevent cellular acidosis, tumor cells must increase proton efflux via upregulation of pH regulators such as proton-pumps, sodium-proton exchangers, and/or monocarboxylate transporters (MCT) (e.g., MCT1, MCT4). Interestingly, expression of MCT1 and MCT4 has been previously shown to be dependent upon expression of the transmembrane glycoprotein CD147. Recently, we demonstrated that primary patient multiple myeloma (MM) cells and human MM cell lines (HMCLs) overexpress CD147. Therefore, the goal of the current study was to specifically determine if MCT1 and MCT4 were also overexpressed in MM cells. RT-PCR analysis demonstrated both primary patient MM cells and HMCLs overexpress MCT1 and MCT4 mRNA. Notably, primary MM cells or HMCLs were found to express variable levels of MCT1 and/or MCT4 at the protein level despite CD147 expression. In those HMCLs positive for MCT1 and/or MCT4 protein expression, MCT1 and/or MCT4 were found to be associated with CD147. Specific siRNA-mediated downregulation of MCT1 but not MCT4 resulted in decreased HMCL proliferation, decreased lactate export, and increased cellular media pH. However, western blot analysis revealed that downregulation of MCT1 also downregulated CD147 and vice versa despite no effect on mRNA levels. Taken together, these data demonstrate the association between MCT1 and CD147 proteins in MM cells and importance of their association for lactate export and proliferation in MM cells.
Lee, Debby; Martinez, Bridget; Crocker, Daniel E; Ortiz, Rudy M
2017-02-01
Fasting typically suppresses thyroid hormone (TH)-mediated cellular events and increases sirtuin 1 (SIRT1) activity. THs may regulate metabolism through nongenomic pathways and directly through activation of adenosine monophosphate-activated protein kinase (AMPK). Adult male elephant seals ( Mirounga angustirostris ) are active, hypermetabolic, and normothermic during their annual breeding fast, which is characterized by stable TH levels. However, the contribution of TH to maintenance of their fasting metabolism is unknown. To investigate the fasting effects on cellular TH-mediated events and its potential association with SIRT1 and AMPK, we quantified plasma TH levels, mRNA expressions of muscle SIRT1 and TH-associated genes as well as the phosphorylation of AMPK in adult, male northern elephant seals ( n = 10/fasting period) over 8 weeks of fasting (early vs. late). Deiodinase type I (DI1) expression increased twofold with fasting duration suggesting that the potential for TH-mediated cellular signaling is increased. AMPK phosphorylation increased 61 ± 21% with fasting suggesting that cellular metabolism is increased. The mRNA expression of the TH transporter, monocarboxylate transporter 10 (MCT10), increased 2.4-fold and the TH receptor (THr β -1) decreased 30-fold suggesting that cellular uptake of T 4 is increased, but its subsequent cellular effects such as activation of AMPK are likely nongenomic. The up-regulation of SIRT1 mRNA expression (2.6-fold) likely contributes to the nongenomic activation of AMPK by TH, which may be necessary to maintain the expression of PGC-1 α These coordinated changes likely contribute to the up-regulation of mitochondrial metabolism to support the energetic demands associated with prolonged fasting in adult seals. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration
Deeba, Farah; Pandey, Ashutosh K.; Pandey, Vivek
2016-01-01
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant. PMID:27092152
Ali, Dina; Mohammad, Dara K; Mujahed, Huthayfa; Jonson-Videsäter, Kerstin; Nore, Beston; Paul, Christer; Lehmann, Sören
2016-07-01
The small molecule APR-246 (PRIMA-1(MET) ) is a novel drug that restores the activity of mutated and unfolded TP53 protein. However, the mechanisms of action and potential off-target effects are not fully understood. Gene expression profiling in TP53 mutant KMB3 acute myeloid leukaemia (AML) cells showed that genes which protected cells from oxidative stress to be the most up-regulated. APR-246 exposure also induced reactive oxygen species (ROS) formation and depleted glutathione in AML cells. The genes most up-regulated by APR-246, confirmed by quantitative real time polymerase chain reaction, were heme oxygenase-1 (HMOX1, also termed HO-1), SLC7A11 and RIT1. Up-regulation of HMOX1, a key regulator of cellular response to ROS, was independent of TP53 mutational status. NFE2L2 (also termed Nrf2), a master regulator of HMOX1 expression, showed transcriptional up-regulation and nuclear translocation by APR-246. Down-regulation of NFE2L2 by siRNA in AML cells significantly increased the antitumoural effects of APR-246. The PI3K inhibitor wortmannin and the mTOR inhibitor rapamycin inhibited APR-246-induced nuclear translocation of NFE2L2 and counteracted the protective cellular responses to APR-246, resulting in synergistic cell killing together with APR-246. In conclusion, ROS induction is important for antileukaemic activities of APR-246 and inhibiting the protective response of the Nrf-2/HMOX1 axis using PI3K inhibitors, enhances the antileukaemic effects. © 2016 John Wiley & Sons Ltd.
Up-regulation of aldolase A and methylglyoxal production in adipocytes.
Liu, Jianghai; Desai, Kaushik; Wang, Rui; Wu, Lingyun
2013-04-01
We previously reported that up-regulation of aldolase B, a key enzyme in fructose metabolism, was mainly responsible for vascular methylglyoxal (MG) overproduction under different pathological conditions. Here we investigated whether aldolase A, an enzyme of the glycolytic pathway, also caused MG overproduction in insulin-sensitive adipocytes. The relative contributions of different metabolic pathways or enzymes to MG generation were evaluated in cultured 3T3-L1 adipocytes. Glucose (25 mM) had no effect on aldolase A gene expression, but insulin (100 nM) up-regulated aldolase A mRNA and protein levels in the absence or presence of 25 mM glucose in adipocytes. Treatment with insulin increased levels of basal or glucose (25 mM)-induced MG and glucose 6-phosphate. However, insulin, glucose (25 mM) or their combination had no effect on cellular levels of sorbitol and fructose, but down-regulated gene expression of aldolase B to a similar extent, when compared with the control group. Incubation of 3T3-L1 adipocytes with fructose, acetone, acetol, threonine or glycine (25 mM), with or without insulin did not alter cellular MG levels. The elevated MG levels induced by insulin, glucose (25 mM) or their combination in adipocytes was completely reduced by siRNA knock down of aldolase A or application of 2-deoxy-D-glucose (a non-specific inhibitor of glucose uptake and glycolysis), but not by knock down of aldolase B. Insulin enhanced MG overproduction in insulin-sensitive adipocytes by up-regulating aldolase A, a mechanism that could be involved in the development of insulin resistance and obesity. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Wu, Ronghua; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin
2015-01-01
The 27.8 kDa membrane protein from flounder (Paralichthys olivaceus) gill (FG) cells was previously identified as a putative cellular receptor involved in lymphocystis disease virus (LCDV) infection. In this paper, the expression of receptor-27.8 kDa (27.8R) and LCDV loads in FG cells and hirame natural embryo (HINAE) cells were investigated upon LCDV infection and anti-27.8R monoclonal antibody (MAb) treatment. The results showed the 27.8R was expressed and co-localized with LCDV in both FG and HINAE cell surface. After LCDV infection, the expression of 27.8R exhibited a dose-dependent up-regulation with the increasing of LCDV titers, and demonstrated a tendency to increase firstly and then decrease during a time course up to 9 days; LCDV copies showed a similar variation trend to the 27.8R expression, however, it reached the highest level later than did the 27.8R expression. Additionally, the 27.8R expression and LCDV copies in FG cells were higher than those in HINAE cells. In the presence of increasing concentration of the anti-27.8R MAbs, the up-regulation of 27.8R expression and the copy numbers of LCDV significantly declined post LCDV infection, and the cytopathic effect induced by LCDV in the two cell lines was accordingly reduced, indicating anti-27.8R MAbs pre-incubation could inhibit the up-regulation of 27.8R expression and LCDV infection. These results suggested that LCDV infection could induce up-regulation of 27.8R expression, which in turn increased susceptibility and availability of FG and HINAE cells for LCDV entry, providing important new insights into the LCDV replication cycle and the interaction between this virus and the host cells.
Wu, Ronghua; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin
2015-01-01
The 27.8kDa membrane protein from flounder (Paralichthys olivaceus) gill (FG) cells was previously identified as a putative cellular receptor involved in lymphocystis disease virus (LCDV) infection. In this paper, the expression of receptor-27.8kDa (27.8R) and LCDV loads in FG cells and hirame natural embryo (HINAE) cells were investigated upon LCDV infection and anti-27.8R monoclonal antibody (MAb) treatment. The results showed the 27.8R was expressed and co-localized with LCDV in both FG and HINAE cell surface. After LCDV infection, the expression of 27.8R exhibited a dose-dependent up-regulation with the increasing of LCDV titers, and demonstrated a tendency to increase firstly and then decrease during a time course up to 9 days; LCDV copies showed a similar variation trend to the 27.8R expression, however, it reached the highest level later than did the 27.8R expression. Additionally, the 27.8R expression and LCDV copies in FG cells were higher than those in HINAE cells. In the presence of increasing concentration of the anti-27.8R MAbs, the up-regulation of 27.8R expression and the copy numbers of LCDV significantly declined post LCDV infection, and the cytopathic effect induced by LCDV in the two cell lines was accordingly reduced, indicating anti-27.8R MAbs pre-incubation could inhibit the up-regulation of 27.8R expression and LCDV infection. These results suggested that LCDV infection could induce up-regulation of 27.8R expression, which in turn increased susceptibility and availability of FG and HINAE cells for LCDV entry, providing important new insights into the LCDV replication cycle and the interaction between this virus and the host cells. PMID:26024218
USDA-ARS?s Scientific Manuscript database
Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoi...
Liu, Hai-peng; Chen, Rong-yuan; Zhang, Qiu-xia; Peng, Hui; Wang, Ke-jian
2011-07-01
White spot syndrome virus (WSSV) is one of the most important viral pathogens in crustaceans. During WSSV infection, multiple cell signaling cascades are activated, leading to the generation of antiviral molecules and initiation of programmed cell death of the virus infected cells. To gain novel insight into cell signaling mechanisms employed in WSSV infection, we have used suppression subtractive hybridization (SSH) to elucidate the cellular response to WSSV challenge at the gene level in red claw crayfish haematopoietic tissue (Hpt) stem cell cultures. Red claw crayfish Hpt cells were infected with WSSV for 1h (L1 library) and 12h (L12 library), respectively, after which the cell RNA was prepared for SSH using uninfected cells as drivers. By screening the L1 and L12 forward libraries, we have isolated the differentially expressed genes of crayfish Hpt cells upon WSSV infection. Among these genes, the level of many key molecules showed clearly up-regulated expression, including the genes involved in immune responses, cytoskeletal system, signal transduction molecules, stress, metabolism and homestasis related genes, and unknown genes in both L1 and L12 libraries. Importantly, of the 2123 clones screened, 176 novel genes were found the first time to be up-regulated in WSSV infection in crustaceans. To further confirm the up-regulation of differentially expressed genes, the semi-quantitative RT-PCR were performed to test twenty randomly selected genes, in which eight of the selected genes exhibited clear up-regulation upon WSSV infection in red claw crayfish Hpt cells, including DNA helicase B-like, multiprotein bridging factor 1, apoptosis-linked gene 2 and an unknown gene-L1635 from L1 library; coatomer gamma subunit, gabarap protein gene, tripartite motif-containing 32 and an unknown gene-L12-254 from L2 library, respectively. Taken together, as well as in immune and stress responses are regulated during WSSV infection of crayfish Hpt cells, our results also light the significance of cytoskeletal system, signal transduction and other unknown genes in the regulation of antiviral signals during WSSV infection. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K.; Mohanty, Ashok K.
2016-01-01
The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative stress (GPX1 and DUSP1) related genes showed differential expression profile at different time points post heat stress. The transcriptional data strongly indicated the induction of survival/apoptotic mechanism in heat stressed buffalo MECs. The overrepresented pathways across all time points were; electron transport chain, cytochrome P450, apoptosis, MAPK, FAS and stress induction of HSP regulation, delta Notch signaling, apoptosis modulation by HSP70, EGFR1 signaling, cytokines and inflammatory response, oxidative stress, TNF-alpha and NF- kB signaling pathway. The study thus identified several genes from different functional classes and biological pathways that could be termed as heat responsive in buffalo MEC. The responsiveness of buffalo MECs to heat stress in the present study clearly suggested its suitability as a model to understand the modulation of buffalo mammary gland expression signature in response to environmental heat load. PMID:27682256
Insulin signaling pathway protects neuronal cell lines by Sirt3 mediated IRS2 activation.
Mishra, Neha; Lata, Sonam; Deshmukh, Priyanka; Kamat, Kajal; Surolia, Avadhesha; Banerjee, Tanushree
2018-05-01
Cellular stress like ER and oxidative stress are the principle causative agents of various proteinopathies. Multifunctional protein PARK7/DJ-1 provides protection against cellular stress. Recently, insulin/IGF also has emerged as a neuro-protective molecule. However, it is not known whether DJ-1 and insulin/IGF complement each other for cellular protection in response to stress. In this study, we show for the first time, that in human and mouse neuronal cell lines, down regulation of DJ-1 for 48 h leads to compensatory upregulation of insulin/IGF signaling (IIS) pathway genes, namely, insulin receptor, insulin receptor substrate, and Akt under normal physiological conditions as well as in cellular stress conditions. Moreover, upon exogenous supply of insulin there is a marked increase in the IIS components both at gene and protein levels leading to down regulation and inactivation of GSK3β. By immunoprecipitation, it was observed that Sirt3 mediated deacetylation and activation of FoxO3a could not occur under DJ-1 downregulation. Transient DJ-1 downregulation also led to Akt mediated increased phosphorylation and nuclear exclusion of FoxO3a. When DJ-1 was downregulated increased interaction of Sirt3 with IRS2 was observed leading to its activation resulting in IIS upregulation. Thus, transient downregulation of DJ-1 leads to stimulation of IIS pathway by Sirt3 mediated IRS2 activation. Consequently, antiapoptotic program is triggered in neuronal cells via Akt-GSK3β-FoxO3a axis. © 2018 BioFactors, 44(3):224-236, 2018. © 2018 International Union of Biochemistry and Molecular Biology.
Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien
2012-06-15
Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening withmore » approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.« less
Discrimination of Dysplastic Nevi from Common Melanocytic Nevi by Cellular and Molecular Criteria.
Mitsui, Hiroshi; Kiecker, Felix; Shemer, Avner; Cannizzaro, Maria Vittoria; Wang, Claire Q F; Gulati, Nicholas; Ohmatsu, Hanako; Shah, Kejal R; Gilleaudeau, Patricia; Sullivan-Whalen, Mary; Cueto, Inna; McNutt, Neil Scott; Suárez-Fariñas, Mayte; Krueger, James G
2016-10-01
Dysplastic nevi (DNs), also known as Clark's nevi or atypical moles, are distinguished from common melanocytic nevi by variegation in pigmentation and clinical appearance, as well as differences in tissue patterning. However, cellular and molecular differences between DNs and common melanocytic nevi are not completely understood. Using cDNA microarray, quantitative RT-PCR, and immunohistochemistry, we molecularly characterized DNs and analyzed the difference between DNs and common melanocytic nevi. A total of 111 probesets (91 annotated genes, fold change > 2.0 and false discovery rate < 0.25) were differentially expressed between the two lesions. An unexpected finding in DNs was altered differentiation and activation of epidermal keratinocytes with increased expression of hair follicle-related molecules (keratin 25, trichohyalin, ribonuclease, RNase A family, 7) and inflammation-related molecules (S100A7, S100A8) at both genomic and protein levels. The immune microenvironment of DNs was characterized by an increase of T helper type 1 (IFNγ) and T helper type 2 (IL13) cytokines as well as an upregulation of oncostatin M and CXCL1. DUSP3, which regulates cellular senescence, was identified as one of the disease discriminative genes between DNs and common melanocytic nevi by three independent statistical approaches and its altered expression was confirmed by immunohistochemistry. The molecular and cellular changes in which the epidermal-melanin unit undergoes follicular differentiation as well as upregulation of defined cytokines could drive complex immune, epidermal, and pigmentary alterations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Tuberous Sclerosis: A New Frontier in Targeted Treatment of Autism.
Davis, Peter E; Peters, Jurriaan M; Krueger, Darcy A; Sahin, Mustafa
2015-07-01
Tuberous sclerosis complex (TSC) is a genetic disorder with a high prevalence of autism spectrum disorder (ASD). Tremendous progress in understanding the pathogenesis of TSC has been made in recent years, along with initial trials of medical treatment aimed specifically at the underlying mechanism of the disorder. At the cellular level, loss of TSC1 or TSC2 results in upregulation of the mechanistic target of rapamycin (mTOR) pathway. At the circuitry level, TSC and mTOR play crucial roles in axonal, dendritic, and synaptic development and function. In this review, we discuss the molecular mechanism underlying TSC, and how this disease results in aberrant neural connectivity at multiple levels in the central nervous system, leading to ASD symptoms. We then review recent advances in mechanism-based treatments of TSC, and the promise that these treatments provide for future mechanism-based treatment of ASD. Because of these recent advances, TSC represents an ideal model for how to make progress in understanding and treating the mechanisms that underlie ASD in general.
Identification of Lmo1 as part of a Hox-dependent regulatory network for hindbrain patterning.
Matis, Christelle; Oury, Franck; Remacle, Sophie; Lampe, Xavier; Gofflot, Françoise; Picard, Jacques J; Rijli, Filippo M; Rezsohazy, René
2007-09-01
The embryonic functions of Hox proteins have been extensively investigated in several animal phyla. These transcription factors act as selectors of developmental programmes, to govern the morphogenesis of multiple structures and organs. However, despite the variety of morphogenetic processes Hox proteins are involved in, only a limited set of their target genes has been identified so far. To find additional targets, we used a strategy based upon the simultaneous overexpression of Hoxa2 and its cofactors Pbx1 and Prep in a cellular model. Among genes whose expression was upregulated, we identified LMO1, which codes for an intertwining LIM-only factor involved in protein-DNA oligomeric complexes. By analysing its expression in Hox knockout mice, we show that Lmo1 is differentially regulated by Hoxa2 and Hoxb2, in specific columns of hindbrain neuronal progenitors. These results suggest that Lmo1 takes part in a Hox paralogue 2-dependent network regulating anteroposterior and dorsoventral hindbrain patterning. (c) 2007 Wiley-Liss, Inc.
2016-01-01
Reduced susceptibility to antimicrobials in Gram-negative bacteria may result from multiple resistance mechanisms, including increased efflux pump activity or reduced porin protein expression. Up-regulation of the efflux pump system is closely associated with multidrug resistance (MDR). To help investigate the role of efflux pumps on compound accumulation, a fluorescence-based assay was developed using fluorescent derivatives of trimethoprim (TMP), a broad-spectrum synthetic antibiotic that inhibits an intracellular target, dihydrofolate reductase (DHFR). Novel fluorescent TMP probes inhibited eDHFR activity with comparable potency to TMP, but did not kill or inhibit growth of wild type Escherichia coli. However, bactericidal activity was observed against an efflux pump deficient E. coli mutant strain (ΔtolC). A simple and quick fluorescence assay was developed to measure cellular accumulation of the TMP probe using either fluorescence spectroscopy or flow cytometry, with validation by LC-MS/MS. This fluorescence assay may provide a simple method to assess efflux pump activity with standard laboratory equipment. PMID:27737551
Chen, Yu-Han; Yeh, Ting-Feng; Chu, Fang-Hua; Hsu, Fu-Lan; Chang, Shang-Tzen
2015-01-14
Ferruginol has antifungal activity against wood-rot fungi (basidiomycetes). However, specific research on the antifungal mechanisms of ferruginol is scarce. Two-dimensional gel electrophoresis and fluorescent image analysis were employed to evaluate the differential protein expression of wood-rot fungus Trametes versicolor treated with or without ferruginol. Results from protein identification of tryptic peptides via liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS) analyses revealed 17 protein assignments with differential expression. Downregulation of cytoskeleton β-tubulin 3 indicates that ferruginol has potential to be used as a microtubule-disrupting agent. Downregulation of major facilitator superfamily (MFS)–multiple drug resistance (MDR) transporter and peroxiredoxin TSA1 were observed, suggesting reduction in self-defensive capabilities of T. versicolor. In addition, the proteins involved in polypeptide sorting and DNA repair were also downregulated, while heat shock proteins and autophagy-related protein 7 were upregulated. These observations reveal that such cellular dysfunction and damage caused by ferruginol lead to growth inhibition and autophagic cell death of fungi.
Chang, Ching-yi; Kazmin, Dmitri; Jasper, Jeff S.; Kunder, Rebecca; Zuercher, William J.; McDonnell, Donald P.
2011-01-01
Summary A genomic signature designed to assess the activity of the estrogen-related receptor alpha (ERRα) was used to profile more than eight hundred breast tumors, revealing a shorter disease-free survival in patients with tumors exhibiting elevated receptor activity. Importantly, this signature also predicted the ability of an ERRα antagonist, XCT790, to inhibit proliferation in cellular models of breast cancer. Using a chemical genomic approach, it was determined that activation of the Her2/IGF-1 signaling pathways and subsequent C-MYC stabilization upregulate the expression of peroxisome proliferator-activated receptor gamma coactivator-1 beta (PGC-1β), an obligate cofactor for ERRα activity. PGC-1β knockdown in breast cancer cells impaired ERRα signaling and reduced cell proliferation, implicating a functional role for PGC1β/ERRα in the pathogenesis of breast cancers. Significance Overexpression of ERRα has been correlated with progression of breast and ovarian cancers in several small studies. Using a genomic approach, we defined specific aspects of the activity of this receptor that track with shorter disease-free survival in multiple cohorts of breast cancer patients. Importantly, cellular models of breast cancer exhibiting high ERRα activity are more sensitive to growth inhibition by an ERRα antagonist. This finding highlights a promising treatment strategy for those aggressive tumors that currently have limited therapeutic options. PMID:22014575
The relationship between the nucleolus and cancer: Current evidence and emerging paradigms.
Orsolic, Ines; Jurada, Deana; Pullen, Nick; Oren, Moshe; Eliopoulos, Aristides G; Volarevic, Sinisa
2016-06-01
The nucleolus is the most prominent nuclear substructure assigned to produce ribosomes; molecular machines that are responsible for carrying out protein synthesis. To meet the increased demand for proteins during cell growth and proliferation the cell must increase protein synthetic capacity by upregulating ribosome biogenesis. While larger nucleolar size and number have been recognized as hallmark features of many tumor types, recent evidence has suggested that, in addition to overproduction of ribosomes, decreased ribosome biogenesis as well as qualitative changes in this process could also contribute to tumor initiation and cancer progression. Furthermore, the nucleolus has become the focus of intense attention for its involvement in processes that are clearly unrelated to ribosome biogenesis such as sensing and responding to endogenous and exogenous stressors, maintenance of genome stability, regulation of cell-cycle progression, cellular senescence, telomere function, chromatin structure, establishment of nuclear architecture, global regulation of gene expression and biogenesis of multiple ribonucleoprotein particles. The fact that dysregulation of many of these fundamental cellular processes may contribute to the malignant phenotype suggests that normal functioning of the nucleolus safeguards against the development of cancer and indicates its potential as a therapeutic approach. Here we review the recent advances made toward understanding these newly-recognized nucleolar functions and their roles in normal and cancer cells, and discuss possible future research directions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huai, Jisen; Firat, Elke; Nil, Ahmed; Million, Daniele; Gaedicke, Simone; Kanzler, Benoit; Freudenberg, Marina; van Endert, Peter; Kohler, Gabriele; Pahl, Heike L.; Aichele, Peter; Eichmann, Klaus; Niedermann, Gabriele
2008-01-01
The giant cytosolic protease tripeptidyl peptidase II (TPPII) has been implicated in the regulation of proliferation and survival of malignant cells, particularly lymphoma cells. To address its functions in normal cellular and systemic physiology we have generated TPPII-deficient mice. TPPII deficiency activates cell type-specific death programs, including proliferative apoptosis in several T lineage subsets and premature cellular senescence in fibroblasts and CD8+ T cells. This coincides with up-regulation of p53 and dysregulation of NF-κB. Prominent degenerative alterations at the organismic level were a decreased lifespan and symptoms characteristic of immunohematopoietic senescence. These symptoms include accelerated thymic involution, lymphopenia, impaired proliferative T cell responses, extramedullary hematopoiesis, and inflammation. Thus, TPPII is important for maintaining normal cellular and systemic physiology, which may be relevant for potential therapeutic applications of TPPII inhibitors. PMID:18362329
Ham, Sun Ah; Hwang, Jung Seok; Yoo, Taesik; Lee, Hanna; Kang, Eun Sil; Park, Chankyu; Oh, Jae-Wook; Lee, Hoon Taek; Min, Gyesik; Kim, Jin-Hoi; Seo, Han Geuk
2012-05-15
UV radiation-mediated photodamage to the skin has been implicated in premature aging and photoaging-related skin cancer and melanoma. Little is known about the cellular events that underlie premature senescence, or how to impede these events. In the present study we demonstrate that PPARδ (peroxisome-proliferator-activated receptor δ) regulates UVB-induced premature senescence of normal keratinocytes. Activation of PPARδ by GW501516, a specific ligand of PPARδ, significantly attenuated UVB-mediated generation of ROS (reactive oxygen species) and suppressed senescence of human keratinocytes. Ligand-activated PPARδ up-regulated the expression of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and suppressed the PI3K (phosphatidylinositol 3-kinase)/Akt pathway. Concomitantly, translocation of Rac1 to the plasma membrane, which leads to the activation of NADPH oxidases and generation of ROS, was significantly attenuated. siRNA (small interfering RNA)-mediated knockdown of PTEN abrogated the effects of PPARδ on cellular senescence, on PI3K/Akt/Rac1 signalling and on generation of ROS in keratinocytes exposed to UVB. Finally, when HR-1 hairless mice were treated with GW501516 before exposure to UVB, the number of senescent cells in the skin was significantly reduced. Thus ligand-activated PPARδ confers resistance to UVB-induced cellular senescence by up-regulating PTEN and thereby modulating PI3K/Akt/Rac1 signalling to reduce ROS generation in keratinocytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, Rebecca; Zeino, Maen; Frewert, Simon
Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes,more » is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.« less
Guo, Hui-Chen; Jin, Ye; Han, Shi-Chong; Sun, Shi-Qi; Wei, Yan-Quan; Liu, Xian-Ji; Feng, Xia; Liu, Ding Xiang; Liu, Xiang-Tao
2015-01-01
Stable isotope labeling with amino acids in cell culture (SILAC) was used to quantitatively study the host cell gene expression profile, in order to achieve an unbiased overview of the protein expression changes in BHK-21 cells infected with FMDV serotype Asia 1. The SILAC-based approach identified overall 2,141 proteins, 153 of which showed significant alteration in the expression level 6 h post FMDV infection (57 up-regulated and 96 down-regulated). Among these proteins, six cellular proteins, including three down-regulated (VPS28, PKR, EVI5) and three up-regulated (LYPLA1, SEC62 and DARs), were selected according to the significance of the changes and/or the relationship with PKR. The expression level and pattern of the selected proteins were validated by immunoblotting and confocal microscopy. Furthermore, the functions of these cellular proteins were assessed by small interfering RNA-mediated depletion, and their functional importance in the replication of FMDV was demonstrated by western blot, reverse transcript PCR (RT-PCR) and 50% Tissue Culture Infective Dose (TCID50). The results suggest that FMDV infection may have effects on the expression of specific cellular proteins to create more favorable conditions for FMDV infection. This study provides novel data that can be utilized to understand the interactions between FMDV and the host cell.
Zondag, Lisa E; Rutherford, Kim; Gemmell, Neil J; Wilson, Megan J
2016-02-16
Regenerative capacity differs greatly between animals. In vertebrates regenerative abilities are highly limited and tissue or organ specific. However the closest related chordate to the vertebrate clade, Botrylloides leachi, can undergo whole body regeneration (WBR). Therefore, research on WBR in B. leachi has focused on pathways known to be important for regeneration in vertebrates. To obtain a comprehensive vision of this unique process we have carried out the first de novo transcriptome sequencing for multiple stages of WBR occurring in B. leachi. The identified changes in gene expression during B. leachi WBR offer novel insights into this remarkable ability to regenerate. The transcriptome of B. leachi tissue undergoing WBR were analysed using differential gene expression, gene ontology and pathway analyses. We observed up-regulation in the expression of genes involved in wound healing and known developmental pathways including WNT, TGF-β and Notch, during the earliest stages of WBR. Later in WBR, the expression patterns in several pathways required for protein synthesis, biogenesis and the organisation of cellular components were up-regulated. While the genes expressed early on are characteristic of a necessary wound healing response to an otherwise lethal injury, the subsequent vast increase in protein synthesis conceivably sustains the reestablishment of the tissue complexity and body axis polarity within the regenerating zooid. We have, for the first time, provided a global overview of the genes and their corresponding pathways that are modulated during WBR in B. leachi.
E2F1 induces p19INK4d, a protein involved in the DNA damage response, following UV irradiation.
Carcagno, Abel L; Giono, Luciana E; Marazita, Mariela C; Castillo, Daniela S; Pregi, Nicolás; Cánepa, Eduardo T
2012-07-01
Central to the maintenance of genomic integrity is the cellular DNA damage response. Depending on the type of genotoxic stress and through the activation of multiple signaling cascades, it can lead to cell cycle arrest, DNA repair, senescence, and apoptosis. p19INK4d, a member of the INK4 family of CDK inhibitors, plays a dual role in the DNA damage response, inhibiting cell proliferation and promoting DNA repair. Consistently, p19INK4d has been reported to become upregulated in response to UV irradiation and a great variety of genotoxic agents. Here, this induction is shown to result from a transcriptional stimulatory mechanism that can occur at every phase of the cell cycle except during mitosis. Moreover, evidence is presented that demonstrates that E2F1 is involved in the induction of p19INK4d following UV treatment, as it is prevented by E2F1 protein ablation and DNA-binding inhibition. Specific inhibition of this regulation using triplex-forming oligonucleotides that target the E2F response elements present in the p19INK4d promoter also block p19INK4d upregulation and sensitize cells to DNA damage. These results constitute the first description of a mechanism for the induction of p19INK4d in response to UV irradiation and demonstrate the physiological relevance of this regulation following DNA damage.
Bi, Xin; Jin, Yibao; Gao, Xiang; Liu, Feng; Gao, Dan; Jiang, Yuyang; Liu, Hongxia
2013-01-01
Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications.
Koomen, Jeroen; den Besten, Heidy M W; Metselaar, Karin I; Tempelaars, Marcel H; Wijnands, Lucas M; Zwietering, Marcel H; Abee, Tjakko
2018-06-07
Microbial population heterogeneity allows for a differential microbial response to environmental stresses and can lead to the selection of stress resistant variants. In this study, we have used two different stress resistant variants of Listeria monocytogenes LO28 with mutations in the rpsU gene encoding ribosomal protein S21, to elucidate features that can contribute to fitness, stress-tolerance and host interaction using a comparative gene profiling and phenotyping approach. Transcriptome analysis showed that 116 genes were upregulated and 114 genes were downregulated in both rpsU variants. Upregulated genes included a major contribution of SigB-controlled genes such as intracellular acid resistance-associated glutamate decarboxylase (GAD) (gad3), genes involved in compatible solute uptake (opuC), glycerol metabolism (glpF, glpK, glpD), and virulence (inlA, inlB). Downregulated genes in the two variants involved mainly genes involved in flagella synthesis and motility. Phenotyping results of the two rpsU variants matched the gene profiling data including enhanced freezing resistance conceivably linked to compatible solute accumulation, higher glycerol utilisation rates, and better adhesion to Caco 2 cells presumably linked to higher expression of internalins. Also, bright field and electron microscopy analysis confirmed reduced flagellation of the variants. The activation of SigB-mediated stress defence offers an explanation for the multiple-stress resistant phenotype in rpsU variants. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Treffon, Janina; Block, Desiree; Moche, Martin; Reiss, Swantje; Fuchs, Stephan; Engelmann, Susanne; Becher, Dörte; Langhanki, Lars; Mellmann, Alexander; Peters, Georg; Kahl, Barbara C
2018-04-11
Adaptation of S. aureus to the hostile environment of CF airways resulted in changed abundance of proteins involved in energy metabolism, cellular processes, transport and binding, but most importantly in an iron-scavenging phenotype and increased activity of superoxide dismutase M.
Zúñiga, Rafael; Valenzuela, Claudio; Concha, Guierdy; Brown, Nelson; Zúñiga, Leandro
2018-03-29
TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA)-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK) inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment.
Effects of Simulated Microgravity on Functions of Neutrophil-like HL-60 Cells
NASA Astrophysics Data System (ADS)
Wang, Chengzhi; Li, Ning; Zhang, Chen; Sun, Shujin; Gao, Yuxin; Long, Mian
2015-11-01
Altered gravity, especially microgravity affects cellular functions of immune cells and can result in immune dysfunction for long-term, manned spaceflight and space exploration. The underlying mechanism, however, of sensing and responding to the gravity alteration is poorly understood. Here, a rotary cell culture system (RCCS) bioreactor was used to elucidate the effects of simulated microgravity on polymorphonuclear neutrophils (PMN)-like HL-60 cells. Alteration of cell morphology, up-regulation of (nitric oxide) NO production, enhancement of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein 1 (MCP-1) secretion, and diversity of cellular adhesion molecule expression were observed for the cells cultured in RCCS, leading to the up-regulated inflammatory immune responses and host defense. It was also indicated that such alterations in biological responses of PMNs mediated the reduced rolling velocity and decreased adhesion of PMN-like HL-60 cells on endothelial cells under shear flow. This work furthers the understandings in the effects and mechanism of microgravity on PMN functions, which are potentially helpful for optimizing the countermeasures to immune suppression in the future long-term, manned spaceflight.
Endothelin-1 stimulates colon cancer adjacent fibroblasts.
Knowles, Jonathan P; Shi-Wen, Xu; Haque, Samer-ul; Bhalla, Ashish; Dashwood, Michael R; Yang, Shiyu; Taylor, Irving; Winslet, Marc C; Abraham, David J; Loizidou, Marilena
2012-03-15
Endothelin-1 (ET-1) is produced by and stimulates colorectal cancer cells. Fibroblasts produce tumour stroma required for cancer development. We investigated whether ET-1 stimulated processes involved in tumour stroma production by colonic fibroblasts. Primary human fibroblasts, isolated from normal tissues adjacent to colon cancers, were cultured with or without ET-1 and its antagonists. Cellular proliferation, migration and contraction were measured. Expression of enzymes involved in tumour stroma development and alterations in gene transcription were determined by Western blotting and genome microarrays. ET-1 stimulated proliferation, contraction and migration (p < 0.01 v control) and the expression of matrix degrading enzymes TIMP-1 and MMP-2, but not MMP-3. ET-1 upregulated genes for profibrotic growth factors and receptors, signalling molecules, actin modulators and extracellular matrix components. ET-1 stimulated colonic fibroblast cellular processes in vitro that are involved in developing tumour stroma. Upregulated genes were consistent with these processes. By acting as a strong stimulus for tumour stroma creation, ET-1 is proposed as a target for adjuvant cancer therapy. Copyright © 2011 UICC.
Lon in maintaining mitochondrial and endoplasmic reticulum homeostasis.
Yang, Jieyeqi; Chen, Wenying; Zhang, Boyang; Tian, Fengli; Zhou, Zheng; Liao, Xin; Li, Chen; Zhang, Yi; Han, Yanyan; Wang, Yan; Li, Yuzhe; Wang, Guo-Qing; Shen, Xiao Li
2018-06-01
As a vital member of AAA+ (ATPase associated with diverse cellular activities) protein superfamily, Lon, a homo-hexameric ring-shaped protein complex with a serine-lysine catalytic dyad, is highly conserved throughout almost all prokaryotic and eukaryotic organisms. Lon protease (LONP) plays an important role in maintaining mitoproteostasis through selectively recognizing and degrading oxidatively modified mitoproteins within mitochondrial matrix, such as oxidized aconitase, phosphorylated mitochondrial transcription factor A, etc. Furthermore, the up-regulated LONP increased mitochondrial ROS generation to promote cell survival, cell proliferation, epithelial-mesenchymal transition, and cell migration, which was attributed to the up-regulation of NADH:ubiquinone oxidoreductase core subunit S8 via interaction with chaperone Lon under hypoxic or oxidative stress in tumorigenesis. In addition, Lon also participated in protein kinase RNA (PKR)-like endoplasmic reticulum kinase signaling pathway under endoplasmic reticulum (ER) stress. In short, Lon, as a pivotal stress-responsive protein that involved in the crosstalks among mitochondria, ER and nucleus, participated in multifarious important cellular processes crucial for cell survival, such as the mitochondrial protein quality control system, the mitochondrial unfolded protein response, the mtDNA maintenance, and the ER unfolded protein response.
TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines
Zúñiga, Rafael; Valenzuela, Claudio; Concha, Guierdy; Brown, Nelson; Zúñiga, Leandro
2018-01-01
TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA)-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK) inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment. PMID:29596383
Efficient killing effect of osteosarcoma cells by cinobufacini and cisplatin in combination.
Huang, Tao; Gong, Wei-Hua; Li, Xiu-Cheng; Zou, Chun-Ping; Jiang, Guang-Jian; Li, Xu-Hui; Qian, Hao
2012-01-01
To study the killing effects on osteosarcoma cells of cinobufacini and cisplatin in combination and the related mechanisms so as to explore the chemotherapeutic method with integrated traditional Chinese and Western medicines. Cinobufacini and cisplatin were applied to OS732 cells singly or jointly and survival rates were measured by MTT assay. Changes in cellular shape were observed with inverted phase contrast and fluorescence microscopy and apoptosis rates were analyzed with flow cytometry (FCM). Immunocytochemistry were used to examine the Fas expression of OS732 cells. The combination of cinobufacini and cisplatin had the effect of up-regulating Fas expression and inducing apoptosis. The survival rate of combined application of 100 μg/ml cinobufacini and 1 μg/ml cisplatin on OS-732 cells was significantly lower than with either of the agents alone (p<0.01). Changes in cellular shape and apoptotic rates also indicated the apoptosis-inducing effects of combined application were much enhanced. The combination of cinobufacini and cisplatin demonstrated strong killing effects on OS-732 cells which might be related to up-regulation of Fas expression.
USDA-ARS?s Scientific Manuscript database
Obesity impairs reproductive functions through multiple mechanisms, possibly through disruption of ovarian function. We hypothesized that increased adiposity will lead to a pro-inflammatory gene signature and up-regulation of Egr-1 protein in ovaries from obese (OB, n=7) compared to lean (LN, n=10) ...
Radioadaptive Cytoprotective Pathways in the Mouse Retina
NASA Technical Reports Server (NTRS)
Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.
2010-01-01
Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.
Youns, Mаhmoud; Abdel Halim Hegazy, Wael
2017-01-01
Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.
Youns, Mаhmoud; Abdel Halim Hegazy, Wael
2017-01-01
Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097
Terracina, Krista P; Graham, Laura J; Payne, Kyle K; Manjili, Masoud H; Baek, Annabel; Damle, Sheela R; Bear, Harry D
2016-09-01
Adoptive T cell immunotherapy is a promising approach to cancer treatment that currently has limited clinical applications. DNA methyltransferase inhibitors (DNAMTi) have known potential to affect the immune system through multiple mechanisms that could enhance the cytotoxic T cell responses, including: upregulation of tumor antigen expression, increased MHC class I expression, and blunting of myeloid derived suppressor cells (MDSCs) expansion. In this study, we have investigated the effect of combining the DNAMTi, decitabine, with adoptive T cell immunotherapy in the murine 4T1 mammary carcinoma model. We found that expression of neu, MHC class I molecules, and several murine cancer testis antigens (CTA) was increased by decitabine treatment of 4T1 cells in vitro. Decitabine also increased expression of multiple CTA in two human breast cancer cell lines. Decitabine-treated 4T1 cells stimulated greater IFN-gamma release from tumor-sensitized lymphocytes, implying increased immunogenicity. Expansion of CD11b + Gr1 + MDSC in 4T1 tumor-bearing mice was significantly diminished by decitabine treatment. Decitabine treatment improved the efficacy of adoptive T cell immunotherapy in mice with established 4T1 tumors, with greater inhibition of tumor growth and an increased cure rate. Decitabine may have a role in combination with existing and emerging immunotherapies for breast cancer.
A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia.
Li, Mei; Sun, Meiling; Cao, Lijuan; Gu, Jin-hua; Ge, Jianbin; Chen, Jieyu; Han, Rong; Qin, Yuan-Yuan; Zhou, Zhi-Peng; Ding, Yuqiang; Qin, Zheng-Hong
2014-05-28
TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits glycolysis and increases the flow of pentose phosphate pathway (PPP), which generates NADPH and pentose. We hypothesized that TIGAR plays a neuroprotective role in brain ischemia as neurons do not rely on glycolysis but are vulnerable to oxidative stress. We found that TIGAR was highly expressed in brain neurons and was rapidly upregulated in response to ischemia/reperfusion insult in a TP53-independent manner. Overexpression of TIGAR in normal mice with lentivirus reduced ischemic neuronal injury, whereas lentivirus-mediated TIGAR knockdown aggravated it. In cultured primary neurons, increasing TIGAR expression reduced oxygen and glucose deprivation (OGD)/reoxygenation-induced injury, whereas decreasing its expression worsened the injury. The glucose 6-phosphate dehydrogenase was upregulated in mouse and cellular models of stroke, and its upregulation was further enhanced by overexpression of TIGAR. Supplementation of NADPH also reduced ischemia/reperfusion brain injury and alleviated TIGAR knockdown-induced aggravation of ischemic injury. In animal and cellular stroke models, ischemia/reperfusion increased mitochondrial localization of TIGAR. OGD/reoxygenation-induced elevation of ROS, reduction of GSH, dysfunction of mitochondria, and activation of caspase-3 were rescued by overexpression of TIGAR or supplementation of NADPH, while knockdown of TIGAR aggravated these changes. Together, our results show that TIGAR protects ischemic brain injury via enhancing PPP flux and preserving mitochondria function, and thus may be a valuable therapeutic target for ischemic brain injury. Copyright © 2014 the authors 0270-6474/14/347458-14$15.00/0.
Li, Ning; Ren, Aihui; Wang, Xiaoshuang; Fan, Xin; Zhao, Yong; Gao, George F; Cleary, Patrick; Wang, Beinan
2015-01-06
Influenza infection predisposes the host to secondary bacterial pneumonia, which is a major cause of mortality during influenza epidemics. The molecular mechanisms underlying the bacterial coinfection remain elusive. Neuraminidase (NA) of influenza A virus (IAV) enhances bacterial adherence and also activates TGF-β. Because TGF-β can up-regulate host adhesion molecules such as fibronectin and integrins for bacterial binding, we hypothesized that activated TGF-β during IAV infection contributes to secondary bacterial infection by up-regulating these host adhesion molecules. Flow cytometric analyses of a human lung epithelial cell line indicated that the expression of fibronectin and α5 integrin was up-regulated after IAV infection or treatment with recombinant NA and was reversed through the inhibition of TGF-β signaling. IAV-promoted adherence of group A Streptococcus (GAS) and other coinfective pathogens that require fibronectin for binding was prevented significantly by the inhibition of TGF-β. However, IAV did not promote the adherence of Lactococcus lactis unless this bacterium expressed the fibronectin-binding protein of GAS. Mouse experiments showed that IAV infection enhanced GAS colonization in the lungs of wild-type animals but not in the lungs of mice deficient in TGF-β signaling. Taken together, these results reveal a previously unrecognized mechanism: IAV NA enhances the expression of cellular adhesins through the activation of TGF-β, leading to increased bacterial loading in the lungs. Our results suggest that TGF-β and cellular adhesins may be potential pharmaceutical targets for the prevention of coinfection.
Li, Hao; Li, Haowen; Yue, Haiyan; Wang, Wen; Yu, Lanbing; ShuoWang; Cao, Yong; Zhao, Jizong
2017-07-01
As it grows in size, an intracranial aneurysm (IA) is prone to rupture. In this study, we compared two extreme groups of IAs, ruptured IAs (RIAs) smaller than 10 mm and un-ruptured IAs (UIAs) larger than 10 mm, to investigate the genes involved in the facilitation and prevention of IA rupture. The aneurismal walls of 6 smaller saccular RIAs (size smaller than 10 mm), 6 larger saccular UIAs (size larger than 10 mm) and 12 paired control arteries were obtained during surgery. The transcription profiles of these samples were studied by microarray analysis. RT-qPCR was used to confirm the expression of the genes of interest. In addition, functional group analysis of the differentially expressed genes was performed. Between smaller RIAs and larger UIAs, 101 genes and 179 genes were significantly over-expressed, respectively. In addition, functional group analysis demonstrated that the up-regulated genes in smaller RIAs mainly participated in the cellular response to metal ions and inorganic substances, while most of the up-regulated genes in larger UIAs were involved in inflammation and extracellular matrix (ECM) organization. Moreover, compared with control arteries, inflammation was up-regulated and muscle-related biological processes were down-regulated in both smaller RIAs and larger UIAs. The genes involved in the cellular response to metal ions and inorganic substances may facilitate the rupture of IAs. In addition, the healing process, involving inflammation and ECM organization, may protect IAs from rupture.
NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity
Venkateshaiah, Sathisha Upparahalli; Khan, Sharmin; Ling, Wen; Bam, Rakesh; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Epstein, Joshua; Yaccoby, Shmuel
2015-01-01
Multiple myeloma (MM) cells typically grow in focal lesions, stimulating osteoclasts that destroy bone and support MM. Osteoclasts and MM cells are hypermetabolic. The coenzyme nicotinamide adenine dinucleotide (NAD+) is not only essential for cellular metabolism; it also affects activity of NAD-dependent enzymes, such as PARP-1 and SIRT-1. Nicotinamide phos-phoribosyltransferase (NAMPT/PBEF/visfatin, encoded by PBEF1) is a rate-limiting enzyme in NAD+ biosynthesis from nicotinamide. Coculture of primary MM cells with osteoclasts induced PBEF1 upregulation in both cell types. PBEF1 expression was higher in experimental myelomatous bones than in nonmyelomatous bone and higher in MM patients’ plasma cells than in healthy donors’ counterparts. APO866 is a specific PBEF1 inhibitor known to deplete cellular NAD+, APO866 at low nanomolar concentrations inhibited growth of primary MM cells or MM cell lines cultured alone or cocultured with osteoclasts and induced apoptosis in these cells. PBEF1 activity and NAD+ content were reduced in MM cells by APO866, resulting in lower activity of PARP-1 and SIRT-1. The inhibitory effect of APO866 on MM cell growth was abrogated by supplementation of extracellular NAD+ or NAM. APO866 inhibited NF-κB activity in osteoclast precursors and suppressed osteoclast formation and activity. PBEF1 knockdown similarly inhibited MM cell growth and osteoclast formation. In the SCID-rab model, APO866 inhibited growth of primary MM and H929 cells and prevented bone disease. These findings indicate that MM cells and osteoclasts are highly sensitive to NAD+ depletion and that PBEF1 inhibition represents a novel approach to target cellular metabolism and inhibit PARP-1 and bone disease in MM. PMID:23435312
Kindrachuk, Jason; Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E; Feldmann, Heinz; Jahrling, Peter B
2014-09-01
Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted "mesenchyme-like" phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition.
Stary, Victoria; Puppala, Dheeraj; Scherrer-Crosbie, Marielle; Dillmann, Wolfgang H; Armoundas, Antonis A
2016-04-15
Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca(2+)ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca(2+)indicators to selectively measure mitochondrial and cytosolic Ca(2+)using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 - (small Ca(2+)intensity)/(large Ca(2+)intensity)]. Blocking of complex I and II, cytochrome-coxidase, F0F1synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P< 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P< 0.04).N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P< 0.001). CGP, an antagonist of the mitochondrial Na(+)-Ca(2+)exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P< 0.0001). The major findings of this study are that impairment of mitochondrial Ca(2+)cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca(2+)content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca(2+)signaling in myocytes from diseased hearts, leading to new therapeutic targets. Copyright © 2016 the American Physiological Society.
Rescan, Pierre-Yves; Le Cam, Aurelie; Rallière, Cécile; Montfort, Jérôme
2017-06-07
Compensatory growth is a phase of rapid growth, greater than the growth rate of control animals, that occurs after a period of growth-stunting conditions. Fish show a capacity for compensatory growth after alleviation of dietary restriction, but the underlying cellular mechanisms are unknown. To learn more about the contribution of genes regulating hypertrophy (an increase in muscle fibre size) and hyperplasia (the generation of new muscle fibres) in the compensatory muscle growth response in fish, we used high-density microarray analysis to investigate the global gene expression in muscle of trout during a fasting-refeeding schedule and in muscle of control-fed trout displaying normal growth. The compensatory muscle growth signature, as defined by genes up-regulated in muscles of refed trout compared with control-fed trout, showed enrichment in functional categories related to protein biosynthesis and maturation, such as RNA processing, ribonucleoprotein complex biogenesis, ribosome biogenesis, translation and protein folding. This signature was also enriched in chromatin-remodelling factors of the protein arginine N-methyl transferase family. Unexpectedly, functional categories related to cell division and DNA replication were not inferred from the molecular signature of compensatory muscle growth, and this signature contained virtually none of the genes previously reported to be up-regulated in hyperplastic growth zones of the late trout embryo myotome and to potentially be involved in production of new myofibres, notably genes encoding myogenic regulatory factors, transmembrane receptors essential for myoblast fusion or myofibrillar proteins predominant in nascent myofibres. Genes promoting myofibre growth, but not myofibre formation, were up-regulated in muscles of refed trout compared with continually fed trout. This suggests that a compensatory muscle growth response, resulting from the stimulation of hypertrophy but not the stimulation of hyperplasia, occurs in trout after refeeding. The generation of a large set of genes up-regulated in muscle of refed trout may yield insights into the molecular and cellular mechanisms controlling skeletal muscle mass in teleost and serve as a useful list of potential molecular markers of muscle growth in fish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouchi, Zen, E-mail: zkouchi@toyaku.ac.jp; Fujiwara, Yuki; Yamaguchi, Hideki
2011-05-20
Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however,more » its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.« less
Aqp5 Is a New Transcriptional Target of Dot1a and a Regulator of Aqp2
Zhang, Xi; Zhou, Qiaoling; Li, Ju-Mei; Berger, Stefan; Borok, Zea; Zhou, Beiyun; Xiao, Zhou; Yin, Hongling; Liu, Mingyao; Wang, Ying; Jin, Jianping; Blackburn, Michael R.; Xia, Yang; Zhang, Wenzheng
2013-01-01
Dot1l encodes histone H3 K79 methyltransferase Dot1a. Mice with Dot1l deficiency in renal Aqp2-expressing cells (Dot1lAC) develop polyuria by unknown mechanisms. Here, we report that Aqp5 links Dot1l deletion to polyuria through Aqp2. cDNA array analysis revealed and real-time RT-qPCR validated Aqp5 as the most upregulated gene in Dot1lAC vs. control mice. Aqp5 protein is barely detectable in controls, but robustly expressed in the Dot1lAC kidneys, where it colocalizes with Aqp2. The upregulation of Aqp5 is coupled with reduced association of Dot1a and H3 dimethyl K79 with specific subregions in Aqp5 5′ flanking region in Dot1lAC vs. control mice. In vitro studies in IMCD3, MLE-15 and 293Tcells using multiple approaches including real-time RT-qPCR, luciferase reporter assay, cell surface biotinylation assay, colocalization, and co-immunoprecipitation uncovered that Dot1a represses Aqp5. Human AQP5 interacts with AQP2 and impairs its cell surface localization. The AQP5/AQP2 complex partially resides in the ER/Golgi. Consistently, AQP5 is expressed in none of 15 normal controls, but in all of 17 kidney biopsies from patients with diabetic nephropathy. In the patients with diabetic nephropathy, AQP5 colocalizes with AQP2 in the perinuclear region and AQP5 expression is associated with impaired cellular H3 dimethyl K79. Taken together, these data for the first time identify Aqp5 as a Dot1a potential transcriptional target, and an Aqp2 binding partner and regulator, and suggest that the upregulated Aqp5 may contribute to polyuria, possibly by impairing Aqp2 membrane localization, in Dot1lAC mice and in patients with diabetic nephropathy. PMID:23326416
Martin, Bronwen; Pearson, Michele; Brenneman, Randall; Golden, Erin; Keselman, Alex; Iyun, Titilola; Carlson, Olga D.; Egan, Josephine M.; Becker, Kevin G.; Wood, William; Prabhu, Vinayakumar; de Cabo, Rafael
2008-01-01
The level of dietary energy intake influences metabolism, reproductive function, the development of age-related diseases, and even cognitive behavior. Because males and females typically play different roles in the acquisition and allocation of energy resources, we reasoned that dietary energy intake might differentially affect the brains of males and females at the molecular level. To test this hypothesis, we performed a gene array analysis of the hippocampus in male and female rats that had been maintained for 6 months on either ad libitum (control), 20% caloric restriction (CR), 40% CR, intermittent fasting (IF) or high fat/high glucose (HFG) diets. These diets resulted in expected changes in body weight, and circulating levels of glucose, insulin and leptin. However, the CR diets significantly increased the size of the hippocampus of females, but not males. Multiple genes were regulated coherently in response to energy restriction diets in females, but not in males. Functional physiological pathway analyses showed that the 20% CR diet down-regulated genes involved in glycolysis and mitochondrial ATP production in males, whereas these metabolic pathways were up-regulated in females. The 40% CR diet up-regulated genes involved in glycolysis, protein deacetylation, PGC-1α and mTor pathways in both sexes. IF down-regulated many genes in males including those involved in protein degradation and apoptosis, but up-regulated many genes in females including those involved in cellular energy metabolism, cell cycle regulation and protein deacetylation. Genes involved in energy metabolism, oxidative stress responses and cell death were affected by the HFG diet in both males and females. The gender-specific molecular genetic responses of hippocampal cells to variations in dietary energy intake identified in this study may mediate differential behavioral responses of males and females to differences in energy availability. PMID:18545695
Khaidakov, Magomed; Mitra, Sona; Wang, Xianwei; Ding, Zufeng; Bora, Nalini; Lyzogubov, Valery; Romeo, Francesco; Schichman, Steven A.; Mehta, Jawahar L.
2012-01-01
Oxidized LDL (ox-LDL) is a key factor in atherogenesis. It is taken up by endothelial cells primarily by ox-LDL receptor-1 (LOX-1). To elucidate transcriptional responses, we performed microarray analysis on human coronary artery endothelial cells (HCAECs) exposed to small physiologic concentration of ox-LDL- 5 µg/ml for 2 and 12 hours. At 12 hours, cultures treated with ox-LDL exhibited broad shifts in transcriptional activity involving almost 1500 genes (>1.5 fold difference, p<0.05). Resulting transcriptome was enriched for genes associated with cell adhesion (p<0.002), angiogenesis (p<0.0002) and migration (p<0.006). Quantitative PCR analysis revealed that LOX-1 expression in HCAECs is at least an order of magnitude greater than the expression of other major ox-LDL specific receptors CD36 and MSR1. In keeping with the data on LOX-1 expression, pre-treatment of HCAECs with LOX-1 neutralizing antibody resulted in across-the-board inhibition of cellular response to ox-LDL. Ox-LDL upregulated a number of pro-angiogenic genes including multiple receptors, ligands and transcription factors and altered the expression of a number of genes implicated in both stimulation and inhibition of apoptosis. From a functional standpoint, physiologic concentrations of ox-LDL stimulated tube formation and inhibited susceptibility to apoptosis in HCAECs. In addition, ox-LDL exposure resulted in upregulation of miR-1974, miR-1978 and miR-21 accompanied with significant over-presentation of their target genes in the downregulated portion of ox-LDL transcriptome. Our observations indicate that ox-LDL at physiologic concentrations induces broad transcriptional responses which are mediated by LOX-1, and are, in part, shaped by ox-LDL-dependent miRNAs. We also suggest that angiogenic effects of ox-LDL are partially based on upregulation of several receptors that render cells hypersensitive to angiogenic stimuli. PMID:23115646
MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Min, E-mail: min_jin@zju.edu.cn; Wu, Yutao; Wang, Jing
Over the past years, MicroRNAs (miRNAs) act as a vital role in harmony with gene regulation and maintaining cellular homeostasis. It is well testified that miRNAshave been involved in numerous physiological and pathological processes, including embryogenesis, cell fate decision, and cellular differentiation. Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes, and it is tightly modulated by a series of transcription factors such as peroxisome proliferator-activated receptor γ (PPAR-γ) and sterol regulatory-element binding proteins 1 (SREBP1). However, the molecular mechanisms underlying the connection between miRNAs and adipogenesis-related transcription factors remain obscure. In this study,more » we unveiled that miR- 24 was remarkably upregulated during 3T3-L1 adipogenesis. Overexpression of miR-24 significantly promoted 3T3-L1 adipogenesis, as evidenced by its ability to increase the expression of PPAR-γ and SREBP1, lipid droplet formation and triglyceride (TG) accumulation. Furthermore, we found that neither ectopic expression of miR-24nor miR-24 inhibitor affect cell proliferation and cell cycle progression. Finally, we demonstrated that miR-24 plays the modulational role by directly repressing MAPK7, a key number in the MAPK signaling pathway. These data indicate that miR-24 is a novel positive regulator of adipocyte differentiation by targeting MAPK7, which provides new insights into the molecular mechanism of miRNA-mediated cellular differentiation. -- Highlights: •We firstly found miR-24 was upregulated in 3T3-L1 pre-adipocytes differentiation. •miR-24 promoted 3T3-L1 pre-adipocytes differentiation while silencing the expression of miR-24 had an opposite function. •miR-24 regulated 3T3-L1 differentiation by directly targeting MAPK7 signaling pathway. •miR-24did not affect 3T3-L1 pre-adipocytes cellular proliferation.« less
Saha, Rajib; Liu, Deng; Hoynes-O’Connor, Allison; Liberton, Michelle; Yu, Jingjie; Bhattacharyya-Pakrasi, Maitrayee; Balassy, Andrea; Zhang, Fuzhong; Maranas, Costas D.
2016-01-01
ABSTRACT Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. PMID:27143387
He, Baixiang; Bao, Gang; Guo, Shiwen; Xu, Gaofeng; Li, Qi; Wang, Ning
2012-03-15
Animal models of intracerebral hemorrhage were established by injection of autologous blood into the caudate nucleus in rats. Cell apoptosis was measured by flow cytometry and immunohistochemical staining of the p75 neurotrophin receptor. p75 neurotrophin receptor protein was detected by immunohistochemistry. p75 neurotrophin receptor mRNA was examined by quantitative real-time polymerase chain reactions. At 24 hours after modeling, cellular apoptosis occured around hematoma with upregulation of p75 neurotrophin receptor protein and mRNA was observed, which directly correlated to apoptosis. This observation indicated that p75 neurotrophin receptor upregulation was associated with cell apoptosis around hematomas after intracerebral hemorrhage.
USDA-ARS?s Scientific Manuscript database
The goal of the study and research was to coordinate regulation of transporters at both the plasma membrane and vacuole contribute to plant cell’s ability to adapt to a changing environment and play a key role in the maintenance of the chemiosmotic circuits required for cellular growth. In this stud...
USDA-ARS?s Scientific Manuscript database
The cellular prion protein (PrPC) is a highly conserved protein, which is anchored to the outer surface of the plasma membrane. Even though its physiological function has already been investigated in different cell or mouse models where PrPC expression is either up-regulated or depleted, its exact p...
Shafi, Ovais
2016-11-22
The AD etiology is yet not properly known. Interactions among environmental factors, multiple susceptibility genes and aging, contribute to AD. This study investigates the factors that play role in causing AD and how changes in cellular pathways contribute to AD. PUBMED database, MEDLINE database and Google Scholar were searched with no date restrictions for published articles involving cellular pathways with roles in cancers, cell survival, growth, proliferation, development, aging, and also contributing to Alzheimer's disease. This research explores inverse relationship between AD and cancer, also investigates other factors behind AD using several already published research literature to find the etiology of AD. Cancer and Alzheimer's disease have inverse relationship in many aspects such as P53, estrogen, neurotrophins and growth factors, growth and proliferation, cAMP, EGFR, Bcl-2, apoptosis pathways, IGF-1, HSV, TDP-43, APOE variants, notch signals and presenilins, NCAM, TNF alpha, PI3K/AKT/MTOR pathway, telomerase, ROS, ACE levels. AD occurs when brain neurons have weakened growth, cell survival responses, maintenance mechanisms, weakened anti-stress responses such as Vimentin, Carbonic anhydrases, HSPs, SAPK. In cancer, these responses are upregulated and maintained. Evolutionarily conserved responses and maintenance mechanisms such as FOXO are impaired in AD. Countermeasures or compensatory mechanisms by AD affected neurons such as Tau, Beta Amyloid, S100, are last attempts for survival which may be protective for certain time, or can speed up AD in Alzheimer's microenvironment via C-ABL activation, GSK3, neuro-inflammation. Alzheimer's disease and Cancer have inverse relationship; many factors that are upregulated in any cancer to sustain growth and survival are downregulated in Alzheimer's disease contributing to neuro-degeneration. When aged neurons or genetically susceptible neurons have weakened growth, cell survival and anti-stress responses, age related gene expression changes, altered regulation of cell death and maintenance mechanisms, they contribute to Alzheimer's disease. Countermeasures by AD neurons such as Beta Amyloid Plaques, NFTs, S100, are last attempts for survival and this provides neuroprotection for certain time and ultimately may become pathological and speed up AD. This study may contribute in developing new potential diagnostic tests, interventions and treatments.
Su, Hsin-Yuan; Waldron, Richard T.; Gong, Raymond; Ramanujan, V. Krishnan; Pandol, Stephen J.; Lugea, Aurelia
2016-01-01
Activated pancreatic stellate cells (PaSC) are key participants in the stroma of pancreatic cancer, secreting extracellular matrix proteins and inflammatory mediators. Tumors are poorly vascularized, creating metabolic stress conditions in cancer and stromal cells that necessitate adaptive homeostatic cellular programs. Activation of autophagy and the endoplasmic reticulum unfolded protein response (UPR) have been described in hepatic stellate cells, but the role of these processes in PaSC responses to metabolic stress is unknown. We reported that the PI3K/mTOR pathway, which AMPK can regulate through multiple inputs, modulates PaSC activation and fibrogenic potential. Here, using primary and immortalized mouse PaSC, we assess the relative contributions of AMPK/mTOR signaling, autophagy and the UPR to cell fate responses during metabolic stress induced by mitochondrial dysfunction. The mitochondrial uncoupler rottlerin at low doses (0.5–2.5 μM) was added to cells cultured in 10% FBS complete media. Mitochondria rapidly depolarized, followed by altered mitochondrial dynamics and decreased cellular ATP levels. This mitochondrial dysfunction elicited rapid, sustained AMPK activation, mTOR pathway inhibition, and blockade of autophagic flux. Rottlerin treatment also induced rapid, sustained PERK/CHOP UPR signaling. Subsequently, high doses (>5 μM) induced loss of cell viability and cell death. Interestingly, AMPK knock-down using siRNA did not prevent rottlerin-induced mTOR inhibition, autophagy, or CHOP upregulation, suggesting that AMPK is dispensable for these responses. Moreover, CHOP genetic deletion, but not AMPK knock-down, prevented rottlerin-induced apoptosis and supported cell survival, suggesting that UPR signaling is a major modulator of cell fate in PaSC during metabolic stress. Further, short-term rottlerin treatment reduced both PaSC fibrogenic potential and IL-6 mRNA expression. In contrast, expression levels of the angiogenic factors HGF and VEGFα were unaffected, and the immune modulator IL-4 was markedly upregulated. These data imply that metabolic stress-induced PaSC reprogramming differentially modulates neighboring cells in the tumor microenvironment. PMID:26849807
Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function.
Fleshner, M; Johnson, J D
2005-08-01
Exposure to acute physical and/or psychological stressors induces a cascade of physiological changes collectively termed the stress response. The stress response is demonstrable at the behavioural, neural, endocrine and cellular levels. Stimulation of the stress response functions to improve an organism's chance of survival during acute stressor challenge. The current review focuses on one ubiquitous cellular stress response, up-regulation of heat shock protein 72 (Hsp72). Although a great deal is known about the function of intra-cellular Hsp72 during exposure to acute stressors, little is understood about the potential function of endogenous extra-cellular Hsp72 (eHsp72). The current review will develop the hypothesis that eHsp72 release may be a previously unrecognized feature of the acute stress response and may function as an endogenous 'danger signal' for the immune system. Specifically, it is proposed that exposure to physical or psychological acute stressors stimulate the release of endogenous eHsp72 into the blood via an alpha1-adrenergic receptor-mediated mechanism and that elevated eHsp72 functions to facilitate innate immunity in the presence of bacterial challenge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang
2011-07-15
Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blotmore » and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.« less
Doi, Yuki; Shimizu, Motoyuki; Fujita, Tomoya; Nakamura, Akira; Takizawa, Noboru
2014-01-01
We identified the extremely nitrite-tolerant bacterium Achromobacter denitrificans YD35 that can grow in complex medium containing 100 mM nitrite (NO2−) under aerobic conditions. Nitrite induced global proteomic changes and upregulated tricarboxylate (TCA) cycle enzymes as well as antioxidant proteins in YD35. Transposon mutagenesis generated NO2−-hypersensitive mutants of YD35 that had mutations at genes for aconitate hydratase and α-ketoglutarate dehydrogenase in the TCA cycle and a pyruvate dehydrogenase (Pdh) E1 component, indicating the importance of TCA cycle metabolism to NO2− tolerance. A mutant in which the pdh gene cluster was disrupted (Δpdh mutant) could not grow in the presence of 100 mM NO2−. Nitrite decreased the cellular NADH/NAD+ ratio and the cellular ATP level. These defects were more severe in the Δpdh mutant, indicating that Pdh contributes to upregulating cellular NADH and ATP and NO2−-tolerant growth. Exogenous acetate, which generates acetyl coenzyme A and then is metabolized by the TCA cycle, compensated for these defects caused by disruption of the pdh gene cluster and those caused by NO2−. These findings demonstrate a link between NO2− tolerance and pyruvate/acetate metabolism through the TCA cycle. The TCA cycle mechanism in YD35 enhances NADH production, and we consider that this contributes to a novel NO2−-tolerating mechanism in this strain. PMID:24413603
Genomic responses in rat cerebral cortex after traumatic brain injury
von Gertten, Christina; Morales, Amilcar Flores; Holmin, Staffan; Mathiesen, Tiit; Nordqvist, Ann-Christin Sandberg
2005-01-01
Background Traumatic brain injury (TBI) initiates a complex sequence of destructive and neuroprotective cellular responses. The initial mechanical injury is followed by an extended time period of secondary brain damage. Due to the complicated pathological picture a better understanding of the molecular events occurring during this secondary phase of injury is needed. This study was aimed at analysing gene expression patterns following cerebral cortical contusion in rat using high throughput microarray technology with the goal of identifying genes involved in an early and in a more delayed phase of trauma, as genomic responses behind secondary mechanisms likely are time-dependent. Results Among the upregulated genes 1 day post injury, were transcription factors and genes involved in metabolism, e.g. STAT-3, C/EBP-δ and cytochrome p450. At 4 days post injury we observed increased gene expression of inflammatory factors, proteases and their inhibitors, like cathepsins, α-2-macroglobulin and C1q. Notably, genes with biological function clustered to immune response were significantly upregulated 4 days after injury, which was not found following 1 day. Osteopontin and one of its receptors, CD-44, were both upregulated showing a local mRNA- and immunoreactivity pattern in and around the injury site. Fewer genes had decreased expression both 1 and 4 days post injury and included genes implicated in transport, metabolism, signalling, and extra cellular matrix formation, e.g. vitronectin, neuroserpin and angiotensinogen. Conclusion The different patterns of gene expression, with little overlap in genes, 1 and 4 days post injury showed time dependence in genomic responses to trauma. An early induction of factors involved in transcription could lead to the later inflammatory response with strongly upregulated CD-44 and osteopontin expression. An increased knowledge of genes regulating the pathological mechanisms in trauma will help to find future treatment targets. Since trauma is a risk factor for development of neurodegenerative disease, this knowledge may also reduce late negative effects. PMID:16318630
Gene Expression Analysis in Human Breast Cancer Associated Blood Vessels
Jones, Dylan T.; Lechertier, Tanguy; Mitter, Richard; Herbert, John M. J.; Bicknell, Roy; Jones, J. Louise; Li, Ji-Liang; Buffa, Francesca; Harris, Adrian L.; Hodivala-Dilke, Kairbaan
2012-01-01
Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5–72 fold) in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC) of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of potentially novel anti-angiogenic targets that are likley to be, but not exclusivley, relevant to breast cancer. PMID:23056178
So, Keum-Young; Kim, Sang-Hun; Jung, Ki-Tae; Lee, Hyun-Young; Oh, Seon-Hee
2017-10-01
Antioxidant enzymes are related to oral diseases. We investigated the roles of heme oxygenase-1 (HO-1) and catalase in cadmium (Cd)-induced oxidative stress and the underlying molecular mechanism in oral cancer cells. Exposing YD8 cells to Cd reduced the expression levels of catalase and superoxide dismutase 1/2 and induced the expression of HO-1 as well as autophagy and apoptosis, which were reversed by N-acetyl-l-cysteine (NAC). Cd-exposed YD10B cells exhibited milder effects than YD8 cells, indicating that Cd sensitivity is associated with antioxidant enzymes and autophagy. Autophagy inhibition via pharmacologic and genetic modulations enhanced Cd-induced HO-1 expression, caspase-3 cleavage, and the production of reactive oxygen species (ROS). Ho-1 knockdown increased autophagy and apoptosis. Hemin treatment partially suppressed Cd-induced ROS production and apoptosis, but enhanced autophagy and CHOP expression, indicating that autophagy induction is associated with cellular stress. Catalase inhibition by pharmacological and genetic modulations increased Cd-induced ROS production, autophagy, and apoptosis, but suppressed HO-1, indicating that catalase is required for HO-1 induction. p38 inhibition upregulated Cd-induced phospho-JNK and catalase, but suppressed HO-1, autophagy, apoptosis. JNK suppression exhibited contrary results, enhancing the expression of phospho-p38. Co-suppression of p38 and JNK1 failed to upregulate catalase and procaspase-3, which were upregulated by JNK1 overexpression. Overall, the balance between the responses of p38 and JNK activation to Cd appears to have an important role in maintaining cellular homeostasis via the regulation of antioxidant enzymes and autophagy induction. In addition, the upregulation of catalase by JNK1 activation can play a critical role in cell protection against Cd-induced oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.
Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav
2012-07-01
Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25-30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10(-6) M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Lukiw, Walter J.; Pogue, Aileen I.
2007-01-01
Iron- and aluminum-sulfate together, at nanomolar concentrations, trigger the production of reactive oxygen species (ROS) in cultures of human brain cells. Previous studies have shown that following ROS induction, a family of pathogenic brain genes that promote inflammatory signalling, cellular apoptosis and brain cell death is significantly over-expressed. Notably, iron- and aluminum-sulfate induce genes in cultured human brain cells that exhibit expression patterns similar to those observed to be up-regulated in moderate- to late-stage Alzheimer's disease (AD). In this study we have extended our investigations to analyze the expression of micro RNA (miRNA) populations in iron- and aluminum-sulfate treated human neural cells in primary culture. The main finding was that these ROS-generating neurotoxic metal sulfates also up-regulate a specific set of miRNAs that includes miR-9, miR-125b and miR-128. Notably, these same miRNAs are up-regulated in AD brain. These findings further support the idea that iron- and aluminum-sulfates induce genotoxicity via a ROS-mediated up-regulation of specific regulatory elements and pathogenic genes that redirect brain cell fate towards progressive dysfunction and apoptotic cell death. PMID:17629564
Mann, Melanie C; Strobel, Sarah; Fleckenstein, Bernhard; Kress, Andrea K
2014-09-01
The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Tax and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation. Copyright © 2014 Elsevier Inc. All rights reserved.
Ying, Songmin; Christian, Jan G; Paschen, Stefan A; Häcker, Georg
2008-01-01
Infection with Chlamydia protects mammalian host cells against apoptosis. Hypotheses have been proposed to explain this molecularly, including the up-regulation of host anti-apoptotic proteins such as cellular Inhibitor of Apoptosis Protein (IAP) 2 and the Bcl-2 protein Mcl-1. To test for the importance of these proteins, we used mouse embryonic fibroblasts from gene-targeted mice that were deficient in cIAP1, cIAP2, cIAP1/cIAP2, XIAP, or Mcl-1. Infection with Chlamydia trachomatis protected all cells equally well against apoptosis, which was induced either with tumour necrosis factor/cycloheximide (IAP-knock-out cells) or staurosporine (Mcl-1-knock-out). Therefore, these cellular anti-apoptotic proteins are not essential for apoptosis-protection by C. trachomatis.
Molecular mechanisms of cellular transformation by HTLV-1 Tax.
Grassmann, Ralph; Aboud, Mordechai; Jeang, Kuan-Teh
2005-09-05
The HTLV Tax protein is crucial for viral replication and for initiating malignant transformation leading to the development of adult T-cell leukemia. Tax has been shown to be oncogenic, since it transforms and immortalizes rodent fibroblasts and human T-lymphocytes. Through CREB, NF-kappaB and SRF pathways Tax transactivates cellular promoters including those of cytokines (IL-13, IL-15), cytokine receptors (IL-2Ralpha) and costimulatory surface receptors (OX40/OX40L) leading to upregulated protein expression and activated signaling cascades (e.g. Jak/STAT, PI3Kinase, JNK). Tax also stimulates cell growth by direct binding to cyclin-dependent kinase holenzymes and/or inactivating tumor suppressors (e.g. p53, DLG). Moreover, Tax silences cellular checkpoints, which guard against DNA structural damage and chromosomal missegregation, thereby favoring the manifestation of a mutator phenotype in cells.
[Enhanced ε-poly-L-lysine production by improving cellular activity during fermentation].
Liu, Shengrong; Wu, Qingping; Zhang, Jumei; Yang, Xiaojuan; Cai, Shuzhen
2015-06-04
To assess the effect of cellular activity on ε-poly-1-lysine (ε-PL) biosynthesis and thereby to rationally improve the production, we studied the cellular activity, ε-PL formation and other parameters cross flask fermentation by Streptomyces ahygroscopicus. Laser scanning confocal microscopy and a colorimetric method were used to determine cellular activity using BacLight Live/Dead and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) as viable stains. To enhance the activity of the cells in the ε-PL production period, yeast extract was added. During ε-PL submerged fermentation in flasks, most cells were active in the growth period (0 - 16 h); cells had metabolic activity in the growth and earlier ε-PL production periods between 0 and 30 h fermentation. Almost no activity was detected after 48 h fermentation when no ε-PL was produced. The improved fermentation achieved 2. 24 g/L ε-PL from 1.04 g/L. Biosynthesis of ε-PL can be boosted by up-regulating cell activity in its production phase.
Li, Xiao; Guo, Jingting; Liang, Ning; Jiang, Xinwei; Song, Yuan; Ou, Shiyi; Hu, Yunfeng; Jiao, Rui; Bai, Weibin
2018-01-01
Gingerols, the pungent ingredients in ginger, are reported to possess a cholesterol-lowering activity. However, the underlying mechanism remains unclear. The present study was to investigate how 6-gingerol (6-GN), the most abundant gingerol in fresh ginger, regulates hepatic cholesterol metabolism. HepG2 cells were incubated with various concentrations of 6-GN ranging from 50 to 200 μM for 24 h. Results showed that both cellular total cholesterol and free cholesterol decreased in a dose-dependent manner. Besides, 6-GN ranging from 100 to 200 μM increased the LDLR protein and uptake of fluorescent-labeled LDL. Moreover, the mRNA and protein expressions of cholesterol metabolism-related genes were also examined. It was found that 6-GN regulated cholesterol metabolism via up-regulation of LDLR through activation of SREBP2 as well as up-regulation of cholesterol efflux-related genes LXRα and ABCA1.
Tracking hippo in the cancer jungle.
Suh, Jung H; Saba, Julie D
2014-07-17
Signaling through the Hippo pathway controls major aspects of cell growth and proliferation. Focusing on the metabolic consequences of Hippo signaling, Mulvihill and colleagues in this issue of Chemistry & Biology employ a large scale, integrative approach and uncover downstream reorganization of cellular metabolism when the effector TAZ is upregulated, identifying new connections to lipid metabolism. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Melanie C., E-mail: melanie.mann@viro.med.uni-erlangen.de; Strobel, Sarah, E-mail: sarah.strobel@viro.med.uni-erlangen.de; Fleckenstein, Bernhard, E-mail: bernhard.fleckenstein@viro.med.uni-erlangen.de
The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Taxmore » and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation. - Highlights: • ELL2, a transcription elongation factor, is upregulated in HTLV-1-positive T-cells. • Tax transactivates the ELL2 promoter. • Tax and ELL2 synergistically activate the HTLV-1 promoter. • Tax and ELL2 interact in vivo.« less
Koutsogiannouli, Evangelia A.; Hader, Christiane; Pinkerneil, Maria; Hoffmann, Michèle J.; Schulz, Wolfgang A.
2017-01-01
Disturbances in histone acetyltransferases (HATs) are common in cancers. In urothelial carcinoma (UC), p300 and CBP are often mutated, whereas the GNAT family HATs GCN5 and PCAF (General Control Nonderepressible 5, p300/CBP-Associated Factor) are often upregulated. Here, we explored the effects of specific siRNA-mediated knockdown of GCN5, PCAF or both in four UC cell lines (UCCs). Expression of various HATs and marker proteins was measured by qRT-PCR and western blot. Cellular effects of knockdowns were analyzed by flow cytometry and ATP-, caspase-, and colony forming-assays. GCN5 was regularly upregulated in UCCs, whereas PCAF was variable. Knockdown of GCN5 or both GNATs, but not of PCAF alone, diminished viability and inhibited clonogenic growth in 2/4 UCCs, inducing cell cycle changes and caspase-3/7 activity. PCAF knockdown elicited GCN5 mRNA upregulation. Double knockdown increased c-MYC and MDM2 (Mouse Double Minute 2) in most cell lines. In conclusion, GCN5 upregulation is especially common in UCCs. GCN5 knockdown impeded growth of specific UCCs, whereas PCAF knockdown elicited minor effects. The limited sensitivity towards GNAT knockdown and its variation between the cell lines might be due to compensatory effects including HAT, c-MYC and MDM2 upregulation. Our results predict that developing drugs targeting individual HATs for UC treatment may be challenging. PMID:28678170
Selim, Erin; Frkanec, Julie T; Cunard, Robyn
2007-02-01
Fibrates, which function by binding and activating peroxisome proliferator-activated receptor alpha (PPARalpha), have been used successfully to treat hyperlipidemia and atherosclerosis. Increasing evidence suggests that in addition to their lipid lowering activities these medications also function as immunosuppressive agents. Tribbles is a Drosophila protein that slows cell cycle progression, and its mammalian homolog, TRB3 interferes with insulin-induced activation of AKT. In these studies we demonstrate that fibrates upregulate TRB3 expression in mitogen-activated lymphocytes. Interestingly, in lymphocytes fibrates augment TRB3 expression in both PPARalpha wildtype and knockout mice, suggesting that upregulation of this protein occurs in a PPARalpha-independent manner. Fibrates activate a proximal TRB3 promoter construct and mutation or partial deletion of a potential PPAR response element does not alter the ability of fibrates to drive TRB3 expression. Subsequent studies reveal that fibrates upregulate C/EBPbeta and CHOP in lymphocytes and mutation of potential C/EBPbeta and CHOP consensus sequences abrogates the ability of fibrates to upregulate TRB3 promoter activity. Accordingly, fibrates enhance the recruitment of C/EBPbeta and CHOP to the proximal TRB3 promoter. Finally, TRB3 expression in lymphocytes induces G2 cell cycle delay and cellular depletion. These studies outline a novel PPARalpha-independent mechanism of action of fibrates and document for the first time the expression of TRB3 in activated lymphocytes.
Restoring Effects of Natural Anti-Oxidant Quercetin on Cellular Senescent Human Dermal Fibroblasts.
Sohn, Eun-Ju; Kim, Jung Min; Kang, Se-Hui; Kwon, Joseph; An, Hyun Joo; Sung, Jung-Suk; Cho, Kyung A; Jang, Ik-Soon; Choi, Jong-Soon
2018-05-08
The oxidative damage initiated by reactive oxygen species (ROS) is a major contributor to the functional decline and disability that characterizes aging. The anti-oxidant flavonoid, quercetin, is a plant polyphenol that may be beneficial for retarding the aging process. We examined the restoring properties of quercetin on human dermal fibroblasts (HDFs). Quercetin directly reduced either intracellular or extracellular ROS levels in aged HDFs. To find the aging-related target genes by quercetin, microarray analysis was performed and two up-regulated genes LPL and KCNE2 were identified. Silencing LPL increased the expression levels of senescence proteins such as p16 INK4A and p53 and silencing KCNE2 reversed gene expressions of EGR1 and p-ERK in quercetin-treated aged HDFs. Silencing of LPL and KCNE2 decreased the expression levels of antioxidant enzymes such as superoxide dismutase and catalase. Also, the mitochondrial dysfunction in aged HDFs was ameliorated by quercetin treatment. Taken together, these results suggest that quercetin has restoring effect on the cellular senescence by down-regulation of senescence activities and up-regulation of the gene expressions of anti-oxidant enzymes in aged HDFs.
Dorval, Véronique; Smith, Pascal Y; Delay, Charlotte; Calvo, Ezequiel; Planel, Emmanuel; Zommer, Nadège; Buée, Luc; Hébert, Sébastien S
2012-01-01
The small non-protein-coding microRNAs (miRNAs) have emerged as critical regulators of neuronal differentiation, identity and survival. To date, however, little is known about the genes and molecular networks regulated by neuronal miRNAs in vivo, particularly in the adult mammalian brain. We analyzed whole genome microarrays from mice lacking Dicer, the enzyme responsible for miRNA production, specifically in postnatal forebrain neurons. A total of 755 mRNA transcripts were significantly (P<0.05, FDR<0.25) misregulated in the conditional Dicer knockout mice. Ten genes, including Tnrc6c, Dnmt3a, and Limk1, were validated by real time quantitative RT-PCR. Upregulated transcripts were enriched in nonneuronal genes, which is consistent with previous studies in vitro. Microarray data mining showed that upregulated genes were enriched in biological processes related to gene expression regulation, while downregulated genes were associated with neuronal functions. Molecular pathways associated with neurological disorders, cellular organization and cellular maintenance were altered in the Dicer mutant mice. Numerous miRNA target sites were enriched in the 3'untranslated region (3'UTR) of upregulated genes, the most significant corresponding to the miR-124 seed sequence. Interestingly, our results suggest that, in addition to miR-124, a large fraction of the neuronal miRNome participates, by order of abundance, in coordinated gene expression regulation and neuronal maintenance. Taken together, these results provide new clues into the role of specific miRNA pathways in the regulation of brain identity and maintenance in adult mice.
Regulation of mitochondrial biogenesis and its intersection with inflammatory responses.
Cherry, Anne D; Piantadosi, Claude A
2015-04-20
Mitochondria play a vital role in cellular homeostasis and are susceptible to damage from inflammatory mediators released by the host defense. Cellular recovery depends, in part, on mitochondrial quality control programs, including mitochondrial biogenesis. Early-phase inflammatory mediator proteins interact with PRRs to activate NF-κB-, MAPK-, and PKB/Akt-dependent pathways, resulting in increased expression or activity of coactivators and transcription factors (e.g., PGC-1α, NRF-1, NRF-2, and Nfe2l2) that regulate mitochondrial biogenesis. Inflammatory upregulation of NOS2-induced NO causes mitochondrial dysfunction, but NO is also a signaling molecule upregulating mitochondrial biogenesis via PGC-1α, participating in Nfe2l2-mediated antioxidant gene expression and modulating inflammation. NO and reactive oxygen species generated by the host inflammatory response induce the redox-sensitive HO-1/CO system, causing simultaneous induction of mitochondrial biogenesis and antioxidant gene expression. Recent evidence suggests that mitochondrial biogenesis and mitophagy are coupled through redox pathways; for instance, parkin, which regulates mitophagy in chronic inflammation, may also modulate mitochondrial biogenesis and is upregulated through NF-κB. Further research on parkin in acute inflammation is ongoing. This highlights certain common features of the host response to acute and chronic inflammation, but caution is warranted in extrapolating findings across inflammatory conditions. Inflammatory mitochondrial dysfunction and oxidative stress initiate further inflammatory responses through DAMP/PRR interactions and by inflammasome activation, stimulating mitophagy. A deeper understanding of mitochondrial quality control programs' impact on intracellular inflammatory signaling will improve our approach to the restoration of mitochondrial homeostasis in the resolution of acute inflammation.
Cellular localization of the Ca2+ binding TCH3 protein of Arabidopsis
NASA Technical Reports Server (NTRS)
Antosiewicz, D. M.; Polisensky, D. H.; Braam, J.
1995-01-01
TCH3 is an Arabidopsis touch (TCH) gene isolated as a result of its strong and rapid upregulation in response to mechanical stimuli, such as touch and wind. TCH3 encodes an unusual calcium ion-binding protein that is closely related to calmodulin but has the potential to bind six calcium ions. Here it is shown that TCH3 shows a restricted pattern of accumulation during Arabidopsis vegetative development. These data provide insight into the endogenous signals that may regulate TCH3 expression and the sites of TCH3 action. TCH3 is abundant in the shoot apical meristem, vascular tissue, the root columella and pericycle cells that give rise to lateral roots. In addition, TCH3 accumulation in cells of developing shoots and roots closely correlates with the process of cellular expansion. Following wind stimulation, TCH3 becomes more abundant in specific regions including the branchpoints of leaf primordia and stipules, pith parenchyma, and the vascular tissue. The consequences of TCH3 upregulation by wind are therefore spatially restricted and TCH3 may function at these sites to modify cell or tissue characteristics following mechanical stimulation. Because TCH3 accumulates specifically in cells and tissues that are thought to be under the influence of auxin, auxin levels may regulate TCH3 expression during development. TCH3 is upregulated in response to low levels of exogenous indole-3-acetic acid (IAA), but not by inactive auxin-related compounds. These results suggest that TCH3 protein may play roles in mediating physiological responses to auxin and mechanical environmental stimuli.
Lefeuvre, Anabelle; Contamin, Hugues; Decelle, Thierry; Fournier, Christophe; Lang, Jean; Deubel, Vincent; Marianneau, Philippe
2006-05-01
Yellow fever (YF) virus is currently found in tropical Africa and South America, and is responsible for a febrile to severe illness characterized by organ failure and shock. The attenuated YF 17D strain, used in YF vaccine, was derived from the wild-type strain Asibi. Although studies have been done on genetic markers of YF virulence, differentiation of the two strains in terms of host-cell interaction during infection remains elusive. As YF wild-type strains are hepatotropic, we chose a hepatic cell line (HepG2) to study YF virus-host cell interaction. HepG2 cells rapidly produced high titres of infectious viral particles for 17D and Asibi YF strains. However, HepG2 cells were more susceptible to the attenuated 17D virus infection, and only this virus strain induced early apoptosis in these cells. Molecular markers specific for the 17D virus were identified by microarray analysis and confirmed by quantitative RT-PCR analysis. As early as 1h postinfection, three genes, (IEX-1, IRF-1, DEC-1) all implicated in apoptosis pathways, were upregulated. Later in infection (48 h) two other genes (HSP70-1A and 1B), expressed in cases of cellular stress, were highly upregulated in 17D-infected HepG2 cells. The early specific upregulation of these cellular genes in HepG2 cells may be considered markers of the 17D virus. This study on the YF attenuated strain gives a new approach to the analysis of the factors involved in virus attenuation.
Wang, Jing; Tergel, Tergel; Chen, Jianhua; Yang, Ju; Kang, Yan; Qi, Zhi
2015-02-01
Ecological evidence indicates a worldwide trend of dramatically decreased soil Ca(2+) levels caused by increased acid deposition and massive timber harvesting. Little is known about the genetic and cellular mechanism of plants' responses to Ca(2+) depletion. In this study, transcriptional profiling analysis helped identify multiple extracellular Ca(2+) ([Ca(2+) ]ext ) depletion-responsive genes in Arabidopsis thaliana L., many of which are involved in response to other environmental stresses. Interestingly, a group of genes encoding putative cytosolic Ca(2+) ([Ca(2+) ]cyt ) sensors were significantly upregulated, implying that [Ca(2+) ]cyt has a role in sensing [Ca(2+) ]ext depletion. Consistent with this observation, [Ca(2+) ]ext depletion stimulated a transient rise in [Ca(2+) ]cyt that was negatively influenced by [K(+) ]ext , suggesting the involvement of a membrane potential-sensitive component. The [Ca(2+) ]cyt response to [Ca(2+) ]ext depletion was significantly desensitized after the initial treatment, which is typical of a receptor-mediated signaling event. The response was insensitive to an animal Ca(2+) sensor antagonist, but was suppressed by neomycin, an inhibitor of phospholipase C. Gd(3+) , an inhibitor of Ca(2+) channels, suppressed the [Ca(2+) ]ext -triggered rise in [Ca(2+) ]cyt and downstream changes in gene expression. Taken together, this study demonstrates that [Ca(2+) ]cyt plays an important role in the putative receptor-mediated cellular and transcriptional response to [Ca(2+) ]ext depletion of plant cells. © 2014 Institute of Botany, Chinese Academy of Sciences.
Zhang, Bo; Chu, Wei; Wei, Peng; Liu, Ying; Wei, Taotao
2015-12-01
Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol. Copyright © 2015 Elsevier Inc. All rights reserved.
Griffiths, Mark R; Gasque, Philippe; Neal, James W
2009-03-01
Central nervous system (CNS) tissues contain cells (i.e. glia and neurons) that have innate immune functions. These cells express a range of receptors that are capable of detecting and clearing apoptotic cells and regulating inflammatory responses. Phagocytosis of apoptotic cells is a nonphlogistic (i.e. noninflammatory) process that provides immune regulation through anti-inflammatory cytokines andregulatory T cells. Neurons and glia express cellular death signals, including CD95Fas/CD95L, FasL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor receptor 1 (TNFR), through which they can trigger apoptosis in T cells and other infiltrating cells. Microglia, astrocytes, ependymal cells, and neurons express defense collagens and scavenger and phagocytic receptors that recognize apoptotic cells displaying apoptotic cell-associated molecular patterns, which serve as markers of "altered self." Glia also express pentraxins and complement proteins (C1q, C3b, and iC3b) that opsonize apoptotic cells, making them targets for the phagocytic receptors CR3 and CR4. Immunoregulatory molecules such as the complement regulator CD46 are lost from apoptotic cells and stimulate phagocytosis, whereas the expression of CD47 and CD200 is upregulated during apoptosis; this inhibits proinflammatory microglial cytokine expression, thereby reducing the severity of inflammation. This review outlines the cellular pathways used for the detection and phagocytosis of apoptotic cells in vitro and in experimental models of CNS inflammation.
Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashuba, Elena; Yurchenko, Mariya; Szirak, Krisztina
Epstein-Barr virus (EBV) transforms resting human B cells into immortalized immunoblasts. EBV-encoded nuclear antigens EBNA-5 (also called EBNA-LP) is one of the earliest viral proteins expressed in freshly infected B cells. We have recently shown that EBNA-5 binds p14ARF, a nucleolar protein that regulates the p53 pathway. Here, we report the identification of another protein with partially nucleolar localization, the v-fos transformation effector Fte-1 (Fte-1/S3a), as an EBNA-5 binding partner. In transfected cells, Fte-1/S3a and EBNA-5 proteins showed high levels of colocalization in extranucleolar inclusions. Fte-1/S3a has multiple biological functions. It enhances v-fos-mediated cellular transformation and is part of themore » small ribosomal subunit. It also interacts with the transcriptional factor CHOP and apoptosis regulator poly(ADP-ribose) polymerase (PARP). Fte-1/S3a is regularly expressed at high levels in both tumors and cancer cell lines. Its high expression favors the maintenance of malignant phenotype and undifferentiated state, whereas its down-regulation is associated with cellular differentiation and growth arrest. Here, we show that EBV-induced B cell transformation leads to the up-regulation of Fte-1/S3a. We suggest that EBNA-5 through binding may influence the growth promoting, differentiation inhibiting, or apoptosis regulating functions of Fte-1/S3a.« less
MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways.
Hu, Zhaoyong; Klein, Janet D; Mitch, William E; Zhang, Liping; Martinez, Ivan; Wang, Xiaonan H
2014-03-01
The mechanisms underlying the development of aging-induced muscle atrophy are unclear. By microRNA array and individual qPCR analyses, we found significant up-regulation of miR-29 in muscles of aged rodents vs. results in young. With aging, p85α, IGF-1 and B-myb muscle levels were lower while the expression of certain cell arrest proteins (p53, p16 and pRB) increased. When miR-29 was expressed in muscle progenitor cells (MPC), their proliferation was impaired while SA-βgal expression increased signifying the development of senescence. Impaired MPC proliferation resulted from interactions between miR-29 and the 3'-UTR of p85a, IGF-1 and B-myb, suppressing the translation of these mediators of myoblast proliferation. In vivo, electroporation of miR-29 into muscles of young mice suppressed the proliferation and increased levels of cellular arrest proteins, recapitulating aging-induced responses in muscle. A potential stimulus of miR-29 expression is Wnt-3a since we found that exogenous Wnt-3a stimulated miR-29 expression 2.7-fold in primary cultures of MPCs. Thus, aging-induced muscle senescence results from activation of miR-29 by Wnt-3a leading to suppressed expression of several signaling proteins (p85α, IGF-1 and B-myb) that act coordinately to impair the proliferation of MPCs contributing to muscle atrophy. The increase in miR-29 provides a potential mechanism for aging-induced sarcopenia.
Grebić, D; Jakovac, H; Mrakovcić-Sutić, I; Tomac, J; Bulog, A; Micović, V; Radosević-Stasić, B
2007-06-01
Environmental airborne pollution has been repeatedly shown to affect multiple aspects of brain and cardiopulmonary function, leading to cognitive and behavioral changes and to the pronounced inflammatory response in the respiratory airways. Since in the cellular defense system the important role might have stress proteins-metallothionein (MT)-I and MT-II, which are involved in sequestration and dispersal of metal ions, regulation of the biosynthesis and activities of zinc-dependent transcription factors, as well as in cellular protection from reactive oxygen species, genotoxicity and apoptosis, in this study we investigated their expression in the brain, lungs and kidney, following intermittent exposure of mice to gasoline vapor. Control groups consisted of intact mice and of those closed in the metabolic chamber and ventilated with fresh air. The data obtained by immunohistochemistry showed that gasoline inhalation markedly upregulated the MTs expression in tissues which were directly or indirectly exposed to toxic components, significantly increasing the number of MT I+II positive cells in CNS (the entorhinal cortex, ependymal cells, astroglial cells in subventricular zone and inside the brain parenchyma, subgranular and CA1-CA3 zone of the dentate gyrus in hippocampus and macrophages-like cells in perivascular spaces), in the lungs (pneumocytes type I and type II) and in the kidneys (parietal wall of Bowman capsule, proximal and distal tubules). The data point to the protective and growth-regulatory effects of MT I + II on places of injuries, induced by inhalation of gasoline vapor.
miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.
Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang
2017-02-01
Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.
Dong, Yin-Feng; Guo, Ruo-Bing; Ji, Juan; Cao, Lu-Lu; Zhang, Ling; Chen, Zheng-Zhen; Huang, Ji-Ye; Wu, Jin; Lu, Jun; Sun, Xiu-Lan
2018-03-13
Fingolimod (FTY720) is used as an immunosuppressant for multiple sclerosis. Numerous studies indicated its neuroprotective effects in stroke. However, the mechanism remains to be elucidated. This study was intended to investigate the mechanisms of phosphorylated FTY720 (pFTY720), which was the principle active molecule in regulating astrocyte-mediated inflammatory responses induced by oxygen-glucose deprivation (OGD). Results demonstrated that pFTY720 could protect astrocytes against OGD-induced injury and inflammatory responses. It significantly decreased pro-inflammatory cytokines, including high mobility group box 1 (HMGB1) and tumour necrosis factor-α (TNF-α). Further, studies displayed that pFTY720 could prevent up-regulation of Toll-like receptor 2 (TLR2), phosphorylation of phosphoinositide 3-kinase (PI3K) and nuclear translocation of nuclear factor kappa B (NFκB) p65 subunit caused by OGD. Sphingosine-1-phosphate receptor 3 (S1PR3) knockdown could reverse the above change. Moreover, administration of TLR2/4 blocker abolished the protective effects of pFTY720. Taken together, this study reveals that pFTY720 depends on S1PR3 to protect astrocytes against OGD-induced neuroinflammation, due to inhibiting TLR2/4-PI3K-NFκB signalling pathway. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Transcriptional profile of Paracoccidioides spp. in response to itraconazole
2014-01-01
Background Itraconazole is currently used to treat paracoccidioidomycosis. The mechanism of action of azoles has been elucidated in some fungi, although little is known regarding its mechanism of action in Paracoccidioides spp. The present work focused on identification of regulated transcripts using representational difference analysis of Paracoccidioides spp. yeast cells treated with itraconazole for 1 and 2 h. Results Paracoccidioides Pb01 genes up-regulated by itraconazole included genes involved in cellular transport, metabolism/energy, transcription, cell rescue, defense and virulence. ERG11, ERG6, ERG3, ERG5 and ERG25 were up-regulated at multiple time points. In vivo infection experiments in mice corroborated the in vitro results. Ergosterol levels and distribution were evaluated in Paracoccidioides Pb18 yeast cells, and the results demonstrate that both factors were changed in the fungus treated with itraconazole. Conclusion To our knowledge, this is the first transcriptional analysis of Paracoccidioides spp. exposed to a triazole drug. Here acetyl seems to be intensively produced from different metabolic pathways to produce ergosterol by the action of ergosterol synthesis related enzymes, which were also affected in other fungi. Among the genes affected, we identified genes in common with other fungi, as well as genes unique to Paracoccidioides Pb01. Those genes could be considered target to new drugs. Voltage-gated Ca2+ alpha subunit (CAV), Tetracycline resistance protein (TETA) and Hemolisyn-iii channel protein (HLYiii) were found only here and a probably involvement with resistence to itraconazole could be investigated in the future. However our findings do not permit inference to current clinical practice. PMID:24690401
PTK7 is a novel oncogenic target for esophageal squamous cell carcinoma.
Liu, Kang; Song, Guiqin; Zhang, Xuqian; Li, Qiujiang; Zhao, Yunxia; Zhou, Yuchuan; Xiong, Rong; Hu, Xin; Tang, Zhirong; Feng, Gang
2017-05-25
Overexpression of PTK7 has been found in multiple cancers and has been proposed to serve as a prognostic marker for intrahepatic cholangiocarcinoma. Its role in esophageal cancer, however, remains to be clarified. We hypothesize that PTK7 positively regulates tumorigenesis of esophageal cancer. We examined PTK7 expression pattern in human esophageal squamous carcinoma by Oncomine expression analysis and by immunohistochemistry (IHC) staining. We knocked down PTK7 in two esophageal squamous cell carcinoma cell lines, TE-5, and TE-9, by siRNA, and evaluated cell proliferation, apoptosis, and migration ofPTK7-defective cells. Expressions of major apoptotic regulators and effectors were also determined by quantitative real-time PCR in PTK7-defective cells. We further overexpressed PTK7 in the cell to evaluate its effects on cell proliferation, apoptosis, and migration. Both Oncomine expression and IHC analyses showed that PTK7 is overexpressed in clinical esophageal squamous cell carcinoma tumors. PTK7 siRNA suppressed cell growth and promoted apoptosis of TE-5 and TE-9. PTK7-defective cells further displayed reduced cellular migration that was concomitant with upregulation of E-cadherin. Conversely, overexpression of PTK7 promotes cell proliferation and invasion, while apoptosis of the PTK7-overexpressing cells is repressed. Notably, major apoptotic regulators, such as p53 and caspases, are significantly upregulated in siPTK7 cells. PTK7 plays an oncogenic role in tumorigenesis and metastasis of esophageal squamous carcinoma. PTK7 achieves its oncogenic function in esophageal squamous cell carcinoma partially through the negative regulation of apoptosis.
Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia.
Song, Wei; Su, Haixiang; Song, Sisi; Paudel, Hemant K; Schipper, Hyman M
2006-03-01
Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions. Copyright 2005 Wiley-Liss, Inc.
Analysis of the ERK1,2 transcriptome in mammary epithelial cells
Grill, Constance; Gheyas, Ferdous; Dayananth, Priya; Jin, Weihong; Ding, Wei; Qiu, Ping; Wang, Luquan; Doll, Ronald J.; English, Jessie M.
2004-01-01
MAPK (mitogen-activated protein kinase) pathways constitute major regulators of cellular transcriptional programmes. We analysed the ERK1,2 (extracellular-signal-regulated kinase 1,2) transcriptome in a non-transformed MEC (mammary epithelial cell) line, MCF-12A, utilizing rAd MEK1EE, a recombinant adenovirus encoding constitutively active MEK1 (MAPK/ERK kinase 1). rAd MEK1EE infection induced morphological changes and DNA synthesis which were inhibited by the MEK1,2 inhibitor PD184352. Hierarchical clustering of data derived from seven time points over 24 h identified 430 and 305 co-ordinately up-regulated and down-regulated genes respectively. c-Myc binding sites were identified in the promoters of most of these up-regulated genes. A total of 46 candidate effectors of the Raf/MEK/ERK1,2 pathway in MECs were identified by comparing our dataset with previously reported Raf-1-regulated genes. These analyses led to the identification of a suite of growth factors co-ordinately induced by MEK1EE, including multiple ErbB ligands, vascular endothelial growth factor and PHRP (parathyroid hormone-related protein). PHRP is the primary mediator of humoral hypercalcaemia of malignancy, and has been implicated in metastasis to bone. We demonstrate that PHRP is secreted by MEK1EE-expressing cells. This secretion is inhibited by PD184352, but not by ErbB inhibitors. Our results suggest that, in addition to anti-proliferative properties, MEK1,2 inhibitors may be anti-angiogenic and possess therapeutic utility in the treatment of PHRP-positive tumours. PMID:15109307
Gene expression profile of endoscopically active and inactive ulcerative colitis: preliminary data.
Ţieranu, Cristian George; Dobre, Maria; Mănuc, Teodora Ecaterina; Milanesi, Elena; Pleşea, Iancu Emil; Popa, Caterina; Mănuc, Mircea; Ţieranu, Ioana; Preda, Carmen Monica; Diculescu, Mihai Mircea; Ionescu, Elena Mirela; Becheanu, Gabriel
2017-01-01
Multiple cytokines and chemokines related to immune response, apoptosis and inflammation have been identified as molecules implicated in ulcerative colitis (UC) pathogenesis. The aim of this study was to identify the differences at gene expression level of a panel of candidate genes in mucosa from patients with active UC (UCA), patients in remission (UCR), and normal controls. Eleven individuals were enrolled in the study: eight UC patients (four with active lesions, four with mucosal healing) and three controls without inflammatory bowel disease (IBD) seen on endoscopy. All the individuals underwent mucosal biopsy during colonoscopy. Gene expression profile was evaluated by polymerase chain reaction (PCR) array, investigating 84 genes implicated in apoptosis, inflammation, immune response, cellular adhesion, tissue remodeling and mucous secretion. Seventeen and three genes out of 84 were found significantly differentially expressed in UCA and UCR compared to controls, respectively. In particular, REG1A and CHI3L1 genes reported an up-regulation in UCA with a fold difference above 200. In UCR patients, the levels of CASP1, LYZ and ISG15 were different compared to controls. However, since a significant up-regulation of both CASP1 and LYZ was observed also in the UCA group, only ISG15 levels remained associated to the remission state. ISG15, that plays a key role in the innate immune response, seemed to be specifically associated to the UC remission state. These preliminary data represent a starting point for defining the gene profile of UC in different stages in Romanian population. Identification of genes implicated in UC pathogenesis could be useful to select new therapeutic targets.
Holler, Christopher J; Taylor, Georgia; McEachin, Zachary T; Deng, Qiudong; Watkins, William J; Hudson, Kathryn; Easley, Charles A; Hu, William T; Hales, Chadwick M; Rossoll, Wilfried; Bassell, Gary J; Kukar, Thomas
2016-06-24
Progranulin (PGRN) is a secreted growth factor important for neuronal survival and may do so, in part, by regulating lysosome homeostasis. Mutations in the PGRN gene (GRN) are a common cause of frontotemporal lobar degeneration (FTLD) and lead to disease through PGRN haploinsufficiency. Additionally, complete loss of PGRN in humans leads to neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Importantly, Grn-/- mouse models recapitulate pathogenic lysosomal features of NCL. Further, GRN variants that decrease PGRN expression increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Together these findings demonstrate that insufficient PGRN predisposes neurons to degeneration. Therefore, compounds that increase PGRN levels are potential therapeutics for multiple neurodegenerative diseases. Here, we performed a cell-based screen of a library of known autophagy-lysosome modulators and identified multiple novel activators of a human GRN promoter reporter including several common mTOR inhibitors and an mTOR-independent activator of autophagy, trehalose. Secondary cellular screens identified trehalose, a natural disaccharide, as the most promising lead compound because it increased endogenous PGRN in all cell lines tested and has multiple reported neuroprotective properties. Trehalose dose-dependently increased GRN mRNA as well as intracellular and secreted PGRN in both mouse and human cell lines and this effect was independent of the transcription factor EB (TFEB). Moreover, trehalose rescued PGRN deficiency in human fibroblasts and neurons derived from induced pluripotent stem cells (iPSCs) generated from GRN mutation carriers. Finally, oral administration of trehalose to Grn haploinsufficient mice significantly increased PGRN expression in the brain. This work reports several novel autophagy-lysosome modulators that enhance PGRN expression and identifies trehalose as a promising therapeutic for raising PGRN levels to treat multiple neurodegenerative diseases.
Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hag Dong; Jang, Chang-Young; Choe, Jeong Min
2012-06-01
Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that canmore » reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.« less
Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong
2017-03-01
The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch-like ECH-associated protein 1 overexpression reversed nuclear factor-E2-related factor 2 up-regulation and abolished the neuroprotection induced by sevoflurane preconditioning. Kelch-like ECH-associated protein 1 small interfering RNA administration improved nuclear factor-E2-related factor 2 expression and the outcome of mice subjected to ischemia/reperfusion injury. Kelch-like ECH-associated protein 1 down-regulation-dependent nuclear factor-E2-related factor 2 activation underlies the ability of sevoflurane preconditioning to activate the endogenous antioxidant response, which elicits its neuroprotection.
Transcriptomic Analysis of Grapevine (cv. Summer Black) Leaf, Using the Illumina Platform
Pervaiz, Tariq; Haifeng, Jia; Salman Haider, Muhammad; Cheng, Zhang; Cui, Mengjie; Wang, Mengqi; Cui, Liwen; Wang, Xicheng; Fang, Jinggui
2016-01-01
Proceeding to illumina sequencing, determining RNA integrity numbers for poly RNA were separated from each of the four developmental stages of cv. Summer Black leaves by using Illumina HiSeq™ 2000. The sums of 272,941,656 reads were generated from vitis vinifera leaf at four different developmental stages, with more than 27 billion nucleotides of the sequence data. At each growth stage, RNA samples were indexed through unique nucleic acid identifiers and sequenced. KEGG annotation results depicted that the highest number of transcripts in 2,963 (2Avs4A) followed by 1Avs4A (2,920), and 3Avs4A (2,294) out of 15,614 (71%) transcripts were recorded. In comparison, a total of 1,532 transcripts were annotated in GOs, including Cellular component, with the highest number in “Cell part” 251 out of 353 transcripts (71.1%), followed by intracellular organelle 163 out of 353 transcripts (46.2%), while in molecular function and metabolic process 375 out of 525 (71.4%) transcripts, multicellular organism process 40 out of 525 (7.6%) transcripts in biological process were most common in 1Avs2A. While in case of 1Avs3A, cell part 476 out of 662 transcripts (71.9%), and membrane-bounded organelle 263 out of 662 transcripts (39.7%) were recorded in Cellular component. In the grapevine transcriptome, during the initial stages of leaf development 1Avs2A showed single transcript was down-regulated and none of them were up-regulated. While in comparison of 1A to 3A showed one up-regulated (photosystem II reaction center protein C) and one down regulated (conserved gene of unknown function) transcripts, during the hormone regulating pathway namely SAUR-like auxin-responsive protein family having 2 up-regulated and 7 down-regulated transcripts, phytochrome-associated protein showed 1 up-regulated and 9 down-regulated transcripts, whereas genes associated with the Leucine-rich repeat protein kinase family protein showed 7 up-regulated and 1 down-regulated transcript, meanwhile Auxin Resistant 2 has single up-regulated transcript in second developmental stage, although 3 were down-regulated at lateral growth stages (3A and 4A). In the present study, 489 secondary metabolic pathways related genes were identified during leaf growth, which mainly includes alkaloid (40), anthocyanins (21), Diterpenoid (144), Monoterpenoid (90) and Flavonoids (93). Quantitative real-time PCR was applied to validate 10 differentially expressed transcripts patterns from flower, leaf and fruit metabolic pathways at different growth stages. PMID:26824474
Elkington, Paul T G; Nuttall, Robert K; Boyle, Joseph J; O'Kane, Cecilia M; Horncastle, Donna E; Edwards, Dylan R; Friedland, Jon S
2005-12-15
Pulmonary cavitation is fundamental to the global success of Mycobacterium tuberculosis. However, the mechanisms of this lung destruction are poorly understood. The biochemistry of lung matrix predicts matrix metalloproteinase (MMP) involvement in immunopathology. We investigated gene expression of all MMPs, proteins with a disintegrin and metalloproteinase domain, and tissue inhibitors of metalloproteinases in M. tuberculosis-infected human macrophages by real-time polymerase chain reaction. MMP secretion was measured by zymography and Western analysis, and expression in patients with pulmonary tuberculosis was localized by immunohistochemistry. MMP-1 and MMP-7 gene expression and secretion are potently upregulated by M. tuberculosis, and no increase in tissue inhibitor of metalloproteinase expression occurs to oppose their activity. Dexamethasone completely suppresses MMP-1 but not MMP-7 gene expression and secretion. In patients with active tuberculosis, macrophages express MMP-1 and MMP-7 adjacent to areas of tissue destruction. MMP-1 but not MMP-7 expression and secretion are relatively M. tuberculosis specific, are not upregulated by tuberculosis-associated cytokines, and are prostaglandin dependent. In contrast, the vaccine M. bovis bacillus Calmette-Guérin (BCG) does not stimulate MMP-1 secretion from human macrophages, although M. tuberculosis and BCG do upregulate MMP-7 equally. BCG-infected macrophages secrete reduced prostaglandin E2 concentrations compared with M. tuberculosis-infected macrophages, and prostaglandin pathway supplementation augments MMP-1 secretion from BCG-infected cells. M. tuberculosis specifically upregulates MMP-1 in a cellular model of human infection and in patients with tuberculosis. In contrast, vaccine BCG, which does not cause lung cavitation, does not upregulate prostaglandin E2-dependent MMP-1 secretion.
NADPH Oxidase as a Therapeutic Target for Oxalate Induced Injury in Kidneys
Peck, Ammon B.; Khan, Saeed R.
2013-01-01
A major role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes is to catalyze the production of superoxides and other reactive oxygen species (ROS). These ROS, in turn, play a key role as messengers in cell signal transduction and cell cycling, but when they are produced in excess they can lead to oxidative stress (OS). Oxidative stress in the kidneys is now considered a major cause of renal injury and inflammation, giving rise to a variety of pathological disorders. In this review, we discuss the putative role of oxalate in producing oxidative stress via the production of reactive oxygen species by isoforms of NADPH oxidases expressed in different cellular locations of the kidneys. Most renal cells produce ROS, and recent data indicate a direct correlation between upregulated gene expressions of NADPH oxidase, ROS, and inflammation. Renal tissue expression of multiple NADPH oxidase isoforms most likely will impact the future use of different antioxidants and NADPH oxidase inhibitors to minimize OS and renal tissue injury in hyperoxaluria-induced kidney stone disease. PMID:23840917
Rock geochemistry induces stress and starvation responses in the bacterial proteome.
Bryce, Casey C; Le Bihan, Thierry; Martin, Sarah F; Harrison, Jesse P; Bush, Timothy; Spears, Bryan; Moore, Alanna; Leys, Natalie; Byloos, Bo; Cockell, Charles S
2016-04-01
Interactions between microorganisms and rocks play an important role in Earth system processes. However, little is known about the molecular capabilities microorganisms require to live in rocky environments. Using a quantitative label-free proteomics approach, we show that a model bacterium (Cupriavidus metallidurans CH34) can use volcanic rock to satisfy some elemental requirements, resulting in increased rates of cell division in both magnesium- and iron-limited media. However, the rocks also introduced multiple new stresses via chemical changes associated with pH, elemental leaching and surface adsorption of nutrients that were reflected in the proteome. For example, the loss of bioavailable phosphorus was observed and resulted in the upregulation of diverse phosphate limitation proteins, which facilitate increase phosphate uptake and scavenging within the cell. Our results revealed that despite the provision of essential elements, rock chemistry drives complex metabolic reorganization within rock-dwelling organisms, requiring tight regulation of cellular processes at the protein level. This study advances our ability to identify key microbial responses that enable life to persist in rock environments. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Multiple anticancer activities of EF24, a novel curcumin analog, on human ovarian carcinoma cells.
Tan, Xin; Sidell, Neil; Mancini, Alessandra; Huang, Ruo-Pan; Shenming Wang; Horowitz, Ira R; Liotta, Dennis C; Taylor, Robert N; Wieser, Friedrich
2010-10-01
Curcumin, a component of turmeric, has been reported to exhibit potential antitumor activities. This study assessed the effects of a novel synthetic curcumin analog, EF24, on proliferation, apoptosis, and vascular endothelial growth factor (VEGF) regulation in platinum-sensitive (IGROV1) and platinum-resistant (SK-OV-3) human ovarian cancer cells. EF24 time- and dose-dependently suppressed the growth of both cell lines and synergized with cisplatin to induce apoptosis. Although treatment with EF24 had no significant effect on VEGF messenger RNA (mRNA) expression,VEGF protein secretion into conditioned media was dose-dependently reduced with EF24 demonstrating ∼8-fold greater potency than curcumin (P < .05). EF24 significantly inhibited hydrogen peroxide (H(2)O(2))-induced VEGF expression, as did the phenolic antioxidant tert-butylhydroquinone (t-BHQ). EF24 upregulated cellular antioxidant responses as observed by the suppression of reactive oxygen species (ROS) generation and activation of antioxidant response element (ARE)-dependent gene transcription. Given its high potency, EF24 is an excellent lead candidate for further development as an adjuvant therapeutic agent in preclinical models of ovarian cancer.
Dai, Weijun; Li, Wencheng; Hoque, Mainul; Li, Zhuyun; Tian, Bin; Makeyev, Eugene V
2015-07-06
Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 3'-untranslated regions (3' UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36), an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly, TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand, inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons.
NASA Technical Reports Server (NTRS)
Maes, Olivier C.; Xu, Suying; Hada, Megumi; Wu, Honglu; Wang, Eugenia
2007-01-01
Exposure to ionizing radiation causes DNA damage to cells, and provokes a plethora of cellular responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small (22-nucleotide), non-coding RNAs which functionally silence gene expression by either degrading the messages or inhibiting translation. Here we investigate radiation-dependent changes in these negative regulators by comparing the expression patterns of all 462 known human miRNAs in fibroblasts, after exposure to low (0.1 Gy) or high (2 Gy) doses of X-rays at 30 min, 2, 6 and 24 hrs post-treatment. The expression patterns of microRNAs after low and high doses of radiation show a similar qualitative down-regulation trend at early (0.5 hr) and late (24 hr) time points, with a quantitatively steeper slope following the 2 Gy exposures. Interestingly, an interruption of this downward trend is observed after the 2 Gy exposure, i.e. a significant up-regulation of microRNAs at 2 hrs, then reverting to the downward trend by 6 hrs; this interruption at the intermediate time point was not observed with the 0.1 Gy exposure. At the early time point (0.5 hr), candidate gene targets of selected down-regulated microRNAs, common to both 0.1 and 2 Gy exposures, were those functioning in chromatin remodeling. Candidate target genes of unique up-regulated microRNAs seen at a 2 hr intermediate time point, after the 2 Gy exposure only, are those involved in cell death signaling. Finally, putative target genes of down-regulated microRNAs seen at the late (24 hr) time point after either doses of radiation are those involved in the up-regulation of DNA repair, cell signaling and homeostasis. Thus we hypothesize that after radiation exposure, microRNAs acting as hub negative regulators for unique signaling pathways needed to be down-regulated so as to de-repress their target genes for the proper cellular responses, including DNA repair and cell maintenance. The unique microRNAs up-regulated at 2 hr after 2 Gy suggest the cellular response to functionally suppress the apoptotic death signaling reflex after exposure to high dose radiation. Further analyses with transcriptome and global proteomic profiling will validate the reciprocal expression of signature microRNAs selected in our radiation-exposed cells, and their candidate target gene families, and test our hypothesis that unique radiation-specific microRNAs are keys in governing signaling responses for damage control of this environmental hazard.
NASA Astrophysics Data System (ADS)
Chaplain, Mark A. J.; Powathil, Gibin G.
Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.
NASA Astrophysics Data System (ADS)
Chaplain, Mark A. J.; Powathil, Gibin G.
2015-04-01
Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.
Manchala, Nageswar Reddy; Dungdung, Ranjeet; Pilankatta, Rajendra
2017-10-01
Human serum protein profiling of the individual infected with multiple dengue virus serotypes for identifying the potential biomarkers and to investigate the cause for the severity of dengue virus infection. Dengue virus NS1-positive serum samples were pooled into two groups (S2 and S3) based on the molecular serotyping and number of heterotypic infections. The pooled serum samples were subjected to two-dimensional gel electrophoresis (2DGE) to identify the differentially expressed proteins. The peptide masses of upregulated protein were detected by matrix-assisted laser desorption-ionisation time-of-flight MALDI-TOF mass spectrometry and analysed by MASCOT search engine. The results were compared with the control group (S1). The commonly upregulated protein was validated by quantitative ELISA and compared with control as well as single serotypic infected samples. Based on 2DGE, total thirteen proteins were differentially upregulated in S2 and S3 groups as compared to control. Some of the upregulated proteins were involved in mediating the complement activation of immune response. The apolipoprotein A-1 (APO A-1) was upregulated in S2 and S3 groups. Upon validation, APO A-1 levels were increased in line with the number of heterotypic infection of dengue viruses. Heterotypic infection of dengue viruses upregulate the serum proteins involved in the complement pathway in the early phase of infection. There was a significant increase in the level of APO A-1 in three different serotypic infections of dengue virus as compared to control. Further, the role of APO-A1 can be explored in elucidating the mechanism of dengue pathogenesis. © 2017 John Wiley & Sons Ltd.
Garcia-Gomez, Antonio; Las Rivas, Javier De; Ocio, Enrique M.; Díaz-Rodríguez, Elena; Montero, Juan C.; Martín, Montserrat; Blanco, Juan F.; Sanchez-Guijo, Fermín M.; Pandiella, Atanasio; San Miguel, Jesús F.; Garayoa, Mercedes
2014-01-01
Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease. PMID:25268740
Heat-shock proteins in clinical neurology.
Romi, Fredrik; Helgeland, Geir; Gilhus, Nils Erik
2011-01-01
Heat-shock proteins (HSPs) are antigen-presenting protein-aggregation-preventing chaperones, induced by cellular stress in eukaryotic cells. In this review, we focus on recent HSP advances in neurological disorders. In myasthenia gravis, patients responding to immunosuppressive therapy have reduced serum HSP-71 antibodies. Generalized and ocular myasthenia gravis patients have elevated serum HSP-70 antibodies, indicating common pathogenic mechanisms. In Guillain-Barré syndrome, HSP-70 antibodies are elevated in serum and cerebrospinal fluid, and serum levels are higher than in myasthenia gravis and multiple sclerosis. In multiple sclerosis, serum HSP-27 antibodies are elevated during relapses providing disease activation marker, while α,β-crystallin expression in brain lesions indicates remission phase initiation. In acute stroke, serum HSP-27 antibodies are elevated irrespective of stroke type and duration. In epilepsy, HSP-27 is induced in patients' astrocytes and cerebral blood vessel walls, and α,β-crystallin is expressed in epileptic foci. In neurodegenerative disorders such as Alzheimer dementia and Parkinson's disease, HSPs are upregulated in brain tissue, and α,β-crystallin modulates superoxide dismutase-1 (SOD-1) tissue accumulation in familial amyotrophic lateral sclerosis. HSPs play an important role in antigen-presentation and tolerance development. Antibody-mediated interference with their function alters immune responses causing neuropathology. The role of HSPs in clinical neurology should be the subject of future investigation. Copyright © 2011 S. Karger AG, Basel.
Kuhn, Deborah J; Berkova, Zuzana; Jones, Richard J; Woessner, Richard; Bjorklund, Chad C; Ma, Wencai; Davis, R Eric; Lin, Pei; Wang, Hua; Madden, Timothy L; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Wang, Michael; Thomas, Sheeba K; Shah, Jatin J; Weber, Donna M; Orlowski, Robert Z
2012-10-18
Proteasome inhibition with bortezomib is a validated approach to the treatment of multiple myeloma, but drug resistance often emerges and limits its utility in the retreatment setting. To begin to identify some of the mechanisms involved, we developed bortezomib-resistant myeloma cell lines that, unlike previously reported models, showed no β5 subunit mutations. Instead, up-regulation of the insulin-like growth factor (IGF)-1 axis was identified, with increased autocrine and paracrine secretion of IGF-1, leading to increased activation of the IGF-1 receptor (IGF-1R). Exogenous IGF-1 reduced cellular sensitivity to bortezomib, whereas pharmacologic or small hairpin RNA-mediated IGF-1R suppression enhanced bortezomib sensitivity in cell lines and patient samples. In vitro studies with OSI-906, a clinically relevant dual IGF-1R and insulin receptor inhibitor, showed it acted synergistically with bortezomib, and potently resensitized bortezomib-resistant cell lines and patient samples to bortezomib. Importantly, OSI-906 in combination with bortezomib also overcame bortezomib resistance in an in vivo model of myeloma. Taken together, these data support the hypothesis that signaling through the IGF-1/IGF-1R axis contributes to acquired bortezomib resistance, and provide a rationale for combining bortezomib with IGF-1R inhibitors like OSI-906 to overcome or possibly prevent the emergence of bortezomib-refractory disease in the clinic.
Holzinger, Andreas; Kaplan, Franziska; Blaas, Kathrin; Zechmann, Bernd; Komsic-Buchmann, Karin; Becker, Burkhard
2014-01-01
Background Water loss has significant effects on physiological performance and survival rates of algae. However, despite the prominent presence of aeroterrestrial algae in terrestrial habitats, hardly anything is known about the molecular events that allow aeroterrestrial algae to survive harsh environmental conditions. We analyzed the transcriptome and physiology of a strain of the alpine aeroterrestrial alga Klebsormidium crenulatum under control and strong desiccation-stress conditions. Principal Findings For comparison we first established a reference transcriptome. The high-coverage reference transcriptome includes about 24,183 sequences (1.5 million reads, 636 million bases). The reference transcriptome encodes for all major pathways (energy, carbohydrates, lipids, amino acids, sugars), nearly all deduced pathways are complete or missing only a few transcripts. Upon strong desiccation, more than 7000 transcripts showed changes in their expression levels. Most of the highest up-regulated transcripts do not show similarity to known viridiplant proteins, suggesting the existence of some genus- or species-specific responses to desiccation. In addition, we observed the up-regulation of many transcripts involved in desiccation tolerance in plants (e.g. proteins similar to those that are abundant in late embryogenesis (LEA), or proteins involved in early response to desiccation ERD), and enzymes involved in the biosynthesis of the raffinose family of oligosaccharides (RFO) known to act as osmolytes). Major physiological shifts are the up-regulation of transcripts for photosynthesis, energy production, and reactive oxygen species (ROS) metabolism, which is supported by elevated cellular glutathione content as revealed by immunoelectron microscopy as well as an increase in total antiradical power. However, the effective quantum yield of Photosystem II and CO2 fixation decreased sharply under the applied desiccation stress. In contrast, transcripts for cell integrative functions such as cell division, DNA replication, cofactor biosynthesis, and amino acid biosynthesis were down-regulated. Significance This is the first study investigating the desiccation transcriptome of a streptophyte green alga. Our results indicate that the cellular response is similar to embryophytes, suggesting that embryophytes inherited a basic cellular desiccation tolerance from their streptophyte predecessors. PMID:25340847
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, J.W.
1984-01-01
These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) havemore » been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.« less
Tang, Xin; Zan, Xinyi; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda; Ratledge, Colin
2016-02-11
The oleaginous fungus, Mucor circinelloides, is attracting considerable interest as it produces oil rich in γ-linolenic acid. Nitrogen (N) deficiency is a common strategy to trigger the lipid accumulation in oleaginous microorganisms. Although a simple pathway from N depletion in the medium to lipid accumulation has been elucidated at the enzymatic level, global changes at protein levels upon N depletion have not been investigated. In this study, we have systematically analyzed the changes at the levels of protein expression in M. circinelloides WJ11, a high lipid-producing strain (36 %, lipid/cell dry weight), during lipid accumulation. Proteomic analysis demonstrated that N depletion increased the expression of glutamine synthetase, involved in ammonia assimilation, for the supply of cellular nitrogen but decreased the metabolism of amino acids. Upon N deficiency, many proteins (e.g., fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase) involved in glycolytic pathway were up-regulated while proteins involved in the tricarboxylic acid cycle (e.g., isocitrate dehydrogenase, succinyl-CoA ligase, succinate dehydrogenase, fumarate hydratase) were down-regulated, indicating this activity was retarded thereby leading to a greater flux of carbon into fatty acid biosynthesis. Moreover, glucose-6-phosphate dehydrogenase, transaldolase and transketolase, which participate in the pentose phosphate pathway, were up-regulated, leading to the increased production of NADPH, the reducing power for fatty acid biosynthesis. Furthermore, protein and nucleic acid metabolism were down-regulated and some proteins involved in energy metabolism, signal transduction, molecular chaperone and redox homeostasis were up-regulated upon N depletion, which may be the cellular response to the stress produced by the onset of N deficiency. N limitation increased those expressions of the proteins involved in ammonia assimilation but decreased that involved in the biosynthesis of amino acids. Upon N deprivation, the glycolytic pathway was up-regulated, while the activity of the tricarboxylic acid cycle was retarded, thus, leading more carbon flux to fatty acid biosynthesis. Moreover, the pentose phosphate pathway was up-regulated, then this would increase the production of NADPH. Together, coordinated regulation of central carbon metabolism upon N limitation, provides more carbon flux to acetyl-CoA and NADPH for fatty acid biosynthesis.
Neonatal maternal separation up-regulates protein signalling for cell survival in rat hypothalamus.
Irles, Claudine; Nava-Kopp, Alicia T; Morán, Julio; Zhang, Limei
2014-05-01
We have previously reported that in response to early life stress, such as maternal hyperthyroidism and maternal separation (MS), the rat hypothalamic vasopressinergic system becomes up-regulated, showing enlarged nuclear volume and cell number, with stress hyperresponsivity and high anxiety during adulthood. The detailed signaling pathways involving cell death/survival, modified by adverse experiences in this developmental window remains unknown. Here, we report the effects of MS on cellular density and time-dependent fluctuations of the expression of pro- and anti-apoptotic factors during the development of the hypothalamus. Neonatal male rats were exposed to 3 h-daily MS from postnatal days 2 to 15 (PND 2-15). Cellular density was assessed in the hypothalamus at PND 21 using methylene blue staining, and neuronal nuclear specific protein and glial fibrillary acidic protein immunostaining at PND 36. Expression of factors related to apoptosis and cell survival in the hypothalamus was examined at PND 1, 3, 6, 9, 12, 15, 20 and 43 by Western blot. Rats subjected to MS exhibited greater cell-density and increased neuronal density in all hypothalamic regions assessed. The time course of protein expression in the postnatal brain showed: (1) decreased expression of active caspase 3; (2) increased Bcl-2/Bax ratio; (3) increased activation of ERK1/2, Akt and inactivation of Bad; PND 15 and PND 20 were the most prominent time-points. These data indicate that MS can induce hypothalamic structural reorganization by promoting survival, suppressing cell death pathways, increasing cellular density which may alter the contribution of these modified regions to homeostasis.
Kumar, Gokhlesh; Sarker, Subhodeep; Menanteau-Ledouble, Simon; El-Matbouli, Mansour
2015-06-01
Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan.
Michalski, Dominik; Pitsch, Roman; Pillai, Deepu R; Mages, Bianca; Aleithe, Susanne; Grosche, Jens; Martens, Henrik; Schlachetzki, Felix; Härtig, Wolfgang
2017-01-01
Current stroke therapy is focused on recanalizing strategies, but neuroprotective co-treatments are still lacking. Modern concepts of the ischemia-affected neurovascular unit (NVU) and surrounding penumbra emphasize the complexity during the transition from initial damaging to regenerative processes. While early treatment with neurotrophic factors was shown to result in lesion size reduction and blood-brain barrier (BBB) stabilization, cellular consequences from these treatments are poorly understood. This study explored delayed cellular responses not only to ischemic stroke, but also to an early treatment with neurotrophic factors. Rats underwent 60 minutes of focal cerebral ischemia. Fluorescence labeling was applied to sections from brains perfused 7 days after ischemia. Analyses focused on NVU constituents including the vasculature, astrocytes and microglia in the ischemic striatum, the border zone and the contralateral hemisphere. In addition to histochemical signs of BBB breakdown, a strong up-regulation of collagen IV and microglia activation occurred within the ischemic core with simultaneous degradation of astrocytes and their endfeet. Activated astroglia were mainly depicted at the border zone in terms of a glial scar formation. Early treatment with pigment epithelium-derived factor (PEDF) resulted in an attenuation of the usually up-regulated collagen IV-immunoreactivity. However, glial activation was not influenced by treatment with PEDF or the epidermal growth factor (EGF). In conclusion, these data on ischemia-induced cellular reactions within the NVU might help to develop treatments addressing the transition from injury towards regeneration. Thereby, the integrity of the vasculature in close relation to neighboring structures like astrocytes appears as a promising target.
Role of resveratrol in regulation of cellular defense systems against oxidative stress.
Truong, Van-Long; Jun, Mira; Jeong, Woo-Sik
2018-01-01
Resveratrol, a natural polyphenolic compound, is found in various kinds of fruits, plants, and their commercial products such as red wine. It has been demonstrated to exhibit a variety of health-promoting effects including prevention and/or treatment of cardiovascular diseases, inflammation, diabetes, neurodegeneration, aging, and cancer. Cellular defensive properties of resveratrol can be explained through its ability of either directly neutralizing reactive oxygen species/reactive nitrogen species (ROS/RNS) or indirectly upregulating the expression of cellular defensive genes. As a direct antioxidant agent, resveratrol scavenges diverse ROS/RNS as well as secondary organic radicals with mechanisms of hydrogen atom transfer and sequential proton loss electron transfer, thereby protecting cellular biomolecules from oxidative damage. Resveratrol also enhances the expression of various antioxidant defensive enzymes such as heme oxygenase 1, catalase, glutathione peroxidase, and superoxide dismutase as well as the induction of glutathione level responsible for maintaining the cellular redox balance. Such defenses could be achieved by regulating various signaling pathways including sirtuin 1, nuclear factor-erythroid 2-related factor 2 and nuclear factor κB. This review provides current understanding and information on the role of resveratrol in cellular defense system against oxidative stress. © 2017 BioFactors, 44(1):36-49, 2018. © 2017 International Union of Biochemistry and Molecular Biology.
Wagner, W; Kania, K D; Blauz, A; Ciszewski, W M
2017-08-01
The lactate receptor, also known as hydroxycarboxylic acid receptor 1 (HCAR1/GPR81), plays a vital role in cancer biology. Recently, HCAR1 was reported to enhance metastasis, cell growth, and survival of pancreatic, breast, and cervical cancer cells. This study showed, for the first time, the mechanism of HCAR1-mediated chemoresistance to doxorubicin through regulation of ABCB1 transporter. We observed the HCAR1 agonists L-lactate, D-lactate and 3,5-dihydroxybenzoic acid (DHBA) induced up-regulation of ABCB1. HCAR1 silencing decreased ABCB1 mRNA and protein by 80% and 40%, respectively. Moreover, cellular doxorubicin accumulation decreased by 30% after DHBA treatment, while HCAR1 silencing increased accumulation of ABCB1 substrates by nearly 2-fold. Based on growth inhibition assays, cell cycle analysis, and annexin V staining assays, we demonstrated that HCAR1 enhances cell survival and doxorubicin resistance. Finally, DHBA-stimulated up-regulation of ABCB1 functionality was suppressed by pharmacological inhibition of the PKC pathway. Taken together, our study shows the novel role of HCAR1 in development of chemoresistance in cervical carcinoma HeLa cells via ABCB1 transporter up-regulation.
Yang, Rui-Xin; Lei, Jie; Wang, Bo-Dong; Feng, Da-Yun; Huang, Lu; Li, Yu-Qian; Li, Tao; Zhu, Gang; Li, Chen; Lu, Fang-Fang; Nie, Tie-Jian; Gao, Guo-Dong; Gao, Li
2017-01-01
Oxidative stress and mitochondrial dysfunction play critical roles in ischemia/reperfusion (I/R) injury. DJ-1 is an endogenous antioxidant that attenuates oxidative stress and maintains mitochondrial function, likely acting as a protector of I/R injury. In the present study, we explored the protective effect of a possible DJ-1 agonist, sodium phenylbutyrate (SPB), against I/R injury by protecting mitochondrial dysfunction via the upregulation of DJ-1 protein. Pretreatment with SPB upregulated the DJ-1 protein level and rescued the I/R injury-induced DJ-1 decrease about 50% both in vivo and in vitro . SPB also improved cellular viability and mitochondrial function and alleviated neuronal apoptosis both in cell and animal models; these effects of SPB were abolished by DJ-1 knockdown with siRNA. Furthermore, SPB improved the survival rate about 20% and neurological functions, as well as reduced about 50% of the infarct volume and brain edema, of middle cerebral artery occlusion mice 23 h after reperfusion. Therefore, our findings demonstrate that preconditioning of SPB possesses a neuroprotective effect against cerebral I/R injury by protecting mitochondrial function dependent on the DJ-1 upregulation, suggesting that DJ-1 is a potential therapeutic target for clinical ischemic stroke.
Yang, Rui-Xin; Lei, Jie; Wang, Bo-Dong; Feng, Da-Yun; Huang, Lu; Li, Yu-Qian; Li, Tao; Zhu, Gang; Li, Chen; Lu, Fang-Fang; Nie, Tie-Jian; Gao, Guo-Dong; Gao, Li
2017-01-01
Oxidative stress and mitochondrial dysfunction play critical roles in ischemia/reperfusion (I/R) injury. DJ-1 is an endogenous antioxidant that attenuates oxidative stress and maintains mitochondrial function, likely acting as a protector of I/R injury. In the present study, we explored the protective effect of a possible DJ-1 agonist, sodium phenylbutyrate (SPB), against I/R injury by protecting mitochondrial dysfunction via the upregulation of DJ-1 protein. Pretreatment with SPB upregulated the DJ-1 protein level and rescued the I/R injury-induced DJ-1 decrease about 50% both in vivo and in vitro. SPB also improved cellular viability and mitochondrial function and alleviated neuronal apoptosis both in cell and animal models; these effects of SPB were abolished by DJ-1 knockdown with siRNA. Furthermore, SPB improved the survival rate about 20% and neurological functions, as well as reduced about 50% of the infarct volume and brain edema, of middle cerebral artery occlusion mice 23 h after reperfusion. Therefore, our findings demonstrate that preconditioning of SPB possesses a neuroprotective effect against cerebral I/R injury by protecting mitochondrial function dependent on the DJ-1 upregulation, suggesting that DJ-1 is a potential therapeutic target for clinical ischemic stroke. PMID:28649223
CD147 promotes the formation of functional osteoclasts through NFATc1 signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishioku, Tsuyoshi, E-mail: nishiokut@niu.ac.jp; Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180; Terasawa, Mariko
CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreasedmore » CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.« less
Li, Chuan; Zhang, Wei-Jian; Choi, Jaewoo; Frei, Balz
2016-10-01
Endothelial dysfunction due to vascular inflammation and oxidative stress critically contributes to the etiology of atherosclerosis. The intracellular redox environment plays a key role in regulating endothelial cell function and is intimately linked to cellular thiol status, including and foremost glutathione (GSH). In the present study we investigated whether and how the dietary flavonoid, quercetin, affects GSH status of human aortic endothelial cells (HAEC) and their response to oxidative stress. We found that treating cells with buthionine sulfoximine to deplete cellular GSH levels significantly reduced the capacity of quercetin to inhibit lipopolysaccharide (LPS)-induced oxidant production. Furthermore, incubation of HAEC with quercetin caused a transient decrease and then full recovery of cellular GSH concentrations. The initial decline in GSH was not accompanied by a corresponding increase in glutathione disulfide (GSSG). To the contrary, GSSG levels, which were less than 0.5% of GSH levels at baseline (0.26±0.01 vs. 64.7±1.9nmol/mg protein, respectively), decreased by about 25% during incubation with quercetin. As a result, the GSH: GSSG ratio increased by about 70%, from 253±7 to 372±23. These quercetin-induced changes in GSH and GSSG levels were not affected by treating HAEC with 500µM ascorbic acid phosphate for 24h to increase intracellular ascorbate levels. Incubation of HAEC with quercetin also led to the appearance of extracellular quercetin-glutathione conjugates, which was paralleled by upregulation of the multidrug resistance protein 1 (MRP1). Furthermore, quercetin slightly but significantly increased mRNA and protein levels of glutamate-cysteine ligase (GCL) catalytic and modifier subunits. Taken together, our results suggest that quercetin causes loss of GSH in HAEC, not because of oxidation but due to formation and cellular export of quercetin-glutathione conjugates. Induction by quercetin of GCL subsequently restores GSH levels, thereby suppressing LPS-induced oxidant production. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Brzeszczyńska, Joanna; Meyer, Angelika; McGregor, Robin; Schilb, Alain; Degen, Simone; Tadini, Valentina; Johns, Neil; Langen, Ramon; Schols, Annemie; Glass, David J.; Roubenoff, Ronenn; Ross, James A.; Fearon, Kenneth C.H.; Greig, Carolyn A.
2017-01-01
Abstract Background Sarcopenia is defined as the age‐related loss of skeletal muscle mass and function. While all humans lose muscle with age, 2–5% of elderly adults develop functional consequences (disabilities). The aim of this study was to investigate muscle myogenesis in healthy elderly adults, with or without sarcopenia, compared with middle‐aged controls using both in vivo and in vitro approaches to explore potential biomarker or causative molecular pathways associated with sarcopenic versus non‐sarcopenic skeletal muscle phenotypes during ageing. Methods Biomarkers of multiple molecular pathways associated with muscle regeneration were analysed using quantitative polymerase chain reaction in quadriceps muscle samples obtained from healthy elderly sarcopenic (HSE, n = 7) or non‐sarcopenic (HENS, n = 21) and healthy middle‐aged control (HMC, n = 22) groups. An in vitro system of myogenesis (using myoblasts from human donors aged 17–83 years) was used to mimic the environmental challenges of muscle regeneration over time. Results The muscle biopsies showed evidence of satellite cell activation in HENS (Pax3, P < 0.01, Pax7, P < 0.0001) compared with HMC. Early myogenesis markers Myogenic Differentiation 1 (MyoD1) and Myogenic factor 5 (Myf5) (P < 0.0001) and the late myogenesis marker myogenin (MyoG) (P < 0.01) were increased in HENS. In addition, there was a 30‐fold upregulation of TNF‐α in HENS compared with HMC (P < 0.0001). The in vitro system demonstrated age‐related upregulation of pro‐inflammatory cytokines (2‐fold upregulation of interleukin (IL)‐6, IL‐8 mRNA, increased secretion of tumor necrosis factor‐α (TNF‐α) and IL‐6, all P < 0.05) associated with impaired kinetics of myotube differentiation. The HSE biopsy samples showed satellite cell activation (Pax7, P < 0.05) compared with HMC. However, no significant upregulation of the early myogenesis (MyoD and Myf5) markers was evident; only the late myogenesis marker myogenin was upregulated (P < 0.05). Higher activation of the oxidative stress pathway was found in HENS compared with the HSE group. In contrast, there was 10‐fold higher upregulation of HSPA1A a stress‐induced chaperone acting upon misfolded proteins in HSE compared with the HENS group. Conclusions Both pathological and adaptive processes are active in skeletal muscle during healthy ageing. Muscle regeneration pathways are activated during healthy ageing, but there is evidence of dysregulation in sarcopenia. In addition, increased cellular stress, with an impaired oxidative‐stress and mis‐folded protein response (HSPA1A), may be associated with the development of sarcopenia. The in vitro system of young and old myoblasts replicated some of the differences between young and old muscle. PMID:29214748
ERIC Educational Resources Information Center
Daher, Wajeeh; Baya'a, Nimer
2012-01-01
Learning in the cellular phone environment enables utilizing the multiple functions of the cellular phone, such as mobility, availability, interactivity, verbal and voice communication, taking pictures or recording audio and video, measuring time and transferring information. These functions together with mathematics-designated cellular phone…
Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E; Sanderson, Michael W; Bodie, Wesley W; Kramer, Lora B; Orlowski, Robert Z; Grant, Steven
2014-01-01
The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.
Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E.; Sanderson, Michael W.; Bodie, Wesley W.; Kramer, Lora B.; Orlowski, Robert Z.; Grant, Steven
2014-01-01
The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM. PMID:24594907
2010-01-01
Background Molecular chaperones have been shown to be important in the growth of the malaria parasite Plasmodium falciparum and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones. Methods Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles. Results Molecular chaperones show distinct profiles in the previously defined physiologically distinct states. Further, expression profiles of the chaperones from different cellular compartments correlate with specific patient clusters. While cluster 1 parasites, representing a starvation response, show up-regulation of organellar chaperones, cluster 2 parasites, which resemble active growth based on glycolysis, show up-regulation of cytoplasmic chaperones. Interestingly, cytoplasmic Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, cluster in the same group. Detailed analysis of chaperone expression in the patient cluster 2 reveals up-regulation of the entire Hsp90-dependent pro-survival circuitries. In addition, cluster 2 also shows up-regulation of Plasmodium export element (PEXEL)-containing Hsp40s thought to have regulatory and host remodeling roles in the infected erythrocyte. Conclusion In all, this study demonstrates an intimate involvement of parasite-encoded chaperones, PfHsp90 in particular, in defining pathogenesis of malaria. PMID:20719001
Qin, Dengke; Ren, Runjian; Jia, Chuanlong; Lu, Yongzhou; Yang, Qingjian; Chen, Liang; Wu, Xinyuan; Zhu, Jingjing; Guo, Yu; Yang, Ping; Zhou, Yiqun; Zhu, Ningwen; Bi, Bo; Liu, Tianyi
2018-01-01
Ultraviolet B (UVB) irradiation alters multiple molecular pathways in the skin, thereby inducing skin photoaging. Murine dermal fibroblasts (MDFs) were subjected to a series of 4 sub-cytotoxic UVB doses (120 mJ/cm2), resulting in changes in cell shape, DNA damage, cell cycle arrest, extracellular matrix variations, reactive oxygen species (ROS) generation, and alterations in major intracellular antioxidant and cellular autophagy levels. Rapamycin (RAPA) is a new macrolide immunosuppressive agent that is primarily used in oncology, cardiology, and transplantation medicine and has been found to extend the lifespan of genetically heterogeneous mice. Several studies have shown that RAPA may have anti-aging effects in cells and organisms. Thus, in this study, we explored the effects and mechanisms of RAPA against the photoaging process using a well-established cellular photoaging model. We developed a stress-induced premature senescence (SIPS) model through repeated exposure of MDFs to ultraviolet B (UVB) irradiation. The cells were cultured in the absence or presence of RAPA for 48 h. Senescent phenotypes were assessed by examining cell viability, cell morphology, senescence-associated β-galactosidase (SA-β-gal) expression, cell cycle progression, intracellular ROS production, matrix metalloproteinase (MMP) synthesis and degradation, extracellular matrix (ECM) component protein expression, alterations in major intracellular antioxidant levels, and the cellular autophagy level. Compared with the UVB group, pretreatment with RAPA (5 µM) significantly decreased the staining intensity and percentage of SA-β-gal-positive cells and preserved the elongated cell shape. Moreover, cells pretreated with RAPA showed inhibition of the reduction in the type I collagen content by blocking the UVB-induced upregulation of MMP expression. RAPA also decreased photoaging cell cycle arrest and downregulated p53 and p21 expression. RAPA application significantly attenuated irradiation-induced ROS release by modulating intracellular antioxidants and increasing the autophagy level. Our study demonstrated that RAPA elicited oxidative damage in vitro by reducing ROS accumulation in photoaged fibroblasts. The anti-aging effect can be attributed to the maintenance of normal antioxidant and cellular autophagy levels. However, determination of the definitive mechanism requires further study. © 2018 The Author(s). Published by S. Karger AG, Basel.
A-to-I RNA Editing Up-regulates Human Dihydrofolate Reductase in Breast Cancer.
Nakano, Masataka; Fukami, Tatsuki; Gotoh, Saki; Nakajima, Miki
2017-03-24
Dihydrofolate reductase (DHFR) plays a key role in folate metabolism and is a target molecule of methotrexate. An increase in the cellular expression level of DHFR is one of the mechanisms of tumor resistance to methotrexate. The present study investigated the possibility that adenosine-to-inosine RNA editing, which causes nucleotide conversion by adenosine deaminase acting on RNA (ADAR) enzymes, might modulate DHFR expression. In human breast adenocarcinoma-derived MCF-7 cells, 26 RNA editing sites were identified in the 3'-UTR of DHFR. Knockdown of ADAR1 decreased the RNA editing levels of DHFR and resulted in a decrease in the DHFR mRNA and protein levels, indicating that ADAR1 up-regulates DHFR expression. Using a computational analysis, miR-25-3p and miR-125a-3p were predicted to bind to the non-edited 3'-UTR of DHFR but not to the edited sequence. The decrease in DHFR expression by the knockdown of ADAR1 was restored by transfection of antisense oligonucleotides for these miRNAs, suggesting that RNA editing mediated up-regulation of DHFR requires the function of these miRNAs. Interestingly, we observed that the knockdown of ADAR1 decreased cell viability and increased the sensitivity of MCF-7 cells to methotrexate. ADAR1 expression levels and the RNA editing levels in the 3'-UTR of DHFR in breast cancer tissues were higher than those in adjacent normal tissues. Collectively, the present study demonstrated that ADAR1 positively regulates the expression of DHFR by editing the miR-25-3p and miR-125a-3p binding sites in the 3'-UTR of DHFR, enhancing cellular proliferation and resistance to methotrexate. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Wu, Yanna; Ma, Shanshan; Xia, Yong; Lu, Yangpeng; Xiao, Shiyin; Cao, Yali; Zhuang, Sidian; Tan, Xiangpeng; Fu, Qiang; Xie, Longchang; Li, Zhiming; Yuan, Zhongmin
2017-01-26
Cellular acetylation homeostasis is a kinetic balance precisely controlled by histone acetyl-transferase (HAT) and histone deacetylase (HDAC) activities. The loss of the counterbalancing function of basal HAT activity alters the precious HAT:HDAC balance towards enhanced histone deacetylation, resulting in a loss of acetylation homeostasis, which is closely associated with neuronal apoptosis. However, the critical HAT member whose activity loss contributes to neuronal apoptosis remains to be identified. In this study, we found that inactivation of GCN5 by either pharmacological inhibitors, such as CPTH2 and MB-3, or by inactivation with siRNAs leads to a typical apoptosis in cultured cerebellar granule neurons. Mechanistically, the BH3-only protein Bim is transcriptionally upregulated by activated Egr-1 and E2F1 and mediates apoptosis following GCN5 inhibition. Furthermore, in the activity withdrawal- or glutamate-evoked neuronal apoptosis models, GCN5 loses its activity, in contrast to Bim induction. Adenovirus-mediated overexpression of GCN5 suppresses Bim induction and apoptosis. Interestingly, the loss of GCN5 activity and the induction of Egr-1, E2F1 and Bim are involved in the early brain injury (EBI) following subarachnoid haemorrhage (SAH) in rats. HDAC inhibition not only significantly rescues Bim expression and apoptosis induced by either potassium deprivation or GCN5 inactivation but also ameliorates these events and EBI in SAH rats. Taken together, our results highlight a new mechanism by which the loss of GCN5 activity promotes neuronal apoptosis through the transcriptional upregulation of Bim, which is probably a critical event in triggering neuronal death when cellular acetylation homeostasis is impaired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Hai-Yan; Liu, Yao; Chen, Jian-Hong
Highlights: {yields} Hyperoside attenuated H{sub 2}O{sub 2}-induced L02 cell damage. {yields} Hyperoside up-regulated HO-1 expression at both mRNA and protein levels. {yields} Hyperoside activated both Nrf{sub 2} nuclear translocation and gene expression. {yields} Hyperoside may inhibit Keap{sub 1} mRNA translation or protein degradation. {yields} Phosphorylation of ERK and p38 is involved in hyperoside-mediated Nrf{sub 2} activation. -- Abstract: The flavonoid hyperoside has been reported to elicit cytoprotection against oxidative stress partly by increasing the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase. However, the cellular and molecular mechanisms underlying this effect remain unclear. Here, hepatic L02more » cells exposed to H{sub 2}O{sub 2} (100 {mu}M) were used to demonstrate that hyperoside protected cells by significantly inhibiting overproduction of intracellular ROS, depletion of the mitochondrial membrane potential and leakage of lactate dehydrogenase. Hyperoside further enhanced the cellular antioxidant defense system through increasing the activity of heme oxygenase-1 (HO-1), and by up-regulating HO-1 expression. Meanwhile, real time PCR, western blot and immunofluorescence studies revealed that hyperoside stimulated nuclear translocation of the Nrf{sub 2} transcription factor in a dose-dependent manner, and this effect was significantly suppressed by pharmacological inhibition of the mitogen-activated protein kinases (MAPK) p38 and ERK. Collectively, our data provide the first description of the mechanism underlying hyperoside's ability to attenuate H{sub 2}O{sub 2}-induced cell damage, namely this compound interacts with the MAPK-dependent Keap{sub 1}-Nrf{sub 2}-ARE signaling pathway to up-regulate HO-1 expression and enhance intracellular antioxidant activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr
Methionine sulfoxide reductase B3 (MsrB3), which is primarily found in the endoplasmic reticulum (ER), is an important protein repair enzyme that stereospecifically reduces methionine-R-sulfoxide residues. We previously found that MsrB3 deficiency arrests the cell cycle at the G{sub 1}/S stage through up-regulation of p21 and p27. In this study, we report a critical role of MsrB3 in gene expression of heme oxygenase-1 (HO-1), which has an anti-proliferative effect associated with p21 up-regulation. Depletion of MsrB3 elevated HO-1 expression in mammalian cells, whereas MsrB3 overexpression had no effect. MsrB3 deficiency increased cellular reactive oxygen species (ROS), particularly in the mitochondria. ERmore » stress, which is associated with up-regulation of HO-1, was also induced by depletion of MsrB3. Treatment with N-acetylcysteine as an ROS scavenger reduced augmented HO-1 levels in MsrB3-depleted cells. MsrB3 deficiency activated Nrf2 transcription factor by enhancing its expression and nuclear import. The activation of Nrf2 induced by MsrB3 depletion was confirmed by increased expression levels of its other target genes, such as γ-glutamylcysteine ligase. Taken together, these data suggest that MsrB3 attenuates HO-1 induction by inhibiting ROS production, ER stress, and Nrf2 activation. -- Highlights: •MsrB3 depletion induces HO-1 expression. •MsrB3 deficiency increases cellular ROS and ER stress. •MsrB3 deficiency activates Nrf2 by increasing its expression and nuclear import. •MsrB3 attenuates HO-1 induction by inhibiting ROS production and Nrf2 activation.« less
Yao, Qingzhou; Song, Rui; Ao, Lihua; Cleveland, Joseph C; Fullerton, David A; Meng, Xianzhong
2017-06-01
Calcific aortic valve disease (CAVD) is a leading cardiovascular disorder in the elderly. Diseased aortic valves are characterized by sclerosis (fibrosis) and nodular calcification. Sclerosis, an early pathological change, is caused by aortic valve interstitial cell (AVIC) proliferation and overproduction of extracellular matrix (ECM) proteins. However, the mechanism of aortic valve sclerosis remains unclear. Recently, we observed that diseased human aortic valves overexpress growth factor neurotrophin 3 (NT3). In the present study, we tested the hypothesis that NT3 is a profibrogenic factor to human AVICs. AVICs isolated from normal human aortic valves were cultured in M199 growth medium and treated with recombinant human NT3 (0.10 µg/ml). An exposure to NT3 induced AVIC proliferation, upregulated the production of collagen and matrix metalloproteinase (MMP), and augmented collagen deposition. These changes were abolished by inhibition of the Trk receptors. NT3 induced Akt phosphorylation and increased cyclin D1 protein levels in a Trk receptor-dependent fashion. Inhibition of Akt abrogated the effect of NT3 on cyclin D1 production. Furthermore, inhibition of either Akt or cyclin D1 suppressed NT3-induced cellular proliferation and MMP-9 and collagen production, as well as collagen deposition. Thus, NT3 upregulates cellular proliferation, ECM protein production, and collagen deposition in human AVICs. It exerts these effects through the Trk-Akt-cyclin D1 cascade. NT3 is a profibrogenic mediator in human aortic valve, and overproduction of NT3 by aortic valve tissue may contribute to the mechanism of valvular sclerosis. Copyright © 2017 the American Physiological Society.
2013-01-01
Background The compound oenothein B (OenB), which is isolated from the leaves of Eugenia uniflora, a Brazilian Cerrado plant, interferes with Paracoccidioides yeast cell morphology and inhibits 1,3-β-D-glucan synthase (PbFKS1) transcript accumulation, which is involved in cell wall synthesis. In this work we examined the gene expression changes in Paracoccidioides yeast cells following OenB treatment in order to investigate the adaptive cellular responses to drug stress. Results We constructed differential gene expression libraries using Representational Difference Analysis (RDA) of Paracoccidioides yeast cells treated with OenB for 90 and 180 min. Treatment for 90 min resulted in the identification of 463 up-regulated expressed sequences tags (ESTs) and 104 down-regulated ESTs. For the 180 min treatment 301 up-regulated ESTs and 143 down-regulated were identified. Genes involved in the cell wall biosynthesis, such as GLN1, KRE6 and FKS1, were found to be regulated by OenB. Infection experiments in macrophages corroborated the in vitro results. Fluorescence microscopy showed increased levels of chitin in cells treated with OenB. The carbohydrate polymer content of the cell wall of the fungus was also evaluated, and the results corroborated with the transcriptional data. Several other genes, such as those involved in a variety of important cellular processes (i.e., membrane maintenance, stress and virulence) were found to be up-regulated in response to OenB treatment. Conclusions The exposure of Paracoccidioides to OenB resulted in a complex altered gene expression profile. Some of the changes may represent specific adaptive responses to this compound in this important pathogenic fungus. PMID:24119145
BOTTOMLEY, MJ; WEBB, NJA; WATSON, CJ; HOLT, PJL; FREEMONT, AJ; BRENCHLEY, PEC
1999-01-01
This study was designed to investigate VEGF production from peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA) compared with healthy controls and to identify the predominant cellular source in PBMC isolated from RA patients. The regulation of PBMC VEGF production by cytokines and synovial fluid (SF) was studied. PBMC were isolated from RA patients and healthy controls and stimulated with lipopolysaccharide (LPS), IL-1β, IL-4, IL-6, IL-8, IL-10, TNF-α and transforming growth factor-beta (TGF-β) isoforms for varying time points up to 72 h at 37°C/5% CO2. The effect of SF on VEGF secretion by PBMC was also studied. Supernatant VEGF levels were measured using a flt-1 receptor capture ELISA. RA patients had significantly higher spontaneous production of VEGF compared with controls, and monocytes were identified as the predominant cellular source. RA PBMC VEGF production was up-regulated by TGF-β isoforms and TNF-α and down-regulated by IL-4 and IL-10, with no effect observed with IL-1β, IL-6 and IL-8. Antibody blocking experiments confirmed that TNF-α and not TGF-β isoforms in SF increased VEGF secretion by RA PBMC. These results emphasize the importance of monocytes as a source of VEGF in the pathophysiology of RA. Several cytokines known to be present in SF can modulate the level of VEGF secretion, but the predominant effect of SF in VEGF up-regulation is shown to be dependent on TNF-α. PMID:10403932
Ryoko, Okuno; Ito, Yuko; Eid, Nabil; Otsuki, Yoshinori; Kondo, Yoichi; Ueda, Koichi
2018-05-29
Keloid is a fibro-proliferative skin disorder with tumor-like behavior and dependence on anaerobic glycolysis (the Warburg effect), but its exact pathogenesis is unknown. Although autophagy is widely accepted as a lysosomal pathway for cell survival and cellular homeostasis (specifically upon exposure to stressors such as hypoxia), very few studies have investigated the involvement of autophagy and related glycolytic effectors in keloidogenesis. Here the authors examined the expression and cellular localization of autophagy proteins (LC3, pan-cathepsin), glycolytic markers (LDH, MCT1, MCT4) and the transcription factor HIF isoforms in human keloid samples using immunohistochemical analysis and double-labeling immunofluorescence methods. Based on H&E staining and expression of CD31, keloids were compartmentalized into hypoxic central and normoxic marginal zones. Vimentin-expressing fibroblasts in the central zone exhibited greater autophagy than their marginal-zone counterparts, as evidenced by increased LC3 puncta formation and co-localization with lysosomal pan-cathepsin. LDH (a lactate stimulator), MCT4 (a lactate exporter) and HIF-1 α expression levels were also higher in central-zone fibroblasts. Conversely, HIF-2 α expression was upregulated in fibroblasts and endothelial cells of the peripheral zone, while MCT1 was expressed in both zones. Taken together, these observations suggest that upregulation of autophagy and glycolysis markers in keloid hypoxic-zone fibroblasts may indicate a prosurvival mechanism allowing the extrusion of lactate to marginal-zone fibroblasts via metabolic coupling. The authors believe this is the first report on differential expression of autophagic and glycolytic markers in keloid-zone fibroblasts. The study results indicate that autophagy inhibitors and MCT4 blockers may have therapeutic implications in keloid treatment.
Song, Jae-Jun; Kwon, Jee Young; Park, Moo Kyun; Seo, Young Rok
2013-10-01
The primary aim of this study is to reveal the effect of particulate matter (PM) on the human middle ear epithelial cell (HMEEC). The HMEEC was treated with PM (300 μg/ml) for 24 h. Total RNA was extracted and used for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed by using Pathway Studio 9.0 software. For selected genes, the changes in gene expression were confirmed by real-time PCR. A total of 611 genes were regulated by PM. Among them, 366 genes were up-regulated, whereas 245 genes were down-regulated. Up-regulated genes were mainly involved in cellular processes, including reactive oxygen species generation, cell proliferation, apoptosis, cell differentiation, inflammatory response and immune response. Down-regulated genes affected several cellular processes, including cell differentiation, cell cycle, proliferation, apoptosis and cell migration. A total of 21 genes were discovered as crucial components in potential signaling networks containing 2-fold up regulated genes. Four genes, VEGFA, IL1B, CSF2 and HMOX1 were revealed as key mediator genes among the up-regulated genes. A total of 25 genes were revealed as key modulators in the signaling pathway associated with 2-fold down regulated genes. Four genes, including IGF1R, TIMP1, IL6 and FN1, were identified as the main modulator genes. We identified the differentially expressed genes in PM-treated HMEEC, whose expression profile may provide a useful clue for the understanding of environmental pathophysiology of otitis media. Our work indicates that air pollution, like PM, plays an important role in the pathogenesis of otitis media. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Yang, Chun-Tao; Meng, Fu-Hui; Chen, Li; Li, Xiang; Cen, Lai-Jian; Wen, Yu-Hua; Li, Cai-Chen; Zhang, Hui
2017-01-01
Accumulation of advanced glycation end products (AGEs) is a major cause of diabetes mellitus (DM) skin complications. Methylglyoxal (MGO), a reactive dicarbonyl compound, is a crucial intermediate of AGEs generation. N-acetyl-L-cysteine (NAC), an active ingredient of some medicines, can induce endogenous GSH and hydrogen sulfide generation, and set off a condensation reaction with MGO. However, there is rare evidence to show NAC can alleviate DM-induced skin injury through inhibition of AGEs generation or toxicity. The present study aimed to observe the effects of NAC on MGO-induced inflammatory injury and investigate the roles of AGEs and its receptor (RAGE) in NAC's dermal protection in human HaCaT keratinocytes. The cells were exposed to MGO to simulate a high MGO status in diabetic blood or tissues. The content of AGEs in serum or cell medium was measured with ELISA. The protective effects of NAC against MGO-induce injury were evaluated by administration before MGO one hour, in virtue of cell viability, mitochondrial membrane potential, inflammation reaction, nuclear factor (NF)-κB activation, matrix metalloproteinase (MMP)-9 expression, as well as cellular behavioral function. We found the AGEs levels of patients with DM were elevated comparing with healthy volunteers. The in vitro AGEs generation was also able to be enhanced by the exposure of HaCaT cells to MGO, which reduced dose-dependently cellular viability, damaged mitochondrial function, triggered secretion of interleukin (IL)-6 and IL-8, activated NF-κB and upregulated MMP-9 expression. Furthermore, the exposure caused cellular adhesion and migration dysfunction, as well as collagen type I inhibition. Importantly, before the exposure to MGO, the preconditioning with NAC significantly attenuated MGO-induced AGEs generation, improved cellular viability and mitochondrial function, partially reversed the overexpression of proinflammatory factors and MMP-9, as well as the activation of NF-κB. Lastly, NAC blocked MGO-induced RAGE upregulation, and inhibition of RAGE with its neutralizing antibody significantly alleviated MGO-induced NF-κB activation, MMP-9 upregulation and inflammatory injury in HaCaT cells. The present work indicates the administration of NAC can prevent MGO-induced dermal inflammatory injury through inhibition of AGEs/RAGE signal, which may provide a basal support for the treatment of diabetic skin complications with NAC-containing medicines in the future. © 2017 The Author(s)Published by S. Karger AG, Basel.
Ozdian, Tomas; Holub, Dusan; Maceckova, Zuzana; Varanasi, Lakshman; Rylova, Gabriela; Rehulka, Jiri; Vaclavkova, Jana; Slavik, Hanus; Moudry, Pavel; Znojek, Pawel; Stankova, Jarmila; de Sanctis, Juan Bautista; Hajduch, Marian; Dzubak, Petr
2017-06-06
Oxaliplatin is widely used to treat colorectal cancer in both palliative and adjuvant settings. It is also being tested for use in treating hematological, esophageal, biliary tract, pancreatic, gastric, and hepatocellular cancers. Despite its routine clinical use, little is known about the responses it induces in cancer cells. Therefore the whole-cell proteomics study was conducted to characterize the cellular response induced by oxaliplatin. Chemosensitive CCRF-CEM cells were treated with oxaliplatin at 29.3μM (5×IC 50 ) for 240min (half-time to caspase activation). The proteomes of un-/treated cells were then compared by high-resolution mass spectrometry, revealing 4049 proteins expressed over 3 biological replicates. Among these proteins, 76 were significantly downregulated and 31 significantly upregulated in at least two replicates. In agreement with the DNA-damaging effects of platinum drugs, proteins involved in DNA damage responses were present in both the upregulated and downregulated groups. The downregulated proteins were divided into three subgroups; i) centrosomal proteins, ii) RNA processing and iii) ribosomal proteins, which indicates nucleolar and ribosomal stress. In conclusion, our data supported by further validation experiments indicate the initial cellular response to oxaliplatin is the activation of DNA damage response, which in turn or in parallel triggers nucleolar and ribosomal stress. We have performed a whole-cell proteomic study of cellular response to oxaliplatin treatment, which is the drug predominantly used in the treatment of colorectal cancer. Compared to its predecessors, cisplatin and carboplatin, there is only a small fraction of studies dedicated to oxaliplatin. From those studies, most of them are focused on modification of treatment regimens or study of oxaliplatin in new cancer diagnoses. Cellular response hasn't been studied deeply and to our best knowledge, this is the first whole-cell proteomics study focused exclusively to this important topic, which can help to understand molecular mechanisms of action. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat
2012-01-06
Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, wemore » generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.« less
USDA-ARS?s Scientific Manuscript database
CD40 and CD40L interactions have costimulatory effects that are part of a complex series of events in host cellular and humoral immune responses and inflammation. The purpose of this study was to examine the changes in expression of CD40 and CD40L on peripheral blood mononuclear cells (PBMCs) isolat...
Zaytseva, Yekaterina Y.; Harris, Jennifer W.; Mitov, Mihail I.; Kim, Ji Tae; Butterfield, D. Allan; Lee, Eun Y.; Weiss, Heidi L.; Gao, Tianyan; Evers, B. Mark
2015-01-01
Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells and orthotopic CRCs. Immunohistochemical evaluation demonstrated increased expression of FASN and p62, a marker of autophagy inhibition, in primary CRCs and liver metastases compared to matched normal colonic mucosa. Our findings indicate that overexpression of FASN plays a crucial role in maintaining energy homeostasis in CRC via increased oxidation of endogenously synthesized lipids. Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key adaptation mechanisms that mediate the effects of FASN on cancer cell survival and metastasis, providing a strong rationale for targeting this pathway in advanced CRC. PMID:25970773
Zaytseva, Yekaterina Y; Harris, Jennifer W; Mitov, Mihail I; Kim, Ji Tae; Butterfield, D Allan; Lee, Eun Y; Weiss, Heidi L; Gao, Tianyan; Evers, B Mark
2015-08-07
Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells and orthotopic CRCs. Immunohistochemical evaluation demonstrated increased expression of FASN and p62, a marker of autophagy inhibition, in primary CRCs and liver metastases compared to matched normal colonic mucosa. Our findings indicate that overexpression of FASN plays a crucial role in maintaining energy homeostasis in CRC via increased oxidation of endogenously synthesized lipids. Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key adaptation mechanisms that mediate the effects of FASN on cancer cell survival and metastasis, providing a strong rationale for targeting this pathway in advanced CRC.
Xie, Ling; Zheng, Wei; Xin, Na; Xie, Jing-Wei; Wang, Tao; Wang, Zhan-You
2012-08-01
Dysregulation of iron homeostasis is involved in the pathological process of Alzheimer's disease (AD). We have recently reported that divalent metal transporter 1 (DMT1) is upregulated in an AD transgenic mouse brain, and that silencing of DMT1, which reduces cellular iron influx, results in inhibition of amyloidogenesis in vitro, suggesting a potential target of DMT1 for AD therapy. In the present study, we tested the hypothesis that inhibition of DMT1 with ebselen, a DMT1 transport inhibitor, could affect tau phosphorylation. Human neuroblastoma SH-SY5Y cells were pre-treated with ebselen and then treated with ferrous sulfate (dissolved in ascorbic acid), and the effects of ebselen on tau phosphorylation and the relative signaling pathways were examined. Our results showed that ebselen decreased iron influx, reduced iron-induced ROS production, inhibited the activities of cyclin-dependent kinase 5 and glycogen synthase kinase 3β, and ultimately attenuated the levels of tau phosphorylation at the sites of Thr205, Ser396 and Thr231. The present study indicates that the neuroprotective effect of ebselen on AD is not only related to its antioxidant activity as reported previously, but is also associated with a reduction in tau phosphorylation by inhibition of DMT1. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Jinjin; Xu, Pan; Wang, Youlei; Wang, Meirong; Li, Hongbo; Lin, Shengcui; Mao, Cuiping; Wang, Bingsi; Song, Xiaodong; Lv, Changjun
2015-09-01
Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
In Vivo Regulation of Human Skeletal Muscle Gene Expression by Thyroid Hormone
Clément, Karine; Viguerie, Nathalie; Diehn, Maximilian; Alizadeh, Ash; Barbe, Pierre; Thalamas, Claire; Storey, John D.; Brown, Patrick O.; Barsh, Greg S.; Langin, Dominique
2002-01-01
Thyroid hormones are key regulators of metabolism that modulate transcription via nuclear receptors. Hyperthyroidism is associated with increased metabolic rate, protein breakdown, and weight loss. Although the molecular actions of thyroid hormones have been studied thoroughly, their pleiotropic effects are mediated by complex changes in expression of an unknown number of target genes. Here, we measured patterns of skeletal muscle gene expression in five healthy men treated for 14 days with 75 μg of triiodothyronine, using 24,000 cDNA element microarrays. To analyze the data, we used a new statistical method that identifies significant changes in expression and estimates the false discovery rate. The 381 up-regulated genes were involved in a wide range of cellular functions including transcriptional control, mRNA maturation, protein turnover, signal transduction, cellular trafficking, and energy metabolism. Only two genes were down-regulated. Most of the genes are novel targets of thyroid hormone. Cluster analysis of triiodothyronine-regulated gene expression among 19 different human tissues or cell lines revealed sets of coregulated genes that serve similar biologic functions. These results define molecular signatures that help to understand the physiology and pathophysiology of thyroid hormone action. [The list of transcripts corresponding to up-regulated and down-regulated genes is available as a web supplement at http://www.genome.org.] PMID:11827947
Genomic expression patterns of cardiac tissues from dogs with dilated cardiomyopathy.
Oyama, Mark A; Chittur, Sridar
2005-07-01
To evaluate global genome expression patterns of left ventricular tissues from dogs with dilated cardiomyopathy (DCM). Tissues obtained from the left ventricle of 2 Doberman Pinschers with end-stage DCM and 5 healthy control dogs. Transcriptional activities of 23,851 canine DNA sequences were determined by use of an oligonucleotide microarray. Genome expression patterns of DCM tissue were evaluated by measuring the relative amount of complementary RNA hybridization to the microarray probes and comparing it with gene expression for tissues from 5 healthy control dogs. 478 transcripts were differentially expressed (> or = 2.5-fold change). In DCM tissue, expression of 173 transcripts was upregulated and expression of 305 transcripts was downregulated, compared with expression for control tissues. Of the 478 transcripts, 167 genes could be specifically identified. These genes were grouped into 1 of 8 categories on the basis of their primary physiologic function. Grouping revealed that pathways involving cellular energy production, signaling and communication, and cell structure were generally downregulated, whereas pathways involving cellular defense and stress responses were upregulated. Many previously unreported genes that may contribute to the pathophysiologic aspects of heart disease were identified. Evaluation of global expression patterns provides a molecular portrait of heart failure, yields insights into the pathophysiologic aspects of DCM, and identifies intriguing genes and pathways for further study.
Progranulin contributes to endogenous mechanisms of pain defense after nerve injury in mice.
Lim, Hee-Young; Albuquerque, Boris; Häussler, Annett; Myrczek, Thekla; Ding, Aihao; Tegeder, Irmgard
2012-04-01
Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
CD147 promotes the formation of functional osteoclasts through NFATc1 signalling.
Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi
2016-04-29
CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Brito, Jose L.R.; Walker, Brian; Jenner, Matthew; Dickens, Nicholas J.; Brown, Nicola J.M.; Ross, Fiona M.; Avramidou, Athanasia; Irving, Julie A.E.; Gonzalez, David; Davies, Faith E.; Morgan, Gareth J.
2009-01-01
Background The recurrent immunoglobulin translocation, t(4;14)(p16;q32) occurs in 15% of multiple myeloma patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET) genes. The involvement of MMSET in the pathogenesis of t(4;14) multiple myeloma and the mechanism or genes deregulated by MMSET upregulation are still unclear. Design and Methods The expression of MMSET was analyzed using a novel antibody. The involvement of MMSET in t(4;14) myelomagenesis was assessed by small interfering RNA mediated knockdown combined with several biological assays. In addition, the differential gene expression of MMSET-induced knockdown was analyzed with expression microarrays. MMSET gene targets in primary patient material was analyzed by expression microarrays. Results We found that MMSET isoforms are expressed in multiple myeloma cell lines, being exclusively up-regulated in t(4;14)-positive cells. Suppression of MMSET expression affected cell proliferation by both decreasing cell viability and cell cycle progression of cells with the t(4;14) translocation. These findings were associated with reduced expression of genes involved in the regulation of cell cycle progression (e.g. CCND2, CCNG1, BRCA1, AURKA and CHEK1), apoptosis (CASP1, CASP4 and FOXO3A) and cell adhesion (ADAM9 and DSG2). Furthermore, we identified genes involved in the latter processes that were differentially expressed in t(4;14) multiple myeloma patient samples. Conclusions In conclusion, dysregulation of MMSET affects the expression of several genes involved in the regulation of cell cycle progression, cell adhesion and survival. PMID:19059936
Altered receptor trafficking in Huntingtin Interacting Protein 1-transformed cells.
Rao, Dinesh S; Bradley, Sarah V; Kumar, Priti D; Hyun, Teresa S; Saint-Dic, Djenann; Oravecz-Wilson, Katherine; Kleer, Celina G; Ross, Theodora S
2003-05-01
The clathrin-associated protein, Huntingtin Interacting Protein 1 (HIP1), is overexpressed in multiple human epithelial tumors. Here, we report that HIP1 is a novel oncoprotein that transforms cells. HIP1-transformed cells, in contrast to RasV12-transformed cells, have dysregulation of multiple receptors involved in clathrin trafficking. Examples include upregulation of the epidermal growth factor receptor (EGFR) and the transferrin receptor. Furthermore, accumulation of transferrin and EGF in the HIP1-transformed cells was increased, and breast tumors that had EGFR expressed also had HIP1 upregulated. Thus, HIP1 overexpression promotes tumor formation and is associated with a general alteration in receptor trafficking. HIP1 is the first endocytic protein to be directly implicated in tumor formation.
Pu, Jian; Sun, Haina; Wang, Jinda; Wu, Min; Wang, Kangxu; Denholm, Ian; Han, Zhaojun
2016-11-01
As well as arising from single point mutations in binding sites or detoxifying enzymes, it is likely that insecticide resistance mechanisms are frequently controlled by multiple genetic factors, resulting in resistance being inherited as a quantitative trait. However, empirical evidence for this is still rare. Here we analyse the causes of up-regulation of CYP6FU1, a monoxygenase implicated in resistance to deltamethrin in the rice pest Laodelphax striatellus. The 5'-flanking region of this gene was cloned and sequenced from individuals of a susceptible and a resistant strain. A luminescent reporter assay was used to evaluate different 5'-flanking regions and their fragments for promoter activity. Mutations enhancing promoter activity in various fragments were characterized, singly and in combination, by site mutation recovery. Nucleotide diversity in flanking sequences was greatly reduced in deltamethrin-resistant insects compared to susceptible ones. Phylogenetic sequence analysis found that CYP6FU1 had five different types of 5'-flanking region. All five types were present in a susceptible strain but only a single type showing the highest promoter activity was present in a resistant strain. Four cis-acting elements were identified whose influence on up-regulation was much more pronounced in combination than when present singly. Of these, two were new transcription factor (TF) binding sites produced by mutations, another one was also a new TF binding site alternated from an existing one, and the fourth was a unique transcription start site. These results demonstrate that multiple cis-acting elements are involved in up-regulating CYP6FU1 to generate a resistance phenotype. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kerpedjieva, Svetoslava S.; Kim, Duk Soo; Barbeau, Dominique J.
2012-01-01
Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)–EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase–extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands. PMID:22316125
Kerpedjieva, Svetoslava S; Kim, Duk Soo; Barbeau, Dominique J; Tamama, Kenichi
2012-09-01
Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)-EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase-extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands.
Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration
Kamran, Fariha; Andrade, Anenisia C.; Nella, Aikaterini A.; Clokie, Samuel J.; Rezvani, Geoffrey; Nilsson, Ola; Baron, Jeffrey
2015-01-01
Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age–down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3′-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth. PMID:25866874
Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration.
Kamran, Fariha; Andrade, Anenisia C; Nella, Aikaterini A; Clokie, Samuel J; Rezvani, Geoffrey; Nilsson, Ola; Baron, Jeffrey; Lui, Julian C
2015-06-01
Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age-down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3'-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth.
Meimaridou, Eirini; Gooljar, Sakina B; Chapple, J Paul
2009-01-01
Molecular chaperones are best recognized for their roles in de novo protein folding and the cellular response to stress. However, many molecular chaperones, and in particular the Hsp70 chaperone machinery, have multiple diverse cellular functions. At the molecular level, chaperones are mediators of protein conformational change. To facilitate conformational change of client/substrate proteins, in manifold contexts, chaperone power must be closely regulated and harnessed to specific cellular locales--this is controlled by cochaperones. This review considers specialized functions of the Hsp70 chaperone machinery mediated by its cochaperones. We focus on vesicular trafficking, protein degradation and a potential role in G protein-coupled receptor processing.
Cell activation and cellular-cellular interactions during hemodialysis: effect of dialyzer membrane.
Sirolli, V; Ballone, E; Di Stante, S; Amoroso, L; Bonomini, M
2002-06-01
During hemodialysis (HD), circulating blood cells can be activated and also engage in dynamic interplay. These phenomena may be important factors behind dialysis membrane bio(in)compatibility. In the present prospective cross-over study, we have used flow cytometry to evaluate the influence of different dialysis membranes on the activation of circulating blood cells (leukocytes, platelets) and their dynamic interactions (formation of circulating platelet-leukocyte and platelet-erythrocyte aggregates) during in vivo HD. Each patient (n = 10) was treated with dialyzers containing membranes of cellulose diacetate, polysulfone and ethylenevinylalcohol (EVAL) in a randomized order. Upregulation of adhesion receptor expression (CD15s, CD11b/CD18) occurred mainly with the cellulosic membrane, though an increase in CD11b/CD18 circulating on neutrophils was also found with both synthetic membranes. Circulating activated platelets (P-selectin/CD63-positive platelets) increased during HD sessions with cellulose diacetate and polysulfone. An increased formation of platelet-neutrophil aggregates was found at 15 and 30 min during dialysis with cellulose diacetate and polysulfone but not with EVAL. Platelet-erythrocyte aggregates also increased with cellulose diacetate and at 15 min with polysulfone as well. Generally in concomitance with the increase in platelet-neutrophil coaggregates, there was an increased hydrogen peroxide production by neutrophils. The results of this study indicate that cellular mechanisms can be activated during HD largely depending on the membrane material, EVAL causing less reactivity than the other two membranes. It appears that each dialysis membrane has multiple and different characteristics that may contribute to interactions with blood components. Our results also indicate that derivatizing cellulose (cellulose diacetate) may be a useful way to improve the biocompatibility of the cellulose polymer and that there may be great variability in the biocompatibility profile of synthetic membranes, dialysis with polysulfone being in general associated with a higher degree of cell activation than EVAL membrane.
T-oligo as an anticancer agent in colorectal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojdyla, Luke; Stone, Amanda L.; Sethakorn, Nan
Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo,more » an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.« less
Immune Response in Microgravity: Genetic Basis and Countermeasure Development Implications
NASA Technical Reports Server (NTRS)
Risin, Diana; Ward, Nancy E.; Risin, Semyon A.; Pellis, Neal R.
2006-01-01
Impairment of the immunity in astronauts and cosmonauts even in shortterm flights is a recognized risk. Longterm orbital space missions and anticipated interplanetary flights increase the concern for more pronounced effects on the immune system with potential clinical consequences. Studies in true and modeled microgravity (MG) have demonstrated that MG directly affects numerous lymphocyte functions. The purpose of this study was to screen for genes involved in lymphocytes response to modeled microgravity (MMG) that could explain the functional and structural changes observed earlier. The microgravity-induced changes in gene expression were analyzed by microarray DNA chip technology. CD3and IL2activated Tcells were cultured in 1g (static) and modeled microgravity (NASA Rotating Wall Vessel bioreactor) conditions for 24 hours. Total RNA was extracted using the RNeasy isolation kit (Qiagen, Valencia, CA). Microarray experiments were performed utilizing Affymetrix Gene Chips (U133A), allowing testing for 18,400 human genes. To decrease the biological variation and aid in detecting microgravity-associated changes, experiments were performed in triplicate using cells obtained from three different donors. Exposure to modeled microgravity resulted in alteration of 89 genes, 10 of which were upregulated and 79 down-regulated. Altered genes were categorized by their function, structural role and by association with metabolic and regulatory pathways. A large proportion was found to be involved in fundamental cellular processes: signal transduction, DNA repair, apoptosis, and multiple metabolic pathways. There was a group of genes directly related to immune and inflammatory responses (IL7R, granulysin, proteasome activator subunit 2, peroxiredoxin 4, HLADRA, lymphocyte antigen 75, IL18R and DOCK2 genes). Among these genes only one (IL7R) was upregulated, the rest were downregulated. The upregulation of the IL7 receptor gene was confirmed by RT PCR. Three genes with altered expression were identified in the apoptosis related group (Granzyme B, APO2 ligand and Beta3endonexin). All of them were downregulated. Gene expression changes in MG might appear pivotal in identifying potential molecular targets for countermeasure development. (Supported by NRA OLMSA02 and NSCORT NAG54072 grants).
Lee, Yeo Song; Lee, Do Yeon; Yu, Da Yeon; Kim, Shin; Lee, Yong Chan
2014-12-01
Chronic infection with Helicobacter pylori (H. pylori) is causally linked with gastric carcinogenesis. Virulent H. pylori strains deliver bacterial CagA into gastric epithelial cells. Induction of high motility and an elongated phenotype is considered to be CagA-dependent process. Casein kinase 2 plays a critical role in carcinogenesis through signaling pathways related to the epithelial mesenchymal transition. This study was aimed to investigate the effect of H. pylori infection on the casein kinase 2-mediated migration and invasion in gastric epithelial cells. AGS or MKN28 cells as human gastric epithelial cells and H. pylori strains Hp60190 (ATCC 49503, CagA(+)) and Hp8822 (CagA(-)) were used. Cells were infected with H. pylori at multiplicity of infection of 100 : 1 for various times. We measured in vitro kinase assay to examine casein kinase 2 activity and performed immunofluorescent staining to observe E-cadherin complex. We also examined β-catenin transactivation through promoter assay and MMP7 expression by real-time PCR and ELISA. H. pylori upregulates casein kinase 2 activity and inhibition of casein kinase 2 in H. pylori-infected cells profoundly suppressed cell invasiveness and motility. We confirmed that casein kinase 2 mediates membranous α-catenin depletion through dissociation of the α-/β-catenin complex in H. pylori-infected cells. We also found that H. pylori induces β-catenin nuclear translocation and increases MMP7 expressions mediated through casein kinase 2. We show for the first time that CagA(+) H. pylori upregulates cellular invasiveness and motility through casein kinase 2. The demonstration of a mechanistic interplay between H. pylori and casein kinase 2 provides important insights into the role of CagA(+) H. pylori in the gastric cancer invasion and metastasis. © 2014 John Wiley & Sons Ltd.
Ahmed, Hanaa H; Shousha, Wafaa Gh; El-Mezayen, Hatem A; El-Toumy, Sayed A; Sayed, Alaa H; Ramadan, Aesha R
2017-01-01
Hepatocellular carcinoma (HCC) is one of the deadliest primary cancers, with a 5-year survival rate of 10% or less. This study was undertaken to elucidate the underlying biochemical and molecular mechanisms in favor of N-nitrosodiethylamine-induced hepatocellular carcinoma. Furthermore, the aim of this work was extended to explore the efficacy of Ginkgo biloba leaves extract in deterioration of HCC in rats. In the current study, HCC group experienced significant downregulation of ING-3 gene expression and upregulation of Foxp-1 gene expression in liver. Treatment of HCC groups with Ginkgo biloba leaves extract resulted in upregulation of ING-3 and downregulation of Foxp-1 gene expression in liver. In addition, there was significant increase in serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and glypican-3 (GPC-3) levels in HCC group versus the negative control group. In contrast, the groups with HCC subjected to either high or low dose of Ginkgo biloba leaves extract elicited significant reduction (P<0.05) of AFP, CEA and GPC-3 in serum compared to the untreated HCC rats. Besides, histological examination of liver tissue sections of rats in HCC group revealed typical anaplasia. Interestingly, treatment with Ginkgo biloba leaves extract elicited marked improvement in the histological feature of liver tissue in HCC groups. In conclusion, this research indicated that the carcinogenic potency of N-nitrosodiethylamine targeted multiple systems on the cellular and molecular levels. In addition, the results of the current study shed light on the promising anticancer activity of Ginkgo biloba leaves extract in treatment of hepatocellular carcinoma induced chemically in the experimental model through its apoptotic and antiproliferative properties.
Zhang, Chunlei; Zhou, Zhijun; Zhi, Xiao; Ma, Yue; Wang, Kan; Wang, Yuxia; Zhang, Yingge; Fu, Hualin; Jin, Weilin; Pan, Fei; Cui, Daxiang
2015-01-01
Chiral gold nanoclusters (Au NCs) exhibit attracting properties owing to their unique physical and chemical properties. Herein we report for the first time chiral gold nanoclusters' cytotoxicity and potential molecular mechanism. The L-glutathione (i.e. L-GSH) and D-glutathione (i.e. D-GSH)-capped Au NCs were prepared and characterized by HRTEM, UV-vis, photoluminescence and circular dichroism (CD) spectroscopy. Results showed that the CD spectra of L-glutathione (i.e. L-GSH) and D-glutathione (i.e. D-GSH)-capped Au NCs exhibited multiple bands which were identically mirror-imaged, demonstrating that the chirality of GSH-capped NCs had contributions from both the metal core and the ligand. The effects of AuNCs@L-GSH and AuNCs@D-GSH on cells were similar based on the cell physiology related cytotoxicity, although the effects became more prominent in AuNCs@D-GSH treated cells, including ROS generation, mitochondrial membrane depolarization, cell cycle arrest and apoptosis. Global gene expression and pathway analysis displayed that both AuNCs@L-GSH and AuNCs@D-GSH caused the up-regulation of genes involved in cellular rescue and stress response, while AuNCs@D-GSH individually induced up-regulation of transcripts involved in some metabolic- and biosynthetic-related response. MGC-803 cells were more sensitive to the oxidative stress damage induced by chiral Au NCs than GES-1 cells, which was associated with GSTP1 hypermethylation. In conclusion, chiral gold nanoclusters exhibit this chirality-associated regulation of cytotoxicity, different gene expression profiling and epigenetic changes should be responsible for observed phenomena. Our study highlights the importance of the interplays between chiral materials and biological system at sub-nano level. PMID:25553104
Chi, Heng; Sun, Li
2015-11-01
The interleukin (IL)-17 cytokine family participates in the regulation of many cellular functions. In the present study, we analyzed the genomic structure, expression, and promoter activity of four IL-17 members from the teleost fish tongue sole (Cynoglossus semilaevis), i.e. CsIL-17C CsIL-17D, CsIL-17F, and IL-17F like (IL-17Fl). We found that CsIL-17C, CsIL-17D, CsIL-17F, and CsIL-17Fl share 21.2%-28.6% overall sequence identities among themselves and 31.5%-71.2% overall sequence identities with their counterparts in other teleost. All four CsIL-17 members possess an IL-17 domain and four conserved cysteine residues. Phylogenetic analysis classified the four CsIL-17 members into three clusters. Under normal physiological conditions, the four CsIL-17 expressed in multiple tissues, especially non-immune tissues. Bacterial infection upregulated the expression of all four CsIL-17, while viral infection upregulated the expression of CsIL-17D and CsIL-17Fl but downregulated the expression of CsIL-17C and CsIL-17F. The 1.2 kb 5'-flanking regions of the four CsIL-17 exhibited apparent promoter activity and contain a number of putative transcription factor-binding sites. Furthermore, the promoter activities of CsIL-17C, CsIL-17D, and CsIL-17F, but not CsIL-17Fl, were modulated to significant extents by lipopolysaccharide, PolyI:C, and PMA. This study provides the first evidence that in teleost, different IL-17 members differ in expression pattern and promoter activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhu, Jufen; Yu, Xinxu; Xie, Baogui; Gu, Xiaokui; Zhang, Zhenying; Li, Shaojie
2013-06-01
To gain insight into the regulatory mechanisms of oxidative stress responses in filamentous fungi, the genome-wide transcriptional response of Neurospora crassa to menadione was analysed by digital gene expression (DGE) profiling, which identified 779 upregulated genes and 576 downregulated genes. Knockout mutants affecting 130 highly-upregulated genes were tested for menadione sensitivity, which revealed that loss of the transcription factor siderophore regulation (SRE) (a transcriptional repressor for siderophore biosynthesis), catatase-3, cytochrome c peroxidase or superoxide dismutase 1 copper chaperone causes hypersensitivity to menadione. Deletion of sre dramatically increased transcription of the siderophore biosynthesis gene ono and the siderophore iron transporter gene sit during menadione stress, suggesting that SRE is required for repression of iron uptake under oxidative stress conditions. Contrary to its phenotype, the sre deletion mutant showed higher transcriptional levels of genes encoding reactive oxygen species (ROS) scavengers than wild type during menadione stress, which implies that the mutant suffers a higher level of oxidative stress than wild type. Uncontrolled iron uptake in the sre mutant might exacerbate cellular oxidative stress. This is the first report of a negative regulator of iron assimilation participating in the fungal oxidative stress response. In addition to SRE, eight other transcription factor genes were also menadione-responsive but their single gene knockout mutants showed wild-type menadione sensitivity. Two of them, named as mit-2 (menadione induced transcription factor-2) and mit-4 (menadione induced transcription factor-4), were selected for double mutant analysis. The double mutant was hypersensitive to menadione. Similarly, the double mutation of mit-2 and sre also had additive effects on menadione sensitivity, suggesting multiple transcription factors mediate oxidative stress resistance in an additive manner. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Banu, Sakhila K.; Stanley, Jone A.; Lee, JeHoon; Stephen, Sam D.; Arosh, Joe A.; Hoyer, Patricia B.; Burghardt, Robert C.
2011-01-01
Hexavalent chromium (CrVI) has been widely used in industries throughout the world. Increased usage of CrVI and atmospheric emission of CrVI from catalytic converters of automobiles, and its improper disposal causes various health hazards including female infertility. Recently we have reported that lactational exposure to CrVI induced a delay/arrest in follicular development at the secondary follicular stage. In order to investigate the underlying mechanism, primary cultures of rat granulosa cells were treated with 10 μM potassium dichromate (CrVI) for 12 and 24 h, with or without vitamin C pre-treatment for 24 h. The effects of CrVI on intrinsic apoptotic pathway(s) were investigated. Our data indicated that CrVI: (i) induced DNA fragmentation and increased apoptosis, (ii) increased cytochrome c release from the mitochondria to cytosol, (iii) downregulated anti-apoptotic Bcl-2, Bcl-XL, HSP70 and HSP90; upregulated pro-apoptotic BAX and BAD, (iv) altered translocation of Bcl-2, Bcl-XL, BAX, BAD, HSP70 and HSP90 to the mitochondria, (v) upregulated p-ERK and p-JNK, and selectively translocated p-ERK to the mitochondria and nucleus, (vi) activated caspase-3 and PARP, and (vii) increased phosphorylation of p53 at ser-6, ser-9, ser-15, ser-20, ser-37, ser-46 and ser-392, increased p53 transcriptional activation, and downregulated MDM-2. Vitamin C pre-treatment mitigated CrVI effects on apoptosis and related pathways. Our study, for the first time provides a clear insight into the effect of CrVI on multiple pathways that lead to apoptosis of granulosa cells which could be mitigated by vitamin C. PMID:21262251
Benson, Kathleen F.; Beaman, Joni L.; Ou, Boxin; Okubena, Ademola; Okubena, Olajuwon
2013-01-01
Abstract The impact of chronic inflammatory conditions on immune function is substantial, and the simultaneous application of anti-inflammatory and immune modulating modalities has potential for reducing inflammation-induced immune suppression. Sorghum-based foods, teas, beers, and extracts are used in traditional medicine, placing an importance on obtaining an increased understanding of the biological effects of sorghum. This study examined selected anti-inflammatory and immune-modulating properties in vitro of Jobelyn™, containing the polyphenol-rich leaf sheaths from a West African variant of Sorghum bicolor (SBLS). Freshly isolated primary human polymorphonuclear (PMN) and mononuclear cell subsets were used to test selected cellular functions in the absence versus presence of aqueous and ethanol extracts of SBLS. Both aqueous and nonaqueous compounds contributed to reduced reactive oxygen species formation by inflammatory PMN cells, and reduced the migration of these cells in response to the inflammatory chemoattractant leukotriene B4. Distinct effects were seen on lymphocyte and monocyte subsets in cultures of peripheral blood mononuclear cells. The aqueous extract of SBLS triggered robust upregulation of the CD69 activation marker on CD3− CD56+ natural killer (NK) cells, whereas the ethanol extract of SBLS triggered similar upregulation of CD69 on CD3+ CD56+ NKT cells, CD3+ T lymphocytes, and monocytes. This was accompanied by many-fold increases in the chemokines RANTES/CCL5, Mip-1α/CCL3, and MIP-1β/CCL4. Both aqueous and nonaqueous compounds contribute to anti-inflammatory effects, combined with multiple effects on immune cell activation status. These observations may help suggest mechanisms of action that contribute to the traditional use of sorghum-based products, beverages, and extracts for immune support. PMID:23289787
Vanhaeren, Hannes; Nam, Youn-Jeong; De Milde, Liesbeth; Chae, Eunyoung; Storme, Veronique; Weigel, Detlef; Gonzalez, Nathalie; Inzé, Dirk
2017-02-01
The final size of plant organs is determined by a combination of cell proliferation and cell expansion. Leaves account for a large part of above-ground biomass and provide energy to complete the plant's life cycle. Although the final size of leaves is remarkably constant under fixed environmental conditions, several genes have been described to enhance leaf growth when their expression is modulated. In Arabidopsis (Arabidopsis thaliana), mutations in DA1 and BB increase leaf size, an effect that is synergistically enhanced in the double mutant. Here, we show that overexpression of a dominant-negative version of DA1 enhances leaf size in a broad range of natural accessions of this species, indicating a highly conserved role of this protein in controlling organ size. We also found that during early stages of development, leaves of da1-1 and bb/eod1-2 mutants were already larger than the isogenic Col-0 wild type, but this phenotype was triggered by different cellular mechanisms. Later during development, da1-1 and bb/eod1-2 leaves showed a prolonged longevity, which was enhanced in the double mutant. Conversely, ectopic expression of DA1 or BB restricted growth and promoted leaf senescence. In concert, shortly upon induction of DA1 and BB expression, several marker genes for the transition from proliferation to expansion were highly up-regulated. Additionally, multiple genes involved in maintaining the mitotic cell cycle were rapidly down-regulated and senescence genes were strongly up-regulated, particularly upon BB induction. With these results, we demonstrate that DA1 and BB restrict leaf size and promote senescence through converging and different mechanisms. © 2017 American Society of Plant Biologists. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banu, Sakhila K., E-mail: skbanu@cvm.tamu.edu; Stanley, Jone A.; Lee, JeHoon
Hexavalent chromium (CrVI) has been widely used in industries throughout the world. Increased usage of CrVI and atmospheric emission of CrVI from catalytic converters of automobiles, and its improper disposal causes various health hazards including female infertility. Recently we have reported that lactational exposure to CrVI induced a delay/arrest in follicular development at the secondary follicular stage. In order to investigate the underlying mechanism, primary cultures of rat granulosa cells were treated with 10 {mu}M potassium dichromate (CrVI) for 12 and 24 h, with or without vitamin C pre-treatment for 24 h. The effects of CrVI on intrinsic apoptotic pathway(s)more » were investigated. Our data indicated that CrVI: (i) induced DNA fragmentation and increased apoptosis, (ii) increased cytochrome c release from the mitochondria to cytosol, (iii) downregulated anti-apoptotic Bcl-2, Bcl-XL, HSP70 and HSP90; upregulated pro-apoptotic BAX and BAD, (iv) altered translocation of Bcl-2, Bcl-XL, BAX, BAD, HSP70 and HSP90 to the mitochondria, (v) upregulated p-ERK and p-JNK, and selectively translocated p-ERK to the mitochondria and nucleus, (vi) activated caspase-3 and PARP, and (vii) increased phosphorylation of p53 at ser-6, ser-9, ser-15, ser-20, ser-37, ser-46 and ser-392, increased p53 transcriptional activation, and downregulated MDM-2. Vitamin C pre-treatment mitigated CrVI effects on apoptosis and related pathways. Our study, for the first time provides a clear insight into the effect of CrVI on multiple pathways that lead to apoptosis of granulosa cells which could be mitigated by vitamin C.« less
Vanhaeren, Hannes; De Milde, Liesbeth
2017-01-01
The final size of plant organs is determined by a combination of cell proliferation and cell expansion. Leaves account for a large part of above-ground biomass and provide energy to complete the plant’s life cycle. Although the final size of leaves is remarkably constant under fixed environmental conditions, several genes have been described to enhance leaf growth when their expression is modulated. In Arabidopsis (Arabidopsis thaliana), mutations in DA1 and BB increase leaf size, an effect that is synergistically enhanced in the double mutant. Here, we show that overexpression of a dominant-negative version of DA1 enhances leaf size in a broad range of natural accessions of this species, indicating a highly conserved role of this protein in controlling organ size. We also found that during early stages of development, leaves of da1-1 and bb/eod1-2 mutants were already larger than the isogenic Col-0 wild type, but this phenotype was triggered by different cellular mechanisms. Later during development, da1-1 and bb/eod1-2 leaves showed a prolonged longevity, which was enhanced in the double mutant. Conversely, ectopic expression of DA1 or BB restricted growth and promoted leaf senescence. In concert, shortly upon induction of DA1 and BB expression, several marker genes for the transition from proliferation to expansion were highly up-regulated. Additionally, multiple genes involved in maintaining the mitotic cell cycle were rapidly down-regulated and senescence genes were strongly up-regulated, particularly upon BB induction. With these results, we demonstrate that DA1 and BB restrict leaf size and promote senescence through converging and different mechanisms. PMID:28003326
Dai, Weijun; Li, Wencheng; Hoque, Mainul; Li, Zhuyun; Tian, Bin; Makeyev, Eugene V.
2015-01-01
Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 3′-untranslated regions (3′ UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36), an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly, TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand, inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons. PMID:26144867
Dong, Yun-Wei; Han, Guo-Dong; Huang, Xiong-Wei
2014-09-01
In the natural environment, organisms are exposed to large variations in physical conditions. Quantifying such physiological responses is, however, often performed in laboratory acclimation studies, in which usually only a single factor is varied. In contrast, field acclimatization may expose organisms to concurrent changes in several environmental variables. The interactions of these factors may have strong effects on organismal function. In particular, rare events that occur stochastically and have relatively short duration may have strong effects. The present experiments studied levels of expression of several genes associated with cellular stress and metabolic regulation in a field population of limpet Cellana toreuma that encountered a wide range of temperatures plus periodic rain events. Physiological responses to these variable conditions were quantified by measuring levels of mRNA of genes encoding heat-shock proteins (Hsps) and metabolic sensors (AMPKs and Sirtuin 1). Our results reveal high ratios of individuals in upregulation group of stress-related gene expression at high temperature and rainy days, indicating the occurrence of stress from both prevailing high summer temperatures and occasional rainfall during periods of emersion. At high temperature, stress due to exposure to rainfall may be more challenging than heat stress alone. The highly variable physiological performances of limpets in their natural habitats indicate the possible differences in capability for physiological regulation among individuals. Our results emphasize the importance of studies of field acclimatization in unravelling the effects of environmental change on organisms, notably in the context of multiple changes in abiotic factors that are accompanying global change. © 2014 John Wiley & Sons Ltd.
Pellegrino, R; Sunaga, D Y; Guindalini, C; Martins, R C S; Mazzotti, D R; Wei, Z; Daye, Z J; Andersen, M L; Tufik, S
2012-11-01
Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.
Anania, Veronica G.; Yu, Kebing; Gnad, Florian; Pferdehirt, Rebecca R.; Li, Han; Ma, Taylur P.; Jeon, Diana; Fortelny, Nikolaus; Forrest, William; Ashkenazi, Avi; Overall, Christopher M.; Lill, Jennie R.
2016-01-01
Many diseases are associated with endoplasmic reticulum (ER) stress, which results from an accumulation of misfolded proteins. This triggers an adaptive response called the “unfolded protein response” (UPR), and prolonged exposure to ER stress leads to cell death. Caspases are reported to play a critical role in ER stress-induced cell death but the underlying mechanisms by which they exert their effect continue to remain elusive. To understand the role caspases play during ER stress, a systems level approach integrating analysis of the transcriptome, proteome, and proteolytic substrate profile was employed. This quantitative analysis revealed transcriptional profiles for most human genes, provided information on protein abundance for 4476 proteins, and identified 445 caspase substrates. Based on these data sets many caspase substrates were shown to be downregulated at the protein level during ER stress suggesting caspase activity inhibits their cellular function. Additionally, RNA sequencing revealed a role for caspases in regulation of ER stress-induced transcriptional pathways and gene set enrichment analysis showed expression of multiple gene targets of essential transcription factors to be upregulated during ER stress upon inhibition of caspases. Furthermore, these transcription factors were degraded in a caspase-dependent manner during ER stress. These results indicate that caspases play a dual role in regulating the cellular response to ER stress through both post-translational and transcriptional regulatory mechanisms. Moreover, this study provides unique insight into progression of the unfolded protein response into cell death, which may help identify therapeutic strategies to treat ER stress-related diseases. PMID:27125827
Anania, Veronica G; Yu, Kebing; Gnad, Florian; Pferdehirt, Rebecca R; Li, Han; Ma, Taylur P; Jeon, Diana; Fortelny, Nikolaus; Forrest, William; Ashkenazi, Avi; Overall, Christopher M; Lill, Jennie R
2016-07-01
Many diseases are associated with endoplasmic reticulum (ER) stress, which results from an accumulation of misfolded proteins. This triggers an adaptive response called the "unfolded protein response" (UPR), and prolonged exposure to ER stress leads to cell death. Caspases are reported to play a critical role in ER stress-induced cell death but the underlying mechanisms by which they exert their effect continue to remain elusive. To understand the role caspases play during ER stress, a systems level approach integrating analysis of the transcriptome, proteome, and proteolytic substrate profile was employed. This quantitative analysis revealed transcriptional profiles for most human genes, provided information on protein abundance for 4476 proteins, and identified 445 caspase substrates. Based on these data sets many caspase substrates were shown to be downregulated at the protein level during ER stress suggesting caspase activity inhibits their cellular function. Additionally, RNA sequencing revealed a role for caspases in regulation of ER stress-induced transcriptional pathways and gene set enrichment analysis showed expression of multiple gene targets of essential transcription factors to be upregulated during ER stress upon inhibition of caspases. Furthermore, these transcription factors were degraded in a caspase-dependent manner during ER stress. These results indicate that caspases play a dual role in regulating the cellular response to ER stress through both post-translational and transcriptional regulatory mechanisms. Moreover, this study provides unique insight into progression of the unfolded protein response into cell death, which may help identify therapeutic strategies to treat ER stress-related diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Effects of salinity on the cellular physiological responses of Natrinema sp. J7-2
Mei, Yunjun; Liu, Huan; Zhang, Shunxi; Yang, Ming; Hu, Chun; Zhang, Jian; Shen, Ping; Chen, Xiangdong
2017-01-01
The halophilic archaea (haloarchaea) live in hyersaline environments such as salt lakes, salt ponds and marine salterns. To cope with the salt stress conditions, haloarchaea have developed two fundamentally different strategies: the "salt-in" strategy and the "compatible-solute" strategy. Although investigation of the molecular mechanisms underlying the tolerance to high salt concentrations has made outstanding achievements, experimental study from the aspect of transcription is rare. In the present study, we monitored cellular physiology of Natrinema sp. J7-2 cells incubated in different salinity media (15%, 25% and 30% NaCl) from several aspects, such as cellular morphology, growth, global transcriptome and the content of intracellular free amino acids. The results showed that the cells were polymorphic and fragile at a low salt concentration (15% NaCl) but had a long, slender rod shape at high salt concentrations (25% and 30% NaCl). The cells grew best in 25% NaCl, mediocre in 30% NaCl and struggled in 15% NaCl. An RNA-seq analysis revealed differentially expressed genes (DEGs) in various salinity media. A total of 1,148 genes were differentially expressed, consisting of 719 DEGs (348 up-regulated and 371 down-regulated genes) between cells in 15% vs 25% NaCl, and 733 DEGs (521 up-regulated and 212 down-regulated genes) between cells in 25% vs 30% NaCl. Moreover, 304 genes were commonly differentially expressed in both 15% vs 25% and 25% vs30% NaCl. The DEGs were enriched in different KEGG metabolic pathways, such as amino acids, glycerolipid, ribosome, nitrogen, protoporphyrin, porphyrin and porhiniods. The intracellular predominant free amino acids consisted of the glutamate family (Glu, Arg and Pro), aspartate family (Asp) and aromatic amino acids (Phe and Trp), especially Glu and Asp. PMID:28926633
Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy
Bhuvaneswari, Ramaswamy; Gan, Yik Y; Lucky, Sasidharan S; Chin, William WL; Ali, Seyed M; Soo, Khee C; Olivo, Malini
2008-01-01
Background Photodynamic therapy (PDT) involves the administration of a tumor-localizing photosensitizing drug, which is activated by light of specific wavelength in the presence of molecular oxygen thus generating reactive oxygen species that is toxic to the tumor cells. PDT selectively destroys photosensitized tissue leading to various cellular and molecular responses. The present study was designed to examine the angiogenic responses at short (0.5 h) and long (6 h) drug light interval (DLI) hypericin-PDT (HY-PDT) treatment at 24 h and 30 days post treatment in a human bladder carcinoma xenograft model. As short DLI targets tumor vasculature and longer DLI induces greater cellular damage, we hypothesized a differential effect of these treatments on the expression of angiogenic factors. Results Immunohistochemistry (IHC) results showed minimal CD31 stained endothelium at 24 h post short DLI PDT indicating extensive vascular damage. Angiogenic proteins such as vascular endothelial growth factor (VEGF), tumor necrosis growth factor-α (TNF-α), interferon-α (IFN-α) and basic fibroblast growth factor (bFGF) were expressed to a greater extent in cellular targeting long DLI PDT compared to vascular mediated short DLI PDT. Gene expression profiling for angiogenesis pathway demonstrated downregulation of adhesion molecules – cadherin 5, collagen alpha 1 and 3 at 24 h post treatment. Hepatocyte growth factor (HGF) and Ephrin-A3 (EFNA3) were upregulated in all treatment groups suggesting a possible activation of c-Met and Ephrin-Eph signaling pathways. Conclusion In conclusion, long DLI HY-PDT induces upregulation of angiogenic proteins. Differential expression of genes involved in the angiogenesis pathway was observed in the various groups treated with HY-PDT. PMID:18549507
Bøhn, Siv K; Myhrstad, Mari C; Thoresen, Magne; Holden, Marit; Karlsen, Anette; Tunheim, Siv Haugen; Erlund, Iris; Svendsen, Mette; Seljeflot, Ingebjørg; Moskaug, Jan O; Duttaroy, Asim K; Laake, Petter; Arnesen, Harald; Tonstad, Serena; Collins, Andrew; Drevon, Christan A; Blomhoff, Rune
2010-09-16
Plant-based diets rich in fruit and vegetables can prevent development of several chronic age-related diseases. However, the mechanisms behind this protective effect are not elucidated. We have tested the hypothesis that intake of antioxidant-rich foods can affect groups of genes associated with cellular stress defence in human blood cells. NCT00520819 http://clinicaltrials.gov. In an 8-week dietary intervention study, 102 healthy male smokers were randomised to either a diet rich in various antioxidant-rich foods, a kiwifruit diet (three kiwifruits/d added to the regular diet) or a control group. Blood cell gene expression profiles were obtained from 10 randomly selected individuals of each group. Diet-induced changes on gene expression were compared to controls using a novel application of the gene set enrichment analysis (GSEA) on transcription profiles obtained using Affymetrix HG-U133-Plus 2.0 whole genome arrays. Changes were observed in the blood cell gene expression profiles in both intervention groups when compared to the control group. Groups of genes involved in regulation of cellular stress defence, such as DNA repair, apoptosis and hypoxia, were significantly upregulated (GSEA, FDR q-values < 5%) by both diets compared to the control group. Genes with common regulatory motifs for aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (AhR/ARNT) were upregulated by both interventions (FDR q-values < 5%). Plasma antioxidant biomarkers (polyphenols/carotenoids) increased in both groups. The observed changes in the blood cell gene expression profiles suggest that the beneficial effects of a plant-based diet on human health may be mediated through optimization of defence processes.
Kulski, Jerzy K; Kenworthy, William; Bellgard, Matthew; Taplin, Ross; Okamoto, Koichi; Oka, Akira; Mabuchi, Tomotaka; Ozawa, Akira; Tamiya, Gen; Inoko, Hidetoshi
2005-12-01
Gene expression profiling was performed on biopsies of affected and unaffected psoriatic skin and normal skin from seven Japanese patients to obtain insights into the pathways that control this disease. HUG95A Affymetrix DNA chips that contained oligonucleotide arrays of approximately 12,000 well-characterized human genes were used in the study. The statistical analysis of the Affymetrix data, based on the ranking of the Student t-test statistic, revealed a complex regulation of molecular stress and immune gene responses. The majority of the 266 induced genes in affected and unaffected psoriatic skin were involved with interferon mediation, immunity, cell adhesion, cytoskeleton restructuring, protein trafficking and degradation, RNA regulation and degradation, signalling transduction, apoptosis and atypical epidermal cellular proliferation and differentiation. The disturbances in the normal protein degradation equilibrium of skin were reflected by the significant increase in the gene expression of various protease inhibitors and proteinases, including the induced components of the ATP/ubiquitin-dependent non-lysosomal proteolytic pathway that is involved with peptide processing and presentation to T cells. Some of the up-regulated genes, such as TGM1, IVL, FABP5, CSTA and SPRR, are well-known psoriatic markers involved in atypical epidermal cellular organization and differentiation. In the comparison between the affected and unaffected psoriatic skin, the transcription factor JUNB was found at the top of the statistical rankings for the up-regulated genes in affected skin, suggesting that it has an important but as yet undefined role in psoriasis. Our gene expression data and analysis suggest that psoriasis is a chronic interferon- and T-cell-mediated immune disease of the skin where the imbalance in epidermal cellular structure, growth and differentiation arises from the molecular antiviral stress signals initiating inappropriate immune responses.
Micro RNA responses to chronic or acute exposures to low dose ionizing radiation
Chaudhry, M. Ahmad; Omaruddin, Romaica A.; Kreger, Bridget; de Toledo, Sonia M.; Azzam, Edouard I.
2014-01-01
Human health risks of exposure to low dose ionizing radiation remain ambiguous and are the subject of intense debate. A wide variety of biological effects are induced after cellular exposure to ionizing radiation, but the underlying molecular mechanism(s) remain to be completely understood. We hypothesized that low dose c-radiation-induced effects are controlled by the modulation of micro RNA (miRNA) that participate in the control of gene expression at the posttranscriptional level and are involved in many cellular processes. We monitored the expression of several miRNA in human cells exposed to acute or chronic low doses of 10 cGy or a moderate dose of 400 cGy of 137Cs γ-rays. Dose, dose rate and time dependent differences in the relative expression of several miRNA were investigated. The expression patterns of many miRNA differed after exposure to either chronic or acute 10 cGy. The expression of miRNA let-7e, a negative regulator of RAS oncogene, and the c-MYC miRNA cluster were upregulated after 10 cGy chronic dose but were downregulated after 3 h of acute 10 cGy. The miR-21 was upregulated in chronic or acute low dose and moderate dose treated cells and its target genes hPDCD4, hPTEN, hSPRY2, and hTPM1 were found to be downregulated. These findings provide evidence that low dose and dose rate c-irradiation dictate the modulation of miRNA, which can result in a differential cellular response than occurs at high doses. This information will contribute to understanding the risks to human health after exposure to low dose radiation. PMID:22367372
Liu, Jianghai; Mak, Timothy Chun-Ping; Banigesh, Ali; Desai, Kaushik; Wang, Rui; Wu, Lingyun
2012-01-01
We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG) formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs), oxidative stress and cellular dysfunction. High glucose (25 mM) incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose) and aldolase B (a key enzyme that catalyzes MG formation from fructose) and enhanced MG formation in human umbilical vein endothelial cells (HUVECs) and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM) and MG (30, 100 µM) increased the formation of N(ε)-carboxyethyl-lysine (CEL, a MG-induced AGE), oxidative stress (determined by the generation of oxidized DCF, H(2)O(2), protein carbonyls and 8-oxo-dG), O-GlcNAc modification (product of the hexosamine pathway), membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger) or alagebrium (an AGEs breaker). In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.
Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration.
Rowley, Thomas J; Bitner, Benjamin F; Ray, Jason D; Lathen, Daniel R; Smithson, Andrew T; Dallon, Blake W; Plowman, Chase J; Bikman, Benjamin T; Hansen, Jason M; Dorenkott, Melanie R; Goodrich, Katheryn M; Ye, Liyun; O'Keefe, Sean F; Neilson, Andrew P; Tessem, Jeffery S
2017-11-01
A hallmark of type 2 diabetes (T2D) is β-cell dysfunction and the eventual loss of functional β-cell mass. Therefore, mechanisms that improve or preserve β-cell function could be used to improve the quality of life of individuals with T2D. Studies have shown that monomeric, oligomeric and polymeric cocoa flavanols have different effects on obesity, insulin resistance and glucose tolerance. We hypothesized that these cocoa flavanols may have beneficial effects on β-cell function. INS-1 832/13-derived β-cells and primary rat islets cultured with a monomeric catechin-rich cocoa flavanol fraction demonstrated enhanced glucose-stimulated insulin secretion, while cells cultured with total cocoa extract and with oligomeric or polymeric procyanidin-rich fraction demonstrated no improvement. The increased glucose-stimulated insulin secretion in the presence of the monomeric catechin-rich fraction corresponded with enhanced mitochondrial respiration, suggesting improvements in β-cell fuel utilization. Mitochondrial complex III, IV and V components are up-regulated after culture with the monomer-rich fraction, corresponding with increased cellular ATP production. The monomer-rich fraction improved cellular redox state and increased glutathione concentration, which corresponds with nuclear factor, erythroid 2 like 2 (Nrf2) nuclear localization and expression of Nrf2 target genes including nuclear respiratory factor 1 (Nrf1) and GA binding protein transcription factor alpha subunit (GABPA), essential genes for increasing mitochondrial function. We propose a model by which monomeric cocoa catechins improve the cellular redox state, resulting in Nrf2 nuclear migration and up-regulation of genes critical for mitochondrial respiration, glucose-stimulated insulin secretion and ultimately improved β-cell function. These results suggest a mechanism by which monomeric cocoa catechins exert their effects as an effective complementary strategy to benefit T2D patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Martinez, Bridget; Soñanez-Organis, José G.; Vázquez-Medina, José Pablo; Viscarra, Jose A.; MacKenzie, Duncan S.; Crocker, Daniel E.; Ortiz, Rudy M.
2013-01-01
SUMMARY Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5–7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic–pituitary–thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism. PMID:24307712
Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang
2016-01-01
Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence.
Seidel, K; Vinet, J; Dunnen, W F A den; Brunt, E R; Meister, M; Boncoraglio, A; Zijlstra, M P; Boddeke, H W G M; Rüb, U; Kampinga, H H; Carra, S
2012-02-01
HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.
Avian leukosis virus subgroup J induces its receptor--chNHE1 up-regulation.
Feng, Weiguo; Meng, Wei; Cai, Liming; Cui, Xiyao; Pan, Zhifang; Wang, Guihua; Cheng, Ziqiang
2016-04-02
Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus which causes immunosuppression and neoplasia in meat-type and egg-type chickens. ALV-J infects host cells via specific interaction between the viral Env and the cell surface receptor -chicken sodium hydrogen exchanger type 1 (chNHE1). NHE1 involved in altering the cellular pH and playing a critical role in tumorigenesis. However, little is known about the other relationship between ALV-J and chNHE1. In ALV-J infected DF-1 cells, the mRNA level of chNHE1 was up-regulated with time-dependent manner tested by real time PCR, and accordingly, intracellular pH was increased tested by spectrofluorometer. In vivo, the mRNA level of chNHE1 was determined by real time PCR in ALV-J infected experimental chickens and field cases. The result showed that the mRNA level of chNHE1 was up-regulated after virus shedding, especially in continuous viremic shedders (CS group). However, no significant difference was found between non-shedding group (NS group) and control group. In field cases, mRNA level of chNHE1 was positively correlated with increasing ALV-J load in tumor bearing and immune tolerance chickens. Furthermore, immunohistochemistry results showed that the protein expression of chNHE1 was up-regulated in different organs of both experimental chickens and tumor bearing chickens compared with the control. Taken together, we conclude that ALV-J induces chNHE1 up-regulation in viremia and neoplasia chickens.
ING2 is upregulated in colon cancer and increases invasion by enhanced MMP13 expression
Kumamoto, Kensuke; Fujita, Kaori; Kurotani, Reiko; Saito, Motonobu; Unoki, Motoko; Hagiwara, Nobutoshi; Shiga, Hideaki; Bowman, Elise D.; Yanaihara, Nozomu; Okamura, Shu; Nagashima, Makoto; Miyamoto, Kotaro; Takenoshita, Seiichi; Yokota, Jun; Harris, Curtis C.
2009-01-01
Inhibitor of growth 2 (ING2) is associated with chromatin remodeling and regulation of gene expression by binding to a methylated histone H3K4 residue and recruiting HDAC complexes to the region. The aim of our study is to investigate the regulation of ING2 expression and the clinical significance of upregulated ING2 in colon cancer. Here, we show that the ING2 mRNA level in colon cancer tissue increased to more than twice than that in normal mucosa in the 45% of colorectal cancer cases that we examined. A putative NF-κB binding site was found in the ING2 promoter region. We confirmed that NF-κB could bind to the ING2 promoter by EMSA and luciferase assays. Subsequent microarray analyses revealed that ING2 upregulates expression of matrix metalloproteinase 13 (MMP13), which enhances cancer invasion and metastasis. ING2 regulation of MMP13 expression was confirmed in both ING2 overexpression and knock down experiments. MMP13 expression was further induced by coexpression of ING2 with HDAC1 or with mSin3A, suggesting that the ING2-HDAC1-mSin3A complex members regulates expression of MMP13. In vitro invasion assay was performed to determine functional significance of ING2 upregulation. ING2 overexpressed cells exhibited greater invasive potential. Taken together, upregulation of ING2 was associated with colon cancer and MMP13-dependent cellular invasion, indicating that ING2 expression might be involved with cancer invasion and metastasis. PMID:19437536
Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis
Nichols, Daniel Brian; De Martini, William; Cottrell, Jessica
2017-01-01
Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence. PMID:28786952
The Vitamin Nicotinamide: Translating Nutrition into Clinical Care
Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen
2009-01-01
Nicotinamide, the amide form of vitamin B3 (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyl-transferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs. PMID:19783937
Kim, Kang-Hoon; Chung, Won-Seok; Kim, Yoomi; Kim, Ki-Suk; Lee, In-Seung; Park, Ji Young; Jeong, Hyeon-Soo; Na, Yun-Cheol; Lee, Chang-Hun; Jang, Hyeung-Jin
2015-08-01
Facilitation of the wound healing process is important because a prolonged wound site increases pain and the risk of infection. In oriental medicine, an extract of Morus alba root (MA) has usually been prescribed as traditional treatment for accelerating wound healing, and it has been proven to be safe for centuries. To study the molecular mechanism of MA-mediated skin wound healing, we performed a primary cell culture and a skin explant culture and observed significant difference between the groups with and without MA extract. In the cellular system, a real-time cell analysis and real-time quantitative PCR were performed. It was found that MA extract enhanced proliferation in a dose-dependent manner on Kera-308 cell line, and up-regulated keratin expression including wound-induced Krt6a. In skin explant culture, the mRNA level derived from cell outgrowth displayed a tendency toward more up-regulated mRNA associated keratin filaments and toward a more up-regulated mRNA level of C-X-C motif chemokine 12 (CXCL12) and a chemokine receptor 4 (CXCR4) axis signaling pathway downstream. In this process, we concluded that MA extract had a scientific possibility of wound repair by increasing intracellular and extracellular supports and by inducing a CXCL12/CXCR4 signaling pathway. Copyright © 2015 John Wiley & Sons, Ltd.
Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir; Noritake, Hidenao; Kimura, Wataru; Wu, Yi-Xin; Kobayashi, Yoshimasa; Uezato, Tadayoshi; Miura, Naoyuki
2012-01-06
The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with ∼50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age. Copyright © 2011 Elsevier Inc. All rights reserved.
Cell Proliferation, Reactive Oxygen and Cellular Glutathione
Day, Regina M.; Suzuki, Yuichiro J.
2005-01-01
A variety of cellular activities, including metabolism, growth, and death, are regulated and modulated by the redox status of the environment. A biphasic effect has been demonstrated on cellular proliferation with reactive oxygen species (ROS)—especially hydrogen peroxide and superoxide—in which low levels (usually submicromolar concentrations) induce growth but higher concentrations (usually >10–30 micromolar) induce apoptosis or necrosis. This phenomenon has been demonstrated for primary, immortalized and transformed cell types. However, the mechanism of the proliferative response to low levels of ROS is not well understood. Much of the work examining the signal transduction by ROS, including H2O2, has been performed using doses in the lethal range. Although use of higher ROS doses have allowed the identification of important signal transduction pathways, these pathways may be activated by cells only in association with ROS-induced apoptosis and necrosis, and may not utilize the same pathways activated by lower doses of ROS associated with increased cell growth. Recent data has shown that low levels of exogenous H2O2 up-regulate intracellular glutathione and activate the DNA binding activity toward antioxidant response element. The modulation of the cellular redox environment, through the regulation of cellular glutathione levels, may be a part of the hormetic effect shown by ROS on cell growth. PMID:18648617
The same pocket in menin binds both MLL and JUND but has opposite effects on transcription
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jing; Gurung, Buddha; Wan, Bingbing
2013-04-08
Menin is a tumour suppressor protein whose loss or inactivation causes multiple endocrine neoplasia 1 (MEN1), a hereditary autosomal dominant tumour syndrome that is characterized by tumorigenesis in multiple endocrine organs. Menin interacts with many proteins and is involved in a variety of cellular processes. Menin binds the JUN family transcription factor JUND and inhibits its transcriptional activity. Several MEN1 missense mutations disrupt the menin-JUND interaction, suggesting a correlation between the tumour-suppressor function of menin and its suppression of JUND-activated transcription. Menin also interacts with mixed lineage leukaemia protein 1 (MLL1), a histone H3 lysine 4 methyltransferase, and functions asmore » an oncogenic cofactor to upregulate gene transcription and promote MLL1-fusion-protein-induced leukaemogenesis. A recent report on the tethering of MLL1 to chromatin binding factor lens epithelium-derived growth factor (LEDGF) by menin indicates that menin is a molecular adaptor coordinating the functions of multiple proteins. Despite its importance, how menin interacts with many distinct partners and regulates their functions remains poorly understood. Here we present the crystal structures of human menin in its free form and in complexes with MLL1 or with JUND, or with an MLL1-LEDGF heterodimer. These structures show that menin contains a deep pocket that binds short peptides of MLL1 or JUND in the same manner, but that it can have opposite effects on transcription. The menin-JUND interaction blocks JUN N-terminal kinase (JNK)-mediated JUND phosphorylation and suppresses JUND-induced transcription. In contrast, menin promotes gene transcription by binding the transcription activator MLL1 through the peptide pocket while still interacting with the chromatin-anchoring protein LEDGF at a distinct surface formed by both menin and MLL1.« less
Cues for cellular assembly of vascular elastin networks
NASA Astrophysics Data System (ADS)
Kothapalli, Chandrasekhar R.
Elastin, a structural protein distributed in the extracellular matrix of vascular tissues is critical to the maintenance of vascular mechanics, besides regulation of cell-signaling pathways involved in injury response and morphogenesis. Thus, congenital absence or disease-mediated degradation of vascular elastin and its malformation within native vessels due to innately poor elastin synthesis by adult vascular cells compromise vascular homeostasis. Current elastin regenerative strategies using tissue engineering principles are limited by the progressive destabilization of tropoelastin mRNA expression in adult vascular cells and the unavailability of scaffolds that can provide cellular cues necessary to up-regulate elastin synthesis and regenerate faithful mimics of native elastin. Since our earlier studies demonstrated the elastogenic utility of hyaluronan (HA)-based cues, we have currently sought to identify a unique set of culture conditions based on HA fragments (0.756-2000 kDa), growth factors (TGF-beta1, IGF-1) and other biomolecules (Cu2+ ions, LOX), which will together enhance synthesis, crosslinking, maturation and fibrous elastin matrix formation by adult SMCs, under both healthy and inflammatory conditions. It was observed that TGF-beta1 (1 ng/mL) together with HA oligomers (0.2 microg/mL) synergistically suppressed SMC proliferation, enhanced tropoelastin (8-fold) and matrix elastin synthesis (5.5-fold), besides improving matrix yield (4.5-fold), possibly by increasing production and activity of lysyl oxidase (LOX). Though addition of IGF-1 alone did not offer any advantage, HA fragments (20-200 kDa) in the presence of IGF-1 stimulated tropoelastin and soluble elastin synthesis more than 2.2-fold, with HMW HA contributing for ˜5-fold increase in crosslinked matrix elastin synthesis. Similarly, 0.1 M of Cu2+ ions, alone or together with HA fragments stimulated synthesis of tropoelastin (4-fold) and crosslinked matrix elastin (4.5-fold), via increases in LOX protein synthesis (2.5-fold); these cues also enhanced deposition of mature elastic fibers (˜1 mum diameter) within these cultures. Interestingly, instead of copper salt addition, even release of Cu 2+ ions (˜0.1 M) from copper nanoparticles (400 ng/mL), concurrent with HA oligomers, promoted crosslinking of elastin into mature matrix, with multiple bundles of highly-crosslinked elastin fiber formation observed (diameter ˜200-500 nm). These results strongly attest to the potential individual and combined benefits of these cues to faithful elastin matrix regeneration by healthy, patient-derived cells within tissue-engineered vascular constructs. When these cues (TGF-beta1 and HA oligomers) were added to TNF-alpha-stimulated SMC cultures, model cell culture systems mimicking phenotypically-altered cells within aneurysms, they upregulated elastin matrix production, organized elastin protein into fibers, and simultaneously stabilized this matrix by attenuating production of elastolytic enzymes. Similarly these cues also attenuated inflammatory cytokines release within cells isolated from induced-aortic aneurysms in rats, and significantly upregulated elastin synthesis and matrix formation by upregulating LOX and desmosine protein amounts. The cues were also highly effective in organizing the elastin into fibrous matrix structures mimicking the native elastin deposition process. The outcomes of this study might be of tremendous use in optimizing design of HA constructs to modulate vascular healing and matrix synthesis following revascularization, and in enabling repair of elastin networks within diseased or inflammatory (aneurysmal) adult vascular tissues.
Tu, Yong-Sheng; He, Jin; Liu, Huan; Lee, Hans C; Wang, Hua; Ishizawa, Jo; Allen, Joshua E; Andreeff, Michael; Orlowski, Robert Z; Davis, Richard E; Yang, Jing
2017-10-01
In multiple myeloma, despite recent improvements offered by new therapies, disease relapse and drug resistance still occur in the majority of patients. Therefore, there is an urgent need for new drugs that can overcome drug resistance and prolong patient survival after failure of standard therapies. The imipridone ONC201 causes downstream inactivation of ERK1/2 signaling and has tumoricidal activity against a variety of tumor types, while its efficacy in preclinical models of myeloma remains unclear. In this study, we treated human myeloma cell lines and patient-derived tumor cells with ONC201. Treatment decreased cellular viability and induced apoptosis in myeloma cell lines, with IC50 values of 1 to 1.5 μM, even in those with high risk features or TP53 loss. ONC201 increased levels of the pro-apoptotic protein Bim in myeloma cells, resulting from decreased phosphorylation of degradation-promoting Bim Ser69 by ERK1/2. In addition, myeloma cell lines made resistant to several standard-of-care agents (by chronic exposure) were equally sensitive to ONC201 as their drug-naïve counterparts, and combinations of ONC201 with proteasome inhibitors had synergistic anti-myeloma activity. Overall, these findings demonstrate that ONC201 kills myeloma cells regardless of resistance to standard-of-care therapies, making it promising for clinical testing in relapsed/refractory myeloma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
HIV-1 Expression Within Resting CD4+ T Cells After Multiple Doses of Vorinostat
Archin, Nancy M.; Bateson, Rosalie; Tripathy, Manoj K.; Crooks, Amanda M.; Yang, Kuo-Hsiung; Dahl, Noelle P.; Kearney, Mary F.; Anderson, Elizabeth M.; Coffin, John M.; Strain, Matthew C.; Richman, Douglas D.; Robertson, Kevin R.; Kashuba, Angela D.; Bosch, Ronald J.; Hazuda, Daria J.; Kuruc, Joann D.; Eron, Joseph J.; Margolis, David M.
2014-01-01
Background. A single dose of the histone deacetylase inhibitor vorinostat (VOR) up-regulates HIV RNA expression within resting CD4+ T cells of treated, aviremic human immunodeficiency virus (HIV)–positive participants. The ability of multiple exposures to VOR to repeatedly disrupt latency has not been directly measured, to our knowledge. Methods. Five participants in whom resting CD4+ T-cell–associated HIV RNA (rc-RNA) increased after a single dose of VOR agreed to receive daily VOR Monday through Wednesday for 8 weekly cycles. VOR serum levels, peripheral blood mononuclear cell histone acetylation, plasma HIV RNA single-copy assays, rc-RNA, total cellular HIV DNA, and quantitative viral outgrowth assays from resting CD4+ T cells were assayed. Results. VOR was well tolerated, with exposures within expected parameters. However, rc-RNA measured after dose 11 (second dose of cycle 4) or dose 22 (second dose of cycle 8) increased significantly in only 3 of the 5 participants, and the magnitude of the rc-RNA increase was much reduced compared with that after a single dose. Changes in histone acetylation were blunted. Results of quantitative viral outgrowth and other assays were unchanged. Conclusions. Although HIV latency is disrupted by an initial VOR dose, the effect of subsequent doses in this protocol was much reduced. We hypothesize that the global effect of VOR results in a refractory period of ≥24 hours. The optimal schedule for VOR administration is still to be defined. PMID:24620025
Neuron specific metabolic adaptations following multi-day exposures to oxygen glucose deprivation.
Zeiger, Stephanie L H; McKenzie, Jennifer R; Stankowski, Jeannette N; Martin, Jacob A; Cliffel, David E; McLaughlin, BethAnn
2010-11-01
Prior exposure to sub toxic insults can induce a powerful endogenous neuroprotective program known as ischemic preconditioning. Current models typically rely on a single stress episode to induce neuroprotection whereas the clinical reality is that patients may experience multiple transient ischemic attacks (TIAs) prior to suffering a stroke. We sought to develop a neuron-enriched preconditioning model using multiple oxygen glucose deprivation (OGD) episodes to assess the endogenous protective mechanisms neurons implement at the metabolic and cellular level. We found that neurons exposed to a five minute period of glucose deprivation recovered oxygen utilization and lactate production using novel microphysiometry techniques. Using the non-toxic and energetically favorable five minute exposure, we developed a preconditioning paradigm where neurons are exposed to this brief OGD for three consecutive days. These cells experienced a 45% greater survival following an otherwise lethal event and exhibited a longer lasting window of protection in comparison to our previous in vitro preconditioning model using a single stress. As in other models, preconditioned cells exhibited mild caspase activation, an increase in oxidized proteins and a requirement for reactive oxygen species for neuroprotection. Heat shock protein 70 was upregulated during preconditioning, yet the majority of this protein was released extracellularly. We believe coupling this neuron-enriched multi-day model with microphysiometry will allow us to assess neuronal specific real-time metabolic adaptations necessary for preconditioning. Copyright © 2010 Elsevier B.V. All rights reserved.
Dose Dependent Dual Effect of Baicalin and Herb Huang Qin Extract on Angiogenesis
Lawless, John; He, Jianchen
2016-01-01
Huang Qin (root of Scutellaria baicalensis) is a widely used herb in different countries for adjuvant therapy of inflammation, diabetes, hypertension, different kinds of cancer and virus related diseases. Baicalin is the main flavonoid in this herb and has been extensively studied for 30 years. The angiogenic effect of herb Huang Qin extract and baicalin was found 13 years ago, however, the results were controversial with pro-angiogenic effect in some studies and anti-angiogenic effect in others. In this paper, the angiogenic effect of baicalin, its aglycone form baicalein and aqueous extract of Huang Qin was studied in chick embryo chorioallantoic membrane (CAM) model. Dose dependent dual effect was found in both aqueous extract and baicalin, but not in baicalein, in which only inhibitory effect was observed. In order to reveal the cellular and molecular mechanism of how baicalin and baicalein affect angiogenesis, cell proliferation and programmed cell death assays were performed in treated CAM. In addition, quantitative PCR array including 84 angiogenesis related genes was used to detect high and low dosage of baicalin and baicalein responsive genes. Low dose baicalin increased cell proliferation in developing blood vessels through upregulation of multiple angiogenic genes expression, but high dose baicalin induced cell death, performing inhibitory effect on angiogenesis. Both high and low dose of baicalein down regulated the expression of multiple angiogenic genes, decreased cell proliferation, and leads to inhibitory effects on angiogenesis. PMID:27902752
COX-2 Elevates Oncogenic miR-526b in Breast Cancer by EP4 Activation.
Majumder, Mousumi; Landman, Erin; Liu, Ling; Hess, David; Lala, Peeyush K
2015-06-01
MicroRNAs (miRs) are small regulatory molecules emerging as potential biomarkers in cancer. Previously, it was shown that COX-2 expression promotes breast cancer progression via multiple mechanisms, including induction of stem-like cells (SLC), owing to activation of the prostaglandin E2 receptor EP4 (PTGER4). COX-2 overexpression also upregulated microRNA-526b (miR-526b), in association with aggressive phenotype. Here, the functional roles of miR-526b in breast cancer and the mechanistic role of EP4 signaling in miR-526b upregulation were examined. A positive correlation was noted between miR-526b and COX-2 mRNA expression in COX-2 disparate breast cancer cell lines. Stable overexpression of miR-526b in poorly metastatic MCF7 and SKBR3 cell lines resulted in increased cellular migration, invasion, EMT phenotype and enhanced tumorsphere formation in vitro, and lung colony formation in vivo in immunodeficient mice. Conversely, knockdown of miR-526b in aggressive MCF7-COX-2 and SKBR3-COX-2 cells reduced oncogenic functions and reversed the EMT phenotype, in vitro. Furthermore, it was determined that miR-526b expression is dependent on EP4 receptor activity and downstream PI3K-AKT and cyclic AMP (cAMP) signaling pathways. PI3K-AKT inhibitors blocked EP4 agonist-mediated miR-526b upregulation and tumorsphere formation in MCF7 and SKBR3 cells. NF-κB inhibitor abrogates EP agonist-stimulated miRNA expression in MCF7 and T47D cells, indicating that the NF-κB pathway is also involved in miR-526b regulation. In addition, inhibition of COX-2, EP4, PI3K, and PKA in COX-2-overexpressing cells downregulated miR-526b and its functions in vitro. Finally, miR-526b expression was significantly higher in cancerous than in noncancerous breast tissues and associated with reduced patient survival. In conclusion, miR-526b promotes breast cancer progression, SLC-phenotype through EP4-mediated signaling, and correlates with breast cancer patient survival. This study presents novel findings that miRNA 526b is a COX-2 upregulated, oncogenic miRNA promoting SLCs, the expression of which follows EP4 receptor-mediated signaling, and is a promising biomarker for monitoring and personalizing breast cancer therapy. ©2015 American Association for Cancer Research.
Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death
Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J.; Cheng, Qiang (Shawn); D’Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M.; Gonzalez Guzman, Michael J.; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K.; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Ryan, Elizabeth P.; Colacci, Anna Maria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K.; Woodrick, Jordan; Scovassi, A.Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H.; Lowe, Leroy; Park, Hyun Ho
2015-01-01
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145
Madsen, Christian T.; Sylvestersen, Kathrine B.; Young, Clifford; Larsen, Sara C.; Poulsen, Jon W.; Andersen, Marianne A.; Palmqvist, Eva A.; Hey-Mogensen, Martin; Jensen, Per B.; Treebak, Jonas T.; Lisby, Michael; Nielsen, Michael L.
2015-01-01
The essential vitamin biotin is a covalent and tenaciously attached prosthetic group in several carboxylases that play important roles in the regulation of energy metabolism. Here we describe increased acetyl-CoA levels and mitochondrial hyperacetylation as downstream metabolic effects of biotin deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin deficiency being involved in various metabolic disorders, this study provides valuable insight into the metabolic effects biotin exerts on eukaryotic cells. PMID:26158509
Blanch, Maria; Rosales, Raquel; Mateos, Raquel; Perez-Gago, María B; Sanchez-Ballesta, Maria T; Escribano, María I; Merodio, Carmen
2015-01-28
To better understand the tolerance of strawberries (Fragaria vesca L.) to high CO2 in storage atmospheres, fermentation and cellular damage were investigated. Fruits were stored for 3 and 6 days at 0 °C in the presence of different CO2 levels (0, 20, or 40%) with 20% O2. Changes in pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) gene expression and in fermentative metabolites, as well as in bound water and malondialdehyde (MDA) concentrations, were analyzed. In strawberries stored without added CO2, up-regulation of PDC and ADH was not associated with an increase in fermentative metabolites. By contrast, moderate ethanol fermentation in fruits exposed to 20% CO2 seems to be essential to maintain fruit metabolism, reducing both lipid peroxidation and cellular water stress. However, if the CO2 concentration increases (40%), the excess acetaldehyde and ethanol produced were closely correlated with a decrease in bound water and production of MDA.
NASA Astrophysics Data System (ADS)
Khetan, Sudhir; Guvendiren, Murat; Legant, Wesley R.; Cohen, Daniel M.; Chen, Christopher S.; Burdick, Jason A.
2013-05-01
Although cell-matrix adhesive interactions are known to regulate stem cell differentiation, the underlying mechanisms, in particular for direct three-dimensional encapsulation within hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of degradation-mediated cellular traction, independently of cell morphology or matrix mechanics. hMSCs within HA hydrogels of equivalent elastic moduli that permit (restrict) cell-mediated degradation exhibited high (low) degrees of cell spreading and high (low) tractions, and favoured osteogenesis (adipogenesis). Moreover, switching the permissive hydrogel to a restrictive state through delayed secondary crosslinking reduced further hydrogel degradation, suppressed traction, and caused a switch from osteogenesis to adipogenesis in the absence of changes to the extended cellular morphology. Furthermore, inhibiting tension-mediated signalling in the permissive environment mirrored the effects of delayed secondary crosslinking, whereas upregulating tension induced osteogenesis even in the restrictive environment.
Garrigues, H Jacques; Rubinchikova, Yelena E; Rose, Timothy M
2014-03-01
Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, Hye Youn
Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation. Ozone also induced rapid increases in TNF-a and IL-6 mRNAs in nasal tissues. In addition, exogenous TNF-α and IL- 6 induced increases in mucin mRNA in nasal tissues in vitro. In conclusion, though ozone alone is sufficient to induce epithelial proliferation and mucin gene upregulation which are early NTE cell events prior to the development of MCM, neutrophilic inflammation is essential for full phenotypic expression of MCM. TNF-α and IL-6 may be putative mediators of the ozone-induced upregulation of mucin mRNA in the NTE.
NASA Astrophysics Data System (ADS)
Hutchins, D. A.; Walworth, N. G.; Fu, F.; Webb, E. A.; Saito, M. A.; Moran, D. M.; McIlvin, M.; Lee, M. D.
2016-02-01
Because the globally-distributed diazotrophic cyanobacterium Trichodesmium is a critical new-nitrogen source to nutrient-deplete marine ecosystems, it is crucial to understand its evolutionary responses to global-change factors as they interact with other important environmental controls such as iron and phosphorus limitation. We grew Trichodesmium under multiple iron and phosphorus (co)-limitation scenarios for 1 year following 7 years of adaptation to both present (380-ppm) and future (750-ppm) CO2 concentrations, and discovered a complex metabolic response specific to Fe/P co-limitation, which includes increased growth rates, whole-cell biochemical restructuring, and cell biomass reduction. The interaction of increasing CO2 with this nutrient co-limited state induced an additional set of comprehensive metabolic shifts away from those seen under present day CO2, characterized by upregulation of a new complement of proteins involved in broad cellular functions, core metabolism, and growth. This restructuring reveals a unique co-limited phenotype under Fe/P "balancing" co-limitation, which fundamentally alters traditional interpretations of interactive nutrient limitations and their subsequent controls on key global biogeochemical processes in both the present and future ocean.
Faião-Flores, Fernanda; Coelho, Paulo Rogério Pinto; Toledo Arruda-Neto, João Dias; Maria-Engler, Silvya Stuchi; Tiago, Manoela; Capelozzi, Vera Luiza; Giorgi, Ricardo Rodrigues; Maria, Durvanei Augusto
2013-01-01
Boron neutron capture therapy (BNCT) is a binary treatment involving selective accumulation of boron carriers in a tumor followed by irradiation with a thermal or epithermal neutron beam. The neutron capture reaction with a boron-10 nucleus yields high linear energy transfer (LET) particles, alpha and 7Li, with a range of 5 to 9 µm. These particles can only travel very short distances and release their damaging energy directly into the cells containing the boron compound. We aimed to evaluate proliferation, apoptosis and extracellular matrix (ECM) modifications of B16F10 melanoma and normal human melanocytes after BNCT. The amounts of soluble collagen and Hsp47, indicating collagen synthesis in the ECM, as well as the cellular markers of apoptosis, were investigated. BNCT decreased proliferation, altered the ECM by decreasing collagen synthesis and induced apoptosis by regulating Bcl-2/Bax in melanoma. Additionally, BNCT also increased the levels of TNF receptor and the cleaved caspases 3, 7, 8 and 9 in melanoma. These results suggest that multiple pathways related to cell death and cell cycle arrest are involved in the treatment of melanoma by BNCT. PMID:23527236
BamHI-A rightward frame 1, an Epstein–Barr virus-encoded oncogene and immune modulator
Hoebe, Eveline K; Le Large, Tessa Y S; Greijer, Astrid E; Middeldorp, Jaap M
2013-01-01
Epstein–Barr virus (EBV) causes several benign and malignant disorders of lymphoid and epithelial origin. EBV-related tumors display distinct patterns of viral latent gene expression, of which the BamHI-A rightward frame 1 (BARF1) is selectively expressed in carcinomas, regulated by cellular differentiation factors including ΔNp63α. BARF1 functions as a viral oncogene, immortalizing and transforming epithelial cells of different origin by acting as a mitogenic growth factor, inducing cyclin-D expression, and up-regulating antiapoptotic Bcl-2, stimulating host cell growth and survival. In addition, secreted hexameric BARF1 has immune evasive properties, functionally corrupting macrophage colony stimulating factor, as supported by recent functional and structural data. Therefore, BARF1, an intracellular and secreted protein, not only has multiple pathogenic functions but also can function as a target for immune responses. Deciphering the role of BARF1 in EBV biology will contribute to novel diagnostic and treatment options for EBV-driven carcinomas. Herein, we discuss recent insights on the regulation of BARF1 expression and aspects of structure-function relating to its oncogenic and immune suppressive properties. © 2013 The Authors. Reviews in Medical Virology published by John Wiley & Sons, Ltd. PMID:23996634
Mlitz, Veronika; Gendronneau, Gaelle; Berlin, Irina; Buchberger, Maria; Eckhart, Leopold; Tschachler, Erwin
2016-01-01
Sestrin 2 (SESN2) is an evolutionarily conserved regulator of mechanistic target of rapamycin complex 1 (mTORC1) which controls central cellular processes such as protein translation and autophagy. Previous studies have suggested that SESN2 itself is subjected to regulation at multiple levels. Here, we investigated the expression of SESN2 in the skin and in isolated skin cells. SESN2 was detected by immunofluorescence analysis in fibroblasts and keratinocytes of human skin. Differentiation of epidermal keratinocytes was not associated with altered SESN2 expression and siRNA-mediated knockdown of SESN2 did not impair stratum corneum formation in vitro. However, SESN2 was increased in both cell types when the expression of its paralog SESN1 was blocked by siRNA-mediated knock down, indicating a compensatory mechanism for the control of expression. Irradiation with UVB but not with UVA significantly increased SESN2 expression in both keratinocytes and fibroblasts. Upregulation of SESN2 expression could be completely blocked by suppression of p53. These results suggest that SESN2 is dispensable for normal epidermal keratinization but involved in the UVB stress response of skin cells.
Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants
Cort, Aysegul; Ozben, Tomris; Saso, Luciano; De Luca, Chiara
2016-01-01
Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed. PMID:26881027
Chen, Ren-An; Sun, Xiao-Mian; Yan, Chang-You; Liu, Li; Hao, Miao-Wang; Liu, Qiang; Jiao, Xi-Ying; Liang, Ying-Min
2016-09-02
Vascular endothelial dysfunction, a central hallmark of diabetes, predisposes diabetic patients to numerous cardiovascular complications. The POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1), is an important transcriptional regulatory factor and regulates divergent pathways depending on the cellular context, but its role in endothelial cells remains poorly understood. Herein, we report for the first time that endothelial PATZ1 expression was abnormally upregulated in diabetic endothelial cells (ECs) regardless of diabetes classification. This stimulatory effect was further confirmed in the high glucose-treated human umbilical vein endothelial cells (HUVECs). From a functional standpoint, transgenic overexpression of PATZ1 in endothelial colony forming cells (ECFCs) blunted angiogenesis in vivo and rendered endothelial cells unresponsive to established angiogenic factors. Mechanistically, PATZ1 acted as a potent transcriptional corepressor of fatty acid-binding protein 4 (FABP4), an essential convergence point for angiogenic and metabolic signaling pathways in ECs. Taken together, endothelial PATZ1 thus potently inhibits endothelial function and angiogenesis via inhibition of FABP4 expression, and abnormal induction of endothelial PATZ1 may contribute to multiple aspects of vascular dysfunction in diabetes. Copyright © 2016. Published by Elsevier Inc.
Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V.; Ding, Jindong; Ip, Colin S.; Gu, Hongmei; Akin, Debra; Dunn, William A.; Bowes Rickman, Catherine; Lewin, Alfred S.; Grant, Maria B.; Boulton, Michael E.
2017-01-01
p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative stress and functions, in part, by modulating ATG10 expression. NFκB p65 activity may be a critical upstream initiator of p62 expression in RPE cells under oxidative stress. PMID:28222108
Fluorescence-based detection and quantification of features of cellular senescence.
Cho, Sohee; Hwang, Eun Seong
2011-01-01
Cellular senescence is a spontaneous organismal defense mechanism against tumor progression which is raised upon the activation of oncoproteins or other cellular environmental stresses that must be circumvented for tumorigenesis to occur. It involves growth-arrest state of normal cells after a number of active divisions. There are multiple experimental routes that can drive cells into a state of senescence. Normal somatic cells and cancer cells enter a state of senescence upon overexpression of oncogenic Ras or Raf protein or by imposing certain kinds of stress such as cellular tumor suppressor function. Both flow cytometry and confocal imaging analysis techniques are very useful in quantitative analysis of cellular senescence phenomenon. They allow quantitative estimates of multiple different phenotypes expressed in multiple cell populations simultaneously. Here we review the various types of fluorescence methodologies including confocal imaging and flow cytometry that are frequently utilized to study a variety of senescence. First, we discuss key cell biological changes occurring during senescence and review the current understanding on the mechanisms of these changes with the goal of improving existing protocols and further developing new ones. Next, we list specific senescence phenotypes associated with each cellular trait along with the principles of their assay methods and the significance of the assay outcomes. We conclude by selecting appropriate references that demonstrate a typical example of each method. Copyright © 2011 Elsevier Inc. All rights reserved.
Cellular telephone interference with medical equipment.
Tri, Jeffrey L; Severson, Rodney P; Firl, Allen R; Hayes, David L; Abenstein, John P
2005-10-01
To assess the potential electromagnetic interference (EMI) effects that new or current-generation cellular telephones have on medical devices. For this study, performed at the Mayo Clinic in Rochester, Minn, between March 9, 2004, and April 24, 2004, we tested 16 different medical devices with 6 cellular telephones to assess the potential for EMI. Two of the medical devices were tested with both new and old interface modules. The 6 cellular telephones chosen represent the different cellular technology protocols in use: Code Division Multiple Access (2 models), Global System for Mobile communications, Integrated Digital Enhanced Network, Time Division Multiple Access, and analog. The cellular telephones were tested when operating at or near their maximum power output. The medical devices, connected to clinical simulators during testing, were monitored by observing the device displays and alarms. Of 510 tests performed, the incidence of clinically important interference was 1.2%; EMI was Induced in 108 tests (21.2%). Interference occurred in 7 (44%) of the 16 devices tested. Cellular telephones can interfere with medical equipment. Technology changes in both cellular telephones and medical equipment may continue to mitigate or may worsen clinically relevant interference. Compared with cellular telephones tested in previous studies, those currently in use must be closer to medical devices before any interference is noticed. However, periodic testing of cellular telephones to determine their effects on medical equipment will be required.
Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy.
Izumi, Hiroto; Torigoe, Takayuki; Ishiguchi, Hiroshi; Uramoto, Hidetaka; Yoshida, Yoichiro; Tanabe, Mizuho; Ise, Tomoko; Murakami, Tadashi; Yoshida, Takeshi; Nomoto, Minoru; Kohno, Kimitoshi
2003-12-01
One of the major obstacles to the successful treatment of cancer is the complex biology of solid tumour development. Although regulation of intracellular pH has been shown to be critically important for many cellular functions, pH regulation has not been fully investigated in the field of cancer. It has, however, been shown that cellular pH is crucial for biological functions such as cell proliferation, invasion and metastasis, drug resistance and apoptosis. Hypoxic conditions are often observed during the development of solid tumours and lead to intracellular and extracellular acidosis. Cellular acidosis has been shown to be a trigger in the early phase of apoptosis and leads to activation of endonucleases inducing DNA fragmentation. To avoid intracellular acidification under such conditions, pH regulators are thought to be up-regulated in tumour cells. Four major types of pH regulator have been identified: the proton pump, the sodium-proton exchanger family (NHE), the bicarbonate transporter family (BCT) and the monocarboxylate transporter family (MCT). Here, we describe the structure and function of pH regulators expressed in tumour tissue. Understanding pH regulation in tumour cells may provide new ways of inducing tumour-specific apoptosis, thus aiding cancer chemotherapy.
Characterization of the cellular response triggered by gold nanoparticle-mediated laser manipulation
NASA Astrophysics Data System (ADS)
Kalies, Stefan; Keil, Sebastian; Sender, Sina; Hammer, Susanne C.; Antonopoulos, Georgios C.; Schomaker, Markus; Ripken, Tammo; Escobar, Hugo Murua; Meyer, Heiko; Heinemann, Dag
2015-11-01
Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle-mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle-mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle-mediated laser manipulation.
Pathophysiology of chest trauma.
Calhoon, J H; Trinkle, J K
1997-05-01
Recent information indicates that there is a complex cellular and molecular generic response to injury that can lead to multi-organ failure. For many years, basic physiology and biochemistry were considered to be the systemic mechanisms to injury, but now it is known that subcellular and molecular events are the keys to unlocking the secrets of the body's response to trauma. The interaction of the endothelial cell with neutrophils and platelets to produce cytokines, free radicals, and upregulating adhesion molecules is especially significant.
2006-06-08
entices speculation on Vpr-mediated modulation of cellular stress responses. The major human small Hsp, HSP27 , represents an important point of...intersection for the two eukaryotic stress response mechanisms, i.e. HSF-mediated HSP expression induction and SAPK cascade activation. While HSP27 ...expression up-regulation requires HSF activation, functional activation of HSP27 requires MK2-catalyzed phosphorylation, and, therefore, p38 pathway
Cao, Huifang; Feng, Ying; Ning, Yunye; Zhang, Zinan; Li, Weihao; Li, Qiang
2015-01-01
Hyperoxic acute lung injury (HALI) is a clinical syndrome as a result of prolonged supplement of high concentrations of oxygen. As yet, no specific treatment is available for HALI. The present study aims to investigate the effects of edaravone on hyperoxia-induced oxidative injury and the underlying mechanism. We treated rats and human pulmonary alveolar epithelial cells with hyperoxia and different concentration of edaravone, then examined the effects of edaravone on cell viability, cell injury and two oxidative products. The roles of heme oxygenase-1 (HO-1) and PI3K/Akt pathway were explored using Western blot and corresponding inhibitors. The results showed that edaravone reduced lung biochemical alterations induced by hyperoxia and mortality of rats, dose-dependently alleviated cell mortality, cell injury, and peroxidation of cellular lipid and DNA oxidative damage. It upregulated cellular HO-1 expression and activity, which was reversed by PI3K/Akt pathway inhibition. The administration of zinc protoporphyrin-IX, a HO-1 inhibitor, and LY249002, a PI3K/Akt pathway inhibitor, abolished the protective effects of edaravone in cells. This study indicates that edaravone protects rats and human pulmonary alveolar epithelial cells against hyperoxia-induced injury and the antioxidant effect may be related to upregulation of HO-1, which is regulated by PI3K/Akt pathway.
Coagulation factor Xa drives tumor cells into apoptosis through BH3-only protein Bim up-regulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borensztajn, Keren S.; Bijlsma, Maarten F.; Groot, Angelique P.
2007-07-15
Coagulation Factor (F)Xa is a serine protease that plays a crucial role during blood coagulation by converting prothrombin into active thrombin. Recently, however, it emerged that besides this role in coagulation, FXa induces intracellular signaling leading to different cellular effects. Here, we show that coagulation factor (F)Xa drives tumor cells of epithelial origin, but not endothelial cells or monocytes, into apoptosis, whereas it even enhances fibroblast survival. FXa signals through the protease activated receptor (PAR)-1 to activate extracellular-signal regulated kinase (ERK) 1/2 and p38. This activation is associated with phosphorylation of the transcription factor CREB, and in tumor cells withmore » up-regulation of the BH3-only pro-apoptotic protein Bim, leading to caspase-3 cleavage, the main hallmark of apoptosis. Transfection of tumor cells with dominant negative forms of CREB or siRNA for either PAR-1, Bim, ERK1 and/or p38 inhibited the pro-apoptotic effect of FXa. In fibroblasts, FXa-induced PAR-1 activation leads to down-regulation of Bim and pre-treatment with PAR-1 or Bim siRNA abolishes proliferation. We thus provide evidence that beyond its role in blood coagulation, FXa plays a key role in cellular processes in which Bim is the central player in determining cell survival.« less
Wong, Hoi Shan; Chen, Na; Leong, Pou Kuan; Ko, Kam Ming
2014-07-01
Herba Cistanches (Cistanche deserticola Y. C. Ma) is a 'Yang-invigorating' tonic herb in Chinese medicine. Preliminary chemical analysis indicated that β-sitosterol (BS) is one of the chemical constituents in an active fraction of Herba Cistanches. To investigate whether BS is an active ingredient of Herba Cistanches, the effects of BS on H9c2 cells and rat hearts were examined. The results indicated that BS stimulated the mitochondrial ATP generation capacity in H9c2 cells, which was associated with the increased production of mitochondrial reactive oxygen species. BS also stimulated mitochondrial state 3 and state 4 respiration, with the resultant decrease in coupling efficiency. BS produced an up-regulation of cellular glutathione redox cycling and protected against hypoxia/reoxygenation-induced apoptosis in H9c2 cells. However, the protective effect of BS against myocardial ischemia/reperfusion injury was seen in female but not male rats ex vivo. The cardioprotection afforded by BS was likely mediated by an up-regulation of mitochondrial glutathione redox cycling in female rat hearts. In conclusion, the ensemble of results suggests that BS is an active ingredient of Herba Cistanches. The gender-dependent effect of BS on myocardial protection will further be investigated. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eitsuka, Takahiro, E-mail: eitsuka@nupals.ac.jp; Tatewaki, Naoto; Nishida, Hiroshi
2014-10-24
Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1more » (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vi, Linda; Feng, Lucy; Zhu, Rebecca D.
2009-12-10
Dupuytren's disease, (DD), is a fibroproliferative condition of the palmar fascia in the hand, typically resulting in permanent contracture of one or more fingers. This fibromatosis is similar to scarring and other fibroses in displaying excess collagen secretion and contractile myofibroblast differentiation. In this report we expand on previous data demonstrating that POSTN mRNA, which encodes the extra-cellular matrix protein periostin, is up-regulated in Dupuytren's disease cord tissue relative to phenotypically normal palmar fascia. We demonstrate that the protein product of POSTN, periostin, is abundant in Dupuytren's disease cord tissue while little or no periostin immunoreactivity is evident in patient-matchedmore » control tissues. The relevance of periostin up-regulation in DD was assessed in primary cultures of cells derived from diseased and phenotypically unaffected palmar fascia from the same patients. These cells were grown in type-1 collagen-enriched culture conditions with or without periostin addition to more closely replicate the in vivo environment. Periostin was found to differentially regulate the apoptosis, proliferation, {alpha} smooth muscle actin expression and stressed Fibroblast Populated Collagen Lattice contraction of these cell types. We hypothesize that periostin, secreted by disease cord myofibroblasts into the extra-cellular matrix, promotes the transition of resident fibroblasts in the palmar fascia toward a myofibroblast phenotype, thereby promoting disease progression.« less
Zeeshan, Mohammed; Murugadas, Anbazhagan; Ghaskadbi, Surendra; Ramaswamy, Babu Rajendran; Akbarsha, Mohammad Abdulkader
2017-05-01
The mechanisms underlying cobalt toxicity in aquatic species in general and cnidarians in particular remain poorly understood. Herein we investigated cobalt toxicity in a Hydra model from morphological, histological, developmental, and molecular biological perspectives. Hydra, exposed to cobalt (0-60 mg/L), were altered in morphology, histology, and regeneration. Exposure to standardized sublethal doses of cobalt impaired feeding by affecting nematocytes, which in turn affected reproduction. At the cellular level, excessive ROS generation, as the principal mechanism of action, primarily occurred in the lysosomes, which was accompanied by the upregulation of expression of the antioxidant genes SOD, GST, GPx, and G6PD. The number of Hsp70 and FoxO transcripts also increased. Interestingly, the upregulations were higher in the 24-h than in the 48-h time-point group, indicating that ROS overwhelmed the cellular defense mechanisms at the latter time-point. Comet assay revealed DNA damage. Cell cycle analysis indicated the induction of apoptosis accompanied or not by cell cycle arrest. Immunoblot analyses revealed that cobalt treatment triggered mitochondria-mediated apoptosis as inferred from the modulation of the key proteins Bax, Bcl-2, and caspase-3. From this data, we suggest the use of Hydra as a model organism for the risk assessment of heavy metal pollution in aquatic ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Attia, Mohamed; Scott, Alexander; Duchesnay, Arlette; Carpentier, Gilles; Soslowsky, Louis J; Huynh, Minh Bao; Van Kuppevelt, Toin H; Gossard, Camille; Courty, José; Tassoni, Marie-Claude; Martelly, Isabelle
2012-01-01
Supraspinatus tendon overuse injuries lead to significant pain and disability in athletes and workers. Despite the prevalence and high social cost of these injuries, the early pathological events are not well known. We analyzed the potential relation between glycosaminoglycan (GAG) composition and phenotypic cellular alteration using a rat model of rotator cuff overuse. Total sulfated GAGs increased after 4 weeks of overuse and remained elevated up to 16 weeks. GAG accumulation was preceded by up-regulation of decorin, versican, and aggrecan proteoglycans (PGs) mRNAs and proteins and biglycan PG mRNA after 2 weeks. At 2 weeks, collagen 1 transcript decreased whereas mRNAs for collagen 2, collagen 3, collagen 6, and the transcription factor Sox9 were increased. Protein levels of heparin affine regulatory peptide (HARP)/pleiotrophin, a cytokine known to regulate developmental chondrocyte formation, were enhanced especially at 4 weeks, without up-regulation of HARP/pleiotrophin mRNA. Further results suggest that the increased GAGs present in early lesions may sequester HARP/pleiotrophin, which could contribute to a loss of tenocyte's phenotype. All these modifications are characteristic of a shift towards the chondrocyte phenotype. Identification of these early changes in the extra-cellular matrix may help to prevent the progression of the pathology to more disabling, degenerative alterations. Copyright © 2011 Orthopaedic Research Society.
Zhong, Huaqing; Hu, Xinran; Janowski, Andrew B; Storch, Gregory A; Su, Liyun; Cao, Lingfeng; Yu, Jinsheng; Xu, Jin
2017-12-19
Epstein-Barr virus (EBV) is a common human pathogen that infects over 95% of the population worldwide. In the present study, the whole transcriptome microarray data were generated from peripheral blood mononuclear cells from Chinese children with acute infectious mononucleosis (AIM) and chronic active EBV infection (CAEBV) that were also compared with a publicly available microarray dataset from a study of American college students with AIM. Our study characterized for the first time a broad spectrum of molecular signatures in AIM and CAEBV. The key findings from the transcriptome profiling were validated with qPCR and flow cytometry assays. The most important finding in our study is the discovery of predominant γδ TCR expression and γδ T cell expansion in AIM. This finding, in combination with the striking up-regulation of CD3, CD8 and CD94, suggests that CD8+ T cells and CD94+ NK cells may play a major role in AIM. Moreover, the unique up-regulation of CD64A/B and its significant correlation with the monocyte marker CD14 was observed in CAEBV and that implies an important role of monocytes in CAEBV. In conclusion, our study reveals major cell types (particularly γδ T cells) in the host cellular immune response against AIM and CAEBV.
Chen, Su-Yu; Chang, Chao-Lin; Chen, Teng-Hai; Chang, Ya-Wen; Lin, Shwu-Bin
2016-10-01
Three pentacyclic triterpene dilactones were isolated from the fruiting bodies of Ganoderma colossum, a medicinal mushroom. Colossolactone H (colo H) as a new compound and the most cytotoxic among the isolates was studied for its anticancer mechanism and the potential use in cancer therapy. Gene expression profiling analysis indicated that treatment of lung cancer cells with colo H caused upregulation of 252 genes and downregulation of 398 genes. Gene ontology enrichment analysis indicated that the downregulated genes were the most significantly enriched in cell cycle progression, and the upregulated genes were significantly enriched in metabolic process, cellular response to stimulus, and oxidation reduction. Accordingly, colo H was found to halt cell growth and induce cell apoptosis via the elevation of cellular reactive oxygen species to cause DNA damage and the increase of tumor suppressor p53 protein. These events facilitate additive cytotoxicity of colo H and gefitinib for gefitinib-resistant H1650 lung cancer cells. Furthermore, combination of colo H and gefitinib effectively inhibited the growth of tumor xenografts in athymic mice. In addition to the efficacy in adjunctive cancer therapy, we have also demonstrated the isolation of colo H from cultivated G. colossum. Thus it is feasible to use colo H or Ganoderma colossum for cancer therapy. Copyright © 2016. Published by Elsevier B.V.
Sriraman, Kalpana; Nilgiriwala, Kayzad; Saranath, Dhananjaya; Chatterjee, Anirvan; Mistry, Nerges
2018-04-01
Alternate mechanisms of drug resistance involving intrinsic defense pathways play an important role in development of drug resistance. Deregulation of drug efflux, cellular metabolism, and DNA repair have been indicated to have effect on drug tolerance and persistence. Here we chose eight genes from these pathways to investigate their association with development of multidrug resistance (MDR). We generated mono drug resistant and MDR strains of rifampicin and isoniazid and examined the differential expression of genes belonging to efflux, DNA repair and cell wall lipid synthesis pathways. Rv1687c, recB, ppsD and embC genes showed significant (P <0.05) upregulation in mono-resistant (both rifampicin and isoniazid) as well as MDR strains. mmr showed significant upregulation with rifampicin resistance while Rv1457c showed significant upregulation only with mono-resistant strains. Highest expression change was observed with Rv1687c and ppsD. The study identified potential key genes that are significantly associated with development of drug resistance in vitro. These genes may help identify clinical strains predisposed to acquiring drug resistance in patients during the course of treatment or help in management of MDR forms of tuberculosis.
Dom34 Links Translation to Protein O-mannosylation
van Wijlick, Lasse; Geissen, René; Hilbig, Jessica S.; Lagadec, Quentin; Cantero, Pilar D.; Juchimiuk, Mateusz; Kluge, Sven; Wickert, Stephan; Alepuz, Paula; Ernst, Joachim F.
2016-01-01
In eukaryotes, Dom34 upregulates translation by securing levels of activatable ribosomal subunits. We found that in the yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans, Dom34 interacts genetically with Pmt1, a major isoform of protein O-mannosyltransferase. In C. albicans, lack of Dom34 exacerbated defective phenotypes of pmt1 mutants, while they were ameliorated by Dom34 overproduction that enhanced Pmt1 protein but not PMT1 transcript levels. Translational effects of Dom34 required the 5′-UTR of the PMT1 transcript, which bound recombinant Dom34 directly at a CA/AC-rich sequence and regulated in vitro translation. Polysomal profiling revealed that Dom34 stimulates general translation moderately, but that it is especially required for translation of transcripts encoding Pmt isoforms 1, 4 and 6. Because defective protein N- or O-glycosylation upregulates transcription of PMT genes, it appears that Dom34-mediated specific translational upregulation of the PMT transcripts optimizes cellular responses to glycostress. Its translational function as an RNA binding protein acting at the 5′-UTR of specific transcripts adds another facet to the known ribosome-releasing functions of Dom34 at the 3′-UTR of transcripts. PMID:27768707
Dom34 Links Translation to Protein O-mannosylation.
van Wijlick, Lasse; Geissen, René; Hilbig, Jessica S; Lagadec, Quentin; Cantero, Pilar D; Pfeifer, Eugen; Juchimiuk, Mateusz; Kluge, Sven; Wickert, Stephan; Alepuz, Paula; Ernst, Joachim F
2016-10-01
In eukaryotes, Dom34 upregulates translation by securing levels of activatable ribosomal subunits. We found that in the yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans, Dom34 interacts genetically with Pmt1, a major isoform of protein O-mannosyltransferase. In C. albicans, lack of Dom34 exacerbated defective phenotypes of pmt1 mutants, while they were ameliorated by Dom34 overproduction that enhanced Pmt1 protein but not PMT1 transcript levels. Translational effects of Dom34 required the 5'-UTR of the PMT1 transcript, which bound recombinant Dom34 directly at a CA/AC-rich sequence and regulated in vitro translation. Polysomal profiling revealed that Dom34 stimulates general translation moderately, but that it is especially required for translation of transcripts encoding Pmt isoforms 1, 4 and 6. Because defective protein N- or O-glycosylation upregulates transcription of PMT genes, it appears that Dom34-mediated specific translational upregulation of the PMT transcripts optimizes cellular responses to glycostress. Its translational function as an RNA binding protein acting at the 5'-UTR of specific transcripts adds another facet to the known ribosome-releasing functions of Dom34 at the 3'-UTR of transcripts.
Activation of Nrf2 in keratinocytes causes chloracne (MADISH)-like skin disease in mice
Schäfer, Matthias; Willrodt, Ann-Helen; Kurinna, Svitlana; Link, Andrea S; Farwanah, Hany; Geusau, Alexandra; Gruber, Florian; Sorg, Olivier; Huebner, Aaron J; Roop, Dennis R; Sandhoff, Konrad; Saurat, Jean-Hilaire; Tschachler, Erwin; Schneider, Marlon R; Langbein, Lutz; Bloch, Wilhelm; Beer, Hans-Dietmar; Werner, Sabine
2014-01-01
The transcription factor Nrf2 is a key regulator of the cellular stress response, and pharmacological Nrf2 activation is a promising strategy for skin protection and cancer prevention. We show here that prolonged Nrf2 activation in keratinocytes causes sebaceous gland enlargement and seborrhea in mice due to upregulation of the growth factor epigen, which we identified as a novel Nrf2 target. This was accompanied by thickening and hyperkeratosis of hair follicle infundibula. These abnormalities caused dilatation of infundibula, hair loss, and cyst development upon aging. Upregulation of epigen, secretory leukocyte peptidase inhibitor (Slpi), and small proline-rich protein 2d (Sprr2d) in hair follicles was identified as the likely cause of infundibular acanthosis, hyperkeratosis, and cyst formation. These alterations were highly reminiscent to the phenotype of chloracne/“metabolizing acquired dioxin-induced skin hamartomas” (MADISH) patients. Indeed, SLPI, SPRR2, and epigen were strongly expressed in cysts of MADISH patients and upregulated by dioxin in human keratinocytes in an NRF2-dependent manner. These results identify novel Nrf2 activities in the pilosebaceous unit and point to a role of NRF2 in MADISH pathogenesis. PMID:24503019
Cui, Yilong; Kataoka, Yosky; Inui, Takashi; Mochizuki, Takatoshi; Onoe, Hirotaka; Matsumura, Kiyoshi; Urade, Yoshihiro; Yamada, Hisao; Watanabe, Yasuyoshi
2008-03-01
Cortical spreading depression is an excitatory wave of depolarization spreading throughout cerebral cortex at a rate of 2-5 mm/min and has been implicated in various neurological disorders, such as epilepsy, migraine aura, and trauma. Although sleepiness or sleep is often induced by these neurological disorders, the cellular and molecular mechanism has remained unclear. To investigate whether and how the sleep-wake behavior is altered by such aberrant brain activity, we induced cortical spreading depression in freely moving rats, monitoring REM and non-REM (NREM) sleep and sleep-associated changes in cyclooxygenase (COX)-2 and prostaglandins (PGs). In such a model for aberrant neuronal excitation in the cerebral cortex, the amount of NREM sleep, but not of REM sleep, increased subsequently for several hours, with an up-regulated expression of COX-2 in cortical neurons and considerable production of PGs. A specific inhibitor of COX-2 completely arrested the increase in NREM sleep. These results indicate that up-regulated neuronal COX-2 would be involved in aberrant brain excitation-induced NREM sleep via production of PGs. (c) 2007 Wiley-Liss, Inc.
Aberrant Upregulation of Astroglial Ceramide Potentiates Oligodendrocyte Injury
Kim, SunJa; Steelman, Andrew J.; Zhang, Yumin; Kinney, Hannah C.; Li, Jianrong
2015-01-01
Oligodendroglial injury is a pathological hallmark of many human white matter diseases, including multiple sclerosis and periventricular leukomalacia. Critical regulatory mechanisms of oligodendroglia destruction, however, remain incompletely understood. Ceramide, a bioactive sphingolipid pivotal to sphingolipid metabolism pathways, regulates cell death in response to diverse stimuli and has been implicated in neurodegenerative disorders. We report here that ceramide accumulates in reactive astrocytes in active lesions of multiple sclerosis and periventricular leukomalacia, as well as in animal models of demyelination. Serine palmitoyltransferase, the rate-limiting enzyme for ceramide de novo biosynthesis, was consistently upregulated in reactive astrocytes in the cuprizone mouse model of demyelination. Mass spectrometry confirmed the upregulation of specific ceramides during demyelination and revealed a concomitant increase of sphingosine as well as a suppression of sphingosine-1-phosphate, a potent signaling molecule with key roles in cell survival and mitogenesis. Importantly, this altered sphingolipid metabolism during demyelination was restored upon active remyelination. In culture, ceramide acted synergistically with tumor necrosis factor leading to apoptotic death of oligodendroglia in an astrocyte-dependent manner. Taken together, our findings implicate that disturbed sphingolipid pathways in reactive astrocytes may indirectly contribute to oligodendroglial injury in cerebral white matter disorders. PMID:21615590
HSP90 Inhibition and Cellular Stress Elicits Phenotypic Plasticity in Hematopoietic Differentiation
Lawag, Abdalla A.; Napper, Jennifer M.; Hunter, Caroline A.; Bacon, Nickolas A.; Deskins, Seth; El-hamdani, Manaf; Govender, Sarah-Leigh; Koc, Emine C.
2017-01-01
Abstract Cancer cells exist in a state of Darwinian selection using mechanisms that produce changes in gene expression through genetic and epigenetic alteration to facilitate their survival. Cellular plasticity, or the ability to alter cellular phenotype, can assist in survival of premalignant cells as they progress to full malignancy by providing another mechanism of adaptation. The connection between cellular stress and the progression of cancer has been established, although the details of the mechanisms have yet to be fully elucidated. The molecular chaperone HSP90 is often upregulated in cancers as they progress, presumably to allow cancer cells to deal with misfolded proteins and cellular stress associated with transformation. The objective of this work is to test the hypothesis that inhibition of HSP90 results in increased cell plasticity in mammalian systems that can confer a greater adaptability to selective pressures. The approach used is a murine in vitro model system of hematopoietic differentiation that utilizes a murine hematopoietic stem cell line, erythroid myeloid lymphoid (EML) clone 1, during their maturation from stem cells to granulocytic progenitors. During the differentiation protocol, 80%–90% of the cells die when placed in medium where the major growth factor is granulocyte–macrophage-colony stimulating factor. Using this selection point model, EML cells exhibit increases in cellular plasticity when they are better able to adapt to this medium and survive. Increases in cellular plasticity were found to occur upon exposure to geldanamycin to inhibit HSP90, when subjected to various forms of cellular stress, or inhibition of histone acetylation. Furthermore, we provide evidence that the cellular plasticity associated with inhibition of HSP90 in this model involves epigenetic mechanisms and is dependent upon high levels of stem cell factor signaling. This work provides evidence for a role of HSP90 and cellular stress in inducing phenotypic plasticity in mammalian systems that has new implications for cellular stress in progression and evolution of cancer. PMID:28910138
HSP90 Inhibition and Cellular Stress Elicits Phenotypic Plasticity in Hematopoietic Differentiation.
Lawag, Abdalla A; Napper, Jennifer M; Hunter, Caroline A; Bacon, Nickolas A; Deskins, Seth; El-Hamdani, Manaf; Govender, Sarah-Leigh; Koc, Emine C; Sollars, Vincent E
2017-10-01
Cancer cells exist in a state of Darwinian selection using mechanisms that produce changes in gene expression through genetic and epigenetic alteration to facilitate their survival. Cellular plasticity, or the ability to alter cellular phenotype, can assist in survival of premalignant cells as they progress to full malignancy by providing another mechanism of adaptation. The connection between cellular stress and the progression of cancer has been established, although the details of the mechanisms have yet to be fully elucidated. The molecular chaperone HSP90 is often upregulated in cancers as they progress, presumably to allow cancer cells to deal with misfolded proteins and cellular stress associated with transformation. The objective of this work is to test the hypothesis that inhibition of HSP90 results in increased cell plasticity in mammalian systems that can confer a greater adaptability to selective pressures. The approach used is a murine in vitro model system of hematopoietic differentiation that utilizes a murine hematopoietic stem cell line, erythroid myeloid lymphoid (EML) clone 1, during their maturation from stem cells to granulocytic progenitors. During the differentiation protocol, 80%-90% of the cells die when placed in medium where the major growth factor is granulocyte-macrophage-colony stimulating factor. Using this selection point model, EML cells exhibit increases in cellular plasticity when they are better able to adapt to this medium and survive. Increases in cellular plasticity were found to occur upon exposure to geldanamycin to inhibit HSP90, when subjected to various forms of cellular stress, or inhibition of histone acetylation. Furthermore, we provide evidence that the cellular plasticity associated with inhibition of HSP90 in this model involves epigenetic mechanisms and is dependent upon high levels of stem cell factor signaling. This work provides evidence for a role of HSP90 and cellular stress in inducing phenotypic plasticity in mammalian systems that has new implications for cellular stress in progression and evolution of cancer.
Regulation of DREAM Expression by Group I mGluR
Lee, Jinu; Kim, Insook; Oh, So Ra; Ko, Suk Jin; Lim, Mi Kyung; Kim, Dong Goo
2011-01-01
DREAM (downstream regulatory element antagonistic modulator) is a calcium-binding protein that regulates dynorphin expression, promotes potassium channel surface expression, and enhances presenilin processing in an expression level-dependent manner. However, no molecular mechanism has yet explained how protein levels of DREAM are regulated. Here we identified group I mGluR (mGluR1/5) as a positive regulator of DREAM protein expression. Overexpression of mGluR1/5 increased the cellular level of DREAM. Up-regulation of DREAM resulted in increased DREAM protein in both the nucleus and cytoplasm, where the protein acts as a transcriptional repressor and a modulator of its interacting proteins, respectively. DHPG (3,5-dihydroxyphenylglycine), a group I mGluR agonist, also up-regulated DREAM expression in cortical neurons. These results suggest that group I mGluR is the first identified receptor that may regulate DREAM activity in neurons. PMID:21660149
Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang
2016-01-01
Objectives Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Methods Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Results Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. Conclusion CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence. PMID:27555762
Autophagy protects chondrocytes from glucocorticoids-induced apoptosis via ROS/Akt/FOXO3 signaling.
Shen, C; Cai, G-Q; Peng, J-P; Chen, X-D
2015-12-01
Glucocorticoids (GCs) have been widely used in the management of osteoarthritis (OA) and rheumatoid arthritis (RA). Nevertheless, there has been some concern about their ability of increasing reactive oxygen species (ROS) in the cartilage. Forkhead-box class O (FOXO) transcription factors have been proved to have a protective role in chondrocytes through regulation of autophagy and defending oxidative stress. The objective of this study was to investigate the role of FOXO3 in Dex-induce up-regulation of ROS. Healthy cartilages debris from six patients were used for chondrocytes culture. After the treatment of dexamethasone (Dex), the ROS levels, autophagic flux, the expression of FOXO3 in chondrocytes were measured. RNA interference technique was also used to determine the role of FOXO3 in Dex-induced autophagy. The metabolism of the extra-cellular matrix was also investigated. Dex increased intracellular ROS level, the expression of Akt, FOXO3 as well as autophagy flux in human chondrocytes. The expression of aggrecanases also increased after the treatment of Dex. Catalase, the ROS scavenger, suppressed Dex-induced up-regulation of autophagy flux and expression of aggrecanases and Akt. MK-2206 and LY294002, the PI3K/Akt inhibitors, repressed Dex-induced up-regulation of FOXO3. Silencing FOXO3 resulted in down-regulation of Dex-induced autophagy. Moreover, knockdown of FOXO3 increased Dex-induced apoptosis as well as ROS levels in chondrocytes. In addition, up-regulation of autophagy by Rapamycin resulted in decreasing ROS level in chondrocytes. Dex could advance the degenerative process in cartilage. Autophagy was induced in response to Dex-induced up-regulation of ROS via ROS/Akt/FOXO3 signal pathway. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Sun, Yanrui; Yang, Xi; Liu, Min; Tang, Hua
2016-06-01
β-1,4-Galactosyltransferase III (B4GALT3) is an enzyme responsible for the generation of poly-N-acetyllactosamine and is involved in tumorigenesis. However, B4GALT3-dysregulation and its role in cervical cancer cells are unknown. Herein, we found that B4GALT3 was upregulated in cervical cancer tissues compared to adjacent non-tumor tissues. B4GALT3-overexpression promoted, whereas B4GALT3-knockdown suppressed the cellular migration, invasion and EMT of HeLa and C33A cervical cancer cells. To explore the mechanism of dysregulation, B4GALT3 was predicted to be a target of miR-27a. EGFP and pGL3-promoter reporter assay showed miR-27a binds to B4GALT3 3'UTR region but enhanced its expression. RT-qPCR showed miR-27a was also upregulated and presented positive correlation with B4GALT3-expression in cervical cancer tissues. miR-27a-overexpression promoted, but blocking-miR-27a repressed these malignancies in HeLa and C33A cells. Furthermore, shR-B4GALT3 counteracted the promotion of malignancies induced by miR-27a, suggesting miR-27a upregulates B4GALT3 to enhance tumorigenic activities. In addition, we found that B4GALT3 significantly enhances β1-integrin stability, thus mediating promotion of B4GALT3 on malignancy in cervical cancer cells. Altogether, our findings evidenced that B4GALT3 upregulated by miR-27a contributes to the tumorigenic activities by β1-integrin pathway and might provide potential biomarkers for cervical cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cronin, Katherine R; Mangan, Thomas P; Carew, Josephine A
2012-01-01
Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/- SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/-15% to 188+/-27% and 100+/-8.8% to 176.3+/-17.3% respectively, p<0.001) at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress.
Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea
2013-07-15
Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged bymore » Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.« less
Liu, Jianghai; Wang, Rui; Desai, Kaushik; Wu, Lingyun
2011-12-01
Methylglyoxal (MG) overproduction has been reported in metabolic syndrome with hyperglycaemia (diabetes) or without hyperglycaemia (hypertension), and the underlying mechanism was investigated. Contributions of different pathways or enzymes to MG formation were evaluated in aorta or cultured vascular smooth muscle cells (VSMCs). In all four animal models of metabolic syndrome, i.e. chronically fructose-fed hypertensive Sprague-Dawley rats, spontaneously hypertensive rats, obese non-diabetic Zucker rats, and diabetic Zucker rats, serum and aortic MG and fructose levels were increased, and the expression of GLUT5 (transporting fructose) and aldolase B (converting fructose to MG) in aorta were up-regulated. Aortic expressions of aldolase A, semicarbazide-sensitive amine oxidase (SSAO), and cytochrome P450 2E1 (CYP 2E1), accounting for MG formation during glycolysis, protein, and lipid metabolism, respectively, was unchanged/reduced. Fructose (25 mM) treatment of VSMCs up-regulated the expression of GLUT5 and aldolase B and accelerated MG formation. Insulin (100 nM) increased GLUT5 expression and augmented fructose-increased cellular fructose accumulation and MG formation. Glucose (25 mM) treatment activated the polyol pathway and enhanced fructose formation, leading to aldolase B upregulation and MG overproduction. Inhibition of the polyol pathway reduced the glucose-increased aldolase B expression and MG generation. The excess formation of MG in under these conditions was eliminated by knock-down of aldolase B, but not by knock-down of aldolase A or inhibition of SSAO or CYP 2E1. Upregulation of aldolase B by accumulated fructose is a common mechanism for MG overproduction in VSMCs and aorta in different models of metabolic syndrome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vickers, Alison E.M., E-mail: vickers_alison@allergan.co; Sinclair, John R.; Fisher, Robyn L.
A novel in vitro model to investigate time-dependent and concentration-dependent responses in blood cells and hemolytic events is studied for rat, dog, and human tissues. Whole blood is co-cultured with a precision-cut liver slice. Methimazole (MMI) was selected as a reference compound, since metabolism of its imidazole thione moiety is linked with hematologic disorders and hepatotoxicity. An oxidative stress response occurred in all three species, marked by a decline in blood GSH levels by 24 h that progressed, and preceded hemolysis, which occurred at high MMI concentrations in the presence of a liver slice with rat (>= 1000 muM atmore » 48 h) and human tissues (>= 1000 muM at 48 h, >= 750 muM at 72 h) but not dog. Human blood-only cultures exhibited a decline of GSH levels but minimal to no hemolysis. The up-regulation of liver genes for heme degradation (Hmox1 and Prdx1), iron cellular transport (Slc40a1), and GSH synthesis and utilization (mGST1 and Gclc) were early markers of the oxidative stress response. The up-regulation of the Kupffer cell lectin Lgals3 gene expression indicated a response to damaged red blood cells, and Hp (haptoglobin) up-regulation is indicative of increased hemoglobin uptake. Up-regulation of liver IL-6 and IL-8 gene expression suggested an activation of an inflammatory response by liver endothelial cells. In summary, MMI exposure led to an oxidative stress response in blood cells, and an up-regulation of liver genes involved with oxidative stress and heme homeostasis, which was clearly separate and preceded frank hemolysis.« less
Cronin, Katherine R.; Mangan, Thomas P.; Carew, Josephine A.
2012-01-01
Background Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Methodology/Principal Findings Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/− SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/−15% to 188+/−27% and 100+/−8.8% to 176.3+/−17.3% respectively, p<0.001) at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Conclusions/Significance Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress. PMID:22848420
Khor, S C; Mohd Yusof, Y A; Wan Ngah, W Z; Makpol, S
Vitamin E has been suggested as nutritional intervention for the prevention of degenerative and age-related diseases. In this study, we aimed to elucidate the underlying mechanism of tocotrienol-rich fraction (TRF) in delaying cellular aging by targeting the proliferation signaling pathways in human diploid fibroblasts (HDFs). Tocotrienol-rich fraction was used to treat different stages of cellular aging of primary human diploid fibroblasts viz. young (passage 6), pre-senescent (passage 15) and senescent (passage 30). Several selected targets involved in the downstream of PI3K/AKT and RAF/MEK/ERK pathways were compared in total RNA and protein. Different transcriptional profiles were observed in young, pre-senescent and senescent HDFs, in which cellular aging increased AKT, FOXO3, CDKN1A and RSK1 mRNA expression level, but decreased ELK1, FOS and SIRT1 mRNA expression level. With tocotrienol-rich fraction treatment, gene expression of AKT, FOXO3, ERK and RSK1 mRNA was decreased in senescent cells, but not in young cells. The three down-regulated mRNA in cellular aging, ELK1, FOS and SIRT1, were increased with tocotrienol-rich fraction treatment. Expression of FOXO3 and P21Cip1 proteins showed up-regulation in senescent cells but tocotrienol-rich fraction only decreased P21Cip1 protein expression in senescent cells. Tocotrienol-rich fraction exerts gene modulating properties that might be responsible in promoting cell cycle progression during cellular aging.
Expression proteomics study to determine metallodrug targets and optimal drug combinations.
Lee, Ronald F S; Chernobrovkin, Alexey; Rutishauser, Dorothea; Allardyce, Claire S; Hacker, David; Johnsson, Kai; Zubarev, Roman A; Dyson, Paul J
2017-05-08
The emerging technique termed functional identification of target by expression proteomics (FITExP) has been shown to identify the key protein targets of anti-cancer drugs. Here, we use this approach to elucidate the proteins involved in the mechanism of action of two ruthenium(II)-based anti-cancer compounds, RAPTA-T and RAPTA-EA in breast cancer cells, revealing significant differences in the proteins upregulated. RAPTA-T causes upregulation of multiple proteins suggesting a broad mechanism of action involving suppression of both metastasis and tumorigenicity. RAPTA-EA bearing a GST inhibiting ethacrynic acid moiety, causes upregulation of mainly oxidative stress related proteins. The approach used in this work could be applied to the prediction of effective drug combinations to test in cancer chemotherapy clinical trials.
An Eye on Age-Related Macular Degeneration: The Role of MicroRNAs in Disease Pathology.
Berber, Patricia; Grassmann, Felix; Kiel, Christina; Weber, Bernhard H F
2017-02-01
Age-related macular degeneration (AMD) is the primary cause of blindness in developed countries, and is the third leading cause worldwide. Emerging evidence suggests that beside environmental and genetic factors, epigenetic mechanisms, such as microRNA (miRNA) regulation of gene expression, are relevant to AMD providing an exciting new avenue for research and therapy. MiRNAs are short, non-coding RNAs thought to be imperative for coping with cellular stress. Numerous studies have analyzed miRNA dysregulation in AMD patients, although with varying outcomes. Four studies which profiled dysregulated circulating miRNAs in AMD yielded unique sets, and there is only minimal overlap in ocular miRNA profiling of AMD. Mouse models of AMD, including oxygen-induced retinopathy and laser-induced choroidal neovascularization, showed similarities to some extent with miRNA patterns in AMD. For example, miR-146a is an extensively researched miRNA thought to modulate inflammation, and was found to be upregulated in AMD mice and cellular systems, but also in human AMD retinae and vitreous humor. Similarly, mir-17, miR-125b and miR-155 were dysregulated in multiple AMD mouse models as well as in human AMD plasma or retinae. These miRNAs are thought to regulate angiogenesis, apoptosis, phagocytosis, and inflammation. A promising avenue of research is the modulation of such miRNAs, as the phenotype of AMD mice could be ameliorated with antagomirs or miRNA-mimic treatment. However, before meaningful strides can be made to develop miRNAs as a diagnostic or therapeutic tool, reproducible miRNA profiles need to be established for the various clinical outcomes of AMD.
Manta, Areti K.; Papadopoulou, Deppie; Polyzos, Alexander P.; Fragopoulou, Adamantia F.; Skouroliakou, Aikaterini S.; Thanos, Dimitris; Stravopodis, Dimitrios J.; Margaritis, Lukas H.
2017-01-01
ABSTRACT The daily use by people of wireless communication devices has increased exponentially in the last decade, begetting concerns regarding its potential health hazards. Drosophila melanogaster four days-old adult female flies were exposed for 30 min to radiation emitted by a commercial mobile phone at a SAR of 0.15 W/kg and a SAE of 270 J/kg. ROS levels and apoptotic follicles were assayed in parallel with a genome-wide microarrays analysis. ROS cellular contents were found to increase by 1.6-fold (x), immediately after the end of exposure, in follicles of pre-choriogenic stages (germarium - stage 10), while sporadically generated apoptotic follicles (germarium 2b and stages 7–9) presented with an averaged 2x upregulation in their sub-population mass, 4 h after fly's irradiation with mobile device. Microarray analysis revealed 168 genes being differentially expressed, 2 h post-exposure, in response to radiofrequency (RF) electromagnetic field-radiation exposure (≥1.25x, P < 0.05) and associated with multiple and critical biological processes, such as basic metabolism and cellular subroutines related to stress response and apoptotic death. Exposure of adult flies to mobile-phone radiation for 30 min has an immediate impact on ROS production in animal's ovary, which seems to cause a global, systemic and non-targeted transcriptional reprogramming of gene expression, 2 h post-exposure, being finally followed by induction of apoptosis 4 h after the end of exposure. Conclusively, this unique type of pulsed radiation, mainly being derived from daily used mobile phones, seems capable of mobilizing critical cytopathic mechanisms, and altering fundamental genetic programs and networks in D. melanogaster. PMID:27960592
Manta, Areti K; Papadopoulou, Deppie; Polyzos, Alexander P; Fragopoulou, Adamantia F; Skouroliakou, Aikaterini S; Thanos, Dimitris; Stravopodis, Dimitrios J; Margaritis, Lukas H
2017-04-03
The daily use by people of wireless communication devices has increased exponentially in the last decade, begetting concerns regarding its potential health hazards. Drosophila melanogaster four days-old adult female flies were exposed for 30 min to radiation emitted by a commercial mobile phone at a SAR of 0.15 W/kg and a SAE of 270 J/kg. ROS levels and apoptotic follicles were assayed in parallel with a genome-wide microarrays analysis. ROS cellular contents were found to increase by 1.6-fold (x), immediately after the end of exposure, in follicles of pre-choriogenic stages (germarium - stage 10), while sporadically generated apoptotic follicles (germarium 2b and stages 7-9) presented with an averaged 2x upregulation in their sub-population mass, 4 h after fly's irradiation with mobile device. Microarray analysis revealed 168 genes being differentially expressed, 2 h post-exposure, in response to radiofrequency (RF) electromagnetic field-radiation exposure (≥1.25x, P < 0.05) and associated with multiple and critical biological processes, such as basic metabolism and cellular subroutines related to stress response and apoptotic death. Exposure of adult flies to mobile-phone radiation for 30 min has an immediate impact on ROS production in animal's ovary, which seems to cause a global, systemic and non-targeted transcriptional reprogramming of gene expression, 2 h post-exposure, being finally followed by induction of apoptosis 4 h after the end of exposure. Conclusively, this unique type of pulsed radiation, mainly being derived from daily used mobile phones, seems capable of mobilizing critical cytopathic mechanisms, and altering fundamental genetic programs and networks in D. melanogaster.
Rouse, Michael; Rao, Roshni; Nagarkatti, Mitzi
2014-01-01
3,3′-Diindolylmethane (DIM) is a naturally derived indole found in cruciferous vegetables that has great potential as a novel and effective therapeutic agent. In the current study, we investigated the effects of DIM post-treatment on the regulation of activated T cells during the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. We demonstrated that the administration of DIM 10 days after EAE induction was effective at ameliorating disease parameters, including inflammation and central nervous system cellular infiltration. MicroRNA (miRNA) microarray analysis revealed an altered miRNA profile in brain infiltrating CD4+ T cells following DIM post-treatment of EAE mice. Additionally, bioinformatics analysis suggested the involvement of DIM-induced miRNAs in pathways and processes that halt cell cycle progression and promote apoptosis. Additional studies confirmed that DIM impacted these cellular processes in activated T cells. Further evidence indicated that DIM treatment significantly upregulated several miRNAs (miR-200c, miR-146a, miR-16, miR-93, and miR-22) in brain CD4+ T cells during EAE while suppressing their associated target genes. Similarly, we found that overexpression of miR-16 in primary CD4+ T cells led to significant downregulation of both mRNA and protein levels of cyclin E1 and B-cell lymphoma-2, which play important roles in regulating cell cycle progression and apoptosis. Collectively, these studies demonstrate that DIM post-treatment leads to the amelioration of EAE development by suppressing T-cell responses through the induction of select miRNAs that control cell cycle progression and mediate apoptosis. PMID:24898268
Proteomic profiling of the rat cerebral cortex in sleep and waking.
Cirelli, C; Pfister-Genskow, M; McCarthy, D; Woodbury, R; Tononi, G
2009-09-01
Transcriptomic studies have shown that hundreds of genes change their expression levels across the sleep/waking cycle, and found that waking-related and sleep-related mRNAs belong to different functional categories. Proteins, however, rather than DNA or RNA, carry out most of the cellular functions, and direct measurements of protein levels and activity are required to assess the effects of behavioral states on the overall functional state of the cell. Here we used surface-enhanced laser desorption-ionization (SELDI), followed by time-of-flight mass spectrometry, to obtain a large-scale profiling of the proteins in the rat cerebral cortex whose expression is affected by sleep, spontaneous waking, short (6 hours) and long (7 days) sleep deprivation. Each of the 94 cortical samples was profiled in duplicate on 4 different ProteinChip Array surfaces using 2 different matrix molecules. Overall, 1055 protein peaks were consistently detected in cortical samples and 15 candidate biomarkers were selected for identification based on significant changes in multiple conditions (conjunction analysis): 8 "sleep" peaks, 4 "waking" peaks, and 4 "long sleep deprivation" peaks. Four candidate biomarkers were purified and positively identified. The 3353 Da candidate sleep marker was identified as the 30 amino acid C-terminal fragment of rat histone H4. This region encompasses the osteogenic growth peptide, but a possible link between sleep and this peptide remains highly speculative. Two peaks associated with short and long sleep deprivation were identified as hemoglobin alpha1/2 and beta, respectively, while another peak associated with long sleep deprivation was identified as cytochrome C. The upregulation of hemoglobins and cytochrome C may be part of a cellular stress response triggered by even short periods of sleep loss.
De Spirt, Silke; Eckers, Anna; Wehrend, Carina; Micoogullari, Mustafa; Sies, Helmut; Stahl, Wilhelm; Steinbrenner, Holger
2016-02-01
Selenoenzymes and nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated phase II enzymes comprise key components of the cellular redox and antioxidant systems, which show multiple interrelations. Deficiency of the micronutrient selenium (Se) and impaired biosynthesis of selenoproteins have been reported to result in induction of Nrf2 target genes. Conversely, transcription of the selenoenzymes glutathione peroxidase 2 (GPx2) and thioredoxin reductase 1 (TrxR1) is up-regulated upon Nrf2 activation. Here, we have studied the interplay between Se and the secondary plant metabolite cardamonin, an Nrf2-activating chalcone, in the regulation of Nrf2-controlled antioxidant enzymes. Se-deficient and Se-repleted (sodium selenite-supplemented) human intestinal Caco-2 cells were exposed to cardamonin. Uptake of cardamonin by the Caco-2 cells was independent of their Se status. Cardamonin strongly induced gene expression of GPx2 and TrxR1. However, cardamonin treatment did not result in elevated GPx or TrxR activity and protein levels, possibly relating to a concomitant down-regulation of O-phosphoseryl-tRNA(Sec) kinase (PSTK), an enzyme involved in translation of selenoprotein mRNAs. On the other hand, induction of the Nrf2-regulated enzyme heme oxygenase 1 (HO-1) by cardamonin was diminished in Se-replete compared to Se-deficient cells. Our findings suggest that cardamonin interferes with the biosynthesis of Nrf2-regulated selenoenzymes, in contrast to the Nrf2-activating isothiocyanate compound sulforaphane, which has been shown earlier to synergize with Se-mediated cytoprotection. Conversely, the cellular Se status apparently affects the cardamonin-mediated induction of non-selenoprotein antioxidant enzymes such as HO-1. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng
2013-01-01
The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581
Kakinuma, Yoshihiko; Akiyama, Tsuyoshi; Okazaki, Kayo; Arikawa, Mikihiko; Noguchi, Tatsuya; Sato, Takayuki
2012-01-01
Background In our previous study, we established the novel concept of a non-neuronal cardiac cholinergic system–cardiomyocytes produce ACh in an autocrine and/or paracrine manner. Subsequently, we determined the biological significance of this system–it played a critical role in modulating mitochondrial oxygen consumption. However, its detailed mechanisms and clinical implications have not been fully investigated. Aim We investigated if this non-neuronal cardiac cholinergic system was upregulated by a modality other than drugs and if the activation of the system contributes to favorable outcomes. Results Choline acetyltransferase knockout (ChAT KO) cells with the lowest cellular ACh levels consumed more oxygen and had increased MTT activity and lower cellular ATP levels compared with the control cells. Cardiac ChAT KO cells with diminished connexin 43 expression formed poor cell–cell communication, evidenced by the blunted dye transfer. Similarly, the ChAT inhibitor hemicholinium-3 decreased ATP levels and increased MTT activity in cardiomyocytes. In the presence of a hypoxia mimetic, ChAT KO viability was reduced. Norepinephrine dose-dependently caused cardiac ChAT KO cell death associated with increased ROS production. In in vivo studies, protein expression of ChAT and the choline transporter CHT1 in the hindlimb were enhanced after ischemia-reperfusion compared with the contralateral non-treated limb. This local effect also remotely influenced the heart to upregulate ChAT and CHT1 expression as well as ACh and ATP levels in the heart compared with the baseline levels, and more intact cardiomyocytes were spared by this remote effect as evidenced by reduced infarction size. In contrast, the upregulated parameters were abrogated by hemicholinium-3. Conclusion The non-neuronal cholinergic system plays a protective role in both myocardial cells and the entire heart by conserving ATP levels and inhibiting oxygen consumption. Activation of this non-neuronal cardiac cholinergic system by a physiotherapeutic modality may underlie cardioprotection through the remote effect of hindlimb ischemia-reperfusion. PMID:23209825
Kakinuma, Yoshihiko; Akiyama, Tsuyoshi; Okazaki, Kayo; Arikawa, Mikihiko; Noguchi, Tatsuya; Sato, Takayuki
2012-01-01
In our previous study, we established the novel concept of a non-neuronal cardiac cholinergic system--cardiomyocytes produce ACh in an autocrine and/or paracrine manner. Subsequently, we determined the biological significance of this system--it played a critical role in modulating mitochondrial oxygen consumption. However, its detailed mechanisms and clinical implications have not been fully investigated. We investigated if this non-neuronal cardiac cholinergic system was upregulated by a modality other than drugs and if the activation of the system contributes to favorable outcomes. Choline acetyltransferase knockout (ChAT KO) cells with the lowest cellular ACh levels consumed more oxygen and had increased MTT activity and lower cellular ATP levels compared with the control cells. Cardiac ChAT KO cells with diminished connexin 43 expression formed poor cell-cell communication, evidenced by the blunted dye transfer. Similarly, the ChAT inhibitor hemicholinium-3 decreased ATP levels and increased MTT activity in cardiomyocytes. In the presence of a hypoxia mimetic, ChAT KO viability was reduced. Norepinephrine dose-dependently caused cardiac ChAT KO cell death associated with increased ROS production. In in vivo studies, protein expression of ChAT and the choline transporter CHT1 in the hindlimb were enhanced after ischemia-reperfusion compared with the contralateral non-treated limb. This local effect also remotely influenced the heart to upregulate ChAT and CHT1 expression as well as ACh and ATP levels in the heart compared with the baseline levels, and more intact cardiomyocytes were spared by this remote effect as evidenced by reduced infarction size. In contrast, the upregulated parameters were abrogated by hemicholinium-3. The non-neuronal cholinergic system plays a protective role in both myocardial cells and the entire heart by conserving ATP levels and inhibiting oxygen consumption. Activation of this non-neuronal cardiac cholinergic system by a physiotherapeutic modality may underlie cardioprotection through the remote effect of hindlimb ischemia-reperfusion.
Narayan, Malathi; Seeley, Kent W; Jinwal, Umesh K
2015-12-04
Withaferin A (WA) is a major bioactive compound isolated from the medicinal plant Withania somnifera Dunal, also known as "Ashwagandha". A number of published reports suggest various uses for WA including its function as an anti-inflammatory and anti-angiogenic drug molecule. The effects of WA at the molecular level in a cellular environment are not well understood. Knowledge of the molecular mechanism of action of WA could enhance its therapeutic value and may reveal novel pathways it may modulate. In order to identify and characterize proteins affected by treatment with WA, we used SILAC- based proteomics analysis on a mouse microglial cell line (N9), which replicates phenotypic characteristics of primary microglial cells. Using stable isotope labeling of amino acids in cell culture (SILAC) and mass spectrometry (MS), a total of 2300 unique protein groups were identified from three biological replicates, with significant expression changes in 32 non-redundant proteins. The top biological functions associated with these differentially expressed proteins include cell death and survival, free radical scavenging, and carbohydrate metabolism. Specifically, several heat shock proteins (Hsps) were found to be upregulated, which suggests that the chaperonic machinery might be regulated by WA. Furthermore, our study revealed several novel protein molecules that were not previously reported to be affected by WA. Among them, annexin A1, a key anti-inflammatory molecule in microglial cells was found to be downregulated. Hsc70, Hsp90α and Hsp105 were found to be upregulated. We also found sequestosome1/p62 (p62) to be upregulated. We performed Ingenuity Pathway Analysis (IPA) and found a number of pathways that were affected by WA treatment. SILAC-based proteomics analysis of a microglial cell model revealed several novel proteins whose expression is regulated by WA and probable pathways regulated by WA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Barrey, Eric; Mucher, Elodie; Jeansoule, Nicolas; Larcher, Thibaut; Guigand, Lydie; Herszberg, Bérénice; Chaffaux, Stéphane; Guérin, Gérard; Mata, Xavier; Benech, Philippe; Canale, Marielle; Alibert, Olivier; Maltere, Péguy; Gidrol, Xavier
2009-08-07
Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM). It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA) and 5 heterozygous (GA) PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses.Gene expression analysis revealed 129 genes significantly modulated (p < 0.05). The following genes were up-regulated over 2 fold: IL18, CTSS, LUM, CD44, FN1, GST01. The most down-regulated genes were the following: mitochondrial tRNA, SLC2A2, PRKCalpha, VEGFalpha. Data mining analysis showed that protein synthesis, apoptosis, cellular movement, growth and proliferation were the main cellular functions significantly associated with the modulated genes (p < 0.05). Several up-regulated genes, especially IL18, revealed a severe muscular inflammation in PSSM muscles. The up-regulation of glycogen synthase kinase-3 (GSK3beta) under its active form could be responsible for glycogen synthase (GYS1) inhibition and hypoxia-inducible factor (HIF1alpha) destabilization. The main disorders observed in PSSM muscles could be related to mitochondrial dysfunctions, glycogenesis inhibition and the chronic hypoxia of the PSSM muscles.
Rengaraj, Deivendran; Lee, Bo Ram; Jang, Hyun-Jun; Kim, Young Min; Han, Jae Yong
2013-01-01
Metabolism provides energy and nutrients required for the cellular growth, maintenance, and reproduction. When compared with genomics and proteomics, metabolism studies provide novel findings in terms of cellular functions. In this study, we examined significant and differentially expressed genes in primordial germ cells (PGCs), gonadal stromal cells, and chicken embryonic fibroblasts compared with blastoderms using microarray. All upregulated genes (1001, 1118, and 974, respectively) and downregulated genes (504, 627, and 1317, respectively) in three test samples were categorized into functional groups according to gene ontology. Then all selected genes were tested to examine their involvement in metabolic pathways through Kyoto Encyclopedia of Genes and Genomes pathway database using overrepresentation analysis. In our results, most of the upregulated and downregulated genes were involved in at least one subcategory of seven major metabolic pathways. The main objective of this study is to compare the PGC expressed genes and their metabolic pathways with blastoderms, gonadal stromal cells, and chicken embryonic fibroblasts. Among the genes involved in metabolic pathways, a higher number of PGC upregulated genes were identified in retinol metabolism, and a higher number of PGC downregulated genes were identified in sphingolipid metabolism. In terms of the fold change, acyl-CoA synthetase medium-chain family member 3 (ACSM3), which is involved in butanoate metabolism, and N-acetyltransferase, pineal gland isozyme NAT-10 (PNAT10), which is involved in energy metabolism, showed higher expression in PGCs. To validate these gene changes, the expression of 12 nucleotide metabolism-related genes in chicken PGCs was examined by real-time polymerase chain reaction. The results of this study provide new information on the expression of genes associated with metabolism function of PGCs and will facilitate more basic research on animal PGC differentiation and function. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eunyoung
Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200 μMmore » formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-β-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, L-cystathionine and L-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response. - Highlights: • Sub-cytotoxic formaldehyde upregulates ER UPR-associated genes in NHKs. • Formaldehyde-induced ER UPR genes includes cystathionine γ-lyase (CTH). • Sub-cytotoxic formaldehyde upregulates cystathionine-β-synthase (CBS) in NHKs. • Cystathionine metabolic enzymes may attenuate formaldehyde-induced inflammation in NHKs. • Cystathionine metabolic enzymes may play a role in the resolution of inflammation in NHKs.« less
De-Differentiation Confers Multidrug Resistance Via Noncanonical PERK-Nrf2 Signaling
Del Vecchio, Catherine A.; Feng, Yuxiong; Sokol, Ethan S.; Tillman, Erik J.; Sanduja, Sandhya; Reinhardt, Ferenc; Gupta, Piyush B.
2014-01-01
Malignant carcinomas that recur following therapy are typically de-differentiated and multidrug resistant (MDR). De-differentiated cancer cells acquire MDR by up-regulating reactive oxygen species (ROS)–scavenging enzymes and drug efflux pumps, but how these genes are up-regulated in response to de-differentiation is not known. Here, we examine this question by using global transcriptional profiling to identify ROS-induced genes that are already up-regulated in de-differentiated cells, even in the absence of oxidative damage. Using this approach, we found that the Nrf2 transcription factor, which is the master regulator of cellular responses to oxidative stress, is preactivated in de-differentiated cells. In de-differentiated cells, Nrf2 is not activated by oxidation but rather through a noncanonical mechanism involving its phosphorylation by the ER membrane kinase PERK. In contrast, differentiated cells require oxidative damage to activate Nrf2. Constitutive PERK-Nrf2 signaling protects de-differentiated cells from chemotherapy by reducing ROS levels and increasing drug efflux. These findings are validated in therapy-resistant basal breast cancer cell lines and animal models, where inhibition of the PERK-Nrf2 signaling axis reversed the MDR of de-differentiated cancer cells. Additionally, analysis of patient tumor datasets showed that a PERK pathway signature correlates strongly with chemotherapy resistance, tumor grade, and overall survival. Collectively, these results indicate that de-differentiated cells up-regulate MDR genes via PERK-Nrf2 signaling and suggest that targeting this pathway could sensitize drug-resistant cells to chemotherapy. PMID:25203443
A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis elegans
Li, Shiwei; Xu, Shibin; Ma, Yanli; Wu, Shuang; Feng, Yu; Cui, Qingpo; Chen, Lifeng; Zhou, Shuang; Kong, Yuanyuan; Zhang, Xiaoyu; Yu, Jialei; Wu, Mengdi; Zhang, Shaobing O.
2016-01-01
To identify genes that regulate the dynamics of lipid droplet (LD) size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 105 mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10). The nine groups are named drop (lipid droplet abnormal) and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion. PMID:27261001
Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.
2014-01-01
Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329
P38 Mitogen-Activated Protein Kinase in Metastasis Associated With Transforming Growth Factor Beta
2005-06-01
36, 2001. Shin I, Bakin AV, Rodeck U, Brunet A, Arteaga CL. TGFbeta enhances epithelial cell survival via Akt - dependent regulation of FKHRLI. Mol Biol... Akt mediates cell-cycle progression by phosphorylation of p27Kip’ at threonine 157 and modulation of its cellular localization. Nat Med 8:1145-1152...stress fibers. Ectopic- expression and siRNA experiments show that Smad3 and Smad4 mediate up-regulation of tropomyosins and stress fiber formation
Zhou, Jian; Ye, Shiqiao; Fujiwara, Toshifumi; Manolagas, Stavros C.; Zhao, Haibo
2013-01-01
Iron is essential for osteoclast differentiation, and iron overload in a variety of hematologic diseases is associated with excessive bone resorption. Iron uptake by osteoclast precursors via the transferrin cycle increases mitochondrial biogenesis, reactive oxygen species production, and activation of cAMP response element-binding protein, a critical transcription factor downstream of receptor activator of NF-κB-ligand-induced calcium signaling. These changes are required for the differentiation of osteoclast precursors to mature bone-resorbing osteoclasts. However, the molecular mechanisms regulating cellular iron metabolism in osteoclasts remain largely unknown. In this report, we provide evidence that Steap4, a member of the six-transmembrane epithelial antigen of prostate (Steap) family proteins, is an endosomal ferrireductase with a critical role in cellular iron utilization in osteoclasts. Specifically, we show that Steap4 is the only Steap family protein that is up-regulated during osteoclast differentiation. Knocking down Steap4 expression in vitro by lentivirus-mediated short hairpin RNAs inhibits osteoclast formation and decreases cellular ferrous iron, reactive oxygen species, and the activation of cAMP response element-binding protein. These results demonstrate that Steap4 is a critical enzyme for cellular iron uptake and utilization in osteoclasts and, thus, indispensable for osteoclast development and function. PMID:23990467
Wachman, Elliot S; Geyer, Stanley J; Recht, Joel M; Ward, Jon; Zhang, Bill; Reed, Murray; Pannell, Chris
2014-05-01
An acousto-optic tunable filter (AOTF)-based multispectral imaging microscope system allows the combination of cellular morphology and multiple biomarker stainings on a single microscope slide. We describe advances in AOTF technology that have greatly improved spectral purity, field uniformity, and image quality. A multispectral imaging bright field microscope using these advances demonstrates pathology results that have great potential for clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Kyung-Soo; Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan; Park, Jun-Ik
2012-03-01
SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-cateninmore » expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia-exposed or hypoxic preconditioned cells. ► SIRT1 deacetylates c-Myc and β-catenin ► HIF-1α is up-regulated by down-regulation of c-Myc and β-catenin expression. ► Polyphenolic SIRT1 activators mimics hypoxic preconditioning.« less
Detection of multiple perturbations in multi-omics biological networks.
Griffin, Paula J; Zhang, Yuqing; Johnson, William Evan; Kolaczyk, Eric D
2018-05-17
Cellular mechanism-of-action is of fundamental concern in many biological studies. It is of particular interest for identifying the cause of disease and learning the way in which treatments act against disease. However, pinpointing such mechanisms is difficult, due to the fact that small perturbations to the cell can have wide-ranging downstream effects. Given a snapshot of cellular activity, it can be challenging to tell where a disturbance originated. The presence of an ever-greater variety of high-throughput biological data offers an opportunity to examine cellular behavior from multiple angles, but also presents the statistical challenge of how to effectively analyze data from multiple sources. In this setting, we propose a method for mechanism-of-action inference by extending network filtering to multi-attribute data. We first estimate a joint Gaussian graphical model across multiple data types using penalized regression and filter for network effects. We then apply a set of likelihood ratio tests to identify the most likely site of the original perturbation. In addition, we propose a conditional testing procedure to allow for detection of multiple perturbations. We demonstrate this methodology on paired gene expression and methylation data from The Cancer Genome Atlas (TCGA). © 2018, The International Biometric Society.
Preparing the “Soil”: The Premetastatic Niche
Kaplan, Rosandra N.; Rafii, Shahin; Lyden, David
2010-01-01
Current focus on cancer metastasis has centered on the intrinsic factors regulating the cell autonomous homing of the tumor cells to the metastatic site. Specific up-regulation of fibronectin and clustering of bone marrow–derived cellular infiltrates coexpressing matrix metalloproteinases in distant tissue sites before tumor cell arrival are proving to be indispensable for the initial stages of metastasis. These bone marrow–derived hematopoietic progenitors that express vascular endothelial growth factor receptor 1 mobilize in response to the unique array of growth factors produced by the primary tumor. Their arrival in distant sites represents early changes in the local microenvironment, termed the “premetastatic niche,” which dictate the pattern of metastatic spread. Focus on the early cellular and molecular events in cancer dissemination and selectivity will likely lead to new approaches to detect and prevent metastasis at its earliest inception. PMID:17145848
Tiptoeing to chromosome tips: facts, promises and perils of today's human telomere biology.
Fajkus, J; Simícková, M; Maláska, J
2002-04-29
The past decade has witnessed an explosion of knowledge concerning the structure and function of chromosome terminal structures-telomeres. Today's telomere research has advanced from a pure descriptive approach of DNA and protein components to an elementary understanding of telomere metabolism, and now to promising applications in medicine. These applications include 'passive' ones, among which the use of analysis of telomeres and telomerase (a cellular reverse transcriptase that synthesizes telomeres) for cancer diagnostics is the best known. The 'active' applications involve targeted downregulation or upregulation of telomere synthesis, either to mortalize immortal cancer cells, or to rejuvenate mortal somatic cells and tissues for cellular transplantations, respectively. This article reviews the basic data on structure and function of human telomeres and telomerase, as well as both passive and active applications of human telomere biology.
Lynch, James T; Cockerill, Mark J; Hitchin, James R; Wiseman, Daniel H; Somervaille, Tim C P
2013-11-01
There is a lack of rapid cell-based assays that read out enzymatic inhibition of the histone demethylase LSD1 (lysine-specific demethylase 1). Through transcriptome analysis of human acute myeloid leukemia THP1 cells treated with a tranylcypromine-derivative inhibitor of LSD1 active in the low nanomolar range, we identified the cell surface marker CD86 as a sensitive surrogate biomarker of LSD1 inhibition. Within 24h of enzyme inhibition, there was substantial and dose-dependent up-regulation of CD86 expression, as detected by quantitative polymerase chain reaction, flow cytometry, and enzyme-linked immunosorbent assay. Thus, the use of CD86 expression may facilitate screening of compounds with putative LSD1 inhibitory activities in cellular assays. Copyright © 2013 Elsevier Inc. All rights reserved.
Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.
Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho
2015-06-01
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu
2016-01-01
To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation. PMID:26727026
Mercury-induced biochemical and proteomic changes in rice roots.
Chen, Yun-An; Chi, Wen-Chang; Huang, Tsai-Lien; Lin, Chung-Yi; Quynh Nguyeh, Thi Thuy; Hsiung, Yu-Chywan; Chia, Li-Chiao; Huang, Hao-Jen
2012-06-01
Mercury (Hg) is a serious environmental pollution threats to the planet. Accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. We investigated cellular, biochemical and proteomic changes in rice roots under Hg stress. Root growth rate was decreased and Hg, reactive oxygen species (ROS), and malondialdehyde (MDA) content and lipoxygenase activity were increased significantly with increasing Hg concentration in roots. We revealed a time-dependent alteration in total glutathione content and enzymatic activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) during Hg stress. 2-D electrophoresis revealed differential expression of 25 spots with Hg treatment of roots: 14 spots were upregulated and 11 spots downregulated. These differentially expressed proteins were identified by ESI-MS/MS to be involved in cellular functions including redox and hormone homeostasis, chaperone activity, metabolism, and transcription regulation. These results may provide new insights into the molecular basis of the Hg stress response in plants. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Dusp5 negatively regulates IL-33-mediated eosinophil survival and function
Holmes, Derek A; Yeh, Jung-Hua; Yan, Donghong; Xu, Min; Chan, Andrew C
2015-01-01
Mitogen-activated protein kinase (MAPK) activation controls diverse cellular functions including cellular survival, proliferation, and apoptosis. Tuning of MAPK activation is counter-regulated by a family of dual-specificity phosphatases (DUSPs). IL-33 is a recently described cytokine that initiates Th2 immune responses through binding to a heterodimeric IL-33Rα (ST2L)/IL-1α accessory protein (IL-1RAcP) receptor that coordinates activation of ERK and NF-κB pathways. We demonstrate here that DUSP5 is expressed in eosinophils, is upregulated following IL-33 stimulation and regulates IL-33 signaling. Dusp5−/− mice have prolonged eosinophil survival and enhanced eosinophil effector functions following infection with the helminth Nippostrongylus brasiliensis. IL-33-activated Dusp5−/− eosinophils exhibit increased cellular ERK1/2 activation and BCL-XL expression that results in enhanced eosinophil survival. In addition, Dusp5−/− eosinophils demonstrate enhanced IL-33-mediated activation and effector functions. Together, these data support a role for DUSP5 as a novel negative regulator of IL-33-dependent eosinophil function and survival. PMID:25398911
NASA Astrophysics Data System (ADS)
Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu
2016-01-01
To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation.
Um, Jihyun; Yu, Jinyeong; Park, Ki-Sook
2017-01-01
Wound healing is delayed in diabetes due to a number of factors, including impaired angiogenesis and poor dermal healing. The present study demonstrated that subcutaneous administration of substance P (SP) accelerates wound healing in db/db type 2 diabetic mice (db/db mice). SP injection (10 nM/kg, subcutaneously) enhanced angiogenesis, induced the mobilization of endothelial progenitor cells (EPCs) and increased the number of EPC-colony forming units (EPC-CFUs) in the bone marrow of db/db mice. Immunohistochemistry was performed to check the effects of SP on the cellular proliferation and the subcellular localization of Yes-associated protein (YAP) in the wound dermis. SP also upregulated cellular proliferation in the injured dermis of db/db mice. Compared with the control group, an increased number of cells in the wound dermis of SP-treated mice exhibited nuclear localization of YAP, which induces cellular proliferation. The results of the current study indicate that subcutaneous administration of SP may be a promising therapeutic strategy to treat diabetic wounds exhibiting impaired angiogenesis and dysfunctional dermal wound healing. PMID:28339006
Brown, Charles O; Salem, Kelley; Wagner, Brett A; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R; Goel, Apollina
2012-06-15
IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-κB (nuclear factor κB) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-κB activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-α, IL-6 induced an early perturbation in reduced glutathione level and increased NF-κB-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy.
Brown, Charles O.; Salem, Kelley; Wagner, Brett A.; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R.; Goel, Apollina
2012-01-01
IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-κB (nuclear factor κB) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-κB activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-α, IL-6 induced an early perturbation in reduced glutathione level and increased NF-κB-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy. PMID:22471522
Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun
2013-01-01
The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351
Feng, Tao; Cao, Gui-Ling; Chu, Ming-Xing; Di, Ran; Huang, Dong-Wei; Liu, Qiu-Yue; Pan, Zhang-Yuan; Jin, Mei; Zhang, Ying-Jie; Li, Ning
2015-02-01
Litter size is a favorable economic trait for the goat industry, but remains a complex trait controlled by multiple genes in multiple organs. Several genes have been identified that may affect embryo survival, follicular development, and the health of fetuses during pregnancy. Jining Grey goats demonstrate the largest litter size among goat breeds indigenous to China. In order to better understand the genetic basis of this trait, six suppression subtractive hybridization (SSH) cDNA libraries were constructed using pooled mRNAs from hypothalamuses, pituitaries, and ovaries of sexually mature and adult polytocous Jining Grey goats, as testers, versus the pooled corresponding mRNAs of monotocous Liaoning Cashmere goats, as drivers. A total of 1,458 true-positive clones--including 955 known genes and 481 known and 22 unknown expressed sequence tags--were obtained from the SSH libraries by sequencing and alignment. The known genes were categorized into cellular processes and signaling information storage and processing, and metabolism. Three genes (FTH1, GH, and SAA) were selected to validate the SSH results by quantitative real-time PCR; all three were up-regulated in the corresponding tissues in the tester group indicating that these are candidate genes associated with the large litter size of Jining Grey goats. Several other identified genes may affect embryo survival, follicular development, and health during pregnancy. This study provides insights into the mechanistic basis by which the caprine hypothalamic-pituitary-gonadal axis affects reproductive traits and provides a theoretical basis for goat production and breeding. © 2015 Wiley Periodicals, Inc.
Methylation and microRNA-mediated epigenetic regulation of SOCS3
Boosani, Chandra S.; Agrawal, Devendra K.
2017-01-01
Epigenetic gene silencing of several genes causes different pathological conditions in humans, and DNA methylation has been identified as one of the key mechanisms that underlie this evolutionarily conserved phenomenon associated with developmental and pathological gene regulation. Recent advances in the miRNA technology with high throughput analysis of gene regulation further increased our understanding on the role of miRNAs regulating multiple gene expression. There is increasing evidence supporting that the miRNAs not only regulate gene expression but they also are involved in the hypermethylation of promoter sequences, which cumulatively contributes to the epigenetic gene silencing. Here, we critically evaluated the recent progress on the transcriptional regulation of an important suppressor protein that inhibits cytokine-mediated signaling, SOCS3, whose expression is directly regulated both by promoter methylation and also by microRNAs, affecting its vital cell regulating functions. SOCS3 was identified as a potent inhibitor of Jak/STAT signaling pathway which is frequently upregulated in several pathologies, including cardiovascular disease, cancer, diabetes, viral infections, and the expression of SOCS3 was inhibited or greatly reduced due to hypermethylation of the CpG islands in its promoter region or suppression of its expression by different microRNAs. Additionally, we discuss key intracellular signaling pathways regulated by SOCS3 involving cellular events, including cell proliferation, cell growth, cell migration and apoptosis. Identification of the pathway intermediates as specific targets would not only aid in the development of novel therapeutic drugs, but, would also assist in developing new treatment strategies that could successfully be employed in combination therapy to target multiple signaling pathways. PMID:25682267
Iron and neurodegeneration in the multiple sclerosis brain
Hametner, Simon; Wimmer, Isabella; Haider, Lukas; Pfeifenbring, Sabine; Brück, Wolfgang; Lassmann, Hans
2013-01-01
Objective Iron may contribute to the pathogenesis and progression of multiple sclerosis (MS) due to its accumulation in the human brain with age. Our study focused on nonheme iron distribution and the expression of the iron-related proteins ferritin, hephaestin, and ceruloplasmin in relation to oxidative damage in the brain tissue of 33 MS and 30 control cases. Methods We performed (1) whole-genome microarrays including 4 MS and 3 control cases to analyze the expression of iron-related genes, (2) nonheme iron histochemistry, (3) immunohistochemistry for proteins of iron metabolism, and (4) quantitative analysis by digital densitometry and cell counting in regions representing different stages of lesion maturation. Results We found an age-related increase of iron in the white matter of controls as well as in patients with short disease duration. In chronic MS, however, there was a significant decrease of iron in the normal-appearing white matter (NAWM) corresponding with disease duration, when corrected for age. This decrease of iron in oligodendrocytes and myelin was associated with an upregulation of iron-exporting ferroxidases. In active MS lesions, iron was apparently released from dying oligodendrocytes, resulting in extracellular accumulation of iron and uptake into microglia and macrophages. Iron-containing microglia showed signs of cell degeneration. At lesion edges and within centers of lesions, iron accumulated in astrocytes and axons. Interpretation Iron decreases in the NAWM of MS patients with increasing disease duration. Cellular degeneration in MS lesions leads to waves of iron liberation, which may propagate neurodegeneration together with inflammatory oxidative burst. PMID:23868451
Yu, Qian; Xiong, Youhua; Liu, Jianliang; Wang, Qin; Qiu, Yuanxin; Wen, Dongling
2016-06-01
Infection with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) mutants lacking a functional p35 gene can induce host cell apoptosis, which provides the possibility to use the potential of these viruses in the biological control of pest insects. Nonetheless, the proteomics or the protein changes of Spodoptera frugiperda (Sf9) cells infected with p35 knockout AcMNPV have not yet been studied. To further improve the use of AcMNPV, we set out to analyze the protein composition and protein changes of Sf9 cells of different infection stages by isobaric tag for relative and absolute quantification (iTRAQ) techniques. A total of 4004 sf9 proteins were identified by iTRAQ. After comparation of the significantly expressed 483 proteins from p35koAcMNPV-infected Sf9 cells and the significantly expressed 413 proteins from wtAcMNPV-infected Sf9 cells, we found that 226 proteins were specific to p35koAcMNPV-infected Sf9 cells. The 226 proteins were categorized according to GO classification for insects and were categorized into: biological processes, molecular functions and cellular components. Of interest, the most up-regulated proteins related to Epstein-Barr virus infection, RNA transport, Calcium signaling pathway, cGMP-PKG signaling pathway, oxidative phosphorylation and N-Glycan biosynthesis. Determination of the protein changes in p35 knockout AcMNPV-infected Sf9 cells would facilitate the better use of this virus-host cell interaction in pest insect control and other related fields. Copyright © 2016 Elsevier Inc. All rights reserved.
Expression of toll-like receptors in hepatic cirrhosis and hepatocellular carcinoma.
Sun, L; Dai, J J; Hu, W F; Wang, J
2016-07-14
Toll-like receptors (TLRs) can specifically identify pathogen-associated molecular patterns (PAMPs) by recognizing structural patterns in diverse microbial molecules, and can provide an effective defense against multiple microbial infectious. A variety of TLRs can be expressed on the surface of liver parenchymal as well as nonparenchymal cells. Kupffer cells are a type of hepatic nonparenchymal macrophage, and are positively associated with the severity of liver fibrosis. They play an important role in the synthesis and deposition of the extracellular matrix by upregulating the expression of tissue inhibitor of metalloproteinases and downregulating the activity of matrix metalloproteinases. Cirrhosis, a chronic diffuse lesion usually accompanying extensive liver fibrosis and nodular regeneration, is caused by liver parenchymal cells repeating injury-repair following reconstruction of organizational structure in the hepatic lobules. Hepatocellular carcinoma is caused by repeated and persistent chronic severe liver injury, and partial hepatocytes can eventually transform into hepatoma cells. Multiple TLRs such as TLR2, TLR3, TLR4, and TLR9, as well as other receptors, can be expressed in cirrhosis and hepatocellular carcinoma. About 53 and 85% of hepatocellular carcinoma patients frequently express TLR3 and TLR9, respectively. The chronic and repeated liver injury caused by alcohol, and HBV, HCV, or other pathogens can be recognized by TLRs through the PAMP pathway, which directly increases the risk for hepatic cirrhosis and hepatocellular carcinoma. In this review, we briefly present evidence that the novel cellular molecular mechanisms of TLRs may provide more information about new therapeutics targets of the anti-inflammatory immune response.
Li, Yiwei; Go, Vay Liang W; Sarkar, Fazlul H
2015-01-01
Pancreatic cancer is one of the most aggressive malignancies in US adults. Experimental studies have found that antioxidant nutrients could reduce oxidative DNA damage, suggesting that these antioxidants may protect against pancreatic carcinogenesis. Several epidemiologic studies showed that dietary intake of antioxidants was inversely associated with the risk for pancreatic cancer, demonstrating the inhibitory effects of antioxidants on pancreatic carcinogenesis. Moreover, nutraceuticals, the anticancer agents from diet or natural plants, have been found to inhibit the development and progression of pancreatic cancer through the regulation of cellular signaling pathways. Importantly, nutraceuticals also up-regulate the expression of tumor-suppressive microRNAs (miRNAs) and down-regulate the expression of oncogenic miRNAs, leading to the inhibition of pancreatic cancer cell growth and pancreatic cancer stem cell self-renewal through modulation of cellular signaling network. Furthermore, nutraceuticals also regulate epigenetically deregulated DNAs and miRNAs, leading to the normalization of altered cellular signaling in pancreatic cancer cells. Therefore, nutraceuticals could have much broader use in the prevention and/or treatment of pancreatic cancer in combination with conventional chemotherapeutics. However, more in vitro mechanistic experiments, in vivo animal studies, and clinical trials are needed to realize the true value of nutraceuticals in the prevention and/or treatment of pancreatic cancer.
Li, Yiwei; Go, Vay Liang W.; Sarkar, Fazlul H.
2014-01-01
Pancreatic cancer is one of the most aggressive malignancies in US adults. The experimental studies have found that antioxidant nutrients could reduce oxidative DNA damage, suggesting that these antioxidants may protect against pancreatic carcinogenesis. Several epidemiologic studies showed that dietary intake of antioxidants was inversely associated with the risk of pancreatic cancer, demonstrating the inhibitory effects of antioxidants on pancreatic carcinogenesis. Moreover, nutraceuticals, the anti-cancer agents from diet or natural plants, have been found to inhibit the development and progression of pancreatic cancer through the regulation of cellular signaling pathways. Importantly, nutraceuticals also up-regulate the expression of tumor suppressive miRNAs and down-regulate the expression of oncogenic miRNAs, leading to the inhibition of pancreatic cancer cell growth and pancreatic Cancer Stem Cell (CSC) self-renewal through modulation of cellular signaling network. Furthermore, nutraceuticals also regulate epigenetically deregulated DNAs and miRNAs, leading to the normalization of altered cellular signaling in pancreatic cancer cells. Therefore, nutraceuticals could have much broader use in the prevention and/or treatment of pancreatic cancer in combination with conventional chemotherapeutics. However, more in vitro mechanistic experiments, in vivo animal studies, and clinical trials are needed to realize the true value of nutraceuticals in the prevention and/or treatment of pancreatic cancer. PMID:25493373
Chang, Cheng-Wei; Chen, Chaang-Ray; Huang, Chao-Ying; Shu, Wun-Yi; Chiang, Chi-Shiun; Hong, Ji-Hong; Hsu, Ian C.
2013-01-01
Simian virus 40 (SV40) transforms cells through the suppression of tumor-suppressive responses by large T and small t antigens; studies on the effects of these two oncoproteins have greatly improved our knowledge of tumorigenesis. Large T antigen promotes cellular transformation by binding and inactivating p53 and pRb tumor suppressor proteins. Previous studies have shown that not all of the tumor-suppressive responses were inactivated in SV40-transformed cells; however, the underlying cause is not fully studied. In this study, we investigated the UVB-responsive transcriptome of an SV40-transformed fibroblast (MRC5CVI) and that of its untransformed counterpart (MRC-5). We found that, in response to UVB irradiation, MRC-5 and MRC5CVI commonly up-regulated the expression of oxidative phosphorylation genes. MRC-5 up-regulated the expressions of chromosome condensation, DNA repair, cell cycle arrest, and apoptotic genes, but MRC5CVI did not. Further cell death assays indicated that MRC5CVI was more sensitive than MRC-5 to UVB-induced cell death with increased caspase-3 activation; combining with the transcriptomic results suggested that MRC5CVI may undergo UVB-induced cell death through mechanisms other than transcriptional regulation. Our study provides a further understanding of the effects of SV40 transformation on cellular stress responses, and emphasizes the value of SV40-transformed cells in the researches of sensitizing neoplastic cells to radiations. PMID:24019915
Yamauchi, Junji; Miyamoto, Yuki; Torii, Tomohiro; Mizutani, Reiko; Nakamura, Kazuaki; Sanbe, Atsushi; Koide, Hiroshi; Kusakawa, Shinji; Tanoue, Akito
2009-07-15
The mood-stabilizing agent valproic acid (VPA) potently promotes neuronal differentiation. As yet, however, little is known about the underlying molecular mechanism. Here, we show that VPA upregulates cytohesin-2 and mediates neurite outgrowth in N1E-115 neuroblastoma cells. Cytohesin-2 is the guanine-nucleotide exchange factor (GEF) for small GTPases of the Arf family; it regulates many aspects of cellular functions including morphological changes. Treatment with the specific cytohesin family inhibitor SecinH3 or knockdown of cytohesin-2 with its siRNA results in blunted induction of neurite outgrowth in N1E-115 cells. The outgrowth is specifically inhibited by siRNA knockdown of Arf6, but not by that of Arf1. Furthermore, VPA upregulates Arl4D, an Arf-like small GTPase that has recently been identified as the regulator that binds to cytohesin-2. Arl4D knockdown displays an inhibitory effect on neurite outgrowth resulting from VPA, while expression of constitutively active Arl4D induces outgrowth. We also demonstrate that the addition of cell-permeable peptide, coupling the cytohesin-2-binding region of Arl4D into cells, reduces the effect of VPA. Thus, Arl4D is a previously unknown regulator of neurite formation through cytohesin-2 and Arf6, providing another example that the functional interaction of two different small GTPases controls an important cellular function.
Nirmala, Nanguneri; Grom, Alexei; Gram, Hermann
2014-09-01
This review summarizes biomarkers in systemic juvenile idiopathic arthritis (sJIA). Broadly, the markers are classified under protein, cellular, gene expression and genetic markers. We also compare the biomarkers in sJIA to biomarkers in cryopyrin-associated periodic syndrome (CAPS). Recent publications showing the similarity of clinical response of sJIA and CAPS to anti-interleukin 1 therapies prompted a comparison at the biomarker level. sJIA traditionally is classified under the umbrella of juvenile idiopathic arthritis. At the clinical phenotypic level, sJIA has several features that are more similar to those seen in CAPS. In this review, we summarize biomarkers in sJIA and CAPS and draw upon the various similarities and differences between the two families of diseases. The main differences between sJIA and CAPS biomarkers are genetic markers, with CAPS being a family of monogenic diseases with mutations in NLRP3. There have been a small number of publications describing cellular biomarkers in sJIA with no such studies described for CAPS. Many of the protein marker's characteristics of sJIA are also seen to characterize CAPS. The gene expression data in both sJIA and CAPS show a strong upregulation of innate immunity pathways. In addition, we describe a strong similarity between sJIA and CAPS at the gene expression level in which several genes that form a part of the erythropoiesis signature are upregulated in both sJIA and CAPS.
Nirmala, Nanguneri; Grom, Alexei; Gram, Hermann
2015-01-01
Purpose of review This review summarizes biomarkers in Systemic Juvenile Idiopathic Arthritis (sJIA). Broadly, the markers are classified under protein, cellular, gene expression and genetic markers. We also compare the biomarkers in sJIA to biomarkers in cryopyrin associated periodic syndromes (CAPS). Recent findings Recent publications showing the similarity of clinical response of sJIA and CAPS to anti IL1 therapies prompted a comparison at the biomarker level. Summary sJIA traditionally is classified under the umbrella of juvenile idiopathic arthritis. At the clinical phenotypic level, sJIA has several features that are more similar to those seen in Cryopyrin Associated Periodic Syndromes (CAPS). In this review, we summarize biomarkers in sJIA and CAPS and draw upon the various similarities and differences between the two families of diseases. The main difference between sJIA and CAPS biomarkers are genetic markers with CAPS being a family of monogenic diseases with mutations in NLRP3. There have been a small number of publications describing cellular biomarkers in sJIA with no such studies described for CAPS. Many of the protein markers characteristic of sJIA are also seen to characterize CAPS. The gene expression data in both sJIA and CAPS show a strong upregulation of innate immunity pathways. In addition, we describe a strong similarity between sJIA and CAPS at the gene expression level where several genes that form a part of the erythropoiesis signature are upregulated in both sJIA and CAPS. PMID:25050926
Cao, Jinyu; Zhang, Deyuan; Zeng, Liangtao; Liu, Fanrong
2018-06-01
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are aberrantly expressed in many cancer types, including hepatocellular carcinoma (HCC). lncRNA MYC-induced long non-coding RNA (MINCR) were revealed to be markedly up-regulated in gallbladder cancer and Burkitt lymphoma cells. However, the biological role and function of MINCR in HCC progression are still unknown. The expression of MINCR in HCC tissues and cell lines was determined using quantitative real-time polymerase chain reaction assays. The effects of MINCR in HCC cell proliferation, migration, and invasion were determined using cell-counting kit 8 (CCK8) assay, wound healing assay, and Transwell assays in vitro. MINCR expression was up-regulated in HCC tissues and cell lines as compared with that in the negative control. The decreased expression of MINCR in vitro markedly inhibited HCC cell proliferation, migration, and invasion. Our results showed that MINCR is important in HCC development and may act as a therapeutic target that regulates HCC cellular proliferation, migration, and invasion, which are involved in HCC tumorigenesis. To the best of our know ledge, MINCR in HCC has not been studied. Our findings showed that this study is the first to reveal that MINCR may act as a therapeutic target in HCC. The in-depth exploration of the molecular mechanism is required to illuminate the molecular mechanisms of MINCR in HCC development. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Zhang, Shu; Han, Guo-dong; Dong, Yun-wei
2014-04-01
Intertidal invertebrates develop effective physiological adaptations to cope with the rapidly changing thermal environment in the intertidal zone. In the present study, the temporal patterns of heart rate, protein carbonyl groups, and genes encoding heat shock proteins (hsp70 and hsp90) and metabolic sensors (ampkα, ampkβ and sirt1) were measured to study the effect of sublethal heat stress on the cardiac function, oxidative stress, heat shock response and cellular metabolism of an intertidal limpet Cellana toreuma. All the physiological parameters are sensitive to temperature and duration of heat stress. Spearman correlation analysis revealed that the correlations between heart rate and levels of heat shock proteins mRNA and metabolic sensors mRNA were statistically significant. These results further suggest that cardiac function plays crucial roles in cellular energy metabolism and heat shock responses. The significant increase of protein carbonyl groups at 34°C after 4h exposure indicated that the failure of cardiac function and the increase of anaerobic metabolism partly leads to the increase of protein carbonyl groups. Generally, the physiological responses to heat stress are sensitive to temperature and are energy-consumptive, as indicated by the upregulation of metabolic sensors mRNA. However, the upregulation of heat shock proteins and metabolic sensors at the post-transcriptional level and related functions need to be confirmed in further experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Feng, Xiaoli; Luo, Zhidan; Ma, Liqun; Ma, Shuangtao; Yang, Dachun; Zhao, Zhigang; Yan, Zhencheng; He, Hongbo; Cao, Tingbing; Liu, Daoyan; Zhu, Zhiming
2011-07-01
Clinical trials have shown that angiotensin II receptor blockers reduce the new onset of diabetes in hypertensives; however, the underlying mechanisms remain unknown. We investigated the effects of telmisartan on peroxisome proliferator activated receptor γ (PPAR-δ) and the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in cultured myotubes, as well as on the running endurance of wild-type and PPAR-δ-deficient mice. Administration of telmisartan up-regulated levels of PPAR-δ and phospho-AMPKα in cultured myotubes. However, PPAR-δ gene deficiency completely abolished the telmisartan effect on phospho-AMPKαin vitro. Chronic administration of telmisartan remarkably prevented weight gain, enhanced running endurance and post-exercise oxygen consumption, and increased slow-twitch skeletal muscle fibres in wild-type mice, but these effects were absent in PPAR-δ-deficient mice. The mechanism is involved in PPAR-δ-mediated stimulation of the AMPK pathway. Compared to the control mice, phospho-AMPKα level in skeletal muscle was up-regulated in mice treated with telmisartan. In contrast, phospho-AMPKα expression in skeletal muscle was unchanged in PPAR-δ-deficient mice treated with telmisartan. These findings highlight the ability of telmisartan to improve skeletal muscle function, and they implicate PPAR-δ as a potential therapeutic target for the prevention of type 2 diabetes. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D
2005-01-01
Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes.
de Ridder, Gustaaf G; Ray, Rupa; Pizzo, Salvatore V
2012-06-01
The HSP70 family member GRP78 is a selective tumor marker upregulated on the surface of many tumor cell types, including melanoma, where it acts as a growth factor receptor-like protein. Receptor-recognized forms of the proteinase inhibitor α2-macroglobulin (α2M*) are the best-characterized ligands for GRP78, but in melanoma and other cancer patients, autoantibodies arise against the NH2-terminal domain of GRP78 that react with tumor cell-surface GRP78. This causes the activation of signaling cascades that are proproliferative and antiapoptotic. Antibodies directed against the COOH-terminal domain of GRP78, however, upregulate p53-mediated proapoptotic signaling, leading to cell death. Here, we describe the binding characteristics, cell signaling properties, and downstream cellular effects of three novel murine monoclonal antibodies. The NH2-terminal domain-reactive antibody, N88, mimics α2M* as a ligand and drives PI 3-kinase-dependent activation of Akt and the subsequent stimulation of cellular proliferation in vitro. The COOH-terminal domain-reactive antibody, C38, acts as an antagonist of both α2M* and N88, whereas another, C107, directly induces apoptosis in vitro. In a murine B16F1 melanoma flank tumor model, we demonstrate the acceleration of tumor growth by treatment with N88, whereas C107 significantly slowed tumor growth whether administered before (P<0.005) or after (P<0.05) tumor implantation.
Li, Qunfang; Tainsky, Michael A.
2013-01-01
The IFN pathway is abrogated in fibroblasts from Li-Fraumeni syndrome (LFS) patients during spontaneous cellular immortalization, a necessary step in carcinogenesis. Microarray profiling of differentially expressed microRNAs (miRNA) revealed that most miRNAs were upregulated in IFN pathway–defective MDAH087-10 fibroblasts compared with MDAH087-N cells with relatively normal IFN signaling. Overexpression of Dicer, a critical enzyme in miRNA biogenesis, promoted cell growth and colony formation in MDAH087-10 cells. However, double-stranded miRNA produced by Dicer enhanced the expression of IFN-stimulated genes in MDAH087-N cells resulting in significant cell death and reduced cell growth. Furthermore, manipulation of the IFN pathway in immortal LFS fibroblasts through transcription factor IRF7 reversed their response to Dicer overexpression due to changed IFN pathway activity. Dicer overexpressing MDAH087-N cells contained lower levels of miRNA than vector control, and conversely much higher miRNA expression was detected in Dicertransfected MDAH087-10 cells. Therefore, cells with a defective IFN pathway have a higher miRNA tolerance than cells with normal IFN pathway. This work indicates for the first time that the IFN pathway as mediated through the transcription factor IRF7 must be disrupted to permit miRNA upregulation to occur in early carcinogenesis. The IFN pathway appears to provide a checkpoint for miRNA level tolerance and its abrogation leads to cellular immortalization. PMID:21199806
Li, Qunfang; Tainsky, Michael A
2011-01-01
The IFN pathway is abrogated in fibroblasts from Li-Fraumeni syndrome (LFS) patients during spontaneous cellular immortalization, a necessary step in carcinogenesis. Microarray profiling of differentially expressed microRNAs (miRNA) revealed that most miRNAs were upregulated in IFN pathway-defective MDAH087-10 fibroblasts compared with MDAH087-N cells with relatively normal IFN signaling. Overexpression of Dicer, a critical enzyme in miRNA biogenesis, promoted cell growth and colony formation in MDAH087-10 cells. However, double-stranded miRNA produced by Dicer enhanced the expression of IFN-stimulated genes in MDAH087-N cells resulting in significant cell death and reduced cell growth. Furthermore, manipulation of the IFN pathway in immortal LFS fibroblasts through transcription factor IRF7 reversed their response to Dicer overexpression due to changed IFN pathway activity. Dicer overexpressing MDAH087-N cells contained lower levels of miRNA than vector control, and conversely much higher miRNA expression was detected in Dicer-transfected MDAH087-10 cells. Therefore, cells with a defective IFN pathway have a higher miRNA tolerance than cells with normal IFN pathway. This work indicates for the first time that the IFN pathway as mediated through the transcription factor IRF7 must be disrupted to permit miRNA upregulation to occur in early carcinogenesis. The IFN pathway appears to provide a checkpoint for miRNA level tolerance and its abrogation leads to cellular immortalization. © 2011 AACR.
Karve, Sayali S; Pradhan, Suman; Ward, Doyle V; Weiss, Alison A
2017-01-01
Infection with Shiga toxin (Stx) producing Escherichia coli O157:H7 can cause the potentially fatal complication hemolytic uremic syndrome, and currently only supportive therapy is available. Lack of suitable animal models has hindered study of this disease. Induced human intestinal organoids (iHIOs), generated by in vitro differentiation of pluripotent stem cells, represent differentiated human intestinal tissue. We show that iHIOs with addition of human neutrophils can model E. coli intestinal infection and innate cellular responses. Commensal and O157:H7 introduced into the iHIO lumen replicated rapidly achieving high numbers. Commensal E. coli did not cause damage, and were completely contained within the lumen, suggesting defenses, such as mucus production, can constrain non-pathogenic strains. Some O157:H7 initially co-localized with cellular actin. Loss of actin and epithelial integrity was observed after 4 hours. O157:H7 grew as filaments, consistent with activation of the bacterial SOS stress response. SOS is induced by reactive oxygen species (ROS), and O157:H7 infection increased ROS production. Transcriptional profiling (RNAseq) demonstrated that both commensal and O157:H7 upregulated genes associated with gastrointestinal maturation, while infection with O157:H7 upregulated inflammatory responses, including interleukin 8 (IL-8). IL-8 is associated with neutrophil recruitment, and infection with O157:H7 resulted in recruitment of human neutrophils into the iHIO tissue.
Ashkenazi, M; Kohl, S
1990-06-15
Blood polymorphonuclear leukocytes (BPMN) have been shown to mediate antibody-dependent cellular cytotoxicity (ADCC) against HSV-infected cells. Although HSV infections are frequently found in the oral cavity, the ADCC capacity of salivary PMN (SPMN) has not been studied, mainly because methods to isolate SPMN were not available. We have recently developed a method to isolate SPMN, and in this study have evaluated their ADCC activity against HSV-infected cells. SPMN were obtained by repeated washings of the oral cavity, and separated from epithelial cells by nylon mesh filtration. ADCC was quantitatively determined by 51Cr release from HSV-infected Chang liver cells. SPMN in the presence of antibody were able to destroy HSV-infected cells, but SPMN were much less effective in mediating ADCC than BPMN (3.4% vs 40.7%, p less than 0.0001). In the presence of antiviral antibody, SPMN were able to adhere to HSV-infected cells, but less so than BPMN (34% vs 67%), and specific antibody-induced adherence was significantly lower in SPMN (p less than 0.04). The spontaneous adherence to HSV-infected cells was higher for SPMN than BPMN. SPMN demonstrated up-regulation of the adhesion glycoprotein CD18, but down-regulation of the FcRIII receptor. Incubation with saliva decreased ADCC capacity of BPMN, up-regulated CD18 expression, and down-regulated FcRIII expression.
Role of Bruton's tyrosine kinase inhibitors in HIV-1-infected cells.
Guendel, Irene; Iordanskiy, Sergey; Sampey, Gavin C; Van Duyne, Rachel; Calvert, Valerie; Petricoin, Emanuel; Saifuddin, Mohammed; Kehn-Hall, Kylene; Kashanchi, Fatah
2015-06-01
Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high-throughput proteomic assays, we have previously identified Bruton's tyrosine kinase (BTK) as a host protein that was uniquely upregulated in the plasma membrane of human immunodeficiency virus (HIV-1)-infected T cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant upregulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells; however, new BTK protein complexes were identified and distributed in both high molecular weight (∼600 kDa) and a small molecular weight complex (∼60-120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1-infected cells using small interfering RNA (siRNA) resulted in selective death of infected, but not uninfected, cells. Using BTK-specific antibody and small-molecule inhibitors including LFM-A13 and a FDA-approved compound, ibrutinib (PCI-32765), we have found that HIV-1-infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1-infected cells are sensitive to treatments targeting BTK expressed in infected cells.
Role of Bruton’s Tyrosine Kinase inhibitors in HIV-1 infected cells
Guendel, Irene; Iordanskiy, Sergey; Sampey, Gavin C; Van Duyne, Rachel; Calvert, Valerie; Petricoin, Emanuel; Saifuddin, Mohammed; Kehn-Hall, Kylene; Kashanchi, Fatah
2015-01-01
Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high throughput proteomic assays, we have previously identified Bruton’s tyrosine kinase (BTK) as a host protein that was uniquely up-regulated in the plasma membrane of HIV-1 infected T-cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant up-regulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells, however new BTK protein complexes were identified and distributed in both high molecular weight (~600 kDa) and a small molecular weight complex (~60–120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1 infected cells using siRNA resulted in selective death of infected, but not uninfected, cells. Using BTK specific antibody and small molecule inhibitors including LFM-A13 and a FDA approved compound, Ibrutinib (PCI – 32765), we have found that HIV-1 infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1 infected cells are sensitive to treatments targeting BTK expressed in infected cells. PMID:25672887
Kavanagh Williamson, Maia; Coombes, Naomi; Juszczak, Florian; Athanasopoulos, Marios; Khan, Mariam B.; Eykyn, Thomas R.; Srenathan, Ushani; Dias Zeidler, Julianna; Huthoff, Hendrik
2018-01-01
Infection of primary CD4+ T cells with HIV-1 coincides with an increase in glycolysis. We investigated the expression of glucose transporters (GLUT) and glycolytic enzymes in human CD4+ T cells in response to infection with HIV-1. We demonstrate the co-expression of GLUT1, GLUT3, GLUT4, and GLUT6 in human CD4+ T cells after activation, and their concerted overexpression in HIV-1 infected cells. The investigation of glycolytic enzymes demonstrated activation-dependent expression of hexokinases HK1 and HK2 in human CD4+ T cells, and a highly significant increase in cellular hexokinase enzyme activity in response to infection with HIV-1. HIV-1 infected CD4+ T cells showed a marked increase in expression of HK1, as well as the functionally related voltage-dependent anion channel (VDAC) protein, but not HK2. The elevation of GLUT, HK1, and VDAC expression in HIV-1 infected cells mirrored replication kinetics and was dependent on virus replication, as evidenced by the use of reverse transcription inhibitors. Finally, we demonstrated that the upregulation of HK1 in HIV-1 infected CD4+ T cells is independent of the viral accessory proteins Vpu, Vif, Nef, and Vpr. Though these data are consistent with HIV-1 dependency on CD4+ T cell glucose metabolism, a cellular response mechanism to infection cannot be ruled out. PMID:29518929
Campo, Joseph J.; Cicéron, Micheline; Raccurt, Christian P.; Beau De Rochars, Valery E. M.
2017-01-01
Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-), and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+) and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56-) T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that delineate individuals into asymptomatic and symptomatic phenotypes. Future investigations using large scale biological data sets analyzing multiple components of adaptive immunity, could collectively define which cellular responses and molecular correlates of disease outcome are malaria region specific, and which are truly generalizable features of asymptomatic Plasmodium immunity, a research goal of critical priority. PMID:28369062
Lehmann, Jason S; Campo, Joseph J; Cicéron, Micheline; Raccurt, Christian P; Boncy, Jacques; Beau De Rochars, Valery E M; Cannella, Anthony P
2017-01-01
Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-), and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+) and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56-) T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that delineate individuals into asymptomatic and symptomatic phenotypes. Future investigations using large scale biological data sets analyzing multiple components of adaptive immunity, could collectively define which cellular responses and molecular correlates of disease outcome are malaria region specific, and which are truly generalizable features of asymptomatic Plasmodium immunity, a research goal of critical priority.
Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei
2016-02-01
Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we demonstrate the upregulation of mature vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Moreover, we demonstrate the potential to direct specialized hMSC differentiation by modulating stiffness and growth factor using silk fibroin, a well-tolerated and -defined biomaterial with an impressive portfolio of tissue engineering applications. Altogether, our study reinforce the fact that complex differentiation protocols may be simplified by engineering the cellular microenvironment on multiple scales, i.e. matrix stiffness with growth factor. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Chronically stressed or stress-preconditioned neurons fail to maintain stress granule assembly.
Shelkovnikova, Tatyana A; Dimasi, Pasquale; Kukharsky, Michail S; An, Haiyan; Quintiero, Annamaria; Schirmer, Claire; Buée, Luc; Galas, Marie-Christine; Buchman, Vladimir L
2017-05-11
Dysregulation of stress granules (SGs) and their resident proteins contributes to pathogenesis of a number of (neuro)degenerative diseases. Phosphorylation of eIF2α is an event integrating different types of cellular stress and it is required for SG assembly. Phosphorylated eIF2α (p-eIF2α) is upregulated in the nervous system in some neurodegenerative conditions. We found that increasing p-eIF2α level by proteasomal inhibition in cultured cells, including mouse and human neurons, before a SG-inducing stress ('stress preconditioning'), limits their ability to maintain SG assembly. This is due to upregulation of PP1 phosphatase regulatory subunits GADD34 and/or CReP in preconditioned cells and early decline of p-eIF2α levels during subsequent acute stress. In two model systems with constitutively upregulated p-eIF2α, mouse embryonic fibroblasts lacking CReP and brain neurons of tau transgenic mice, SG formation was also impaired. Thus, neurons enduring chronic stress or primed by a transient mild stress fail to maintain p-eIF2α levels following subsequent acute stress, which would compromise protective function of SGs. Our findings provide experimental evidence on possible loss of function for SGs in certain neurodegenerative diseases.
Upregulation of CSPG3 accompanies neuronal progenitor proliferation and migration in EAE.
Sajad, Mir; Zargan, Jamil; Chawla, Raman; Umar, Sadiq; Khan, Haider A
2011-03-01
The molecular identities of signals that regulate the CNS lesion remodeling remain unclear. Herein, we report for the first time that extracellular matrix chondroitin sulphate proteoglycan, CSPG3 (neurocan) is upregulated after primary inflammatory injury. EAE was induced using myelin oligodendrocyte glycoprotein (MOG) (35-55) which was characterized by massive polymorphonuclear cell infiltration and loss of myelin basic protein expression along with steep decrease of CNPase. Periventricular white matter (PVWM) and cortex presented with astrogliosis evidenced by increased Glial fibrillary acidic protein (GFAP) immunoreactivity 20 days post immunization (p.i). Neuronal progenitor cell (NPC) proliferation increased after first acute episode in the subventricular zone (SVZ), corpus callosum, and cortex, indicating migration of cells to structures other than rostral migration stream and olfactory bulb, which is indicative of cell recruitment for repair process and was confirmed by presence of thin myelin sheaths in the shadow plaques. Earlier CSPG3 has been demonstrated to impede regeneration. We observed neuroinflammation-induced up-regulation of the CSPG3 expression in two most affected regions viz. PVWM and cortex after proliferation and migration of NPCs. Our results show possible role of reactive astrogliosis in lesion remodeling and redefine the relation between inflammation and endogenous cellular repair which can aid in designing of newer therapeutic strategies.
Role of Nodal-PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy.
Su, Dongmei; Jing, Sun; Guan, Lina; Li, Qian; Zhang, Huiling; Gao, Xiaobo; Ma, Xu
2014-06-01
Pathological cardiac hypertrophy is a major cause of morbidity and mortality in cardiovascular disease. Recent studies have shown that cardiomyocytes, in response to high glucose (HG) stimuli, undergo hypertrophic growth. While much work still needs to be done to elucidate this important mechanism of hypertrophy, previous works have showed that some pathways or genes play important roles in hypertrophy. In this study, we showed that sublethal concentrations of glucose (25 mmol/L) could induce cardiomyocyte hypertrophy with an increase in the cellular surface area and the upregulation of the atrial natriuretic peptide (ANP) gene, a hypertrophic marker. High glucose (HG) treatments resulted in the upregulation of the Nodal gene, which is under-expressed in cardiomyocytes. We also determined that the knockdown of the Nodal gene resisted HG-induced cardiomyocyte hypertrophy. The overexpression of Nodal was able to induce hypertrophy in cardiomyocytes, which was associated with the upregulation of the PITX2C gene. We also showed that increases in the PITX2C expression, in response to Nodal, were mediated by the Smad4 signaling pathway. This study is highly relevant to the understanding of the effects of the Nodal-PITX2C pathway on HG-induced cardiomyocyte hypertrophy, as well as the related molecular mechanisms.
Allen, Sariah J.; Rhode-Kurnow, Antje; Mott, Kevin R.; Jiang, Xianzhi; Carpenter, Dale; Rodriguez-Barbosa, J. Ignacio; Jones, Clinton; Wechsler, Steven L.; Ware, Carl F.
2014-01-01
Herpesvirus entry mediator (HVEM) is one of several cell surface proteins herpes simplex virus (HSV) uses for attachment/entry. HVEM regulates cellular immune responses and can also increase cell survival. Interestingly, latency-associated transcript (LAT), the only viral gene consistently expressed during neuronal latency, enhances latency and reactivation by promoting cell survival and by helping the virus evade the host immune response. However, the mechanisms of these LAT activities are not well understood. We show here for the first time that one mechanism by which LAT enhances latency and reactivation appears to be by upregulating HVEM expression. HSV-1 latency/reactivation was significantly reduced in Hvem−/− mice, indicating that HVEM plays a significant role in HSV-1 latency/reactivation. Furthermore, LAT upregulated HVEM expression during latency in vivo and also when expressed in vitro in the absence of other viral factors. This study suggests a mechanism whereby LAT upregulates HVEM expression potentially through binding of two LAT small noncoding RNAs to the HVEM promoter and that the increased HVEM then leads to downregulation of immune responses in the latent microenvironment and increased survival of latently infected cells. Thus, one of the mechanisms by which LAT enhances latency/reactivation appears to be through increasing expression of HVEM. PMID:24307582
Yu, Yadong; Li, Tao; Wu, Na; Jiang, Ling; Ji, Xiaojun; Huang, He
2017-03-07
Lipid droplets (LDs) participate in many cellular processes in oleaginous microorganisms. However, the exact function of LDs in the Mortierella alpina aging process remains elusive. Herein, subcellular proteomics was employed to unveil the composition and dynamics of the LD proteome in the aging M. alpina for the first time. More than 400 proteins were detected in LDs and 62 of them changed expression significantly during aging. By combining the LD proteomic data with whole-cell data, we found that the carbohydrate metabolism and de novo lipid biosynthesis were all inhibited during aging of M. alpina mycelia. The up-regulation of fructose metabolism-related enzymes in LDs might imply that LDs facilitated the fructose metabolism, which in turn might cause pyruvate to accumulate and enter malate-pyruvate cycle, and ultimately, provide additional NADPH for the synthesis of arachidonic acid (ARA). Lysophospholipase and lecithinase were up-regulated in LDs during the aging process, suggesting that the phospholipids and lecithin were starting to be hydrolyzed, in order to release fatty acids for the cells. The impairment of the anti-oxidant system might lead to the accumulation of ROS and consequently cause the up-regulation of autophagy-related proteins in LDs, which further induces the M. alpina mycelia to activate the autophagy process.
Zheng, Lei; Qin, Jun; Sun, Longci; Gui, Liang; Zhang, Chihao; Huang, Yijun; Deng, Wensheng; Huang, An; Sun, Dong; Luo, Meng
2017-06-01
Portal hypertension in cirrhosis is mediated, in part, by increased intrahepatic resistance, reflecting massive structural changes associated with fibrosis and intrahepatic vasoconstriction. Activation of the Rho/MRTF/SRF signaling pathway is essential for the cellular regulatory network of fibrogenesis. The aim of this study was to investigate MRTF-A-mediated regulation of intrahepatic fibrogenesis in cirrhotic rats. Portal hypertension was induced in rats via an injection of CCl 4 oil. Hemodynamic measurements were obtained using a polyethylene PE-50 catheter and pressure transducers. Expression of hepatic fibrogenesis was measured using histological staining. Expression of protein was measured using western blotting. Upregulation of MRTF-A protein expression in the livers of rats with CCl 4 -induced cirrhosis was relevant to intrahepatic resistance and hepatic fibrogenesis in portal hypertensive rats with increased modeling time. Inhibition of MRTF-A by CCG-1423 decelerated hepatic fibrosis, decreased intrahepatic resistance and portal pressure, and alleviated portal hypertension. Increased intrahepatic resistance in rats with CCl 4 -induced portal hypertension is associated with an upregulation of MRTF-A signaling. Inhibition of this pathway in the liver can decrease hepatic fibrosis and intrahepatic resistance, as well as reduce portal pressure in cirrhotic rats with CCl 4 -induced portal hypertension. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Balkrishna, Sarojini; Bröer, Angelika; Welford, Scott M.; Hatzoglou, Maria; Bröer, Stefan
2015-01-01
Background Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3) for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. Methods Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. Results Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. Conclusions Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene. PMID:24854847
Oreshkova, Nadia; Wichgers Schreur, Paul J; Spel, Lotte; Vloet, Rianka P M; Moormann, Rob J M; Boes, Marianne; Kortekaas, Jeroen
2015-01-01
Vaccines based on nonspreading Rift Valley fever virus (NSR) induce strong humoral and robust cellular immune responses with pronounced Th1 polarisation. The present work was aimed to gain insight into the molecular basis of NSR-mediated immunity. Recent studies have demonstrated that wild-type Rift Valley fever virus efficiently targets and replicates in dendritic cells (DCs). We found that NSR infection of cultured human DCs results in maturation of DCs, characterized by surface upregulation of CD40, CD80, CD86, MHC-I and MHC-II and secretion of the proinflammatory cytokines IFN-β, IL-6 and TNF. Interestingly, expression of the most prominent marker of DC maturation, CD83, was consistently downregulated at 24 hours post infection. Remarkably, NSR infection also completely abrogated CD83 upregulation by LPS. Downregulation of CD83 was not associated with reduced mRNA levels or impaired CD83 mRNA transport from the nucleus and could not be prevented by inhibition of the proteasome or endocytic degradation pathways, suggesting that suppression occurs at the translational level. In contrast to infected cells, bystander DCs displayed full maturation as evidenced by upregulation of CD83. Our results indicate that bystander DCs play an important role in NSR-mediated immunity.
The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.
Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro
2013-12-01
Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.
Image-guided genomic analysis of tissue response to laser-induced thermal stress
NASA Astrophysics Data System (ADS)
Mackanos, Mark A.; Helms, Mike; Kalish, Flora; Contag, Christopher H.
2011-05-01
The cytoprotective response to thermal injury is characterized by transcriptional activation of ``heat shock proteins'' (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.
Oxidative stress induces senescence in human mesenchymal stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandl, Anita; Meyer, Matthias; Bechmann, Volker
Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolongedmore » low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.« less
Microarray analysis of toxicogenomic effects of Ortho-phenylphenol in Staphylococcus aureus
Jang, Hyeung-Jin; Nde, Chantal; Toghrol, Freshteh; Bentley, William E
2008-01-01
Background Staphylococcus aureus (S. aureus), is responsible for many infectious diseases, ranging from benign skin infections to life-threatening endocarditis and toxic shock syndrome. Ortho-phenylphenol (OPP) is an antimicrobial agent and an active ingredient of EPA-registered disinfectants with wide human exposure in various agricultural, hospital and veterinary disinfectant products. Despite many uses, an understanding of a cellular response to OPP and it's mechanism of action, targeted genes, and the connectivity between targeted genes and the rest of cell metabolism remains obscure. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses of S. aureus when exposed to 0.82 mM of OPP for 20 and 60 min. Our data indicated that OPP downregulated the biosynthesis of many amino acids, which are required for protein synthesis. In particular, the genes encoding the enzymes of the diaminopimelate (DAP) pathway which results in lysine biosynthesis were significantly downregualted. Intriguingly, we revealed that the transcription of genes encoding ribosomal proteins was upregulated by OPP and at the same time, the genes encoding iron acquisition and transport were downregulated. The genes encoding virulence factors were upregulated and genes encoding phospholipids were downregulated upon 20 min exposure to OPP. Conclusion By using microarray analysis that enables us to simultaneously and globally examine the complete transcriptome during cellular responses, we have revealed novel information regarding the mode of action of OPP on Staphylococcus: OPP inhibits anabolism of many amino acids and highly downregulates the genes that encode the enzymes involved in the DAP pathway. Lysine and DAP are essential for building up the peptidoglycan cell wall. It was concluded that the mode of action of OPP is similar to the mechanism of action of some antibiotics. The discovery of this phenomenon provides useful information that will benefit further antimicrobial research on S. aureus. PMID:18793396
Macha, Muzafar A.; Rachagani, Satyanarayana; Pai, Priya; Gupta, Suprit; Lydiatt, Williams M.; Smith, Russell B.; Johansson, Sonny L.; Lele, Subodh M.; Kakar, Sham S.; Lee, John H.; Meza, Jane; Ganti, Apar K.; Jain, Maneesh; Batra, Surinder K.
2014-01-01
The limited effectiveness of therapy for patients with advanced stage Head and Neck Squamous Cell Carcinoma (HNSCC) or recurrent disease is a reflection of an incomplete understanding of the molecular basis of HNSCC pathogenesis. MUC4, a high molecular weight glycoprotein, is differentially overexpressed in many human cancers and implicated in cancer progression and resistance to several chemotherapies. However its clinical relevance and the molecular mechanisms through which it mediates HNSCC progression are not well understood. The present study revealed a significant up-regulation of MUC4 in 78% (68/87) of HNSCC tissues compared to 10% (1/10) in benign samples [p= 0.006, OR (95% C.I) = 10.74 (2.0 - 57.56)]. MUC4 knockdown (KD) in SCC1 and SCC10B HNSCC cell lines resulted in significant inhibition of growth in vitro and in vivo, increased senescence as indicated by an increase in the number of flat, enlarged and senescence-associated β-galactosidase (SA-β-Gal) positive cells. Decreased cellular proliferation was associated with G0/G1 cell cycle arrest and decrease expression of cell cycle regulatory proteins like cyclin E, cyclin D1 and decrease in BrdU incorporation. Mechanistic studies revealed upregulation of p16, pRb dephosphorylation and its interaction with HDAC1/2. This resulted in decreased histone acetylation (H3K9) at Cyclin E promoter leading to its downregulation. Orthotropic implantation of MUC4 KD SCC1 cells into the floor of the mouth of nude mice resulted in the formation of significantly small tumors (170±18.30 mg) compared to bigger tumors (375 ±17.29 mg) formed by control cells (p= 0.00007). In conclusion, our findings showed that MUC4 overexpression plays a critical role by regulating proliferation and cellular senescence of HNSCC cells. Downregulation of MUC4 may be a promising therapeutic approach for treating HNSCC patients. PMID:24747969
SIPA1 promotes invasion and migration in human oral squamous cell carcinoma by ITGB1 and MMP7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahara, Toshikazu; Kasamatsu, Atsushi, E-mail: kasamatsua@faculty.chiba-u.jp; Yamatoji, Masanobu
Signal-induced proliferation-associated protein 1 (SIPA1) is known to be a GTPase activating protein. Overexpressed SIPA1 is related to metastatic progression in breast and prostate cancers; however, the relevance of SIPA1 in oral squamous cell carcinoma (OSCC) is still unknown. The aim of this study was to examine SIPA1 expression and its functional mechanisms in OSCC. SIPA1 mRNA and protein expressions were analyzed by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and immunohistochemistry. The expressions of SIPA1 were up-regulated significantly in vitro and in vivo. Moreover, SIPA1 expression was correlated with regional lymph node metastasis. We next assessed the cellularmore » functions associated with tumoral metastasis using SIPA1 knockdown (shSIPA1) cells and analyzed the downstream molecules of SIPA1, i.e., bromodomain containing protein 4(BRD4), integrin beta1 (ITGB1), and matrix metalloproteinase 7 (MMP7). The shSIPA1 cells showed decreased invasiveness and migratory activities, however cellular adhesion ability was maintained at a high level. In addition, ITGB1 expression was greater in shSIPA1 cells, whereas MMP7 expression was lower than in control cells. This research is the first to establish that SIPA1 promotes cancer metastasis by regulating the ITGB1 and MMP7. Therefore, SIPA1 might be a novel therapeutic target for patients with lymph node metastasis of OSCC. - Highlights: • SIPA1 expression was up-regulated in oral squamous cell carcinoma (OSCC). • SIPA1-positive OSCCs were correlated with regional lymph node metastasis. • SIPA1 controlled BRD4 and influenced transcription of ITGB1and MMP7. • SIPA1 induced cellular invasion and migration and decreased cellular adhesion. • SIPA1 might be a potential biomarker of cancer metastasis for OSCC.« less
Wang, Chong; Grohme, Markus A; Mali, Brahim; Schill, Ralph O; Frohme, Marcus
2014-01-01
Many tardigrade species are capable of anhydrobiosis; however, mechanisms underlying their extreme desiccation resistance remain elusive. This study attempts to quantify the anhydrobiotic transcriptome of the limno-terrestrial tardigrade Milnesium tardigradum. A prerequisite for differential gene expression analysis was the generation of a reference hybrid transcriptome atlas by assembly of Sanger, 454 and Illumina sequence data. The final assembly yielded 79,064 contigs (>100 bp) after removal of ribosomal RNAs. Around 50% of them could be annotated by SwissProt and NCBI non-redundant protein sequences. Analysis using CEGMA predicted 232 (93.5%) out of the 248 highly conserved eukaryotic genes in the assembly. We used this reference transcriptome for mapping and quantifying the expression of transcripts regulated under anhdydrobiosis in a time-series during dehydration and rehydration. 834 of the transcripts were found to be differentially expressed in a single stage (dehydration/inactive tun/rehydration) and 184 were overlapping in two stages while 74 were differentially expressed in all three stages. We have found interesting patterns of differentially expressed transcripts that are in concordance with a common hypothesis of metabolic shutdown during anhydrobiosis. This included down-regulation of several proteins of the DNA replication and translational machinery and protein degradation. Among others, heat shock proteins Hsp27 and Hsp30c were up-regulated in response to dehydration and rehydration. In addition, we observed up-regulation of ployubiquitin-B upon rehydration together with a higher expression level of several DNA repair proteins during rehydration than in the dehydration stage. Most of the transcripts identified to be differentially expressed had distinct cellular function. Our data suggest a concerted molecular adaptation in M. tardigradum that permits extreme forms of ametabolic states such as anhydrobiosis. It is temping to surmise that the desiccation tolerance of tradigrades can be achieved by a constitutive cellular protection system, probably in conjunction with other mechanisms such as rehydration-induced cellular repair.
MUC4 regulates cellular senescence in head and neck squamous cell carcinoma through p16/Rb pathway.
Macha, M A; Rachagani, S; Pai, P; Gupta, S; Lydiatt, W M; Smith, R B; Johansson, S L; Lele, S M; Kakar, S S; Farghaly, H; Lee, J H; Meza, J; Ganti, A K; Jain, M; Batra, S K
2015-03-26
The limited effectiveness of therapy for patients with advanced stage head and neck squamous cell carcinoma (HNSCC) or recurrent disease is a reflection of an incomplete understanding of the molecular basis of HNSCC pathogenesis. MUC4, a high molecular weight glycoprotein, is differentially overexpressed in many human cancers and implicated in cancer progression and resistance to several chemotherapies. However, its clinical relevance and the molecular mechanisms through which it mediates HNSCC progression are not well understood. This study revealed a significant upregulation of MUC4 in 78% (68/87) of HNSCC tissues compared with 10% positivity (1/10) in benign samples (P=0.006, odds ratio (95% confidence interval)=10.74 (2.0-57.56). MUC4 knockdown (KD) in SCC1 and SCC10B HNSCC cell lines resulted in significant inhibition of growth in vitro and in vivo, increased senescence as indicated by an increase in the number of flat, enlarged and senescence-associated β-galactosidase (SA-β-Gal)-positive cells. Decreased cellular proliferation was associated with G0/G1 cell cycle arrest and decrease expression of cell cycle regulatory proteins like cyclin E, cyclin D1 and decrease in BrdU incorporation. Mechanistic studies revealed upregulation of p16, pRb dephosphorylation and its interaction with histone deacetylase 1/2. This resulted in decreased histone acetylation (H3K9) at cyclin E promoter leading to its downregulation. Orthotopic implantation of MUC4 KD SCC1 cells into the floor of the mouth in nude mice resulted in the formation of significantly smaller tumors (170±18.30 mg) compared to those (375±17.29 mg) formed by control cells (P=0.00007). In conclusion, our findings showed that MUC4 overexpression has a critical role by regulating proliferation and cellular senescence of HNSCC cells. Downregulation of MUC4 may be a promising therapeutic approach for treating HNSCC patients.
Liu, Zhaoqun; Zhou, Zhi; Wang, Lingling; Qiu, Limei; Zhang, Huan; Wang, Hao; Song, Linsheng
2016-11-01
We have now cloned an alpha-1 adrenergic receptor (A1AR) from the cDNA library of oyster Crassostrea gigas, designating as CgA1AR-1. The full length of CgA1AR-1 was 1149 bp and it encodes a protein of 382 amino acids containing a 7 transmembrane domain, whose putative topology was similar to the A1ARs in higher organisms and shared similarity of 19% with mammalian A1ARs according to the phylogenic analysis. After cell transfection of CgA1AR-1 into HEK293T cells and the incubation with its specific agonist norepinephrine (NE), the concentration of second messenger Ca 2+ increased significantly (p < 0.05). But, this increasing of Ca 2+ could be inhibited by adding A1AR antagonist DOX. Tissue distribution assays using qRT-PCR suggested that CgA1AR-1 mRNA was ubiquitously expressed in all the major tissues of oyster. LPS stimulation could induce the up-regulation of CgA1AR-1 mRNA in haemocytes from 12 h to 24 h post stimulation. Moreover, the blocking of CgA1AR-1 by DOX before LPS stimulation affected the mRNA expression of oyster TNF (CGI_10005109 and CGI_10006440) in haemocytes, resulting in the rise of haemocyte phagocytic rate and apoptosis index. In addition to cellular immunity, CgA1AR-1 was also involved in humoral immunity of oyster. Inhibition of CgA1AR-1 with DOX could repress the up-regulation of LZY and SOD activities caused by LPS stimulation. These results suggested that CgA1AR-1 acted as an α-1 adrenergic receptor in cetacholaminergic neuroendocrine-immune network mediating both cellular and humoral immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Juan-Na; Kuang, Qiao-Ting; Ye, Kai-He; Ye, Chun-Ling; Huang, Yi; Zhang, Xiao-Qi; Ye, Wen-Cai
2013-08-01
To investigate the influences of triterpenoid from Psidium guajava Leaves (ursolic acid) on the proliferation, differentiation of 3T3-L1 preadipocyte, and its possible mechanism treat for insulin resistance. 3T3-L1 preadipocyte was cultured in vitro. After adding ursolic acid to the culture medium for 48h, the cell viability was tested by MTT assay. Induced for 6 days, the lipid accumulation of adipocyte was measured by Oil Red O staining. The insulin resistant cell model was established with Dexamethasone. Cellular glucose uptake was determined with GOD-POD assays and FFA concentration was determined at the time of 48h. Secreted adiponectin were measured by ELISA. The protein levels of PPARgamma and PTP1B in insulin resistant adipocyte were measured by Western Blotting. Compared with medium control group, 30, 100 micromol/L ursolic acid could increase its proliferation and differentiation significantly (P < 0.05 or P < 0.01). Compared with the model group, ursolic acid at 100 micromol/L could enhance cellular glucose uptake of insulin resistant adipocyte significantly both in basic and insulin stimulation state (P < 0.01), while ursolic acid at 30 micromol/L could already enhance its glucose uptake significantly (P < 0.05), and could already decrease its FFA production significantly (P < 0.05). Ursolic acid at 30 micromol/L could increase the secretion of adiponectin on insulin resistant adipocyte significantly (P < 0.05), up-regulate the expression of PPARgamma protein (P < 0.05), but showed no effect on the PTP1B protein expression (P > 0.05). Ursolic acid can improve the proliferation and differentiation of 3T3-L1 preadipocyte, enhance cellular glucose uptake, inhibit the production of FFA, promote the secretion of adiponectin insulin resistant adipocyte, its mechanism may be related to upregulating the expression of PPARgamma protein.
Wang, Chong; Grohme, Markus A.; Mali, Brahim; Schill, Ralph O.; Frohme, Marcus
2014-01-01
Background Many tardigrade species are capable of anhydrobiosis; however, mechanisms underlying their extreme desiccation resistance remain elusive. This study attempts to quantify the anhydrobiotic transcriptome of the limno-terrestrial tardigrade Milnesium tardigradum. Results A prerequisite for differential gene expression analysis was the generation of a reference hybrid transcriptome atlas by assembly of Sanger, 454 and Illumina sequence data. The final assembly yielded 79,064 contigs (>100 bp) after removal of ribosomal RNAs. Around 50% of them could be annotated by SwissProt and NCBI non-redundant protein sequences. Analysis using CEGMA predicted 232 (93.5%) out of the 248 highly conserved eukaryotic genes in the assembly. We used this reference transcriptome for mapping and quantifying the expression of transcripts regulated under anhdydrobiosis in a time-series during dehydration and rehydration. 834 of the transcripts were found to be differentially expressed in a single stage (dehydration/inactive tun/rehydration) and 184 were overlapping in two stages while 74 were differentially expressed in all three stages. We have found interesting patterns of differentially expressed transcripts that are in concordance with a common hypothesis of metabolic shutdown during anhydrobiosis. This included down-regulation of several proteins of the DNA replication and translational machinery and protein degradation. Among others, heat shock proteins Hsp27 and Hsp30c were up-regulated in response to dehydration and rehydration. In addition, we observed up-regulation of ployubiquitin-B upon rehydration together with a higher expression level of several DNA repair proteins during rehydration than in the dehydration stage. Conclusions Most of the transcripts identified to be differentially expressed had distinct cellular function. Our data suggest a concerted molecular adaptation in M. tardigradum that permits extreme forms of ametabolic states such as anhydrobiosis. It is temping to surmise that the desiccation tolerance of tradigrades can be achieved by a constitutive cellular protection system, probably in conjunction with other mechanisms such as rehydration-induced cellular repair. PMID:24651535
Na, Ha-Na; Dubuisson, Olga; Hegde, Vijay; Nam, Jae-Hwan; Dhurandhar, Nikhil V
2016-05-01
Aging and obesity are associated with elevated pro-inflammatory cytokines such as monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)α, which are linked to insulin resistance. Anti-inflammatory agents have marginal effect in improving insulin resistance. Hence, agents are needed to improve glycemic control despite the inflammation. Ad36, a human adenovirus, increases TNFα and MCP1 mRNA in adipose tissue, yet improves glycemic control in mice. Ad36 via its E4orf1 gene, up-regulates AKT/glucose transporter (Glut)-4 signaling to enhance cellular glucose uptake. Directly test a role of Ad36, or E4orf1 in enhancing cellular glucose uptake in presence of inflammatory cytokines. Experiment 1: 3T3-L1 preadipocytes were treated with 0, 10 or 100 ng/mL lipopolysaccharides (LPS), and infected with 0 or 5 plaque forming units (PFU) of Ad36/cell. 3T3-L1 cells that stably and inducibly express E4orf1 or a null vector (pTRE-E4orf1 or pTRE-null cells), were similarly treated with LPS and then with doxycycline, to induce E4orf1. Experiment 2: 3T3L1 preadipocytes were treated with 25 nM MCP1 or 20 nM TNFα for 16 h, followed by infection with 0 or 5 PFU of Ad36/cell. Experiment 3: pTRE-E4orf1 or -null cells were similarly treated with MCP1 or TNFα followed by doxycycline to induce E4orf1. Cellular glucose uptake and cellular signaling were determined 72 h post-Ad36 infection or E4orf1-induction, in continued presence of MCP1 or TNFα. In 3T3-L1 preadipocytes, Ad36, but not E4orf1, increased MCP1 and TNFα mRNA, in presence of LPS stimulation. Ad36 or E4orf1 up-regulated AKT-phosphorylation and Glut4 and increased glucose uptake (P < 0.05) in the presence of MCP1 or TNFα. Unlike Ad36, E4orf1 does not appear to stimulate inflammatory response. Ad36 and E4orf1 both enhance cellular glucose uptake even in presence of inflammation. Further research is needed to harness this novel and beneficial property of E4orf1 to improve hyperglycemia despite chronic inflammation that is commonly present in aging and obesity. Copyright © 2014 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minor, P.D.; Dimmock, N.J.
1977-05-15
Various known inhibitors of cellular DNA function were shown to inhibit cellular RNA synthesis and influenza (fowl plague) virus multiplication. The drugs were investigated for their effect upon the synthesis of influenza virus proteins. According to this effect they could be classified with previously studied compounds as follows: Group I (ethidium bromide, proflavine, and N-nitroquinoline-N-oxide) inhibited both viral and cellular protein synthesis; Group II (nogalomycin, daunomycin and ..cap alpha..-amanitin) inhibited viral but not cellular protein synthesis, and all viral proteins were inhibited coordinately; Group III (mithramycin, echinomycin, and actinomycin D) inhibited all viral but not cellular protein synthesis at highmore » concentrations, but at a lower critical concentration inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein preferentially; Group IV(uv irradiation and camptothecin) inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein, but not other viral proteins, even at high doses. The mode of action of these inhibitors is discussed in relation to the mechanism of the nuclear events upon which influenza virus multiplication is dependent.« less
Hu, Jinsong; Van Valckenborgh, Els; Xu, Dehui; Menu, Eline; De Raeve, Hendrik; De Bruyne, Elke; De Bryune, Elke; Xu, Song; Van Camp, Ben; Handisides, Damian; Hart, Charles P; Vanderkerken, Karin
2013-09-01
Recently, we showed that hypoxia is a critical microenvironmental factor in multiple myeloma, and that the hypoxia-activated prodrug TH-302 selectively targets hypoxic multiple myeloma cells and improves multiple disease parameters in vivo. To explore approaches for sensitizing multiple myeloma cells to TH-302, we evaluated in this study the antitumor effect of TH-302 in combination with the clinically used proteasome inhibitor bortezomib. First, we show that TH-302 and bortezomib synergistically induce apoptosis in multiple myeloma cell lines in vitro. Second, we confirm that this synergism is related to the activation of caspase cascades and is mediated by changes of Bcl-2 family proteins. The combination treatment induces enhanced cleavage of caspase-3/8/9 and PARP, and therefore triggers apoptosis and enhances the cleavage of proapoptotic BH3-only protein BAD and BID as well as the antiapoptotic protein Mcl-1. In particular, TH-302 can abrogate the accumulation of antiapoptotic Mcl-1 induced by bortezomib, and decreases the expression of the prosurvival proteins Bcl-2 and Bcl-xL. Furthermore, we found that the induction of the proapoptotic BH3-only proteins PUMA (p53-upregulated modulator of apoptosis) and NOXA is associated with this synergism. In response to the genotoxic and endoplasmic reticulum stresses by TH-302 and bortezomib, the expression of PUMA and NOXA were upregulated in p53-dependent and -independent manners. Finally, in the murine 5T33MMvv model, we showed that the combination of TH-302 and bortezomib can improve multiple disease parameters and significantly prolong the survival of diseased mice. In conclusion, our studies provide a rationale for clinical evaluation of the combination of TH-302 and bortezomib in patients with multiple myeloma.
Lu, Zhongyan; Shen, Hong; Shen, Zanming
2018-01-01
In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular immunity, repair, and homeostasis in the rumen epithelium, thereby leading to the switch of concentrate effects from positive to negative with regard to animal production and health. © 2018 The Author(s). Published by S. Karger AG, Basel.
Adjuvant-Loaded Spiky Gold Nanoparticles for Activation of Innate Immune Cells.
Nam, Jutaek; Son, Sejin; Moon, James J
2017-10-01
Gold nanoparticles are versatile carriers for delivery of biomacromolecules. Here, we have developed spiky gold nanoparticles (SGNPs) that can efficiently deliver immunostimulatory agents. Our goal was to develop a platform technology for co-delivery of multiple adjuvant molecules for synergistic stimulation and maturation of innate immune cells. SGNPs were synthesized by a seed-mediated, surfactant-free synthesis method and incorporated with polyinosinic-polycytidylic acid (pIC) and DNA oligonucleotide containing unmethylated CpG motif (CpG) by an electrostatic layer-by-layer approach. Adjuvant-loaded SGNP nano-complexes were examined for their biophysical and biochemical properties and studied for immune activation using bone marrow-derived dendritic cells (BMDCs). We have synthesized SGNPs with branched nano-spikes layered with pIC and/or CpG. Adjuvant-loaded SGNP nano-complexes promoted cellular uptake of the adjuvants. Importantly, we achieved spatio-temporal control over co-delivery of pIC and CpG via SGNPs, which produced synergistic enhancement in cytokine release (IL-6, TNF-α) and upregulation of co-stimulatory markers (CD40, CD80, CD86) in BMDCs, compared with pIC, CpG, or their admixtures. SGNPs serve as a versatile delivery platform that allows flexible and on-demand cargo fabrication for strong activation of innate immune cells.
Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with 3-bromopyruvate.
Nakano, Ayako; Miki, Hirokazu; Nakamura, Shingen; Harada, Takeshi; Oda, Asuka; Amou, Hiroe; Fujii, Shiro; Kagawa, Kumiko; Takeuchi, Kyoko; Ozaki, Shuji; Matsumoto, Toshio; Abe, Masahiro
2012-02-01
Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. However, HKII levels and its roles in ATP production and ATP-dependent cellular process have not been well studied in hematopoietic malignant cells including multiple myeloma (MM) cells.We demonstrate herein that HKII is constitutively over-expressed in MM cells. 3-bromopyruvate (3BrPA), an inhibitor of HKII, promptly and substantially suppresses ATP production and induces cell death in MM cells. Interestingly, cocultures with osteoclasts (OCs) but not bone marrow stromal cells (BMSCs) enhanced the phosphorylation of Akt along with an increase in HKII levels and lactate production in MM cells. The enhancement of HKII levels and lactate production in MM cells by OCs were mostly abrogated by the PI3K inhibitor LY294002, suggesting activation of glycolysis in MM cells by OCs via the PI3K-Akt-HKII pathway. Although BMSCs and OCs stimulate MM cell growth and survival, 3BrPA induces cell death in MM cells even in cocultures with OCs as well as BMSCs. Furthermore, 3BrPA was able to diminish ATP-dependent ABC transporter activity to restore drug retention in MM cells in the presence of OCs. These results may underpin possible clinical application of 3BrPA in patients with MM.
Estrogen-Related Receptor Alpha Modulates Lactate Dehydrogenase Activity in Thyroid Tumors
Mirebeau-Prunier, Delphine; Le Pennec, Soazig; Jacques, Caroline; Fontaine, Jean-Fred; Gueguen, Naig; Boutet-Bouzamondo, Nathalie; Donnart, Audrey; Malthièry, Yves; Savagner, Frédérique
2013-01-01
Metabolic modifications of tumor cells are hallmarks of cancer. They exhibit an altered metabolism that allows them to sustain higher proliferation rates in hostile environment outside the cell. In thyroid tumors, the expression of the estrogen-related receptor α (ERRα), a major factor of metabolic adaptation, is closely related to the oxidative metabolism and the proliferative status of the cells. To elucidate the role played by ERRα in the glycolytic adaptation of tumor cells, we focused on the regulation of lactate dehydrogenases A and B (LDHA, LDHB) and the LDHA/LDHB ratio. Our study included tissue samples from 10 classical and 10 oncocytic variants of follicular thyroid tumors and 10 normal thyroid tissues, as well as samples from three human thyroid tumor cell lines: FTC-133, XTC.UC1 and RO82W-1. We identified multiple cis-acting promoter elements for ERRα, in both the LDHA and LDHB genes. The interaction between ERRα and LDH promoters was confirmed by chromatin immunoprecipitation assays and in vitro analysis for LDHB. Using knock-in and knock-out cellular models, we found an inverse correlation between ERRα expression and LDH activity. This suggests that thyroid tumor cells may reprogram their metabolic pathways through the up-regulation of ERRα by a process distinct from that proposed by the recently revisited Warburg hypothesis. PMID:23516535
Sutherland, Ben J G; Poley, Jordan D; Igboeli, Okechukwu O; Jantzen, Johanna R; Fast, Mark D; Koop, Ben F; Jones, Simon R M
2015-02-01
Salmon lice Lepeophtheirus salmonis are an ecologically and economically important parasite of wild and farmed salmon. In Scotland, Norway, and Eastern Canada, L. salmonis have developed resistance to emamectin benzoate (EMB), one of the few parasiticides available for salmon lice. Drug resistance mechanisms can be complex, potentially differing among populations and involving multiple genes with additive effects (i.e., polygenic resistance). Indicators of resistance development may enable early detection and countermeasures to avoid the spread of resistance. Here, we collect sensitive Pacific L. salmonis and sensitive and resistant Atlantic L. salmonis from salmon farms, propagate in laboratory (F1), expose to EMB in bioassays, and evaluate either baseline (Atlantic only) or induced transcriptomic differences between populations. In all populations, induced responses were minor and a cellular stress response was not identified. Pacific lice did not upregulate any genes in response to EMB, but downregulated degradative enzymes and transport proteins at 50 ppb EMB. Baseline differences between sensitive and now resistant Atlantic lice were much greater than responses to exposures. All resistant lice overexpressed degradative enzymes, and resistant males, the most resistant group, overexpressed collagenases to the greatest extent. These results indicate an accumulation of baseline expression differences related to resistance.
Sutherland, Ben J G; Poley, Jordan D; Igboeli, Okechukwu O; Jantzen, Johanna R; Fast, Mark D; Koop, Ben F; Jones, Simon R M
2015-01-01
Salmon lice Lepeophtheirus salmonis are an ecologically and economically important parasite of wild and farmed salmon. In Scotland, Norway, and Eastern Canada, L. salmonis have developed resistance to emamectin benzoate (EMB), one of the few parasiticides available for salmon lice. Drug resistance mechanisms can be complex, potentially differing among populations and involving multiple genes with additive effects (i.e., polygenic resistance). Indicators of resistance development may enable early detection and countermeasures to avoid the spread of resistance. Here, we collect sensitive Pacific L. salmonis and sensitive and resistant Atlantic L. salmonis from salmon farms, propagate in laboratory (F1), expose to EMB in bioassays, and evaluate either baseline (Atlantic only) or induced transcriptomic differences between populations. In all populations, induced responses were minor and a cellular stress response was not identified. Pacific lice did not upregulate any genes in response to EMB, but downregulated degradative enzymes and transport proteins at 50 ppb EMB. Baseline differences between sensitive and now resistant Atlantic lice were much greater than responses to exposures. All resistant lice overexpressed degradative enzymes, and resistant males, the most resistant group, overexpressed collagenases to the greatest extent. These results indicate an accumulation of baseline expression differences related to resistance. PMID:25685190
Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis.
Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-Fang; Cao, Deliang
2009-07-31
Acetyl-CoA carboxylase-alpha (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC(50) at approximately 5.0, 5.0, and 4.5 microg/ml, respectively. TOFA at 1.0-20.0 microg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 microM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis.
Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B
2016-08-01
Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Jiang, Tongmeng; Liu, Junting; Ouyang, Yiqiang; Wu, Huayu; Zheng, Li; Zhao, Jinmin; Zhang, Xingdong
2018-05-01
In this study, we report that the intra-hydrogel culture system mitigates the transformation of mesenchymal stem cells (MSCs) induced by two-dimensional (2D) expansion. MSCs expanded in monolayer culture prior to encapsulation in collagen hydrogels (group eMSCs-CH) featured impaired stemness in chondrogenesis, comparing with the freshly isolated bone marrow mononuclear cells seeded directly in collagen hydrogels (group fMSCs-CH). The molecular mechanism of the in vitro expansion-triggered damage to MSCs was detected through genome-wide microarray analysis. Results indicated that pathways such as proteoglycans in cancer and pathways in cancer expansion were highly enriched in eMSCs-CH. And multiple up-regulated oncoma-associated genes were verified in eMSCs-CH compared with fMSCs-CH, indicating that expansion in vitro triggered cellular transformation was associated with signaling pathways related to tumorigenicity. Besides, focal adhesion (FA) and mitogen-activated protein kinase (MAPK) signaling pathways were also involved in in vitro expansion, indicating restructuring of the cell architecture. Thus, monolayer expansion in vitro may contribute to vulnerability of MSCs through the regulation of FA and MAPK. This study indicates that intra-hydrogel culture can mitigate the monolayer expansion induced transformation of MSCs and maintain the uniformity of the stem cells, which is a viable in vitro culture system for stem cell therapy.
Development of a stress response therapy targeting aggressive prostate cancer.
Nguyen, Hao G; Conn, Crystal S; Kye, Yae; Xue, Lingru; Forester, Craig M; Cowan, Janet E; Hsieh, Andrew C; Cunningham, John T; Truillet, Charles; Tameire, Feven; Evans, Michael J; Evans, Christopher P; Yang, Joy C; Hann, Byron; Koumenis, Constantinos; Walter, Peter; Carroll, Peter R; Ruggero, Davide
2018-05-02
Oncogenic lesions up-regulate bioenergetically demanding cellular processes, such as protein synthesis, to drive cancer cell growth and continued proliferation. However, the hijacking of these key processes by oncogenic pathways imposes onerous cell stress that must be mitigated by adaptive responses for cell survival. The mechanism by which these adaptive responses are established, their functional consequences for tumor development, and their implications for therapeutic interventions remain largely unknown. Using murine and humanized models of prostate cancer (PCa), we show that one of the three branches of the unfolded protein response is selectively activated in advanced PCa. This adaptive response activates the phosphorylation of the eukaryotic initiation factor 2-α (P-eIF2α) to reset global protein synthesis to a level that fosters aggressive tumor development and is a marker of poor patient survival upon the acquisition of multiple oncogenic lesions. Using patient-derived xenograft models and an inhibitor of P-eIF2α activity, ISRIB, our data show that targeting this adaptive brake for protein synthesis selectively triggers cytotoxicity against aggressive metastatic PCa, a disease for which presently there is no cure. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Disease Mechanisms and Therapeutic Approaches in Spinal Muscular Atrophy
Tisdale, Sarah
2015-01-01
Motor neuron diseases are neurological disorders characterized primarily by the degeneration of spinal motor neurons, skeletal muscle atrophy, and debilitating and often fatal motor dysfunction. Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease of high incidence and severity and the most common genetic cause of infant mortality. SMA is caused by homozygous mutations in the survival motor neuron 1 (SMN1) gene and retention of at least one copy of the hypomorphic gene paralog SMN2. Early studies established a loss-of-function disease mechanism involving ubiquitous SMN deficiency and suggested SMN upregulation as a possible therapeutic approach. In recent years, greater knowledge of the central role of SMN in RNA processing combined with deep characterization of animal models of SMA has significantly advanced our understanding of the cellular and molecular basis of the disease. SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types. Advances in SMA research have also led to the development of several potential therapeutics shown to be effective in animal models of SMA that are now in clinical trials. These agents offer unprecedented promise for the treatment of this still incurable neurodegenerative disease. PMID:26063904
Graves, J. Anthony; Rothermund, Kristi; Wang, Tao; Qian, Wei; Van Houten, Bennett; Prochownik, Edward V.
2010-01-01
Deregulation of c-Myc (Myc) occurs in many cancers. In addition to transforming various cell types, Myc also influences additional transformation-associated cellular phenotypes including proliferation, survival, genomic instability, reactive oxygen species production, and metabolism. Although Myc is wild type in most cancers (wtMyc), it occasionally acquires point mutations in certain lymphomas. Some of these mutations confer a survival advantage despite partially attenuating proliferation and transformation. Here, we have evaluated four naturally-occurring or synthetic point mutations of Myc for their ability to affect these phenotypes, as well as to promote genomic instability, to generate reactive oxygen species and to up-regulate aerobic glycolysis and oxidative phosphorylation. Our findings indicate that many of these phenotypes are genetically and functionally independent of one another and are not necessary for transformation. Specifically, the higher rate of glucose metabolism known to be associated with wtMyc deregulation was found to be independent of transformation. One mutation (Q131R) was greatly impaired for nearly all of the studied Myc phenotypes, yet was able to retain some ability to transform. These findings indicate that, while the Myc phenotypes examined here make additive contributions to transformation, none, with the possible exception of increased reliance on extracellular glutamine for survival, are necessary for achieving this state. PMID:21060841
RNA recognition by human TLR8 can lead to autoimmune inflammation
Gong, Mei; Cepika, Alma-Martina; Xu, Zhaohui; Tripodo, Claudio; Bennett, Lynda; Crain, Chad; Quartier, Pierre; Cush, John J.; Pascual, Virginia; Coffman, Robert L.; Barrat, Franck J.
2013-01-01
Studies on the role of the RNA receptor TLR8 in inflammation have been limited by its different function in human versus rodents. We have generated multiple lines of transgenic mice expressing different levels of human TLR8. The high copy number chimeras were unable to pass germline; developed severe inflammation targeting the pancreas, salivary glands, and joints; and the severity of the specific phenotypes closely correlated with the huTLR8 expression levels. Mice with relatively low expression levels survived and bred successfully but had increased susceptibility to collagen-induced arthritis, and the levels of huTLR8 correlated with proinflammatory cytokines in the joints of the animals. At the cellular level, huTLR8 signaling exerted a DC-intrinsic effect leading to up-regulation of co-stimulatory molecules and subsequent T cell activation. A pathogenic role for TLR8 in human diseases was suggested by its increased expression in patients with systemic arthritis and the correlation of TLR8 expression with the elevation of IL-1β levels and disease status. We found that the consequence of self-recognition via TLR8 results in a constellation of diseases, strikingly distinct from those related to TLR7 signaling, and points to specific inflammatory diseases that may benefit from inhibition of TLR8 in humans. PMID:24277153
Sapkota, Kumar; Kim, Seung; Park, Se-Eun; Kim, Sung-Jun
2011-03-01
Rhus verniciflua Stokes (RVS), traditionally used as a food supplement and in traditional herbal medicine for centuries in Korea, is known to possess various pharmacological properties. Environmental neurotoxins such as rotenone, a specific inhibitor of complex I provide models of Parkinson's disease (PD) both in vivo and in vitro. In this study, we investigated the neuroprotective effect of RVS against rotenone-induced toxicity in human dopaminergic cells, SH-SY5Y. Cells exposed to rotenone for 24 h-induced cellular injury and apoptotic cell death. Pretreatment of cells with RVS provided significant protection to SH-SY5Y cells. Further, RVS offered remarkable protection against rotenone-induced oxidative stress and markedly inhibited mitochondrial membrane potential (MMP) disruption. RVS also attenuated the up-regulation of Bax, Caspase-9 and Caspase-3 and down-regulation of Bcl-2. Moreover, pretreatment with RVS prevented the decrease in tyrosine hydroxylase (TH) levels in SH-SY5Y cells. Interestingly, RVS conferred profound protection to human dopaminergic cells by preventing the downregulation of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). These results suggest that RVS may protect dopaminergic neurons against rotenone-induced apoptosis by multiple functions and contribute to neuroprotection in neurodegenerative diseases, such as PD.
Acetyl-CoA Carboxylase-α Inhibitor TOFA Induces Human Cancer Cell Apoptosis
Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-fang; Cao, Deliang
2009-01-01
Acetyl-CoA carboxylase-α (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC50 at approximately 5.0, 5.0, and 4.5 μg/ml, respectively. TOFA at 1.0–20.0 μg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 μM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis. PMID:19450551
Mechanisms contributing to the dopamine induction of crawl-like bursting in leech motoneurons.
Crisp, Kevin M; Gallagher, Brian R; Mesce, Karen A
2012-09-01
Dopamine (DA) activates fictive crawling behavior in the medicinal leech. To identify the cellular mechanisms underlying this activation at the level of crawl-specific motoneuronal bursting, we targeted potential cAMP-dependent events that are often activated through DA(1)-like receptor signaling pathways. We found that isolated ganglia produced crawl-like motoneuron bursting after bath application of phosphodiesterase inhibitors (PDIs) that upregulated cAMP. This bursting persisted in salines in which calcium ions were replaced with equimolar cobalt or nickel, but was blocked by riluzole, an inhibitor of a persistent sodium current. PDI-induced bursting contained a number of patterned elements that were statistically similar to those observed during DA-induced fictive crawling, except that one motoneuron (CV) exhibited bursting during the contraction rather than the elongation phase of crawling. Although DA and the PDIs produced similar bursting profiles, intracellular recordings from motoneurons revealed differences in altered membrane properties. For example, DA lowered motoneuron excitability whereas the PDIs increased resting discharge rates. We suggest that PDIs (and DA) activate a sodium-influx-dependent timing mechanism capable of setting the crawl rhythm and that multiple DA receptor subtypes are involved in shaping and modulating the phase relationships and membrane properties of cell-specific members of the crawl network to generate crawling.
Trial watch – inhibiting PARP enzymes for anticancer therapy
Sistigu, Antonella; Manic, Gwenola; Obrist, Florine; Vitale, Ilio
2016-01-01
ABSTRACT Poly(ADP-ribose) polymerases (PARPs) are a members of family of enzymes that catalyze poly(ADP-ribosyl)ation (PARylation) and/or mono(ADP-ribosyl)ation (MARylation), two post-translational protein modifications involved in crucial cellular processes including (but not limited to) the DNA damage response (DDR). PARP1, the most abundant family member, is a nuclear protein that is activated upon sensing distinct types of DNA damage and contributes to their resolution by PARylating multiple DDR players. Recent evidence suggests that, along with DDR, activated PARP1 mediates a series of prosurvival and proapoptotic processes aimed at preserving genomic stability. Despite this potential oncosuppressive role, upregulation and/or overactivation of PARP1 or other PARP enzymes has been reported in a variety of human neoplasms. Over the last few decades, several pharmacologic inhibitors of PARP1 and PARP2 have been assessed in preclinical and clinical studies showing potent antineoplastic activity, particularly against homologous recombination (HR)-deficient ovarian and breast cancers. In this Trial Watch, we describe the impact of PARP enzymes and PARylation in cancer, discuss the mechanism of cancer cell killing by PARP1 inactivation, and summarize the results of recent clinical studies aimed at evaluating the safety and therapeutic profile of PARP inhibitors in cancer patients. PMID:27308587
Transcriptomic analysis of Saccharomyces cerevisiae upon honokiol treatment.
Zhu, Xiaolong; Zou, Shenshen; Li, Youbin; Liang, Yongheng
2017-09-01
Honokiol (HNK), one of the main medicinal components in Magnolia officinalis, possesses antimicrobial activity against a variety of pathogenic bacteria and fungi. However, little is known of the molecular mechanisms underpinning the antimicrobial activity. To explore the molecular mechanism of its antifungal activity, we determined the effects of HNK on the mRNA expression profile of Saccharomyces cerevisiae using a DNA microarray approach. HNK markedly induced the expression of genes related to iron uptake and homeostasis. Conversely, genes associated with respiratory electron transport were downregulated, mirroring the effects of iron starvation. Meanwhile, HNK-induced growth deficiency was partly rescued by iron supplementation and HNK reacted with iron, producing iron complexes that depleted iron. These results suggest that HNK treatment induced iron starvation. Additionally, HNK treatment resulted in the upregulation of genes involved in protein synthesis and drug resistance networks. Furthermore, the deletion of PDR5, a gene encoding the plasma membrane ATP binding cassette (ABC) transporter, conferred sensitivity to HNK. Overexpression of PDR5 enhanced resistance of WT and pdr5Δ strains to HNK. Taken together, these findings suggest that HNK, which can be excluded by overexpression of Pdr5, functions in multiple cellular processes in S. cerevisiae, particularly in inducing iron starvation to inhibit cell growth. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Zhang, Han; Yang, Yang; Takeda, Atsunobu; Yoshimura, Takeru; Oshima, Yuji; Sonoda, Koh-Hei; Ishibashi, Tatsuro
2013-01-01
Choroidal neovascularization (CNV) is a critical pathogenesis in age-related macular degeneration (AMD), the most common cause of blindness in developed countries. To date, the precise molecular and cellular mechanisms underlying CNV have not been elucidated. Platelet-activating factor (PAF) has been previously implicated in angiogenesis; however, the roles of PAF and its receptor (PAF-R) in CNV have not been addressed. The present study reveals several important findings concerning the relationship of the PAF-R signaling with CNV. PAF-R was detected in a mouse model of laser-induced CNV and was upregulated during CNV development. Experimental CNV was suppressed by administering WEB2086, a novel PAF-R antagonist. WEB2086-dependent suppression of CNV occurred via the inhibition of macrophage infiltration and the expression of proangiogenic (vascular endothelial growth factor) and proinflammatory molecules (monocyte chemotactic protein-1 and IL-6) in the retinal pigment epithelium–choroid complex. Additionally, WEB2086-induced PAF-R blockage suppresses experimentally induced subretinal fibrosis, which resembles the fibrotic subretinal scarring observed in neovascular AMD. As optimal treatment modalities for neovascular AMD would target the multiple mechanisms of AMD-associated vision loss, including neovascularization, inflammation and fibrosis, our results suggest PAF-R as an attractive molecular target in the treatment of AMD. PMID:23826375
Aragonès, Gerard; Suárez, Manuel; Ardid-Ruiz, Andrea; Vinaixa, Maria; Rodríguez, Miguel A; Correig, Xavier; Arola, Lluís; Bladé, Cinta
2016-04-22
Proanthocyanidins (PACs) have been reported to modulate multiple targets by simultaneously controlling many pivotal metabolic pathways in the liver. However, the precise mechanism of PAC action on the regulation of the genes that control hepatic metabolism remains to be clarified. Accordingly, we used a metabolomic approach combining both nuclear magnetic resonance and mass spectrometry analysis to evaluate the changes induced by different doses of grape-seed PACs in the liver of healthy rats. Here, we report that PACs significantly increased the hepatic nicotinamide adenine dinucleotide (NAD(+)) content in a dose-dependent manner by specifically modulating the hepatic concentrations of the major NAD(+) precursors as well as the mRNA levels of the genes that encode the enzymes involved in the cellular metabolism of NAD(+). Notably, Sirtuin 1 (Sirt1) gene expression was also significantly up-regulated in a dose-response pattern. The increase in both the NAD(+) availability and Sirt1 mRNA levels, in turn, resulted in the hepatic activation of SIRT1, which was significantly associated with improved protection against hepatic triglyceride accumulation. Our data clearly indicates that PAC consumption could be a valid tool to enhance hepatic SIRT1 activity through the modulation of NAD(+) levels.
Aragonès, Gerard; Suárez, Manuel; Ardid-Ruiz, Andrea; Vinaixa, Maria; Rodríguez, Miguel A.; Correig, Xavier; Arola, Lluís; Bladé, Cinta
2016-01-01
Proanthocyanidins (PACs) have been reported to modulate multiple targets by simultaneously controlling many pivotal metabolic pathways in the liver. However, the precise mechanism of PAC action on the regulation of the genes that control hepatic metabolism remains to be clarified. Accordingly, we used a metabolomic approach combining both nuclear magnetic resonance and mass spectrometry analysis to evaluate the changes induced by different doses of grape-seed PACs in the liver of healthy rats. Here, we report that PACs significantly increased the hepatic nicotinamide adenine dinucleotide (NAD+) content in a dose-dependent manner by specifically modulating the hepatic concentrations of the major NAD+ precursors as well as the mRNA levels of the genes that encode the enzymes involved in the cellular metabolism of NAD+. Notably, Sirtuin 1 (Sirt1) gene expression was also significantly up-regulated in a dose-response pattern. The increase in both the NAD+ availability and Sirt1 mRNA levels, in turn, resulted in the hepatic activation of SIRT1, which was significantly associated with improved protection against hepatic triglyceride accumulation. Our data clearly indicates that PAC consumption could be a valid tool to enhance hepatic SIRT1 activity through the modulation of NAD+ levels. PMID:27102823
HDACs and HDAC inhibitors in urothelial carcinoma - perspectives for an antineoplastic treatment.
Pinkerneil, Maria; Hoffmann, Michèle J; Schulz, Wolfgang A; Niegisch, Günter
2017-01-11
Histone deacetylases (HDACs) influence diverse cellular processes and may contribute to tumor development and progression by multiple mechanisms. Class I HDACs are often overexpressed in cancers contributing to a genome-wide epigenetic state permitting increased proliferation, and diminished apoptosis and cell differentiation. Class IIA and IIB isoenzymes may likewise contribute to tumorigenesis as components of specific intranuclear repressor complexes or regulators of posttranslational protein modifications. As HDAC inhibitors may counteract these tumorigenic effects several of these compounds are currently tested in clinical trials. HDAC inhibitors are also considered for urothelial carcinoma, where novel therapeutic drugs are urgently required. However, only modest antineoplastic activity has been observed with isoenzyme-unspecific pan-HDAC inhibitors. Therefore, inhibition of specific HDAC isoenzymes might be more efficacious and tumor-specific. Here, we systematically review knowledge on the expression, function and suitability as therapeutic targets of the 11 classical HDACs in UC. Overall, the class I HDACs HDAC1 and HDAC2 are the most promising targets for antineoplastic treatment. In contrast, targeting HDAC8 and HDAC6 is likely to be of minor relevance in urothelial carcinoma. Class IIA HDACs like HDAC4 require further study, since their downregulation rather than upregulation could be involved in urothelial carcinoma pathogenesis.
Sun, Fu-Qing; Duan, Hua; Wang, Sha; Li, Jin-Jiao
2015-11-01
Adenomyosis (ADS) is a common estrogen-dependent gynecological disease with unknown etiology. Recent models favor abnormal thickening of the junctional zone (JZ) may be the causative factor in the development of ADS. RhoA, a small guanosine triphosphatase which controls multiple cellular processes, is involved in the control of cell proliferation. Here we demonstrate that treatment of human uterine smooth muscle cells (SMCs) of the JZ with 17β-estradiol (E2) increased expression of RhoA and its downstream effectors (-associated coiled coil containing protein kinase [ROCK] 1 and ROCK2). Compared with non-ADS cells, RhoA, ROCK1, and ROCK2 were overexpressed and hyperactivated in ADS cells. These effects were suppressed in the presence of ICI 182,780, supporting an estrogen receptor (ER)-dependent mechanism. Hyperactivation of ER-enhanced RhoA/ROCK signaling was associated with overproliferation in ADS human uterine SMCs of the JZ. Moreover, E2-induced overproliferation was accompanied by downregulation of cyclin-dependent kinases inhibitors (CKIs; p21(Waf1/Cip1) and p27(Kip1)) and upregulation of cyclin-dependent kinases (CDKs) and cyclins (cyclin D1, cyclin E1, CDK2, CDK4, and CDK6). © The Author(s) 2015.
Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein.
Park, Daeho; Han, Claudia Z; Elliott, Michael R; Kinchen, Jason M; Trampont, Paul C; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J; Hoehn, Kyle L; Ravichandran, Kodi S
2011-08-21
Rapid and efficient removal of apoptotic cells by phagocytes is important during development, tissue homeostasis and in immune responses. Efficient clearance depends on the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the corpse-derived cellular material. However, the factors that influence continued clearance by phagocytes are not known. Here we show that the mitochondrial membrane potential of the phagocyte critically controls engulfment capacity, with lower potential enhancing engulfment and vice versa. The mitochondrial membrane protein Ucp2, which acts to lower the mitochondrial membrane potential, was upregulated in phagocytes engulfing apoptotic cells. Loss of Ucp2 reduced phagocytic capacity, whereas Ucp2 overexpression enhanced engulfment. Mutational and pharmacological studies indicated a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice were impaired in phagocytosis in vitro, and Ucp2-deficient mice showed profound in vivo defects in clearing dying cells in the thymus and testes. Collectively, these data indicate that mitochondrial membrane potential and Ucp2 are key molecular determinants of apoptotic cell clearance. As Ucp2 is linked to metabolic diseases and atherosclerosis, this newly discovered role for Ucp2 in apoptotic cell clearance has implications for the complex aetiology and pathogenesis of these diseases.
Lin, Yi-Chun; Hsu, Ju-Yu; Shu, Jui-Hsu; Chi, Yi; Chiang, Su-Chi; Lee, Sho Tone
2008-11-01
Genome-wide search for the genes involved in arsenite resistance in two distinct variants A and A' of Leishmania amazonensis revealed that the two variants used two different mechanisms to achieve resistance, even though these two variants were derived from the same clone and selected against arsenite under the same conditions. In variant A, the variant with DNA amplification, the biochemical pathways for detoxification of oxidative stress, the energy generation system to support the biochemical and physiological needs of the variant for DNA and protein synthesis and the arsenite translocating system to dispose arsenite are among the primary biochemical events that are upregulated under the arsenite stress to gain resistance. In variant A', the variant without DNA amplification, the upregulation of aquaglyceroporin (AQP) gene and the high level of resistance to arsenate point to the direction that the resistance gained by the variant is due to arsenate which is probably oxidized from arsenite in the arsenite solution used for selection and the maintenance of the cell culture. As a result of the AQP upregulation for arsenite disposal, a different set of biochemical pathways for detoxification of oxidative stress, energy generation and cellular signaling are upregulated to sustain the growth of the variant to gain resistance to arsenate. From current evidences, reactive oxygen species (ROS) overproduced by the parasite soon after exposure to arsenite appear to play an instrumental role in both variants to initiate the subsequent biochemical events that allow the same clone of L. amazonensis to take two totally different routes to diverge into two different variants.
Coregulation of FANCA and BRCA1 in human cells.
Haitjema, Anneke; Mol, Berber M; Kooi, Irsan E; Massink, Maarten Pg; Jørgensen, Jens Al; Rockx, Davy Ap; Rooimans, Martin A; de Winter, Johan P; Meijers-Heijboer, Hanne; Joenje, Hans; Dorsman, Josephine C
2014-01-01
Fanconi anemia (FA) is a genetically heterogeneous syndrome associated with increased cancer predisposition. The underlying genes govern the FA pathway which functions to protect the genome during the S-phase of the cell cycle. While upregulation of FA genes has been linked to chemotherapy resistance, little is known about their regulation in response to proliferative stimuli. The purpose of this study was to examine how FA genes are regulated, especially in relation to the cell cycle, in order to reveal their possible participation in biochemical networks. Expression of 14 FA genes was monitored in two human cell-cycle models and in two RB1/E2F pathway-associated primary cancers, retinoblastoma and basal breast cancer. In silico studies were performed to further evaluate coregulation and identify connected networks and diseases. Only FANCA was consistently induced over 2-fold; FANCF failed to exhibit any regulatory fluctuations. Two tools exploiting public data sets indicated coregulation of FANCA with BRCA1. Upregulation of FANCA and BRCA1 correlated with upregulation of E2F3. Genes coregulated with both FANCA and BRCA1 were enriched for MeSH-Term id(s) genomic instability, microcephaly, and Bloom syndrome, and enriched for the cellular component centrosome. The regulation of FA genes appears highly divergent. In RB1-linked tumors, upregulation of FA network genes was associated with reduced expression of FANCF. FANCA and BRCA1 may jointly act in a subnetwork - supporting vital function(s) at the subcellular level (centrosome) as well as at the level of embryonic development (mechanisms controlling head circumference).
Hirasawa, Takashi; Saito, Masaki; Yoshikawa, Katsunori; Furusawa, Chikara; Shmizu, Hiroshi
2018-05-01
Corynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin. In this study, the transcriptome and metabolome of C. glutamicum is analyzed to understand the mechanism of penicillin-induced glutamic acid production. Transcriptomic analysis with DNA microarray revealed that expression of some glycolysis- and TCA cycle-related genes, which include those encoding the enzymes involved in conversion of glucose to 2-oxoglutaric acid, is upregulated after penicillin addition. Meanwhile, expression of some TCA cycle-related genes, encoding the enzymes for conversion of 2-oxoglutaric acid to oxaloacetic acid, and the anaplerotic reactions decreased. In addition, expression of NCgl1221 and odhI, encoding proteins involved in glutamic acid excretion and inhibition of the 2-oxoglutarate dehydrogenase, respectively, is upregulated. Functional category enrichment analysis of genes upregulated and downregulated after penicillin addition revealed that genes for signal transduction systems are enriched among upregulated genes, whereas those for energy production and carbohydrate and amino acid metabolisms are enriched among the downregulated genes. As for the metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry, the intracellular content of most metabolites of the glycolysis and the TCA cycle decreased dramatically after penicillin addition. Overall, these results indicate that the cellular metabolism and glutamic acid excretion are mainly optimized at the transcription level during penicillin-induced glutamic acid production by C. glutamicum. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Xiaoyan; Wang, Hao; Wang, Hua; Xiao, Fengjun; Seth, Prem; Xu, Weidong; Jia, Qinghua; Wu, Chutse; Yang, Yuefeng; Wang, Lisheng
2017-04-12
In advanced prostate cancer, small ubiquitin-like modifier (SUMO)-specific cysteine protease 1 (SENP1) is up-regulated. However, the role of SENP1 in regulating deSUMOylation of TGF-β/SMADs signaling is unknown. In this study, we developed a lentiviral vector, PLKO.1-shSENP1, to silence SENP1 in prostate cancer cells with high metastatic characteristics (PC3M). Likewise, we also created an adenovirus vector, Ad5/F11p-SENP1 to over-express SENP1 in prostate cancer cells with low metastatic potential (LNCaP). We showed that silencing of SENP1 promoted cellular apoptosis, and inhibited proliferation and migration of PC3M cells. Moreover, SENP1 silencing increased the SMAD4 expression at protein level, up-regulated E-cadherin and down-regulated Vimentin expression, indicating the inhibition of epithelial mesenchymal transition (EMT). Furthermore, SMAD4 interference abolished SENP1-mediated up-regulation of E-cadherin, suggesting that SENP1 regulated E-cadherin expression via SMAD4. SENP1 over-expression in LNCaP cells reduced SMAD4 protein, and promoted EMT via decreasing E-cadherin and increasing Vimentin. Moreover, down-regulation of SMAD4 and E-cadherin were blocked, after transfection with two SUMOylation sites mutated SMAD4, suggesting that SENP1 might reduce SMAD4 levels to regulate E-cadherin expression via deSUMOylation of SMAD4. In conclusion, SENP1 deSUMOylated SMAD4 to promote EMT via up-regulating E-cadherin in prostate cancer cells. Therefore, SENP1 is a potential target for treatment of advanced prostate cancer.
Magee, David A; Taraktsoglou, Maria; Killick, Kate E; Nalpas, Nicolas C; Browne, John A; Park, Stephen D E; Conlon, Kevin M; Lynn, David J; Hokamp, Karsten; Gordon, Stephen V; Gormley, Eamonn; MacHugh, David E
2012-01-01
Mycobacterium bovis, the causative agent of bovine tuberculosis, is a major cause of mortality in global cattle populations. Macrophages are among the first cell types to encounter M. bovis following exposure and the response elicited by these cells is pivotal in determining the outcome of infection. Here, a functional genomics approach was undertaken to investigate global gene expression profiles in bovine monocyte-derived macrophages (MDM) purified from seven age-matched non-related females, in response to in vitro challenge with M. bovis (multiplicity of infection 2:1). Total cellular RNA was extracted from non-challenged control and M. bovis-challenged MDM for all animals at intervals of 2 hours, 6 hours and 24 hours post-challenge and prepared for global gene expression analysis using the Affymetrix® GeneChip® Bovine Genome Array. Comparison of M. bovis-challenged MDM gene expression profiles with those from the non-challenged MDM controls at each time point identified 3,064 differentially expressed genes 2 hours post-challenge, with 4,451 and 5,267 differentially expressed genes detected at the 6 hour and 24 hour time points, respectively (adjusted P-value threshold ≤ 0.05). Notably, the number of downregulated genes exceeded the number of upregulated genes in the M. bovis-challenged MDM across all time points; however, the fold-change in expression for the upregulated genes was markedly higher than that for the downregulated genes. Systems analysis revealed enrichment for genes involved in: (1) the inflammatory response; (2) cell signalling pathways, including Toll-like receptors and intracellular pathogen recognition receptors; and (3) apoptosis. The increased number of downregulated genes is consistent with previous studies showing that M. bovis infection is associated with the repression of host gene expression. The results also support roles for MyD88-independent signalling and intracellular PRRs in mediating the host response to M. bovis.
Murray, Anne R.; Chen, Qian; Takahashi, Yusuke; Zhou, Kevin K.; Park, Kyoungmin; Ma, Jian-xing
2013-01-01
Purpose. MicroRNAs (miRNAs) are known to participate in post-transcriptional regulation of gene expression and are involved in multiple pathogenic processes. Here, we identified miRNA expression changes in the retinas of Akita mice, a genetic model of type 1 diabetes, and investigated the potential role of miRNA in diabetic retinopathy. Methods. Visual function of Akita and control mice was evaluated by electroretinography. MiRNA expression changes in the retinas of Akita mice were identified by miRNA-specific microarray and confirmed by quantitative RT-PCR (qRT-PCR). The potential downstream targets of identified miRNAs were predicted by bioinformatic analysis using web-based applications and confirmed by dual luciferase assay. The mRNA and protein changes of identified downstream targets were examined by qRT-PCR and Western blot analysis. Results. MiRNA-specific microarray and qRT-PCR showed that miR-200b was upregulated significantly in the Akita mouse retina. Sequence analysis and luciferase assay identified oxidation resistance 1 (Oxr1) as a downstream target gene regulated by miR-200b. In a human Müller cell line, MIO-M1, transfection of a miR-200b mimic downregulated Oxr1 expression. Conversely, transfection of MIO-M1 with a miR-200b inhibitor resulted in upregulated Oxr1. Furthermore, overexpression of recombinant Oxr1 attenuated oxidative stress marker, nitration of cellular proteins, and ameliorated apoptosis induced by 4-hydroxynonenal (4-HNE), an oxidative stressor. Similarly, transfection of a miR-200b inhibitor decreased, whereas transfection of miR-200b mimic increased the number of apoptotic cells following 4-HNE treatment. Conclusions. These results suggested that miR-200b–regulated Oxr1 potentially has a protective role in diabetic retinopathy. PMID:23404117
Wu, L; Yu, Y L; Galiano, R D; Roth, S I; Mustoe, T A
1997-10-01
Macrophage colony-stimulating factor (M-CSF) is produced by many cell types involved in wound repair, yet it acts specifically on monocytes and macrophages. The monocyte-derived cell is thought to be important in wound healing, but the importance of the role of tissue macrophages in wound healing has not been well defined. Dermal ulcers were created in normal and ischemic ears of young rabbits. Either rhM-CSF (17 microg/wound) or buffer was applied to each wound. Wounds were bisected and analyzed histologically at Days 7 and 10 postwounding. The amounts of epithelial growth and granulation tissue deposition were measured in all wounds. The level of increase of TGF-beta1 mRNA level in M-CSF-treated wounds was examined using competitive RT-PCR. M-CSF increased new granulation tissue formation by 37% (N = 21, P < 0.01) and 50% (P < 0.01) after single and multiple treatments, respectively, in nonischemic wounds. TGF-beta1 mRNA levels in rhM-CSF-treated wounds increased 5.01-fold (N = 8) over vehicle-treated wounds under nonischemic conditions. In contrast, no effect could be detected in ischemic wounds treated with rhM-CSF, and these wounds only showed a 1.66-fold increase in TGF-beta1 mRNA levels when compared to ischemic wounds treated with vehicle alone. GAPDH, a housekeeping gene, showed no change. As mesenchymal cells lack receptors for M-CSF, the improved healing of wounds treated with topical rhM-CSF must reflect a generalized enhancement of activation and function of tissue macrophages, as demonstrated by upregulation of TGF-beta. The lack of effect under ischemic conditions suggests that either macrophage activity and/or response to M-CSF is adversely affected under those conditions; this may suggest the pathogenesis of impaired wound healing at the cellular level. Copyright 1997 Academic Press.
Du, Guixin; Stinski, Mark F.
2013-01-01
Human cytomegalovirus protein IE2-p86 exerts its functions through interaction with other viral and cellular proteins. To further delineate its protein interaction network, we generated a recombinant virus expressing SG-tagged IE2-p86 and used tandem affinity purification coupled with mass spectrometry. A total of 9 viral proteins and 75 cellular proteins were found to associate with IE2-p86 protein during the first 48 hours of infection. The protein profile at 8, 24, and 48 h post infection revealed that UL84 tightly associated with IE2-p86, and more viral and cellular proteins came into association with IE2-p86 with the progression of virus infection. A computational analysis of the protein-protein interaction network indicated that all of the 9 viral proteins and most of the cellular proteins identified in the study are interconnected to varying degrees. Of the cellular proteins that were confirmed to associate with IE2-p86 by immunoprecipitation, C1QBP was further shown to be upregulated by HCMV infection and colocalized with IE2-p86, UL84 and UL44 in the virus replication compartment of the nucleus. The IE2-p86 interactome network demonstrated the temporal development of stable and abundant protein complexes that associate with IE2-p86 and provided a framework to benefit future studies of various protein complexes during HCMV infection. PMID:24358118
Mitofusin 2 as a driver that controls energy metabolism and insulin signaling.
Zorzano, Antonio; Hernández-Alvarez, María Isabel; Sebastián, David; Muñoz, Juan Pablo
2015-04-20
Mitochondrial dynamics is a complex process that impacts on mitochondrial biology. Recent evidence indicates that proteins participating in mitochondrial dynamics have additional cellular roles. Mitofusin 2 (Mfn2) is a potent modulator of mitochondrial metabolism with an impact on energy metabolism in muscle, liver, and hypothalamic neurons. In addition, Mfn2 is subjected to tight regulation. Hence, factors such as proinflammatory cytokines, lipid availability, or glucocorticoids block its expression, whereas exercise and increased energy expenditure promote its upregulation. Importantly, Mfn2 controls cell metabolism and insulin signaling by limiting reactive oxygen species production and by modulation of endoplasmic reticulum stress. In this connection, it is critical to understand precisely the molecular mechanisms involved in the global actions of Mfn2. Future directions should concentrate into the analysis of those mechanisms, and to fully demonstrate that Mfn2 represents a cellular hub that senses the metabolic and hormonal milieu and drives the control of metabolic homeostasis.
Therapeutic Approaches Targeting MYC-Driven Prostate Cancer
Rebello, Richard J.; Pearson, Richard B.; Hannan, Ross D.; Furic, Luc
2017-01-01
The transcript encoding the proto-oncogene MYC is commonly overexpressed in prostate cancer (PC). MYC protein abundance is also increased in the majority of cases of advanced and metastatic castrate-resistant PC (mCRPC). Accordingly, the MYC-directed transcriptional program directly contributes to PC by upregulating the expression of a number of pro-tumorigenic factors involved in cell growth and proliferation. A key cellular process downstream of MYC activity is the regulation of ribosome biogenesis which sustains tumor growth. MYC activity also cooperates with the dysregulation of the phosphoinositol-3-kinase (PI3K)/AKT/mTOR pathway to promote PC cell survival. Recent advances in the understanding of these interactions through the use of animal models have provided significant insight into the therapeutic efficacy of targeting MYC activity by interfering with its transcriptional program, and indirectly by targeting downstream cellular events linked to MYC transformation potential. PMID:28212321
2002-07-01
and T877A intermediary products in the biosynthesis of aldosterone (27). The mutant AR’ production of DOG is up-regulated in a number of disease states...therapy 0O- DOG and as an antiemetic in patients undergoing chemotherapy and/or0.05 ’ -6- Dex o 0.04 -X-OH-F radiation therapy. Our results show that Dex...nonandrogenic activa- therapy; (b) the use of high-dose ketoconazole as second-line hormo- tors of the AR/T877A mutant, an AR mutant frequently found to
Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling | Office of Cancer Genomics
In cancer, upregulated Ras promotes cellular transformation and proliferation in part through activation of oncogenic Ras-MAPK signaling. While directly inhibiting Ras has proven challenging, new insights into Ras regulation through protein-protein interactions may offer unique opportunities for therapeutic intervention. Here we report the identification and validation of Aurora kinase A (Aurora A) as a novel Ras binding protein. We demonstrate that the kinase domain of Aurora A mediates the interaction with the N-terminal domain of H-Ras.
Pan, Jianke; Yu, Lu; Liu, Dengyue; Hu, Deyu
2018-05-19
Mesoionic pyrido[1,2-α]pyrimidinone derivatives containing a neonicotinoid moiety were designed, synthesized, and evaluated for their insecticidal activity. Some of the title compounds showed remarkable insecticidal properties against Aphis craccivora . Compound I13 exhibited satisfactory insecticidal activity against A. craccivora . Meanwhile, label-free proteomics analysis of compound I13 treatment identified a total of 821 proteins. Of these, 35 proteins were up-regulated, whereas 108 proteins were down-regulated. Differential expressions of these proteins reflected a change in cellular structure and metabolism.
Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions
ERIC Educational Resources Information Center
Brown, Mary H.; Schwartz, Renee S.
2009-01-01
The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…
Yoshino, Atsushi; Polouliakh, Natalia; Meguro, Akira; Takeuchi, Masaki; Kawagoe, Tatsukata; Mizuki, Nobuhisa
2016-01-01
Components of fish roe possess antioxidant and antiaging activities, making them potentially very beneficial natural resources. Here, we investigated chum salmon eggs (CSEs) as a source of active ingredients, including vitamins, unsaturated fatty acids, and proteins. We incubated human dermal fibroblast cultures for 48 hours with high and low concentrations of CSE extracts and analyzed changes in gene expression. Cells treated with CSE extract showed concentration-dependent upregulation of collagen type I genes and of multiple antioxidative genes, including OXR1, TXNRD1, and PRDX family genes. We further conducted in silico phylogenetic footprinting analysis of promoter regions. These results suggested that transcription factors such as acute myeloid leukemia-1a and cyclic adenosine monophosphate response element-binding protein may be involved in the observed upregulation of antioxidative genes. Our results support the idea that CSEs are strong candidate sources of antioxidant materials and cosmeceutically effective ingredients.