Sample records for multiple velocity difference

  1. Improved MIMO radar GMTI via cyclic-shift transmission of orthogonal frequency division signals

    NASA Astrophysics Data System (ADS)

    Li, Fuyou; He, Feng; Dong, Zhen; Wu, Manqing

    2018-05-01

    Minimum detectable velocity (MDV) and maximum detectable velocity are both important in ground moving target indication (GMTI) systems. Smaller MDV can be achieved by longer baseline via multiple-input multiple-output (MIMO) radar. Maximum detectable velocity is decided by blind velocities associated with carrier frequencies, and blind velocities can be mitigated by orthogonal frequency division signals. However, the scattering echoes from different carrier frequencies are independent, which is not good for improving MDV performance. An improved cyclic-shift transmission is applied in MIMO GMTI system in this paper. MDV performance is improved due to the longer baseline, and maximum detectable velocity performance is improved due to the mitigation of blind velocities via multiple carrier frequencies. The signal model for this mode is established, the principle of mitigating blind velocities with orthogonal frequency division signals is presented; the performance of different MIMO GMTI waveforms is analysed; and the performance of different array configurations is analysed. Simulation results by space-time-frequency adaptive processing proves that our proposed method is a valid way to improve GMTI performance.

  2. An extended car-following model considering random safety distance with different probabilities

    NASA Astrophysics Data System (ADS)

    Wang, Jufeng; Sun, Fengxin; Cheng, Rongjun; Ge, Hongxia; Wei, Qi

    2018-02-01

    Because of the difference in vehicle type or driving skill, the driving strategy is not exactly the same. The driving speeds of the different vehicles may be different for the same headway. Since the optimal velocity function is just determined by the safety distance besides the maximum velocity and headway, an extended car-following model accounting for random safety distance with different probabilities is proposed in this paper. The linear stable condition for this extended traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulting from multiple safety distance in the optimal velocity function. The cases of multiple types of safety distances selected with different probabilities are presented. Numerical results show that the traffic flow with multiple safety distances with different probabilities will be more unstable than that with single type of safety distance, and will result in more stop-and-go phenomena.

  3. An improved car-following model with multiple preceding cars' velocity fluctuation feedback

    NASA Astrophysics Data System (ADS)

    Guo, Lantian; Zhao, Xiangmo; Yu, Shaowei; Li, Xiuhai; Shi, Zhongke

    2017-04-01

    In order to explore and evaluate the effects of velocity variation trend of multiple preceding cars used in the Cooperative Adaptive Cruise Control (CACC) strategy on the dynamic characteristic, fuel economy and emission of the corresponding traffic flow, we conduct a study as follows: firstly, with the real-time car-following (CF) data, the close relationship between multiple preceding cars' velocity fluctuation feedback and the host car's behaviors is explored, the evaluation results clearly show that multiple preceding cars' velocity fluctuation with different time window-width are highly correlated to the host car's acceleration/deceleration. Then, a microscopic traffic flow model is proposed to evaluate the effects of multiple preceding cars' velocity fluctuation feedback in the CACC strategy on the traffic flow evolution process. Finally, numerical simulations on fuel economy and exhaust emission of the traffic flow are also implemented by utilizing VT-micro model. Simulation results prove that considering multiple preceding cars' velocity fluctuation feedback in the control strategy of the CACC system can improve roadway traffic mobility, fuel economy and exhaust emission performance.

  4. River velocities from sequential multispectral remote sensing images

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Mied, Richard P.

    2013-06-01

    We address the problem of extracting surface velocities from a pair of multispectral remote sensing images over rivers using a new nonlinear multiple-tracer form of the global optimal solution (GOS). The derived velocity field is a valid solution across the image domain to the nonlinear system of equations obtained by minimizing a cost function inferred from the conservation constraint equations for multiple tracers. This is done by deriving an iteration equation for the velocity, based on the multiple-tracer displaced frame difference equations, and a local approximation to the velocity field. The number of velocity equations is greater than the number of velocity components, and thus overly constrain the solution. The iterative technique uses Gauss-Newton and Levenberg-Marquardt methods and our own algorithm of the progressive relaxation of the over-constraint. We demonstrate the nonlinear multiple-tracer GOS technique with sequential multispectral Landsat and ASTER images over a portion of the Potomac River in MD/VA, and derive a dense field of accurate velocity vectors. We compare the GOS river velocities with those from over 12 years of data at four NOAA reference stations, and find good agreement. We discuss how to find the appropriate spatial and temporal resolutions to allow optimization of the technique for specific rivers.

  5. Instantaneous and Time Averaged Flow Fields of Multiple Vortices in the Tip Region of a Ducted Propulsor

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem; Steven, Ceccio

    2003-11-01

    PIV data of the flow field in the immediate vicinity of the trailing edge of a ducted propeller at the tip revealed the existence of multiple vorticity concentrations. The multiple vortices in each instantaneous PIV field were identified and individually characterized. The measurements of the multiple vortices were combined with a Gaussian vortex model to reconstruct the vorticity and velocity fields. The major features of the original experimental field were recovered, and the correlation between the two fields was good. The time averaged field and velocity fluctuations were also measured. We will discuss why the "typical" instantaneous tip vortex and the tip vortex from the time averaged field are substantially different. We attempt to explain the cause of these differences. Knowledge of the instantaneous flow field variability is used to understand the causes of the measured velocity fluctuations. The results from this study have an impact on the understanding of the roll-up of tip vortices, and the dynamics of multiple vortices.

  6. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications. In this poster, we summarize the key components of the UCVM framework and describe the impact it has had in various computational geoscientific applications.

  7. Multiple joint muscle function with ageing: the force-velocity and power-velocity relationships in young and older men.

    PubMed

    Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan P

    2013-05-01

    Whilst extensive research has detailed the loss of muscle strength with ageing for isolated single joint actions, there has been little attention to power production during more functionally relevant multiple joint movements. The extent to which force or velocity are responsible for the loss in power with ageing is also equivocal. The aim of this study was to evaluate the contribution of force and velocity to the differences in power with age by comparing the force-velocity and power-velocity relationships in young and older men during a multiple joint leg press movement. Twenty-one older men (66 ± 3 years) and twenty-three young men (24 ± 2 years) completed a series of isometric (maximum and explosive) and dynamic contractions on a leg press dynamometer instrumented to record force and displacement. The force-velocity relationship was lower for the older men as reflected by their 19 % lower maximum isometric strength (p < 0.001). Explosive isometric strength (peak rate of force development) was 21 % lower for the older men (p < 0.05) but was similar between groups when normalised to maximum strength (p = 0.58). The power-velocity relationship was lower for the older men as shown by reduced maximum power (-28 %, p < 0.001) and lower force (-20 %, p < 0.001) and velocity (-11 %, p < 0.05). Whilst force and velocity were lower in older men, the decrement in force was greater and therefore the major explanation for the attenuation of power during a functionally relevant multiple joint movement.

  8. The effects of velocity difference changes with memory on the dynamics characteristics and fuel economy of traffic flow

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Zhao, Xiangmo; Xu, Zhigang; Zhang, Licheng

    2016-11-01

    To evaluate the effects of velocity difference changes with memory in the intelligent transportation environment on the dynamics and fuel consumptions of traffic flow, we first investigate the linkage between velocity difference changes with memory and car-following behaviors with the measured data in cities, and then propose an improved cooperative car-following model considering multiple velocity difference changes with memory in the cooperative adaptive cruise control strategy, finally carry out several numerical simulations under the periodic boundary condition and at signalized intersections to explore how velocity difference changes with memory affect car's velocity, velocity fluctuation, acceleration and fuel consumptions in the intelligent transportation environment. The results show that velocity difference changes with memory have obvious effects on car-following behaviors, that the improved cooperative car-following model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, that the stability and fuel economy of traffic flow simulated by the improved car-following model with velocity difference changes with memory is obviously superior to those without velocity difference changes, and that taking velocity difference changes with memory into account in designing the advanced adaptive cruise control strategy can significantly improve the stability and fuel economy of traffic flow.

  9. Effects of line-of-sight velocity on spaced-antenna measurements, part 3.5A

    NASA Technical Reports Server (NTRS)

    Royrvik, O.

    1984-01-01

    Horizontal wind velocities in the upper atmosphere, particularly the mesosphere, have been measured using a multitude of different techniques. Most techniques are based on stated or unstated assumptions about the wind field that may or may not be true. Some problems with the spaced antenna drifts (SAD) technique that usually appear to be overlooked are investigated. These problems are not unique to the SAD technique; very similar considerations apply to measurement of horizontal wind using multiple-beam Doppler radars as well. Simply stated, the SAD technique relies on scattering from multiple scatterers within an antenna beam of fairly large beam width. The combination of signals with random phase gives rise to an interference pattern on the ground. This pattern will drift across the ground with a velocity twice that of the ionospheric irregularities from which the radar signals are scattered. By using spaced receivers and measuring time delays of the signal fading in different antennas, it is possible to estimate the horizontal drift velocities.

  10. Evaluation of multiple tracer methods to estimate low groundwater flow velocities.

    PubMed

    Reimus, Paul W; Arnold, Bill W

    2017-04-01

    Four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or "shut-in" periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity data are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a "ground truth" velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. The advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them are discussed. Published by Elsevier B.V.

  11. Extended pseudo-screen migration with multiple reference velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lian-Jie; Fehler, M.C.

    1997-11-01

    The pseudo-screen propagator is a kind of one way wave propagation based on the local Born approximation. The problem of the propagator is that it is difficult to calculate the scattered fields when the velocity perturbation is large; not to mention the accuracy of the propagator. We develop an extended pseudo-screen propagator by introducing different reference velocities in different regions of a medium to ensure the condition of small perturbation. The exploding reflector data for a 2D slice of the SEG/EAEG 3D salt model is generated by a finite difference scheme to test the feasibility of the method. The migrationmore » result demonstrates that the method can handle severe lateral velocity variations and provides high quality images for complex structures.« less

  12. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    PubMed Central

    Persoons, Tim; O’Donovan, Tadhg S.

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods. PMID:22346564

  13. Experiment study on sediment erosion of Pelton turbine flow passage component material

    NASA Astrophysics Data System (ADS)

    Liu, J.; Lu, L.; Zhu, L.

    2012-11-01

    A rotating and jet experiment system with high flow velocity is designed to study the anti-erosion performance of materials. The resultant velocity of the experiment system is high to 120 m/s. The anti-erosion performance of materials used in needle and nozzle and bucket of Pelton turbine, which is widely used in power station with high head and little discharge, was studied in detail by this experiment system. The experimental studies were carried with different resultant velocities and sediment concentrations. Multiple linear regression analysis method was applied to get the exponents of velocity and sediment concentration. The exponents for different materials are different. The exponents of velocity ranged from 3 to 3.5 for three kinds of material. And the exponents of sediment concentration ranged from 0.97 to 1.03 in this experiment. The SEM analysis on the erosion surface of different materials was also carried. On the erosion condition with high resultant impact velocity, the selective cutting loss of material is the mainly erosion mechanism for metal material.

  14. Elderly fall risk prediction using static posturography.

    PubMed

    Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan; McIlroy, William E

    2017-01-01

    Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP) and medial-lateral (ML) center of pressure (CoP) motion; AP and ML CoP root mean square distance from mean (RMS); and AP, ML, and vector sum magnitude (VSM) CoP velocity were calculated. Romberg Quotients (RQ) were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24), prospective all fallers (42), prospective fallers (22 single, 6 multiple), and prospective non-fallers (47). Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity-0.114 x Eyes Closed Vector Sum Magnitude Velocity-2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity) and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for older people at risk of multiple falls.

  15. Smooth pursuit eye movement (SPEM) in patients with multiple complex developmental disorder (MCDD), a subtype of the pervasive developmental disorder.

    PubMed

    Lahuis, Bertine E; Van Engeland, Herman; Cahn, Wiepke; Caspers, Esther; Van der Geest, Jos N; Van der Gaag, Rutger Jan; Kemner, Chantal

    2009-01-01

    Multiple complex developmental disorder (MCDD) is a well-defined and validated behavioural subtype of pervasive developmental disorder-not otherwise specified (PDD-NOS) and is thought to be associated with a higher risk of developing a schizophrenic spectrum disorder. The question was addressed whether patients with MCDD show the same psychophysiological abnormalities as seen in patients with schizophrenia. Smooth pursuit eye movement (pursuit gain and saccadic parameters) was measured in children with either MCDD (n=18) or autism (n=18), and in age- and IQ-matched controls (n=36), as well as in a group of adult patients with schizophrenia (n=14) and a group of adult controls (n=17). We found the expected effect of lower velocity gain and increased number of saccades in schizophrenic patients. Children with MCDD also showed a lower velocity gain compared to controls children. In contrast, velocity gain was similar in autistic subjects and controls. No differences for velocity gain were found in a direct comparison between MCDD and autism. Saccadic parameters were not significantly different from controls in either MCDD or autistic subjects. Children with MCDD, like schizophrenic adults, show a reduced velocity gain, which could indicate that schizophrenia spectrum disorders and MCDD share (at least to some degree) a common neurobiological background.

  16. Experimental investigations of mechanical and reaction responses for drop-weight impacted energetic particles

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-Wei; Wu, Yan-Qing; Wang, Ming-Yang; Huang, Feng-Lei

    2017-02-01

    Low-velocity drop-weight impact experiments on individual and multiple Cyclotetramethylene tetranitramine (HMX) energetic particles were performed using a modified drop-weight machine equipped with high-speed photography components. Multiple particles experienced more severe burning reactions than an individual particle. Comparisons between impacted salt and HMX particle show that jetting in HMX is mainly due to the motion of fragmented particles driven by gaseous reaction products. Velocity of jetting, flame propagation, and area expansion were measured via image processing, making it possible to quantify the chemical reaction or mechanical deformation violence at different stages.

  17. High-resolution Near-IR Spectral Mapping with H2 and [Fe II] Lines of Multiple Outflows around LkHα 234

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Koo, Bon-Chul; Yuk, In-Soo; Kaplan, Kyle F.; Lee, Yong-Hyun; Sokal, Kimberly R.; Mace, Gregory N.; Park, Chan; Lee, Jae-Joon; Park, Byeong-Gon; Hwang, Narae; Kim, Hwihyun; Jaffe, Daniel T.

    2018-05-01

    We present a high-resolution, near-IR spectroscopic study of multiple outflows in the LkHα 234 star formation region using the Immersion GRating INfrared Spectrometer (IGRINS). Spectral mapping over the blueshifted emission of HH 167 allowed us to distinguish at least three separate, spatially overlapped outflows in H2 and [Fe II] emission. We show that the H2 emission represents not a single jet but rather complex multiple outflows driven by three known embedded sources: MM1, VLA 2, and VLA 3. There is a redshifted H2 outflow at a low velocity, V LSR <+50 km s‑1, with respect to the systemic velocity of V LSR = ‑11.5 km s‑1, that coincides with the H2O masers seen in earlier radio observations 2″ southwest of VLA 2. We found that the previously detected [Fe II] jet with | {V}LSR}| > 100 km s‑1 driven by VLA 3B is also detected in H2 emission and confirm that this jet has a position angle of about 240°. Spectra of the redshifted knots at 14″–65″ northeast of LkHα 234 are presented for the first time. These spectra also provide clues to the existence of multiple outflows. We detected high-velocity (50–120 km s‑1) H2 gas in the multiple outflows around LkHα 234. Since these gases move at speeds well over the dissociation velocity (>40 km s‑1), the emission must originate from the jet itself rather than H2 gas in the ambient medium. Also, position–velocity and excitation diagrams indicate that emission from knot C in HH 167 comes from two different phenomena, shocks and photodissociation.

  18. Force, Velocity, and Work: The Effects of Different Contexts on Students' Understanding of Vector Concepts Using Isomorphic Problems

    ERIC Educational Resources Information Center

    Barniol, Pablo; Zavala, Genaro

    2014-01-01

    In this article we compare students' understanding of vector concepts in problems with no physical context, and with three mechanics contexts: force, velocity, and work. Based on our "Test of Understanding of Vectors," a multiple-choice test presented elsewhere, we designed two isomorphic shorter versions of 12 items each: a test with no…

  19. Dose accumulation of multiple high dose rate prostate brachytherapy treatments in two commercially available image registration systems.

    PubMed

    Poder, Joel; Yuen, Johnson; Howie, Andrew; Bece, Andrej; Bucci, Joseph

    2017-11-01

    The purpose of this study was to assess whether deformable image registration (DIR) is required for dose accumulation of multiple high dose rate prostate brachytherapy (HDRPBT) plans treated with the same catheter pattern on two different CT datasets. DIR was applied to 20 HDRPBT patients' planning CT images who received two treatment fractions on sequential days, on two different CT datasets, with the same implant. Quality of DIR in Velocity and MIM image registration systems was assessed by calculating the Dice Similarity Coefficient (DSC) and mean distance to agreement (MDA) for the prostate, urethra and rectum contours. Accumulated doses from each system were then calculated using the same DIR technique and dose volume histogram (DVH) parameters compared to manual addition with no DIR. The average DSC was found to be 0.83 (Velocity) and 0.84 (MIM), 0.80 (Velocity) and 0.80 (MIM), 0.80 (Velocity) and 0.81 (MIM), for the prostate, rectum and urethra contours, respectively. The average difference in calculated DVH parameters between the two systems using dose accumulation was less than 1%, and there was no statistically significant difference found between deformably accumulated doses in the two systems versus manual DVH addition with no DIR. Contour propagation using DIR in velocity and MIM was shown to be at least equivalent to inter-observer contouring variability on CT. The results also indicate that dose accumulation through manual addition of DVH parameters may be sufficient for HDRPBT treatments treated with the same catheter pattern on two different CT datasets. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Evaluation of multiple tracer methods to estimate low groundwater flow velocities

    DOE PAGES

    Reimus, Paul W.; Arnold, Bill W.

    2017-02-20

    Here, four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or “shut-in” periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity datamore » are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a “ground truth” velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. We discuss the advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them.« less

  1. Evaluation of multiple tracer methods to estimate low groundwater flow velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul W.; Arnold, Bill W.

    Here, four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or “shut-in” periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity datamore » are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a “ground truth” velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. We discuss the advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them.« less

  2. Ion beams in multi-species plasmas

    NASA Astrophysics Data System (ADS)

    Aguirre, E. M.; Scime, E. E.; Good, T. N.

    2018-04-01

    Argon and xenon ion velocity distribution functions are measured in Ar-He, Ar-Xe, and Xe-He expanding helicon plasmas to determine if ion beam velocity is enhanced by the presence of lighter ions. Contrary to observations in mixed gas sheath experiments, we find that adding a lighter ion does not increase the ion beam speed. The predominant effect is a reduction of ion beam velocity consistent with increased drag arising from increased gas pressure under all conditions: constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for the acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in expanding helicon plasmas.

  3. Modeling the low-velocity impact characteristics of woven glass epoxy composite laminates using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Mathivanan, N. Rajesh; Mouli, Chandra

    2012-12-01

    In this work, a new methodology based on artificial neural networks (ANN) has been developed to study the low-velocity impact characteristics of woven glass epoxy laminates of EP3 grade. To train and test the networks, multiple impact cases have been generated using statistical analysis of variance (ANOVA). Experimental tests were performed using an instrumented falling-weight impact-testing machine. Different impact velocities and impact energies on different thicknesses of laminates were considered as the input parameters of the ANN model. This model is a feed-forward back-propagation neural network. Using the input/output data of the experiments, the model was trained and tested. Further, the effects of the low-velocity impact response of the laminates at different energy levels were investigated by studying the cause-effect relationship among the influential factors using response surface methodology. The most significant parameter is determined from the other input variables through ANOVA.

  4. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces

    PubMed Central

    Chen, Xuemei; Patel, Ravi S.; Weibel, Justin A.; Garimella, Suresh V.

    2016-01-01

    Coalescence-induced jumping of condensate droplets from a superhydrophobic surface with hierarchical micro/nanoscale roughness is quantitatively characterized. Experimental observations show that the condensate droplet jumping is induced by coalescence of multiple droplets of different sizes, and that the coalesced droplet trajectories typically deviate from the surface normal. A depth-from-defocus image processing technique is developed to track the out-of-plane displacement of the jumping droplets, so as to accurately measure the droplet size and velocity. The results demonstrate that the highest jumping velocity is achieved when two droplets coalesce. The jumping velocity decreases gradually with an increase in the number of coalescing droplets, despite the greater potential surface energy released upon coalescence. A general theoretical model that accounts for viscous dissipation, surface adhesion, line tension, the initial droplet wetting states, and the number and sizes of the coalescing droplets is developed to explain the trends of droplet jumping velocity observed in the experiments. PMID:26725512

  5. Validation and Structural Analysis of the Kinematics Concept Test

    ERIC Educational Resources Information Center

    Lichtenberger, A.; Wagner, C.; Hofer, S. I.; Stem, E.; Vaterlaus, A.

    2017-01-01

    The kinematics concept test (KCT) is a multiple-choice test designed to evaluate students' conceptual understanding of kinematics at the high school level. The test comprises 49 multiple-choice items about velocity and acceleration, which are based on seven kinematic concepts and which make use of three different representations. In the first part…

  6. Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A method for measuring the acoustic velocity in a thin sheet of a graphite epoxy composite (GEC) material was investigated. This method uses two identical acoustic-emission (AE) sensors, one to transmit and one to receive. The delay time as a function of distance between sensors determines a bulk velocity. A lightweight fixture (balsa wood in the current implementation) provides a consistent method of positioning the sensors, thus providing multiple measurements of the time delay between sensors at different known distances. A linear fit to separation, x, versus delay time, t, will yield an estimate of the velocity from the slope of the line.

  7. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  8. Elderly fall risk prediction using static posturography

    PubMed Central

    2017-01-01

    Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP) and medial-lateral (ML) center of pressure (CoP) motion; AP and ML CoP root mean square distance from mean (RMS); and AP, ML, and vector sum magnitude (VSM) CoP velocity were calculated. Romberg Quotients (RQ) were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24), prospective all fallers (42), prospective fallers (22 single, 6 multiple), and prospective non-fallers (47). Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity—0.114 x Eyes Closed Vector Sum Magnitude Velocity—2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity) and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for older people at risk of multiple falls. PMID:28222191

  9. The dynamical origin of multiple populations in intermediate-age clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; de Grijs, Richard; Askar, Abbas; Berczik, Peter; Li, Chengyuan; Wang, Long; Deng, Licai; Kouwenhoven, M. B. N.; Giersz, Mirek; Spurzem, Rainer

    2017-11-01

    Numerical simulations were carried out to study the origin of multiple stellar populations in the intermediate-age clusters NGC 411 and NGC 1806 in the Magellanic Clouds. We performed NBODY6++ simulations based on two different formation scenarios, an ad hoc formation model where second-generation (SG) stars are formed inside a cluster of first-generation (FG) stars using the gas accumulated from the external intergalactic medium and a minor merger model of unequal mass (MSG/MFG ∼ 5-10 per cent) clusters with an age difference of a few hundred million years. We compared our results such as the radial profile of the SG-to-FG number ratio with observations on the assumption that the SG stars in the observations are composed of cluster members, and confirmed that both the ad hoc formation and merger scenarios reproduce the observed radial trend of the SG-to-FG number ratio, which shows less centrally concentrated SG than FG stars. It is difficult to constrain the formation scenario for the multiple populations by only using the spatial distribution of the SG stars. SG stars originating from the merger scenario show a significant velocity anisotropy and rotational features compared to those from the ad hoc formation scenario. Thus, observations aimed at kinematic properties like velocity anisotropy or rotational velocities for SG stars should be obtained to better understand the formation of the multiple populations in these clusters. This is, however, beyond current instrumentation capabilities.

  10. Multiple-robot drug delivery strategy through coordinated teams of microswimmers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kei Cheang, U; Kim, Min Jun, E-mail: mkim@coe.drexel.edu; Lee, Kyoungwoo

    2014-08-25

    Untethered robotic microswimmers are very promising to significantly improve various types of minimally invasive surgeries by offering high accuracy at extremely small scales. A prime example is drug delivery, for which a large number of microswimmers is required to deliver sufficient dosages to target sites. For this reason, the controllability of groups of microswimmers is essential. In this paper, we demonstrate simultaneous control of multiple geometrically similar but magnetically different microswimmers using a single global rotating magnetic field. By exploiting the differences in their magnetic properties, we triggered different swimming behaviors from the microswimmers by controlling the frequency and themore » strength of the global field, for example, one swim and the other does not while exposed to the same control input. Our results show that the balance between the applied magnetic torque and the hydrodynamic torque can be exploited for simultaneous control of two microswimmers to swim in opposite directions, with different velocities, and with similar velocities. This work will serve to establish important concepts for future developments of control systems to manipulate multiple magnetically actuated microswimmers and a step towards using swarms of microswimmers as viable workforces for complex operations.« less

  11. Effect of velocity-dependent friction on multiple-vehicle collisions in traffic flow

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2017-01-01

    We present the dynamic model for the multiple-vehicle collisions to take into account the velocity-dependent friction force. We study the effect of the velocity-dependent friction on the chain-reaction crash on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle and the friction force depends highly on the vehicular speed. The first crash may induce more collisions. We investigate whether or not the first collision induces the multiple-vehicle collisions, numerically and analytically. The dynamic transitions occur from no collisions, through a single collision and double collisions, to multiple collisions with decreasing the headway. We explore the effect of the velocity-dependent friction on the dynamic transitions and the region maps in the multiple-vehicle collisions.

  12. Measurements of the principal Hugoniots of dense gaseous deuterium-helium mixtures: Combined multi-channel optical pyrometry, velocity interferometry, and streak optical pyrometry measurements

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong

    2016-10-01

    The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.

  13. Annular beam with segmented phase gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shubo; Wu, Liang; Tao, Shaohua, E-mail: eshtao@csu.edu.cn

    2016-08-15

    An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owingmore » to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.« less

  14. Particle image velocimetry based on wavelength division multiplexing

    NASA Astrophysics Data System (ADS)

    Tang, Chunxiao; Li, Enbang; Li, Hongqiang

    2018-01-01

    This paper introduces a technical approach of wavelength division multiplexing (WDM) based particle image velocimetry (PIV). It is designed to measure transient flows with different scales of velocity by capturing multiple particle images in one exposure. These images are separated by different wavelengths, and thus the pulse separation time is not influenced by the frame rate of the camera. A triple-pulsed PIV system has been created in order to prove the feasibility of WDM-PIV. This is demonstrated in a sieve plate extraction column model by simultaneously measuring the fast flow in the downcomer and the slow vortices inside the plates. A simple displacement/velocity field combination method has also been developed. The constraints imposed by WDM-PIV are limited wavelength choices of available light sources and cameras. The usage of WDM technique represents a feasible way to realize multiple-pulsed PIV.

  15. Pitfalls in velocity analysis for strongly contrasting, layered media - Example from the Chalk Group, North Sea

    NASA Astrophysics Data System (ADS)

    Montazeri, Mahboubeh; Uldall, Anette; Moreau, Julien; Nielsen, Lars

    2018-02-01

    Knowledge about the velocity structure of the subsurface is critical in key seismic processing sequences, for instance, migration, depth conversion, and construction of initial P- and S-wave velocity models for full-waveform inversion. Therefore, the quality of subsurface imaging is highly dependent upon the quality of the seismic velocity analysis. Based on a case study from the Danish part of the North Sea, we show how interference caused by multiples, converted waves, and thin-layer effects may lead to incorrect velocity estimation, if such effects are not accounted for. Seismic wave propagation inside finely layered reservoir rocks dominated by chalk is described by two-dimensional finite-difference wave field simulation. The rock physical properties used for the modeling are based on an exploration well from the Halfdan field in the Danish sector of the North Sea. The modeling results are compared to seismic data from the study area. The modeling shows that interference of primaries with multiples, converted waves and thin-bed effects can give rise to strong anomalies in standard velocity analysis plots. Consequently, root-mean-square (RMS) velocity profiles may be erroneously picked. In our study area, such mis-picking can introduce errors in, for example, the thickness estimation of the layers near the base of the studied sedimentary strata by 11% to 26%. Tests show that front muting and bandpass filtering cannot significantly improve the quality of velocity analysis in our study. However, we notice that spiking deconvolution applied before velocity analysis may to some extent reduce the impact of interference and, therefore, reduce the risk of erroneous picking of the velocity function.

  16. The study of flow diversion effects on aneurysm using multiple enterprise stents and two flow diverters

    PubMed Central

    Kojima, Masahiro; Irie, Keiko; Fukuda, Toshio; Arai, Fumihito; Hirose, Yuichi; Negoro, Makoto

    2012-01-01

    Background: Computer-based simulation is necessary to clarify the hemodynamics in brain aneurysm. Specifically for endovascular treatments, the effects of indwelling intravascular devices on blood stream need to be considered. The most recent technology used for cerebral aneurysm treatment is related to the use of flow diverters to reduce the amount of flow entering the aneurysm. To verify the differences of flow reduction, we analyzed multiple Enterprise stents and two kinds of flow diverters. Materials and Methods: In this research, we virtually modeled three kinds of commercial intracranial stents (Enterprise, Silk, and Pipeline) and mounted to fit into the vessel wall, and deployed across the neck of an IC-ophthalmic artery aneurysm. Also, we compared the differences among multiple Enterprise stents and two flow diverters in a standalone mode. Results: From the numerical results, the values of wall shear stress and pressure are reduced in proportion to the size of mesh, especially in the inflow area. However, the reduced velocity within the aneurysm sac by the multiple stents is not as significant as the flow diverters. Conclusions: This is the first study analyzing the flow alterations among multiple Enterprise stents and flow diverters. The placement of small meshed stents dramatically reduced the aneurysmal fluid movement. However, compared to the flow diverters, we did not observe the reduction of flow velocity within the aneurysm by the multiple stents. PMID:23559981

  17. Deblending of simultaneous-source data using iterative seislet frame thresholding based on a robust slope estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Yatong; Han, Chunying; Chi, Yue

    2018-06-01

    In a simultaneous source survey, no limitation is required for the shot scheduling of nearby sources and thus a huge acquisition efficiency can be obtained but at the same time making the recorded seismic data contaminated by strong blending interference. In this paper, we propose a multi-dip seislet frame based sparse inversion algorithm to iteratively separate simultaneous sources. We overcome two inherent drawbacks of traditional seislet transform. For the multi-dip problem, we propose to apply a multi-dip seislet frame thresholding strategy instead of the traditional seislet transform for deblending simultaneous-source data that contains multiple dips, e.g., containing multiple reflections. The multi-dip seislet frame strategy solves the conflicting dip problem that degrades the performance of the traditional seislet transform. For the noise issue, we propose to use a robust dip estimation algorithm that is based on velocity-slope transformation. Instead of calculating the local slope directly using the plane-wave destruction (PWD) based method, we first apply NMO-based velocity analysis and obtain NMO velocities for multi-dip components that correspond to multiples of different orders, then a fairly accurate slope estimation can be obtained using the velocity-slope conversion equation. An iterative deblending framework is given and validated through a comprehensive analysis over both numerical synthetic and field data examples.

  18. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  19. A novel biasing dependent circuit model of resonant cavity enhanced avalanche photodetectors (RCE-APDs)

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Mostafa R.; El-Batawy, Yasser M.; Deen, M. Jamal

    2018-02-01

    In Resonant Cavity Enhanced Photodetectors (RCE-PDs), the trade-off between the bandwidth and the quantum efficiency in the conventional photodetectors is overcome. In RCE-PDs, large bandwidth can be achieved using a thin absorption layer while the use of a resonant cavity allows for multiple passes of light in the absorption which boosts the quantum efficiency. In this paper, a complete bias-dependent model for the Resonant Cavity Enhanced-Separated Absorption Graded Charge Multiplication-Avalanche Photodetector (RCE-SAGCM-APD) is presented. The proposed model takes into account the case of drift velocities other than the saturation velocity, thus modeling this effect on the photodetector different design parameters such as Gain, Bandwidth and Gain-Bandwidth product.

  20. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.

    PubMed

    Raj, Retheep; Sivanandan, K S

    2017-01-01

    Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.

  1. Multiple velocity encoding in the phase of an MRI signal

    NASA Astrophysics Data System (ADS)

    Benitez-Read, E. E.

    2017-01-01

    The measurement of fluid velocity by encoding it in the phase of a magnetic resonance imaging (MRI) signal could allow the discrimination of the stationary spins signals from those of moving spins. This results in a wide variety of applications i.e. in medicine, in order to obtain more than angiograms, blood velocity images of veins, arteries and other vessels without having static tissue perturbing the signal of fluid in motion. The work presented in this paper is a theoretical analysis of some novel methods for multiple fluid velocity encoding in the phase of an MRI signal. These methods are based on a tripolar gradient (TPG) and can be an alternative to the conventional methods based on a bipolar gradient (BPG) and could be more suitable for multiple velocity encoding in the phase of an MRI signal.

  2. A Kirchhoff approach to seismic modeling and prestack depth migration

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Yue

    1993-05-01

    The Kirchhoff integral provides a robust method for implementing seismic modeling and prestack depth migration, which can handle lateral velocity variation and turning waves. With a little extra computation cost, the Kirchoff-type migration can obtain multiple outputs that have the same phase but different amplitudes, compared with that of other migration methods. The ratio of these amplitudes is helpful in computing some quantities such as reflection angle. I develop a seismic modeling and prestack depth migration method based on the Kirchhoff integral, that handles both laterally variant velocity and a dip beyond 90 degrees. The method uses a finite-difference algorithm to calculate travel times and WKBJ amplitudes for the Kirchhoff integral. Compared to ray-tracing algorithms, the finite-difference algorithm gives an efficient implementation and single-valued quantities (first arrivals) on output. In my finite difference algorithm, the upwind scheme is used to calculate travel times, and the Crank-Nicolson scheme is used to calculate amplitudes. Moreover, interpolation is applied to save computation cost. The modeling and migration algorithms require a smooth velocity function. I develop a velocity-smoothing technique based on damped least-squares to aid in obtaining a successful migration.

  3. Impact experiments into multiple-mesh targets: Concept development of a lightweight collisional bumper

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William; Haynes, Gerald; See, Thomas H.; Winkler, Jerry; Gray, Barry

    1993-01-01

    The utility of multiple-mesh targets as potential lightweight shields to protect spacecraft in low-Earth orbit against collisional damage is explored. Earlier studies revealed that single meshes comminute hypervelocity impactors with efficiencies comparable to contiguous targets. Multiple interaction of projectile fragments with any number of meshes should lead to increased comminution, deceleration, and dispersion of the projectile, such that all debris exiting the mesh stack possesses low specific energies (ergs/sq cm) that would readily be tolerated by many flight systems. The study is conceptually exploring the sensitivity of major variables such as impact velocity, the specific areal mass (g/sq cm) of the total mesh stack (SM), and the separation distance (S) between individual meshes. Most experiments employed five or ten meshes with total SM typically less than 0.5 the specific mass of the impactor, and silicate glass impactors rather than metal projectiles. While projectile comminution increases with increasing impact velocity due to progressively higher shock stresses, encounters with multiple-meshes at low velocity (1-2 km/s) already lead to significant disruption of the glass impactors, with the resulting fragments being additionally decelerated and dispersed by subsequent meshes, and, unlike most contiguous single-plate bumpers, leading to respectable performance at low velocity. Total specific bumper mass must be the subject of careful trade-off studies; relatively massive bumpers will generate too much debris being dislodged from the bumper itself, while exceptionally lightweight designs will not cause sufficient comminution, deceleration, or dispersion of the impactor. Separation distance was found to be a crucial design parameter, as it controls the dispersion of the fragment cloud. Substantial mass savings could result if maximum separation distances were employed. The total mass of debris dislodged by multiple-mesh stacks is modestly smaller than that of single, contiguous-membrane shields. The cumulative surface area of all penetration holes in multiple mesh stacks is an order of magnitude smaller than that in analog multiple-foil shields, suggesting good long-term performance of the mesh designs. Due to different experimental conditions, direct and quantitative comparison with other lightweight shields is not possible at present.

  4. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, Glyn; Horton, Keith A.; Elias, Tamar; Garbeil, Harold; Mouginis-Mark, Peter J; Sutton, A. Jeff; Harris, Andrew J. L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Kīlauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s−1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements.

  5. Multiple-modality exercise and mind-motor training to improve mobility in older adults: A randomized controlled trial.

    PubMed

    Boa Sorte Silva, Narlon C; Gill, Dawn P; Gregory, Michael A; Bocti, John; Petrella, Robert J

    2018-03-01

    To investigate the effects of multiple-modality exercise with or without additional mind-motor training on mobility outcomes in older adults with subjective cognitive complaints. This was a 24-week randomized controlled trial with a 28-week no-contact follow-up. Community-dwelling older adults underwent a thrice -weekly, Multiple-Modality exercise and Mind-Motor (M4) training or Multiple-Modality (M2) exercise with an active control intervention (balance, range of motion and breathing exercises). Study outcomes included differences between groups at 24weeks and after the no-contact follow-up (i.e., 52weeks) in usual and dual-task (DT, i.e., serial sevens [S7] and phonemic verbal fluency [VF] tasks) gait velocity, step length and cycle time variability, as well as DT cognitive accuracy. 127 participants (mean age 67.5 [7.3] years, 71% women) were randomized to either M2 (n=64) or M4 (n=63) groups. Participants were assessed at baseline, intervention endpoint (24weeks), and study endpoint (52weeks). At 24weeks, the M2 group demonstrated greater improvements in usual gait velocity, usual step length, and DT gait velocity (VF) compared to the M4 group, and no between- or within-group changes in DT accuracy were observed. At 52weeks, the M2 group retained the gains in gait velocity and step length, whereas the M4 group demonstrated trends for improvement (p=0.052) in DT cognitive accuracy (VF). Our results suggest that additional mind-motor training was not effective to improve mobility outcomes. In fact, participants in the active control group experienced greater benefits as a result of the intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Gender Differences and Biomechanics in the 3000M Steeplechase Water Jump.

    PubMed

    Hunter, Ian; Lindsay, Bryan K; Andersen, Kassi R

    2008-01-01

    Since 1996, women have been competing in the 3000m steeplechase race internationally. Whenever women and men both compete in similar events with different equipment (the barriers are lower for women) consideration should be given as to how techniques should be coached differently. This study investigated the differences in water-jump technique between men and women after accounting for differences in running speed and which techniques led to maintenance of race pace through the water-jump. Eighteen men and 18 women were filmed at two major track and field meets during the 2004 season. Peak Motus 8.2 was used to digitize all seven jumps from each athlete. Various characteristics of water-jump technique were measured or calculated and compared using two multiple linear regressions (one for men and one for women) to determine which characteristics led to maintaining race pace speeds through the water jump obstacle. Repeated measures ANOVA was used to determine any differences between men and women in the measured characteristics of technique.Velocity through the jump divided by race pace was predicted very well by approach velocity and landing distance for men and women. Other characteristics of the movement were non-significant. Differences between genders were found in: approach velocity, take-off distance, landing distance, push-off angle, velocity through jump, and exit velocity. Men and women steeplechasers must focus on approach velocity and landing distance to complete the water-jump close to their race pace. Coaches need to consider many characteristics of technique that differ between men and women. Key pointsWomen may need to be coached differently than men in the steeplechase water jump due to different techniques required.Men and women must focus on a high approach velocity to complete the steeplechase water jump successfully.Men and women must generate a relatively long landing distance to maintain velocity and keep from having to use extra energy exiting the water pit.Women's race paces were affected more than men's by the water jump in a negative way.

  7. On the multiple depots vehicle routing problem with heterogeneous fleet capacity and velocity

    NASA Astrophysics Data System (ADS)

    Hanum, F.; Hartono, A. P.; Bakhtiar, T.

    2018-03-01

    This current manuscript concerns with the optimization problem arising in a route determination of products distribution. The problem is formulated in the form of multiple depots and time windowed vehicle routing problem with heterogeneous capacity and velocity of fleet. Model includes a number of constraints such as route continuity, multiple depots availability and serving time in addition to generic constraints. In dealing with the unique feature of heterogeneous velocity, we generate a number of velocity profiles along the road segments, which then converted into traveling-time tables. An illustrative example of rice distribution among villages by bureau of logistics is provided. Exact approach is utilized to determine the optimal solution in term of vehicle routes and starting time of service.

  8. Temporal evolution of ice velocities of Storstrømmen between 1975 and 2016 shows clear signs of a surge event.

    NASA Astrophysics Data System (ADS)

    Havelund, Natalia; Karlsson, Nanna; Sørensen, Louise; Simonsen, Sebastian; Grinsted, Aslak

    2017-04-01

    For at least the last two decades the Greenland ice sheet has experienced an increased mass loss due to a warming climate. Many of the outlet glaciers in Greenland have been associated with speed-up in surface velocities in recent years. However, Storstrømmen in North-eastern Greenland displays a different behaviour, with decreasing velocities near the terminus. Here, we present surface velocities of Storstrømmen from the 40-year period 1975-2016 in order to investigate the temporal evolution of this major outlet glacier from the Greenland ice sheet. Surface velocities are derived from optical Landsat images (Landsat 2, 5, 7, and 8) and using the method of feature tracking as implemented in the ImGRAFT toolbox. The successes of the method are highly susceptible to cloud coverage or extended snow coverage. During periods where no optical Landsat images were available, data from MEaSURES (Making Earth System Data Records for Use in Research Environments) have been used to fill-in. The two different dataset are seasonally biased, and to bring insights in to the differences between the optical and radar derived velocities, we also investigate the seasonal variability of the velocity using data from Sentinel-1 SAR obtained multiple times during 2015 to 2016. We find that the surface velocities of Storstrømmen peaked in 1985, and have subsequently decreased. Hence, in contrast to the neighbouring Nioghalvfjerdsfjorden glacier, Storstrømmen is not experiencing increasing ice velocities. Our findings supports previous studies that found that Storstrømmen glacier was surging between 1978 and 1984. However, in spite of the surge the upper region has remained nearly stagnant during and after the surge.

  9. Application of multiple signal classification algorithm to frequency estimation in coherent dual-frequency lidar

    NASA Astrophysics Data System (ADS)

    Li, Ruixiao; Li, Kun; Zhao, Changming

    2018-01-01

    Coherent dual-frequency Lidar (CDFL) is a new development of Lidar which dramatically enhances the ability to decrease the influence of atmospheric interference by using dual-frequency laser to measure the range and velocity with high precision. Based on the nature of CDFL signals, we propose to apply the multiple signal classification (MUSIC) algorithm in place of the fast Fourier transform (FFT) to estimate the phase differences in dual-frequency Lidar. In the presence of Gaussian white noise, the simulation results show that the signal peaks are more evident when using MUSIC algorithm instead of FFT in condition of low signal-noise-ratio (SNR), which helps to improve the precision of detection on range and velocity, especially for the long distance measurement systems.

  10. Dependence of the clustering properties of galaxies on stellar velocity dispersion in the Main galaxy sample of SDSS DR10

    NASA Astrophysics Data System (ADS)

    Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping

    2014-08-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.

  11. A novel instrument for studying the flow behaviour of erythrocytes through microchannels simulating human blood capillaries.

    PubMed

    Sutton, N; Tracey, M C; Johnston, I D; Greenaway, R S; Rampling, M W

    1997-05-01

    A novel instrument has been developed to study the microrheology of erythrocytes as they flow through channels of dimensions similar to human blood capillaries. The channels are produced in silicon substrates using microengineering technology. Accurately defined, physiological driving pressures and temperatures are employed whilst precise, real-time image processing allows individual cells to be monitored continuously during their transit. The instrument characterises each cell in a sample of ca. 1000 in terms of its volume and flow velocity profile during its transit through a channel. The unique representation of the data in volume/velocity space provides new insight into the microrheological behaviour of blood. The image processing and subsequent data analysis enable the system to reject anomalous events such as multiple cell transits, thereby ensuring integrity of the resulting data. By employing an array of microfluidic flow channels we can integrate a number of different but precise and highly reproducible channel sizes and geometries within one array, thereby allowing multiple, concurrent isobaric measurements on one sample. As an illustration of the performance of the system, volume/velocity data sets recorded in a microfluidic device incorporating multiple channels of 100 microns length and individual widths ranging between 3.0 and 4.0 microns are presented.

  12. New Synthesis of Ocean Crust Velocity Structure From Two-Dimensional Profiles

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Goff, J.; Carlson, R. L.; Reece, R.

    2017-12-01

    The velocity structure of typical oceanic crust consists of Layer 2, where velocities increase rapidly with depth from seafloor, and Layer 3, which is thicker and has a lower velocity gradient. Previous syntheses have found no correlation of velocity structure with spreading rate, even though we know that magmatic processes differ between slow-spreading and fast-spreading crust. We present a new synthesis of ocean crust velocity structure, compiling observations from two-dimensional studies in the Atlantic, Pacific, and Indian ocean basins. The Layer 2/3 boundary was picked from each publication at a change in gradient either on velocity-depth functions or contour plots (with at least 0.5 km/s contour interval), or from the appropriate layer boundary for layered models. We picked multiple locations at each seismic refraction profile if warranted by model variability. Preliminary results show statistically significant differences in average Layer 2 and Layer 3 thicknesses between slow-spreading and superfast-spreading crust, with Layer 2 thinner and Layer 3 thicker for the higher spreading rate crust. The thickness changes are about equivalent, resulting in no change in mean crustal thickness. The Layer 2/3 boundary is often interpreted as the top of the gabbros; however, a comparison with mapped magma lens depths at the ridge axis shows that the boundary is typically deeper than average axial melt lens depth at superfast-spreading crust, and shallower at intermediate-spreading crust.

  13. Velocity control in Parkinson's disease: a quantitative analysis of isochrony in scribbling movements.

    PubMed

    Viviani, Paolo; Burkhard, Pierre R; Chiuvé, Sabina Catalano; Corradi-Dell'Acqua, Corrado; Vindras, Philippe

    2009-04-01

    An experiment was conducted to contrast the motor performance of three groups (N = 20) of participants: (1) patients with confirmed Parkinson Disease (PD) diagnose; (2) age-matched controls; (3) young adults. The task consisted of scribbling freely for 10 s within circular frames of different sizes. Comparison among groups focused on the relation between the figural elements of the trace (overall size and trace length) and the velocity of the drawing movements. Results were analysed within the framework of previous work on normal individuals showing that instantaneous velocity of drawing movements depends jointly on trace curvature (Two-thirds Power Law) and trace extent (Isochrony principle). The motor behaviour of PD patients exhibited all classical symptoms of the disease (reduced average velocity, reduced fluency, micrographia). At a coarse level of analysis both isochrony and the dependence of velocity on curvature, which are supposed to reflect cortical mechanisms, were spared in PD patients. Instead, significant differences with respects to the control groups emerged from an in-depth analysis of the velocity control suggesting that patients did not scale average velocity as effectively as controls. We factored out velocity control by distinguishing the influence of the broad context in which movement is planned--i.e. the size of the limiting frames--from the influence of the local context--i.e. the linear extent of the unit of motor action being executed. The balance between the two factors was found to be distinctively different in PD patients and controls. This difference is discussed in the light of current theorizing on the role of cortical and sub-cortical mechanisms in the aetiology of PD. We argue that the results are congruent with the notion that cortical mechanisms are responsible for generating a parametric template of the desired movement and the BG specify the actual spatio-temporal parameters through a multiplicative gain factor acting on both size and velocity.

  14. Binaries at Birth: Stellar multiplicity in embedded clusters from radial velocity variations in the IN-SYNC survey

    NASA Astrophysics Data System (ADS)

    Oskar Jaehnig, Karl; Stassun, Keivan; Tan, Jonathan C.; Covey, Kevin R.; Da Rio, Nicola

    2016-01-01

    We study the nature of stellar multiplicity in young stellar systems using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC2264, NGC1333 and IC348 have been carried out, yielding H-band spectra with R=22,500 for sources with H<12 mag. Radial velocity sensitivities ~0.3 km/s can be achieved, depending on the spectral type of the star. We search the IN-SYNC radial velocity catalog to identify sources with radial velocity variations indicative of spectroscopically undetected companions, analyze their spectral properties and discuss the implications for the overall multiplicity of stellar populations in young, embedded star clusters.

  15. When Moons Collide

    NASA Astrophysics Data System (ADS)

    Rufu, Raluca; Aharonson, Oded

    2017-10-01

    Impacts between two orbiting satellites is a natural consequence of Moon formation. Mergers between moonlets are especially important for the newly proposed multiple-impact hypothesis as these moonlets formed from different debris disks merge together to form the final Moon. However, this process is relevant also for the canonical giant impact, as previous work shows that multiple moonlets are formed from the same debris disk.The dynamics of impacts between two orbiting bodies is substantially different from previously heavily studied planetary-sized impacts. Firstly, the impact velocities are smaller and limited to, thus heating is limited. Secondly, both fragments have similar mass therefore, they would contribute similarly and substantially to the final satellite. Thirdly, this process can be more erosive than planetary impacts as the velocity of ejected material required to reach the mutual Hill sphere is smaller than the escape velocity, altering the merger efficiency. Previous simulations show that moonlets inherit different isotopic signatures from their primordial debris disk, depending on the parameters of the collision with the planet. We therefore, evaluate the degree of mixing in moonlet-moonlet collisions in the presence of a planetary gravitational field, using Smooth Particle Hydrodynamics (SPH). Preliminary results show that the initial thermal state of the colliding moonlets has only a minor influence on the amount of mixing, compared to the effects of velocity and impact angle over their likely ranges. For equal mass bodies in accretionary collisions, impact angular momentum enhances mixing. In the hit-and-run regime, only small amounts of material are transferred between the bodies therefore mixing is limited. Overall, these impacts can impart enough energy to melt ~15-30% of the mantle extending the magma ocean phase of the final Moon.

  16. Reliability and Concurrent Validity of the Narrow Path Walking Test in Persons With Multiple Sclerosis.

    PubMed

    Rosenblum, Uri; Melzer, Itshak

    2017-01-01

    About 90% of people with multiple sclerosis (PwMS) have gait instability and 50% fall. Reliable and clinically feasible methods of gait instability assessment are needed. The study investigated the reliability and validity of the Narrow Path Walking Test (NPWT) under single-task (ST) and dual-task (DT) conditions for PwMS. Thirty PwMS performed the NPWT on 2 different occasions, a week apart. Number of Steps, Trial Time, Trial Velocity, Step Length, Number of Step Errors, Number of Cognitive Task Errors, and Number of Balance Losses were measured. Intraclass correlation coefficients (ICC2,1) were calculated from the average values of NPWT parameters. Absolute reliability was quantified from standard error of measurement (SEM) and smallest real difference (SRD). Concurrent validity of NPWT with Functional Reach Test, Four Square Step Test (FSST), 12-item Multiple Sclerosis Walking Scale (MSWS-12), and 2 Minute Walking Test (2MWT) was determined using partial correlations. Intraclass correlation coefficients (ICCs) for most NPWT parameters during ST and DT ranged from 0.46-0.94 and 0.55-0.95, respectively. The highest relative reliability was found for Number of Step Errors (ICC = 0.94 and 0.93, for ST and DT, respectively) and Trial Velocity (ICC = 0.83 and 0.86, for ST and DT, respectively). Absolute reliability was high for Number of Step Errors in ST (SEM % = 19.53%) and DT (SEM % = 18.14%) and low for Trial Velocity in ST (SEM % = 6.88%) and DT (SEM % = 7.29%). Significant correlations for Number of Step Errors and Trial Velocity were found with FSST, MSWS-12, and 2MWT. In persons with PwMS performing the NPWT, Number of Step Errors and Trial Velocity were highly reliable parameters. Based on correlations with other measures of gait instability, Number of Step Errors was the most valid parameter of dynamic balance under the conditions of our test.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A159).

  17. Reaction Buildup of PBX Explosives JOB-9003 under Different Initiation Pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Yan-fei; Hung, Wen-bin; Gu, Yan; Zhao, Feng; Wu, Qiang; Yu, Xin; Yu, Heng

    2017-04-01

    Aluminum-based embedded multiple electromagnetic particle velocity gauge technique has been developed in order to measure the shock initiation behavior of JOB-9003 explosives. In addition, another gauge element called a shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position-time trajectory of the wave front as it moves through the explosive sample. The data are used to determine the position and time for shock to detonation transition. All the experimental results show that: the rising-up time of Al-based electromagnetic particle velocity gauge was very fast and less than 20 ns; the reaction buildup velocity profiles and the position-time for shock to detonation transition of HMX-based PBX explosive JOB-9003 with 1-8 mm depth from the origin of impact plane under different initiation pressures are obtained with high accuracy.

  18. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Zhang, H.; Maceira, M.

    2017-10-01

    We present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body wave first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region. Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. Without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.

  19. Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

    NASA Astrophysics Data System (ADS)

    Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da

    2018-03-01

    The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.

  20. Kinesin-microtubule interactions during gliding assays under magnetic force

    NASA Astrophysics Data System (ADS)

    Fallesen, Todd L.

    Conventional kinesin is a motor protein capable of converting the chemical energy of ATP into mechanical work. In the cell, this is used to actively transport vesicles through the intracellular matrix. The relationship between the velocity of a single kinesin, as it works against an increasing opposing load, has been well studied. The relationship between the velocity of a cargo being moved by multiple kinesin motors against an opposing load has not been established. A major difficulty in determining the force-velocity relationship for multiple motors is determining the number of motors that are moving a cargo against an opposing load. Here I report on a novel method for detaching microtubules bound to a superparamagnetic bead from kinesin anchor points in an upside down gliding assay using a uniform magnetic field perpendicular to the direction of microtubule travel. The anchor points are presumably kinesin motors bound to the surface which microtubules are gliding over. Determining the distance between anchor points, d, allows the calculation of the average number of kinesins, n, that are moving a microtubule. It is possible to calculate the fraction of motors able to move microtubules as well, which is determined to be ˜ 5%. Using a uniform magnetic field parallel to the direction of microtubule travel, it is possible to impart a uniform magnetic field on a microtubule bound to a superparamagnetic bead. We are able to decrease the average velocity of microtubules driven by multiple kinesin motors moving against an opposing force. Using the average number of kinesins on a microtubule, we estimate that there are an average 2-7 kinesins acting against the opposing force. By fitting Gaussians to the smoothed distributions of microtubule velocities acting against an opposing force, multiple velocities are seen, presumably for n, n-1, n-2, etc motors acting together. When these velocities are scaled for the average number of motors on a microtubule, the force-velocity relationship for multiple motors follows the same trend as for one motor, supporting the hypothesis that multiple motors share the load.

  1. Radial velocities of southern visual multiple stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei; Pribulla, Theodor; Fischer, Debra, E-mail: atokovinin@ctio.noao.edu, E-mail: pribulla@ta3.sk, E-mail: debra.fischer@gmail.com

    2015-01-01

    High-resolution spectra of visual multiple stars were taken in 2008–2009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out tomore » have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.« less

  2. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS: THE INTERNAL KINEMATICS OF THE MULTIPLE STELLAR POPULATIONS IN NGC 2808

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellini, A.; Anderson, J.; Marel, R. P. van der

    2015-09-01

    Numerous observational studies have revealed the ubiquitous presence of multiple stellar populations in globular clusters and cast many difficult challenges for the study of the formation and dynamical history of these stellar systems. In this Letter we present the results of a study of the kinematic properties of multiple populations in NGC 2808 based on high-precision Hubble Space Telescope proper-motion measurements. In a recent study, Milone et al. identified five distinct populations (A–E) in NGC 2808. Populations D and E coincide with the helium-enhanced populations in the middle and the blue main sequences (mMS and bMS) previously discovered by Piottomore » et al.; populations A–C correspond to the redder main sequence that, in Piotto et al., was associated with the primordial stellar population. Our analysis shows that, in the outermost regions probed (between about 1.5 and 2 times the cluster half-light radius), the velocity distribution of populations D and E is radially anisotropic (the deviation from an isotropic distribution is significant at the ∼3.5σ level). Stars of populations D and E have a smaller tangential velocity dispersion than those of populations A–C, while no significant differences are found in the radial velocity dispersion. We present the results of a numerical simulation showing that the observed differences between the kinematics of these stellar populations are consistent with the expected kinematic fingerprint of the diffusion toward the cluster outer regions of stellar populations initially more centrally concentrated.« less

  3. A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kregel, Steven J.; Thurston, Glen K.; Zhou, Jia

    A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicalitymore » and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS 2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.« less

  4. A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy

    DOE PAGES

    Kregel, Steven J.; Thurston, Glen K.; Zhou, Jia; ...

    2017-09-01

    A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicalitymore » and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS 2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.« less

  5. Dynamic characteristics of pulsed supersonic fuel sprays

    NASA Astrophysics Data System (ADS)

    Pianthong, K.; Matthujak, A.; Takayama, K.; Milton, B. E.; Behnia, M.

    2008-06-01

    This paper describes the dynamic characteristics of pulsed, supersonic liquid fuel sprays or jets injected into ambient air. Simple, single hole nozzles were employed with the nozzle sac geometries being varied. Different fuel types, diesel fuel, bio-diesel, kerosene, and gasoline were used to determine the effects of fuel properties on the spray characteristics. A vertical two-stage light gas gun was employed as a projectile launcher to provide a high velocity impact to produce the liquid jet. The injection pressure was around 0.88-1.24 GPa in all cases. The pulsed, supersonic fuel sprays were visualized by using a high-speed video camera and shadowgraph method. The spray tip penetration and velocity attenuation and other characteristics were examined and are described here. An instantaneous spray tip velocity of 1,542 m/s (Mach number 4.52) was obtained. However, this spray tip velocity can be sustained for only a very short period (a few microseconds). It then attenuates very quickly. The phenomenon of multiple high frequency spray pulses generated by a single shot impact and the changed in the angle of the shock structure during the spray flight, which had already been observed in previous studies, is again noted. Multiple shock waves from the conical nozzle spray were also clearly captured.

  6. LDEF's map experiment foil perforations yield hypervelocity impact penetration parameters

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1992-01-01

    The space exposure of LDEF for 5.75 years, forming a host target in low earth orbit (LEO) orbit to a wide distribution of hypervelocity particulates of varying dimensions and different impact velocities, has yielded a multiplicity of impact features. Although the projectile parameters are generally unknown and, in fact not identical for any two impacts on a target, the great number of impacts provides statistically meaningful basis for the valid comparison of the response of different targets. Given sufficient impacts for example, a comparison of impact features (even without knowledge of the project parameters) is possible between: (1) differing material types (for the same incident projectile distribution); (2) differing target configurations (e.g., thick and thin targets for the same material projectiles; and (3) different velocities (using LDEF's different faces). A comparison between different materials is presented for infinite targets of aluminum, Teflon, and brass in the same pointing direction; the maximum finite-target penetration (ballistic limit) is also compared to that of the penetration of similar materials comprising of a semi-infinite target. For comparison of impacts on similar materials at different velocities, use is made of the pointing direction relative to LDEF's orbital motion. First, however, care must be exercised to separate the effect of spatial flux anisotropies from those resulting from the spacecraft velocity through a geocentrically referenced dust distribution. Data comprising thick and thin target impacts, impacts on different materials, and in different pointing directions is presented; hypervelocity impact parameters are derived. Results are also shown for flux modeling codes developed to decode the relative fluxes of Earth orbital and unbound interplanetary components intercepting LDEF. Modeling shows the west and space pointing faces are dominated by interplanetary particles and yields a mean velocity of 23.5 km/s at LDEF, corresponding to a V(infinity) Earth approach velocity = 20.9 km/s. Normally resolved average impact velocities on LDEF's cardinal point faces are shown. As 'excess' flux on the east, north, and south faces is observed, compatible with an Earth orbital component below some 5 microns in particle diameter.

  7. Prediction of S-wave velocity using complete ensemble empirical mode decomposition and neural networks

    NASA Astrophysics Data System (ADS)

    Gaci, Said; Hachay, Olga; Zaourar, Naima

    2017-04-01

    One of the key elements in hydrocarbon reservoirs characterization is the S-wave velocity (Vs). Since the traditional estimating methods often fail to accurately predict this physical parameter, a new approach that takes into account its non-stationary and non-linear properties is needed. In this view, a prediction model based on complete ensemble empirical mode decomposition (CEEMD) and a multiple layer perceptron artificial neural network (MLP ANN) is suggested to compute Vs from P-wave velocity (Vp). Using a fine-to-coarse reconstruction algorithm based on CEEMD, the Vp log data is decomposed into a high frequency (HF) component, a low frequency (LF) component and a trend component. Then, different combinations of these components are used as inputs of the MLP ANN algorithm for estimating Vs log. Applications on well logs taken from different geological settings illustrate that the predicted Vs values using MLP ANN with the combinations of HF, LF and trend in inputs are more accurate than those obtained with the traditional estimating methods. Keywords: S-wave velocity, CEEMD, multilayer perceptron neural networks.

  8. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity.

    PubMed

    Salvi, Paolo; Palombo, Carlo; Salvi, Giovanni Matteo; Labat, Carlos; Parati, Gianfranco; Benetos, Athanase

    2013-12-01

    Several studies showed a positive association between heart rate and pulse wave velocity, a sensitive marker of arterial stiffness. However, no study involving a large population has specifically addressed the dependence of pulse wave velocity on different components of the cardiac cycle. The aim of this study was to explore in subjects of different age the link between pulse wave velocity with heart period (the reciprocal of heart rate) and the temporal components of the cardiac cycle such as left ventricular ejection time and diastolic time. Carotid-femoral pulse wave velocity was assessed in 3,020 untreated subjects (1,107 men). Heart period, left ventricular ejection time, diastolic time, and early-systolic dP/dt were determined by carotid pulse wave analysis with high-fidelity applanation tonometry. An inverse association was found between pulse wave velocity and left ventricular ejection time at all ages (<25 years, r(2) = 0.043; 25-44 years, r(2) = 0.103; 45-64 years, r(2) = 0.079; 65-84 years, r(2) = 0.044; ≥ 85 years, r(2) = 0.022; P < 0.0001 for all). A significant (P < 0.0001) negative but always weaker correlation between pulse wave velocity and heart period was also found, with the exception of the youngest subjects (P = 0.20). A significant positive correlation was also found between pulse wave velocity and dP/dt (P < 0.0001). With multiple stepwise regression analysis, left ventricular ejection time and dP/dt remained the only determinant of pulse wave velocity at all ages, whereas the contribution of heart period no longer became significant. Our data demonstrate that pulse wave velocity is more closely related to left ventricular systolic function than to heart period. This may have methodological and pathophysiological implications.

  9. Multiple-Relaxation-Time Lattice Boltzmann Models in 3D

    NASA Technical Reports Server (NTRS)

    dHumieres, Dominique; Ginzburg, Irina; Krafczyk, Manfred; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann equation, with examples of fifteen-velocity and nineteen-velocity models in three dimensions. Simulation of a diagonally lid-driven cavity flow in three dimensions at Re=500 and 2000 is performed. The results clearly demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over the popular lattice Bhatnagar-Gross-Krook equation.

  10. Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.

    2011-01-01

    The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.

  11. Assessing waveform predictions of recent three-dimensional velocity models of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Shen, Yang

    2016-04-01

    Accurate velocity models are essential for both the determination of earthquake locations and source moments and the interpretation of Earth structures. With the increasing number of three-dimensional velocity models, it has become necessary to assess the models for accuracy in predicting seismic observations. Six models of the crustal and uppermost mantle structures in Tibet and surrounding regions are investigated in this study. Regional Rayleigh and Pn (or Pnl) waveforms from two ground truth events, including one nuclear explosion and one natural earthquake located in the study area, are simulated by using a three-dimensional finite-difference method. Synthetics are compared to observed waveforms in multiple period bands of 20-75 s for Rayleigh waves and 1-20 s for Pn/Pnl waves. The models are evaluated based on the phase delays and cross-correlation coefficients between synthetic and observed waveforms. A model generated from full-wave ambient noise tomography best predicts Rayleigh waves throughout the data set, as well as Pn/Pnl waves traveling from the Tarim Basin to the stations located in central Tibet. In general, the models constructed from P wave tomography are not well suited to predict Rayleigh waves, and vice versa. Possible causes of the differences between observed and synthetic waveforms, and frequency-dependent variations of the "best matching" models with the smallest prediction errors are discussed. This study suggests that simultaneous prediction for body and surface waves requires an integrated velocity model constructed with multiple seismic waveforms and consideration of other important properties, such as anisotropy.

  12. Imaging the Moho beneath Sedimentary Basins: A Comparative Study of Virtual Deep Seismic Sounding (VDSS) and P Wave Receiver Functions (PRF)

    NASA Astrophysics Data System (ADS)

    Liu, T.; Klemperer, S. L.; Yu, C.; Ning, J.

    2017-12-01

    In the past decades, P wave receiver functions (PRF) have been routinely used to image the Moho, although it is well known that PRFs are susceptible to contamination from sedimentary multiples. Recently, Virtual Deep Seismic Sounding (VDSS) emerged as a novel method to image the Moho. However, despite successful applications of VDSS on multiple datasets from different areas, how sedimentary basins affect the waveforms of post-critical SsPmp, the Moho reflection phase used in VDSS, is not widely understood. Here, motivated by a dataset collected in the Ordos plateau, which shows distinct effects of sedimentary basins on SsPmp and Pms waveforms, we use synthetic seismograms to study the effects of sedimentary basins on SsPmp and Pms, the phases used in VDSS and PRF respectively. The results show that when the sedimentary thickness is on the same order of magnitude as the dominant wavelength of the incident S wave, SsPmp amplitude decreases significantly with S velocity of the sedimentary layer, whereas increasing sedimentary thickness has little effect in SsPmp amplitude. Our explanation is that the low S velocity layer at the virtual source reduces the incident angle of S wave at the free surface, thus decreases the S-to-P reflection coefficient at the virtual source. In addition, transmission loss associated with the bottom of sedimentary basins also contributes to reducing SsPmp amplitude. This explains not only our observations from the Ordos plateau, but also observations from other areas where post-critical SsPmp is expected to be observable, but instead is too weak to be identified. As for Pms, we observe that increasing sedimentary thickness and decreasing sedimentary velocities both can cause interference between sedimentary multiples and Pms, rendering the Moho depths inferred from Pms arrival times unreliable. The reason is that although Pms amplitude does not vary with sedimentary thickness or velocities, as sedimentary velocities decrease and thickness grows, the sedimentary multiples will become stronger and arrive later, and will eventually interfere with Pms. In summary, although both VDSS and PRF are subject to sedimentary effects, when the sedimentary velocity is relatively high, we can still expect VDSS to give reasonable estimations of Moho depths, whereas PRF in such cases might be too noisy to use.

  13. Staggered Multiple-PRF Ultrafast Color Doppler.

    PubMed

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  14. Acoustic field in unsteady moving media

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Maestrello, L.; Ting, L.

    1995-01-01

    In the interaction of an acoustic field with a moving airframe the authors encounter a canonical initial value problem for an acoustic field induced by an unsteady source distribution, q(t,x) with q equivalent to 0 for t less than or equal to 0, in a medium moving with a uniform unsteady velocity U(t)i in the coordinate system x fixed on the airframe. Signals issued from a source point S in the domain of dependence D of an observation point P at time t will arrive at point P more than once corresponding to different retarded times, Tau in the interval (0, t). The number of arrivals is called the multiplicity of the point S. The multiplicity equals 1 if the velocity U remains subsonic and can be greater when U becomes supersonic. For an unsteady uniform flow U(t)i, rules are formulated for defining the smallest number of I subdomains V(sub i) of D with the union of V(sub i) equal to D. Each subdomain has multiplicity 1 and a formula for the corresponding retarded time. The number of subdomains V(sub i) with nonempty intersection is the multiplicity m of the intersection. The multiplicity is at most I. Examples demonstrating these rules are presented for media at accelerating and/or decelerating supersonic speed.

  15. Metabolic predictors of middle-distance swimming performance.

    PubMed

    Ribeiro, J P; Cadavid, E; Baena, J; Monsalvete, E; Barna, A; De Rose, E H

    1990-09-01

    To evaluate the capacity of different metabolic indices to predict performance in middle distance swimming, 15 competitive swimmers performed a submaximal and a maximal 400 metres freestyle swimming event. Expired gases were collected in Douglas bags immediately after the events for the determination of VO2 max. Arterialized blood samples were collected for the determination of maximal blood lactate concentration and the velocity corresponding to blood lactate concentration of 4 mM. The results demonstrated (means +/- SD): maximal velocity of 1.44 +/- 0.05 m.s-1; velocity at 85 percent of VO2 max of 1.36 +/- 0.04 m.s-1; velocity at 4 mM of 1.32 +/- 0.04 m.s-1; VO2 max of 3.47 +/- 0.5 l.min-1; maximal blood lactate concentration of 11.8 +/- 2.5 mM. Multiple regression analysis relating metabolic indices and maximal velocity demonstrated that only velocity at 85 percent of VO2 max (r2 = 0.81) and velocity at 4 mM (r2 = 0.79) were significant predictors. Thus, 79 percent of the variance in the performance of 400 m freestyle can be accounted for the velocity at 85 percent of VO2 max or the velocity at 4 mM. The success in this event seems to depend on the swimmer's capacity to achieve higher velocities with lower blood lactate levels and/or utilizing a lower percentage of their VO2 max.

  16. Angular width of the Cherenkov radiation with inclusion of multiple scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian, E-mail: jzheng@ustc.edu.cn

    2016-06-15

    Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.

  17. Velocity-specific strength recovery after a second bout of eccentric exercise.

    PubMed

    Barss, Trevor S; Magnus, Charlene R A; Clarke, Nick; Lanovaz, Joel L; Chilibeck, Philip D; Kontulainen, Saija A; Arnold, Bart E; Farthing, Jonathan P

    2014-02-01

    A bout of eccentric exercise (ECC) has the protective effect of reducing muscle damage during a subsequent bout of ECC known as the "repeated bout effect" (RBE). The purpose of this study was to determine if the RBE is greater when both bouts of ECC are performed using the same vs. different velocity of contraction. Thirty-one right-handed participants were randomly assigned to perform an initial bout of either fast (3.14 rad·s [180°·s]) or slow (0.52 rad·s [30°·s]) maximal isokinetic ECCs of the elbow flexors. Three weeks later, the participants completed another bout of ECC at the same velocity (n = 16), or at a different velocity (n = 15). Indirect muscle damage markers were measured before, immediately after, and at 24, 48, and 72 hours postexercise. Measures included maximal voluntary isometric contraction (MVC) strength (dynamometer), muscle thickness (MT; ultrasound), delayed onset muscle soreness (DOMS; visual analog scale), biceps and triceps muscle activation amplitude (electromyography), voluntary activation (interpolated twitch), and twitch torque. After the repeated bout, MVC strength recovered faster compared with the same time points after the initial bout for only the same velocity group (p = 0.017), with no differences for all the other variables. Irrespective of velocity, MT and DOMS were reduced after the repeated bout compared with that of the initial bout at 24, 48, and 72 hours with a corresponding increase in TT at 72 hours (p < 0.05). Faster recovery of isometric strength associated with a repeated bout of ECC was evident when the velocity was matched between bouts, suggesting that specificity effects contribute to the RBE. The current findings support the idea of multiple mechanisms contributing to the RBE.

  18. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    DOE PAGES

    Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica

    2017-07-11

    Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less

  19. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica

    Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less

  20. Multiple impacts of dusty projectiles

    NASA Astrophysics Data System (ADS)

    Kothe, Stefan; Güttler, Carsten; Blum, Jurgen

    In the context of early stages of planetesimal formation we performed laboratory and drop tower experiments to study multiple impacts of small dust-aggregate projectiles into solid sintered dust targets. Both collision partners consisted of 1.5 µm monodisperse spherical SiO2 monomers with volume filling factors of 0.15 (projectiles) and 0.35 (targets), respectively. The fragile projectiles were accelerated by a solenoid accelerator with a linear projectile magazine, which enabled us to perform 25 impacts within 4.5 s of microgravity time in the Bremen drop tower. We measured the mass-accretion efficiency for different impact velocities between 3 and 5 m s-1 , using an analytical balance and imaging methods. Furthermore, we observed random collisions among small dust aggregates with sizes around 1 mm and collision velocities of the order of 0.25 m s-1 and used them to improve the dust-aggregate collision model of Güttler et al. (2010). u

  1. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field)

    NASA Astrophysics Data System (ADS)

    Fujita, Shigetaka; Harima, Takashi

    2016-03-01

    The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  2. Modelling sound propagation in the Southern Ocean to estimate the acoustic impact of seismic research surveys on marine mammals

    NASA Astrophysics Data System (ADS)

    Breitzke, Monika; Bohlen, Thomas

    2010-05-01

    Modelling sound propagation in the ocean is an essential tool to assess the potential risk of air-gun shots on marine mammals. Based on a 2.5-D finite-difference code a full waveform modelling approach is presented, which determines both sound exposure levels of single shots and cumulative sound exposure levels of multiple shots fired along a seismic line. Band-limited point source approximations of compact air-gun clusters deployed by R/V Polarstern in polar regions are used as sound sources. Marine mammals are simulated as static receivers. Applications to deep and shallow water models including constant and depth-dependent sound velocity profiles of the Southern Ocean show dipole-like directivities in case of single shots and tubular cumulative sound exposure level fields beneath the seismic line in case of multiple shots. Compared to a semi-infinite model an incorporation of seafloor reflections enhances the seismically induced noise levels close to the sea surface. Refraction due to sound velocity gradients and sound channelling in near-surface ducts are evident, but affect only low to moderate levels. Hence, exposure zone radii derived for different hearing thresholds are almost independent of the sound velocity structure. With decreasing thresholds radii increase according to a spherical 20 log10 r law in case of single shots and according to a cylindrical 10 log10 r law in case of multiple shots. A doubling of the shot interval diminishes the cumulative sound exposure levels by -3 dB and halves the radii. The ocean bottom properties only slightly affect the radii in shallow waters, if the normal incidence reflection coefficient exceeds 0.2.

  3. A mass transfer model of ethanol emission from thin layers of corn silage

    USDA-ARS?s Scientific Manuscript database

    A mass transfer model of ethanol emission from thin layers of corn silage was developed and validated. The model was developed based on data from wind tunnel experiments conducted at different temperatures and air velocities. Multiple regression analysis was used to derive an equation that related t...

  4. Submovement control processes in discrete aiming as a function of space-time constraints.

    PubMed

    Hsieh, Tsung-Yu; Liu, Yeou-Teh; Newell, Karl M

    2017-01-01

    There is preliminary evidence that there are several types of submovements in movement aiming that reflect different processes of control and can result from particular task constraints. The purpose of the study was to investigate the effect of movement space and time task criteria on the prevalence of different submovement control characteristics in discrete aiming. Twelve participants completed 3 distance x 5 time conditions each with 100 trials in a target-aiming movement task. The kinematic structure of the trajectory determined the prevalence of 5 submovement types (none; pre-peak, post-peak movement velocity; undershoot, overshoot). The findings showed that the overall number of submovements increased in the slower space-time conditions and was predominantly characterized by post-peak trajectory submovements rather than discrete overshoot submovements. Overshoot submovements were more frequent in the high average movement velocity and short time duration conditions. We concluded that there are qualitatively different distributional patterns of submovement types in discrete aiming tasks that are organized by the quantitative scaling of the average movement velocity arising from multiple control processes to meet the specific space-time task constraints.

  5. A Dual-Plane PIV Study of Turbulent Heat Transfer Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.

    2016-01-01

    Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.

  6. The Effects of Multiple Sets of Squats and Jump Squats on Mechanical Variables.

    PubMed

    Rossetti, Michael L; Munford, Shawn N; Snyder, Brandon W; Davis, Shala E; Moir, Gavin L

    2017-07-28

    The mechanical responses to two non-ballistic squat and two ballistic jump squat protocols performed over multiple sets were investigated. One protocol from each of the two non-ballistic and ballistic conditions incorporated a pause between the eccentric and concentric phases of the movements in order to determine the influence of the coupling time on the mechanical variables and post-activation potentiation (PAP). Eleven men (age: 21.9 ± 1.8 years; height: 1.79 ± 0.05 m; mass: 87.0 ± 7.4 kg) attended four sessions where they performed multiple sets of squats and jump squats with a load equivalent to 30% 1-repeititon maximum under one of the following conditions: 1) 3 × 4 repetitions of non-ballistic squats (30N-B); 2) 3 × 4 repetitions of non-ballistic squats with a 3-second pause between the eccentric and concentric phases of each repetition (30PN-B); 3) 3 × 4 repetitions of ballistic jump squats (30B); 4) 3 × 4 repetitions of ballistic jump squats with a 3-second pause between the eccentric and concentric phases of each repetition (30PB). Force plates were used to calculate variables including average vertical velocity, average vertical force (GRF), and average power output (PO). Vertical velocities during the ballistic conditions were significantly greater than those attained during the non-ballistic conditions (mean differences: 0.21 - 0.25 m/s, p<0.001, effect sizes [ES]: 1.70 - 1.89) as were GRFs (mean differences: 478 - 526 N, p<0.001, ES: 1.61 - 1.63), and PO (mean differences: 711 - 869 W, p<0.001, ES: 1.66 - 1.73). Moreover, the increase in PO across the three sets in 30B was significantly greater than the changes observed during 30N-B, 30PN-B, and 30PB (p≤0.015). The pause reduced the mechanical variables during both the non-ballistic and ballistic conditions, although the differences were not statistically significant (p>0.05). Ballistic jump squats may be an effective exercise for developing PO given the high velocities and forces generated in these exercises. Furthermore, the completion of multiple sets of jump squats may induce PAP to enhance PO. The coupling times between the eccentric and concentric phases of the jump squats should be short in order to maximize the GRF and PO across the sets.

  7. Statistical spatio-temporal properties of the Laser MegaJoule speckle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Cain, A.; Sajer, J. M.; Riazuelo, G.

    2012-10-15

    This paper investigates a statistical model to describe the spatial and temporal properties of hot spots generated by the superimposition of multiple laser beams. In the context of the Laser MegaJoule design, we introduce the formula for contrasts, trajectories and velocities of the speckle pattern. Single bundle of four beams, two-cones and three-cones configurations are considered. Statistical properties of the speckle in the zone where all the beams overlap are studied with different configurations of polarizations. These properties are shown to be very different from the case of one single bundle of four beams. The configuration of polarization has onlymore » a slight effect in the two-cones or three cones configuration. Indeed, the impact of the double polarization smoothing is reduced in the area in which all the beams overlap, while it is much more significant when they split. Moreover, the size of the hot-spots decreases as the number of laser beams increases, but we show that their velocity decreases. As a matter of fact, the maximal velocity of hot spots is found to be only about 10{sup -5} of the velocity of light and the integrated contrast is about 15% when the beams overlap.« less

  8. Synthetic turbulence

    NASA Astrophysics Data System (ADS)

    Juneja, A.; Lathrop, D. P.; Sreenivasan, K. R.; Stolovitzky, G.

    1994-06-01

    A family of schemes is outlined for constructing stochastic fields that are close to turbulence. The fields generated from the more sophisticated versions of these schemes differ little in terms of one-point and two-point statistics from velocity fluctuations in high-Reynolds-number turbulence; we shall designate such fields as synthetic turbulence. All schemes, implemented here in one dimension, consist of the following three ingredients, but differ in various details. First, a simple multiplicative procedure is utilized for generating an intermittent signal which has the same properties as those of the turbulent energy dissipation rate ɛ. Second, the properties of the intermittent signal averaged over an interval of size r are related to those of longitudinal velocity increments Δu(r), evaluated over the same distance r, through a stochastic variable V introduced in the spirit of Kolmogorov's refined similarity hypothesis. The third and final step, which partially resembles a well-known procedure for constructing fractional Brownian motion, consists of suitably combining velocity increments to construct an artificial velocity signal. Various properties of the synthetic turbulence are obtained both analytically and numerically, and found to be in good agreement with measurements made in the atmospheric surface layer. A brief review of some previous models is provided.

  9. The role of settling velocity formulation in the determination of gully pot trapping efficiency: comparison between analytical and experimental data.

    PubMed

    Ciccarello, Annalisa; Bolognesi, Andrea; Maglionico, Marco; Artina, Sandro

    2012-01-01

    Roadside gully pots are the connecting points between surface runoff and the underground drainage network; therefore they can be considered as the most superficial component of urban drainage systems. Gully pots are supposed to trap particulate matter washed off the catchment surface, but also to collect and convey stormwater into the network. The continuous accumulation of particulate matter results in a progressive loss of the gully pot hydraulic conveyance, thereby increasing the probability of urban flooding during rainstorm events. This study has therefore the objective to determine which variables influence the gully pot capability of retaining solids (efficiency), both experimentally and analytically. Several laboratory tests have been performed on a simple plastic gully pot, with different inflow rates and using both mono and hetero-disperse particle samples. Particular attention has been given to the influence exerted by the way particle settling velocity is expressed: efficiency has been analytically determined by means of multiple settling velocity formulas proposed by various authors and eventually compared to experimental data. Results deriving from the adoption of each single settling velocity formula have been extensively analysed, showing fairly different outcomes.

  10. On the residual yield stress of shocked metals

    NASA Astrophysics Data System (ADS)

    Chapman, David; Eakins, Daniel; Savinykh, Andrey; Garkushin, Gennady; Kanel, Gennady; Razorenov, Sergey

    2013-06-01

    The measurement of the free-surface velocity is commonly employed in planar shock-compression experiments. It is known that the peak free-surface velocity of a shocked elastic-plastic material should be slightly less than twice the particle velocity behind shock front; this difference being proportional to the yield stress. Precise measurement of the free-surface velocity can be a rich source of information on the effects of time and strain on material hardening or softening. With this objective, we performed comparative measurements of the free-surface velocity of shock loaded aluminium AD1 and magnesium alloy Ma2 samples of various thicknesses in the range 0.2 mm to 5 mm. We observed the expected hysteresis in the elastic-plastic compression-unloading cycle for both AD1 and Ma2; where qualitatively the peak free-surface velocity increased with increasing specimen thickness. However, the relative change in magnitude of hysteresis as function of specimen thickness observed for the Ma2 alloy was smaller than expected given the large observed change in precursor magnitude. We propose that softening due to multiplication of dislocations is relatively large in Ma2 and results in a smaller hysteresis in the elastic-plastic cycle.

  11. Metabolic predictors of middle-distance swimming performance.

    PubMed Central

    Ribeiro, J P; Cadavid, E; Baena, J; Monsalvete, E; Barna, A; De Rose, E H

    1990-01-01

    To evaluate the capacity of different metabolic indices to predict performance in middle distance swimming, 15 competitive swimmers performed a submaximal and a maximal 400 metres freestyle swimming event. Expired gases were collected in Douglas bags immediately after the events for the determination of VO2 max. Arterialized blood samples were collected for the determination of maximal blood lactate concentration and the velocity corresponding to blood lactate concentration of 4 mM. The results demonstrated (means +/- SD): maximal velocity of 1.44 +/- 0.05 m.s-1; velocity at 85 percent of VO2 max of 1.36 +/- 0.04 m.s-1; velocity at 4 mM of 1.32 +/- 0.04 m.s-1; VO2 max of 3.47 +/- 0.5 l.min-1; maximal blood lactate concentration of 11.8 +/- 2.5 mM. Multiple regression analysis relating metabolic indices and maximal velocity demonstrated that only velocity at 85 percent of VO2 max (r2 = 0.81) and velocity at 4 mM (r2 = 0.79) were significant predictors. Thus, 79 percent of the variance in the performance of 400 m freestyle can be accounted for the velocity at 85 percent of VO2 max or the velocity at 4 mM. The success in this event seems to depend on the swimmer's capacity to achieve higher velocities with lower blood lactate levels and/or utilizing a lower percentage of their VO2 max. PMID:2078807

  12. General principles in motion vision: color blindness of object motion depends on pattern velocity in honeybee and goldfish.

    PubMed

    Stojcev, Maja; Radtke, Nils; D'Amaro, Daniele; Dyer, Adrian G; Neumeyer, Christa

    2011-07-01

    Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very "conservative." This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.

  13. Discovery of multiple, ionization-created CS{sub 2} anions and a new mode of operation for drift chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Ifft, Daniel P.

    2014-01-15

    This paper focuses on the surprising discovery of multiple species of ionization-created CS{sub 2} anions in gas mixtures containing electronegative CS{sub 2} and O{sub 2}, identified by their slightly different drift velocities. Data are presented to understand the formation mechanism and identity of these new anions. Regardless of the micro-physics, however, this discovery offers a new, trigger-less mode of operation for the drift chambers. A demonstration of trigger-less operation is presented.

  14. Transpiration and Multiple Use Management of Thinned Emory Oak Coppice

    Treesearch

    D. Catlow Shipek; Peter F. Ffolliott; Gerald J. Gottfried; Leonard F. DeBano

    2004-01-01

    The effects of thinning Emory oak (Quercus emoryi) coppice on transpiration have been estimated by the heat-pulse velocity (HPV) method. Rootstocks of trees harvested for fuelwood were thinned to one, two, or three dominant stump-sprouts or left as unthinned controls. Differences in transpiration rates of the thinned coppice were found for each...

  15. Different polarization dynamic states in a vector Yb-doped fiber laser.

    PubMed

    Li, Xingliang; Zhang, Shumin; Han, Huiyun; Han, Mengmeng; Zhang, Huaxing; Zhao, Luming; Wen, Fang; Yang, Zhenjun

    2015-04-20

    Different polarization dynamic states in an unidirectional, vector, Yb-doped fiber ring laser have been observed. A rich variety of dynamic states, including group velocity locked polarization domains and their splitting into regularly distributed multiple domains, polarization locked square pulses and their harmonic mode locking counterparts, and dissipative soliton resonances have all been observed with different operating parameters. We have also shown experimentally details of the conditions under which polarization-domain-wall dark pulses and bright square pulses form.

  16. Time-dependent Fracture Behaviour of Polyampholyte Hydrogels

    NASA Astrophysics Data System (ADS)

    Sun, Tao Lin; Luo, Feng; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    Recently, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and self-healing hydrogels with excellent multiple mechanical functions. The randomness makes ionic bonds with a wide distribution of strength, via inter and intra chain complexation. As the breaking and reforming of ionic bonds are time dependent, the hydrogels exhibit rate dependent mechanical behaviour. We systematically studied the tearing energy by tearing test with various tearing velocity under different temperature, and the linear viscoelastic behaviour over a wide range of frequency and temperature. Results have shown that the tearing energy markedly increase with the crack velocity and decrease with the measured temperature. In accordance with the prediction of Williams, Landel, and Ferry (WLF) rate-temperature equivalence, a master curve of tearing energy dependence of crack velocity can be well constructed using the same shift factor from the linear viscoelastic data. The scaling relation of tearing energy as a function of crack velocity can be predicted well by the rheological data according to the developed linear fracture mechanics.

  17. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI.

    PubMed

    Dyverfeldt, Petter; Sigfridsson, Andreas; Kvitting, John-Peder Escobar; Ebbers, Tino

    2006-10-01

    Turbulent flow, characterized by velocity fluctuations, is a contributing factor to the pathogenesis of several cardiovascular diseases. A clinical noninvasive tool for assessing turbulence is lacking, however. It is well known that the occurrence of multiple spin velocities within a voxel during the influence of a magnetic gradient moment causes signal loss in phase-contrast magnetic resonance imaging (PC-MRI). In this paper a mathematical derivation of an expression for computing the standard deviation (SD) of the blood flow velocity distribution within a voxel is presented. The SD is obtained from the magnitude of PC-MRI signals acquired with different first gradient moments. By exploiting the relation between the SD and turbulence intensity (TI), this method allows for quantitative studies of turbulence. For validation, the TI in an in vitro flow phantom was quantified, and the results compared favorably with previously published laser Doppler anemometry (LDA) results. This method has the potential to become an important tool for the noninvasive assessment of turbulence in the arterial tree.

  18. Identification of the Dominant Flow Structure in the Viscous Wall Region of a Turbulent Flow.

    DTIC Science & Technology

    1979-08-01

    wall. Also multiple probes were used in the fluid downstream from the wall probes to measure the axial velocities at different radial positions. The...Notwithstanding the limitations of the different experimental techniques used to study the viscous wall region, a dimensionless spanwise spacing (made...calculations made necessary another approach and led to the simplified flow model of Sirkar (1969). This model was used by Fortuna (1971) to explain

  19. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups withmore » ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.« less

  20. Investigation on the optimal magnetic field of a cusp electron gun for a W-band gyro-TWA

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2018-05-01

    High efficiency and broadband operation of a gyrotron traveling wave amplifier (gyro-TWA) require a high-quality electron beam with low-velocity spreads. The beam velocity spreads are mainly due to the differences of the electric and magnetic fields that the electrons withstand the electron gun. This paper investigates the possibility to decouple the design of electron gun geometry and the magnet system while still achieving optimal results, through a case study of designing a cusp electron gun for a W-band gyro-TWA. A global multiple-objective optimization routing was used to optimize the electron gun geometry for different predefined magnetic field profiles individually. Their results were compared and the properties of the required magnetic field profile are summarized.

  1. Robust boundary treatment for open-channel flows in divergence-free incompressible SPH

    NASA Astrophysics Data System (ADS)

    Pahar, Gourabananda; Dhar, Anirban

    2017-03-01

    A robust Incompressible Smoothed Particle Hydrodynamics (ISPH) framework is developed to simulate specified inflow and outflow boundary conditions for open-channel flow. Being purely divergence-free, the framework offers smoothed and structured pressure distribution. An implicit treatment of Pressure Poison Equation and Dirichlet boundary condition is applied on free-surface to minimize error in velocity-divergence. Beyond inflow and outflow threshold, multiple layers of dummy particles are created according to specified boundary condition. Inflow boundary acts as a soluble wave-maker. Fluid particles beyond outflow threshold are removed and replaced with dummy particles with specified boundary velocity. The framework is validated against different cases of open channel flow with different boundary conditions. The model can efficiently capture flow evolution and vortex generation for random geometry and variable boundary conditions.

  2. Evidence for Spiral Magnetic Structures at the Magnetopause: A Case for Multiple Reconnections

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.

    2003-01-01

    We analyze plasma structures within the low latitude boundary layer (LLBL) observed by the lnterball Tail spacecraft under southward interplanetary magnetic field. Ion velocity distributions observed in the LLBL under these conditions fall into three categories: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counterstreaming magnetosheath-type, and (c) distributions with three components where one of them has nearly zero velocity parallel to magnetic field (VlI), while the other two are counter-streaming components. D-shaped ion velocity distributions (a) correspond to magnetosheath plasma injections into reconnected flux tubes, as influenced by spacecraft location relative to the reconnection site. Simultaneous counter-streaming injections (b) suggest multiple reconnections. Three-component ion velocity distributions (c) and theii evolution with decreasing number density in the LLBL are consistent v behavior expected on long spiral flux tube islands at the magnetopaus as has been proposed and found to occur in magnetopause simulatior We interpret these distributions as a natural consequence of the formation of spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and magnetospheric plasmas. We suggest that multiple reconnections pla! an important role in the formation of the LLBL.

  3. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data

    DOE PAGES

    Syracuse, Ellen M.; Maceira, Monica; Prieto, German A.; ...

    2016-04-12

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone.more » The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. As a result, we also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.« less

  4. Identifying Moho depths and velocity anomalies in the uppermost mantle of the Mississippi Embayment from Pn tomography and anisotropy studies

    NASA Astrophysics Data System (ADS)

    Basu, U.; Powell, C. A.

    2017-12-01

    Lateral depth variations of the Mohorovicic discontinuity, Pn velocities, and anisotropy features at uppermost mantle depths below the central U.S. are determined using Pn tomography. Excellent raypath coverage throughout the northern Mississippi Embayment (ME) is obtained using the NELE (Northern Embayment Lithosphere Experiment) and US TA (Transportable Array) datasets. High Pn velocities are present below the northern portion of the Reelfoot Rift and the New Madrid seismic zone. Prominent regions of low velocity are present to the east and north of the ME, in agreement with recent teleseismic tomography studies indicating the presence of low P- and S-wave velocities in the uppermost mantle. A prominent region of low velocity coincides with the southwestern portion of the Illinois Basin. Higher velocities are located west of the Illinois Basin and west of the Ozark Plateau. Crustal thicknesses obtained from the Pn station delays indicate thinner crust in the southern Coastal Plain and ME and thicker crust north of the ME. Strong Pn anisotropy and rotation of the fast directions are associated with the northern ME. Fast directions differ from present absolute plate motion directions and from fast directions determined from SKS splitting, suggesting the presence of multiple anisotropic layers. Parameter errors estimated using the bootstrap method are all less than 0.1 km/s for velocity and magnitude of the anisotropy.

  5. An efficient closed-form solution for acoustic emission source location in three-dimensional structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xibing; Dong, Longjun, E-mail: csudlj@163.com; Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009

    This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.

  6. Noncircular Chainrings Do Not Influence Maximum Cycling Power.

    PubMed

    Leong, Chee-Hoi; Elmer, Steven J; Martin, James C

    2017-12-01

    Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOW ecc  = 1.13; HIGH ecc  = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGH ecc was less than CON (p < .05), while knee and hip angular velocities were unaffected. Self-selected ankle joint-center trajectory was more eccentric than HIGH ecc with an opposite orientation that increased velocity during extension/flexion and reduced velocity during transitions. Joint-specific powers did not differ across chainring conditions, with a small increase in power absorbed during ankle dorsiflexion with HIGH ecc . Multiple degrees of freedom in the leg, crank, and pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.

  7. Ion Acceleration by Double Layers with Multi-Component Ion Species

    NASA Astrophysics Data System (ADS)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  8. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change.

    PubMed

    Carroll, Carlos; Roberts, David R; Michalak, Julia L; Lawler, Joshua J; Nielsen, Scott E; Stralberg, Diana; Hamann, Andreas; Mcrae, Brad H; Wang, Tongli

    2017-11-01

    As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  9. Interactive Effects of Nutrient and Mechanical Stresses on Plant Morphology

    PubMed Central

    Puijalon, Sara; Lena, Jean-Paul; Bornette, Gudrun

    2007-01-01

    Background and Aims Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels. Methods An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured. Key Results Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered. Conclusions These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species. PMID:17913725

  10. Slowness based CCP stacking technique in suppressing crustal multiples

    NASA Astrophysics Data System (ADS)

    Guan, Z.; Niu, F.

    2016-12-01

    Common-conversion-point (CCP) stacking of receiver function is a widely used technique to image velocity discontinuities in the mantle, such as the lithosphere-asthenosphere boundary (LAB) in the upper mantle, the 410-km and the 660-km discontinuities in the mantle transition zone. In a layered medium, a teleseismic record can be considered as the summation of the direct arrival and a series of conversions and reflections at boundaries below the station. Receiver functions are an attempt to approximate a Green's function associated with structure beneath the receiver by deconvolving one component of a teleseismic signal from another to remove source signals from seismograms. The CCP technique assumes that receiver functions composed solely of P to S conversions at velocity boundaries, whose depths can be mapped out through their arrival times. The multiple reflections at shallow boundaries with large velocity contrasts, such as the base of unconsolidated sediments and the Moho, can pose significant challenges to the accuracy of CCP imaging. In principle, the P to S conversions and multiples originated from deep and shallow boundaries arrive at a seismic station with incident angles that are, respectively, smaller and larger than that of the direct P wave. Therefore the corresponding slowness can be used to isolate the conversions from multiples, allowing for minimizing multiple-induced artifacts. We developed a refined CCP stacking method that uses relative slowness as a weighting factor to suppress the multiples. We performed extensive numerical tests with synthetic data to seek the best weighting scheme and to verify the robustness of the images. We applied the refined technique to the NECESSArray data, and found that the complicated low velocity structures in the depth range of 200-400 km shown in the CCP images of previous studies are mostly artifacts resulted from crustal multiples.

  11. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, James W.

    1998-01-01

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  12. Multiple-Array Detection, Association and Location of Infrasound and Seismo-Acoustic Events - Utilization of Ground-Truth Information

    DTIC Science & Technology

    2009-09-30

    signals detected by infrasound arrays were discriminated as surface explosions, not earthquakes , and are marked by yellow...velocity, and amplitude of detected signals at each array . Horizontal propagation velocity of infrasound signals , also called celerity, is used not only...REPRINT 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MULTIPLE- ARRAY DETECTION , ASSOCIATION AND LOCATION OF INFRASOUND AND SEISMO-ACOUSTIC

  13. IGRINS NEAR-IR HIGH-RESOLUTION SPECTROSCOPY OF MULTIPLE JETS AROUND LkHα 234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Heeyoung; Yuk, In-Soo; Park, Byeong-Gon

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H{sub 2} emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position–velocity diagrams of the H{sub 2} 1−0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics maymore » be explained by a geometrical bow shock model. We detected a component of H{sub 2} emission at the systemic velocity (V{sub LSR} = −10.2 km s{sup −1}) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at V{sub LSR} = −100–−130 km s{sup −1}. We infer that the H{sub 2} emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H{sub 2} lines imply that the gas is thermalized at a temperature of 2500–3000 K and the emission results from shock excitation.« less

  14. The effects of cognitive loading on balance control in patients with multiple sclerosis.

    PubMed

    Negahban, Hossein; Mofateh, Razieh; Arastoo, Ali Asghar; Mazaheri, Masood; Yazdi, Mohammad Jafar Shaterzadeh; Salavati, Mahyar; Majdinasab, Nastaran

    2011-10-01

    The aim of this study was to compare the effects of concurrent cognitive task (silent backward counting) on balance performance between two groups of multiple sclerosis (MS) (n=23) and healthy (n=23) participates. Three levels of postural difficulty were studied on a force platform, i.e. rigid surface with eyes open, rigid surface with eyes closed, and foam surface with eyes closed. A mixed model analysis of variance showed that under difficult sensory condition of foam surface with eyes closed, execution of concurrent cognitive task caused a significant decrement in variability of sway velocity in anteroposterior direction for the patient group (P<0.01) while this was not the case for healthy participants (P=0.22). Also, the variability of sway velocity in mediolateral direction was significantly decreased during concurrent execution of cognitive task in patient group (P<0.01) and not in healthy participants (P=0.39). Furthermore, in contrast to single tasking, dual tasking had the ability to discriminate between the 2 groups in all conditions of postural difficulty. In conclusion, findings of variability in sway velocity seem to confirm the different response to cognitive loading between two groups of MS and healthy participants. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    NASA Astrophysics Data System (ADS)

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  16. Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert E.; Hofmann, Johannes; Barnes, Edwin; Das Sarma, S.

    2015-09-01

    We develop a theory for electron-electron interaction-induced many-body effects in three-dimensional Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine-structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies nonmonotonically as the low-energy, noninteracting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number (the multiplicity of electron species, e.g. ground-state valley degeneracy arising from the band structure) relative to the leading-order result. Thus, for materials with a larger multiplicity, the regime of velocity nonmonotonicity is reached for modest values of the coupling strength. This is in stark contrast to an approach based on a large-N expansion or the random phase approximation (RPA), where higher-order corrections are strongly suppressed for larger values of the Dirac cone multiplicity. This suggests that perturbation theory in the coupling constant (i.e., the loop expansion) and the RPA/large-N expansion are complementary in the sense that they are applicable in different parameter regimes of the theory. We show how our results for the ultraviolet renormalization of quasiparticle properties can be tested experimentally through measurements of quantities such as the optical conductivity or dielectric function (with carrier density or temperature acting as the scale being varied to induce the running coupling). Although experiments typically access the finite-density regime, we show that our zero-density results still capture clear many-body signatures that should be visible at higher temperatures even in real systems with disorder and finite doping.

  17. Eukaryotic membrane tethers revisited using magnetic tweezers.

    PubMed

    Hosu, Basarab G; Sun, Mingzhai; Marga, Françoise; Grandbois, Michel; Forgacs, Gabor

    2007-04-19

    Membrane nanotubes, under physiological conditions, typically form en masse. We employed magnetic tweezers (MTW) to extract tethers from human brain tumor cells and compared their biophysical properties with tethers extracted after disruption of the cytoskeleton and from a strongly differing cell type, Chinese hamster ovary cells. In this method, the constant force produced with the MTW is transduced to cells through super-paramagnetic beads attached to the cell membrane. Multiple sudden jumps in bead velocity were manifest in the recorded bead displacement-time profiles. These discrete events were interpreted as successive ruptures of individual tethers. Observation with scanning electron microscopy supported the simultaneous existence of multiple tethers. The physical characteristics, in particular, the number and viscoelastic properties of the extracted tethers were determined from the analytic fit to bead trajectories, provided by a standard model of viscoelasticity. Comparison of tethers formed with MTW and atomic force microscopy (AFM), a technique where the cantilever-force transducer is moved at constant velocity, revealed significant differences in the two methods of tether formation. Our findings imply that extreme care must be used to interpret the outcome of tether pulling experiments performed with single molecular techniques (MTW, AFM, optical tweezers, etc). First, the different methods may be testing distinct membrane structures with distinct properties. Second, as soon as a true cell membrane (as opposed to that of a vesicle) can attach to a substrate, upon pulling on it, multiple nonspecific membrane tethers may be generated. Therefore, under physiological conditions, distinguishing between tethers formed through specific and nonspecific interactions is highly nontrivial if at all possible.

  18. Eukaryotic membrane tethers revisited using magnetic tweezers

    NASA Astrophysics Data System (ADS)

    Hosu, Basarab G.; Sun, Mingzhai; Marga, Françoise; Grandbois, Michel; Forgacs, Gabor

    2007-06-01

    Membrane nanotubes, under physiological conditions, typically form en masse. We employed magnetic tweezers (MTW) to extract tethers from human brain tumor cells and compared their biophysical properties with tethers extracted after disruption of the cytoskeleton and from a strongly differing cell type, Chinese hamster ovary cells. In this method, the constant force produced with the MTW is transduced to cells through super-paramagnetic beads attached to the cell membrane. Multiple sudden jumps in bead velocity were manifest in the recorded bead displacement-time profiles. These discrete events were interpreted as successive ruptures of individual tethers. Observation with scanning electron microscopy supported the simultaneous existence of multiple tethers. The physical characteristics, in particular, the number and viscoelastic properties of the extracted tethers were determined from the analytic fit to bead trajectories, provided by a standard model of viscoelasticity. Comparison of tethers formed with MTW and atomic force microscopy (AFM), a technique where the cantilever-force transducer is moved at constant velocity, revealed significant differences in the two methods of tether formation. Our findings imply that extreme care must be used to interpret the outcome of tether pulling experiments performed with single molecular techniques (MTW, AFM, optical tweezers, etc). First, the different methods may be testing distinct membrane structures with distinct properties. Second, as soon as a true cell membrane (as opposed to that of a vesicle) can attach to a substrate, upon pulling on it, multiple nonspecific membrane tethers may be generated. Therefore, under physiological conditions, distinguishing between tethers formed through specific and nonspecific interactions is highly nontrivial if at all possible.

  19. Accounting for multiple climate components when estimating climate change exposure and velocity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  20. Monte-Carlo Method Application for Precising Meteor Velocity from TV Observations

    NASA Astrophysics Data System (ADS)

    Kozak, P.

    2014-12-01

    Monte-Carlo method (method of statistical trials) as an application for meteor observations processing was developed in author's Ph.D. thesis in 2005 and first used in his works in 2008. The idea of using the method consists in that if we generate random values of input data - equatorial coordinates of the meteor head in a sequence of TV frames - in accordance with their statistical distributions we get a possibility to plot the probability density distributions for all its kinematical parameters, and to obtain their mean values and dispersions. At that the theoretical possibility appears to precise the most important parameter - geocentric velocity of a meteor - which has the highest influence onto precision of meteor heliocentric orbit elements calculation. In classical approach the velocity vector was calculated in two stages: first we calculate the vector direction as a vector multiplication of vectors of poles of meteor trajectory big circles, calculated from two observational points. Then we calculated the absolute value of velocity independently from each observational point selecting any of them from some reasons as a final parameter. In the given method we propose to obtain a statistical distribution of velocity absolute value as an intersection of two distributions corresponding to velocity values obtained from different points. We suppose that such an approach has to substantially increase the precision of meteor velocity calculation and remove any subjective inaccuracies.

  1. Modelling biological invasions: species traits, species interactions, and habitat heterogeneity.

    PubMed

    Cannas, Sergio A; Marco, Diana E; Páez, Sergio A

    2003-05-01

    In this paper we explore the integration of different factors to understand, predict and control ecological invasions, through a general cellular automaton model especially developed. The model includes life history traits of several species in a modular structure interacting multiple cellular automata. We performed simulations using field values corresponding to the exotic Gleditsia triacanthos and native co-dominant trees in a montane area. Presence of G. triacanthos juvenile bank was a determinant condition for invasion success. Main parameters influencing invasion velocity were mean seed dispersal distance and minimum reproductive age. Seed production had a small influence on the invasion velocity. Velocities predicted by the model agreed well with estimations from field data. Values of population density predicted matched field values closely. The modular structure of the model, the explicit interaction between the invader and the native species, and the simplicity of parameters and transition rules are novel features of the model.

  2. Characteristics of the umbilical artery velocity waveform as function of measurement site.

    PubMed

    Ruissen, C J; von Drongelen, M M; Hoogland, H J; Jager, W; Hoeks, A P

    1990-01-01

    In 30 uncomplicated singleton pregnancies, varying in duration between 24 and 40 weeks, the variability of the flow velocity waveform (FVW) along the course of the umbilical artery was investigated. Blood flow velocities were recorded at 4 locations in the vessel: within the fetal abdomen, 0-5 cm from the origin of the umbilical cord, in the free-floating part, and 0-5 cm from its insertion in the placenta. From the Doppler signals recorded, the pulsatility index (PI) and a parameter for the frequency distribution index (FDI) were calculated. PI values differed among the locations, but no unequivocal tendency could be demonstrated. Statistical analysis, including multiple regression analysis for maternal and menstrual age and fetal heart rate, showed no significant difference in PI and FDI values for any of the 4 locations. It can be concluded that in uncomplicated pregnancies, possible changes in FVW (quantified by PI) along the course of the umbilical artery have no clinical relevance. Therefore, standardization for the sampling site when measuring PI in this vessel seems to be unnecessary.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, Kieran; Bianco, Federica B.; Modjaz, Maryam

    We compare the diversity of spectral line velocities in a large sample of type IIb supernovae (SNe IIb) with the expected asphericity in the explosion, as measured from the light echoes (LEs) of Cassiopeia A (Cas A), which was a historical galactic SN IIb. We revisit the results of Rest et al., who used LEs to observe Cas A from multiple lines of sight and hence determine its asphericity, as seen in the velocity of three spectral lines (He i λ 5876, H α , and the Ca ii near-infrared (NIR) triplet). We confirm and improve on this measurement bymore » reproducing the effect of the LEs in the spectra of several extragalactic SNe IIb found in the literature as well as mean SN IIb spectra recently created by Liu et al. and comparing these to the observed light echo spectra of Cas A, including their associated uncertainties. In order to quantify the accuracy of this comparison, we smooth the light echo spectra of Cas A using Gaussian processes and use a Monte Carlo method to measure the absorption velocities of these three features in the spectra. We then test the hypothesis that the diversity of ejecta velocities seen in SNe IIb can be explained by asphericity. We do this by comparing the range of velocities seen in the different LEs, and hence different lines of sight, of Cas A to that seen in the population of SNe IIb. We conclude that these two ranges are of the same order and thus asphericity could be enough to explain the diversity in the expansion velocity alone.« less

  4. Multi-azimuth 3D Seismic Exploration and Processing in the Jeju Basin, the Northern East China Sea

    NASA Astrophysics Data System (ADS)

    Yoon, Youngho; Kang, Moohee; Kim, Jin-Ho; Kim, Kyong-O.

    2015-04-01

    Multi-azimuth(MAZ) 3D seismic exploration is one of the most advanced seismic survey methods to improve illumination and multiple attenuation for better image of the subsurface structures. 3D multi-channel seismic data were collected in two phases during 2012, 2013, and 2014 in Jeju Basin, the northern part of the East China Sea Basin where several oil and gas fields were discovered. Phase 1 data were acquired at 135° and 315° azimuths in 2012 and 2013 comprised a full 3D marine seismic coverage of 160 km2. In 2014, phase 2 data were acquired at the azimuths 45° and 225°, perpendicular to those of phase 1. These two datasets were processed through the same processing workflow prior to velocity analysis and merged to one MAZ dataset. We performed velocity analysis on the MAZ dataset as well as two phases data individually and then stacked these three datasets separately. We were able to pick more accurate velocities in the MAZ dataset compare to phase 1 and 2 data while velocity picking. Consequently, the MAZ seismic volume provide us better resolution and improved images since different shooting directions illuminate different parts of the structures and stratigraphic features.

  5. Force Mapping during the Formation and Maturation of Cell Adhesion Sites with Multiple Optical Tweezers

    PubMed Central

    Schwingel, Melanie; Bastmeyer, Martin

    2013-01-01

    Focal contacts act as mechanosensors allowing cells to respond to their biomechanical environment. Force transmission through newly formed contact sites is a highly dynamic process requiring a stable link between the intracellular cytoskeleton and the extracellular environment. To simultaneously investigate cellular traction forces in several individual maturing adhesion sites within the same cell, we established a custom-built multiple trap optical tweezers setup. Beads functionalized with fibronectin or RGD-peptides were placed onto the apical surface of a cell and trapped with a maximum force of 160 pN. Cells form adhesion contacts around the beads as demonstrated by vinculin accumulation and start to apply traction forces after 30 seconds. Force transmission was found to strongly depend on bead size, surface density of integrin ligands and bead location on the cell surface. Highest traction forces were measured for beads positioned on the leading edge. For mouse embryonic fibroblasts, traction forces acting on single beads are in the range of 80 pN after 5 minutes. If two beads were positioned parallel to the leading edge and with a center-to-center distance less than 10 µm, traction forces acting on single beads were reduced by 40%. This indicates a spatial and temporal coordination of force development in closely related adhesion sites. We also used our setup to compare traction forces, retrograde transport velocities, and migration velocities between two cell lines (mouse melanoma and fibroblasts) and primary chick fibroblasts. We find that maximal force development differs considerably between the three cell types with the primary cells being the strongest. In addition, we observe a linear relation between force and retrograde transport velocity: a high retrograde transport velocity is associated with strong cellular traction forces. In contrast, migration velocity is inversely related to traction forces and retrograde transport velocity. PMID:23372781

  6. Mechanical and chemical responses of low-velocity impacted RDX and HMX explosive powders

    NASA Astrophysics Data System (ADS)

    Wu, Yanqing; Guo, Hongfu; Huang, Fenglei; Bao, Xiaowei; Explosion; damage Team

    2017-06-01

    The experimental analyses of mechanical and chemical responses of RDX and HMX particles were performed based on the optimized drop-weight experimental system equipped with the High-Speed Camera (HSC). It has been found that Jetting phenomenon observed by HSC is the result of the energy released by gaseous products, which push the pulverized or melted explosives to splash radially. Jetting is the only and the most obvious difference between reactive and inert particles prior to combustion so that jetting can be regarded as the sign of ignition. Area expansion velocity, jetting velocity, and flame propagation velocity have been estimated via image processing, making it possible to characterize mechanical deformation and violence of reaction of each stage. Hot-spots coalescence promotes flame propagation whose velocity reflects the violence of deflagration reaction. Jetting appearance time can be used to determine time-to-ignition more accurately than other ways. For RDX, molten phase plays an important role to the formation of the hot-spots. Multiple particles experienced more severe burning reactions than an individual particle. China National Nature Science Foundation (11572045), ``Science Challenging Program'' (JCKY2016212A501),opening fund from Safety ammunition research and Development Center (RMC2015B03).

  7. 57Fe Mössbauer spectroscopy and electron paramagnetic resonance studies of human liver ferritin, Ferrum Lek and Maltofer®

    NASA Astrophysics Data System (ADS)

    Alenkina, I. V.; Oshtrakh, M. I.; Klencsár, Z.; Kuzmann, E.; Chukin, A. V.; Semionkin, V. A.

    2014-09-01

    A human liver ferritin, commercial Ferrum Lek and Maltofer® samples were studied using Mössbauer spectroscopy and electron paramagnetic resonance. Two Mössbauer spectrometers have been used: (i) a high velocity resolution (4096 channels) at 90 and 295 K, (ii) and a low velocity resolution (250 channels) at 20 and 40 K. It is shown that the three studied materials have different superparamagnetic features at various temperatures. This may be caused by different magnetic anisotropy energy barriers, sizes (volume), structures and compositions of the iron cores. The electron paramagnetic resonance spectra of the ferritin, Ferrum Lek and Maltofer® were decomposed into multiple spectral components demonstrating the presence of minor ferro- or ferrimagnetic phases along with revealing marked differences among the studied substances. Mössbauer spectroscopy provides evidences on several components in the measured spectra which could be related to different regions, layers, nanocrystallites, etc. in the iron cores that coincides with heterogeneous and multiphase models for the ferritin iron cores.

  8. Evidence for Terrane Accretion, Localized Rifting and Magmatism from the Crustal Velocity Structure of the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Marzen, R. E.; Shillington, D. J.; Lizarralde, D.; Harder, S. H.

    2017-12-01

    The crustal structure in the Southeastern United States records a rich tectonic history, including multiple terrane accretion events, the formation of the supercontinent Pangea, widespread magmatism from the Central Atlantic Magmatic Province (CAMP), and crustal thinning before the breakup of Pangea. We use wide-angle refraction seismic data from Lines 1 and 2 of the SUGAR (SUwannee suture and GeorgiA Rift basin) seismic experiment to constrain crustal structure in order to better understand these tectonic events. The 320 and 420 km lines extend from the northwest to the southeast, crossing the Mesozoic rift basins that record crustal thinning prior to the breakup of Pangea and multiple potential suture zones between accreted terranes. We model crustal P-wave velocity structure with reflection/refraction tomography based on refractions through the sediments, crust and mantle and reflections from the base of the sediments, within the crust and the Moho. To the north on Line 2, we observe high Vp and Vs within the Inner Piedmont and Carolina accreted terranes underlain by a low velocity zone at 5 km depth. These observations are consistent with metamorphosed terranes accreting onto the Laurentian margin along a low velocity region that represents meta-sedimentary rocks and/or an Appalachian detachment. Additionally, differences in the basin structure, lower crustal velocities, and crustal thickness between Lines 1 and 2 reflect varying extension and magmatism between the two Mesozoic rift segments. Line 1 has thicker and more laterally extensive syn-rift sediments and a more pronounced region of crustal thinning. In contrast, syn-rift sediments along Line 2 are thinner and limited to a couple of smaller basins, and the crust of Line 2 gradually thins towards the coast. The thinned crust beneath Line 1 is characterized by high velocities of >7.0 km/s, which we interpret as mafic intrusions related to rifting or CAMP; in contrast, no evidence of elevated lower crustal velocities is observed on Line 2. Because intrusions into the lower crust increase both lower crustal velocities and crustal thickness, the correspondence of high lower crustal velocities with regions of greater crustal thinning suggests that extension and magmatism were more localized than one would infer based only on variations in crustal thickness.

  9. Even between-lap pacing despite high within-lap variation during mountain biking.

    PubMed

    Martin, Louise; Lambeth-Mansell, Anneliese; Beretta-Azevedo, Liane; Holmes, Lucy A; Wright, Rachel; St Clair Gibson, Alan

    2012-09-01

    Given the paucity of research on pacing strategies during competitive events, this study examined changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap mountain-bike race over variable terrain. A global-positioning-system (GPS) unit (Garmin, Edge 305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike riders (mean±SD age=27.2±5.0 y, stature=176.8±8.1 cm, mass=76.3±11.7 kg, VO2max=55.1±6.0 mL·kg(-1)·min1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance and elevation to observe the presence of intralap variation. There was no significant difference in lap times (P=.99) or lap velocity (P=.65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional nonmonotonic variation not related to terrain. Participants adopted an even pace strategy across the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity may be associated with dynamic regulation of self-paced exercise.

  10. Seismic Tomography and the Development of a State Velocity Profile

    NASA Astrophysics Data System (ADS)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  11. [Experimental study of multiple organ injuries after high-velocity missiles].

    PubMed

    Fu, X B

    1990-06-01

    Multiple organ injuries after high-velocity missiles shot were studied on the 8 pigs. The experimental results showed that (1) more than two organs (the maximum six organs) wounded could be seen in all the pigs; (2) the injuries were characterized by hemorrhage, tissue rupture and hematoma, etc., the pathologic changes were local edema and necrosis; (3) the marked increase of LPO on the vital organs indicates that multiple organ injuries can also occur at the molecular level; (4) they are due to direct effects of pressure waves and not to shock or infection.

  12. Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

    NASA Astrophysics Data System (ADS)

    Shahrooei, Abolfazl; Kazemi, Mohammad Hosein

    2018-04-01

    In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

  13. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    DOE PAGES

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...

    2017-02-06

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved withmore » good accuracy. Furthermore, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less

  14. Full waveform seismic modelling of Chalk Group rocks from the Danish North Sea - implications for velocity analysis

    NASA Astrophysics Data System (ADS)

    Montazeri, Mahboubeh; Moreau, Julien; Uldall, Anette; Nielsen, Lars

    2015-04-01

    This study aims at understanding seismic wave propagation in the fine-layered Chalk Group, which constitutes the main reservoir for oil and gas production in the Danish North Sea. The starting point of our analysis is the Nana-1XP exploration well, which shows strong seismic contrasts inside the Chalk Group. For the purposes of seismic waveform modelling, we here assume a one-dimensional model with homogeneous and isotropic layers designed to capture the main fluctuations in petrophysical properties observed in the well logs. The model is representative of the stratigraphic sequences of the area and it illustrates highly contrasting properties of the Chalk Group. Finite-difference (FD) full wave technique, both acoustic and elastic equations are applied to the model. Velocity analysis of seismic data is a crucial step for stacking, multiple suppression, migration, and depth conversion of the seismic record. Semblance analysis of the synthetic seismic records shows strong amplitude peaks outside the expected range for the time interval representing the Chalk Group, especially at the base. The various synthetic results illustrate the occurrence and the impact of different types of waves including multiples, converted waves and refracted waves. The interference of these different wave types with the primary reflections can explain the strong anomalous amplitudes in the semblance plot. In particular, the effect of strongly contrasting thin beds plays an important role in the generation of the high anomalous amplitude values. If these anomalous amplitudes are used to pick the velocities, it would impede proper stacking of the data and may result in sub-optimal migration and depth conversion. Consequently this may lead to erroneous or sub-optimal seismic images of the Chalk Group and the underlying layers. Our results highlight the importance of detailed velocity analysis and proper picking of velocity functions in the Chalk Group intervals. We show that application of standard front mutes in the mid- and far-offset ranges does not significantly improve the results of the standard semblance analysis. These synthetic modelling results could be used as starting points for defining optimized processing flows for the seismic data sets acquired in the study area with the aim of improving the imaging of the Chalk Group.

  15. Non-Linear Seismic Velocity Estimation from Multiple Waveform Functionals and Formal Assessment of Constraints

    DTIC Science & Technology

    2011-09-01

    tectonically active regions such as the Middle East. For example, we previously applied the code to determine the crust and upper mantle structure...Objective Optimization (MOO) for Multiple Datasets The primary goal of our current project is to develop a tool for estimating crustal structure that...be used to obtain crustal velocity structures by modeling broadband waveform, receiver function, and surface wave dispersion data. The code has been

  16. Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver

    PubMed Central

    Montealegre-Z, Fernando; Soulsbury, Carl D.; Robson Brown, Kate A.; Robert, Daniel

    2016-01-01

    The ear of the bush-cricket, Copiphora gorgonensis, consists of a system of paired eardrums (tympana) on each foreleg. In these insects, the ear is backed by an air-filled tube, the acoustic trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of the eardrums. Both surfaces of the eardrums of this auditory system are exposed to sound, making it a directionally sensitive pressure difference receiver. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces at the tympanum. The mechanism responsible for reduction in sound velocity in the AT remains elusive, yet it is deemed to depend on adiabatic or isothermal conditions. To investigate the biophysics of such multiple input ears, we used micro-scanning laser Doppler vibrometry and micro-computed X-ray tomography. We measured the velocity of sound propagation in the AT, the transmission gains across auditory frequencies and the time-resolved mechanical dynamics of the tympanal membranes in C. gorgonensis. Tracheal sound transmission generates a gain of approximately 15 dB SPL, and a propagation velocity of ca 255 m s−1, an approximately 25% reduction from free field propagation. Modelling tracheal acoustic behaviour that accounts for thermal and viscous effects, we conclude that reduction in sound velocity within the AT can be explained, among others, by heat exchange between the sound wave and the tracheal walls. PMID:27683000

  17. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, J.W.

    1998-05-26

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

  18. The Physics of Protoplanetesimal Dust Agglomerates. V. Multiple Impacts of Dusty Agglomerates at Velocities Above the Fragmentation Threshold

    NASA Astrophysics Data System (ADS)

    Kothe, Stefan; Güttler, Carsten; Blum, Jürgen

    2010-12-01

    In recent years, a number of new experiments have advanced our knowledge on the early growth phases of protoplanetary dust aggregates. Some of these experiments have shown that collisions between porous and compacted agglomerates at velocities above the fragmentation threshold velocity can lead to growth of the compact body, when the porous collision partner fragments upon impact and transfers mass to the compact agglomerate. To obtain a deeper understanding of this potentially important growth process, we performed laboratory and drop tower experiments to study multiple impacts of small, highly porous dust-aggregate projectiles onto sintered dust targets. The projectile and target consisted of 1.5 μm monodisperse, spherical SiO2 monomers with volume filling factors of 0.15 ± 0.01 and 0.45 ± 0.05, respectively. The fragile projectiles were accelerated by a solenoid magnet and combined with a projectile magazine with which 25 impacts onto the same spot on the target could be performed in vacuum. We measured the mass-accretion efficiency and the volume filling factor for different impact velocities between 1.5 and 6.0 m s^{-1}. The experiments at the lowest impact speeds were performed in the Bremen drop tower under microgravity conditions to allow partial mass transfer also for the lowest adhesion case. Within this velocity range, we found a linear increase of the accretion efficiency with increasing velocity. In the laboratory experiments, the accretion efficiency increases from 0.12 to 0.21 in units of the projectile mass. The recorded images of the impacts showed that the mass transfer from the projectile to the target leads to the growth of a conical structure on the target after less than 100 impacts. From the images, we also measured the volume filling factors of the grown structures, which ranged from 0.15 (uncompacted) to 0.40 (significantly compacted) with increasing impact speed. The velocity dependency of the mass-transfer efficiency and the packing density of the resulting aggregates augment our knowledge of the aggregate growth in protoplanetary disks and should be taken into account for future models of protoplanetary dust growth.

  19. Radiometric Short-Term Fourier Transform analysis of photonic Doppler velocimetry recordings and detectivity limit

    NASA Astrophysics Data System (ADS)

    Prudhomme, G.; Berthe, L.; Bénier, J.; Bozier, O.; Mercier, P.

    2017-01-01

    Photonic Doppler Velocimetry is a plug-and-play and versatile diagnostic used in dynamic physic experiments to measure velocities. When signals are analyzed using a Short-Time Fourier Transform, multiple velocities can be distinguished: for example, the velocities of moving particle-cloud appear on spectrograms. In order to estimate the back-scattering fluxes of target, we propose an original approach "PDV Radiometric analysis" resulting in an expression of time-velocity spectrograms coded in power units. Experiments involving micron-sized particles raise the issue of detection limit; particle-size limit is very difficult to evaluate. From the quantification of noise sources, we derive an estimation of the spectrogram noise leading to a detectivity limit, which may be compared to the fraction of the incoming power which has been back-scattered by the particle and then collected by the probe. This fraction increases with their size. At last, some results from laser-shock accelerated particles using two different PDV systems are compared: it shows the improvement of detectivity with respect to the Effective Number of Bits (ENOB) of the digitizer.

  20. Intermittency in small-scale turbulence: a velocity gradient approach

    NASA Astrophysics Data System (ADS)

    Meneveau, Charles; Johnson, Perry

    2017-11-01

    Intermittency of small-scale motions is an ubiquitous facet of turbulent flows, and predicting this phenomenon based on reduced models derived from first principles remains an important open problem. Here, a multiple-time scale stochastic model is introduced for the Lagrangian evolution of the full velocity gradient tensor in fluid turbulence at arbitrarily high Reynolds numbers. This low-dimensional model differs fundamentally from prior shell models and other empirically-motivated models of intermittency because the nonlinear gradient self-stretching and rotation A2 term vital to the energy cascade and intermittency development is represented exactly from the Navier-Stokes equations. With only one adjustable parameter needed to determine the model's effective Reynolds number, numerical solutions of the resulting set of stochastic differential equations show that the model predicts anomalous scaling for moments of the velocity gradient components and negative derivative skewness. It also predicts signature topological features of the velocity gradient tensor such as vorticity alignment trends with the eigen-directions of the strain-rate. This research was made possible by a graduate Fellowship from the National Science Foundation and by a Grant from The Gulf of Mexico Research Initiative.

  1. Influence of load and sliding velocity on wear resistance of solid-lubricant composites of ultra-high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Buslovich, D. G.; Alexenko, V. O.; Ivanova, L. R.

    2017-12-01

    To determine the limits of the operation loading intervals appropriate for the use of solid lubricant UHMWPE composites in tribounits for mechanical engineering and medicine, the tribotechnical properties of UHMWPE blends with the optimum solid lubricant filler content (polytetrafluoroethylene, calcium stearate, molybdenum disulfide, colloidal graphite, boron nitride) are studied under dry sliding friction at different velocities (V = 0.3 and 0.5 m/s) and loads (P = 60 and 140 N). It is shown that the wear resistance of solid lubricant UHMWPE composites at moderate sliding velocities (V = 0.3 m/s) and loads (P = 60 N) increases 2-3 times in comparison with pure UHMWPE, while at high load P = 140 N wear resistance of both neat UHMWPE and its composites is reduced almost twice. At high sliding velocities and loads (up to P = 140 N), multiple increasing of the wear of pure UHMWPE and its composites takes place (by the factor of 5 to 10). The operational conditions of UHMWPE composites in tribounits in engineering and medicine are discussed.

  2. Distinct Inter-Joint Coordination during Fast Alternate Keystrokes in Pianists with Superior Skill.

    PubMed

    Furuya, Shinichi; Goda, Tatsushi; Katayose, Haruhiro; Miwa, Hiroyoshi; Nagata, Noriko

    2011-01-01

    Musical performance requires motor skills to coordinate the movements of multiple joints in the hand and arm over a wide range of tempi. However, it is unclear whether the coordination of movement across joints would differ for musicians with different skill levels and how inter-joint coordination would vary in relation to music tempo. The present study addresses these issues by examining the kinematics and muscular activity of the hand and arm movements of professional and amateur pianists who strike two keys alternately with the thumb and little finger at various tempi. The professionals produced a smaller flexion velocity at the thumb and little finger and greater elbow pronation and supination velocity than did the amateurs. The experts also showed smaller extension angles at the metacarpo-phalangeal joint of the index and middle fingers, which were not being used to strike the keys. Furthermore, muscular activity in the extrinsic finger muscles was smaller for the experts than for the amateurs. These findings indicate that pianists with superior skill reduce the finger muscle load during keystrokes by taking advantage of differences in proximal joint motion and hand postural configuration. With an increase in tempo, the experts showed larger and smaller increases in elbow velocity and finger muscle co-activation, respectively, compared to the amateurs, highlighting skill level-dependent differences in movement strategies for tempo adjustment. Finally, when striking as fast as possible, individual differences in the striking tempo among players were explained by their elbow velocities but not by their digit velocities. These findings suggest that pianists who are capable of faster keystrokes benefit more from proximal joint motion than do pianists who are not capable of faster keystrokes. The distinct movement strategy for tempo adjustment in pianists with superior skill would therefore ensure a wider range of musical expression.

  3. Distinct Inter-Joint Coordination during Fast Alternate Keystrokes in Pianists with Superior Skill

    PubMed Central

    Furuya, Shinichi; Goda, Tatsushi; Katayose, Haruhiro; Miwa, Hiroyoshi; Nagata, Noriko

    2011-01-01

    Musical performance requires motor skills to coordinate the movements of multiple joints in the hand and arm over a wide range of tempi. However, it is unclear whether the coordination of movement across joints would differ for musicians with different skill levels and how inter-joint coordination would vary in relation to music tempo. The present study addresses these issues by examining the kinematics and muscular activity of the hand and arm movements of professional and amateur pianists who strike two keys alternately with the thumb and little finger at various tempi. The professionals produced a smaller flexion velocity at the thumb and little finger and greater elbow pronation and supination velocity than did the amateurs. The experts also showed smaller extension angles at the metacarpo-phalangeal joint of the index and middle fingers, which were not being used to strike the keys. Furthermore, muscular activity in the extrinsic finger muscles was smaller for the experts than for the amateurs. These findings indicate that pianists with superior skill reduce the finger muscle load during keystrokes by taking advantage of differences in proximal joint motion and hand postural configuration. With an increase in tempo, the experts showed larger and smaller increases in elbow velocity and finger muscle co-activation, respectively, compared to the amateurs, highlighting skill level-dependent differences in movement strategies for tempo adjustment. Finally, when striking as fast as possible, individual differences in the striking tempo among players were explained by their elbow velocities but not by their digit velocities. These findings suggest that pianists who are capable of faster keystrokes benefit more from proximal joint motion than do pianists who are not capable of faster keystrokes. The distinct movement strategy for tempo adjustment in pianists with superior skill would therefore ensure a wider range of musical expression. PMID:21660290

  4. Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation

    PubMed Central

    Cromer, Jason A; Waitzman, David M

    2006-01-01

    Neurones in the central mesencephalic reticular formation (cMRF) begin to discharge prior to saccades. These long lead burst neurones interact with major oculomotor centres including the superior colliculus (SC) and the paramedian pontine reticular formation (PPRF). Three different functions have been proposed for neurones in the cMRF: (1) to carry eye velocity signals that provide efference copy information to the SC (feedback), (2) to provide duration signals from the omnipause neurones to the SC (feedback), or (3) to participate in the transformation from the spatial encoding of a target selection signal in the SC into the temporal pattern of discharge used to drive the excitatory burst neurones in the pons (feed-forward). According to each respective proposal, specific predictions about cMRF neuronal discharge have been formulated. Individual neurones should: (1) encode instantaneous eye velocity, (2) burst specifically in relation to saccade duration but not to other saccade metrics, or (3) have a spectrum of weak to strong correlations to saccade dynamics. To determine if cMRF neurones could subserve these multiple oculomotor roles, we examined neuronal activity in relation to a variety of saccade metrics including amplitude, velocity and duration. We found separate groups of cMRF neurones that have the characteristics predicted by each of the proposed models. We also identified a number of subgroups for which no specific model prediction had previously been established. We found that we could accurately predict the neuronal firing pattern during one type of saccade behaviour (visually guided) using the activity during an alternative behaviour with different saccade metrics (memory guided saccades). We suggest that this evidence of a close relationship of cMRF neuronal discharge to individual saccade metrics supports the hypothesis that the cMRF participates in multiple saccade control pathways carrying saccade amplitude, velocity and duration information within the brainstem. PMID:16308353

  5. Influence of maturation on instep kick biomechanics in female soccer athletes.

    PubMed

    Lyle, Mark A; Sigward, Susan M; Tsai, Liang-Ching; Pollard, Christine D; Powers, Christopher M

    2011-10-01

    The purpose of this study was to compare kicking biomechanics between young female soccer players at two different stages of physical maturation and to identify biomechanical predictors of peak foot velocity. Swing and stance limb kinematics and kinetics were recorded from 20 female soccer players (10 prepubertal, 10 postpubertal) while kicking a soccer ball using an angled two-step approach. Peak foot velocity as well as hip and knee kinematics and kinetics were compared between groups using independent-samples t-tests. Pearson correlation coefficients and stepwise multiple regression were used to identify predictors of peak foot velocity. Peak foot velocity and the peak swing limb net hip flexor moment was significantly greater in the postpubertal group when compared with the prepubertal group (13.4 vs 11.6 m·s(-1), P = 0.003; 1.22 vs 1.07 N·m·kg(-1)·m(-1), P = 0.03). Peak stance limb hip and knee extensor moments were not different between groups. Although the peak swing limb hip and knee flexion angles were similar between groups, the postpubertal group demonstrated significantly less peak stance limb hip and knee flexion angles when compared with the prepubertal group (P < 0.001 and P = 0.045). Using a linear regression model, swing limb peak hip flexor moment and peak swing limb hip extension range of motion combined to explain 65% of the variance in peak foot velocity. Despite a difference in stance limb kinematics, similar swing limb kinematics between groups indicates that the prepubertal female athletes kicked with a mature swing limb kick pattern. The ability to generate a large hip flexor moment of the swing limb seems to be an important factor for improving kicking performance in young female soccer players.

  6. Numerical simulation of convection and heat transfer in Czochralski crystal growth by multiple-relaxation-time LBM

    NASA Astrophysics Data System (ADS)

    Liu, Ding; Huang, Weichao; Zhang, Ni

    2017-07-01

    A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ˜ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.

  7. Probing midrapidity source characteristics with charged particles and neutrons in the 35Cl+natTa reaction at 43 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Larochelle, Y.; St-Pierre, C.; Beaulieu, L.; Colonna, N.; Gingras, L.; Ball, G. C.; Bowman, D. R.; Colonna, M.; D'erasmo, G.; Fiore, E.; Fox, D.; Galindo-Uribarri, A.; Hagberg, E.; Horn, D.; Laforest, R.; Pantaleo, A.; Roy, R.; Tagliente, G.

    1999-02-01

    The characteristics of the midrapidity and target sources (apparent temperatures, velocities, and neutron multiplicities) extracted from the neutron energy spectra, have been measured for various quasiprojectile (QP) excitation energies, reconstructed from charged particles of well defined peripheral events in the 35Cl+natTa reaction at 43 MeV/nucleon. The reconstructed excitation energy of the QP is always smaller than the excitation energy calculated from its velocity, assuming pure dissipative binary collision. The latter observation combined with the neutron multiplicity at midrapidity and the apparent temperature suggests important preequilibrium and/or dynamical effects in the entrance channel. The midrapidity source moves at a velocity lower than the nucleon-nucleon center of mass velocity showing the importance of the attractive mean-field potential from the target even at 43 MeV/nucleon. The above picture is confirmed by comparison to Boltzman-Nordheim-Vlasov (BNV) simulations.

  8. Local pulse wave velocity estimated from small vibrations measured ultrasonically at multiple points on the arterial wall

    NASA Astrophysics Data System (ADS)

    Ito, Mika; Arakawa, Mototaka; Kanai, Hiroshi

    2018-07-01

    Pulse wave velocity (PWV) is used as a diagnostic criterion for arteriosclerosis, a major cause of heart disease and cerebrovascular disease. However, there are several problems with conventional PWV measurement techniques. One is that a pulse wave is assumed to only have an incident component propagating at a constant speed from the heart to the femoral artery, and another is that PWV is only determined from a characteristic time such as the rise time of the blood pressure waveform. In this study, we noninvasively measured the velocity waveform of small vibrations at multiple points on the carotid arterial wall using ultrasound. Local PWV was determined by analyzing the phase component of the velocity waveform by the least squares method. This method allowed measurement of the time change of the PWV at approximately the arrival time of the pulse wave, which discriminates the period when the reflected component is not contaminated.

  9. Resolving the mystery of transport within internal transport barriersa)

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.; Kinsey, J. E.; Belli, E. A.; Candy, J.; Waltz, R. E.; Greenfield, C. M.; Lao, L. L.; Smith, S. P.; Grierson, B. A.; Chrystal, C.

    2014-05-01

    The Trapped Gyro-Landau Fluid (TGLF) quasi-linear model [G. M. Staebler, et al., Phys. Plasmas 12, 102508 (2005)], which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures, and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by E ×B velocity shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E ×B velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.

  10. Resolving the mystery of transport within internal transport barriers

    DOE PAGES

    Staebler, Gary M.; Kinsey, Jon E.; Belli, Emily A.; ...

    2014-05-02

    Here, the Trapped Gyro-Landau Fluid (TGLF) quasi-linear model, which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by E × B velocity shear.more » The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E × B velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.« less

  11. Human-Centered Design and Evaluation of Haptic Cueing for Teleoperation of Multiple Mobile Robots.

    PubMed

    Son, Hyoung Il; Franchi, Antonio; Chuang, Lewis L; Kim, Junsuk; Bulthoff, Heinrich H; Giordano, Paolo Robuffo

    2013-04-01

    In this paper, we investigate the effect of haptic cueing on a human operator's performance in the field of bilateral teleoperation of multiple mobile robots, particularly multiple unmanned aerial vehicles (UAVs). Two aspects of human performance are deemed important in this area, namely, the maneuverability of mobile robots and the perceptual sensitivity of the remote environment. We introduce metrics that allow us to address these aspects in two psychophysical studies, which are reported here. Three fundamental haptic cue types were evaluated. The Force cue conveys information on the proximity of the commanded trajectory to obstacles in the remote environment. The Velocity cue represents the mismatch between the commanded and actual velocities of the UAVs and can implicitly provide a rich amount of information regarding the actual behavior of the UAVs. Finally, the Velocity+Force cue is a linear combination of the two. Our experimental results show that, while maneuverability is best supported by the Force cue feedback, perceptual sensitivity is best served by the Velocity cue feedback. In addition, we show that large gains in the haptic feedbacks do not always guarantee an enhancement in the teleoperator's performance.

  12. Are factors related to dual-task performance in people with Parkinson's disease dependent on the type of dual task?

    PubMed

    Strouwen, Carolien; Molenaar, Esther A L M; Keus, Samyra H J; Münks, Liesbeth; Heremans, Elke; Vandenberghe, Wim; Bloem, Bastiaan R; Nieuwboer, Alice

    2016-02-01

    Impaired dual-task performance significantly impacts upon functional mobility in people with Parkinson's disease (PD). The aim of this study was to identify determinants of dual-task performance in people with PD in three different dual tasks to assess their possible task-dependency. We recruited 121 home-dwelling patients with PD (mean age 65.93 years; mean disease duration 8.67 years) whom we subjected to regular walking (control condition) and to three dual-task conditions: walking combined with a backwards Digit Span task, an auditory Stroop task and a Mobile Phone task. We measured dual-task gait velocity using the GAITRite mat and dual-task reaction times and errors on the concurrent tasks as outcomes. Motor, cognitive and descriptive variables which correlated to dual-task performance (p < 0.20) were entered into a stepwise forward multiple linear regression model. Single-task gait velocity and executive function, tested by the alternating intake test, was significantly associated with gait velocity during the Digit Span (R(2) = 0.65; p < 0.001), the Stroop (R(2) = 0.73; p < 0.001) and the Mobile Phone task (R(2) = 0.62; p < 0.001). In addition, disease severity proved correlated to gait velocity during the Stroop task. Age was a surplus determinant of gait velocity while using a mobile phone. Single-task gait velocity and executive function as measured by a verbal fluency switching task were independent determinants of dual-task gait performance in people with PD. In contrast to expectation, these factors were the same across different tasks, supporting the robustness of the findings. Future study needs to determine whether these factors predict dual-task abnormalities prospectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of Solar Radiation on Fiber Optic Cables Used in Distributed Temperature Sensing (DTS) Applications

    NASA Astrophysics Data System (ADS)

    Neilson, B. T.; Hatch, C. E.; Bingham, Q. G.; Tyler, S. W.

    2008-12-01

    In recent years, distributed temperature sensing (DTS) has enjoyed steady increases in the number and diversity of applications. Because fiber optic cables used for DTS are typically sheathed in dark materials resistant to UV deterioration, the question arises of how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures. Initial calculations of these affects considered: shortwave radiation as a function of time of day, water depth, and water clarity; fiber optic cable dimensions; and fluid velocity. These indicate that for clear waterbodies with low velocities and shallow depths, some heating on the cable is likely during peak daily solar radiation. Given higher water velocities, substantial increases in turbidity, and/or deeper water, there should be negligible solar heating on the cable. To confirm these calculations, a field study was conducted to test the effects of solar radiation by installing two types of fiber optic cable at multiple, uniform depths in a trapezoidal canal with constant flow determined by a controlled release from Porcupine Dam near Paradise, Utah. Cables were installed in water depths from 0.05 to 0.79 m in locations of faster (center of canal) and slower (sidewall) water velocities. Thermister strings were installed at the same depths, but shielded from solar radiation and designed to record absolute water temperatures. Calculations predict that at peak solar radiation, in combination with shallow depths and slow velocities, typical fiber-optic cable is likely to experience heating greater than the ambient water column. In this study, DTS data show differences of 0.1-0.2°C in temperatures as seen by cables separated vertically by 0.31 m on the sidewall and center of the channel. Corresponding thermister data showed smaller vertical differences (~0.03-0.1°C) suggesting thermal stratification was also present in the canal. However, the magnitude of the DTS differences could not be fully explained by stratification alone. Additional information from cables installed in a shallow, near-zero velocity pool showed significantly higher temperature differences with cable depth when compared to the cable in the higher-velocity canal flows. This indicates a higher potential for heating of fiber-optic cable in stagnant, shallow waters. With sufficient water velocities and depths, the effect of shortwave solar radiation on DTS measurement accuracy via heating of the fiber- optic cable is negligible. Particular care in experimental design is recommended in shallow or low-velocity systems, including consideration of solar radiation, and independent quantification of (or calibration for) absolute temperatures.

  14. Dalfampridine in Parkinson's disease related gait dysfunction: A randomized double blind trial.

    PubMed

    Luca, Corneliu C; Nadayil, Gloria; Dong, Chuanhui; Nahab, Fatta B; Field-Fote, Edelle; Singer, Carlos

    2017-08-15

    Disease-related gait dysfunction causes extensive disability for persons with Parkinson's disease (PD), with no effective therapies currently available. The potassium channel blocker dalfampridine has been used in multiple neurological conditions and improves walking in persons with multiple sclerosis. We aimed to evaluate the effect of dalfampridine extended release (D-ER) 10mg tablets twice daily on different domains of walking in participants with PD. Twenty-two participants with PD and gait dysfunction were randomized to receive D-ER 10mg twice daily or placebo for 4weeks in a crossover design with a 2-week washout period. The primary outcomes were change in the gait velocity and stride length. At 4weeks, gait velocity was not significantly different between D-ER (0.89m/s±0.33) and placebo (0.93m/s±0.27) conditions. The stride length was also similar between conditions: 0.96m±0.38 for D-ER versus 1.06m±0.33 for placebo. D-ER was generally well tolerated with the most frequent side effects being dizziness, nausea and balance problems. D-ER is well tolerated in PD patients, however it did not show significant benefit for gait impairment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.

    Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

  16. Strength/Brittleness Classification of Igneous Intact Rocks Based on Basic Physical and Dynamic Properties

    NASA Astrophysics Data System (ADS)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad

    2017-01-01

    This paper sheds further light on the fundamental relationships between simple methods, rock strength, and brittleness of igneous rocks. In particular, the relationship between mechanical (point load strength index I s(50) and brittleness value S 20), basic physical (dry density and porosity), and dynamic properties (P-wave velocity and Schmidt rebound values) for a wide range of Iranian igneous rocks is investigated. First, 30 statistical models (including simple and multiple linear regression analyses) were built to identify the relationships between mechanical properties and simple methods. The results imply that rocks with different Schmidt hardness (SH) rebound values have different physicomechanical properties or relations. Second, using these results, it was proved that dry density, P-wave velocity, and SH rebound value provide a fine complement to mechanical properties classification of rock materials. Further, a detailed investigation was conducted on the relationships between mechanical and simple tests, which are established with limited ranges of P-wave velocity and dry density. The results show that strength values decrease with the SH rebound value. In addition, there is a systematic trend between dry density, P-wave velocity, rebound hardness, and brittleness value of the studied rocks, and rocks with medium hardness have a higher brittleness value. Finally, a strength classification chart and a brittleness classification table are presented, providing reliable and low-cost methods for the classification of igneous rocks.

  17. Quantifying the Uncertainties and Multi-parameter Trade-offs in Joint Inversion of Receiver Functions and Surface Wave Velocity and Ellipticity

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2016-12-01

    When constraining the structure of the Earth's continental lithosphere, multiple seismic observables are often combined due to their complementary sensitivities.The transdimensional Bayesian (TB) approach in seismic inversion allows model parameter uncertainties and trade-offs to be quantified with few assumptions. TB sampling yields an adaptive parameterization that enables simultaneous inversion for different model parameters (Vp, Vs, density, radial anisotropy), without the need for strong prior information or regularization. We use a reversible jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate different seismic observables - surface wave dispersion (SWD), Rayleigh wave ellipticity (ZH ratio), and receiver functions - into the inversion for the profiles of shear velocity (Vs), compressional velocity (Vp), density (ρ), and radial anisotropy (ξ) beneath a seismic station. By analyzing all three data types individually and together, we show that TB sampling can eliminate the need for a fixed parameterization based on prior information, and reduce trade-offs in model estimates. We then explore the effect of different types of misfit functions for receiver function inversion, which is a highly non-unique problem. We compare the synthetic inversion results using the L2 norm, cross-correlation type and integral type misfit function by their convergence rates and retrieved seismic structures. In inversions in which only one type of model parameter (Vs for the case of SWD) is inverted, assumed scaling relationships are often applied to account for sensitivity to other model parameters (e.g. Vp, ρ, ξ). Here we show that under a TB framework, we can eliminate scaling assumptions, while simultaneously constraining multiple model parameters to varying degrees. Furthermore, we compare the performance of TB inversion when different types of model parameters either share the same or use independent parameterizations. We show that different parameterizations can lead to differences in retrieved model parameters, consistent with limited data constraints. We then quantitatively examine the model parameter trade-offs and find that trade-offs between Vp and radial anisotropy might limit our ability to constrain shallow-layer radial anisotropy using current seismic observables.

  18. The new double energy-velocity spectrometer VERDI

    NASA Astrophysics Data System (ADS)

    Jansson, Kaj; Frégeau, Marc Olivier; Al-Adili, Ali; Göök, Alf; Gustavsson, Cecilia; Hambsch, Franz-Josef; Oberstedt, Stephan; Pomp, Stephan

    2017-09-01

    VERDI (VElocity foR Direct particle Identification) is a fission-fragment spectrometer recently put into operation at JRC-Geel. It allows measuring the kinetic energy and velocity of both fission fragments simultaneously. The velocity provides information about the pre-neutron mass of each fission fragment when isotropic prompt-neutron emission from the fragments is assumed. The kinetic energy, in combination with the velocity, provides the post-neutron mass. From the difference between pre- and post-neutron masses, the number of neutrons emitted by each fragment can be determined. Multiplicity as a function of fragment mass and total kinetic energy is one important ingredient, essential for understanding the sharing of excitation energy between fission fragments at scission, and may be used to benchmark nuclear de-excitation models. The VERDI spectrometer design is a compromise between geometrical efficiency and mass resolution. The spectrometer consists of an electron detector located close to the target and two arrays of silicon detectors, each located 50 cm away from the target. In the present configuration pre-neutron and post-neutron mass distributions are in good agreement with reference data were obtained. Our latest measurements performed with spontaneously fissioning 252Cf is presented along with the developed calibration procedure to obtain pulse height defect and plasma delay time corrections.

  19. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  20. Composite and Component Plates, Plate Non-rigidity, and the Steadiness of Plate Motion From Marine Geophysical and Space Geodetic Data

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Argus, D. F.; DeMets, C.

    2017-12-01

    Plate tectonic theory has evolved since its birth 50 years ago. In particular, we now recognize that some of the originally proposed plates such as the Indo-Australia plate, the Africa plate, and the America plate are what we term "composite" plates—entities that contain no traditionally defined narrow plate boundaries, but are composed of multiple approximately rigid regions, which we term "component" plates, separated by diffuse plate boundaries. The best example of a composite plate is the Indo-Australia composite plate, which consists of the India, Capricorn, Australia, and Macquarie component plates and multiple intervening diffuse oceanic plate boundaries. The poles of relative rotation between component plates tend to lie in their mutual diffuse plate boundary. Outside of diffuse boundaries, plate rigidity has proven to be an excellent approximation, but the non-closure of some plate circuits indicates that stable plate interiors have a small but significant non-rigidity that may add up to 1 to 2 mm/a across any individual plate and may be partly due to horizontal thermal contraction of oceanic lithosphere. The greatest observational challenge to plate rigidity is posed by the Pacific-Cocos-Nazca plate circuit, which fails closure by 15 ±4 mm/a. The most rapid deformation of the plates observed with space geodesy is generated by solid Earth's viscous response to unloading of the late Pleistocene ice sheets. Differences between different realizations of global plate velocities from space geodesy appear in some cases to be due to differing assumptions about the motion of the geocenter, which affects estimated plate relative angular velocities and estimated vertical motion at geodetic sites. Comparison of space geodetic and marine geophysical plate motion rates and directions has demonstrated that plate motion is nearly steady, which allows plate boundary conditions to be applied to inter-seismic strain accumulation due to locking of specific faults. In detail it appears, however, that plate velocities over the past few decades have in several cases been significantly different from plate motions averaged over geologic time. Some of the largest changes have been decreases in rates across convergent plate boundaries: Nazca-South America and the velocities of Nubia, Arabia, and India relative to Eurasia.

  1. Confined States in Large-Aspect-Ratio Thermosolutal Convection

    NASA Technical Reports Server (NTRS)

    Spina, Alejandro; Toomre, Juri; Knobloch, Edgar

    1998-01-01

    Two-dimensional thermosolutal convection with no-slip boundary conditions is studied using numerical simulations in a periodic domain. The domain is large enough to follow the evolution of phase instabilities of fully nonlinear traveling waves. In the parameter regime studied these instabilities evolve, without loss of phase or hysteresis, into a series of confined states or pulses characterized by locally enhanced heat and solute transport. The wavelength and phase velocity of the traveling rolls within a pulse differ substantially from those in the background. The pulses drift in the same direction as the convection rolls on which they ride but more slowly, and are characterized by an exponential leading front and an oscillatory trailing end. Multiple, apparently stable, states are found for identical parameter values. The qualitative properties of the pulses are in good agreement with the predictions of a third-order phase equation which accounts for the relation between wave number and phase velocity, the oscillatory tails and the multiplicity of states. These properties of the pulses are shown to be a consequence of Shil'nikov dynamics in the spatial domain.

  2. The Influence of Glove Type on Simulated Wheelchair Racing Propulsion: A Pilot Study.

    PubMed

    Rice, I; Dysterheft, J; Bleakney, A W; Cooper, R A

    2016-01-01

    Our purpose was to examine the influence of glove type on kinetic and spatiotemporal parameters at the handrim in elite wheelchair racers. Elite wheelchair racers (n=9) propelled on a dynamometer in their own racing chairs with a force and moment sensing wheel attached. Racers propelled at 3 steady state speeds (5.36, 6.26 & 7.60 m/s) and performed one maximal effort sprint with 2 different glove types (soft & solid). Peak resultant force, peak torque, impulse, contact angle, braking torque, push time, velocity, and stroke frequency were recorded for steady state and sprint conditions. Multiple nonparametric Wilcoxon matched pair's tests were used to detect differences between glove types, while effect sizes were calculated based on Cohen's d. During steady state trials, racers propelled faster, using more strokes and larger contact angle, while applying less impulse with solid gloves compared to soft gloves. During the sprint condition, racers achieved greater top end velocities, applying larger peak force, with less braking torque with solid gloves compared to soft gloves. Use of solid gloves may provide some performance benefits to wheelchair racers during steady state and top end velocity conditions. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Autoignition in a premixing-prevaporizing fuel duct using 3 different fuel injection systems at inlet air temperatures to 1250 K

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1983-01-01

    Conditions were determined in a continuous-flow, premixing-prevaporizing duct at which autoignition occurred. Test conditions were representative of an advanced, regenerative-cycle, automotive gas turbine. The test conditions inlet air temperatures from 600 to 1250 K (a vitiated preheater was used), pressures from 170 to 600 kPa, air velocities of 10 to 30 m/sec, equivalence ratios from 0.3 to 1.0, mixing lengths from 10 to 60 cm, and residence times of 2 to 100 ms. The fuel was diesel number 2. The duct was insulated and had an inside diameter of 12 cm. Three different fuel injection systems were used: One was a single simplex pressure atomizer, and the other two were multiple-source injectors. The data obtained with the simplex and one of the multiple-source injectors agreed satisfactorily with the references and correlated with an Arrenhius expression. The data obtained with the other multiple source injector, which used multiple cones to improve the fuel-air distribution, did not correlate well with residence time.

  4. Seismic imaging of the oil and geothermal reservoirs using the induced seismicity

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Toksoz, M. N.; Fehler, M.

    2011-12-01

    It is known that microseismicity can be induced in the oil field due to the stress change caused by oil/gas production. Similarly, injection of high-pressure fluids into the reservoir can also induce microseismicity. Due to the proximity of induced seismicity to the reservoir, in some cases, it may be advantageous to use induced seismicity to image the reservoir. The seismic stations for monitoring the induced seismicity are usually sparse. Conventional travel time tomography using travel times from seismic events to stations may not be applicable because of poor ray coverage outside the source region. In comparison, the double-difference tomography method of Zhang and Thurber (2003) that uses the differential travel times is able to image the reservoir by avoiding determining the velocity structure outside the source region. In this study, we present two case studies of applying double-difference tomography to induced seismicity monitored by borehole stations. In the case of an oil field in Oman, five closely spaced monitoring wells are used to monitor microseismicity induced by gas production. In each well, multiple seismic sensors are positioned from depths 750 m - 1250 m and about 2000 events are selected for tomography. Reservoir imaging shows encouraging results in identifying structures and velocity changes within reservoir layers. Clear velocity contrast was seen across the major northeast-southwest faults. Low Vp, low Vs and low Vp/Vs anomalies are mainly associated with the gas production layer. For the case of the Soultz Enhanced Geothermal System at Soultz-sous-Forets, France, we used travel time data from the September and October 1993 hydraulic stimulations, where only four borehole stations are available. The results showed that the S-wave velocity structure correlated well with seismicity and showed low velocity zones at depths between 2900 and 3300 meters, where fluid was believed to have infiltrated the reservoir. We also attempt time-lapse tomography to determine velocity changes at different stages of stimulation. The preliminary results show that the velocity increases outside the reservoir and decreases in the seismicity region.

  5. Multiple light scattering in metallic ejecta produced under intense shockwave compression.

    PubMed

    Franzkowiak, J-E; Mercier, P; Prudhomme, G; Berthe, L

    2018-04-10

    A roughened metallic plate, subjected to intense shock wave compression, gives rise to an expanding ejecta particle cloud. Photonic Doppler velocimetry (PDV), a fiber-based heterodyne velocimeter, is often used to track ejecta velocities in dynamic compression experiments and on nanosecond time scales. Shortly after shock breakout at the metal-vacuum interface, a particular feature observed in many experiments in the velocity spectrograms is what appear to be slow-moving ejecta, below the free-surface velocity. Using Doppler Monte Carlo simulations incorporating the transport of polarization in the ejecta, we show that this feature is likely to be explained by the multiple scattering of light, rather than by possible collisions among particles, slowing down the ejecta. As the cloud expands in a vacuum, the contribution of multiple scattering decreases due to the limited field of view of the pigtailed collimator used to probe the ejecta, showing that the whole geometry of the system must be taken into account in the calculations to interpret and predict PDV measurements.

  6. Coarse-grained debris flow dynamics on erodible beds

    NASA Astrophysics Data System (ADS)

    Lanzoni, Stefano; Gregoretti, Carlo; Stancanelli, Laura Maria

    2017-03-01

    A systematic set of flume experiments is used to investigate the features of velocity profiles within the body of coarse-grained debris flows and the dependence of the transport sediment concentration on the relevant parameters (runoff discharge, bed slope, grain size, and form). The flows are generated in a 10 m long laboratory flume, initially filled with a layer consisting of loose debris. After saturation, a prescribed water discharge is suddenly supplied over the granular bed, and the runoff triggers a debris flow wave that reaches nearly steady conditions. Three types of material have been used in the tests: gravel with mean grain size of 3 and 5 mm, and 3 mm glass spheres. Measured parameters included: triggering water discharge, volumetric sediment discharge, sediment concentration, flow depth, and velocity profiles. The dynamic similarity with full-sized debris flows is discussed on the basis of the relevant dimensionless parameters. Concentration data highlight the dependence on the slope angle and the importance of the quasi-static friction angle. The effects of flow rheology on the shape of velocity profiles are analyzed with attention to the role of different stress-generating mechanisms. A remarkable collapse of the dimensionless profiles is obtained by scaling the debris flow velocity with the runoff velocity, and a power law characterization is proposed following a heuristic approach. The shape of the profiles suggests a smooth transition between the different rheological regimes (collisional and frictional) that establish in the upper and lower regions of the flow and is compatible with the presence of multiple length scales dictated by the type of contacts (instantaneous or long lasting) between grains.

  7. MULTIPLE OUTFLOWS IN THE GIANT ERUPTION OF A MASSIVE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, Roberta M.; Gordon, Michael S.; Jones, Terry J.

    The supernova impostor PSN J09132750+7627410 in NGC 2748 reached a maximum luminosity of ≈−14 mag. It was quickly realized that it was not a true supernova, but another example of a nonterminal giant eruption. PSN J09132750+7627410 is distinguished by multiple P Cygni absorption minima in the Balmer emission lines that correspond to outflow velocities of −400, −1100, and −1600 km s{sup −1}. Multiple outflows have been observed in only a few other objects. In this paper we describe the evolution of the spectrum and the P Cygni profiles for 3 months past maximum, the post-maximum formation of a cool, densemore » wind, and the identification of a possible progenitor. One of the possible progenitors is an infrared source. Its pre-eruption spectral energy distribution suggests a bolometric luminosity of −8.3 mag and a dust temperature of 780 K. If it is the progenitor, it is above the AGB limit, unlike the intermediate-luminosity red transients. The three P Cygni profiles could be due to ejecta from the current eruption, the wind of the progenitor, or previous mass-loss events. We suggest that they were all formed as part of the same high-mass-loss event and are due to material ejected at different velocities or energies. We also suggest that multiple outflows during giant eruptions may be more common than reported.« less

  8. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  9. Seismic multiple attenuation in the northern continent-ocean transition zone of the South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, N.; Li, C. F.

    2017-12-01

    In seismic exploration, especially in marine oil and gas exploration, presence of multiple reflections lowers signal-to-noise ratio of seismic data and makes it difficult to analyze seismic velocity. In northern continent-ocean transition zone of the South China Sea (SCS), low-velocity Cenozoic strata cover sets of high-velocity carbonate strata directly, and over 1000 m thick of sediments were deposited on the igneous basement in the northwest SCS. These sedimentary boundaries generate quite strong impedance interfaces and strong internal multiples. Diffractions as a result of variation of seabed topography, coupled with the vibration, free surface multiples and refraction multiples, cause a variety of strong energy disturbances and missing of frequency component. In this study, we process four recently acquired multichannel reflection seismic profiles from the northern continent-ocean transition zone of the SCS with a new combination of demultiple techniques. There is a variety of strong multiples in the raw data, and the seabed multiple occurs between 9 to 11 seconds in two-way travel time (TWTT), and we apply Surface-related Multiple Elimination (SRME) to attenuate the free surface multiples. After SRME, we use high-resolution Radon transform (RAMUR) to attenuate deep multiples concentrating below 10 seconds in TWTT. Normal moveout correction (NMO) is necessary to flatten true reflections and turn multiples into a parabola before RAMUR, and we can attenuate the deep multiples in theτ-p domain. The seabed topography varies greatly in the continent-ocean transition zone, so the diffractions are well developed. However, SRME and RAMUR are not effective in attenuating diffractions and internal multiples. We select diffracted multiple attenuation (DIMAT) after many trials and detailed analysis. The diffractions are extracted in decomposed frequency bands. The internal multiples below 11 seconds in TWTT and high-amplitude noises are successfully suppressed while keeping the primary events. This combination of SRME, RAMUR and DIMAT in sequence demonstrates to be quite effective in attenuating these types of multiples on the continent-ocean transition zone. Keywords: Continent-ocean transition zone, seismic exploration, data processing, multiple attenuation

  10. Digital processing of array seismic recordings

    USGS Publications Warehouse

    Ryall, Alan; Birtill, John

    1962-01-01

    This technical letter contains a brief review of the operations which are involved in digital processing of array seismic recordings by the methods of velocity filtering, summation, cross-multiplication and integration, and by combinations of these operations (the "UK Method" and multiple correlation). Examples are presented of analyses by the several techniques on array recordings which were obtained by the U.S. Geological Survey during chemical and nuclear explosions in the western United States. Seismograms are synthesized using actual noise and Pn-signal recordings, such that the signal-to-noise ratio, onset time and velocity of the signal are predetermined for the synthetic record. These records are then analyzed by summation, cross-multiplication, multiple correlation and the UK technique, and the results are compared. For all of the examples presented, analysis by the non-linear techniques of multiple correlation and cross-multiplication of the traces on an array recording are preferred to analyses by the linear operations involved in summation and the UK Method.

  11. Multiple-vehicle collision induced by a sudden stop in traffic flow

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoki; Nagatani, Takashi

    2012-04-01

    We study the dynamic process of the multiple-vehicle collision when a vehicle stops suddenly in a traffic flow. We apply the optimal-velocity model to the vehicular motion. If a vehicle does not decelerate successfully, it crashes into the vehicle ahead with a residual speed. The collision criterion is presented by vi(t)/Δxi(t)→∞ if Δxi(t)→0 where vi(t) and Δxi(t) are the speed and headway of vehicle i at time t. The number of crumpled vehicles depends on the initial velocity, the sensitivity, and the initial headway. We derive the region map (or phase diagram) for the multiple-vehicle collision.

  12. Effects of group velocity and multiplasmon resonances on the modulation of Langmuir waves in a degenerate plasma

    NASA Astrophysics Data System (ADS)

    Misra, Amar P.; Chatterjee, Debjani; Brodin, Gert

    2017-11-01

    We study the nonlinear wave modulation of Langmuir waves (LWs) in a fully degenerate plasma. Using the Wigner-Moyal equation coupled to the Poisson equation and the multiple scale expansion technique, a modified nonlocal nonlinear Schrödinger (NLS) equation is derived which governs the evolution of LW envelopes in degenerate plasmas. The nonlocal nonlinearity in the NLS equation appears due to the group velocity and multiplasmon resonances, i.e., resonances induced by the simultaneous particle absorption of multiple wave quanta. We focus on the regime where the resonant velocity of electrons is larger than the Fermi velocity and thereby the linear Landau damping is forbidden. As a result, the nonlinear wave-particle resonances due to the group velocity and multiplasmon processes are the dominant mechanisms for wave-particle interaction. It is found that in contrast to classical or semiclassical plasmas, the group velocity resonance does not necessarily give rise the wave damping in the strong quantum regime where ℏ k ˜m vF with ℏ denoting the reduced Planck's constant, m the electron mass, and vF the Fermi velocity; however, the three-plasmon process plays a dominant role in the nonlinear Landau damping of wave envelopes. In this regime, the decay rate of the wave amplitude is also found to be higher compared to that in the modest quantum regime where the multiplasmon effects are forbidden.

  13. Rayleigh Wave Phase Velocity in the Upper Mantle Beneath the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Godfrey, K. E.; Dalton, C. A.; Ritsema, J.

    2016-12-01

    Most of what is currently understood about the seismic properties of oceanic upper mantle is based on either global studies or regional studies of the upper mantle beneath the Pacific Ocean. However, global seismic models and geochemical studies of mid-ocean ridge basalts indicate differences in the properties of the upper mantle beneath the Pacific, Atlantic, and Indian oceans. Though the Indian Ocean is not as well studied seismically, it is host to a number of geologically interesting features including 16,000 km of mid-ocean ridge with a range of spreading rates from 14 mm/yr along the Southwest Indian Ridge to 55-75 mm/yr along the Southeast Indian Ridge. The Indian Ocean also contains multiple volcanic hotspots, the Australian-Antarctic Discordance, and a low geoid anomaly south of India, and it overlies a portion of a large low-shear-velocity province. We are using Rayleigh waves to construct a high-resolution seismic velocity model of the Indian Ocean upper mantle. We utilize a global dataset of phase delays measured at 20 periods, between 37 and 375 seconds; the dataset includes between 700 and 20,000 that traverse our study region exclusively, with a larger number of paths at shorter periods. We explore variations in phase velocity using two separate approaches. One, we allow phase velocity to vary only as a function of seafloor age. Two, we perform a damped least-squares inversion to solve for 2-D phase velocity maps at each period. Preliminary results indicate low velocities along the Southeast Indian Ridge and Central Indian Ridge, but the expected low velocities are less apparent along the slow-spreading Southwest Indian Ridge. We observe a region of fast velocities extending from Antarctica northward between the Kerguelen and Crozet hotspots, and lower than expected velocities beneath the Reunion hotspot. Additionally, we find low velocities associated with a region of extinct seafloor spreading in the Wharton basin.

  14. The transition of dynamic rupture styles in elastic media under velocity-weakening friction

    NASA Astrophysics Data System (ADS)

    Gabriel, A.-A.; Ampuero, J.-P.; Dalguer, L. A.; Mai, P. M.

    2012-09-01

    Although kinematic earthquake source inversions show dominantly pulse-like subshear rupture behavior, seismological observations, laboratory experiments and theoretical models indicate that earthquakes can operate with different rupture styles: either as pulses or cracks, that propagate at subshear or supershear speeds. The determination of rupture style and speed has important implications for ground motions and may inform about the state of stress and strength of active fault zones. We conduct 2D in-plane dynamic rupture simulations with a spectral element method to investigate the diversity of rupture styles on faults governed by velocity-and-state-dependent friction with dramatic velocity-weakening at high slip rate. Our rupture models are governed by uniform initial stresses, and are artificially initiated. We identify the conditions that lead to different rupture styles by investigating the transitions between decaying, steady state and growing pulses, cracks, sub-shear and super-shear ruptures as a function of background stress, nucleation size and characteristic velocity at the onset of severe weakening. Our models show that small changes of background stress or nucleation size may lead to dramatic changes of rupture style. We characterize the asymptotic properties of steady state and self-similar pulses as a function of background stress. We show that an earthquake may not be restricted to a single rupture style, but that complex rupture patterns may emerge that consist of multiple rupture fronts, possibly involving different styles and back-propagating fronts. We also demonstrate the possibility of a super-shear transition for pulse-like ruptures. Finally, we draw connections between our findings and recent seismological observations.

  15. A half-decade of field research on the Greenland firn aquifers - major advances and looming questions.

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Forster, R. R.; Miller, O. L.; Solomon, D. K.; Miège, C.; Schmerr, N. C.; Montgomery, L. N.; Legchenko, A.

    2017-12-01

    In 2011, researchers first drilled into an unknown firn aquifer in Southeast, Greenland. Over the past half-decade our team has conducted field work instrumenting, modeling and remote sensing the aquifer and surrounding snow/firn/ice to get a more complete picture of the system including formation conditions, controlling mechanisms, spatial and temporal change, and connections with the larger ice sheet system. This work summarizes recently published work on the firn aquifer providing our best estimates on the spatial extents, depths and water volumes for the purpose of estimating available water that could reach the en- or subglacial hydrologic network. To do this we reconcile and explain the differences in water volume estimates from three methods, ice core measurements, magnetic resonance and dilution tests. We present measurements of the hydrologic conductivities within a Greenland firn aquifer from two methods, at multiple locations showing that water can flow more freely in ice sheet aquifers than mountain glaciers and attribute this difference to the longer duration of water retained in ice sheet aquifers. While connections of the aquifer water to the glacier bed have been hypothesized and are supported by surface velocity measurements, we still lack direct observations. We show the surface velocity for most aquifer regions ranges from a few meters to 300 m a year with substantial spatial and temporal variability. Given possible aquifer water input scenarios, derived from our field measurements, to the glacier bed, we compare and contrast the seasonal surface velocities and variability of surface velocity for different outlet glaciers that are both connected and not connected to firn aquifers.

  16. Structure of the Lithosphere and Asthenosphere beneath the Western US from Simultaneous Multi-Parameter Inversion

    NASA Astrophysics Data System (ADS)

    Steck, L.; Maceira, M.; Ammon, C. J.; Herrmann, R. B.

    2013-12-01

    Joint inversion of multiple datasets should produce more realistic images of Earth structure. Here we simultaneously invert surface wave dispersion, receiver functions, and gravity to determine structure of the crust and upper mantle of the western United States. Our target region is comprised of a one-degree grid that spans latitudes from 30 to 50 degrees North and longitudes from 95 to 125 degrees West. Receiver functions come from the Earthscope Automated Receiver system, and are stacked to produce an average model for each cell. Rayleigh and Love dispersion data come from multiple filter analysis of regional earthquakes, while the gravity observations are extracted from the EGM2008 model. Our starting model is comprised of an oceanic PREM model west of the Pacific coast, a western US model between that and the eastern front of the Rocky Mountains, and a continental PREM model east of the Rocky Mountain Front. Several different velocity/density relationships have been tested and all result in very similar models. Our inversion reduces RMS surface wave residuals by 58% and receiver function misfits by about 18%. Gravity residuals are reduced by more than 90%. While the reduction in residuals for receiver functions is not as profound as for surface waves or gravity, they are meaningful and produce sharper boundaries for the observed crustal anomalies. The addition of gravity produces subtle changes to the final model. Our final results are consistent with numerous previous studies in the region. In general, the craton exhibits higher velocities than the tectonically active regions to its west. We see high mid-crustal velocities under the Snake River Plain and the Colorado Plateau. In the lower crust we observe lowest velocities in the western Basin and Range and under the Colorado Mineral Belt. At 80km depth we see broad low velocities fanning out from the Snake River Plain associated with the mantle plume feeding Yellowstone Caldera. Additionally we see high and low velocity anomalies along the west coast that reflect ongoing subduction processes beneath the western US, including the subducting slab and slab window.

  17. On using the Multiple Signal Classification algorithm to study microbaroms

    NASA Astrophysics Data System (ADS)

    Marcillo, O. E.; Blom, P. S.; Euler, G. G.

    2016-12-01

    Multiple Signal Classification (MUSIC) (Schmidt, 1986) is a well-known high-resolution algorithm used in array processing for parameter estimation. We report on the application of MUSIC to infrasonic array data in a study of the structure of microbaroms. Microbaroms can be globally observed and display energy centered around 0.2 Hz. Microbaroms are an infrasonic signal generated by the non-linear interaction of ocean surface waves that radiate into the ocean and atmosphere as well as the solid earth in the form of microseisms. Microbaroms sources are dynamic and, in many cases, distributed in space and moving in time. We assume that the microbarom energy detected by an infrasonic array is the result of multiple sources (with different back-azimuths) in the same bandwidth and apply the MUSIC algorithm accordingly to recover the back-azimuth and trace velocity of the individual components. Preliminary results show that the multiple component assumption in MUSIC allows one to resolve the fine structure in the microbarom band that can be related to multiple ocean surface phenomena.

  18. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change.

    PubMed

    Carroll, Carlos; Lawler, Joshua J; Roberts, David R; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site's future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.

  19. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    PubMed Central

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site’s future climate, can facilitate conservation of diversity at multiple scales in the face of climate change. PMID:26466364

  20. Feasibility of using a reliable automated Doppler flow velocity measurements for research and clinical practices

    NASA Astrophysics Data System (ADS)

    Zolgharni, Massoud; Dhutia, Niti M.; Cole, Graham D.; Willson, Keith; Francis, Darrel P.

    2014-03-01

    Echocardiographers are often unkeen to make the considerable time investment to make additional multiple measurements of Doppler velocity. Main hurdle to obtaining multiple measurements is the time required to manually trace a series of Doppler traces. To make it easier to analyse more beats, we present an automated system for Doppler envelope quantification. It analyses long Doppler strips, spanning many heartbeats, and does not require the electrocardiogram to isolate individual beats. We tested its measurement of velocity-time-integral and peak-velocity against the reference standard defined as the average of three experts who each made three separate measurements. The automated measurements of velocity-time-integral showed strong correspondence (R2 = 0.94) and good Bland-Altman agreement (SD = 6.92%) with the reference consensus expert values, and indeed performed as well as the individual experts (R2 = 0.90 to 0.96, SD = 5.66% to 7.64%). The same performance was observed for peak-velocities; (R2 = 0.98, SD = 2.95%) and (R2 = 0.93 to 0.98, SD = 2.94% to 5.12%). This automated technology allows <10 times as many beats to be acquired and analysed compared to the conventional manual approach, with each beat maintaining its accuracy.

  1. The NASA Subsonic Jet Particle Image Velocimetry (PIV) Dataset

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2011-01-01

    Many tasks in fluids engineering require prediction of turbulence of jet flows. The present document documents the single-point statistics of velocity, mean and variance, of cold and hot jet flows. The jet velocities ranged from 0.5 to 1.4 times the ambient speed of sound, and temperatures ranged from unheated to static temperature ratio 2.7. Further, the report assesses the accuracies of the data, e.g., establish uncertainties for the data. This paper covers the following five tasks: (1) Document acquisition and processing procedures used to create the particle image velocimetry (PIV) datasets. (2) Compare PIV data with hotwire and laser Doppler velocimetry (LDV) data published in the open literature. (3) Compare different datasets acquired at the same flow conditions in multiple tests to establish uncertainties. (4) Create a consensus dataset for a range of hot jet flows, including uncertainty bands. (5) Analyze this consensus dataset for self-consistency and compare jet characteristics to those of the open literature. The final objective was fulfilled by using the potential core length and the spread rate of the half-velocity radius to collapse of the mean and turbulent velocity fields over the first 20 jet diameters.

  2. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    NASA Technical Reports Server (NTRS)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  3. Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples

    NASA Astrophysics Data System (ADS)

    Kuester, Matthew

    2017-11-01

    Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.

  4. Measurements of Turbulent Convection Speeds in Multistream Jets Using Time-Resolved PIV

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2017-01-01

    Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.

  5. Measurements of Turbulence Convection Speeds in Multistream Jets Using Time-Resolved PIV

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2017-01-01

    Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.

  6. Distributed finite-time containment control for double-integrator multiagent systems.

    PubMed

    Wang, Xiangyu; Li, Shihua; Shi, Peng

    2014-09-01

    In this paper, the distributed finite-time containment control problem for double-integrator multiagent systems with multiple leaders and external disturbances is discussed. In the presence of multiple dynamic leaders, by utilizing the homogeneous control technique, a distributed finite-time observer is developed for the followers to estimate the weighted average of the leaders' velocities at first. Then, based on the estimates and the generalized adding a power integrator approach, distributed finite-time containment control algorithms are designed to guarantee that the states of the followers converge to the dynamic convex hull spanned by those of the leaders in finite time. Moreover, as a special case of multiple dynamic leaders with zero velocities, the proposed containment control algorithms also work for the case of multiple stationary leaders without using the distributed observer. Simulations demonstrate the effectiveness of the proposed control algorithms.

  7. Optimal Loading for Maximizing Power During Sled-Resisted Sprinting.

    PubMed

    Cross, Matt R; Brughelli, Matt; Samozino, Pierre; Brown, Scott R; Morin, Jean-Benoit

    2017-09-01

    To ascertain whether force-velocity-power relationships could be compiled from a battery of sled-resisted overground sprints and to clarify and compare the optimal loading conditions for maximizing power production for different athlete cohorts. Recreational mixed-sport athletes (n = 12) and sprinters (n = 15) performed multiple trials of maximal sprints unloaded and towing a selection of sled masses (20-120% body mass [BM]). Velocity data were collected by sports radar, and kinetics at peak velocity were quantified using friction coefficients and aerodynamic drag. Individual force-velocity and power-velocity relationships were generated using linear and quadratic relationships, respectively. Mechanical and optimal loading variables were subsequently calculated and test-retest reliability assessed. Individual force-velocity and power-velocity relationships were accurately fitted with regression models (R 2 > .977, P < .001) and were reliable (ES = 0.05-0.50, ICC = .73-.97, CV = 1.0-5.4%). The normal loading that maximized peak power was 78% ± 6% and 82% ± 8% of BM, representing a resistance of 3.37 and 3.62 N/kg at 4.19 ± 0.19 and 4.90 ± 0.18 m/s (recreational athletes and sprinters, respectively). Optimal force and normal load did not clearly differentiate between cohorts, although sprinters developed greater maximal power (17.2-26.5%, ES = 0.97-2.13, P < .02) at much greater velocities (16.9%, ES = 3.73, P < .001). Mechanical relationships can be accurately profiled using common sled-training equipment. Notably, the optimal loading conditions determined in this study (69-96% of BM, dependent on friction conditions) represent much greater resistance than current guidelines (~7-20% of BM). This method has potential value in quantifying individualized training parameters for optimized development of horizontal power.

  8. Three-dimensional Shock Structure of the Orion KL Outflow with IGRINS

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Kaplan, Kyle; Yuk, In-Soo; Park, Byeong-Gon; Mace, Gregory; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Sok Oh, Jae; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Lee, Hye-In; Nguyen Le, Huynh Anh; Lee, Sungho; Jaffe, Daniel T.

    2016-12-01

    We report a study of the three-dimensional (3D) outflow structure of a 15″ × 13″ area around the H2 peak 1 in Orion KL with slit-scan observations (13 slits) using the Immersion Grating Infrared Spectrograph. The datacubes have a high-velocity resolution (˜7.5 km s-1), provide high-contrast imaging within ultra-narrow bands, and enable the detection of the main stream of the previously reported H2 outflow fingers. We identified 31 distinct fingers in the H2 1-0 S(1) λ2.122 μm emission. The line profile at each finger shows multiple-velocity peaks with a strong low-velocity component around the systemic velocity at {V}{LSR} = +8 km s-1 and high-velocity emission (| {V}{LSR}| = 45-135 km s-1), indicating a typical bow-shock. The observed radial velocity gradients of ˜4 km s-1 arcsec-1 agree well with the velocities inferred from large-scale proper motions, where the projected motion is proportional to the distance from a common origin. We construct a conceptual 3D map of the fingers with estimated inclination angles of 57°-74°. The extinction difference (ΔA v > 10 mag) between blueshifted and redshifted fingers indicates high internal extinction. The extinction, the overall angular spread, and the scale of the flow argue for an ambient medium with a very high density (105-106 cm-3), consistent with molecular line observations of the Orion Molecular Cloud core. The radial velocity gradients and the 3D distributions of the fingers together support the hypothesis of a simultaneous radial explosion of the Orion KL outflow. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  9. Atom Interferometry in a Warm Vapor

    DOE PAGES

    Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.; ...

    2017-04-17

    Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

  10. Ways to Increase Launch Velocities of 2-Stage Gas Guns

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc; Arnold, James O. (Technical Monitor)

    1994-01-01

    The amount of space debris is rapidly increasing and the debris is distributed over a wide variety of orbits. Satellites, manned space vehicles and space stations will have to pay increasing attention to the dangers of impacts with space debris. Various armoring techniques (i.e., double or triple layer armor) will have to tested extensively to determine the most effective armor per unit weight. Intersecting near-earth orbits can lead to impact velocities up to 15 km/sec. Conventional two-stage light gas guns can launch intact, controlled-shape projectiles with a density of 1.2 gm/cc and length- to-diameter ratios of 0.5-1.0 at velocities up to 8-9 km/sec. Higher velocities (10-11 km/sec) can be obtained' for very light projectiles. The higher launch velocities tend to be very severe on the high pressure coupling and barrel of the gun and lead to short component lifetimes. Clearly, the ability to raise the launch velocity of a gun (for reasonably massive projectile shapes) from 8-9 km/sec to 11-13 km/sec (or higher), without reduction of component lifetimes, would have significant benefits. This would allow much better simulation of the higher velocity debris impacts as well as better simulation of high speed re-entry into planetary atmospheres. Several techniques for increasing the launcher muzzle velocity above 8-9 km/sec have been studied using CFD simulations and appear to offer the potential for significant gains. The first technique is to use multiple compressions, instead of a single compression, in the pump tube of the light gas gun. In a sense, this is a kind of pre-heating of the gas in the pump tube; other types of pre-heating have yielded disappointing results in the past. The dynamics of the multiple compression pump tube is very different, however, from the earlier techniques, where the pump tube was typically heated ohmically before the gun 2 cycle was started. In this paper, we present CFD calculations that show that significant increases in muzzle velocity can be obtained with multiple compressions in the pump tube. With a conventional two-stage gun, an important limitation to obtaining higher velocities is friction and heat transfer to the barrel, which typically has a length- to- diameter ratio of 200-400. These viscous losses greatly reduce the effectiveness of the regions of the barrel far removed from the second stage breech. We have studied computationally the effect of adding an additional breech (or breeches) along the barrel to reduce these viscous losses. Velocity increases from 6.5 to 7.2 km/sec have been obtained using the main breech and one additional breech. In these results, both breeches were operated with hydrogen, heated electrothermally. We have also studied a gun geometry where the main breech is operated in the conventional manner, using piston compression. The additional breech is operated either with electrothermal heating or heating by using a high explosive charge in a novel geometry. The latter option provides very effective compression, heating and acceleration of the hydrogen working gas and is fully reusable. Calculations are presented which show that very substantial increases in muzzle velocity can be obtained this way, without overstressing the projectile or the 'gun. The third technique studied is to add a section of ram accelerator tube after the barrel to further accelerate the projectile. The ram accelerator used here is not the conventional premixed gas ram accelerator, but a new technique using high explosive as the energy source and pure hydrogen as the working gas in a geometry which can be made fully reusable. Preliminary results with this new rain accelerator geometry were presented and showed that stable ram accelerator drive can be established. Herein, detailed calculations axe presented which show that substantial velocity increases can be obtained using this ram accelerator technique in tandem with a conventional light gas gun.

  11. On multiple manifestations of the second response branch in streamwise vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Cagney, N.; Balabani, S.

    2013-07-01

    The structural motion and velocity field in the wake of a cylinder exhibiting vortex-induced vibration (VIV) in the streamwise direction were measured using Particle-Image Velocimetry. The effect of hysteresis on the amplitude response of the cylinder and the existence of multiple wake modes in the region of the second response branch were examined. As the reduced velocity was decreased, there was a reduction in the lock-in range; outside this range the amplitude response was found to be negligible and the A-II mode (which is similar to the von Kármán vortex street) was observed in the wake. When the reduced velocity was increased the second branch could be manifested in two forms, depending on whether the wake exhibited the SA or the A-IV mode (in which two and four vortices are shed per wake cycle, respectively). The A-IV mode has been observed in studies in which a cylinder was forced to oscillate in the streamwise direction; however, this represents the first time that it has been recorded in the wake of a freely oscillating body, and it was not previously known that the A-IV mode was capable of exciting self-sustaining vibrations. Both the SA and A-IV modes were stable and no intermittent mode-switching was observed; however, it was found to be unpredictable which mode would dominate as the reduced velocity was varied and the cylinder entered the second response branch. Analysis of the cylinder displacement signals measured while each mode was dominant indicated that the SA mode excited larger amplitude vibrations than the A-IV mode. A reduced velocity near the second response branch was identified at which the wake could exhibit either the SA, A-IV, or A-II modes, with the latter occurring as the reduced velocity was decreased. Although bi-modal behaviour is well established in VIV studies, as far as the authors are aware, this represents the first time that a point has been observed in the response regime of a freely oscillating structure in which three stable states have been observed, each corresponding to a different wake mode and vibration amplitude, for the same structural parameters, reduced velocity, and Reynolds number. This suggests that the mechanism determining which wake mode dominates and the fluid-structure interaction in the case of streamwise VIV may be more complex than has previously been thought. Finally, the vortex-formation and shedding processes associated with the A-II, SA, and A-IV modes were described using phase-averaged vorticity fields, and the differences between the SA and A-IV modes were discussed.

  12. The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity

    PubMed Central

    1979-01-01

    Frog sartorius muscles tetanized isometrically were released at a constant velocity from lengths lL to lS (delta l = lL -lS; Ls greater than lO). The tension PS redeveloped after the release was lower than the isometric tension PS at LS, and higher than the isometric tension PL at lL. The tension deficit D is defined as the difference PS-PS. The timing of the release during the tetanus did not influence D. D/PO was proportional to delta l/lO. The proportionality constant k was equal to 1.35 +/- 0.19 (n = 8) when the velocity of release was 2.5 mm/s. When the muscles were released the same delta l, D was found to be an exponential decreasing function of the velocity. The tension deficit was also found in experiments performed in the region lS less than lO. The proportionality constant k was smaller, but the influence of the velocity of the release on D was not modified. When the velocity of the release was changed during the release, D changed accordingly, showing that the effects of delta l and V are multiplicative. These facts suggest a working hypothesis based on the concept that the actin filaments which enter the overlap region during a release are strained by the tetanic stress and therefore unable to make normal cross-bridges. PMID:312915

  13. Non-contact measurement of pulse wave velocity using RGB cameras

    NASA Astrophysics Data System (ADS)

    Nakano, Kazuya; Aoki, Yuta; Satoh, Ryota; Hoshi, Akira; Suzuki, Hiroyuki; Nishidate, Izumi

    2016-03-01

    Non-contact measurement of pulse wave velocity (PWV) using red, green, and blue (RGB) digital color images is proposed. Generally, PWV is used as the index of arteriosclerosis. In our method, changes in blood volume are calculated based on changes in the color information, and is estimated by combining multiple regression analysis (MRA) with a Monte Carlo simulation (MCS) model of the transit of light in human skin. After two pulse waves of human skins were measured using RGB cameras, and the PWV was calculated from the difference of the pulse transit time and the distance between two measurement points. The measured forehead-finger PWV (ffPWV) was on the order of m/s and became faster as the values of vital signs raised. These results demonstrated the feasibility of this method.

  14. Determination of Residual Stress in Composite Materials Using Ultrasonic Waves

    NASA Technical Reports Server (NTRS)

    Rokhlin, S. I.

    1997-01-01

    The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual stresses. It is based on the generalized self-consistent multiple scattering model. Calculation results for longitudinal and shear ultrasonic wave velocities propagating perpendicular to the fibers direction in SCS-6/Ti composite with and without residual stresses are presented. They show that velocity changes due to presence of stresses are of order 1%.

  15. Noise Radiation from Single and Multiple Rod Configurations

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2006-01-01

    Acoustic measurements were performed on single and multiple rod configurations to study the effect of Reynolds number, surface roughness, freestream turbulence, proximity and wake interference on the radiated noise. The Reynolds number ranged from 3.8 x 10(exp 3) to 10(exp 5). Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the different model configurations tested. The dependence of the peak Sound Pressure Level on velocity was also examined. Several concepts for the reduction of the noise radiating from cylindrical rods were tested. It was shown that wire wraps and collar distributions could be used to significantly reduce the noise radiating from rods in tandem configurations.

  16. Planar near-nozzle velocity measurements during a single high-pressure fuel injection

    NASA Astrophysics Data System (ADS)

    Schlüßler, Raimund; Gürtler, Johannes; Czarske, Jürgen; Fischer, Andreas

    2015-09-01

    In order to reduce the fuel consumption and exhaust emissions of modern Diesel engines, the high-pressure fuel injections have to be optimized. This requires continuous, time-resolved measurements of the fuel velocity distribution during multiple complete injection cycles, which can provide a deeper understanding of the injection process. However, fuel velocity measurements at high-pressure injection nozzles are a challenging task due to the high velocities of up to 300 m/s, the short injection durations in the range and the high fuel droplet density especially near the nozzle exit. In order to solve these challenges, a fast imaging Doppler global velocimeter with laser frequency modulation (2D-FM-DGV) incorporating a high-speed camera is presented. As a result, continuous planar velocity field measurements are performed with a measurement rate of 200 kHz in the near-nozzle region of a high-pressure Diesel injection. The injection system is operated under atmospheric surrounding conditions with injection pressures up to 1400 bar thereby reaching fuel velocities up to 380 m/s. The measurements over multiple entire injection cycles resolved the spatio-temporal fluctuations of the fuel velocity, which occur especially for low injection pressures. Furthermore, a sudden setback of the velocity at the beginning of the injection is identified for various injection pressures. In conclusion, the fast measurement system enables the investigation of the complete temporal behavior of single injection cycles or a series of it. Since this eliminates the necessity of phase-locked measurements, the proposed measurement approach provides new insights for the analysis of high-pressure injections regarding unsteady phenomena.

  17. Nonperturbative evaluation of the physical classical velocity in the lattice heavy quark effective theory

    NASA Astrophysics Data System (ADS)

    Mandula, Jeffrey E.; Ogilvie, Michael C.

    1998-02-01

    In the lattice formulation of heavy quark effective theory, the value of the ``classical velocity'' v, as defined through the separation of the four-momentum of a heavy quark into a part proportional to the heavy quark mass and a residual part that remains finite in the heavy quark limit (P=Mv+p), is different from its value as it appears in the bare heavy quark propagator [S-1(p)=v.p]. The origin of the difference, which is effectively a lattice-induced renormalization, is the reduction of Lorentz [or O(4)] invariance to (hyper)cubic invariance. The renormalization is finite and depends specifically on the form of the discretization of the reduced heavy quark Dirac equation. For the forward time, centered space discretization, we compute this renormalization nonperturbatively, using an ensemble of lattices at β=6.1 provided by the Fermilab ACP-MAPS Collaboration. The calculation makes crucial use of a variationally optimized smeared operator for creating composite heavy-light mesons. It has the property that its propagator achieves an asymptotic plateau in just a few Euclidean time steps. For comparison, we also compute the shift perturbatively, to one loop in lattice perturbation theory. The nonperturbative calculation of the leading multiplicative shift in the classical velocity is considerably different from the one-loop estimate and indicates that for the above parameters v--> is reduced by about 10-13 %.

  18. A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories.

    NASA Astrophysics Data System (ADS)

    Straka, Jerry M.; Mansell, Edward R.

    2005-04-01

    A single-moment bulk microphysics scheme with multiple ice precipitation categories is described. It has 2 liquid hydrometeor categories (cloud droplets and rain) and 10 ice categories that are characterized by habit, size, and density—two ice crystal habits (column and plate), rimed cloud ice, snow (ice crystal aggregates), three categories of graupel with different densities and intercepts, frozen drops, small hail, and large hail. The concept of riming history is implemented for conversions among the graupel and frozen drops categories. The multiple precipitation ice categories allow a range of particle densities and fall velocities for simulating a variety of convective storms with minimal parameter tuning. The scheme is applied to two cases—an idealized continental multicell storm that demonstrates the ice precipitation process, and a small Florida maritime storm in which the warm rain process is important.

  19. Combined adaptive multiple subtraction based on optimized event tracing and extended wiener filtering

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Song, Peng; Li, Jinshan; Wang, Lei; Zhong, Mengxuan; Zhang, Xiaobo

    2017-06-01

    The surface-related multiple elimination (SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.

  20. Motor-substrate interactions in mycoplasma motility explains non-Arrhenius temperature dependence.

    PubMed

    Chen, Jing; Neu, John; Miyata, Makoto; Oster, George

    2009-12-02

    Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by approximately 400 "leg" proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10-40 degrees C. This corresponds to an Arrhenius factor that decreases from approximately 45 k(B)T at 10 degrees C to approximately 10 k(B)T at 40 degrees C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction.

  1. Motor-Substrate Interactions in Mycoplasma Motility Explains Non-Arrhenius Temperature Dependence

    PubMed Central

    Chen, Jing; Neu, John; Miyata, Makoto; Oster, George

    2009-01-01

    Abstract Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by ∼400 “leg” proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10–40°C. This corresponds to an Arrhenius factor that decreases from ∼45 kBT at 10°C to ∼10 kBT at 40°C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction. PMID:19948122

  2. Imbalance in Multiple Sclerosis: A Result of Slowed Spinal Somatosensory Conduction

    PubMed Central

    Cameron, Michelle H.; Horak, Fay B.; Herndon, Robert R.; Bourdette, Dennis

    2009-01-01

    Balance problems and falls are common in people with multiple sclerosis (MS) but their cause and nature are not well understood. It is known that MS affects many areas of the central nervous system that can impact postural responses to maintain balance, including the cerebellum and the spinal cord. Cerebellar balance disorders are associated with normal latencies but reduced scaling of postural responses. We therefore examined the latency and scaling of automatic postural responses, and their relationship to somatosensory evoked potentials (SSEPs), in 10 people with MS and imbalance and 10 age-, sex-matched, healthy controls. The latency and scaling of postural responses to backward surface translations of 5 different velocities and amplitudes, and the latency of spinal and supraspinal somatosensory conduction, were examined. Subjects with MS had large, but very delayed automatic postural response latencies compared to controls (161ms ± 31 vs 102 ± 21, p < 0.01) and these postural response latencies correlated with the latencies of their spinal SSEPs (r=0.73, p< 0.01). Subjects with MS also had normal or excessive scaling of postural response amplitude to perturbation velocity and amplitude. Longer latency postural responses were associated with less velocity scaling and more amplitude scaling. Balance deficits in people with MS appear to be caused by slowed spinal somatosensory conduction and not by cerebellar involvement. People with MS appear to compensate for their slowed spinal somatosensory conduction by increasing the amplitude scaling and the magnitude of their postural responses. PMID:18570015

  3. Penetration of multiple thin films in micrometeorite capture cells

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.

    1994-01-01

    As part of a continuing effort to develop cosmic dust detectors/collectors for use in space, we performed a series of hypervelocity impact experiments on combined sensor/capture-cell assemblies using 10-200-micron-diameter glass projectiles and olivine crystals at velocities of 0.9-14.4 km/s. The design objective of the space-flight instrument is to measure the trajectories of individual particles with sufficient accuracy to permit identification of their parent bodies and to capture enough impactor material to allow chemical and isotopic analyses of samples returned to Earth. Three different multiple-film small-particle capture cell designs (0.1-100-micron-thick Al foils with approx. 10, 100, and 1800 micron spacing) were evaluated for their ability to capture impactor fragments and residue. Their performances were compared to two other types of capture cells, foil covered Ge crystals, and 0.50 and 0.120 g/cu cm aerogels. All capture cells were tested behind multifilm (1.4-6.0-micron-thick) polyvinylidene fluoride (PVDF) velocity/trajectory sensor devices. Several tests were also done without the PVDF sensors for comparison. The results of this study were reported by Simon in a comprehensive report in which the morphology of impacts and impactor residues in various types of capture cells after passage through two PVDF sensor films is discussed. Impactor fragments in selected capture cells from impacts at velocities up to 6.4 km/s were identified using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS).

  4. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  5. Strength and Power Correlates of Throwing Velocity on Subelite Male Cricket Players.

    PubMed

    Freeston, Jonathan L; Carter, Thomas; Whitaker, Gary; Nicholls, Owen; Rooney, Kieron B

    2016-06-01

    Throwing velocity is an important aspect of fielding in cricket to affect run-outs and reduce the opponent's run-scoring opportunities. Although a relationship between strength and/or power and throwing velocity has been well established in baseball, water polo, and European handball, it has not been adequately explored in cricket. Consequently, this study aimed to determine the relationship between measures of strength and/or power and throwing velocity in cricket players. Seventeen male cricket players (mean ± SD; age, 21.1 ± 1.6 years; height, 1.79 ± 0.06 m; weight, 79.8 ± 6.4 kg) from an elite athlete program were tested for maximal throwing velocity from the stretch position and after a 3-meter shuffle. They were also assessed for strength and power using a range of different measures. Throwing velocity from the stretch position (30.5 ± 2.4 m·s) was significantly related to dominant leg lateral-to-medial jump (LMJ) distance (r = 0.71; p < 0.01), dominant shoulder internal rotation (IR) strength (r = 0.55; p ≤ 0.05), and dominant (r = 0.73; p < 0.01) and nondominant (r = 0.54; p ≤ 0.05) medicine ball rotation (MB Rot) throw velocity and medicine ball chest pass (MB CP) distance (r = 0.67; p < 0.01). A nonsignificant trend was observed for vertical jump (VJ) height (p = 0.06), whereas no significant relationships were observed for nondominant LMJ distance (p = 0.97), nondominant shoulder IR strength (p = 0.80), 1 repetition maximum (RM) squat strength (p = 0.57), 1RM bench press strength (p = 0.90), height (p = 0.33), or weight (p = 0.29). Multiple regression analysis revealed that dominant MB Rot and MB CP explained 66% of the variance. The results were similar for velocity after a shuffle step (31.8 ± 2.1 m·s); however, VJ height reached statistical significance (r = 0.51; p ≤ 0.05). The multiple regression was also similar with MB Rot and MB CP explaining 70% of the variance. The cricketers in this study threw with greater velocity than elite junior and subelite senior cricketers but with lower velocities than elite senior cricketers and collegiate level and professional baseball players. This is the first study to demonstrate a link between strength and/or power and throwing velocity in cricket players and highlight the importance of power development as it relates to throwing velocity. Exercises that more closely simulated the speed (body weight jumps and medicine ball throws) or movement pattern (shoulder IR) of overhead throwing were greater predictors of throwing velocity. Strength and conditioning staff should assess and develop power to enhance throwing performance in cricket players. Exercises with greater movement and speed specificity to throwing should be used in preference over exercises that are slower and have less movement specificity to the throwing motion. Cricket players should engage in power training to bridge the gap in performance between them and baseball players.

  6. Kinematic and kinetic comparisons between American and Korean professional baseball pitchers.

    PubMed

    Escamilla, Rafael; Fleisig, Glen; Barrentine, Steven; Andrews, James; Moorman, Claude

    2002-07-01

    The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three-dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.

  7. Cardiovascular System during the Post Partum State in Women with a History of Preeclampsia

    PubMed Central

    Evans, Caroline S.; Gooch, Linda; Flotta, Deborah; Lykins, David; Powers, Robert W.; Landsittel, Douglas; Roberts, James M.; Shroff, Sanjeev G.

    2011-01-01

    Hypothesis In subjects with previous preeclampsia, differences in cardiovascular and/or blood biochemical parameters are present in the non-pregnant state and that a simultaneous assessment of multiple derived indices better differentiates between women with or without prior preeclampsia. We examined 18 prior preeclamptic and 50 prior uncomplicated pregnancies, ~16 months post partum. Cardiovascular assessment included: (1) systemic hemodynamics and mechanics (Doppler echocardiography, tonometry, oscillometric sphygmomanometry) (2) endothelial function (plethysmography) (3) left ventricular properties (echocardiography), and (4) blood biochemical analyses. Compared to women with prior uncomplicated pregnancies, prior preeclamptics had higher mean (80±1 vs. 86±3 mmHg, P=0.04) and diastolic (64±1 vs. 68±2 mmHg; P=0.04) pressures and total vascular resistance (1562±37 vs. 1784±114 dyne•s/cm5; P=0.03). Systolic blood pressure, arterial compliance, and left ventricular properties were not different. While heart-to-femoral pulse wave velocity was not different, heart-to-brachial pulse wave velocity tended to be faster in prior preeclamptics (374±8 vs. 404±20 cm/s; P=0.06). Stress-induced increase in forearm blood flow was less in prior preeclamptics (245±21% vs. 136±22%; P=0.01), indicating impaired endothelial function. No significant differences were observed in markers of endothelial activation, dyslipidemia, or oxidative stress; prior preeclamptics tended to have higher glucose level (58.7±1.9 vs. 95±5.2 mg/dl; P=0.06). Logistic regression analysis indicated that a simultaneous evaluation of multiple derived indices better discriminated between the two groups. The differences in the prior preeclamptic group are in directions known to be associated with greater cardiovascular disease risk later in life. PMID:21606389

  8. Global multiresolution models of surface wave propagation: comparing equivalently regularized Born and ray theoretical solutions

    NASA Astrophysics Data System (ADS)

    Boschi, Lapo

    2006-10-01

    I invert a large set of teleseismic phase-anomaly observations, to derive tomographic maps of fundamental-mode surface wave phase velocity, first via ray theory, then accounting for finite-frequency effects through scattering theory, in the far-field approximation and neglecting mode coupling. I make use of a multiple-resolution pixel parametrization which, in the assumption of sufficient data coverage, should be adequate to represent strongly oscillatory Fréchet kernels. The parametrization is finer over North America, a region particularly well covered by the data. For each surface-wave mode where phase-anomaly observations are available, I derive a wide spectrum of plausible, differently damped solutions; I then conduct a trade-off analysis, and select as optimal solution model the one associated with the point of maximum curvature on the trade-off curve. I repeat this exercise in both theoretical frameworks, to find that selected scattering and ray theoretical phase-velocity maps are coincident in pattern, and differ only slightly in amplitude.

  9. Ab initio multiple cloning simulations of pyrrole photodissociation: TKER spectra and velocity map imaging

    DOE PAGES

    Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.; ...

    2014-12-11

    In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less

  10. Ab initio multiple cloning simulations of pyrrole photodissociation: TKER spectra and velocity map imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.

    In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less

  11. Time dependent response of low velocity impact induced composite conical shells under multiple delamination

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.

  12. Elastic full-waveform inversion and parameterization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    NASA Astrophysics Data System (ADS)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-03-01

    Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^'), and velocity-impedance-II (α″, β″ and I_S^'). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.

  13. Elastic full-waveform inversion and parameterization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    DOE PAGES

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-03-06

    We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less

  14. Elastic full-waveform inversion and parameterization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less

  15. Elastic full-waveform inversion and parametrization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    NASA Astrophysics Data System (ADS)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-06-01

    Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density profile can be overestimated, underestimated or spatially distorted. Among the six cases, only the velocity-density parametrization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.

  16. Rayleigh Scattering Diagnostic for Simultaneous Measurements of Dynamic Density and Velocity

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, J.

    2000-01-01

    A flow diagnostic technique based on the molecular Rayleigh scattering of laser light is used to obtain dynamic density and velocity data in turbulent flows. The technique is based on analyzing the Rayleigh scattered light with a Fabry-Perot interferometer and recording information about the interference pattern with a multiple anode photomultiplier tube (PMT). An artificial neural network is used to process the signals from the PMT to recover the velocity time history, which is then used to calculate the velocity power spectrum. The technique is illustrated using simulated data. The results of an experiment to measure the velocity power spectrum in a low speed (100 rn/sec) flow are also presented.

  17. Single-Shot Spectrally Resolved UV Rayleigh Scattering Measurements in High Speed Flow

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1996-01-01

    A single-shot UV molecular Rayleigh scattering technique to measure velocity in high speed flow is described. The beam from an injection-seeded, frequency quadrupled Nd:YAG laser (266 nm) is focused to a line in a free air jet with velocities up to Mach 1.3. Rayleigh scattered light is imaged through a planar mirror Fabry-Perot interferometer onto a Charged Coupled Device (CCD) array detector. Some laser light is also simultaneously imaged through the Fabry-Perot to provide a frequency reference. Two velocity measurements are obtained from each image. Multiple-pulse data are also given. The Rayleigh scattering velocity data show good agreement with velocities calculated from isentropic flow relations.

  18. High resolution crustal image of South California Continental Borderland: Reverse time imaging including multiples

    NASA Astrophysics Data System (ADS)

    Bian, A.; Gantela, C.

    2014-12-01

    Strong multiples were observed in marine seismic data of Los Angeles Regional Seismic Experiment (LARSE).It is crucial to eliminate these multiples in conventional ray-based or one-way wave-equation based depth image methods. As long as multiples contain information of target zone along travelling path, it's possible to use them as signal, to improve the illumination coverage thus enhance the image quality of structural boundaries. Reverse time migration including multiples is a two-way wave-equation based prestack depth image method that uses both primaries and multiples to map structural boundaries. Several factors, including source wavelet, velocity model, back ground noise, data acquisition geometry and preprocessing workflow may influence the quality of image. The source wavelet is estimated from direct arrival of marine seismic data. Migration velocity model is derived from integrated model building workflow, and the sharp velocity interfaces near sea bottom needs to be preserved in order to generate multiples in the forward and backward propagation steps. The strong amplitude, low frequency marine back ground noise needs to be removed before the final imaging process. High resolution reverse time image sections of LARSE Lines 1 and Line 2 show five interfaces: depth of sea-bottom, base of sedimentary basins, top of Catalina Schist, a deep layer and a possible pluton boundary. Catalina Schist shows highs in the San Clemente ridge, Emery Knoll, Catalina Ridge, under Catalina Basin on both the lines, and a minor high under Avalon Knoll. The high of anticlinal fold in Line 1 is under the north edge of Emery Knoll and under the San Clemente fault zone. An area devoid of any reflection features are interpreted as sides of an igneous plume.

  19. Erosive Hit-and-Run Impact Events: Debris Unbound

    NASA Astrophysics Data System (ADS)

    Sarid, Gal; Stewart, Sarah T.; Leinhardt, Zoë M.

    2016-01-01

    Erosive collisions among planetary embryos in the inner solar system can lead to multiple remnant bodies, varied in mass, composition and residual velocity. Some of the smaller, unbound debris may become available to seed the main asteroid belt. The makeup of these collisionally produced bodies is different from the canonical chondritic composition, in terms of rock/iron ratio and may contain further shock-processed material. Having some of the material in the asteroid belt owe its origin from collisions of larger planetary bodies may help in explaining some of the diversity and oddities in composition of different asteroid groups.

  20. Application of an iterative least-squares waveform inversion of strong-motion and teleseismic records to the 1978 Tabas, Iran, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Mendoza, C.

    1991-01-01

    An iterative least-squares technique is used to simultaneously invert the strong-motion records and teleseismic P waveforms for the 1978 Tabas, Iran, earthquake to deduce the rupture history. The effects of using different data sets and different parametrizations of the problem (linear versus nonlinear) are considered. A consensus of all the inversion runs indicates a complex, multiple source for the Tabas earthquake, with four main source regions over a fault length of 90 km and an average rupture velocity of 2.5 km/sec. -from Authors

  1. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    NASA Astrophysics Data System (ADS)

    Brandt, C.; Thakur, S. C.; Tynan, G. R.

    2016-04-01

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculations are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.

  2. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Max-Planck-Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald; Thakur, S. C.

    2016-04-15

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculationsmore » are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.« less

  3. Human sensitivity to differences in the rate of auditory cue change.

    PubMed

    Maloff, Erin S; Grantham, D Wesley; Ashmead, Daniel H

    2013-05-01

    Measurement of sensitivity to differences in the rate of change of auditory signal parameters is complicated by confounds among duration, extent, and velocity of the changing signal. Dooley and Moore [(1988) J. Acoust. Soc. Am. 84(4), 1332-1337] proposed a method for measuring sensitivity to rate of change using a duration discrimination task. They reported improved duration discrimination when an additional intensity or frequency change cue was present. The current experiments were an attempt to use this method to measure sensitivity to the rate of change in intensity and spatial position. Experiment 1 investigated whether duration discrimination was enhanced when additional cues of rate of intensity change, rate of spatial position change, or both were provided. Experiment 2 determined whether participant listening experience or the testing environment influenced duration discrimination task performance. Experiment 3 assessed whether duration discrimination could be used to measure sensitivity to rates of changes in intensity and spatial position for stimuli with lower rates of change, as well as emphasizing the constancy of the velocity cue. Results of these experiments showed that duration discrimination was impaired rather than enhanced by the additional velocity cues. The findings are discussed in terms of the demands of listening to concurrent changes along multiple auditory dimensions.

  4. More Than Filaments and Cores: Statistical Study of Structure Formation and Dynamics in Nearby Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Chen, How-Huan; Goodman, Alyssa

    2018-01-01

    In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.

  5. Gait termination in individuals with multiple sclerosis.

    PubMed

    Roeing, Kathleen L; Wajda, Douglas A; Motl, Robert W; Sosnoff, Jacob J

    2015-09-01

    Despite the ubiquitous nature of gait impairment in multiple sclerosis (MS), there is limited information concerning the control of gait termination in individuals with MS. The purpose of this investigation was to examine planned gait termination in individuals with MS and healthy controls with and without cognitive distractors. Individuals with MS and age matched controls completed a series of gait termination tasks over a pressure sensitive walkway under non-distracting and cognitively distracting conditions. As expected the MS group had a lower velocity (89.9±33.3 cm/s) than controls (142.8±22.4 cm/s) and there was a significant reduction in velocity in both groups under the cognitive distracting conditions (MS: 73.9±30.7 cm/s; control: 120.0±25.9 cm/s). Although individuals with MS walked slower, there was no difference between groups in the rate a participant failed to stop at the target (i.e. failure rate). Overall failure rate had a 10-fold increase in the cognitively distracting condition across groups. Individuals with MS were more unstable during termination. Future research examining the neuromuscular mechanisms contributing to gait termination is warranted. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Ion acceleration by multiple reflections at Martian bow shock

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Futaana, Y.; Fedorov, A.; Frahm, R. A.; Dubinin, E.; Lundin, R.; Sauvaud, J.-A.; Winningham, J. D.; Barabash, S.; Holmström, M.

    2012-02-01

    The ion mass analyzer (IMA) on board Mars Express revealed bundled structures of ions in the energy domain within a distance of a proton gyroradius from the Martian bow shock. Seven prominent traversals during 2005 were examined when the energy-bunched structure was observed together with pick-up ions of exospheric origin, the latter of which is used to determine the local magnetic field orientation from its circular trajectory in velocity space. These seven traversals include different bow shock configurations: (a) quasi-perpendicular shock with its specular direction of the solar wind more perpendicular to the magnetic field (QT), (b) quasi-perpendicular shock with its specular reflection direction of the solar wind more along the magnetic field (FS), and (c) quasi-parallel (QL) shock. In all seven cases, the velocity components of the energy-bunched structure are consistent with multiple specular reflections of the solar wind at the bow shock up to at least two reflections. The accelerated solar wind ions after two specular reflections have large parallel components with respect to the magnetic field for both QL cases whereas the field-aligned speed is much smaller than the perpendicular speed for all QT cases.

  7. Multiple-hopping trajectories near a rotating asteroid

    NASA Astrophysics Data System (ADS)

    Shen, Hong-Xin; Zhang, Tian-Jiao; Li, Zhao; Li, Heng-Nian

    2017-03-01

    We present a study of the transfer orbits connecting landing points of irregular-shaped asteroids. The landing points do not touch the surface of the asteroids and are chosen several meters above the surface. The ant colony optimization technique is used to calculate the multiple-hopping trajectories near an arbitrary irregular asteroid. This new method has three steps which are as follows: (1) the search of the maximal clique of candidate target landing points; (2) leg optimization connecting all landing point pairs; and (3) the hopping sequence optimization. In particular this method is applied to asteroids 433 Eros and 216 Kleopatra. We impose a critical constraint on the target landing points to allow for extensive exploration of the asteroid: the relative distance between all the arrived target positions should be larger than a minimum allowed value. Ant colony optimization is applied to find the set and sequence of targets, and the differential evolution algorithm is used to solve for the hopping orbits. The minimum-velocity increment tours of hopping trajectories connecting all the landing positions are obtained by ant colony optimization. The results from different size asteroids indicate that the cost of the minimum velocity-increment tour depends on the size of the asteroids.

  8. The Influence of Volcanic Processes on the Distribution of Seismic Velocity Changes at Piton de la Fournaise Volcano (La Reunion)

    NASA Astrophysics Data System (ADS)

    Sens-Schönfelder, Christoph; Pomponi, Eraldo

    2014-05-01

    The velocity of seismic waves propagating in the edifice of Piton de la Fournaise volcano (La Reunion) is known to change in response to volcanic eruptions. Here we present a detailed investigation of a the period from end of 2009 until end of 2011 that contains eruptions, non-eruptive intrusions and periods of relaxation and perform a detailed comparison of the associated velocity signals. We use data from by 21 seismograph stations of the IPGP/OVPF seismic network installed on Piton de la Fournaise volcano within the UnderVolc project. Seismic noise of vertical and horizontal components of all possible station pairs is cross-correlated in chunks of 24 hours to obtain daily approximations of Green's functions in order to monitor tiny changes in therein that are related to changes of the elastic properties in the volcano. Velocity changes are measured as apparent stretching of the coda. For some station pairs the apparent velocity changes exceed 1% and a decorrelation of waveforms is observed at the time of volcanic activity. This distorts monitoring results if changes are measured with respect to a global reference. To overcome this we present a method to estimate changes using multiple references that stabilizes the quality of estimated velocity changes. We observe abrupt changes that occur coincident with volcanic events as well as long term transient signals. Using a simple assumption about the spatial sensitivity of our measurements we can map the spatial distribution of velocity changes for selected periods. Comparing these signals with volcanic activity and GPS derived surface displacement we can identify patterns of the velocity changes that appear characteristic for the different types of volcanic activity. We can differentiate intrusive processes associated with inflation and increased seismic activity, periods of relaxation without seismicity and eruptions solely based on the velocity signal. This information can help to assess the processes acting in the volcano by offering an alternative observable to GPS, seismicity and tilt.

  9. Galactic googly: the rotation-metallicity bias in the inner stellar halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Kafle, Prajwal R.; Sharma, Sanjib; Robotham, Aaron S. G.; Pradhan, Raj K.; Guglielmo, Magda; Davies, Luke J. M.; Driver, Simon P.

    2017-09-01

    The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Galactic halo have largely remained 'known unknowns'. Fortunately, our off-centric position within the Galaxy allows us to estimate these moments in the galactocentric frame using the observed radial velocities of the stars alone. We use these velocities coupled with the hierarchical Bayesian scheme, which allows easy marginalization over the missing data (the proper motion, and uncertainty-free distance and line-of-sight velocity), to measure the velocity dispersions, orbital anisotropy (β) and streaming motion (vrot) of the halo main-sequence turn-off (MSTO) and K-giant (KG) stars in the inner stellar halo (r ≲ 15 kpc). We study the metallicity bias in kinematics of the halo stars and observe that the comparatively metal-rich ([Fe/H] > -1.4) and the metal-poor ([Fe/H] ≤ -1.4) MSTO samples show a clear systematic difference in vrot ˜ 20-40 km s - 1, depending on how restrictive the spatial cuts to cull the disc contamination are. The bias is also detected in KG samples but with less certainty. Both MSTO and KG populations suggest that the inner stellar halo of the Galaxy is radially biased I.e. σr > σθ or σϕ and β ≃ 0.5. The apparent metallicity contrariety in the rotation velocity among the halo sub-populations supports the co-existence of multiple populations in the galactic halo that may have formed through distinct formation scenarios, I.e. in situ versus accretion.

  10. Correlative velocity fluctuations over a gravel river bed

    USGS Publications Warehouse

    Dinehart, Randal L.

    1999-01-01

    Velocity fluctuations in a steep, coarse‐bedded river were measured in flow depths ranging from 0.8 to 2.2 m, with mean velocities at middepth from 1.1 to 3.1 m s−1. Analyses of synchronous velocity records for two and three points in the vertical showed a broad range of high coherence for wave periods from 10 to 100 s, centering around 10–30 s. Streamwise correlations over distances of 9 and 14 m showed convection velocities near mean velocity for the same wave periods. The range of coherent wave periods was a small multiple of predicted “boil” periods. Correlative fluctuations in synchronous velocity records in the vertical direction suggested the blending of short pulses into longer wave periods. The highest spectral densities were measured beyond the range of coherent wave periods and were probably induced by migration of low‐relief bed forms.

  11. Ballistic Fracturing of Carbon Nanotubes.

    PubMed

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.

  12. Ionospheric electron number densities from CUTLASS dual-frequency velocity measurements using artificial backscatter over EISCAT

    NASA Astrophysics Data System (ADS)

    Sarno-Smith, Lois K.; Kosch, Michael J.; Yeoman, Timothy; Rietveld, Michael; Nel, Amore'; Liemohn, Michael W.

    2016-08-01

    Using quasi-simultaneous line-of-sight velocity measurements at multiple frequencies from the Hankasalmi Cooperative UK Twin Auroral Sounding System (CUTLASS) on the Super Dual Auroral Radar Network (SuperDARN), we calculate electron number densities using a derivation outlined in Gillies et al. (2010, 2012). Backscatter targets were generated using the European Incoherent Scatter (EISCAT) ionospheric modification facility at Tromsø, Norway. We use two methods on two case studies. The first approach is to use the dual-frequency capability on CUTLASS and compare line-of-sight velocities between frequencies with a MHz or greater difference. The other method used the kHz frequency shifts automatically made by the SuperDARN radar during routine operations. Using ray tracing to obtain the approximate altitude of the backscatter, we demonstrate that for both methods, SuperDARN significantly overestimates Ne compared to those obtained from the EISCAT incoherent scatter radar over the same time period. The discrepancy between the Ne measurements of both radars may be largely due to SuperDARN sensitivity to backscatter produced by localized density irregularities which obscure the background levels.

  13. A Multi-epoch Kinematic Study of the Remote Dwarf Spheroidal Galaxy Leo II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Meghin E.; Mateo, Mario; Walker, Matthew G.

    2017-02-20

    We conducted a large spectroscopic survey of 336 red giants in the direction of the Leo II dwarf galaxy using Hectochelle on the Multiple Mirror Telescope, and we conclude that 175 of them are members based on their radial velocities and surface gravities. Of this set, 40 stars have never before been observed spectroscopically. The systemic velocity of the dwarf is 78.3 ± 0.6 km s{sup −1} with a velocity dispersion of 7.4 ± 0.4 km s{sup −1}. We identify one star beyond the tidal radius of Leo II but find no signatures of uniform rotation, kinematic asymmetries, or streams.more » The stars show a strong metallicity gradient of −1.53 ± 0.10 dex kpc{sup −1} and have a mean metallicity of −1.70 ± 0.02 dex. There is also evidence of two different chemodynamic populations, but the signal is weak. A larger sample of stars would be necessary to verify this feature.« less

  14. Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.

    PubMed

    Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R

    2017-08-21

    Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.

  15. Microfluidic Flows and Heat Transfer and Their Influence on Optical Modes in Microstructure Fibers

    PubMed Central

    Davies, Edward; Christodoulides, Paul; Florides, George; Kalli, Kyriacos

    2014-01-01

    A finite element analysis (FEA) model has been constructed to predict the thermo-fluidic and optical properties of a microstructure optical fiber (MOF) accounting for changes in external temperature, input water velocity and optical fiber geometry. Modeling a water laminar flow within a water channel has shown that the steady-state temperature is dependent on the water channel radius while independent of the input velocity. There is a critical channel radius below which the steady-state temperature of the water channel is constant, while above, the temperature decreases. However, the distance required to reach steady state within the water channel is dependent on both the input velocity and the channel radius. The MOF has been found capable of supporting multiple modes. Despite the large thermo-optic coefficient of water, the bound modes’ response to temperature was dominated by the thermo-optic coefficient of glass. This is attributed to the majority of the light being confined within the glass, which increased with increasing external temperature due to a larger difference in the refractive index between the glass core and the water channel. PMID:28788263

  16. A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3.

    PubMed

    Nowroozi, Amin; Shahlaei, Mohsen

    2017-02-01

    In this study, a computational pipeline was therefore devised to overcome homology modeling (HM) bottlenecks. The coupling of HM with molecular dynamics (MD) simulation is useful in that it tackles the sampling deficiency of dynamics simulations by providing good-quality initial guesses for the native structure. Indeed, HM also relaxes the severe requirement of force fields to explore the huge conformational space of protein structures. In this study, the interaction between the human bombesin receptor subtype-3 and MK-5046 was investigated integrating HM, molecular docking, and MD simulations. To improve conformational sampling in typical MD simulations of GPCRs, as in other biomolecules, multiple trajectories with different initial conditions can be employed rather than a single long trajectory. Multiple MD simulations of human bombesin receptor subtype-3 with different initial atomic velocities are applied to sample conformations in the vicinity of the structure generated by HM. The backbone atom conformational space distribution of replicates is analyzed employing principal components analysis. As a result, the averages of structural and dynamic properties over the twenty-one trajectories differ significantly from those obtained from individual trajectories.

  17. EVALUATING THE MORPHOLOGY OF THE LOCAL INTERSTELLAR MEDIUM: USING NEW DATA TO DISTINGUISH BETWEEN MULTIPLE DISCRETE CLOUDS AND A CONTINUOUS MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redfield, Seth; Linsky, Jeffrey L., E-mail: sredfield@wesleyan.edu, E-mail: jlinsky@jila.colorado.edu

    Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield and Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry and Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that themore » multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests.« less

  18. Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones

    PubMed Central

    T. Potsika, Vassiliki; N. Grivas, Konstantinos; Gortsas, Theodoros; Iori, Gianluca; C. Protopappas, Vasilios; Raum, Kay; Polyzos, Demosthenes; I. Fotiadis, Dimitrios

    2016-01-01

    Computational studies on the evaluation of bone status in cases of pathologies have gained significant interest in recent years. This work presents a parametric and systematic numerical study on ultrasound propagation in cortical bone models to investigate the effect of changes in cortical porosity and the occurrence of large basic multicellular units, simply called non-refilled resorption lacunae (RL), on the velocity of the first arriving signal (FAS). Two-dimensional geometries of cortical bone are established for various microstructural models mimicking normal and pathological tissue states. Emphasis is given on the detection of RL formation which may provoke the thinning of the cortical cortex and the increase of porosity at a later stage of the disease. The central excitation frequencies 0.5 and 1 MHz are examined. The proposed configuration consists of one point source and multiple successive receivers in order to calculate the FAS velocity in small propagation paths (local velocity) and derive a variation profile along the cortical surface. It was shown that: (a) the local FAS velocity can capture porosity changes including the occurrence of RL with different number, size and depth of formation; and (b) the excitation frequency 0.5 MHz is more sensitive for the assessment of cortical microstructure. PMID:28773331

  19. Single-station 6C beamforming

    NASA Astrophysics Data System (ADS)

    Nakata, N.; Hadziioannou, C.; Igel, H.

    2017-12-01

    Six-component measurements of seismic ground motion provide a unique opportunity to identify and decompose seismic wavefields into different wave types and incoming azimuths, as well as estimate structural information (e.g., phase velocity). By using the relationship between the transverse component and vertical rotational motion for Love waves, we can find the incident azimuth of the wave and the phase velocity. Therefore, when we scan the entire range of azimuth and slownesses, we can process the seismic waves in a similar way to conventional beamforming processing, without using a station array. To further improve the beam resolution, we use the distribution of amplitude ratio between translational and rotational motions at each time sample. With this beamforming, we decompose multiple incoming waves by azimuth and phase velocity using only one station. We demonstrate this technique using the data observed at Wettzell (vertical rotational motion and 3C translational motions). The beamforming results are encouraging to extract phase velocity at the location of the station, apply to oceanic microseism, and to identify complicated SH wave arrivals. We also discuss single-station beamforming using other components (vertical translational and horizontal rotational components). For future work, we need to understand the resolution limit of this technique, suitable length of time windows, and sensitivity to weak motion.

  20. A classification of the galaxy groups

    NASA Technical Reports Server (NTRS)

    Anosova, Joanna P.

    1990-01-01

    A statistical criterion has been proposed to reveal the random and physical clusterings among stars, galaxies and other objects. This criterion has been applied to the galaxy triples of the list by Karachentseva, Karaschentsev and Scherbanovsky, and the double galaxies of the list by Dahari where the primary components are the Seyfert galaxies. The confident physical, probable physical, probable optical and confident optical groups have been identified. The limit difference of radial velocities of components for the confident physical multiple galaxies has also been estimated.

  1. A trajectory design method via target practice for air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Kong, Xue; Yang, Ming; Ning, Guodong; Wang, Songyan; Chao, Tao

    2017-11-01

    There are strong coupling interactions between aerodynamics and scramjet, this kind of aircraft also has multiple restrictions, such as the range and difference of dynamic pressure, airflow, and fuel. On the one hand, we need balance the requirement between maneuverability of vehicle and stabilization of scramjet. On the other hand, we need harmonize the change of altitude and the velocity. By describing aircraft's index system of climbing capability, acceleration capability, the coupling degree in aerospace, this paper further propose a rapid design method which based on target practice. This method aimed for reducing the coupling degree, it depresses the coupling between aircraft and engine in navigation phase, satisfy multiple restriction conditions to leave some control buffer and create good condition for control implementation. According to the simulation, this method could be used for multiple typical fly commissions such as climbing, acceleration or both.

  2. Optic probe for multiple angle image capture and optional stereo imaging

    DOEpatents

    Malone, Robert M.; Kaufman, Morris I.

    2016-11-29

    A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.

  3. LLE Review 117 (October-December 2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bittle, W., editor

    2009-05-28

    This volume of the LLE Review, covering October-December 2008, features 'Demonstration of the Shock-Timing Technique for Ignition Targets at the National Ignition Facility' by T. R. Boehly, V. N. Goncharov, S. X. Hu, J. A. Marozas, T. C. Sangster, D. D. Meyerhofer (LLE), D. Munro, P. M. Celliers, D. G. Hicks, G. W. Collins, H. F. Robey, O. L. Landen (LLNL), and R. E. Olson (SNL). In this article (p. 1) the authors report on a technique to measure the velocity and timing of shock waves in a capsule contained within hohlraum targets. This technique is critical for optimizing themore » drive profiles for high-performance inertial-confinement-fusion capsules, which are compressed by multiple precisely timed shock waves. The shock-timing technique was demonstrated on OMEGA using surrogate hohlraum targets heated to 180 eV and fitted with a re-entrant cone and quartz window to facilitate velocity measurements using velocity interferometry. Cryogenic experiments using targets filled with liquid deuterium further demonstrated the entire timing technique in a hohlraum environment. Direct-drive cryogenic targets with multiple spherical shocks were also used to validate this technique, including convergence effects at relevant pressures (velocities) and sizes. These results provide confidence that shock velocity and timing can be measured in NIF ignition targets, thereby optimizing these critical parameters.« less

  4. Ultrasound-guided identification of cardiac imaging windows.

    PubMed

    Liu, Garry; Qi, Xiu-Ling; Robert, Normand; Dick, Alexander J; Wright, Graham A

    2012-06-01

    Currently, the use of cine magnetic resonance imaging (MRI) to identify cardiac quiescent periods relative to the electrocardiogram (ECG) signal is insufficient for producing submillimeter-resolution coronary MR angiography (MRA) images. In this work, the authors perform a time series comparison between tissue Doppler echocardiograms of the interventricular septum (IVS) and concurrent biplane x-ray angiograms. Our results indicate very close agreement between the diastasis gating windows identified by both the IVS and x-ray techniques. Seven cath lab patients undergoing diagnostic angiograms were simultaneously scanned during a breath hold by ultrasound and biplane x-ray for six to eight heartbeats. The heart rate of each patient was stable. Dye was injected into either the left or right-coronary vasculature. The IVS was imaged using color tissue Doppler in an apical four-chamber view. Diastasis was estimated on the IVS velocity curve. On the biplane angiograms, proximal, mid, and distal regions were identified on the coronary artery (CA). Frame by frame correlation was used to derive displacement, and then velocity, for each region. The quiescent periods for a CA and its subsegments were estimated based on velocity. Using Pearson's correlation coefficient and Bland-Altman analysis, the authors compared the start and end times of the diastasis windows as estimated from the IVS and CA velocities. The authors also estimated the vessel blur across the diastasis windows of multiple sequential heartbeats of each patient. In total, 17 heartbeats were analyzed. The range of heart rate observed across patients was 47-79 beats per minute (bpm) with a mean of 57 bpm. Significant correlations (R > 0.99; p < 0.01) were observed between the IVS and x-ray techniques for the identification of the start and end times of diastasis windows. The mean difference in the starting times between IVS and CA quiescent windows was -12.0 ms. The mean difference in end times between IVS and CA quiescent windows was -3.5 ms. In contrast, the correlation between RR interval and both the start and duration of the x-ray gating windows were relatively weaker: R = 0.63 (p = 0.13) and R = 0.86 (p = 0.01). For IVS gating windows, the average estimated vessel blurs during single and multiple heartbeats were 0.5 and 0.66 mm, respectively. For x-ray gating windows, the corresponding values were 0.26 and 0.44 mm, respectively. In this study, the authors showed that IVS velocity can be used to identify periods of diastasis for coronary arteries. Despite variability in mid-diastolic rest positions over multiple steady rate heartbeats, vessel blurring of 0.5-1 mm was found to be achievable using the IVS gating technique. The authors envision this leading to a new cardiac gating system that, compared with conventional ECG gating, provides better resolution and shorter scan times for coronary MRA. © 2012 American Association of Physicists in Medicine.

  5. Accuracy and Numerical Stabilty Analysis of Lattice Boltzmann Method with Multiple Relaxation Time for Incompressible Flows

    NASA Astrophysics Data System (ADS)

    Pradipto; Purqon, Acep

    2017-07-01

    Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.

  6. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, H.; Osada, A.; Itoh, S.; Kato, Y.

    2007-12-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  7. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, Hideki; Osada, Akinori; Kato, Yukio; Itoh, Shigeru

    2007-06-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  8. Hydrodynamic advantages of swimming by salp chains.

    PubMed

    Sutherland, Kelly R; Weihs, Daniel

    2017-08-01

    Salps are marine invertebrates comprising multiple jet-propelled swimming units during a colonial life-cycle stage. Using theory, we show that asynchronous swimming with multiple pulsed jets yields substantial hydrodynamic benefit due to the production of steady swimming velocities, which limit drag. Laboratory comparisons of swimming kinematics of aggregate salps ( Salpa fusiformis and Weelia cylindrica ) using high-speed video supported that asynchronous swimming by aggregates results in a smoother velocity profile and showed that this smoother velocity profile is the result of uncoordinated, asynchronous swimming by individual zooids. In situ flow visualizations of W. cylindrica swimming wakes revealed that another consequence of asynchronous swimming is that fluid interactions between jet wakes are minimized. Although the advantages of multi-jet propulsion have been mentioned elsewhere, this is the first time that the theory has been quantified and the role of asynchronous swimming verified using experimental data from the laboratory and the field. © 2017 The Author(s).

  9. Effect of a semi-annular thermal acoustic shield on jet exhaust noise

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J.

    1980-01-01

    Reductions in jet exhaust noise obtained by the use of an annular thermal acoustic shield consisting of a high temperature, low velocity gas stream surrounding a high velocity central jet exhaust appear to be limited by multiple reflections. The effect of a semi-annular shield on jet exhaust noise was investigted with the rationale that such a configuration would eliminate or reduce the multiple reflection mechanism. Noise measurements for a 10 cm conical nozzle with a semi-annular acoustic shield are presented in terms of lossless free field data at various angular locations with respect to the nozzle. Measurements were made on both the shielded and unshielded sides of the nozzle. The results are presented parametrically, showing the effects of various shield and central system velocities and temperatures. Selected results are scaled up to a typical full scale engine size to determine the perceived noise level reductions.

  10. Peeling linear inversion of upper mantle velocity structure with receiver functions

    NASA Astrophysics Data System (ADS)

    Shen, Xuzhang; Zhou, Huilan

    2012-02-01

    A peeling linear inversion method is presented to study the upper mantle (from Moho to 800 km depth) velocity structures with receiver functions. The influences of the crustal and upper mantle velocity ratio error on the inversion results are analyzed, and three valid measures are taken for its reduction. This method is tested with the IASP91 and the PREM models, and the upper mantle structures beneath the stations GTA, LZH, and AXX in northwestern China are then inverted. The results indicate that this inversion method is feasible to quantify upper mantle discontinuities, besides the discontinuities between 3 h M ( h M denotes the depth of Moho) and 5 h M due to the interference of multiples from Moho. Smoothing is used to overcome possible false discontinuities from the multiples and ensure the stability of the inversion results, but the detailed information on the depth range between 3 h M and 5 h M is sacrificed.

  11. Velocity barrier-controlled of spin-valley polarized transport in monolayer WSe2 junction

    NASA Astrophysics Data System (ADS)

    Qiu, Xuejun; Lv, Qiang; Cao, Zhenzhou

    2018-05-01

    In this work, we have theoretically investigated the influence of velocity barrier on the spin-valley polarized transport in monolayer (ML) WSe2 junction with a large spin-orbit coupling (SOC). Both the spin-valley resolved transmission probabilities and conductance are strong dependent on the velocity barrier, as the velocity barrier decreases to 0.06, a spin-valley polarization of exceeding 90% is observed, which is distinct from the ML MoS2 owing to incommensurable SOC. In addition, the spin-valley polarization is further increased above 95% in a ML WSe2 superlattice, in particular, it's found many extraordinary velocity barrier-dependent transport gaps for multiple barrier due to evanescent tunneling. Our results may open an avenue for the velocity barrier-controlled high-efficiency spin and valley polarizations in ML WSe2-based electronic devices.

  12. Simulations of kinetic electrostatic electron nonlinear (KEEN) waves with variable velocity resolution grids and high-order time-splitting

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros; Casas, Fernando; Crouseilles, Nicolas; Dodhy, Adila; Faou, Erwan; Mehrenberger, Michel; Sonnendrücker, Eric

    2014-10-01

    KEEN waves are non-stationary, nonlinear, self-organized asymptotic states in Vlasov plasmas. They lie outside the precepts of linear theory or perturbative analysis, unlike electron plasma waves or ion acoustic waves. Steady state, nonlinear constructs such as BGK modes also do not apply. The range in velocity that is strongly perturbed by KEEN waves depends on the amplitude and duration of the ponderomotive force generated by two crossing laser beams, for instance, used to drive them. Smaller amplitude drives manage to devolve into multiple highly-localized vorticlets, after the drive is turned off, and may eventually succeed to coalesce into KEEN waves. Fragmentation once the drive stops, and potential eventual remerger, is a hallmark of the weakly driven cases. A fully formed (more strongly driven) KEEN wave has one dominant vortical core. But it also involves fine scale complex dynamics due to shedding and merging of smaller vortical structures with the main one. Shedding and merging of vorticlets are involved in either case, but at different rates and with different relative importance. The narrow velocity range in which one must maintain sufficient resolution in the weakly driven cases, challenges fixed velocity grid numerical schemes. What is needed is the capability of resolving locally in velocity while maintaining a coarse grid outside the highly perturbed region of phase space. We here report on a new Semi-Lagrangian Vlasov-Poisson solver based on conservative non-uniform cubic splines in velocity that tackles this problem head on. An additional feature of our approach is the use of a new high-order time-splitting scheme which allows much longer simulations per computational effort. This is needed for low amplitude runs. There, global coherent structures take a long time to set up, such as KEEN waves, if they do so at all. The new code's performance is compared to uniform grid simulations and the advantages are quantified. The birth pains associated with weakly driven KEEN waves are captured in these simulations. Canonical KEEN waves with ample drive are also treated using these advanced techniques. They will allow the efficient simulation of KEEN waves in multiple dimensions, which will be tackled next, as well as generalizations to Vlasov-Maxwell codes. These are essential for pursuing the impact of KEEN waves in high energy density plasmas and in inertial confinement fusion applications. More generally, one needs a fully-adaptive grid-in-phase-space method which could handle all small vorticlet dynamics whether pealing off or remerging. Such fully adaptive grids would have to be computed sparsely in order to be viable. This two-velocity grid method is a concrete and fruitful step in that direction. Contribution to the Topical Issue "Theory and Applications of the Vlasov Equation", edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

  13. Comparison of intersecting pedestrian flows based on experiments

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Seyfried, A.

    2014-07-01

    Intersections of pedestrian flows feature multiple types, varying in the numbers of flow directions as well as intersecting angles. In this article results from intersecting flow experiments with two different intersecting angles are compared. To analyze the transport capabilities the Voronoi method is used to resolve the fine structure of the resulting velocity-density relations and spatial dependence of the measurements. The fundamental diagrams of various flow types are compared and show no apparent difference with respect to the intersecting angle 90° and 180°. This result indicates that head-on conflicts of different types of flow have the same influence on the transport properties of the system, which demonstrates the high self-organization capabilities of pedestrians.

  14. Transport Properties of Melanosomes along Microtubules Interpreted by a Tug-of-War Model with Loose Mechanical Coupling

    PubMed Central

    Bouzat, Sebastián; Levi, Valeria; Bruno, Luciana

    2012-01-01

    In this work, we explored theoretically the transport of organelles driven along microtubules by molecular motors of opposed polarities using a stochastic model that considers a Langevin dynamics for the cargo, independent cargo-motor linkers and stepping motion for the motors. It has been recently proposed that the stiffness of the motor plays an important role when multiple motors collectively transport a cargo. Therefore, we considered in our model the recently reported values for the stiffness of the cargo-motor linker determined in living cells (∼0.01 pN/nm, [1]) which is significantly lower than the motor stiffness obtained in in vitro assays and used in previous studies. Our model could reproduce the multimodal velocity distributions and typical trajectory characteristics including the properties of the reversions in the overall direction of motion observed during melanosome transport along microtubules in Xenopus laevis melanophores. Moreover, we explored the contribution of the different motility states of the cargo-motor system to the different modes of the velocity distributions and could identify the microscopic mechanisms of transport leading to trajectories compatible with those observed in living cells. Finally, by changing the attachment and detachment rates, the model could reproduce the different velocity distributions observed during melanosome transport along microtubules in Xenopus laevis melanophores stimulated for aggregation and dispersion. Our analysis suggests that active tug-of-war processes with loose mechanical coupling can account for several aspects of cargo transport along microtubules in living cells. PMID:22952716

  15. CARMENES input catalogue of M dwarfs. III. Rotation and activity from high-resolution spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Schöfer, P.; Lamert, A.; Reiners, A.; Montes, D.; Caballero, J. A.; Cortés-Contreras, M.; Marvin, C. J.; Passegger, V. M.; Zechmeister, M.; Quirrenbach, A.; Alonso-Floriano, F. J.; Amado, P. J.; Bauer, F. F.; Casal, E.; Alonso, E. Diez; Herrero, E.; Morales, J. C.; Mundt, R.; Ribas, I.; Sarmiento, L. F.

    2018-06-01

    CARMENES is a spectrograph for radial velocity surveys of M dwarfs with the aim of detecting Earth-mass planets orbiting in the habitable zones of their host stars. To ensure an optimal use of the CARMENES guaranteed time observations, in this paper we investigate the correlation of activity and rotation for approximately 2200 M dwarfs, ranging in spectral type from M0.0 V to M9.0 V. We present new high-resolution spectroscopic observations with FEROS, CAFE, and HRS of approximately 500 M dwarfs. For each new observation, we determined its radial velocity and measured its Hα activity index and its rotation velocity. Additionally, we have multiple observations of many stars to investigate if there are any radial velocity variations due to multiplicity. The results of our survey confirm that early-M dwarfs are Hα inactive with low rotational velocities and that late-M dwarfs are Hα active with very high rotational velocities. The results of this high-resolution analysis comprise the most extensive catalogue of rotation and activity in M dwarfs currently available. Based on observations made at the Calar Alto Observatory, Spain, the European Southern Observatory, La Silla, Chile and McDonald Observatory, USA.Tables A.1-A.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A76

  16. Search for companions in visual binary systems using precise radial-velocity measurements

    NASA Astrophysics Data System (ADS)

    Katoh, Noriyuki; Itoh, Yoichi; Sato, Bun'ei

    2018-05-01

    The frequency of triple and quadruple systems is considered to be high in the early phase of star formation. Some multiple systems decay in the pre-main-sequence phase. The multiplicity of main-sequence stars provides clues about the evolution of binary systems. This work searched for companions of five components of visual binary systems using precise radial-velocity measurements. Their radial velocities were monitored from 2007 to 2012 using the HIgh Dispersion Echelle Spectrograph (HIDES) installed on the Okayama Astrophysical Observatory (OAO) 1.88 m reflector. In combination with previous work, this work searched for companions with an orbital period of less than 9 yr for the five bodies. We found periodic variations in the radial velocities for ADS 6190 A and BDS 10966A. The radial velocities of ADS 7311 A, 31 Dra A, and 31 Dra B show significant trends. ADS 6190 A is an SB1 binary with an orbital period of 366.2 d. The minimum mass of the secondary star is 0.5^{+0.7}_{-0.2} M_{⊙}. The radial velocity of ADS 7311 A was monitored for an observational span of 3200 d. We rejected a planetary-mass companion as the cause of a decreasing trend in the radial velocity of ADS 7311 A. This work confirmed that the periodic variation in the radial velocity of BDS 10966 A is 771.1 d. Bisector analysis did not reveal a correlation between the asymmetry of a spectral line and the radial velocity of BDS 10966 A. We rejected nonradial oscillation of the photosphere as the source of the radial velocity variation. The variation may be caused by the rotational modulation owing to surface inhomogeneity. The orbital elements of 31 Dra A derived in this paper are consistent with those in a previous paper. 31 Dra A system is an SB1 binary with a minimum mass ratio of 0.30 ± 0.08. 31 Dra B exhibits a periodic variation in radial velocity. The orbital elements derived in this work are consistent with those reported previously by others. The variation is caused by a circumstellar planet.

  17. Lower Crstal Reflectity bands and Magma Emplacement in Norweigian sea, NE Atlantic

    NASA Astrophysics Data System (ADS)

    Rai, A.; Breivik, A. J.; Mjelde, R.

    2013-12-01

    In this study we present the OBS data collected along seismic profiles in the norweigian sea. The traveltime modelling of the OBS data provides first-hand information about seismic structure of the subsurface. However, waveform modelling is used to further constrain the fine scale structure, velocity constrast and velocity gradients. By forward modelling and inversion of the seismic waveforms, we show that the multiple bands of reflectivity could be due to multiple episodes of magma emplacements that might have frozen in the form of sills. These mafic intrusions probably intruded into the ductile lower crust during the main rifting phase of Europe and Greenland.

  18. A temporal PIV study of flame/obstacle generated vortex interactions within a semi-confined combustion chamber

    NASA Astrophysics Data System (ADS)

    Jarvis, S.; Hargrave, G. K.

    2006-01-01

    Experimental data obtained using a new multiple-camera digital particle image velocimetry (PIV) technique are presented for the interaction between a propagating flame and the turbulent recirculating velocity field generated during flame-solid obstacle interaction. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake recirculations. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. To investigate propagating flame/turbulence interaction, a novel multiple-camera digital PIV technique was used to provide high spatial and temporal characterization of the phenomenon for the turbulent flow field in the wake of three sequential obstacles. The technique allowed the quantification of the local flame speed and local flow velocity. Due to the accelerating nature of the explosion flow field, the wake flows develop 'transient' turbulent fields. Multiple-camera PIV provides data to define the spatial and temporal variation of both the velocity field ahead of the propagating flame and the flame front to aid the understanding of flame-vortex interaction. Experimentally obtained values for flame displacement speed and flame stretch are presented for increasing vortex complexity.

  19. Improving the analysis of slug tests

    USGS Publications Warehouse

    McElwee, C.D.

    2002-01-01

    This paper examines several techniques that have the potential to improve the quality of slug test analysis. These techniques are applicable in the range from low hydraulic conductivities with overdamped responses to high hydraulic conductivities with nonlinear oscillatory responses. Four techniques for improving slug test analysis will be discussed: use of an extended capability nonlinear model, sensitivity analysis, correction for acceleration and velocity effects, and use of multiple slug tests. The four-parameter nonlinear slug test model used in this work is shown to allow accurate analysis of slug tests with widely differing character. The parameter ?? represents a correction to the water column length caused primarily by radius variations in the wellbore and is most useful in matching the oscillation frequency and amplitude. The water column velocity at slug initiation (V0) is an additional model parameter, which would ideally be zero but may not be due to the initiation mechanism. The remaining two model parameters are A (parameter for nonlinear effects) and K (hydraulic conductivity). Sensitivity analysis shows that in general ?? and V0 have the lowest sensitivity and K usually has the highest. However, for very high K values the sensitivity to A may surpass the sensitivity to K. Oscillatory slug tests involve higher accelerations and velocities of the water column; thus, the pressure transducer responses are affected by these factors and the model response must be corrected to allow maximum accuracy for the analysis. The performance of multiple slug tests will allow some statistical measure of the experimental accuracy and of the reliability of the resulting aquifer parameters. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Context-specific adaptation of pursuit initiation in humans

    NASA Technical Reports Server (NTRS)

    Takagi, M.; Abe, H.; Hasegawa, S.; Usui, T.; Hasebe, H.; Miki, A.; Zee, D. S.; Shelhauser, M. (Principal Investigator)

    2000-01-01

    PURPOSE: To determine if multiple states for the initiation of pursuit, as assessed by acceleration in the "open-loop" period, can be learned and gated by context. METHODS: Four normal subjects were studied. A modified step-ramp paradigm for horizontal pursuit was used to induce adaptation. In an increasing paradigm, target velocity doubled 230 msec after onset; in a decreasing paradigm, it was halved. In the first experiment, vertical eye position (+/-5 degrees ) was used as the context cue, and the training paradigm (increasing or decreasing) changed with vertical eye position. In the second experiment, with vertical position constant, when the target was red, training was decreasing, and when green, increasing. The average eye acceleration in the first 100 msec of tracking was the index of open-loop pursuit performance. RESULTS: With vertical position as the cue, pursuit adaptation differed between up and down gaze. In some cases, the direction of adaptation was in exact accord with the training stimuli. In others, acceleration increased or decreased for both up and down gaze but always in correct relative proportion to the training stimuli. In contrast, multiple adaptive states were not induced with color as the cue. CONCLUSIONS: Multiple values for the relationship between the average eye acceleration during the initiation of pursuit and target velocity could be learned and gated by context. Vertical position was an effective contextual cue but not target color, implying that useful contextual cues must be similar to those occurring naturally, for example, orbital position with eye muscle weakness.

  1. Kinematics of symmetric Galactic longitudes to probe the spiral arms of the Milky Way with Gaia

    NASA Astrophysics Data System (ADS)

    Antoja, T.; Roca-Fàbrega, S.; de Bruijne, J.; Prusti, T.

    2016-05-01

    Aims: We model the effects of the spiral arms of the Milky Way on the disk stellar kinematics in the Gaia observable space. We also estimate the Gaia capabilities of detecting the predicted signatures. Methods: We use both controlled orbital integrations in analytic potentials and self-consistent simulations. We introduce a new strategy to investigate the effects of spiral arms, which consists of comparing the stellar kinematics of symmetric Galactic longitudes (+l and -l), in particular the median transverse velocity as determined from parallaxes and proper motions. This approach does not require the assumption of an axisymmetric model because it involves an internal comparison of the data. Results: The typical differences between the transverse velocity in symmetric longitudes in the models are of the order of ~2 km s-1, but can be larger than 10 km s-1 for certain longitudes and distances. The longitudes close to the Galactic centre and to the anti-centre are those with larger and smaller differences, respectively. The differences between the kinematics for +l and -l show clear trends that depend strongly on the properties of spiral arms. Thus, this method can be used to quantify the importance of the effects of spiral arms on the orbits of stars in the different regions of the disk, and to constrain the location of the arms, main resonances and, thus, pattern speed. Moreover, the method allows us to test different origin scenarios of spiral arms and the dynamical nature of the spiral structure (e.g. grand design versus transient multiple arms). We estimate the number of stars of each spectral type that Gaia will observe in certain representative Galactic longitudes, their characteristic errors in distance and transverse velocity, and the error in computing the median velocity as a function of distance. We will be able to measure the median transverse velocity exclusively with Gaia data, with precision smaller than ~1 km s-1 up to distances of ~4-6 kpc for certain giant stars, and up to ~2-4 kpc and better kinematic precision (≲0.5 km s-1) for certain sub-giants and dwarfs. These are enough to measure the typical signatures seen in the models. Conclusions: The Gaia catalogue will allow us to use the presented approach successfully and improve significantly upon current studies of the dynamics of the spiral arms of our Galaxy. We also show that a similar strategy can be used with line-of-sight velocities, which could be applied to Gaia data and to upcoming spectroscopic surveys.

  2. Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore

    NASA Astrophysics Data System (ADS)

    Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo

    2018-02-01

    In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.

  3. Multiple spatially localized dynamical states in friction-excited oscillator chains

    NASA Astrophysics Data System (ADS)

    Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M.

    2018-03-01

    Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity vd while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity.

  4. Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berg, D. E.

    Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.

  5. Characteristics and processing of seismic data collected on thick, floating ice: Results from the Ross Ice Shelf, Antarctica

    USGS Publications Warehouse

    Beaudoin, Bruce C.; ten Brink, Uri S.; Stern, Tim A.

    1992-01-01

    Coincident reflection and refraction data, collected in the austral summer of 1988/89 by Stanford University and the Geophysical Division of the Department of Scientific and Industrial Research, New Zealand, imaged the crust beneath the Ross Ice Shelf, Antarctica. The Ross Ice Shelf is a unique acquisition environment for seismic reflection profiling because of its thick, floating ice cover. The ice shelf velocity structure is multilayered with a high velocity‐gradient firn layer constituting the upper 50 to 100 m. This near surface firn layer influences the data character by amplifying and frequency modulating the incoming wavefield. In addition, the ice‐water column introduces pervasive, high energy seafloor, intra‐ice, and intra‐water multiples that have moveout velocities similar to the expected subseafloor primary velocities. Successful removal of these high energy multiples relies on predictive deconvolution, inverse velocity stack filtering, and frequency filtering. Removal of the multiples reveals a faulted, sedimentary wedge which is truncated at or near the seafloor. Beneath this wedge the reflection character is diffractive to a two‐way traveltime of ∼7.2 s. At this time, a prominent reflection is evident on the southeast end of the reflection profile. This reflection is interpreted as Moho indicating that the crust is ∼21-km thick beneath the profile. These results provide seismic evidence that the extensional features observed in the Ross Sea region of the Ross Embayment extend beneath the Ross Ice Shelf.

  6. Representing delayed force feedback as a combination of current and delayed states.

    PubMed

    Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana

    2017-10-01

    To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the delayed information. Copyright © 2017 the American Physiological Society.

  7. Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Rolland, Jannick P.

    2010-01-01

    Phase-Resolved Doppler Optical Coherence Tomography (PR-DOCT) allows visualization and characterization of the location, direction, velocity, and profile of flow activity embedded in a static sample structure. The detectable Velocity Dynamic Range (VDR) of each particular PR-DOCT system is governed by a detectable Doppler phase shift, a flow angle, and an acquisition time interval used to determine the Doppler phase shift. In general, the lower boundary of the detectable Doppler phase shift is limited by the phase stability of the system, while the upper boundary is limited by the π phase ambiguity. For a given range of detectable Doppler phase shift, shortening the acquisition duration will increase not only the maximum detectable velocity but unfortunately also the minimum detectable velocity, which may lead to the invisibility of a slow flow. In this paper, we present an alternative acquisition scheme for PR-DOCT that extends the lower limit of the velocity dynamic range, while maintaining the maximum detectable velocity, hence increasing the overall VDR of PR-DOCT system. The essence of the approach is to implement a technique of multi-scale measurement to simultaneously acquire multiple VDRs in a single measurement. We demonstrate an example of implementation of the technique in a dual VDR DOCT, where two Doppler maps having different detectable VDRs were simultaneously detected, processed, and displayed in real time. One was a fixed VDR DOCT capable of measuring axial velocity of up to 10.9 mm/s without phase unwrapping. The other was a variable VDR DOCT capable of adjusting its detectable VDR to reveal slow flow information down to 11.3 μm/s. The technique is shown to effectively extend the overall detectable VDR of the PR-DOCT system. Examples of real time Doppler imaging of an African frog tadpole are demonstrated using the dual-VDR DOCT system. PMID:21258521

  8. Double-multiple streamtube model for Darrieus in turbines

    NASA Technical Reports Server (NTRS)

    Paraschivoiu, I.

    1981-01-01

    An analytical model is proposed for calculating the rotor performance and aerodynamic blade forces for Darrieus wind turbines with curved blades. The method of analysis uses a multiple-streamtube model, divided into two parts: one modeling the upstream half-cycle of the rotor and the other, the downstream half-cycle. The upwind and downwind components of the induced velocities at each level of the rotor were obtained using the principle of two actuator disks in tandem. Variation of the induced velocities in the two parts of the rotor produces larger forces in the upstream zone and smaller forces in the downstream zone. Comparisons of the overall rotor performance with previous methods and field test data show the important improvement obtained with the present model. The calculations were made using the computer code CARDAA developed at IREQ. The double-multiple streamtube model presented has two major advantages: it requires a much shorter computer time than the three-dimensional vortex model and is more accurate than multiple-streamtube model in predicting the aerodynamic blade loads.

  9. High frequency noise studies at the Hartousov mofette area (CZE)

    NASA Astrophysics Data System (ADS)

    Schmidt, Andreas; Flores-Estrella, Hortencia; Pommerencke, Julia; Umlauft, Josefine

    2014-05-01

    Ambient noise analysis has been used as a reliable tool to investigate sub-surface structures at seismological quiet regions with none or less specific seismic events. Here, we consider the acoustic signals from a single mofette at the Hartoušov area (CZE) as a noise-like high frequency source caused by multiple near surface degassing processes in a restricted location. From this assumption we have used different array geometries for recording at least one hour of continuous noise. We installed triangular arrays with 3 component geophones: the first deployment consisted on two co-centric triangles with side length of 30 and 50 m with the mofette in the center; the second deployment consisted on two triangular arrays, both with side length of 30 m, co-directional to the mofette. Furthermore, we also installed profiles with 24 channels and vertical geophones locating them in different positions with respect to the mofette. In this work, we present preliminary results from the data analysis dependent on the geometry, to show the characteristics of the noise wave-field referring to frequency content and propagation features, such as directionality and surface wave velocity. The spectral analysis shows that the energy is concentrated in a frequency band among 10 and 40 Hz. However, in this interval there is no evidence of any exclusive fundamental frequencies. From this, man-induced influences can be identified as intermittent signal peaks in narrow frequency bands and can be separated to receive the revised mofette wave-field record. The inversion of dispersive surface waves, that were detected by interferometric methods, provides a velocity model down to 12 m with an S-wave velocity between 160 and 180 m/s on the uppermost layer. Furthermore, the interferometric signal properties indicate that it is not possible to characterize the mofette as a punctual source, but rather as a conglomerate of multiple sources with time and location variations.

  10. Influence of neighboring adherent cells on laminar flow induced shear stress in vitro—A systematic study

    PubMed Central

    Djukelic, Mario; Westerhausen, Christoph

    2017-01-01

    Cells experience forces if subjected to laminar flow. These forces, mostly of shear force character, are strongly dependent not only on the applied flow field itself but also on hydrodynamic effects originating from neighboring cells. This particularly becomes important for the interpretation of data from in vitro experiments in flow chambers without confluent cell layers. By employing numerical Finite Element Method simulations of such assemblies of deformable objects under shear flow, we investigate the occurring stress within elastic adherent cells and the influence of neighboring cells on these quantities. For this, we simulate single and multiple adherent cells of different shapes fixed on a solid substrate under laminar flow parallel to the substrate for different velocities. We determine the local stress within the cells close to the cell-substrate-interface and the overall stress of the cells by surface integration over the cell surface. Comparing each measurand in the case of a multiple cell situation with the corresponding one of single cells under identical conditions, we introduce a dimensionless influence factor. The systematic variation of the distance and angle between cells, where the latter is with respect to the flow direction, flow velocity, Young's modulus, cell shape, and cell number, enables us to describe the actual influence on a cell. Overall, we here demonstrate that the cell density is a crucial parameter for all studies on flow induced experiments on adherent cells in vitro. PMID:28798851

  11. Noncoplanar minimum delta V two-impulse and three-impulse orbital transfer from a regressing oblate earth assembly parking ellipse onto a flyby trans-Mars asymptotic velocity vector.

    NASA Technical Reports Server (NTRS)

    Bean, W. C.

    1971-01-01

    Comparison of two-impulse and three-impulse orbital transfer, using data from a 63-case numerical study. For each case investigated for which coplanarity of the regressing assembly parking ellipse was attained with the target asymptotic velocity vector, a two-impulse maneuver (or a one-impulse equivalent) was found for which the velocity expenditure was within 1% of a reference absolute minimum lower bound. Therefore, for the coplanar cases, use of a minimum delta-V three-impulse maneuver afforded scant improvement in velocity penalty. However, as the noncoplanarity of the parking ellipse and the target asymptotic velocity vector increased, there was a significant increase in the superiority of minimum delta-V three-impulse maneuvers for slowing the growth of velocity expenditure. It is concluded that a multiple-impulse maneuver should be contemplated if nonnominal launch conditions could occur.

  12. Experimental and theoretical studies of near-ground acoustic radiation propagation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Belov, Vladimir V.; Burkatovskaya, Yuliya B.; Krasnenko, Nikolai P.; Rakov, Aleksandr S.; Rakov, Denis S.; Shamanaeva, Liudmila G.

    2017-11-01

    Results of experimental and theoretical studies of the process of near-ground propagation of monochromatic acoustic radiation on atmospheric paths from a source to a receiver taking into account the contribution of multiple scattering on fluctuations of atmospheric temperature and wind velocity, refraction of sound on the wind velocity and temperature gradients, and its reflection by the underlying surface for different models of the atmosphere depending the sound frequency, coefficient of reflection from the underlying surface, propagation distance, and source and receiver altitudes are presented. Calculations were performed by the Monte Carlo method using the local estimation algorithm by the computer program developed by the authors. Results of experimental investigations under controllable conditions are compared with theoretical estimates and results of analytical calculations for the Delany-Bazley impedance model. Satisfactory agreement of the data obtained confirms the correctness of the suggested computer program.

  13. MER-DIMES : a planetary landing application of computer vision

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Johnson, Andrew; Matthies, Larry

    2005-01-01

    During the Mars Exploration Rovers (MER) landings, the Descent Image Motion Estimation System (DIMES) was used for horizontal velocity estimation. The DIMES algorithm combines measurements from a descent camera, a radar altimeter and an inertial measurement unit. To deal with large changes in scale and orientation between descent images, the algorithm uses altitude and attitude measurements to rectify image data to level ground plane. Feature selection and tracking is employed in the rectified data to compute the horizontal motion between images. Differences of motion estimates are then compared to inertial measurements to verify correct feature tracking. DIMES combines sensor data from multiple sources in a novel way to create a low-cost, robust and computationally efficient velocity estimation solution, and DIMES is the first use of computer vision to control a spacecraft during planetary landing. In this paper, the detailed implementation of the DIMES algorithm and the results from the two landings on Mars are presented.

  14. Normalized velocity profiles of field-measured turbidity currents

    USGS Publications Warehouse

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  15. Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids.

    PubMed

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Al-Mdallal, Qasem M

    2017-05-26

    This article investigates heat transfer enhancement in free convection flow of Maxwell nanofluids with carbon nanotubes (CNTs) over a vertically static plate with constant wall temperature. Two kinds of CNTs i.e. single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) are suspended in four different types of base liquids (Kerosene oil, Engine oil, water and ethylene glycol). Kerosene oil-based nanofluids are given a special consideration due to their higher thermal conductivities, unique properties and applications. The problem is modelled in terms of PDE's with initial and boundary conditions. Some relevant non-dimensional variables are inserted in order to transmute the governing problem into dimensionless form. The resulting problem is solved via Laplace transform technique and exact solutions for velocity, shear stress and temperature are acquired. These solutions are significantly controlled by the variations of parameters including the relaxation time, Prandtl number, Grashof number and nanoparticles volume fraction. Velocity and temperature increases with elevation in Grashof number while Shear stress minimizes with increasing Maxwell parameter. A comparison between SWCNTs and MWCNTs in each case is made. Moreover, a graph showing the comparison amongst four different types of nanofluids for both CNTs is also plotted.

  16. Factors associated with arterial stiffness in children aged 9-10 years

    PubMed Central

    Batista, Milena Santos; Mill, José Geraldo; Pereira, Taisa Sabrina Silva; Fernandes, Carolina Dadalto Rocha; Molina, Maria del Carmen Bisi

    2015-01-01

    OBJECTIVE To analyze the factors associated with stiffness of the great arteries in prepubertal children. METHODS This study with convenience sample of 231 schoolchildren aged 9-10 years enrolled in public and private schools in Vitória, ES, Southeastern Brazil, in 2010-2011. Anthropometric and hemodynamic data, blood pressure, and pulse wave velocity in the carotid-femoral segment were obtained. Data on current and previous health conditions were obtained by questionnaire and notes on the child’s health card. Multiple linear regression was applied to identify the partial and total contribution of the factors in determining the pulse wave velocity values. RESULTS Among the students, 50.2% were female and 55.4% were 10 years old. Among those classified in the last tertile of pulse wave velocity, 60.0% were overweight, with higher mean blood pressure, waist circumference, and waist-to-height ratio. Birth weight was not associated with pulse wave velocity. After multiple linear regression analysis, body mass index (BMI) and diastolic blood pressure remained in the model. CONCLUSIONS BMI was the most important factor in determining arterial stiffness in children aged 9-10 years. PMID:25902563

  17. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave

    NASA Astrophysics Data System (ADS)

    Wen, Biyang; Li, Ke

    2016-08-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  18. Synchronous high speed multi-point velocity profile measurement by heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Hou, Xueqin; Xiao, Wen; Chen, Zonghui; Qin, Xiaodong; Pan, Feng

    2017-02-01

    This paper presents a synchronous multipoint velocity profile measurement system, which acquires the vibration velocities as well as images of vibrating objects by combining optical heterodyne interferometry and a high-speed CMOS-DVR camera. The high-speed CMOS-DVR camera records a sequence of images of the vibrating object. Then, by extracting and processing multiple pixels at the same time, a digital demodulation technique is implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. This method is validated with an experiment. A piezoelectric ceramic plate with standard vibration characteristics is used as the vibrating target, which is driven by a standard sinusoidal signal.

  19. Shallow seismic structure of Kunlun fault zone in northern Tibetan Plateau, China: Implications for the 2001 M s8.1 Kunlun earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.

    2009-01-01

    The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  20. Quantitation of stress echocardiography by tissue Doppler and strain rate imaging: a dream come true?

    PubMed

    Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola

    2005-01-01

    Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.

  1. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Choi, David; Rogers, John H.; Gierasch, Peter J.; Allison, Michael D.; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 S planetographic latitude shows variations in velocity with longitude and time. The presence of the large anticyclonic South Equatorial Disturbance (SED) has a profound effect on the chevron velocity, causing slower velocities to its east and accelerations over distance from the disturbance. The chevrons move with velocities near the maximum wind jet velocity of approx 140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 N latitude. Their repetitive nature is consistent with a gravity-inertia wave (n = 75 to 100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, for the first time, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 6.7 +/- 0.7-day period. This oscillating motion has a wavelength of approx 20 and a speed of 101 +/- 3 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it. All dates show chevron latitude variability, but it is unclear if this larger wave is present during other epochs, as there are no other suitable time series movies that fully delineate it. In the presence of mUltiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S is likely due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  2. Analysis of PKR-RNA interactions by sedimentation velocity

    PubMed Central

    Wong, C. Jason; Launer-Felty, Katherine; Cole, James L.

    2010-01-01

    PKR is an interferon-induced kinase that plays a pivotal role in the innate immunity pathway for defense against viral infection. PKR is activated to undergo autophosphorylation upon binding to RNAs that contain duplex regions. Some highly structured viral RNAs do not activate and function as PKR inhibitors. In order to define the mechanisms of activation and inhibition of PKR by RNA it is necessary to characterize the stoichiometries, affinities and free energy couplings governing the assembly of the relevant complexes. We have found sedimentation velocity analytical ultracentrifugation to be particularly useful in the study of PKR-RNA interactions. Here, we describe protocols for designing and analyzing sedimentation velocity experiments that are generally applicable to studies of protein-nucleic interactions. Initially, velocity data obtained at multiple protein:RNA ratios are analyzed using the dc/dt method to define the association model and to test whether the system is kinetically limited. The sedimentation velocity data obtained at multiple loading concentrations are then globally fit to this model to determine the relevant association constants. The frictional ratios of the complexes are calculated using the fitted sedimentation coefficients to determine whether the hydrodynamic properties are physically reasonable. We demonstrate the utility of this approach using examples from our studies of PKR interactions with simple dsRNAs, the HIV TAR RNA and the VAI RNA from Adenovirus. PMID:21195224

  3. Waveform Tomography of Two-Dimensional Three-Component Seismic Data for HTI Anisotropic Media

    NASA Astrophysics Data System (ADS)

    Gao, Fengxia; Wang, Yanghua; Wang, Yun

    2018-06-01

    Reservoirs with vertically aligned fractures can be represented equivalently by horizontal transverse isotropy (HTI) media. But inverting for the anisotropic parameters of HTI media is a challenging inverse problem, because of difficulties inherent in a multiple parameter inversion. In this paper, when we invert for the anisotropic parameters, we consider for the first time the azimuthal rotation of a two-dimensional seismic survey line from the symmetry of HTI. The established wave equations for the HTI media with azimuthal rotation consist of nine elastic coefficients, expressed in terms of five modified Thomsen parameters. The latter are parallel to the Thomsen parameters for describing velocity characteristics of weak vertical transverse isotropy media. We analyze the sensitivity differences of the five modified Thomsen parameters from their radiation patterns, and attempt to balance the magnitude and sensitivity differences between the parameters through normalization and tuning factors which help to update the model parameters properly. We demonstrate an effective inversion strategy by inverting velocity parameters in the first stage and updates the five modified Thomsen parameters simultaneously in the second stage, for generating reliably reconstructed models.

  4. Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.

    2018-01-01

    Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north to south. The crustal material has higher velocity at the southern part compared to that at the northern part of Bay of Bengal indicating that it changes from more oceanic type in the southern part of the Bay to more continental type to its north. Both Moho and lithosphere - asthenosphere boundary (LAB) dips gently towards north. Thicknesses of both lithosphere and asthenosphere also increase in the same direction. The mantle structure shows complex variation from south to north indicating possible effect of repeated changes in type of tectonic activity in the Bay of Bengal.

  5. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  6. The Role of Drag Force in Shedding of Multiple Sessile Drops

    NASA Astrophysics Data System (ADS)

    Razzaghi, Aysan; Banitabaei, Sayyed Hossein; Amirfazli, Alidad; -Team

    2017-11-01

    A sessile drop placed on a solid surface can shed, if the drag force due to a shearing airflow overcomes the drop adhesion to the surface. Sessile drop shedding is of importance due to its applications in condensation, fuel cells, icing, etc. Majority of the studies so far have considered the shedding of a single sessile droplet; however, in the applications above, multiple sessile droplets appear on a surface. Shedding of sessile drops in different arrangements, i.e. tandem, side by side, triangle, and rectangle have been investigated both experimentally and through VOF simulations. The minimum air velocity (Ucr) at which the drop(s) at the upstream dislodge from the surface was measured. Drops were placed in a wind tunnel with increasing air velocity at a rate of 1m/s2. It has been found that Ucr, deviates from its value for a single drop due to presence of the neighboring drops. The amount of the deviation is closely related to the flow pattern and interaction of drop wakes which are elucidated numerically. The interacting wakes change the drag force on the drops. Generally, the adhesion force is not affected by presence of other drops. As such, when the drops' wakes are interacting strongly, Ucr can increase by 45%.

  7. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    PubMed

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Impaired postural balance correlates with complex walking performance in mildly disabled persons with multiple sclerosis.

    PubMed

    Brincks, John; Andersen, Elisabeth Due; Sørensen, Henrik; Dalgas, Ulrik

    2017-01-01

    It is relevant to understand the possible influence of impaired postural balance on walking performance in multiple sclerosis (MS) gait rehabilitation. We expected associations between impaired postural balance and complex walking performance in mildly disabled persons with MS, but not in healthy controls. Thirteen persons with MS (Expanded Disability Status Scale = 2.5) and 13 healthy controls' walking performance were measured at fast walking speed, Timed Up & Go and Timed 25 Feet Walking. Postural balance was measured by stabilometry, 95% confidence ellipse sway area and sway velocity. Except from sway velocity (p = 0.07), significant differences were found between persons with MS and healthy controls in postural balance and walking. Significant correlations were observed between sway area and Timed Up & Go (r = 0.67) and fastest safe walking speed (r = -0.63) in persons with MS but not in healthy controls (r = 0.52 and r = 0.24, respectively). No other significant correlations were observed between postural balance and walking performance in neither persons with MS nor healthy controls. Findings add to the understanding of postural balance and walking in persons with MS, as impaired postural balance was related to complex walking performance. Exercises addressing impaired postural balance are encouraged in early MS gait rehabilitation.

  9. The rat caudal nerves: a model for experimental neuropathies.

    PubMed

    Schaumburg, Herbert H; Zotova, Elena; Raine, Cedric S; Tar, Moses; Arezzo, Joseph

    2010-06-01

    This study provides a detailed investigation of the anatomy of the rat caudal nerve along its entire length, as well as correlated nerve conduction measures in both large and small diameter axons. It determines that rodent caudal nerves provide a simple, sensitive experimental model for evaluation of the pathophysiology of degeneration, recovery, and prevention of length-dependent distal axonopathy. After first defining the normal anatomy and electrophysiology of the rat caudal nerves, acrylamide monomer, a reliable axonal toxin, was administered at different doses for escalating time periods. Serial electrophysiological recordings were obtained, during intoxication, from multiple sites along caudal and distal sciatic nerves. Multiple sections of the caudal and sciatic nerves were examined with light and electron microscopy. The normal distribution of conduction velocities was determined and acrylamide-induced time- and dose-related slowing of velocities at the vulnerable ultraterminal region was documented. Degenerative morphological changes in the distal regions of the caudal nerves appeared well before changes in the distal sciatic nerves. Our study has shown that (1) rat caudal nerves have a complex neural structure that varies along a distal-to-proximal gradient and (2) correlative assessment of both morphology and electrophysiology of rat caudal nerves is easily achieved and provides a highly sensitive index of the onset and progression of the length-dependent distal axonopathy.

  10. Seismic joint analysis for non-destructive testing of asphalt and concrete slabs

    USGS Publications Warehouse

    Ryden, N.; Park, C.B.

    2005-01-01

    A seismic approach is used to estimate the thickness and elastic stiffness constants of asphalt or concrete slabs. The overall concept of the approach utilizes the robustness of the multichannel seismic method. A multichannel-equivalent data set is compiled from multiple time series recorded from multiple hammer impacts at progressively different offsets from a fixed receiver. This multichannel simulation with one receiver (MSOR) replaces the true multichannel recording in a cost-effective and convenient manner. A recorded data set is first processed to evaluate the shear wave velocity through a wave field transformation, normally used in the multichannel analysis of surface waves (MASW) method, followed by a Lambwave inversion. Then, the same data set is used to evaluate compression wave velocity from a combined processing of the first-arrival picking and a linear regression. Finally, the amplitude spectra of the time series are used to evaluate the thickness by following the concepts utilized in the Impact Echo (IE) method. Due to the powerful signal extraction capabilities ensured by the multichannel processing schemes used, the entire procedure for all three evaluations can be fully automated and results can be obtained directly in the field. A field data set is used to demonstrate the proposed approach.

  11. Impact of SCBA size and fatigue from different firefighting work cycles on firefighter gait.

    PubMed

    Kesler, Richard M; Bradley, Faith F; Deetjen, Grace S; Angelini, Michael J; Petrucci, Matthew N; Rosengren, Karl S; Horn, Gavin P; Hsiao-Wecksler, Elizabeth T

    2018-04-04

    Risk of slips, trips and falls in firefighters maybe influenced by the firefighter's equipment and duration of firefighting. This study examined the impact of a four self-contained breathing apparatus (SCBA) three SCBA of increasing size and a prototype design and three work cycles one bout (1B), two bouts with a five-minute break (2B) and two bouts back-to-back (BB) on gait in 30 firefighters. Five gait parameters (double support time, single support time, stride length, step width and stride velocity) were examined pre- and post-firefighting activity. The two largest SCBA resulted in longer double support times relative to the smallest SCBA. Multiple bouts of firefighting activity resulted in increased single and double support time and decreased stride length, step width and stride velocity. These results suggest that with larger SCBA or longer durations of activity, firefighters may adopt more conservative gait patterns to minimise fall risk. Practitioner Summary: The effects of four self-contained breathing apparatus (SCBA) and three work cycles on five gait parameters were examined pre- and post-firefighting activity. Both SCBA size and work cycle affected gait. The two largest SCBA resulted in longer double support times. Multiple bouts of activity resulted in more conservative gait patterns.

  12. Ion Acceleration by Multiple Reflections at Martian Bow Shock

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Futaana, Y.; Fedorov, A.; Frahm, R. A.; Dubinin, E.; Lundin, R.; Sauvaud, J.-A.; Winningham, J. D.; Barabash, S.; Holmström, H.

    2012-04-01

    The ion mass analyzer (IMA) on board Mars Express revealed bundled structures of ions in the energy domain within a distance of a proton gyroradius from the Martian bow shock. Seven prominent traversals during 2005 were examined when the energy-bunched structure was observed together with pick-up ions of exospheric origin, the latter of which is used to determine the local magnetic field orientation from its circular trajectory in velocity space. These seven traversals include different bow shock configurations: (a) quasi-perpendicular shock with its specular direction of the solar wind more perpendicular to the magnetic field (QT), (b) quasi-perpendicular shock with its specular reflection direction of the solar wind more along the magnetic field (FS), and (c) quasi-parallel (QL) shock. In all seven cases, the velocity components of the energy-bunched structure are consistent with multiple specular reflections of the solar wind at the bow shock up to at least two reflections. The accelerated solar wind ions after two specular reflections have large parallel components with respect to the magnetic field for the QL shock whereas the field-aligned speed is much smaller than the perpendicular speed for the QT shock. The reflected ions escape into the solar wind when and only when the reflection is in the field-aligned direction.

  13. Accurate initial conditions in mixed dark matter-baryon simulations

    NASA Astrophysics Data System (ADS)

    Valkenburg, Wessel; Villaescusa-Navarro, Francisco

    2017-06-01

    We quantify the error in the results of mixed baryon-dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations is of the order of few to 10 per cent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using a mix of general-relativistic gauges so as to approximate Newtonian gravity, namely longitudinal-gauge velocities with synchronous-gauge densities and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that dark matter and baryons experience a scale-dependent growth after photon decoupling, which results in directions of velocity that are not the same as their direction of displacement. We compare the outcome of hydrodynamic simulations with these four approximations to our reference simulation, all setup with the same random seed and simulated using gadget-III.

  14. Neoclassical parallel flow calculation in the presence of external parallel momentum sources in Heliotron J

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioka, K.; Nakamura, Y.; Nishimura, S.

    A moment approach to calculate neoclassical transport in non-axisymmetric torus plasmas composed of multiple ion species is extended to include the external parallel momentum sources due to unbalanced tangential neutral beam injections (NBIs). The momentum sources that are included in the parallel momentum balance are calculated from the collision operators of background particles with fast ions. This method is applied for the clarification of the physical mechanism of the neoclassical parallel ion flows and the multi-ion species effect on them in Heliotron J NBI plasmas. It is found that parallel ion flow can be determined by the balance between themore » parallel viscosity and the external momentum source in the region where the external source is much larger than the thermodynamic force driven source in the collisional plasmas. This is because the friction between C{sup 6+} and D{sup +} prevents a large difference between C{sup 6+} and D{sup +} flow velocities in such plasmas. The C{sup 6+} flow velocities, which are measured by the charge exchange recombination spectroscopy system, are numerically evaluated with this method. It is shown that the experimentally measured C{sup 6+} impurity flow velocities do not contradict clearly with the neoclassical estimations, and the dependence of parallel flow velocities on the magnetic field ripples is consistent in both results.« less

  15. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.

  16. Lateral Membrane Waves Constitute a Universal Dynamic Pattern of Motile Cells

    NASA Astrophysics Data System (ADS)

    Döbereiner, Hans-Günther; Dubin-Thaler, Benjamin J.; Hofman, Jake M.; Xenias, Harry S.; Sims, Tasha N.; Giannone, Grégory; Dustin, Michael L.; Wiggins, Chris H.; Sheetz, Michael P.

    2006-07-01

    We have monitored active movements of the cell circumference on specifically coated substrates for a variety of cells including mouse embryonic fibroblasts and T cells, as well as wing disk cells from fruit flies. Despite having different functions and being from multiple phyla, these cell types share a common spatiotemporal pattern in their normal membrane velocity; we show that protrusion and retraction events are organized in lateral waves along the cell membrane. These wave patterns indicate both spatial and temporal long-range periodic correlations of the actomyosin gel.

  17. Atom optics in the time domain

    NASA Astrophysics Data System (ADS)

    Arndt, M.; Szriftgiser, P.; Dalibard, J.; Steane, A. M.

    1996-05-01

    Atom-optics experiments are presented using a time-modulated evanescent light wave as an atomic mirror in the trampoline configuration, i.e., perpendicular to the direction of the atomic free fall. This modulated mirror is used to accelerate cesium atoms, to focus their trajectories, and to apply a ``multiple lens'' to separately focus different velocity classes of atoms originating from a point source. We form images of a simple two-slit object to show the resolution of the device. The experiments are modelled by a general treatment analogous to classical ray optics.

  18. Viscoelastic shear zone model of a strike-slip earthquake cycle

    USGS Publications Warehouse

    Pollitz, F.F.

    2001-01-01

    I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault-parallel motion distributed between the San Andreas fault system and Eastern California Shear Zone. Copyright 2001 by the American Geophysical Union.

  19. Aerodynamic models for a Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Fraunie, P.; Beguier, C.; Paraschivoiu, I.; Delclaux, F.

    1982-11-01

    Various models proposed for the aerodynamics of Darrieus wind turbines are reviewed. The magnitude of the L/D ratio for a Darrieus rotor blade is dependent on the profile, the Re, boundary layer characteristics, and the three-dimensional flow effects. The aerodynamic efficiency is theoretically the Betz limit, and the interference of one blade with another is constrained by the drag force integrated over all points on the actuator disk. A single streamtube model can predict the power available in a Darrieus, but the model lacks definition of the flow structure and the cyclic stresses. Techniques for calculating the velocity profiles and the consequent induced velocity at the blades are presented. The multiple streamtube theory has been devised to account for the repartition of the velocity in the rotor interior. The model has been expanded as the double multiple streamtube theory at Sandia Laboratories. Futher work is necessary, however, to include the effects of dynamic decoupling at high rotation speeds and to accurately describe blade behavior.

  20. Estimates of velocity structure and source depth using multiple P waves from aftershocks of the 1987 Elmore Ranch and Superstition Hills, California, earthquakes

    USGS Publications Warehouse

    Mori, J.

    1991-01-01

    Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequencs appear to have similar depth distribution in the range of 4 to 10 km. -Author

  1. Formation tracker design of multiple mobile robots with wheel perturbations: adaptive output-feedback approach

    NASA Astrophysics Data System (ADS)

    Yoo, Sung Jin

    2016-11-01

    This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.

  2. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber.

    PubMed

    Guerra, V G; Gonçalves, J A S; Coury, J R

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  3. Hummingbirds control turning velocity using body orientation and turning radius using asymmetrical wingbeat kinematics

    PubMed Central

    Read, Tyson J. G.; Segre, Paolo S.; Middleton, Kevin M.; Altshuler, Douglas L.

    2016-01-01

    Turning in flight requires reorientation of force, which birds, bats and insects accomplish either by shifting body position and total force in concert or by using left–right asymmetries in wingbeat kinematics. Although both mechanisms have been observed in multiple species, it is currently unknown how each is used to control changes in trajectory. We addressed this problem by measuring body and wingbeat kinematics as hummingbirds tracked a revolving feeder, and estimating aerodynamic forces using a quasi-steady model. During arcing turns, hummingbirds symmetrically banked the stroke plane of both wings, and the body, into turns, supporting a body-dependent mechanism. However, several wingbeat asymmetries were present during turning, including a higher and flatter outer wingtip path and a lower more deviated inner wingtip path. A quasi-steady analysis of arcing turns performed with different trajectories revealed that changes in radius were associated with asymmetrical kinematics and forces, and changes in velocity were associated with symmetrical kinematics and forces. Collectively, our results indicate that both body-dependent and -independent force orientation mechanisms are available to hummingbirds, and that these kinematic strategies are used to meet the separate aerodynamic challenges posed by changes in velocity and turning radius. PMID:27030042

  4. Timelapse ultrasonic tomography for measuring damage localization in geomechanics laboratory tests.

    PubMed

    Tudisco, Erika; Roux, Philippe; Hall, Stephen A; Viggiani, Giulia M B; Viggiani, Gioacchino

    2015-03-01

    Variation of mechanical properties in materials can be detected non-destructively using ultrasonic measurements. In particular, changes in elastic wave velocity can occur due to damage, i.e., micro-cracking and particles debonding. Here the challenge of characterizing damage in geomaterials, i.e., rocks and soils, is addressed. Geomaterials are naturally heterogeneous media in which the deformation can localize, so that few measurements of acoustic velocity across the sample are not sufficient to capture the heterogeneities. Therefore, an ultrasonic tomography procedure has been implemented to map the spatial and temporal variations in propagation velocity, which provides information on the damage process. Moreover, double beamforming has been successfully applied to identify and isolate multiple arrivals that are caused by strong heterogeneities (natural or induced by the deformation process). The applicability of the developed experimental technique to laboratory geomechanics testing is illustrated using data acquired on a sample of natural rock before and after being deformed under triaxial compression. The approach is then validated and extended to time-lapse monitoring using data acquired during plane strain compression of a sample including a well defined layer with different mechanical properties than the matrix.

  5. A Comparison of Locomotor Therapy Interventions: Partial-Body Weight-Supported Treadmill, Lokomat, and G-EO Training in People With Traumatic Brain Injury.

    PubMed

    Esquenazi, Alberto; Lee, Stella; Wikoff, Amanda; Packel, Andrew; Toczylowski, Theresa; Feeley, John

    2017-09-01

    Literature in the application of gait training techniques in persons with traumatic brain injury (TBI) is limited. Current techniques require multiple staff and are physically demanding. The use of a robotic locomotor training may provide improved training capacity for this population. To examine the impact of 3 different modes of locomotor therapy on gait velocity and spatiotemporal symmetry using an end effector robot (G-EO); a robotic exoskeleton (Lokomat), and manual assisted partial-body weight-supported treadmill training (PBWSTT) in participants with traumatic brain injury. Randomized, prospective study. Tertiary rehabilitation hospital. A total of 22 individuals with ≥12 months chronic TBI with hemiparetic pattern able to walk overground without assistance at velocities between 0.2 and 0.6 m/s. Eighteen sessions of 45 minutes of assigned locomotor training. Overground walking self-selected velocity (SSV), maximal velocity (MV), spatiotemporal asymmetry ratio, 6-Minute Walk Test (6MWT), and mobility domain of Stroke Impact Scale (MSIS). Severity in walking dysfunction was similar across groups as determined by walking velocity data. At baseline, participants in the Lokomat group had a baseline velocity that was slightly slower compared with the other groups. Training elicited a statistically significant median increase in SSV for all groups compared with pretraining (Lokomat, P = .04; G-EO, P = .03; and PBWSTT, P = .02) and MV excluding the G-EO group (Lokomat, P = .04; PBWSTT, P = .03 and G-EO, P = .15). There were no pre-post significant differences in swing time, stance time, and step length asymmetry ratios at SSV or MV for any of the interventions. Mean rank in the change of SSV and MV was not statistically significantly different between groups. Participants in the G-EO and PBWSTT groups significantly improved their 6MWT posttraining (P = .04 and .03, respectively). The MSIS significantly improved only for the Lokomat group (P = .04 and .03). The data did not elicit between-groups significant differences for 6MWT and MSIS. There was less use of staff for Lokomat than G-EO. Locomotor therapy using G-EO, Lokomat, or PBWSTT in individuals with chronic TBI increased SSV and MV without significant changes in gait symmetry. Staffing needed for therapy provision was the least for the Lokomat. A larger study may further elucidate changes in gait symmetry and other training parameters. II. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  6. A Simple Method for Assessing Upper-Limb Force-Velocity Profile in Bench Press.

    PubMed

    Rahmani, Abderrahmane; Samozino, Pierre; Morin, Jean-Benoit; Morel, Baptiste

    2018-02-01

    To analyze the reliability and validity of a field computation method based on easy-to-measure data to assess the mean force ([Formula: see text]) and velocity ([Formula: see text]) produced during a ballistic bench-press movement and to verify that the force-velocity profile (F-v) obtained with multiple loaded trials is accurately described. Twelve participants performed ballistic bench presses against various lifted mass from 30% to 70% of their body mass. For each trial, [Formula: see text] and [Formula: see text] were determined from an accelerometer (sampling rate 500 Hz; reference method) and a simple computation method based on upper-limb mass, barbell flight height, and push-off distance. These [Formula: see text] and [Formula: see text] data were used to establish the F-v relationship for each individual and method. A strong to almost perfect reliability was observed between the 2 trials (ICC > .90 for [Formula: see text] and .80 for [Formula: see text], CV% < 10%), whatever the considered method. The mechanical variables ([Formula: see text], [Formula: see text]) measured with the 2 methods and all the variables extrapolated from the F-v relationships were strongly correlated (r 2  > .80, P < .001). The practical differences between the methods for the extrapolated mechanical parameters were all <5%, indicating very probably no differences. The findings suggest that the simple computation method used here provides valid and reliable information on force and velocity produced during ballistic bench press, in line with that observed in laboratory conditions. This simple method is thus a practical tool, requiring only 3 simple parameters (upper-limb mass, barbell flight height, and push-off distance).

  7. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    NASA Astrophysics Data System (ADS)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said

    2017-01-01

    Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  8. High- and Low-Order Overtaking-Ability Affordances: Drivers Rely on the Maximum Velocity and Acceleration of Their Cars to Perform Overtaking Maneuvers.

    PubMed

    Basilio, Numa; Morice, Antoine H P; Marti, Geoffrey; Montagne, Gilles

    2015-08-01

    The aim of this study was to answer the question, Do drivers take into account the action boundaries of their car when overtaking? The Morice et al. affordance-based approach to visually guided overtaking suggests that the "overtake-ability" affordance can be formalized as the ratio of the "minimum satisfying velocity" (MSV) of the maneuver to the maximum velocity (V(max)) of the driven car. In this definition, however, the maximum acceleration (A(max)) of the vehicle is ignored. We hypothesize that drivers may be sensitive to an affordance redefined with the ratio of the "minimum satisfying acceleration" (MSA) to the A(max) of the car. Two groups of nine drivers drove cars differing in their A(max). They were instructed to attempt overtaking maneuvers in 25 situations resulting from the combination of five MSA and five MSV values. When overtaking frequency was expressed as a function of MSV and MSA, maneuvers were found to be initiated differently for the two groups. However, when expressed as a function of MSV/V(max) and MSA/A(max), overtaking frequency was quite similar for both groups. Finally, a multiple regression coefficient analysis demonstrated that overtaking decisions are fully explained by a composite variable comprising MSA/A(max) and the time required to reach MSV. Drivers reliably decide whether overtaking is safe (or not) by using low- and high-order variables taking into account their car's maximum velocity and acceleration, respectively, as predicted by "affordance-based control" theory. Potential applications include the design of overtaking assistance, which should exploit the MSA/A(max) variables in order to suggest perceptually relevant overtaking solutions. © 2015, Human Factors and Ergonomics Society.

  9. Opacity broadening and interpretation of suprathermal CO linewidths: Macroscopic turbulence and tangled molecular clouds

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Alves, J.; Burkert, A.; Goldsmith, P.

    2016-06-01

    Context. Since their first detection in the interestellar medium, (sub-)millimeter line observations of different CO isotopic variants have routinely been employed to characterize the kinematic properties of the gas in molecular clouds. Many of these lines exhibit broad linewidths that greatly exceed the thermal broadening expected for the low temperatures found within these objects. These observed suprathermal CO linewidths are assumed to originate from unresolved supersonic motions inside clouds. Aims: The lowest rotational J transitions of some of the most abundant CO isotopologues, 12CO and 13CO, are found to present large optical depths. In addition to well-known line saturation effects, these large opacities present a non-negligible contribution to their observed linewidths. Typically overlooked in the literature, in this paper we aim to quantify the impact of these opacity broadening effects on the current interpretation of the CO suprathermal line profiles. Methods: Combining large-scale observations and LTE modeling of the ground J = 1-0 transitions of the main 12CO, 13CO, C18O isotopologues, we have investigated the correlation of the observed linewidths as a function of the line opacity in different regions of the Taurus molecular cloud. Results: Without any additional contributions to the gas velocity field, a large fraction of the apparently supersonic (ℳ ~ 2-3) linewidths measured in both 12CO and 13CO (J = 1-0) lines can be explained by the saturation of their corresponding sonic-like, optically thin C18O counterparts assuming standard isotopic fractionation. Combined with the presence of multiple components detected in some of our C18O spectra, these opacity effects also seem to be responsible for most of the highly supersonic linewidths (ℳ > 8-10) detected in some of the broadest 12CO and 13CO spectra in Taurus. Conclusions: Our results demonstrate that most of the suprathermal 12CO and 13CO linewidths reported in nearby clouds like Taurus could be primarily created by a combination of opacity broadening effects and multiple gas velocity components blended in these saturated emission lines. Once corrected by their corresponding optical depth, each of these gas components present transonic intrinsic linewidths consistently traced by the three isotopologues, 12CO, 13CO, and C18O, with differences within a factor of 2. Highly correlated and velocity-coherent at large scales, the largest and highly supersonic velocity differences inside clouds are generated by the relative motions between individual gas components. In contrast to the classical interpretation within the framework of microscopic turbulence, this highly discretized structure of the molecular gas traced in CO suggest that the gas dynamics inside molecular clouds could be better described by the properties of a fully resolved macroscopic turbulence.

  10. On the motion of multiple helical vortices

    NASA Astrophysics Data System (ADS)

    Wood, D. H.; Boersma, J.

    2001-11-01

    The analysis of the self-induced velocity of a single helical vortex (Boersma & Wood 1999) is extended to include equally spaced multiple vortices. This arrangement approximates the tip vortices in the far wake of multi-bladed wind turbines, propellers, or rotors in ascending, descending, or hovering flight. The problem is reduced to finding, from the Biot Savart law, the additional velocity of a helix due to an identical helix displaced azimuthally. The resulting Biot Savart integral is further reduced to a Mellin Barnes integral representation which allows the asymptotic expansions to be determined for small and for large pitch. The Biot Savart integral is also evaluated numerically for a total of two, three and four vortices over a range of pitch values. The previous finding that the self-induced velocity at small pitch is dominated by a term inversely proportional to the pitch carries over to multiple vortices. It is shown that a far wake dominated by helical tip vortices is consistent with the one-dimensional representation that leads to the Betz limit on the power output of wind turbines. The small-pitch approximation then allows the determination of the blade&s bound vorticity for optimum power extraction. The present analysis is shown to give reasonable estimates for the vortex circulation in experiments using a single hovering rotor and a four-bladed propeller.

  11. Crustal-Scale Seismic Structure From Trench to Forearc in the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Rathnayaka, Sampath; Gao, Haiying

    2017-09-01

    The (de)hydration process and the amount of hydrated sediment carried by the downgoing oceanic plate play a key role in the subduction dynamics. A high-resolution shear velocity model from the crust down to the uppermost mantle, extending from trench to forearc, is constructed in the northern Cascadia subduction zone to investigate seismic characteristics related to slab deformation and (de)hydration at the plate boundary. A total of 220 seismic stations are used, including the Cascadia Initiative Amphibious Array and inland broadband and short-period stations. The empirical Green's functions extracted from continuous ambient noise data from 2006 to 2014 provide high-quality Rayleigh wave signals at periods of 4-50 s. We simulate wave propagation using finite difference method to generate station Strain Green's Tensors and synthetic waveforms. The phase delays of Rayleigh waves between the observed and synthetic data are measured at multiple period ranges. We then invert for the velocity perturbations from the reference model and progressively improve the model resolution. Our tomographic imaging shows many regional- and local-scale low-velocity features, which are possibly related to slab (de)hydration from the oceanic plate to the overriding plate. Specifically, we observe (1) NW-SE oriented linear low-velocity features across the trench, indicating hydration of the oceanic plate induced by bending-related faultings; (2) W-E oriented fingerlike low-velocity structures off the continental margins due to dehydration of the Juan de Fuca plate; and (3) seismic lows atop the plate interface beneath the Washington forearc, indicating fluid-rich sediments subducted and overthrusted at the accretionary wedge.

  12. Measuring Velocities in the Early Stage of an Eruption: Using “Overlappogram” Data from Hinode EIS

    NASA Astrophysics Data System (ADS)

    Harra, Louise K.; Hara, Hirohisa; Doschek, George A.; Matthews, Sarah; Warren, Harry; Culhane, J. Leonard; Woods, Magnus M.

    2017-06-01

    In order to understand the onset phase of a solar eruption, plasma parameter measurements in the early phases are key to constraining models. There are two current instrument types that allow us to make such measurements: narrow-band imagers and spectrometers. In the former case, even narrow-band filters contain multiple emission lines, creating some temperature confusion. With imagers, however, rapid cadences are achievable and the field of view can be large. Velocities of the erupting structures can be measured by feature tracking. In the spectrometer case, slit spectrometers can provide spectrally pure images by “rastering” the slit to build up an image. This method provides limited temporal resolution, but the plasma parameters can be accurately measured, including velocities along the line of sight. Both methods have benefits and are often used in tandem. In this paper we demonstrate for the first time that data from the wide slot on the Hinode EUV Imaging Spectrometer, along with imaging data from AIA, can be used to deconvolve velocity information at the start of an eruption, providing line-of-sight velocities across an extended field of view. Using He II 256 Å slot data at flare onset, we observe broadening or shift(s) of the emission line of up to ±280 km s-1. These are seen at different locations—the redshifted plasma is seen where the hard X-ray source is later seen (energy deposition site). In addition, blueshifted plasma shows the very early onset of the fast rise of the filament.

  13. Type 2 diabetes is associated with increased pulse wave velocity measured at different sites of the arterial system but not augmentation index in a Chinese population.

    PubMed

    Zhang, Minghua; Bai, Yongyi; Ye, Ping; Luo, Leiming; Xiao, Wenkai; Wu, Hongmei; Liu, Dejun

    2011-10-01

    Patients with type 2 diabetes have increased stiffness of central elastic arteries. However, whether peripheral muscular artery stiffness is equally affected by the disease remains sparsely examined. Moreover, the association between pulse wave velocity (PWV) and augmentation index (AIx) in diabetes is poorly understood. Type 2 diabetes is associated with the alterations in arterial stiffness (PWV and AIx) in a community-based population. A total of 79 Chinese patients with type 2 diabetes and 79 sex-, age- (±3 years), and body mass index- (±2 kg/m(2) ) matched healthy controls were studied. Carotid-femoral pulse wave velocity (CF-PWV), carotid-radial pulse wave velocity (CR-PWV), and carotid-ankle pulse wave velocity (CA-PWV) were calculated from tonometry waveforms and body surface measurements, whereas AIx was assessed using pulse wave analyses. In univariate analysis, patients with type 2 diabetes showed increased CF-PWV (P < 0.001), CR-PWV (P = 0.012), and CA-PWV (P = 0.016), and lower AIx (P = 0.017) than the control group. In multiple linear regression models adjusting for covariates, type 2 diabetes remained a significant determinant of CF-PWV. Fasting glucose was associated with CR-PWV but was not related to CA-PWV or AIx. Our findings suggest that patients with type 2 diabetes have increased central and peripheral artery stiffness, but preserved AIx compared to controls. Diabetes was a predictor of central artery stiffness, and glucose was a determinant of peripheral artery stiffness. © 2011 Wiley Periodicals, Inc.

  14. Measuring Velocities in the Early Stage of an Eruption: Using “Overlappogram” Data from Hinode EIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harra, Louise K.; Matthews, Sarah; Culhane, J. Leonard

    In order to understand the onset phase of a solar eruption, plasma parameter measurements in the early phases are key to constraining models. There are two current instrument types that allow us to make such measurements: narrow-band imagers and spectrometers. In the former case, even narrow-band filters contain multiple emission lines, creating some temperature confusion. With imagers, however, rapid cadences are achievable and the field of view can be large. Velocities of the erupting structures can be measured by feature tracking. In the spectrometer case, slit spectrometers can provide spectrally pure images by “rastering” the slit to build up anmore » image. This method provides limited temporal resolution, but the plasma parameters can be accurately measured, including velocities along the line of sight. Both methods have benefits and are often used in tandem. In this paper we demonstrate for the first time that data from the wide slot on the Hinode EUV Imaging Spectrometer, along with imaging data from AIA, can be used to deconvolve velocity information at the start of an eruption, providing line-of-sight velocities across an extended field of view. Using He ii 256 Å slot data at flare onset, we observe broadening or shift(s) of the emission line of up to ±280 km s{sup −1}. These are seen at different locations—the redshifted plasma is seen where the hard X-ray source is later seen (energy deposition site). In addition, blueshifted plasma shows the very early onset of the fast rise of the filament.« less

  15. Relationships and redundancies of selected hemodynamic and structural parameters for characterizing virtual treatment of cerebral aneurysms with flow diverter devices.

    PubMed

    Karmonik, C; Anderson, J R; Beilner, J; Ge, J J; Partovi, S; Klucznik, R P; Diaz, O; Zhang, Y J; Britz, G W; Grossman, R G; Lv, N; Huang, Q

    2016-07-26

    To quantify the relationship and to demonstrate redundancies between hemodynamic and structural parameters before and after virtual treatment with a flow diverter device (FDD) in cerebral aneurysms. Steady computational fluid dynamics (CFD) simulations were performed for 10 cerebral aneurysms where FDD treatment with the SILK device was simulated by virtually reducing the porosity at the aneurysm ostium. Velocity and pressure values proximal and distal to and at the aneurysm ostium as well as inside the aneurysm were quantified. In addition, dome-to-neck ratios and size ratios were determined. Multiple correlation analysis (MCA) and hierarchical cluster analysis (HCA) were conducted to demonstrate dependencies between both structural and hemodynamic parameters. Velocities in the aneurysm were reduced by 0.14m/s on average and correlated significantly (p<0.05) with velocity values in the parent artery (average correlation coefficient: 0.70). Pressure changes in the aneurysm correlated significantly with pressure values in the parent artery and aneurysm (average correlation coefficient: 0.87). MCA found statistically significant correlations between velocity values and between pressure values, respectively. HCA sorted velocity parameters, pressure parameters and structural parameters into different hierarchical clusters. HCA of aneurysms based on the parameter values yielded similar results by either including all (n=22) or only non-redundant parameters (n=2, 3 and 4). Hemodynamic and structural parameters before and after virtual FDD treatment show strong inter-correlations. Redundancy of parameters was demonstrated with hierarchical cluster analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Discovery Of A Rossby Wave In Jupiter's South Equatorial Region

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Choi, D. S.; Rogers, J. H.; Gierasch, P. J.

    2012-01-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 deg S planetographic latitude shows variations in velocity with longitude and time. The chevrons move with velocities near the maximum wind jet velocity of approx.140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 deg N latitude. Their repetitive nature is consistent with an inertia-gravity wave (n = 75-100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a approx.7-day period. This oscillating motion has a wavelength of approx.20 deg and a speed of approx.100 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it, though they are not perfectly in phase. The transient anticyclonic South Equatorial Disturbance (SED) may be a similar wave feature, but moves at slower velocity. All data show chevron latitude variability, but it is unclear if this Rossby wave is present during other epochs, without time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S may be due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  17. The Kinematics of Multiple-peaked Lyα Emission in Star-forming Galaxies at z ~ 2-3

    NASA Astrophysics Data System (ADS)

    Kulas, Kristin R.; Shapley, Alice E.; Kollmeier, Juna A.; Zheng, Zheng; Steidel, Charles C.; Hainline, Kevin N.

    2012-01-01

    We present new results on the Lyα emission-line kinematics of 18 z ~ 2-3 star-forming galaxies with multiple-peaked Lyα profiles. With our large spectroscopic database of UV-selected star-forming galaxies at these redshifts, we have determined that ~30% of such objects with detectable Lyα emission display multiple-peaked emission profiles. These profiles provide additional constraints on the escape of Lyα photons due to the rich velocity structure in the emergent line. Despite recent advances in modeling the escape of Lyα from star-forming galaxies at high redshifts, comparisons between models and data are often missing crucial observational information. Using Keck II NIRSPEC spectra of Hα (z ~ 2) and [O III]λ5007 (z ~ 3), we have measured accurate systemic redshifts, rest-frame optical nebular velocity dispersions, and emission-line fluxes for the objects in the sample. In addition, rest-frame UV luminosities and colors provide estimates of star formation rates and the degree of dust extinction. In concert with the profile sub-structure, these measurements provide critical constraints on the geometry and kinematics of interstellar gas in high-redshift galaxies. Accurate systemic redshifts allow us to translate the multiple-peaked Lyα profiles into velocity space, revealing that the majority (11/18) display double-peaked emission straddling the velocity-field zero point with stronger red-side emission. Interstellar absorption-line kinematics suggest the presence of large-scale outflows for the majority of objects in our sample, with an average measured interstellar absorption velocity offset of langΔv absrang = -230 km s-1. A comparison of the interstellar absorption kinematics for objects with multiple- and single-peaked Lyα profiles indicate that the multiple-peaked objects are characterized by significantly narrower absorption line widths. We compare our data with the predictions of simple models for outflowing and infalling gas distributions around high-redshift galaxies. While popular "shell" models provide a qualitative match with many of the observations of Lyα emission, we find that in detail there are important discrepancies between the models and data, as well as problems with applying the framework of an expanding thin shell of gas to explain high-redshift galaxy spectra. Our data highlight these inconsistencies, as well as illuminating critical elements for success in future models of outflow and infall in high-redshift galaxies. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  18. Differences in trunk control between early and late pregnancy during gait.

    PubMed

    Sawa, Ryuichi; Doi, Takehiko; Asai, Tsuyoshi; Watanabe, Kaori; Taniguchi, Takeshi; Ono, Rei

    2015-10-01

    The aim of this study was to compare gait characteristics, including the functional ability of the trunk, between women before and during the third trimester of pregnancy. Gait measurements were performed on 27 pregnant women, who were divided into two groups using the threshold of 28 gestational weeks. The subjects were instructed to walk at their preferred speed. In addition to stride-time coefficient of variation, root mean square (RMS) and autocorrelation coefficient, coefficient of attenuation (CoA) of acceleration was computed as an index to assess the functional ability of the trunk. Differences of gait characteristics between the groups were determined by the Mann-Whitney U test. Gait characteristics that showed a significant difference between the groups were further analyzed with adjustment by age, height, weight and gait velocity by using multiple regression analysis. Women during the third trimester of pregnancy showed significantly smaller RMS in the anteroposterior direction at the lower trunk than those before the third trimester of pregnancy, even after adjusting for age, height, weight and gait velocity [β=0.47; 95% confidence interval (CI) 0.07-0.25]. CoA in the anteroposterior direction was also significantly lower in women during the third trimester of pregnancy than in those before the third trimester of pregnancy after adjustment by age, height, weight and gait velocity (β=0.44; 95% CI 0.39-18.52). The present cross-sectional study suggests the possibility that the functional ability of the trunk during gait declines in late pregnancy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Motion fading is driven by perceived, not actual angular velocity.

    PubMed

    Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U

    2010-06-01

    After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Image Motion Detection And Estimation: The Modified Spatio-Temporal Gradient Scheme

    NASA Astrophysics Data System (ADS)

    Hsin, Cheng-Ho; Inigo, Rafael M.

    1990-03-01

    The detection and estimation of motion are generally involved in computing a velocity field of time-varying images. A completely new modified spatio-temporal gradient scheme to determine motion is proposed. This is derived by using gradient methods and properties of biological vision. A set of general constraints is proposed to derive motion constraint equations. The constraints are that the second directional derivatives of image intensity at an edge point in the smoothed image will be constant at times t and t+L . This scheme basically has two stages: spatio-temporal filtering, and velocity estimation. Initially, image sequences are processed by a set of oriented spatio-temporal filters which are designed using a Gaussian derivative model. The velocity is then estimated for these filtered image sequences based on the gradient approach. From a computational stand point, this scheme offers at least three advantages over current methods. The greatest advantage of the modified spatio-temporal gradient scheme over the traditional ones is that an infinite number of motion constraint equations are derived instead of only one. Therefore, it solves the aperture problem without requiring any additional assumptions and is simply a local process. The second advantage is that because of the spatio-temporal filtering, the direct computation of image gradients (discrete derivatives) is avoided. Therefore the error in gradients measurement is reduced significantly. The third advantage is that during the processing of motion detection and estimation algorithm, image features (edges) are produced concurrently with motion information. The reliable range of detected velocity is determined by parameters of the oriented spatio-temporal filters. Knowing the velocity sensitivity of a single motion detection channel, a multiple-channel mechanism for estimating image velocity, seldom addressed by other motion schemes in machine vision, can be constructed by appropriately choosing and combining different sets of parameters. By applying this mechanism, a great range of velocity can be detected. The scheme has been tested for both synthetic and real images. The results of simulations are very satisfactory.

  1. No Effect of Assisted Hip Rotation on Bat Velocity.

    PubMed

    Rivera, Michelle; Leyva, Whitney D; Archer, David C; Munger, Cameron N; Watkins, Casey M; Wong, Megan A; Dobbs, Ian J; Galpin, Andrew J; Coburn, Jared W; Brown, Lee E

    2018-01-01

    Softball and baseball are games that require multiple skill sets such as throwing, hitting and fielding. Players spend a copious amount of time in batting practice in order to be successful hitters. Variables commonly associated with successful hitting include bat velocity and torso rotation. The concept of overspeed bodyweight assistance (BWA) has shown increases in vertical jump and sprint times, but not hip rotation and batting. The purpose of this study was to examine the effects of assisted hip rotation on bat velocity. Twenty-one male and female recreational softball and baseball players (15 males, age 23.8 ± 3.1yrs; height 177.67 ± 6.71cm; body mass 85.38 ± 14.83kg; 6 females, age 21.5 ± 2.1yrs; height 162.20 ± 9.82cm; body mass 60.28 ± 9.72kg) volunteered to participate. Four different BWA conditions (0%, 10%, 20%, and 30%) were randomly applied and their effects on bat velocity were analyzed. Subjects performed three maximal effort swings under each condition in a custom measurement device and average bat velocity (MPH) was used for analysis. A mixed factor ANOVA revealed no interaction (p=0.841) or main effect for condition, but there was a main effect for sex where males had greater bat velocity (43.82±4.40 - 0% BWA, 41.52±6.09 - 10% BWA, 42.59±7.24 - 20% BWA, 42.69±6.42 - 30% BWA) than females (32.57±5.33 - 0% BWA, 31.69±3.40 - 10% BWA, 32.43±5.06 - 20% BWA, 32.08±4.83 - 30% BWA) across all conditions Using the concept of overspeed training with assisted hip rotation up to 30% BWA did not result in an increase in bat velocity. Future research should examine elastic band angle and hip translation at set-up.

  2. No Effect of Assisted Hip Rotation on Bat Velocity

    PubMed Central

    RIVERA, MICHELLE; LEYVA, WHITNEY D.; ARCHER, DAVID C.; MUNGER, CAMERON N.; WATKINS, CASEY M.; WONG, MEGAN A.; DOBBS, IAN J.; GALPIN, ANDREW J.; COBURN, JARED W.; BROWN, LEE E.

    2018-01-01

    Softball and baseball are games that require multiple skill sets such as throwing, hitting and fielding. Players spend a copious amount of time in batting practice in order to be successful hitters. Variables commonly associated with successful hitting include bat velocity and torso rotation. The concept of overspeed bodyweight assistance (BWA) has shown increases in vertical jump and sprint times, but not hip rotation and batting. The purpose of this study was to examine the effects of assisted hip rotation on bat velocity. Twenty-one male and female recreational softball and baseball players (15 males, age 23.8 ± 3.1yrs; height 177.67 ± 6.71cm; body mass 85.38 ± 14.83kg; 6 females, age 21.5 ± 2.1yrs; height 162.20 ± 9.82cm; body mass 60.28 ± 9.72kg) volunteered to participate. Four different BWA conditions (0%, 10%, 20%, and 30%) were randomly applied and their effects on bat velocity were analyzed. Subjects performed three maximal effort swings under each condition in a custom measurement device and average bat velocity (MPH) was used for analysis. A mixed factor ANOVA revealed no interaction (p=0.841) or main effect for condition, but there was a main effect for sex where males had greater bat velocity (43.82±4.40 - 0% BWA, 41.52±6.09 - 10% BWA, 42.59±7.24 - 20% BWA, 42.69±6.42 - 30% BWA) than females (32.57±5.33 - 0% BWA, 31.69±3.40 - 10% BWA, 32.43±5.06 - 20% BWA, 32.08±4.83 - 30% BWA) across all conditions Using the concept of overspeed training with assisted hip rotation up to 30% BWA did not result in an increase in bat velocity. Future research should examine elastic band angle and hip translation at set-up. PMID:29795730

  3. SCEC UCVM - Unified California Velocity Model

    NASA Astrophysics Data System (ADS)

    Small, P.; Maechling, P. J.; Jordan, T. H.; Ely, G. P.; Taborda, R.

    2011-12-01

    The SCEC Unified California Velocity Model (UCVM) is a software framework for a state-wide California velocity model. UCVM provides researchers with two new capabilities: (1) the ability to query Vp, Vs, and density from any standard regional California velocity model through a uniform interface, and (2) the ability to combine multiple velocity models into a single state-wide model. These features are crucial in order to support large-scale ground motion simulations and to facilitate improvements in the underlying velocity models. UCVM provides integrated support for the following standard velocity models: SCEC CVM-H, SCEC CVM-S and the CVM-SI variant, USGS Bay Area (cencalvm), Lin-Thurber Statewide, and other smaller regional models. New models may be easily incorporated as they become available. Two query interfaces are provided: a Linux command line program, and a C application programming interface (API). The C API query interface is simple, fully independent of any specific model, and MPI-friendly. Input coordinates are geographic longitude/latitude and the vertical coordinate may be either depth or elevation. Output parameters include Vp, Vs, and density along with the identity of the model from which these material properties were obtained. In addition to access to the standard models, UCVM also includes a high resolution statewide digital elevation model, Vs30 map, and an optional near-surface geo-technical layer (GTL) based on Ely's Vs30-derived GTL. The elevation and Vs30 information is bundled along with the returned Vp,Vs velocities and density, so that all relevant information is retrieved with a single query. When the GTL is enabled, it is blended with the underlying crustal velocity models along a configurable transition depth range with an interpolation function. Multiple, possibly overlapping, regional velocity models may be combined together into a single state-wide model. This is accomplished by tiling the regional models on top of one another in three dimensions in a researcher-specified order. No reconciliation is performed within overlapping model regions, although a post-processing tool is provided to perform a simple numerical smoothing. Lastly, a 3D region from a combined model may be extracted and exported into a CVM-Etree. This etree may then be queried by UCVM much like a standard velocity model but with less overhead and generally better performance due to the efficiency of the etree data structure.

  4. The Presto 1000: A novel automated transcranial Doppler ultrasound system.

    PubMed

    Han, Seunggu J; Rutledge, William Caleb; Englot, Dario J; Winkler, Ethan A; Browne, Janet L; Pflugrath, Lauren; Cronsier, David; Abla, Adib A; Kliot, Michel; Lawton, Michael T

    2015-11-01

    We examined the reliability and ease of use of a novel automated transcranial Doppler (TCD) system in comparison to a conventional TCD system. TCD ultrasound allows non-invasive monitoring of cerebral blood flow, and can predict arterial vasospasm after a subarachnoid hemorrhage (SAH). The Presto 1000 TCD system (PhysioSonics, Bellevue, WA, USA) is designed for monitoring flow through the M1 segment of the middle cerebral artery (MCA) via temporal windows. The Presto 1000 system was tested across multiple preclinical and clinical settings in parallel with a control predicate TCD system. In a phantom flow generating device, both the Presto 1000 and Spencer system (Spencer Technologies, Redmond, WA, USA) were able to detect velocities with high accuracy. In nine volunteer patients, the Presto system was able to locate the MCA in 14 out of 18 temporal windows, in an average of 12.5s. In the SAH cohort of five patients with a total of 25 paired measurements, the mean absolute difference in flow velocities of the M1 segment, as measured by the two systems, was 17.5 cm/s. These data suggest that the Presto system offers an automated TCD that can reliably localize and detect flow of the MCA, with relative ease of use. The system carries the additional benefit of requiring minimal training for the operator, and can be used by many providers across multiple bedside settings. The mean velocities that were generated warrant further validation across an extended group of patients, and the predictive value for vasospasm should be checked against the current standard of angiography. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    USGS Publications Warehouse

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.

    2018-01-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  6. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    NASA Astrophysics Data System (ADS)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.

    2018-02-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  7. Ray tracing of multiple transmitted/reflected/converted waves in 2-D/3-D layered anisotropic TTI media and application to crosswell traveltime tomography

    NASA Astrophysics Data System (ADS)

    Bai, Chao-Ying; Huang, Guo-Jiao; Li, Xiao-Ling; Zhou, Bing; Greenhalgh, Stewart

    2013-11-01

    To overcome the deficiency of some current grid-/cell-based ray tracing algorithms, which are only able to handle first arrivals or primary reflections (or conversions) in anisotropic media, we have extended the functionality of the multistage irregular shortest-path method to 2-D/3-D tilted transversely isotropic (TTI) media. The new approach is able to track multiple transmitted/reflected/converted arrivals composed of any kind of combinations of transmissions, reflections and mode conversions. The basic principle is that the seven parameters (five elastic parameters plus two polar angles defining the tilt of the symmetry axis) of the TTI media are sampled at primary nodes, and the group velocity values at secondary nodes are obtained by tri-linear interpolation of the primary nodes across each cell, from which the group velocities of the three wave modes (qP, qSV and qSH) are calculated. Finally, we conduct grid-/cell-based wave front expansion to trace multiple transmitted/reflected/converted arrivals from one region to the next. The results of calculations in uniform anisotropic media indicate that the numerical results agree with the analytical solutions except in directions of SV-wave triplications, at which only the lowest velocity value is selected at the singularity points by the multistage irregular shortest-path anisotropic ray tracing method. This verifies the accuracy of the methodology. Several simulation results show that the new method is able to efficiently and accurately approximate situations involving continuous velocity variations and undulating discontinuities, and that it is suitable for any combination of multiple transmitted/reflected/converted arrival tracking in TTI media of arbitrary strength and tilt. Crosshole synthetic traveltime tomographic tests have been performed, which highlight the importance of using such code when the medium is distinctly anisotropic.

  8. Rayleigh wave group velocity and shear wave velocity structure in the San Francisco Bay region from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Li, Peng; Thurber, Clifford

    2018-06-01

    We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.

  9. Understanding the Earth's Mantle Through Advanced Elasticity Measurements

    NASA Astrophysics Data System (ADS)

    Marquardt, Hauke; Schulze, Kirsten; Kurnosov, Alexander; Buchen, Johannes; Frost, Daniel; Boffa Ballaran, Tiziana; Marquardt, Katharina; Kawazoe, Takaaki

    2017-04-01

    Constraints on the inner structure, chemical and mineralogical composition as well as dynamics of Earth's mantle can be derived through comparison of laboratory elasticity data to seismological observables. A quantitative knowledge of the elastic properties of mantle minerals, and their variations with chemical composition, at pressure and temperature conditions of Earth's mantle is key to construct reliable synthetic mineral physics-based seismic velocity models to be compared to seismic observables. We will discuss results of single-crystal elasticity measurements on Earth mantle minerals that have been conducted using the combined Brillouin scattering and x-ray diffraction (XRD) system at BGI Bayreuth in combination with advanced sample preparation using the focused ion beam (FIB) technique [1] that allows for tailoring sizes and shapes of tiny single-crystals. In our experiments, multiple FIB-prepared single-crystals were loaded in a single sample chamber of a resistively-heated diamond-anvil cell (DAC). The possiblity to measure simultaneously acoustic wave velocities and density (unit-cell parameters) in the DAC in combination with the multi-sample approach facilitates direct quantification of the effects of chemical substitution on the elasticity and seismic wave velocities at non-ambient conditions. Our experimental approach eliminates uncertainties arising from the combination of data collected under (potentially) different conditions in several DAC runs, in different laboratories and/or from using different pressure-temperature sensors. We will present our recent experiments on the elasticity of single-crystal Fe-Al-bearing bridgmanite in the lower mantle and discuss implications for the composition and oxidation state of Earth's lower mantle. We will further discuss our laboratory data on the effects of 'water' and iron on the seismic wave velocities of ringwoodite in Earth's transition zone and outline implications for mapping 'water' in the transition zone using geophysical observables. [1] Marquardt, H. and K. Marquardt, 2012. American Mineralogist 97, 299-304.

  10. Burning Plastics Investigated in Space for Unique US/Russian Cooperative Project

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    2000-01-01

    It is well known that fires in the low-gravity environment of Earth-orbiting spacecraft are different from fires on Earth. The flames lack the familiar upward plume, which is the result of gravitational buoyancy. These flames, however, are strongly influenced by minor airflow currents. A recent study conducted in low gravity (microgravity) on the Russian orbital station Mir used burning plastic rods mounted in a small chamber with a controllable fan to expose the flame to airflows of different velocities. In this unique project, a Russian scientific agency, the Keldysh Research Center, furnished the apparatus and directed the Mir tests, while the NASA Glenn Research Center at Lewis Field provided the test materials and the project management. Reference testing and calibrations in ground laboratories were conducted jointly by researchers at Keldysh and at the NASA Johnson Space Center's White Sands Test Facility. Multiple samples of three different plastics were burned in the tests: Delrin, a common material for valve bodies; PMMA, a plastic "glass"; and polyethylene, a familiar material for containers and films. Each burned with a unique spherical or egg-shaped flame that spread over the rod. The effect of varying the airflow was dramatic. At the highest airflow attainable in the combustion chamber, nearly 10 cm/sec (a typical ventilation breeze), the flames were bright and strong. As airflow velocity decreased, the flames became shorter but wider. In addition, the flames became less bright, and for PMMA and polyethylene, they showed two colors, a bright part decreasing in volume and a nearly invisible remainder (see the photographs). Finally, at a very low velocity, the flames extinguished. For the plastics tested, this minimum velocity was very low, around 0.3 to 0.5 cm/sec. This finding confirms that at least a slight airflow is required to maintain a flame in microgravity for these types of materials.

  11. The effect of multiplicity of stellar encounters and the diffusion coefficients in a locally homogeneous three-dimensional stellar medium: Removing the classical divergence

    NASA Astrophysics Data System (ADS)

    Rastorguev, A. S.; Utkin, N. D.; Chumak, O. V.

    2017-08-01

    Agekyan's λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.

  12. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  13. Electromagnetic ion cyclotron waves in the helium branch induced by multiple electromagnetic ion cyclotron triggered emissions

    NASA Astrophysics Data System (ADS)

    Shoji, Masafumi; Omura, Yoshiharu; Grison, Benjamin; Pickett, Jolene; Dandouras, Iannis; Engebretson, Mark

    2011-09-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  14. Modeling of Ureolytic Calcite Precipitation for the Remediation of Sr-90 Using a Variable Velocity Streamtube Ensemble

    NASA Astrophysics Data System (ADS)

    Weathers, T. S.; Ginn, T. R.; Spycher, N.; Barkouki, T. H.; Fujita, Y.; Smith, R. W.

    2009-12-01

    Subsurface contamination is often mitigated with an injection/extraction well system. An understanding of heterogeneities within this radial flowfield is critical for modeling, prediction, and remediation of the subsurface. We address this using a Lagrangian approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). A well-to-well treatment system that incorporates in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90 has been explored at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. PHREEQC2 provides a one-dimensional advective-dispersive transport option that can be and has been used in streamtube ensemble models. Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is variable in space, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance if kinetic reactions are present with multiple components, if kinetic reaction rates vary in space, if the reactions involve multiple phases (e.g. heterogeneous reactions), and/or if they impact physical characteristics (porosity/permeability), as does ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” nonuniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well. Breakthrough data from urea injection experiments performed at the VZRP are compared to the model results from the PHREEQC2 variable velocity ensemble.

  15. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-02-01

    The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

  16. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests

    PubMed Central

    Zivkovic, Milena Z.; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-01-01

    Abstract The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles. PMID:28469742

  17. Kinematics, turbulence, and star formation of z ˜ 1 strongly lensed galaxies seen with MUSE

    NASA Astrophysics Data System (ADS)

    Patrício, V.; Richard, J.; Carton, D.; Contini, T.; Epinat, B.; Brinchmann, J.; Schmidt, K. B.; Krajnović, D.; Bouché, N.; Weilbacher, P. M.; Pelló, R.; Caruana, J.; Maseda, M.; Finley, H.; Bauer, F. E.; Martinez, J.; Mahler, G.; Lagattuta, D.; Clément, B.; Soucail, G.; Wisotzki, L.

    2018-06-01

    We analyse a sample of eight highly magnified galaxies at redshift 0.6 < z < 1.5 observed with MUSE, exploring the resolved properties of these galaxies at sub-kiloparsec scales. Combining multiband HST photometry and MUSE spectra, we derive the stellar mass, global star formation rates (SFRs), extinction and metallicity from multiple nebular lines, concluding that our sample is representative of z ˜ 1 star-forming galaxies. We derive the 2D kinematics of these galaxies from the [O II ] emission and model it with a new method that accounts for lensing effects and fits multiple images simultaneously. We use these models to calculate the 2D beam-smearing correction and derive intrinsic velocity dispersion maps. We find them to be fairly homogeneous, with relatively constant velocity dispersions between 15 and 80 km s-1 and Gini coefficient of {≲ }0.3. We do not find any evidence for higher (or lower) velocity dispersions at the positions of bright star-forming clumps. We derive resolved maps of dust attenuation and attenuation-corrected SFRs from emission lines for two objects in the sample. We use this information to study the relation between resolved SFR and velocity dispersion. We find that these quantities are not correlated, and the high-velocity dispersions found for relatively low star-forming densities seems to indicate that, at sub-kiloparsec scales, turbulence in high-z discs is mainly dominated by gravitational instability rather than stellar feedback.

  18. Plasma lactate accumulation and distance running performance. 1979.

    PubMed

    Farrell, P A; Wilmore, J H; Coyle, E F; Billing, J E; Costill, D L

    1993-10-01

    Laboratory and field assessments were made on eighteen male distance runners. Performance data were obtained for distances of 3.2, 9.7, 15, 19.3 km (n = 18) and the marathon (n = 13). Muscle fiber composition expressed as percent of slow twitch fibers (%ST), maximal oxygen consumption (VO2max), running economy (VO2 for a treadmill velocity of 268 m/min), and the VO2 and treadmill velocity corresponding to the onset of plasma lactate accumulation (OPLA) were determined for each subject. %ST (R > or equal to .47), VO2max (r > or equal to .83), running economy (r > or equal to .49), VO2 in ml/kg min corresponding to the OPLA (r > or equal to .91) and the treadmill velocity corresponding to OPLA (r > or equal to .91) were significantly (p < .05) related to performance at all distances. Multiple regression analysis showed that the treadmill velocity corresponding to the OPLA was most closely related to performance and the addition of other factors did not significantly raise the multiple R values suggesting that these other variables may interact with the purpose of keeping plasma lactates low during distance races. The slowest and fastest marathoners ran their marathons 7 and 3 m/min faster than their treadmill velocities corresponding to their OPLA which indicates that this relationship is independent of the competitive level of the runner. Runners appear to set a race pace which allows the utilization of the largest possible VO2 which just avoids the exponential rise in plasma lactate.

  19. Automated Glacier Surface Velocity using Multi-Image/Multi-Chip (MIMC) Feature Tracking

    NASA Astrophysics Data System (ADS)

    Ahn, Y.; Howat, I. M.

    2009-12-01

    Remote sensing from space has enabled effective monitoring of remote and inhospitable polar regions. Glacier velocity, and its variation in time, is one of the most important parameters needed to understand glacier dynamics, glacier mass balance and contribution to sea level rise. Regular measurements of ice velocity are possible from large and accessible satellite data set archives, such as ASTER and LANDSAT-7. Among satellite imagery, optical imagery (i.e. passive, visible to near-infrared band sensors) provides abundant data with optimal spatial resolution and repeat interval for tracking glacier motion at high temporal resolution. Due to massive amounts of data, computation of ice velocity from feature tracking requires 1) user-friendly interface, 2) minimum local/user parameter inputs and 3) results that need minimum editing. We focus on robust feature tracking, applicable to all currently available optical satellite imagery, that is ASTER, SPOT and LANDSAT etc. We introduce the MIMC (multiple images/multiple chip sizes) matching approach that does not involve any user defined local/empirical parameters except approximate average glacier speed. We also introduce a method for extracting velocity from LANDSAT-7 SLC-off data, which has 22 percent of scene data missing in slanted strips due to failure of the scan line corrector. We apply our approach to major outlet glaciers in west/east Greenland and assess our MIMC feature tracking technique by comparison with conventional correlation matching and other methods (e.g. InSAR).

  20. Multiple Velocity Profile Measurements in Hypersonic Flows Using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Ivey,Christopher b.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD (charge-coupled device) camera was used to obtain two sequential images of the NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm horizontal, 0.7-mm vertical). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. A numerical study of measured velocity error due to a uniform and linearly-varying collisional rate distribution was performed. Quantification of systematic errors, the contribution of gating/exposure duration errors, and the influence of collision rate on temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the signal-to-noise ratio of the acquired profiles. This velocity measurement technique has been demonstrated for two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-Inch Mach 10 Air Tunnel.

  1. Remote Evaluation of Rotational Velocity Using a Quadrant Photo-Detector and a DSC Algorithm

    PubMed Central

    Zeng, Xiangkai; Zhu, Zhixiong; Chen, Yang

    2016-01-01

    This paper presents an approach to remotely evaluate the rotational velocity of a measured object by using a quadrant photo-detector and a differential subtraction correlation (DSC) algorithm. The rotational velocity of a rotating object is determined by two temporal-delay numbers at the minima of two DSCs that are derived from the four output signals of the quadrant photo-detector, and the sign of the calculated rotational velocity directly represents the rotational direction. The DSC algorithm does not require any multiplication operations. Experimental calculations were performed to confirm the proposed evaluation method. The calculated rotational velocity, including its amplitude and direction, showed good agreement with the given one, which had an amplitude error of ~0.3%, and had over 1100 times the efficiency of the traditional cross-correlation method in the case of data number N > 4800. The confirmations have shown that the remote evaluation of rotational velocity can be done without any circular division disk, and that it has much fewer error sources, making it simple, accurate and effective for remotely evaluating rotational velocity. PMID:27120607

  2. Two-Relaxation-Time Lattice Boltzmann Method for Advective-Diffusive-Reactive Transport

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Hilpert, M.

    2016-12-01

    The lattice Boltzmann method (LBM) has been applied to study a wide range of reactive transport in porous and fractured media. The single-relaxation-time (SRT) LBM, employing single relaxation time, is the most popular LBM due to its simplicity of understanding and implementation. Nevertheless, the SRT LBM may suffer from numerical instability for small value of the relaxation time. By contrast, the multiple-relaxation-time (MRT) LBM, employing multiple relaxation times, can improve the numerical stability through tuning the multiple relaxation times, but the complexity of implementing this method restricts its applications. The two-relaxation-time (TRT) LBM, which employs two relaxation times, combines the advantages of SRT and MRT LBMs. The TRT LBM can produce simulations with better accuracy and stability than the SRT one, and is easier to implement than the MRT one. This work evaluated the numerical accuracy and stability of the TRT method by comparing the simulation results with analytical solutions of Gaussian hill transport and Taylor dispersion under different advective velocities. The accuracy generally increased with the tunable relaxation time τ, and the stability first increased and then decreased as τ increased, showing an optimal TRT method emerging the best numerical stability. The free selection of τ enabled the TRT LBM to simulate the Gaussian hill transport and Taylor dispersion under relatively high advective velocity, under which the SRT LBM suffered from numerical instability. Finally, the TRT method was applied to study the contaminant degradation by chemotactic microorganisms in porous media, which acted as a reprehensive of reactive transport in this study, and well predicted the evolution of microorganisms and degradation of contaminants for different transport scenarios. To sum up, the TRT LBM produced simulation results with good accuracy and stability for various advective-diffusive-reactive transport through tuning the relaxation time τ, illustrating its potential to study various biogeochemical behaviors in the subsurface environment.

  3. Propagation of Gaussian wave packets in complex media and application to fracture characterization

    NASA Astrophysics Data System (ADS)

    Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu

    2017-08-01

    Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model. For a layered medium containing fractures, our method can correctly recover the fracture density even with an inaccurate velocity model.

  4. Enhanced Gravity Tractor Technique for Planetary Defense

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Reeves, David M.; Hopkins, Joshua B.; Wade, Darren W.; Tantardini, Marco; Shen, Haijun

    2015-01-01

    Given sufficient warning time, Earth-impacting asteroids and comets can be deflected with a variety of different "slow push/pull" techniques. The gravity tractor is one technique that uses the gravitational attraction of a rendezvous spacecraft to the impactor and a low-thrust, high-efficiency propulsion system to provide a gradual velocity change and alter its trajectory. An innovation to this technique, known as the Enhanced Gravity Tractor (EGT), uses mass collected in-situ to augment the mass of the spacecraft, thereby greatly increasing the gravitational force between the objects. The collected material can be a single boulder, multiple boulders, regolith or a combination of different sources. The collected mass would likely range from tens to hundreds of metric tons depending on the size of the impactor and warning time available. Depending on the propulsion system's capability and the mass collected, the EGT approach can reduce the deflection times by a factor of 10 to 50 or more, thus reducing the deflection times of several decades to years or less and overcoming the main criticism of the traditional gravity tractor approach. Additionally, multiple spacecraft can orbit the target in formation to provide the necessary velocity change and further reduce the time needed by the EGT technique to divert hazardous asteroids and comets. The robotic segment of NASA's Asteroid Redirect Mission (ARM) will collect a multi-ton boulder from the surface of a large Near-Earth Asteroid (NEA) and will provide the first ever demonstration of the EGT technique and validate one method of collecting in-situ mass on an asteroid of hazardous size.

  5. Dynamic Response of a High Arctic Glacier to Melt and Runoff Variations

    NASA Astrophysics Data System (ADS)

    van Pelt, Ward J. J.; Pohjola, Veijo A.; Pettersson, Rickard; Ehwald, Lena E.; Reijmer, Carleen H.; Boot, Wim; Jakobs, Constantijn L.

    2018-05-01

    The dynamic response of High Arctic glaciers to increased runoff in a warming climate remains poorly understood. We analyze a 10-year record of continuous velocity data collected at multiple sites on Nordenskiöldbreen, Svalbard, and study the connection between ice flow and runoff within and between seasons. During the melt season, the sensitivity of ice motion to runoff at sites in the ablation and lower accumulation zone drops by a factor of 3 when cumulative runoff exceeds a local threshold, which is likely associated with a transition from inefficient (distributed) to efficient (channelized) drainage. Average summer (June-August) velocities are found to increase with summer ablation, while subsequent fall (September-November) velocities decrease. Spring (March-May) velocities are largely insensitive to summer ablation, which suggests a short-lived impact of summer melt on ice flow during the cold season. The net impact of summer ablation on annual velocities is found to be insignificant.

  6. Development of core ion temperature gradients and edge sheared flows in a helicon plasma device investigated by laser induced fluorescence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, S. C.; Tynan, G. R.; Center for Energy Research, University of California at San Diego, San Diego, California 92093

    2016-08-15

    We report experimental observation of ion heating and subsequent development of a prominent ion temperature gradient in the core of a linear magnetized plasma device, and the controlled shear de-correlation experiment. Simultaneously, we also observe the development of strong sheared flows at the edge of the device. Both the ion temperature and the azimuthal velocity profiles are quite flat at low magnetic fields. As the magnetic field is increased, the core ion temperature increases, producing centrally peaked ion temperature profiles and therefore strong radial gradients in the ion temperature. Similarly, we observe the development of large azimuthal flows at themore » edge, with increasing magnetic field, leading to strong radially sheared plasma flows. The ion velocities and temperatures are derived from laser induced fluorescence measurements of Doppler resolved velocity distribution functions of argon ions. These features are consistent with the previous observations of simultaneously existing radially separated multiple plasma instabilities that exhibit complex plasma dynamics in a very simple plasma system. The ion temperature gradients in the core and the radially sheared azimuthal velocities at the edge point to mechanisms that can drive the multiple plasma instabilities, that were reported earlier.« less

  7. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  8. Ultrasonic Fluid Quality Sensor System

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.

    2003-10-21

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  9. Ultrasonic fluid quality sensor system

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.

    2002-10-08

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  10. Velocity Structure of the Subducted Yakutat Terrane, Alaska: Insights from Guided Waves

    NASA Astrophysics Data System (ADS)

    Coulson, S.; Garth, T.; Rietbrock, A.

    2017-12-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes provide insight into the fine scale velocity structure of the subducting oceanic crust as it dehydrates. These observations can be used to determine the average velocity and thickness of the crustal low velocity layer (LVL) at depth, allowing inferences to be drawn about composition and degree of hydration. We constrain guided wave dispersion by comparing waveforms recorded in the subduction forearc with simulated waveforms, produced using a 2D finite difference waveform propagation model. The structure of the Aleutian arc is complex due to the accretion of the Yakutat Terrane (YT) to the east, which is partially coupled with the subducting Pacific plate. An unusually thick LVL associated with the YT has been inferred down to 140 km depth by receiver function studies and travel time tomography. Focussing on a profile running NNW-SSE close to Anchorage, we constrain slab geometry using global and local catalogues, as well as the curvature inferred from receiver functions (Kim et al., 2014). P-wave arrivals from 41 earthquakes (2012-2015) show significant guided wave dispersion on at least one station; high frequency (>1-3 Hz) energy is delayed by up to 2-3 seconds. Choosing the clearest dispersion observations, we systematically vary both LVL width and P-wave velocity, to find the lowest misfit between the observed and synthetic waveforms. Multiple modelled events show the thickness of the LVL associated with subducted YT to be 6-10 km, significantly thinner than inferred by receiver function studies. Most events are accounted for by an LVL velocity contrast of 12.5-15% with overriding mantle material, however, observations of the deepest event in the northern corner of the YT require a velocity contrast of 6%. Lower velocities in the shallower slab (70-120 km) cannot be accounted for by reacted or unreacted MORB or gabbro compositions. We postulate the presence of interbedded sediments within the YT reducing the bulk velocity of the LVL. Increased velocities seen at the northern edge of the YT can be explained by reacted MORB or gabbro assemblages. This may be explained by a lack of interbedded sediments in this part of the YT, or the warmer conditions at the edge of the subducted terrane causing a faster pace of metamorphic reaction in this part of the slab.

  11. Cross-correlation focus method with an electrostatic sensor array for local particle velocity measurement in dilute gas-solid two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping

    2015-11-01

    The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.

  12. Habitat use by a Midwestern U.S.A. riverine fish assemblage: effects of season, water temperature and river discharge

    USGS Publications Warehouse

    Gillette, D.P.; Tiemann, J.S.; Edds, D.R.; Wildhaber, M.L.

    2006-01-01

    The hypothesis that temperate stream fishes alter habitat use in response to changing water temperature and stream discharge was evaluated over a 1 year period in the Neosho River, Kansas, U.S.A. at two spatial scales. Winter patterns differed from those of all other seasons, with shallower water used less frequently, and low-flow habitat more frequently, than at other times. Non-random habitat use was more frequent at the point scale (4.5 m2) than at the larger reach scale (20-40 m), although patterns at both scales were similar. Relative to available habitats, assemblages used shallower, swifter-flowing water as temperature increased, and shallower, slower-flowing water as river discharge increased. River discharge had a stronger effect on assemblage habitat use than water temperature. Proportion of juveniles in the assemblage did not have a significant effect. This study suggests that many riverine fishes shift habitats in response to changing environmental conditions, and supports, at the assemblage level, the paradigm of lotic fishes switching from shallower, high-velocity habitats in summer to deeper, low-velocity habitats in winter, and of using shallower, low-velocity habitats during periods of high discharge. Results also indicate that different species within temperate river fish assemblages show similar habitat use patterns at multiple scales in response to environmental gradients, but that non-random use of available habitats is more frequent at small scales. ?? 2006 The Fisheries Society of the British Isles.

  13. Transonic flow solutions using a composite velocity procedure for potential, Euler and RNS equations

    NASA Technical Reports Server (NTRS)

    Gordnier, R. E.; Rubin, S. G.

    1986-01-01

    Solutions for transonic viscous and inviscid flows using a composite velocity procedure are presented. The velocity components of the compressible flow equations are written in terms of a multiplicative composite consisting of a viscous or rotational velocity and an inviscid, irrotational, potential-like function. This provides for an efficient solution procedure that is locally representative of both asymptotic inviscid and boundary layer theories. A modified conservative form of the axial momentum equation that is required to obtain rotational solutions in the inviscid region is presented and a combined conservation/nonconservation form is applied for evaluation of the reduced Navier-Stokes (RNS), Euler and potential equations. A variety of results is presented and the effects of the approximations on entropy production, shock capturing, and viscous interaction are discussed.

  14. Preliminary Screening Procedures and Criteria for Replacements for Halons 1211 and 1301

    DTIC Science & Technology

    1991-07-01

    suppressants that meet current environmental and toxicological concerns. However, as the multiple and evolving performance constraints tighten, a new...massive trial-and-error study now may find suppressants that meet current environmental and toxicological concerns. However, as the multiple and...Extinguishment Concentration vs. Ratio of Linear Vapor Velocities, Elevated/hot ..................................................... 59 10. NIST PMMA Burner

  15. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    PubMed

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  16. Multiscale site-response mapping: A case study of Parkfield, California

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Morgan, E.C.; Kaklamanos, J.

    2011-01-01

    The scale of previously proposed methods for mapping site-response ranges from global coverage down to individual urban regions. Typically, spatial coverage and accuracy are inversely related.We use the densely spaced strong-motion stations in Parkfield, California, to estimate the accuracy of different site-response mapping methods and demonstrate a method for integrating multiple site-response estimates from the site to the global scale. This method is simply a weighted mean of a suite of different estimates, where the weights are the inverse of the variance of the individual estimates. Thus, the dominant site-response model varies in space as a function of the accuracy of the different models. For mapping applications, site-response models should be judged in terms of both spatial coverage and the degree of correlation with observed amplifications. Performance varies with period, but in general the Parkfield data show that: (1) where a velocity profile is available, the square-rootof- impedance (SRI) method outperforms the measured VS30 (30 m divided by the S-wave travel time to 30 m depth) and (2) where velocity profiles are unavailable, the topographic slope method outperforms surficial geology for short periods, but geology outperforms slope at longer periods. We develop new equations to estimate site response from topographic slope, derived from the Next Generation Attenuation (NGA) database.

  17. Management challenges in a short-range low-velocity gunshot injury.

    PubMed

    Arunkumar, K V; Kumar, Sanjeev; Aggarwal, Rajat; Dubey, Prajesh

    2012-07-01

    The use of firearms is becoming more prevalent in the society and hence the number of homicidal and suicidal cases. The severity of gunshot wounds varies depending on the weapons caliber and the distance of firing. Close-range, high-velocity gunshot wounds in the head and neck region can result in devastating esthetic and functional impairment. The complexity in facial skeletal anatomy cause multiple medical and surgical challenges to an operating surgeon, demanding elaborate soft and hard tissue reconstructions. Here we present the successful management of a patient shot by a low-velocity short-range pistol with basic life support measures, wound management, reconstruction, and rehabilitation.

  18. Influence of exothermic chemical reactions on laser-induced shock waves.

    PubMed

    Gottfried, Jennifer L

    2014-10-21

    Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.

  19. Conditional random slope: A new approach for estimating individual child growth velocity in epidemiological research.

    PubMed

    Leung, Michael; Bassani, Diego G; Racine-Poon, Amy; Goldenberg, Anna; Ali, Syed Asad; Kang, Gagandeep; Premkumar, Prasanna S; Roth, Daniel E

    2017-09-10

    Conditioning child growth measures on baseline accounts for regression to the mean (RTM). Here, we present the "conditional random slope" (CRS) model, based on a linear-mixed effects model that incorporates a baseline-time interaction term that can accommodate multiple data points for a child while also directly accounting for RTM. In two birth cohorts, we applied five approaches to estimate child growth velocities from 0 to 12 months to assess the effect of increasing data density (number of measures per child) on the magnitude of RTM of unconditional estimates, and the correlation and concordance between the CRS and four alternative metrics. Further, we demonstrated the differential effect of the choice of velocity metric on the magnitude of the association between infant growth and stunting at 2 years. RTM was minimally attenuated by increasing data density for unconditional growth modeling approaches. CRS and classical conditional models gave nearly identical estimates with two measures per child. Compared to the CRS estimates, unconditional metrics had moderate correlation (r = 0.65-0.91), but poor agreement in the classification of infants with relatively slow growth (kappa = 0.38-0.78). Estimates of the velocity-stunting association were the same for CRS and classical conditional models but differed substantially between conditional versus unconditional metrics. The CRS can leverage the flexibility of linear mixed models while addressing RTM in longitudinal analyses. © 2017 The Authors American Journal of Human Biology Published by Wiley Periodicals, Inc.

  20. Time-dependent behavior in a transport-barrier model for the quasi-single helcity state

    NASA Astrophysics Data System (ADS)

    Terry, P. W.; Whelan, G. G.

    2014-09-01

    Time-dependent behavior that follows from a recent theory of the quasi-single-helicity (QSH) state of the reversed field pinch is considered. The theory (Kim and Terry 2012 Phys. Plasmas 19 122304) treats QSH as a core fluctuation structure tied to a tearing mode of the same helicity, and shows that strong magnetic and velocity shears in the structure suppress the nonlinear interaction with other fluctuations. By summing the multiple helicity fluctuation energies over wavenumber, we reduce the theory to a predator-prey model. The suppression of the nonlinear interaction is governed by the single helicity energy, which, for fixed radial structure, controls the magnetic and velocity shearing rates. It is also controlled by plasma current which, in the theory, sets the shearing threshold for suppression. The model shows a limit cycle oscillation in which the system toggles between QSH and multiple helicity states, with the single helicity phase becoming increasingly long-lived relative to the multiple helicity phase as plasma current increases.

  1. A regularization of the Burgers equation using a filtered convective velocity

    NASA Astrophysics Data System (ADS)

    Norgard, Greg; Mohseni, Kamran

    2008-08-01

    This paper examines the properties of a regularization of the Burgers equation in one and multiple dimensions using a filtered convective velocity, which we have dubbed as the convectively filtered Burgers (CFB) equation. A physical motivation behind the filtering technique is presented. An existence and uniqueness theorem for multiple dimensions and a general class of filters is proven. Multiple invariants of motion are found for the CFB equation which are shown to be shared with the viscous and inviscid Burgers equations. Traveling wave solutions are found for a general class of filters and are shown to converge to weak solutions of the inviscid Burgers equation with the correct wave speed. Numerical simulations are conducted in 1D and 2D cases where the shock behavior, shock thickness and kinetic energy decay are examined. Energy spectra are also examined and are shown to be related to the smoothness of the solutions. This approach is presented with the hope of being extended to shock regularization of compressible Euler equations.

  2. Laboratory observation of multiple double layer resembling space plasma double layer

    NASA Astrophysics Data System (ADS)

    Alex, Prince; Arumugam, Saravanan; Sinha, Suraj

    2017-10-01

    Perceptible double layer consisting of more than one layers were produced in laboratory using a double discharge plasma setup. The confinement of oppositely charged particles in each layer with sharply defined luminous boarder is attributed to the self-organization scenario. This structure is generated in front of a positively biased electrode when the electron drift velocity (νd) exceeds 1.3 times the electron thermal velocity (νte) . Stable multiple double layer structures were observed only between 1.3 νte <=νd <= 3 νte. At νd = 1.3 νte, oscillations were excited in the form of large amplitude burst followed by a high frequency stable oscillation. Beyond νd = 3 νte, multiple double layer begins to collapse which is characterized by an emergence in turbulence. Long range dependence in the corresponding electrostatic potential fluctuations indicates the role of self-organized criticality in the emergence of turbulence. The algebraic decaying tale of the autocorrelation function and power law behavior in the power spectrum are consistent with the observation.

  3. Development of new measuring technique using sound velocity for CO2 concentration in Cameroonian volcanic lakes

    NASA Astrophysics Data System (ADS)

    Sanemasa, M.; Saiki, K.; Kaneko, K.; Ohba, T.; Kusakabe, M.; Tanyileke, G.; Hell, J.

    2012-12-01

    1. Introduction Limnic eruptions at Lakes Monoun and Nyos in Cameroon, which are sudden degassing of magmatic CO2 dissolved in the lake water, occurred in 1984 and 1986, respectively. The disasters killed about 1800 people around the lakes. Because of ongoing CO2 accumulation in the bottom water of the lakes, tragedy of limnic eruptions will possibly occur again. To prevent from further disasters, artificial degassing of CO2 from the lake waters has been undergoing. Additionally, CO2 monitoring of the lake waters is needed. Nevertheless, CO2 measurement is done only once or twice a year because current methods of CO2 measurement, which require chemical analysis of water samples, are not suitable for frequent measurement. In engineering field, on the other hand, a method to measure salt concentration using sound velocity has been proposed (Kleis and Sanchez, 1990). This method allows us to evaluate solute concentration fast. We applied the method to dissolved CO2 and examined the correlation between sound velocity and CO2 concentration in laboratory experiment. Furthermore, using the obtained correlation, we tried to estimate the CO2 concentration of waters in the Cameroonian lakes. 2. Laboratory experiment We examined the correlation between sound velocity and CO2 concentration. A profiler (Minos X, made by AML oceanography) and pure water were packed in cylindrical stainless vessel and high-pressure CO2 gas was injected to produce carbonated water. The profiler recorded temperature, pressure and sound velocity. Change of sound velocity was defined as difference of sound velocity between carbonated water and pure water under the same temperature and pressure conditions. CO2 concentration was calculated by Henry's law. The result indicated that the change of sound velocity [m s-1] is proportional to CO2 concentration [mmol kg-1], and the coefficient is 0.021 [m kg s-1 mmol-1]. 3. Field application Depth profiles of sound velocity, pressure, and temperature of Lakes Nyos and Monoun were measured in March 2012, and CO2 concentration was calculated using the results of laboratory experiment. The CO2 concentration profiles by Sound Velocity Method were compared to estimated profile of 2012 by chemical analysis with correction using results of Kusakabe et al., 2008. The CO2 concentration profile estimated by Sound Velocity Method looks overestimated. This may be the effect of bicarbonate salt little existed in laboratory experiment. The change of sound velocity was evaluated as a linear function of CO2 and bicarbonate ion concentration by multiple regression analysis. Coefficient for the change of sound velocity of CO2 concentration in Lake Nyos agrees with the laboratory experiment within the precision of 10%. On the other hand, in Lake Monoun, the difference of coefficient is larger than 50%. In Lake Monoun, CO2 concentration may be estimated incorrectly because CO2/bicarbonate ratio seems to have changed. From these results, we concluded that Sound Velocity Method is useful to measure CO2 concentration quantitatively as far as the CO2/bicarbonate ratio does not change. The method is also applicable as an early diagnosis when the CO2 profile changes by a sudden CO2 injection to the lakes.

  4. Transport properties of active Brownian particles in a modified energy-depot model driven by correlated noises

    NASA Astrophysics Data System (ADS)

    Guan, Lin; Fang, Yuwen; Li, Kongzhai; Zeng, Chunhua; Yang, Fengzao

    2018-09-01

    In this paper, we investigate the role of correlated multiplicative (κ1) and additive (κ2) noises in a modified energy conversion depot model, at which it is added a linear term in the conversion of internal energy of active Brownian particles (ABPs). The linear term (a1 ≠ 0 . 0) in energy conversion model breaks the symmetry of the potential to generate motion of the ABPs with a net transport velocity. Adopt a nonlinear Langevin approach, the transport properties of the ABPs have been discussed, and our results show that: (i) the transport velocity <υ1 > of the ABPs are always positive whether the correlation intensity λ = 0 . 0 or not; (ii) for a small value of the multiplicative noise intensity κ1, the variation of <υ1 > with λ shows a minimum, there exists an optimal value of the correlation intensity λ at which the <υ1 > of the ABPs is minimized. But for a large value of κ1, the <υ1 > monotonically decreases; (iii) the transport velocity <υ1 > increases with the increase of the κ1 or κ2, i.e., the multiplicative or additive noise can facilitate the transport of the ABPs; and (iv) the effective diffusion increases with the increase of a1, namely, the linear term in modified energy conversion model of the ABPs can enhance the diffusion of the ABPs.

  5. Kinematic Modeling of Normal Voluntary Mandibular Opening and Closing Velocity-Initial Study.

    PubMed

    Gawriołek, Krzysztof; Gawriołek, Maria; Komosa, Marek; Piotrowski, Paweł R; Azer, Shereen S

    2015-06-01

    Determination and quantification of voluntary mandibular velocity movement has not been a thoroughly studied parameter of masticatory movement. This study attempted to objectively define kinematics of mandibular movement based on numerical (digital) analysis of the relations and interactions of velocity diagram records in healthy female individuals. Using a computerized mandibular scanner (K7 Evaluation Software), 72 diagrams of voluntary mandibular velocity movements (36 for opening, 36 for closing) for women with clinically normal motor and functional activities of the masticatory system were recorded. Multiple measurements were analyzed focusing on the curve for maximum velocity records. For each movement, the loop of temporary velocities was determined. The diagram was then entered into AutoCad calculation software where movement analysis was performed. The real maximum velocity values on opening (Vmax ), closing (V0 ), and average velocity values (Vav ) as well as movement accelerations (a) were recorded. Additionally, functional (A1-A2) and geometric (P1-P4) analysis of loop constituent phases were performed, and the relations between the obtained areas were defined. Velocity means and correlation coefficient values for various velocity phases were calculated. The Wilcoxon test produced the following maximum and average velocity results: Vmax = 394 ± 102, Vav = 222 ± 61 for opening, and Vmax = 409 ± 94, Vav = 225 ± 55 mm/s for closing. Both mandibular movement range and velocity change showed significant variability achieving the highest velocity in P2 phase. Voluntary mandibular velocity presents significant variations between healthy individuals. Maximum velocity is obtained when incisal separation is between 12.8 and 13.5 mm. An improved understanding of the patterns of normal mandibular movements may provide an invaluable diagnostic aid to pathological changes within the masticatory system. © 2014 by the American College of Prosthodontists.

  6. An eigenvalue approach for the automatic scaling of unknowns in model-based reconstructions: Application to real-time phase-contrast flow MRI.

    PubMed

    Tan, Zhengguo; Hohage, Thorsten; Kalentev, Oleksandr; Joseph, Arun A; Wang, Xiaoqing; Voit, Dirk; Merboldt, K Dietmar; Frahm, Jens

    2017-12-01

    The purpose of this work is to develop an automatic method for the scaling of unknowns in model-based nonlinear inverse reconstructions and to evaluate its application to real-time phase-contrast (RT-PC) flow magnetic resonance imaging (MRI). Model-based MRI reconstructions of parametric maps which describe a physical or physiological function require the solution of a nonlinear inverse problem, because the list of unknowns in the extended MRI signal equation comprises multiple functional parameters and all coil sensitivity profiles. Iterative solutions therefore rely on an appropriate scaling of unknowns to numerically balance partial derivatives and regularization terms. The scaling of unknowns emerges as a self-adjoint and positive-definite matrix which is expressible by its maximal eigenvalue and solved by power iterations. The proposed method is applied to RT-PC flow MRI based on highly undersampled acquisitions. Experimental validations include numerical phantoms providing ground truth and a wide range of human studies in the ascending aorta, carotid arteries, deep veins during muscular exercise and cerebrospinal fluid during deep respiration. For RT-PC flow MRI, model-based reconstructions with automatic scaling not only offer velocity maps with high spatiotemporal acuity and much reduced phase noise, but also ensure fast convergence as well as accurate and precise velocities for all conditions tested, i.e. for different velocity ranges, vessel sizes and the simultaneous presence of signals with velocity aliasing. In summary, the proposed automatic scaling of unknowns in model-based MRI reconstructions yields quantitatively reliable velocities for RT-PC flow MRI in various experimental scenarios. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Evaluating surface transport predictions of alternative ocean-atmosphere models using surface drifters in the Belizean Barrier Reef

    NASA Astrophysics Data System (ADS)

    Lindo-Atichati, D.; Curcic, M.; Paris, C. B.; Buston, P. M.

    2016-02-01

    Determining the appropriate resolution of circulation models often lacks statistical evaluation. Thus, the gains from implementing high-resolution versus less-costly low-resolution models are not always clear. Here we construct a hierarchy of ocean-atmosphere models operating at multiple-scales within a 1×1° domain of the Belizean Barrier Reef (BBR). We compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h), the resolution of the atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. We also investigate the effect of semi-diurnal tides on the local circulation. The model with highest resolution and with tidal forcing resolves higher number of looping trajectories and sub-mesoscale coherent structures. This may be a key factor in reducing discrepancy between simulated and observed velocities and dispersion. Simulations conducted with the highest resolution ocean-atmosphere model and tidal forcing highlight an intensification of the velocity fields throughout the summer and reveal several processes: mesoscale anticyclonic circulation around Glovers Reef, and recurrent sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to estimate the best surface transport prediction from different ocean-atmosphere models using metrics derived from high frequency drifters' data. Also, this study provides an evaluated high-resolution ocean-atmosphere model that resolves tides for the Belizean Barrier Reef.

  8. Nomograms for mitral inflow Doppler and tissue Doppler velocities in Caucasian children.

    PubMed

    Cantinotti, Massimiliano; Giordano, Raffaele; Scalese, Marco; Murzi, Bruno; Assanta, Nadia; Spadoni, Isabella; Crocetti, Maura; Marotta, Marco; Molinaro, Sabrina; Kutty, Shelby; Iervasi, Giorgio

    2016-10-01

    Pediatric echocardiographic nomograms for systolic/diastolic functional indices are limited by small sample size and inconsistent methodologies. Our aim was to establish pediatric nomograms for mitral valve (MV) pulsed wave Doppler (PWD) and tissue Doppler imaging (TDI) velocities. We performed PWD/TDI measurements of MV velocities and generated models testing for linear/logarithmic/exponential/square root relationships. Heteroscedasticity was accounted for by White test or Breusch-Pagan test. Age, weight, height, heart rate (HR), and body surface area (BSA) were used as independent variables in different analyses to predict the mean values of each measurement. In all, 904 Caucasian Italian healthy children (age 0 days-17 years; 45.5% females; BSA 0.12-2.12m(2)) were prospectively studied. No individual variable provided equations with an acceptable coefficient of determination (R(2)) and even the inclusion of multiple variables in the model resulted in only a partial amelioration of the R(2). Higher R(2) were obtained for PWD-E deceleration time (0.53), septal (Se') and lateral (Le') MV-TDI e' velocity (Se': 0.54; Le': 0.55). Variability was higher at lower age and BSA. In older children patterns were more reproducible; however, the exclusion of neonates did not substantially improve the final models. The low R(2) hampered building of z-scores and calculation of estimated percentiles. Thus normative data have been presented as observed percentile according to age for all measurements. We report normal ranges for PWD and TDI mitral velocities derived from a large population of Caucasian children. Variability of diastolic patterns especially at lower ages needs to be taken into account. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syracuse, Ellen M.; Maceira, Monica; Prieto, German A.

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone.more » The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. As a result, we also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.« less

  10. Crustal Seismic Structure of Central Alberta from Receiver Function Inversions

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Dokht, R.; Gu, Y. J.; Sacchi, M. D.

    2013-12-01

    It is widely believed that the basement structure of central Alberta represents the tectonic assembly and evolution of several Archean lithospheric fragments. These fragments underwent episodes of rifting, collision, subduction and melting during the Proterozoic, giving rise to a complex network of tectonic domains with considerable differences in the crustal magnetic and seismic signatures. Observational support for these episodes, e.g., the coeval subduction around the Hearne province, has been limited due to the lack of exposed geology and insufficient teleseismic data prior to 2006. Since mid 2007, the establishment of the Canadian Rockies and Alberta Network (CRANE) has greatly improved the broadband seismic data coverage in central and southern Alberta. Based on 5+ years of CRANE data, we systematically analyze crust and shallow mantle shear velocities through simultaneous inversions of low and high frequency receiver functions. P-to-S converted waves from several stations in central Alberta suggest a significant mid crustal low velocity zone (LVZ), where shear velocity could vary by as much as 35 percent in a depth range of 15-35 km. This structure is not required by the receiver functions from stations along the foothills of the Rocky Mountains. While LVZ of notable magnitudes have been suggested previously in an overlapped part of the study region and attributed to the presence of serpentine or intrusive sill, the spatial dimensions of the anomaly reported in the current study is significantly larger: this anomaly spans hundreds of kilometers horizontally and is generally thicker than 10 km. The presence of mid/lower crustal LVZ in central Alberta is supported by recent group velocity maps based on noise correlation tomography, and the southeastward orientation of this LVZ is consistent with the proposed direction of the subducted oceanic microplate beneath the northwestern Hearne province during the Proterozoic. Still, the cause of the LVZ remains inconclusive, as the broad dimension of the anomaly would require major, potentially multiple, episodes of serpentinization and/or rework after the Paleoproterzoic. This process may span multiple domains and the correlation of present-day seismic structure with the domain boundaries (hence aeromagnetic signatures) remain questionable on the regional scale.

  11. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  12. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    NASA Astrophysics Data System (ADS)

    Aji, Indarta Kuncoro; Waris, Abdul; Permana, Sidik

    2015-09-01

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF2-ThF4-233UF4 respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.

  13. Summary of oceanographic and water-quality measurements near the Blackwater National Wildlife Refuge, Maryland, 2011

    USGS Publications Warehouse

    Ganju, Neil K.; Dickhudt, Patrick J.; Montgomery, Ellyn T.; Brennand, Patrick; Derby, R. Kyle; Brooks, Thomas W.; Guntenspergen, Glenn R.; Martini, Marinna A.; Borden, Jonathan; Baldwin, Sandra M.

    2012-01-01

    Suspended-sediment transport is a critical element governing the geomorphology of tidal marshes. Marshes rely on both organic material and inorganic sediment deposition to maintain their elevation relative to sea level. In wetlands near the Blackwater National Wildlife Refuge, Maryland, portions of the salt marsh have been subsiding relative to sea level since the early 20th century. Other portions of the marsh have been successful at maintaining elevation. The U.S. Geological Survey performed observational deployments to measure suspended-sediment concentration in the tidal channels in order to understand the magnitude of suspended-sediment concentrations, the sediment-transport mechanisms, and differences between two marsh areas, one that subsided and one that maintained elevation. We deployed optical turbidity sensors and acoustic velocity meters at multiple sites over two periods in 2011. This report presents the time-series of oceanographic data collected during those field studies, including velocity, depth, turbidity, salinity, water temperature, and pH.

  14. Influence of turbulence on the wake of a marine current turbine simulator.

    PubMed

    Blackmore, T; Batten, W M J; Bahaj, A S

    2014-10-08

    Marine current turbine commercial prototypes have now been deployed and arrays of multiple turbines under design. The tidal flows in which they operate are highly turbulent, but the characteristics of the inflow turbulence have not being considered in present design methods. This work considers the effects of inflow turbulence on the wake behind an actuator disc representation of a marine current turbine. Different turbulence intensities and integral length scales were generated in a large eddy simulation using a gridInlet, which produces turbulence from a grid pattern on the inlet boundary. The results highlight the significance of turbulence on the wake profile, with a different flow regime occurring for the zero turbulence case. Increasing the turbulence intensity reduced the velocity deficit and shifted the maximum deficit closer to the turbine. Increasing the integral length scale increased the velocity deficit close to the turbine due to an increased production of turbulent energy. However, the wake recovery was increased due to the higher rate of turbulent mixing causing the wake to expand. The implication of this work is that marine current turbine arrays could be further optimized, increasing the energy yield of the array when the site-specific turbulence characteristics are considered.

  15. Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions.

    PubMed

    Roggemann, M C; Welsh, B M; Montera, D; Rhoadarmer, T A

    1995-07-10

    Simulating the effects of atmospheric turbulence on optical imaging systems is an important aspect of understanding the performance of these systems. Simulations are particularly important for understanding the statistics of some adaptive-optics system performance measures, such as the mean and variance of the compensated optical transfer function, and for understanding the statistics of estimators used to reconstruct intensity distributions from turbulence-corrupted image measurements. Current methods of simulating the performance of these systems typically make use of random phase screens placed in the system pupil. Methods exist for making random draws of phase screens that have the correct spatial statistics. However, simulating temporal effects and anisoplanatism requires one or more phase screens at different distances from the aperture, possibly moving with different velocities. We describe and demonstrate a method for creating random draws of phase screens with the correct space-time statistics for a bitrary turbulence and wind-velocity profiles, which can be placed in the telescope pupil in simulations. Results are provided for both the von Kármán and the Kolmogorov turbulence spectra. We also show how to simulate anisoplanatic effects with this technique.

  16. Influence of turbulence on the wake of a marine current turbine simulator

    PubMed Central

    Blackmore, T.; Batten, W. M. J.; Bahaj, A. S.

    2014-01-01

    Marine current turbine commercial prototypes have now been deployed and arrays of multiple turbines under design. The tidal flows in which they operate are highly turbulent, but the characteristics of the inflow turbulence have not being considered in present design methods. This work considers the effects of inflow turbulence on the wake behind an actuator disc representation of a marine current turbine. Different turbulence intensities and integral length scales were generated in a large eddy simulation using a gridInlet, which produces turbulence from a grid pattern on the inlet boundary. The results highlight the significance of turbulence on the wake profile, with a different flow regime occurring for the zero turbulence case. Increasing the turbulence intensity reduced the velocity deficit and shifted the maximum deficit closer to the turbine. Increasing the integral length scale increased the velocity deficit close to the turbine due to an increased production of turbulent energy. However, the wake recovery was increased due to the higher rate of turbulent mixing causing the wake to expand. The implication of this work is that marine current turbine arrays could be further optimized, increasing the energy yield of the array when the site-specific turbulence characteristics are considered. PMID:25294966

  17. Effective Simulation Strategy of Multiscale Flows using a Lattice Boltzmann model with a Stretched Lattice

    NASA Astrophysics Data System (ADS)

    Yahia, Eman; Premnath, Kannan

    2017-11-01

    Resolving multiscale flow physics (e.g. for boundary layer or mixing layer flows) effectively generally requires the use of different grid resolutions in different coordinate directions. Here, we present a new formulation of a multiple relaxation time (MRT)-lattice Boltzmann (LB) model for anisotropic meshes. It is based on a simpler and more stable non-orthogonal moment basis while the use of MRT introduces additional flexibility, and the model maintains a stream-collide procedure; its second order moment equilibria are augmented with additional velocity gradient terms dependent on grid aspect ratio that fully restores the required isotropy of the transport coefficients of the normal and shear stresses. Furthermore, by introducing additional cubic velocity corrections, it maintains Galilean invariance. The consistency of this stretched lattice based LB scheme with the Navier-Stokes equations is shown via a Chapman-Enskog expansion. Numerical study for a variety of benchmark flow problems demonstrate its ability for accurate and effective simulations at relatively high Reynolds numbers. The MRT-LB scheme is also shown to be more stable compared to prior LB models for rectangular grids, even for grid aspect ratios as small as 0.1 and for Reynolds numbers of 10000.

  18. Near-surface location, geometry, and velocities of the Santa Monica Fault Zone, Los Angeles, California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.; Rymer, M.J.; Bawden, G.W.

    2008-01-01

    High-resolution seismic-reflection and seismic-refraction imaging, combined with existing borehole, earthquake, and paleoseismic trenching data, suggest that the Santa Monica fault zone in Los Angeles consists of multiple strands from several kilometers depth to the near surface. We interpret our seismic data as showing two shallow-depth low-angle fault strands and multiple near-vertical (???85??) faults in the upper 100 m. One of the low-angle faults dips northward at about 28?? and approaches the surface at the base of a topographic scarp on the grounds of the Wadsworth VA Hospital (WVAH). The other principal low-angle fault dips northward at about 20?? and projects toward the surface about 200 m south of the topographic scarp, near the northernmost areas of the Los Angeles Basin that experienced strong shaking during the 1994 Northridge earthquake. The 20?? north-dipping low-angle fault is also apparent on a previously published seismic-reflection image by Pratt et al. (1998) and appears to extend northward to at least Wilshire Boulevard, where the fault may be about 450 m below the surface. Slip rates determined at the WVAH site could be significantly underestimated if it is assumed that slip occurs only on a single strand of the Santa Monica fault or if it is assumed that the near-surface faults dip at angles greater than 20-28??. At the WVAH, tomographic velocity modeling shows a significant decrease in velocity across near-surface strands of the Santa Monica fault. P-wave velocities range from about 500 m/sec at the surface to about 4500 m/sec within the upper 50 m on the north side of the fault zone at WVAH, but maximum measured velocities on the south side of the low-angle fault zone at WVAH are about 3500 m/sec. These refraction velocities compare favorably with velocities measured in nearby boreholes by Gibbs et al. (2000). This study illustrates the utility of com- bined seismic-reflection and seismic-refraction methods, which allow more accurate reflection imaging and compositional estimations across areas with highly variable velocities, a property that is characteristic of most fault zones.

  19. Time Series Reconstruction of Surface Flow Velocity on Marine-terminating Outlet Glaciers

    NASA Astrophysics Data System (ADS)

    Jeong, Seongsu

    The flow velocity of glacier and its fluctuation are valuable data to study the contribution of sea level rise of ice sheet by understanding its dynamic structure. Repeat-image feature tracking (RIFT) is a platform-independent, feature tracking-based velocity measurement methodology effective for building a time series of velocity maps from optical images. However, limited availability of perfectly-conditioned images motivated to improve robustness of the algorithm. With this background, we developed an improved RIFT algorithm based on multiple-image multiple-chip algorithm presented in Ahn and Howat (2011). The test results affirm improvement in the new RIFT algorithm in avoiding outlier, and the analysis of the multiple matching results clarified that each individual matching results worked in complementary manner to deduce the correct displacements. LANDSAT 8 is a new satellite in LANDSAT program that has begun its operation since 2013. The improved radiometric performance of OLI aboard the satellite is expected to enable better velocity mapping results than ETM+ aboard LANDSAT 7. However, it was not yet well studied that in what cases the new will sensor will be beneficial, and how much the improvement will be obtained. We carried out a simulation-based comparison between ETM+ and OLI and confirmed OLI outperforms ETM+ especially in low contrast conditions, especially in polar night, translucent cloud covers, and bright upglacier with less texture. We have identified a rift on ice shelf of Pine island glacier located in western Antarctic ice sheet. Unlike the previous events, the evolution of the current started from the center of the ice shelf. In order to analyze this unique event, we utilized the improved RIFT algorithm to its OLI images to retrieve time series of velocity maps. We discovered from the analyses that the part of ice shelf below the rift is changing its speed, and shifting of splashing crevasses on shear margin is migrating to the center of the shelf. Concerning the concurrent disintegration of ice melange on its western part of the terminus, we postulate that change in flow regime attributes to loss of resistance force exerted by the melange. There are several topics that need to be addressed for further improve the RIFT algorithm. As coregistration error is significant contributor to the velocity measurement, a method to mitigate that error needs to be devised. Also, considering that the domain of RIFT product spans not only in space but also in time, its regridding and gap filling work will benefit from extending its domain to both space and time.

  20. Measurement of Effective Drift Velocities of Electrons and Holes in Shallow Multiple Quantum Well P-I Modulators

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Mei

    1995-01-01

    P-i-n diodes containing multiple quantum wells (MQWs) in the i-region are the building blocks for photonic devices. When we apply electric field across these devices and illuminate it with light, photo-carriers are created in the i-region. These carriers escape from the wells and drift toward the electrodes; thus photo-voltage is created. The rise- and decay-times of photo-voltages are related to the transport of carriers. In this dissertation, we present theoretical and experimental studies on carrier transport mechanisms of three shallow MQW GaAs/Al _{x}Ga_{1-x}As p-i-n diodes (x = 0.02, 0.04, 0.08) at various bias voltages. We start with the description of the sample structures and their package. We then present the characteristics of these samples including their transmission spectra and responsivity. We will demonstrate that the over-all high quality of these samples, including a strong exciton resonant absorption, ~100% internal quantum efficiencies and completely depleted i-region at bias between +0.75 V to -5 V bias. In our theoretical studies, we first discuss the possible carrier sweep-out mechanisms and estimate the response times associated with these mechanisms. Based on our theoretical model, we conclude that only the drift times of carriers and enhanced diffusion times are important for shallow MQW p-i-n diodes: at high bias, the fast drift times of electrons and holes control the rise-times; at low bias, the slow drift times of holes and the enhanced diffusion times control the decay-times. We have performed picosecond time-resolved pump/probe electro-absorption measurements on these samples. We then obtained the drift times, effective drift velocities and effective mobilities of electrons and holes for these devices. We find that the carrier effective drift velocities (especially for holes) seemed insensitive to the Al concentration in the barriers (in the range of x = 2% to 8%), even though the x = 2% sample does show an overall faster response time. We think the slight difference of the rise- and decay-times of these devices may also be affected by random differences between the samples.

  1. Wave Velocity Attenuation and Sediment Retention among Different Vegetation Types in a Pacific Northwest Estuary

    NASA Astrophysics Data System (ADS)

    Lemein, T.; Cox, D. T.; Albert, D.; Blackmar, P.

    2012-12-01

    Feedbacks between vegetation, wave climate, and sedimentation create stable ecosystem states within estuaries that provide ecosystem services such as wildlife habitat, erosion control, and pollution filtration. Flume and field studies conducted with cordgrass (Spartina spp.) and sea grasses (Zostera spp., Halodule spp.) have demonstrated that the presence of vegetation reduces wave energy and increases sediment retention. Since the spatial distribution of plant species and the presence of unique plant species differ between estuaries, there is a need to understand how individual plant species, or groups of species with similar morphology, influence wave characteristics and sedimentation. Within Tillamook Bay, Oregon, three species of emergent vascular vegetation species (Carex lyngbyei, Eleocharis sp., Schoenoplectus pungens) and one species of submergent vascular vegetation species (Zostera marina) are present in the high wave energy portion of the estuary at the border of open water and the start of vegetation. These species represent three distinct growth forms (emergent reeds, emergent grasses, submergent grasses) and occur at varying densities relative to each other, as well as within the estuary. Using paired acoustic Doppler velocimeters (ADVs), we quantify the relative attenuation of wave velocity between vegetation types and densities within the estuary and compare these results with published attenuation rates from flume and field studies in different environments. The effect of decreased wave velocity on sediment retention is measured using permanent sediment markers within and outside of vegetation stands and paired with ADV data. Sediment retention is predicted to vary seasonally with seasonal vegetation composition changes and remain constant in unvegetated areas. From this experiment we expect to identify like groups of plant species whose attenuation characteristics are the same, allowing for models of wave-vegetation-sediment interaction to be created with multiple vegetation types.

  2. Rg-Lg coupling as a Lg-wave excitation mechanism

    NASA Astrophysics Data System (ADS)

    Ge, Z.; Xie, X.

    2003-12-01

    Regional phase Lg is predominantly comprised of shear wave energy trapped in the crust. Explosion sources are expected to be less efficient for excitation of Lg phases than earthquakes to the extent that the source can be approximated as isotropic. Shallow explosions generate relatively large surface wave Rg compared to deeper earthquakes, and Rg is readily disrupted by crustal heterogeneity. Rg energy may thus scatter into trapped crustal S-waves near the source region and contribute to low-frequency Lg wave. In this study, a finite-difference modeling plus the slowness analysis are used for investigating the above mentioned Lg-wave excitation mechanism. The method allows us to investigate near source energy partitioning in multiple domains including frequency, slowness and time. The main advantage of this method is that it can be applied at close range, before Lg is actually formed, which allows us to use very fine near source velocity model to simulate the energy partitioning process. We use a layered velocity structure as the background model and add small near source random velocity patches to the model to generate the Rg to Lg coupling. Two types of simulations are conducted, (1) a fixed shallow explosion source vs. randomness at different depths and (2) a fixed shallow randomness vs. explosion sources at different depths. The results show apparent couplings between the Rg and Lg waves at lower frequencies (0.3-1.5 Hz). A shallow source combined with shallow randomness generates the maximum Lg-wave, which is consistent with the Rg energy distribution of a shallow explosion source. The Rg energy and excited Lg energy show a near linear relationship. The numerical simulation and slowness analysis suggest that the Rg to Lg coupling is an effective excitation mechanism for low frequency Lg-waves from a shallow explosion source.

  3. SLOW PATCHY EXTREME-ULTRAVIOLET PROPAGATING FRONTS ASSOCIATED WITH FAST CORONAL MAGNETO-ACOUSTIC WAVES IN SOLAR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Ding, M. D.; Chen, P. F., E-mail: guoyang@nju.edu.cn

    2015-08-15

    Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUVmore » propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.« less

  4. Independent Assessment of ITRF Site Velocities using GPS Imaging

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Hammond, W. C.; Kreemer, C.; Altamimi, Z.

    2015-12-01

    The long-term stability of ITRF is critical to the most challenging scientific applications such as the slow variation of sea level, and of ice sheet loading in Greenland and Antarctica. In 2010, the National Research Council recommended aiming for stability at the level of 1 mm/decade in the ITRF origin and scale. This requires that the ITRF include many globally-distributed sites with motions that are predictable to within a few mm/decade, with a significant number of sites having collocated stations of multiple techniques. Quantifying the stability of ITRF stations can be useful to understand stability of ITRF parameters, and to help the selection and weighting of ITRF stations. Here we apply a new suite of techniques for an independent assessment of ITRF site velocities. Our "GPS Imaging" suite is founded on the principle that, for the case of large numbers of data, the trend can be estimated objectively, automatically, robustly, and accurately by applying non-parametric techniques, which use quantile statistics (e.g., the median). At the foundation of GPS Imaging is the estimator "MIDAS" (Median Interannual Difference Adjusted for Skewness). MIDAS estimates the velocity with a realistic error bar based on sub-sampling the coordinate time series. MIDAS is robust to step discontinuities, outliers, seasonality, and heteroscedasticity. Common-mode noise filters enhance regional- to continental-scale precision in MIDAS estimates, just as they do for standard estimation techniques. Secondly, in regions where there is sufficient spatial sampling, GPS Imaging uses MIDAS velocity estimates to generate a regionally-representative velocity map. For this we apply a median spatial filter to despeckle the maps. We use GPS Imaging to address two questions: (1) How well do the ITRF site velocities derived by parametric estimation agree with non-parametric techniques? (2) Are ITRF site velocities regionally representative? These questions aim to get a handle on (1) the accuracy of ITRF site velocities as a function of characteristics of contributing station data, such as number of step parameters and total time span; and (2) evidence of local processes affecting site velocity, which may impact site stability. Such quantification can be used to rank stations in terms the risk that they may pose to the stability of ITRF.

  5. A Novel Zero Velocity Interval Detection Algorithm for Self-Contained Pedestrian Navigation System with Inertial Sensors

    PubMed Central

    Tian, Xiaochun; Chen, Jiabin; Han, Yongqiang; Shang, Jianyu; Li, Nan

    2016-01-01

    Zero velocity update (ZUPT) plays an important role in pedestrian navigation algorithms with the premise that the zero velocity interval (ZVI) should be detected accurately and effectively. A novel adaptive ZVI detection algorithm based on a smoothed pseudo Wigner–Ville distribution to remove multiple frequencies intelligently (SPWVD-RMFI) is proposed in this paper. The novel algorithm adopts the SPWVD-RMFI method to extract the pedestrian gait frequency and to calculate the optimal ZVI detection threshold in real time by establishing the function relationships between the thresholds and the gait frequency; then, the adaptive adjustment of thresholds with gait frequency is realized and improves the ZVI detection precision. To put it into practice, a ZVI detection experiment is carried out; the result shows that compared with the traditional fixed threshold ZVI detection method, the adaptive ZVI detection algorithm can effectively reduce the false and missed detection rate of ZVI; this indicates that the novel algorithm has high detection precision and good robustness. Furthermore, pedestrian trajectory positioning experiments at different walking speeds are carried out to evaluate the influence of the novel algorithm on positioning precision. The results show that the ZVI detected by the adaptive ZVI detection algorithm for pedestrian trajectory calculation can achieve better performance. PMID:27669266

  6. Multiple Outflows in the Giant Eruption of a Massive Star

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Martin, John C.; Gordon, Michael S.; Jones, Terry J.

    2016-08-01

    The supernova impostor PSN J09132750+7627410 in NGC 2748 reached a maximum luminosity of ≈-14 mag. It was quickly realized that it was not a true supernova, but another example of a nonterminal giant eruption. PSN J09132750+7627410 is distinguished by multiple P Cygni absorption minima in the Balmer emission lines that correspond to outflow velocities of -400, -1100, and -1600 km s-1. Multiple outflows have been observed in only a few other objects. In this paper we describe the evolution of the spectrum and the P Cygni profiles for 3 months past maximum, the post-maximum formation of a cool, dense wind, and the identification of a possible progenitor. One of the possible progenitors is an infrared source. Its pre-eruption spectral energy distribution suggests a bolometric luminosity of -8.3 mag and a dust temperature of 780 K. If it is the progenitor, it is above the AGB limit, unlike the intermediate-luminosity red transients. The three P Cygni profiles could be due to ejecta from the current eruption, the wind of the progenitor, or previous mass-loss events. We suggest that they were all formed as part of the same high-mass-loss event and are due to material ejected at different velocities or energies. We also suggest that multiple outflows during giant eruptions may be more common than reported. Based on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

  7. Differences between Doppler velocities of ions and neutral atoms in a solar prominence

    NASA Astrophysics Data System (ADS)

    Anan, T.; Ichimoto, K.; Hillier, A.

    2017-05-01

    Context. In astrophysical systems with partially ionized plasma, the motion of ions is governed by the magnetic field while the neutral particles can only feel the magnetic field's Lorentz force indirectly through collisions with ions. The drift in the velocity between ionized and neutral species plays a key role in modifying important physical processes such as magnetic reconnection, damping of magnetohydrodynamic waves, transport of angular momentum in plasma through the magnetic field, and heating. Aims: This paper aims to investigate the differences between Doppler velocities of calcium ions and neutral hydrogen in a solar prominence to look for velocity differences between the neutral and ionized species. Methods: We simultaneously observed spectra of a prominence over an active region in H I 397 nm, H I 434 nm, Ca II 397 nm, and Ca II 854 nm using a high dispersion spectrograph of the Domeless Solar Telescope at Hida observatory. We compared the Doppler velocities, derived from the shift of the peak of the spectral lines presumably emitted from optically-thin plasma. Results: There are instances when the difference in velocities between neutral atoms and ions is significant, for example 1433 events ( 3% of sets of compared profiles) with a difference in velocity between neutral hydrogen atoms and calcium ions greater than 3σ of the measurement error. However, we also found significant differences between the Doppler velocities of two spectral lines emitted from the same species, and the probability density functions of velocity difference between the same species is not significantly different from those between neutral atoms and ions. Conclusions: We interpreted the difference of Doppler velocities as being a result of the motions of different components in the prominence along the line of sight, rather than the decoupling of neutral atoms from plasma. The movie attached to Fig. 1 is available at http://www.aanda.org

  8. Scalability of transport parameters with pore sizes in isodense disordered media

    NASA Astrophysics Data System (ADS)

    Reginald, S. William; Schmitt, V.; Vallée, R. A. L.

    2014-09-01

    We study light multiple scattering in complex disordered porous materials. High internal phase emulsion-based isodense polystyrene foams are designed. Two types of samples, exhibiting different pore size distributions, are investigated for different slab thicknesses varying from L = 1 \\text{mm} to 10 \\text{mm} . Optical measurements combining steady-state and time-resolved detection are used to characterize the photon transport parameters. Very interestingly, a clear scalability of the transport mean free path \\ellt with the average size of the pores S is observed, featuring a constant velocity of the transport energy in these isodense structures. This study strongly motivates further investigations into the limits of validity of this scalability as the scattering strength of the system increases.

  9. Representation of turbulent shear stress by a product of mean velocity differences

    NASA Technical Reports Server (NTRS)

    Braun, W. H.

    1977-01-01

    A quadratic form in the mean velocity for the turbulent shear stress is presented. It is expressed as the product of two velocity differences whose roots are the maximum velocity in the flow and a cutoff velocity below which the turbulent shear stress vanishes. Application to pipe and channel flows yields the centerline velocity as a function of pressure gradient, as well as the velocity profile. The flat plate, boundary-layer problem is solved by a system of integral equations to obtain friction coefficient, displacement thickness, and momentum-loss thickness. Comparisons are made with experiment.

  10. Influence of gravitoinertial force level on vestibular and visual velocity storage in yaw and pitch.

    PubMed

    Dizio, P; Lackner, J R

    1992-01-01

    Velocity storage is an important aspect of sensory-motor control of body orientation. The effective decay rate and three-dimensional organization of velocity storage are dependent upon body orientation relative to gravity and also are influenced by gravitoinertial force (G) level. Several of the inputs to velocity storage including otolithic, somatosensory, proprioceptive, and possibly motor are highly dependent on G level. To see whether the G dependency of velocity storage is related to changes in the effective coupling of individual sensory inputs to the velocity storage mechanism or to alterations in the time constant of velocity storage per se, we have studied horizontal vestibular nystagmus, horizontal optokinetic after nystagmus (OKAN) and vertical vestibular nystagmus as a function of force level. Horizontal OKAN and vestibular nystagmus both showed no effect of G level on their initial or peak slow phase velocities but their decay rates were quicker in 0G and 1.8G than in 1G. Vertical vestibular nystagmus also showed no effect of G level on peak velocity but decayed quicker in 0G relative to 1G. These-findings indicate that the intrinsic decay rate of a common velocity storage mechanism is affected by the magnitude of G. A negligible amount of slow phase eye velocity was observed in planes outside the planes of stimulation, thus short-term changes in G across multiple body axes can change velocity storage, but the change is restricted to the axis common to the rotary stimulus and the G vector.

  11. Turbulence in simulated H II regions

    NASA Astrophysics Data System (ADS)

    Medina, S.-N. X.; Arthur, S. J.; Henney, W. J.; Mellema, G.; Gazol, A.

    2014-12-01

    We investigate the scale dependence of fluctuations inside a realistic model of an evolving turbulent H II region and to what extent these may be studied observationally. We find that the multiple scales of energy injection from champagne flows and the photoionization of clumps and filaments leads to a flatter spectrum of fluctuations than would be expected from top-down turbulence driven at the largest scales. The traditional structure function approach to the observational study of velocity fluctuations is shown to be incapable of reliably determining the velocity power spectrum of our simulation. We find that a more promising approach is the Velocity Channel Analysis technique of Lazarian & Pogosyan (2000), which, despite being intrinsically limited by thermal broadening, can successfully recover the logarithmic slope of the velocity power spectrum to a precision of ±0.1 from high-resolution optical emission-line spectroscopy.

  12. Wind velocity-change (gust rise) criteria for wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cliff, W.C.; Fichtl, G.H.

    1978-07-01

    A closed-form equation is derived for root mean square (rms) value of velocity change (gust rise) that occurs over the swept area of wind turbine rotor systems and an equation for rms value of velocity change that occurs at a single point in space. These formulas confirm the intuitive assumption that a large system will encounter a less severe environment than a small system when both are placed at the same location. Assuming a normal probability density function for the velocity differences, an equation is given for calculating the expected number of velocity differences that will occur in 1 hrmore » and will be larger than an arbitrary value. A formula is presented that gives the expected number of velocity differences larger than an arbitrary value that will be encountered during the design life of a wind turbine. In addition, a method for calculating the largest velocity difference expected during the life of a turbine and a formula for estimating the risk of exceeding a given velocity difference during the life of the structure are given. The equations presented are based upon general atmospheric boundary-layer conditions and do not include information regarding events such as tornados, hurricanes, etc.« less

  13. Tidal Flexure, Ice Velocities, and Ablation Rates of Peterman Gletscher, Greenland

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1996-01-01

    Over the floating section of a tide-water glacier, single radar intererograms are difficult to use because the long-term steady motion of the ice is intermixed with the tidal vertical motion of the glacier. With multiple interferograms, it is however possible to isolate the tidal signal and remove it from the single interferograms to estimate the ice velocities. The technique is applied to ERS-1 synthetic aperture radar (SAR) images of Petermann Gletscher, north Greenland.

  14. PIV measurements of airflow past multiple cylinders

    NASA Astrophysics Data System (ADS)

    Wodziak, Waldemar; Sobczyk, Jacek

    2018-06-01

    Flow characteristics in vicinity of six circular cylinders aligned inline was investigated experimentally by means of PIV method. Experiments were conducted in a low speed closed circuit wind tunnel. Inflow velocity was 1.2 m/s which corresponds to Re=1600 based on the cylinder diameter. Spacing ratio between cylinders L/D was 1.5. Instantaneous and averaged velocity fields were presented. Experiments were designed in order to use their results as a test case for future numerical calculations.

  15. State Derivation of a 12-Axis Gyroscope-Free Inertial Measurement Unit

    PubMed Central

    Lu, Jau-Ching; Lin, Pei-Chun

    2011-01-01

    The derivation of linear acceleration, angular acceleration, and angular velocity states from a 12-axis gyroscope-free inertial measurement unit that utilizes four 3-axis accelerometer measurements at four distinct locations is reported. Particularly, a new algorithm which derives the angular velocity from its quadratic form and derivative form based on the context-based interacting multiple model is demonstrated. The performance of the system was evaluated under arbitrary 3-dimensional motion. PMID:22163791

  16. Collaborative Research: High-Resolution Seismic Velocity and Attenuation Models of Western China

    DTIC Science & Technology

    2014-07-20

    type of attenuation from multiple layers and aligned fractures is actually a shape preferred orientation, and is one of the major mechanisms for the...1996] and the recent volcanism just south of the Kunlun Mountains, and a mechanism for heating the crust and gradual erosion of the remaining...However, the mechanism of focusing and defocusing is mostly caused by small-scale velocity anomalies, probably less than 10 km (Sarker and Abers, 1998

  17. Enhanced flow boiling in microchannels through integrating multiple micro-nozzles and reentry microcavities

    NASA Astrophysics Data System (ADS)

    Li, Wenming; Qu, Xiaopeng; Alam, Tamanna; Yang, Fanghao; Chang, Wei; Khan, Jamil; Li, Chen

    2017-01-01

    In a microchannel system, a higher mass velocity can lead to enhanced flow boiling performances, but at a cost of two-phase pressure drop. It is highly desirable to achieve a high heat transfer rate and critical heat flux (CHF) exceeding 1 kW/cm2 without elevating the pressure drop, particularly, at a reduced mass velocity. In this study, we developed a microchannel configuration that enables more efficient utilization of the coolant through integrating multiple microscale nozzles connected to auxiliary channels as well as microscale reentry cavities on sidewalls of main microchannels. We achieved a CHF of 1016 W/cm2 with a 50% less mass velocity, i.e., 680 kg/m2s, compared to the two-nozzle configuration developed in our previous studies. Two primary enhancement mechanisms are: (a) the enhanced global liquid supply by four evenly distributed micronozzles, particularly near the outlet region and (b) the effective management of local dryout by the capillary flow-induced sustainable thin liquid film resulting from an array of microscale cavities. A significantly improved heat transfer coefficient of 131 kW/m2 K at a mass velocity of 680 kg/m2s is attributed to the enhanced nucleate boiling, the established capillary/thin film evaporation, and the induced advection from the present microchannel configuration. All these significant enhancements have been achieved with a ˜55% lower two-phase pressure drop.

  18. Experimental Study of the Structure of a Wingtip Vortex

    NASA Technical Reports Server (NTRS)

    Anderson, Elgin A.; Wright, Christopher T.

    2000-01-01

    A complete look at the near-field development and subsequent role-up of a wingtip vortex from a NACA 0015 wing section is investigated. Two separate but equally important surveys of the vortex structure in the region adjacent to the wingtip and approximately one chord length downstream of the trailing edge are performed. The two surveys provide qualitative flow-visualization an quantitative velocity measurement data. The near-field development and subsequent role-up of the vortex structures is strongly influenced by the angle-of-attack and the end-cap treatment of the wing section. The velocity field near the wingtip of the NACA 0015 wing section was measured with a triple-sensor hot wire probe and compared to flow visualization images produced with titanium tetrachloride smoke injection and laser illumination. The flat end-cap results indicate the formation of multiple, relatively strong vortex structures as opposed to the formation of a single vortex produced with the round end-cap. The multiple vortices generated by the flat end-cap are seen to rotate around a common ce te in a helical pattern until they eventually merge into a single vortex. Compared to a non-dimensional loading parameter, the results of the velocity and flow visualization data shows a "jetlike" axial velocity profile for loading parameter values on the order of 0.1 and a "wakelike" profile for much lower loading parameter values.

  19. Calibration of three rainfall simulators with automatic measurement methods

    NASA Astrophysics Data System (ADS)

    Roldan, Margarita

    2010-05-01

    CALIBRATION OF THREE RAINFALL SIMULATORS WITH AUTOMATIC MEASUREMENT METHODS M. Roldán (1), I. Martín (2), F. Martín (2), S. de Alba(3), M. Alcázar(3), F.I. Cermeño(3) 1 Grupo de Investigación Ecología y Gestión Forestal Sostenible. ECOGESFOR-Universidad Politécnica de Madrid. E.U.I.T. Forestal. Avda. Ramiro de Maeztu s/n. Ciudad Universitaria. 28040 Madrid. margarita.roldan@upm.es 2 E.U.I.T. Forestal. Avda. Ramiro de Maeztu s/n. Ciudad Universitaria. 28040 Madrid. 3 Facultad de Ciencias Geológicas. Universidad Complutense de Madrid. Ciudad Universitaria s/n. 28040 Madrid The rainfall erosivity is the potential ability of rain to cause erosion. It is function of the physical characteristics of rainfall (Hudson, 1971). Most expressions describing erosivity are related to kinetic energy or momentum and so with drop mass or size and fall velocity. Therefore, research on factors determining erosivity leds to the necessity to study the relation between fall height and fall velocity for different drop sizes, generated in a rainfall simulator (Epema G.F.and Riezebos H.Th, 1983) Rainfall simulators are one of the most used tools for erosion studies and are used to determine fall velocity and drop size. Rainfall simulators allow repeated and multiple measurements The main reason for use of rainfall simulation as a research tool is to reproduce in a controlled way the behaviour expected in the natural environment. But in many occasions when simulated rain is used in order to compare it with natural rain, there is a lack of correspondence between natural and simulated rain and this can introduce some doubt about validity of data because the characteristics of natural rain are not adequately represented in rainfall simulation research (Dunkerley D., 2008). Many times the rainfall simulations have high rain rates and they do not resemble natural rain events and these measures are not comparables. And besides the intensity is related to the kinetic energy which determines the rainfall erosivity (Dunkerley D., 2008). A special attention must be paid to the experimental design and the understanding of the measurements obtained. The objective of this study is the calibration of simulated rain. In order to achieve this objective a rainfall simulator and disdrometer have been used. The first one is a nozzle type and its sprinkler system was located at different heights, three different spray nozzles supplied the water with known pressure. The simulated rainfall presented different intensities, drop diameters distribution and so different kinetic energy. The instrument of measurement for registering data is the disdrometer (Joss and Waldvogel, 1967) which provides the total number of impacts of raindrops, minute after minute, grouped in 20 classes according to their size which allows the real time measurements of the drop diameter distributions, kinetic energy per minute and intensity per minute. Disdrometer registers data in supposing drops fall down with terminal velocity but this velocity can reach up to 7-9 m of height in natural raindrop, depending on drop diameters. If the height of simulator is high enough the drops could recuperate their terminal velocities and their kinetic energies could be true. The nozzles were located to different heights in order to achieve these terminal velocities. These heights vary depending on the nozzles used, when the drops supplied by the nozzle are smaller the terminal velocity is reached sooner than when the drops are bigger. The physical characteristics of simulated rainfall in the three nozzles, intensity, drop diameter distributions and kinetic energy, are known and steady when the drops supplied by the nozzles reach terminal velocities.

  20. Changes in seismic velocity during the first 14 months of the 2004-2008 eruption of Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J.; Thelen, W.; Moran, S. C.

    2015-09-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  1. Changes in seismic velocity during the first 14 months of the 2004–2008 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hotovec-Ellis, A.J.; Vidale, J.E.; Gomberg, Joan S.; Thelen, Weston A.; Moran, Seth C.

    2015-01-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  2. Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation

    PubMed Central

    Bar-Sinai, Yohai; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran

    2015-01-01

    Frictional interfaces abound in natural and man-made systems, yet their dynamics are not well-understood. Recent extensive experimental data have revealed that velocity-strengthening friction, where the steady-state frictional resistance increases with sliding velocity over some range, is a generic feature of such interfaces. This physical behavior has very recently been linked to slow stick-slip motion. Here we elucidate the importance of velocity-strengthening friction by theoretically studying three variants of a realistic friction model, all featuring identical logarithmic velocity-weakening friction at small sliding velocities, but differ in their higher velocity behaviors. By quantifying energy partition (e.g. radiation and dissipation), the selection of interfacial rupture fronts and rupture arrest, we show that the presence or absence of strengthening significantly affects the global interfacial resistance and the energy release during frictional instabilities. Furthermore, we show that different forms of strengthening may result in events of similar magnitude, yet with dramatically different dissipation and radiation rates. This happens because the events are mediated by rupture fronts with vastly different propagation velocities, where stronger velocity-strengthening friction promotes slower rupture. These theoretical results may have significant implications on our understanding of frictional dynamics. PMID:25598161

  3. Responses of stream microbes to multiple anthropogenic stressors in a mesocosm study.

    PubMed

    Nuy, Julia K; Lange, Anja; Beermann, Arne J; Jensen, Manfred; Elbrecht, Vasco; Röhl, Oliver; Peršoh, Derek; Begerow, Dominik; Leese, Florian; Boenigk, Jens

    2018-08-15

    Stream ecosystems are affected by multiple anthropogenic stressors worldwide. Even though effects of many single stressors are comparatively well studied, the effects of multiple stressors are difficult to predict. In particular bacteria and protists, which are responsible for the majority of ecosystem respiration and element flows, are infrequently studied with respect to multiple stressors responses. We conducted a stream mesocosm experiment to characterize the responses of single and multiple stressors on microbiota. Two functionally important stream habitats, leaf litter and benthic phototrophic rock biofilms, were exposed to three stressors in a full factorial design: fine sediment deposition, increased chloride concentration (salinization) and reduced flow velocity. We analyzed the microbial composition in the two habitat types of the mesocosms using an amplicon sequencing approach. Community analysis on different taxonomic levels as well as principle component analyses (PCoAs) based on realtive abundances of operational taxonomic units (OTUs) showed treatment specific shifts in the eukaryotic biofilm community. Analysis of variance (ANOVA) revealed that Bacillariophyta responded positively salinity and sediment increase, while the relative read abundance of chlorophyte taxa decreased. The combined effects of multiple stressors were mainly antagonistic. Therefore, the community composition in multiply stressed environments resembled the composition of the unstressed control community in terms of OTU occurrence and relative abundances. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Action-specific effects in aviation: what determines judged runway size?

    PubMed

    Gray, Rob; Navia, José Antonio; Allsop, Jonathan

    2014-01-01

    Several recent studies have shown that the performance of a skill that involves acting on a goal object can influence one's judgment of the size of that object. The present study investigated this effect in an aviation context. Novice pilots were asked to perform a series of visual approach and landing manoeuvres in a flight simulator. After each landing, participants next performed a task in which runway size was judged for different simulated altitudes. Gaze behaviour and control stick kinematics were also analyzed. There were significant relationships between judged runway size and multiple action-related variables including touchdown velocity, time fixating the runway, and the magnitude and frequency of control inputs. These findings suggest that relationship between the perception of a target object and action is not solely determined by performance success or failure but rather involves a relationship between multiple variables that reflect the actor's ability.

  5. Multi-specie isothermal flow calculations of widely-spaced co-axial jets in a confined sudden expansion, with the central jet dominant

    NASA Astrophysics Data System (ADS)

    Sturgess, G. J.; Syed, S. A.

    1982-06-01

    A numerical simulation is made of the flow in the Wright Aeronautical Propulsion Laboratory diffusion flame research combustor operating with a strong central jet of carbon dioxide in a weak and removed co-axial jet of air. The simulation is based on a finite difference solution of the time-average, steady-state, elliptic form of the Reynolds equations. Closure for these equations is provided by a two-equation turbulence model. Comparisons between measurements and predictions are made for centerline axial velocities and radial profiles of CO2 concentration. Earlier findings for a single specie, constant density, single jet flow that a large expansion ratio confined jet behaves initially as if it were unconfined, are confirmed for the multiple-specie, variable density, multiple-jet system. The lack of universality in the turbulence model constants and the turbulent Schmidt/Prandtl number is discussed.

  6. Photonic Doppler velocimetry lens array probe incorporating stereo imaging

    DOEpatents

    Malone, Robert M.; Kaufman, Morris I.

    2015-09-01

    A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.

  7. Locating seismicity on the Arctic plate boundary using multiple-event techniques and empirical signal processing

    NASA Astrophysics Data System (ADS)

    Gibbons, S. J.; Harris, D. B.; Dahl-Jensen, T.; Kværna, T.; Larsen, T. B.; Paulsen, B.; Voss, P. H.

    2017-12-01

    The oceanic boundary separating the Eurasian and North American plates between 70° and 84° north hosts large earthquakes which are well recorded teleseismically, and many more seismic events at far lower magnitudes that are well recorded only at regional distances. Existing seismic bulletins have considerable spread and bias resulting from limited station coverage and deficiencies in the velocity models applied. This is particularly acute for the lower magnitude events which may only be constrained by a small number of Pn and Sn arrivals. Over the past two decades there has been a significant improvement in the seismic network in the Arctic: a difficult region to instrument due to the harsh climate, a sparsity of accessible sites (particularly at significant distances from the sea), and the expense and difficult logistics of deploying and maintaining stations. New deployments and upgrades to stations on Greenland, Svalbard, Jan Mayen, Hopen, and Bjørnøya have resulted in a sparse but stable regional seismic network which results in events down to magnitudes below 3 generating high-quality Pn and Sn signals on multiple stations. A catalogue of several hundred events in the region since 1998 has been generated using many new phase readings on stations on both sides of the spreading ridge in addition to teleseismic P phases. A Bayesian multiple event relocation has resulted in a significant reduction in the spread of hypocentre estimates for both large and small events. Whereas single event location algorithms minimize vectors of time residuals on an event-by-event basis, the Bayesloc program finds a joint probability distribution of origins, hypocentres, and corrections to traveltime predictions for large numbers of events. The solutions obtained favour those event hypotheses resulting in time residuals which are most consistent over a given source region. The relocations have been performed with different 1-D velocity models applicable to the Arctic region and hypocentres obtained using Bayesloc have been shown to be relatively insensitive to the specified velocity structure in the crust and upper mantle, even for events only constrained by regional phases. The patterns of time residuals resulting from the multiple-event location procedure provide well-constrained time correction surfaces for single-event location estimates and are sufficiently stable to identify a number of picking errors and instrumental timing anomalies. This allows for subsequent quality control of the input data and further improvement in the location estimates. We use the relocated events to form narrowband empirical steering vectors for wave fronts arriving at the SPITS array on Svalbard for azimuth and apparent velocity estimation. We demonstrate that empirical matched field parameter estimation determined by source region is a viable supplement to planewave f-k analysis, mitigating bias and obviating the need for Slowness and Azimuth Station Corrections. A database of reference events and phase arrivals is provided to facilitate further refinement of event locations and the construction of empirical signal detectors.

  8. Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex

    PubMed Central

    Winter, Shawn S.; Mehlman, Max L.; Clark, Benjamin J.; Taube, Jeffrey S.

    2015-01-01

    Summary Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal’s movements. These signals include grid cells, which fire at multiple locations forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz EEG oscillation that is modulated by the animals’ movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall HD cell characteristics, and abolished velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity. Velocity modulation of theta may be used as a speed signal to generate the repeating pattern of grid cells. PMID:26387719

  9. Structure of the San Andreas fault zone at SAFOD from a seismic refraction survey

    USGS Publications Warehouse

    Hole, J.A.; Ryberg, T.; Fuis, G.S.; Bleibinhaus, F.; Sharma, A.K.

    2006-01-01

    Refraction traveltimes from a 46-km long seismic survey across the San Andreas Fault were inverted to obtain two-dimensional velocity structure of the upper crust near the SAFOD drilling project. The model contains strong vertical and lateral velocity variations from <2 km/s to ???6 km/s. The Salinian terrane west of the San Andreas Fault has much higher velocity than the Franciscan terrane east of the fault. Salinian basement deepens from 0.8 km subsurface at SAFOD to ???2.5 km subsurface 20 km to the southwest. A strong reflection and subtle velocity contrast suggest a steeply dipping fault separating the Franciscan terrane from the Great Valley Sequence. A low-velocity wedge of Cenozoic sedimentary rocks lies immediately southwest of the San Andreas Fault. This body is bounded by a steep fault just northeast of SAFOD and approaches the depth of the shallowest earthquakes. Multiple active and inactive fault strands complicate structure near SAFOD. Copyright 2006 by the American Geophysical Union.

  10. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The azimuthal coverage of the respective two-station paths is proper to analyze the observed dispersion curves in terms of both azimuthal and radial anisotropy beneath the study region. This research is supported by Joint Research Project of the Scientific and Research Council of Turkey (TUBİTAK- Grant number 111Y190) and the Russian Federation for Basic Research (RFBR).

  11. Exploring Granular Flows at Intermediate Velocities

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; van der Elst, N.

    2012-12-01

    Geophysical and geomorphological flows often encompass a wide range of strain rates. Landslides accelerate from nearly static conditions to velocities in the range of meters/seconds. The rheology of granular flows for the end-members is moderately well-understood, but the constitutive low at intermediate velocities is largely unexplored. Here we present evidence that granular flows transition through a regime in which internally generated acoustic waves play a critical role in controlling rheology. In laboratory experiments on natural sand under shear in a commercial rheometer, we observe that the steady-state flows at intermediate velocities are compacted relative to the end members. In a confined volume, this compaction results in a decrease in stress on the boundaries. We establish the key role of the acoustic waves by measuring the noise generated by the shear flows with an accelerometer and then exciting the flow with similar amplitude noise under lower shear rate conditions. The observed compaction for a given amplitude noise is the same in both cases, regardless of whether the noise is generated internally by the grains colliding or artificially applied externally. The boundaries of this acoustically controlled regime can be successfully predicted through non-dimensional analysis balancing the overburden, acoustic pressure and granular inertial terms. In our laboratory experiments, this regime corresponds to 0.1 to 10 cm/s. The controlling role of acoustic waves in intermediate velocities is significant because: (1) Geological systems must pass through this regime on their route to instability. (2) Acoustic waves are much more efficiently generated by angular particles, likely to be found in natural samples, than by perfectly spherical particles, which are more tractable for laboratory and theoretical studies. Therefore, this regime is likely to be missed in many analog and computational approaches. (3) Different mineralogies and shapes result in different noise generation. Therefore, there is a potential to extrapolate and predict rheological behavior of an active flow through studies of the recoverable granular products.Steady-state thickness vs. shear rate for angular sand and glass beads. Individual curves represent multiple up-going and down-going velocity ramps, and thick error bars show means and standard deviations between runs. Thickness is independent of shear rate at low shear rates, and strongly dependent on shear rate for intermediate and high shear rates. Compaction is observed at intermediate shear rates for angular sand, but not for smooth glass beads.

  12. Station Correction Uncertainty in Multiple Event Location Algorithms and the Effect on Error Ellipses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Jason P.; Carlson, Deborah K.; Ortiz, Anne

    Accurate location of seismic events is crucial for nuclear explosion monitoring. There are several sources of error in seismic location that must be taken into account to obtain high confidence results. Most location techniques account for uncertainties in the phase arrival times (measurement error) and the bias of the velocity model (model error), but they do not account for the uncertainty of the velocity model bias. By determining and incorporating this uncertainty in the location algorithm we seek to improve the accuracy of the calculated locations and uncertainty ellipses. In order to correct for deficiencies in the velocity model, itmore » is necessary to apply station specific corrections to the predicted arrival times. Both master event and multiple event location techniques assume that the station corrections are known perfectly, when in reality there is an uncertainty associated with these corrections. For multiple event location algorithms that calculate station corrections as part of the inversion, it is possible to determine the variance of the corrections. The variance can then be used to weight the arrivals associated with each station, thereby giving more influence to stations with consistent corrections. We have modified an existing multiple event location program (based on PMEL, Pavlis and Booker, 1983). We are exploring weighting arrivals with the inverse of the station correction standard deviation as well using the conditional probability of the calculated station corrections. This is in addition to the weighting already given to the measurement and modeling error terms. We re-locate a group of mining explosions that occurred at Black Thunder, Wyoming, and compare the results to those generated without accounting for station correction uncertainty.« less

  13. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    PubMed Central

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small. PMID:25136681

  14. Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

    PubMed

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  15. Application of multiple tracers (SF6 and chloride) to identify the transport by characteristics of contaminant at two separate contaminated sites

    NASA Astrophysics Data System (ADS)

    Lee, K. K.; Lee, S. S.; Kim, H. H.; Koh, E. H.; Kim, M. O.; Lee, K.; Kim, H. J.

    2016-12-01

    Multiple tracers were applied for source and pathway detection at two different sites. CO2 gas injected in the subsurface for a shallow-depth CO2 injection and leak test can be regarded as a potential contaminant source. Therefore, it is necessary to identify the migration pattern of CO2 gas. Also, at a DNAPL contaminated site, it is important to figure out the characteristics of plume evolution from the source zone. In this study, multiple tracers (SF6 and chloride) were used to evaluate the applicability of volatile and non-volatile tracers and to identify the characteristics of contaminant transport at each CO2 injection and leak test site and DNAPL contaminated site. Firstly, at the CO2 test site, multiple tracers were used to perform the single well push-drift-pull tracer test at total 3 specific depth zones. As results of tests, volatile and non-volatile tracers showed different mass recovery percentage. Most of chloride mass was recovered but less than half of SF6 mass was recovered due to volatile property. This means that only gaseous SF6 leak out to unsaturated zone. However, breakthrough curves of both tracers indicated similar peak time, effective porosity, and regional groundwater velocity. Also, at both contaminated sites, natural gradient tracer tests were performed with multiple tracers. With the results of natural gradient tracer test, it was possible to confirm the applicability of multiple tracers and to understand the contaminant transport in highly heterogeneous aquifer systems through the long-term monitoring of tracers. Acknowledgement: financial support was provided by the R&D Project on Environmental Management of Geologic CO2 Storage)" from the KEITI (Project Number: 2014001810003) and Korea Ministry of Environment as "The GAIA project (2014000540010)".

  16. Dynamics of low- and high-Z metal ions emitted during nanosecond laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Polek, Mathew; Hassanein, Ahmed

    2016-11-01

    Dynamics of metal ions during laser-produced plasmas was studied. A 1064 nm, Nd: YAG laser pulse was used to ablate pure Al, Fe, Co, Mo, and Sn samples. Ion flux and velocity were measured using Faraday cup ion collector. Time-of-flight measurements showed decreasing ion flux and ion velocity with increasing atomic weight, and heavy metal ion flux profile exhibited multiple peaks that was not observed in lighter metals. Slow peak was found to follow shifted Maxwell Boltzmann distribution, while the fast peak was found to follow Gaussian distribution. Ion flux angular distribution that was carried out on Mo and Al using fixed laser intensity 2.5 × 1010 W/cm2 revealed that the slow ion flux peaks at small angles, that is, close to normal to the target ˜0° independent of target's atomic weight, and fast ion flux for Mo peaks at large angles ˜40° measured from the target normal, while it completely absents for Al. This difference in spatial and temporal distribution reveals that the emission mechanism of the fast and slow ions is different. From the slow ion flux angular distribution, the measured plume expansion ratio (plume forward peaking) was 1.90 and 2.10 for Al and Mo, respectively. Moreover, the effect of incident laser intensity on the ion flux emission as well as the emitted ion velocity were investigated using laser intensities varying from 2.5 × 1010 W/cm2 to 1.0 × 1011 W/cm2. Linear increase of fast ion flux and velocity, and quadratic increase of slow ion flux and velocity were observed. For further understanding of plume dynamics, laser optical emission spectroscopy was used to characterize Sn plasma by measuring the temporal and spatial evolution of plasma electron density Ne and electron temperature Te. At 3.5 mm away from the target, plasma density showed slow decrease with time, however electron temperature was observed to decrease dramatically. The maximum plasma density and temperature occurred at 0.5 mm away from target and were measured to be 8.0 × 1017 cm-3 and 1.3 eV, respectively.

  17. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models.

    PubMed

    Imamizu, Hiroshi; Kuroda, Tomoe; Yoshioka, Toshinori; Kawato, Mitsuo

    2004-02-04

    An internal model is a neural mechanism that can mimic the input-output properties of a controlled object such as a tool. Recent research interests have moved on to how multiple internal models are learned and switched under a given context of behavior. Two representative computational models for task switching propose distinct neural mechanisms, thus predicting different brain activity patterns in the switching of internal models. In one model, called the mixture-of-experts architecture, switching is commanded by a single executive called a "gating network," which is different from the internal models. In the other model, called the MOSAIC (MOdular Selection And Identification for Control), the internal models themselves play crucial roles in switching. Consequently, the mixture-of-experts model predicts that neural activities related to switching and internal models can be temporally and spatially segregated, whereas the MOSAIC model predicts that they are closely intermingled. Here, we directly examined the two predictions by analyzing functional magnetic resonance imaging activities during the switching of one common tool (an ordinary computer mouse) and two novel tools: a rotated mouse, the cursor of which appears in a rotated position, and a velocity mouse, the cursor velocity of which is proportional to the mouse position. The switching and internal model activities temporally and spatially overlapped each other in the cerebellum and in the parietal cortex, whereas the overlap was very small in the frontal cortex. These results suggest that switching mechanisms in the frontal cortex can be explained by the mixture-of-experts architecture, whereas those in the cerebellum and the parietal cortex are explained by the MOSAIC model.

  18. Giant Molecular Cloud Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Hollenbach, David (Technical Monitor); Bodenheimer, P. H.

    2003-01-01

    Bodenheimer and Burkert extended earlier calculations of cloud core models to study collapse and fragmentation. The initial condition for an SPH collapse calculation is the density distribution of a Bonnor-Ebert sphere, with near balance between turbulent plus thermal energy and gravitational energy. The main parameter is the turbulent Mach number. For each Mach number several runs are made, each with a different random realization of the initial turbulent velocity field. The turbulence decays on a dynamical time scale, leading the cloud into collapse. The collapse proceeds isothermally until the density has increased to about 10(exp 13) g cm(exp -3). Then heating is included in the dense regions. The nature of the fragmentation is investigated. About 15 different runs have been performed with Mach numbers ranging from 0.3 to 3.5 (the typical value observed in molecular cloud cores is 0.7). The results show a definite trend of increasing multiplicity with increasing Mach number (M), with the number of fragments approximately proportional to (1 + M). In general, this result agrees with that of Fisher, Klein, and McKee who published three cases with an AMR grid code. However our results show that there is a large spread about this curve. For example, for M=0.3 one case resulted in no fragmentation while a second produced three fragments. Thus it is not only the value of M but also the details of the superposition of the various velocity modes that play a critical role in the formation of binaries. Also, the simulations produce a wide range of separations (10-1000 AU) for the multiple systems, in rough agreement with observations. These results are discussed in two conference proceedings.

  19. Walking with eyes closed is easier than walking with eyes open without visual cues: The Romberg task versus the goggle task.

    PubMed

    Yelnik, A P; Tasseel Ponche, S; Andriantsifanetra, C; Provost, C; Calvalido, A; Rougier, P

    2015-12-01

    The Romberg test, with the subject standing and with eyes closed, gives diagnostic arguments for a proprioceptive disorder. Closing the eyes is also used in balance rehabilitation as a main way to stimulate neural plasticity with proprioceptive, vestibular and even cerebellar disorders. Nevertheless, standing and walking with eyes closed or with eyes open in the dark are certainly 2 different tasks. We aimed to compare walking with eyes open, closed and wearing black or white goggles in healthy subjects. A total of 50 healthy participants were randomly divided into 2 protocols and asked to walk on a 5-m pressure-sensitive mat, under 3 conditions: (1) eyes open (EO), eyes closed (EC) and eyes open with black goggles (BG) and (2) EO, EO with BG and with white goggles (WG). Gait was described by velocity (m·s(-1)), double support (% gait cycle), gait variability index (GVI/100) and exit from the mat (%). Analysis involved repeated measures Anova, Holm-Sidak's multiple comparisons test for parametric parameters (GVI) and Dunn's multiple comparisons test for non-parametric parameters. As compared with walking with EC, walking with BG produced lower median velocity, by 6% (EO 1.26; BG 1.01 vs EC 1.07 m·s(-1), P=0.0328), and lower mean GVI, by 8% (EO 91.8; BG 66.8 vs EC 72.24, P=0.009). Parameters did not differ between walking under the BG and WG conditions. The goggle task increases the difficulty in walking with visual deprivation compared to the Romberg task, so the goggle task can be proposed to gradually increase the difficulty in walking with visual deprivation (from eyes closed to eyes open in black goggles). Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Differences in the rotational properties of multiple stellar populations in M13: a faster rotation for the `extreme' chemical subpopulation

    NASA Astrophysics Data System (ADS)

    Cordero, M. J.; Hénault-Brunet, V.; Pilachowski, C. A.; Balbinot, E.; Johnson, C. I.; Varri, A. L.

    2017-03-01

    We use radial velocities from spectra of giants obtained with the WIYN telescope, coupled with existing chemical abundance measurements of Na and O for the same stars, to probe the presence of kinematic differences among the multiple populations of the globular cluster (GC) M13. To characterize the kinematics of various chemical subsamples, we introduce a method using Bayesian inference along with a Markov chain Monte Carlo algorithm to fit a six-parameter kinematic model (including rotation) to these subsamples. We find that the so-called extreme population (Na-enhanced and extremely O-depleted) exhibits faster rotation around the centre of the cluster than the other cluster stars, in particular, when compared with the dominant `intermediate' population (moderately Na-enhanced and O-depleted). The most likely difference between the rotational amplitude of this extreme population and that of the intermediate population is found to be ˜4 km s-1 , with a 98.4 per cent probability that the rotational amplitude of the extreme population is larger than that of the intermediate population. We argue that the observed difference in rotational amplitudes, obtained when splitting subsamples according to their chemistry, is not a product of the long-term dynamical evolution of the cluster, but more likely a surviving feature imprinted early in the formation history of this GC and its multiple populations. We also find an agreement (within uncertainties) in the inferred position angle of the rotation axis of the different subpopulations considered. We discuss the constraints that these results may place on various formation scenarios.

  1. Biotic interactions modify multiple-stressor effects on juvenile brown trout in an experimental stream food web.

    PubMed

    Bruder, Andreas; Salis, Romana K; Jones, Peter E; Matthaei, Christoph D

    2017-09-01

    Agricultural land use results in multiple stressors affecting stream ecosystems. Flow reduction due to water abstraction, elevated levels of nutrients and chemical contaminants are common agricultural stressors worldwide. Concurrently, stream ecosystems are also increasingly affected by climate change. Interactions among multiple co-occurring stressors result in biological responses that cannot be predicted from single-stressor effects (i.e. synergisms and antagonisms). At the ecosystem level, multiple-stressor effects can be further modified by biotic interactions (e.g. trophic interactions). We conducted a field experiment using 128 flow-through stream mesocosms to examine the individual and combined effects of water abstraction, nutrient enrichment and elevated levels of the nitrification inhibitor dicyandiamide (DCD) on survival, condition and gut content of juvenile brown trout and on benthic abundance of their invertebrate prey. Flow velocity reduction decreased fish survival (-12% compared to controls) and condition (-8% compared to initial condition), whereas effects of nutrient and DCD additions and interactions among these stressors were not significant. Negative effects of flow velocity reduction on fish survival and condition were consistent with effects on fish gut content (-25% compared to controls) and abundance of dominant invertebrate prey (-30% compared to controls), suggesting a negative metabolic balance driving fish mortality and condition decline, which was confirmed by structural equation modelling. Fish mortality under reduced flow velocity increased as maximal daily water temperatures approached the upper limit of their tolerance range, reflecting synergistic interactions between these stressors. Our study highlights the importance of indirect stressor effects such as those transferred through trophic interactions, which need to be considered when assessing and managing fish populations and stream food webs in multiple-stressor situations. However, in real streams, compensatory mechanisms and behavioural responses, as well as seasonal and spatial variation, may alter the intensity of stressor effects and the sensitivity of trout populations. © 2017 John Wiley & Sons Ltd.

  2. Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.

    PubMed

    Mohiaddin, R H; Yang, G Z; Kilner, P J

    1994-01-01

    We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.

  3. A study of H-alpha velocities in NGC 1499, NGC 7000, and IC 1318B/C

    NASA Technical Reports Server (NTRS)

    Fountain, W. F.; Gary, G. A.; Odell, C. R.

    1983-01-01

    Multiple slit echelle spectrograph observations of the H-alpha emission line are used to map the radial velocities of the California Nebula (NGC 1499), the North American Nebula complex (NGC 7000 and IC 5070), and IC 1318B/C. The California Nebula is singularly constant in velocity, considering its geometry. The North American Nebula complex reflects a very simple, classical dynamical picture. The expansion discovered earlier in IC 1318B/C is confirmed, detailed, and the model refined. The new data, along with that in earlier papers of this series, show that stellar wind acceleration and champagne flow mechanisms both play important roles in determining the evolution of H II regions.

  4. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  5. Apparatus and method for determining solids circulation rate

    DOEpatents

    Ludlow, J Christopher [Morgantown, WV; Spenik, James L [Morgantown, WV

    2012-02-14

    The invention relates to a method of determining bed velocity and solids circulation rate in a standpipe experiencing a moving packed bed flow, such as the in the standpipe section of a circulating bed fluidized reactor The method utilizes in-situ measurement of differential pressure over known axial lengths of the standpipe in conjunction with in-situ gas velocity measurement for a novel application of Ergun equations allowing determination of standpipe void fraction and moving packed bed velocity. The method takes advantage of the moving packed bed property of constant void fraction in order to integrate measured parameters into simultaneous solution of Ergun-based equations and conservation of mass equations across multiple sections of the standpipe.

  6. Performance and Kinematics of Various Throwing Techniques in Team-Handball

    PubMed Central

    Wagner, Herbert; Pfusterschmied, Jürgen; von Duvillard, Serge P.; Müller, Erich

    2011-01-01

    In team-handball competition, the players utilize various throwing techniques that differ in the lower body movements (with and without run-up or jump). These different lower body movements influence changes in the upper body movements and thus also affect the performance. A comprehensive analysis of 3D-kinematics of team-handball throws that may explain these differences in performance is lacking. Consequently, the purpose of this study was (1) to compare performance (ball velocity and throwing accuracy) between the jump throw, standing throw with and without run-up, and the pivot throw; (2) to calculate the influence of kinematic parameters to ball velocity; and (3) to determine if these four throwing techniques differ significantly in kinematics. Three-dimensional kinematic data (angles, angular velocities and their timing, ball velocity and velocity of the center of mass) of 14 elite team-handball players were measured using an 8 camera Vicon MX13 motion capture system (Vicon, Oxford, UK), at 250 Hz. Significant difference was found between the four throwing techniques for ball velocity (p < 0. 001), maximal velocity of the center of mass in goal-directed movement (p < 0.001), and 15 additional kinematic variables (p < 0.003). Ball velocity was significant impacted by the run-up and the pelvis and trunk movements. Depending on floor contact (standing vs. jump throws), elite players in the study used two different strategies (lead leg braces the body vs. opposed leg movements during flight) to accelerate the pelvis and trunk to yield differences in ball velocity. However, these players were able to utilize the throwing arm similarly in all four throwing techniques. Key points Elite team-handball players achieved the greatest ball velocity in the standing throw with run-up (100%), followed by the standing throw without run-up (93%), jump throw (92%) and pivot throw (85%). Depending on the floor contact (standing vs. jump throws) the elite players of the study used two different strategies (lead leg braces the body vs. opposed leg movements during flight) to accelerate the pelvis and trunk that caused differences in ball velocity. Elite team-handball players were able to utilize the throwing arm similarly in all four throwing techniques. PMID:24149298

  7. Force, velocity, and work: The effects of different contexts on students' understanding of vector concepts using isomorphic problems

    NASA Astrophysics Data System (ADS)

    Barniol, Pablo; Zavala, Genaro

    2014-12-01

    In this article we compare students' understanding of vector concepts in problems with no physical context, and with three mechanics contexts: force, velocity, and work. Based on our "Test of Understanding of Vectors," a multiple-choice test presented elsewhere, we designed two isomorphic shorter versions of 12 items each: a test with no physical context, and a test with mechanics contexts. For this study, we administered the items twice to students who were finishing an introductory mechanics course at a large private university in Mexico. The first time, we administered the two 12-item tests to 608 students. In the second, we only tested the items for which we had found differences in students' performances that were difficult to explain, and in this case, we asked them to show their reasoning in written form. In the first administration, we detected no significant difference between the medians obtained in the tests; however, we did identify significant differences in some of the items. For each item we analyze the type of difference found between the tests in the selection of the correct answer, the most common error on each of the tests, and the differences in the selection of incorrect answers. We also investigate the causes of the different context effects. Based on these analyses, we establish specific recommendations for the instruction of vector concepts in an introductory mechanics course. In the Supplemental Material we include both tests for other researchers studying vector learning, and for physics teachers who teach this material.

  8. Solar-wind velocity measurements from near-Sun comets C/2011 W3 (Lovejoy), C/2011 L4 (Pan-STARRS), and C/2012 S1 (ISON)

    NASA Astrophysics Data System (ADS)

    Ramanjooloo, Y.; Jones, G. H.; Coates, A.; Owens, M. J.; Battams, K.

    2014-07-01

    Since the mid-20th century, comets' plasma (type I) tails have been studied as natural probes of the solar wind [1]. Comets have induced magnetotails, formed through the draping of the heliospheric magnetic field by the velocity shear in the mass-loaded solar wind. These can be easily observed remotely as the comets' plasma tails, which generally point away from the Sun. Local solar-wind conditions directly influence the morphology and dynamics of a comet's plasma tail. During ideal observing geometries, the orientation and structure of the plasma tail can reveal large-scale and small-scale variations in the local solar-wind structure. These variations can be manifested as tail condensations, kinks, and disconnection events. Over 50 % of observed catalogued comets are sungrazing comets [2], fragments of three different parent comets. Since 2011, two bright new comets, C/2011 W3 [3] (from hereon comet Lovejoy) and C/2012 S1 [4] (hereon comet ISON) have experienced extreme solar-wind conditions and insolation of their nucleus during their perihelion passages, approaching to within 8.3×10^5 km (1.19 solar radii) and 1.9×10^6 km (2.79 solar radii) of the solar centre. They each displayed a prominent plasma tail, proving to be exceptions amongst the observed group of sungrazing comets. These bright sungrazers provide unprecedented access to study the solar wind in the heretofore unprobed innermost region of the solar corona. The closest spacecraft in-situ sampling of the solar wind by the Helios probes reached 0.29 au. For this study, we define a sungrazing comet as one with its perihelion within the solar Roche limit (3.70 solar radii). We also extend this study to include C/2011 L4 [5] (comet Pan-STARRS), a comet with a much further perihelion distance of 0.302 au. The technique employed in this study was first established by analysing geocentric amateur observations of comets C/2001 Q4 (NEAT) and C/2004 Q2 (Machholz) [7]. These amateur images, obtained with modern equipment and sensors, rival and sometimes arguably exceed the quality of professional images obtained only 2--3 decades ago. Multiple solar-wind velocity estimates were derived from each image and the results compared to observed and modelled near-Earth solar-wind data. Our unique analysis technique [Ramanjooloo et al., in preparation] allows us to determine the latitudinal variations of the solar wind, heliospheric current-sheet sector boundaries and the boundaries of transient features as a comet with an observable plasma tail probes the inner heliosphere. We present solar-wind velocity measurements derived from multiple observing locations of comets Lovejoy from the 14th -- 19th December 2011, comet Pan-STARRS during 11th -- 16th March 2013 and comet ISON from 12th -- 29th November 2013. Observations were gathered from multiple resources, from the SECCHI heliospheric imagers aboard STEREO A and B [8], the LASCO coronagraphs aboard SOHO [9], as well as ground-based amateur and professional observations coordinated by the CIOC. Overlapping observation sessions from the three spacecraft and ground-based efforts provided the perfect opportunity to use these comets as a diagnostic tool to understand solar-wind variability close to the Sun. We plan to compare our observations to results of suitable simulations [10] of plasma conditions in the corona and inner heliosphere during each of the comets' perihelion passage. The correlation of the solar-wind velocity distribution from different observing locations can provide clues towards the morphology and orientation of the plasma tail. We also attempt to determine the difficult-to-determine non-radial components of the measured solar-wind velocities.

  9. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Jin, K.; Kumar, P.; Vanka, S. P.; Thomas, B. G.

    2016-09-01

    The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong ["Deformation and oscillations of a single gas bubble rising in a narrow vertical tube," Int. J. Therm. Sci. 47, 221-228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.

  10. Testing FlowTracker2 Performance and Wading Rod Flow Disturbance in Laboratory Tow Tanks

    NASA Astrophysics Data System (ADS)

    Fan, X.; Wagenaar, D.

    2016-12-01

    The FlowTracker2 was released in February 2016 by SonTek (Xylem) to be a more feature-rich and technologically advanced replacement to the Original FlowTracker ADV. These instruments are Acoustic Doppler Velocimeters (ADVs) used for taking high-precision wading discharge and velocity measurements. The accuracy of the FlowTracker2 probe was tested in tow tanks at three different facilities: the USGS Hydrologic Instrumentation Facility (HIF), the Swiss Federal Institute for Metrology (METAS), and at the SonTek Research and Development facility. Multiple mounting configurations were examined, including mounting the ADV probe directly to the tow carts, and incorporating the two most-used wading rods for the FlowTracker (round and hex). Tow speeds ranged from 5cm/s to 1.5m/s, and different tow tank seeding schemes and wait times were examined. In addition, the performance of the FlowTracker2 probe in low Signal-to-Noise Ratio (SNR) environments was compared to the Original FlowTracker ADV. Results confirmed that the FlowTracker2 probe itself performed well within the 1%+0.25cm/s accuracy specification advertised. Tows using the wading rods created a reduced measured velocity by 1.3% of the expected velocity due to flow disturbance, a result similar to the Original FlowTracker ADV despite the change in the FlowTracker2 probe design. Finally, due to improvements in its electronics, the FlowTracker2's performance in low SNR tests exceeded that of the Original FlowTracker ADV, showing less standard error in these conditions compared to its predecessor.

  11. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, K.; Kumar, P.; Vanka, S. P., E-mail: spvanka@illinois.edu

    2016-09-15

    The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong [“Deformation and oscillations of a single gasmore » bubble rising in a narrow vertical tube,” Int. J. Therm. Sci. 47, 221–228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.« less

  12. A cell impedance measurement device for the cytotoxicity assay dependent on the velocity of supplied toxic fluid

    NASA Astrophysics Data System (ADS)

    Kang, Yoon-Tae; Kim, Min-Ji; Cho, Young-Ho

    2018-04-01

    We present a cell impedance measurement chip capable of characterizing the toxic response of cells depending on the velocity of the supplied toxic fluid. Previous impedance-based devices using a single open-top chamber have been limited to maintaining a constant supply velocity, and devices with a single closed-top chamber present difficulties in simultaneous cytotoxicity assay for varying levels of supply velocities. The present device, capable of generating constant and multiple levels of toxic fluid velocity simultaneously within a single stepwise microchannel, performs a cytotoxicity assay dependent on toxic fluid velocity, in order to find the effective velocity of toxic fluid to cells for maximizing the cytotoxic effect. We analyze the cellular toxic response of 5% ethanol media supplied to cancer cells within a toxic fluid velocity range of 0-8.3 mm s-1. We observe the velocity-dependent cell detachment rate, impedance, and death rate. We find that the cell detachment rate decreased suddenly to 2.4% at a velocity of 4.4 mm s-1, and that the change rates of cell resistance and cell capacitance showed steep decreases to 8% and 41%, respectively, at a velocity of 5.7 mm s-1. The cell death rate and impedance fell steeply to 32% at a velocity of 5.7 mm s-1. We conclude that: (1) the present device is useful in deciding on the toxic fluid velocity effective to cytotoxicity assay, since the cellular toxic response is dependent on the velocity of toxic fluid, and; (2) the cell impedance analysis facilitates a finer cellular response analysis, showing better correlation with the cell death rate, compared to conventional visual observation. The present device, capable of performing the combinational analysis of toxic fluid velocity and cell impedance, has potential for application to the fine cellular toxicity assay of drugs with proper toxic fluid velocity.

  13. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah

    USGS Publications Warehouse

    Magirl, Christopher S.; Gartner, Jeffrey W.; Smart, Graeme M.; Webb, Robert H.

    2009-01-01

    Rapids are an integral part of bedrock‐controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high‐gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline‐based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot‐static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot‐static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest‐flowing section of a rapid was estimated from near‐surface velocity and depth soundings alone.

  14. Effect of exit locations on ants escaping a two-exit room stressed with repellent

    NASA Astrophysics Data System (ADS)

    Wang, Shujie; Cao, Shuchao; Wang, Qiao; Lian, Liping; Song, Weiguo

    2016-09-01

    In order to investigate the effect of the distance between two exits on ant evacuation efficiency and the behavior of ants escaping from a two-exit room, we conducted ant egress experiments using Camponotus japonicus in multiple situations. We found that the ants demonstrated the phenomenon of "symmetry breaking" in this stress situation. It was also shown that different locations for the exits obviously affected the ants' egress efficiency by measuring the time intervals between individual egress and flow rate in eight repeated experiments, each of which contained five different distance between the two exits. In addition, it is demonstrated that there are differences between the predictions of Social Force Model of pedestrians and the behaviors of ants in stress conditions through comparing some important behavioral features, including position, trajectory, velocity, and density map.

  15. The load-velocity profile differs more between men and women than between individuals with different strength levels.

    PubMed

    Torrejón, Alejandro; Balsalobre-Fernández, Carlos; Haff, G Gregory; García-Ramos, Amador

    2018-03-21

    This study aimed to determine the suitability of the load-velocity relationship to prescribe the relative load (%1RM) in women, as well as to compare the load-velocity profile between sexes and participants with different strength levels. The load-velocity relationship of 14 men (1RM: 1.17 ± 0.19) and 14 women (1RM: 0.66 ± 0.13) were evaluated in the bench press exercise. The main findings revealed that: (I) the load-velocity relationship was always strong and linear (R 2 range: 0.987-0.993), (II) a steeper load-velocity profile was observed in men compared to women (Effect size [ES]: 1.09), with men showing higher velocities for light loads (ES: - 0.81 and - 0.40 for the y-intercept and 30%1RM, respectively), but women reporting higher velocities for the heavy loads (ES: 1.14 and 1.50 at 90%1RM and 100%1RM, respectively); and (III) while the slope of the load-velocity profile was moderately steeper for weak men compared to their strong counterpart (ES: 1.02), small differences were observed between strong and weak women (ES: - 0.39). While these results support the use of the individual load-velocity relationship to prescribe the %1RM in the bench press exercise for women, they also highlight the large disparities in their load-velocity profile compared to men.

  16. Deformation and Fracture Behavior of Steel Projectiles Impact AD95 Ceramic Targets-Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Wei, Gang; Zhang, Wei

    2013-06-01

    The deformation and fracture behavior of steel projectile impacting ceramic target is an interesting investigation topic. The deformation and failure behavior of projectile and target was investigated experimentally in the normal impact by different velocities. Lab-scale ballistic tests of AD95 ceramic targets with 20 mm thickness against two different hardness 38CrSi steel projectiles with 7.62 mm diameter have been conducted at a range of velocities from 100 to 1000 m/s. Experimental results show that, with the impact velocity increasing, for the soft projectiles, the deformation and fracture modes were mushrooming, shear cracking, petalling and fragmentation(with large fragments and less number), respectively; for the hard projectiles there are three deformation and fracture modes: mushrooming, shearing cracking and fragmentation(with small fragments and large number). All projectiles were rebound after impact. But, with the velocity change, the target failure modes have changed. At low velocity, only radial cracks were found; then circumferential cracks appeared with the increasing velocity; the ceramic cone occurred when the velocity reached 400 m/s above, and manifested in two forms: front surface intact at lower velocity and perforated at higher velocity. The higher velocity, the fragment size is smaller and more uniform distribution. The difference of ceramic target damage is not obvious after impacted by two kinds of projectiles with different hardness at the same velocity. National Natural Science Foundation of China (No.: 11072072).

  17. Notes on Experiments.

    ERIC Educational Resources Information Center

    Physics Education, 1979

    1979-01-01

    Explains how to demonstrate the following: the hysteresis effect and the existence of domains in Rochelle salt (sodium potassium tartrate); diffraction experiments using a slide with multiple slits; and an analogue technique for learning terminal velocity. (GA)

  18. Nature of multiple-nucleus cluster galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent withmore » the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.« less

  19. Nanoparticle generation and interactions with surfaces in vacuum systems

    NASA Astrophysics Data System (ADS)

    Khopkar, Yashdeep

    Extreme ultraviolet lithography (EUVL) is the most likely candidate as the next generation technology beyond immersion lithography to be used in high volume manufacturing in the semiconductor industry. One of the most problematic areas in the development process is the fabrication of mask blanks used in EUVL. As the masks are reflective, there is a chance that any surface aberrations in the form of bumps or pits could be printed on the silicon wafers. There is a strict tolerance to the number density of such defects on the mask that can be used in the final printing process. Bumps on the surface could be formed when particles land on the mask blank surface during the deposition of multiple bi-layers of molybdenum and silicon. To identify, and possibly mitigate the source of particles during mask fabrication, SEMATECH investigated particle generation in the VEECO Nexus deposition tool. They found several sources of particles inside the tool such as valves. To quantify the particle generation from vacuum components, a test bench suitable for evaluating particle generation in the sub-100 nm particle size range was needed. The Nanoparticle test bench at SUNY Polytechnic Institute was developed as a sub-set of the overall SEMATECH suite of metrology tools used to identify and quantify sources of particles inside process tools that utilize these components in the semiconductor industry. Vacuum valves were tested using the test bench to investigate the number, size and possible sources of particles inside the valves. Ideal parameters of valve operation were also investigated using a 300-mm slit valve with the end goal of finding optimized parameters for minimum particle generation. SEMATECH also pursued the development of theoretical models of particle transport replicating the expected conditions in an ion beam deposition chamber assuming that the particles were generated. In the case of the ion beam deposition tool used in the mask blank fabrication process, the ion beam in the tool could significantly accelerate particles. Assuming that these particles are transported to various surfaces inside the deposition tool, the next challenge is to enhance the adhesion of the particles on surfaces that are located in the non-critical areas inside the tool. However, for particles in the sub-100 nm size range, suitable methods do not exist that can compare the adhesion probability of particles upon impact for a wide range of impact velocities, surfaces and particle types. Traditional methods, which rely on optical measurement of particle velocities in the micron-size regime, cannot be used for sub-100 nm particles as the particles do not scatter sufficient light for the detectors to function. All the current methods rely on electrical measurements taken from impacting particles onto a surface. However, for sub-100 nm particles, the impact velocity varies in different regions of the same impaction spot. Therefore, electrical measurements are inadequate to quantify the exact adhesion characteristics at different impact velocities to enable a comparison of multiple particle-surface systems. Therefore, we propose a new method based on the use of scanning electron microscopy (SEM) imaging to study the adhesion of particles upon impact on surfaces. The use of SEM imaging allows for single particle detection across a single impaction spot and, therefore, enables the comparison of different regions with different impact velocities in a single impaction spot. The proposed method will provide comprehensive correlation between the adhesion probability of sub-100 nm particles and a wide range of impact velocities and angles. The location of each particle is compared with impact velocity predicted by using computational fluid dynamics methods to generate a comprehensive adhesion map involving the impact of 70 nm particles on a polished surface across a large impact velocity range. The final adhesion probability map shows higher adhesion at oblique impact angles compared to normal incidence impacts. Theoretical and experiments with micron-sized particles have shown that the contact area between the particle and the surface decreases at lower incidence angles which results in a decrease in the adhesion probability of the particle. The most likely cause of this result was the role of plastic deformation of particles and its effect on adhesion. Therefore, 70 nm sucrose particles were also impacted under similar impaction conditions to compare the role of plastic deformation on the adhesion characteristics of a particle. Sucrose particles have approximately 10 times more modulus of elasticity than Polystyrene Latex (PSL) particles and were found to have almost no adhesion on the surface at the same impact velocities where the highest adhesion of PSL particles was measured. Besides the role of plastic deformation, the influence of other possible errors in this process was investigated but not found to be significant. (Abstract shortened by UMI.).

  20. Three Component Velocity and Acceleration Measurement Using FLEET

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  1. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.

    2017-12-01

    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  2. Stability of faults with heterogeneous friction properties and effective normal stress

    NASA Astrophysics Data System (ADS)

    Luo, Yingdi; Ampuero, Jean-Paul

    2018-05-01

    Abundant geological, seismological and experimental evidence of the heterogeneous structure of natural faults motivates the theoretical and computational study of the mechanical behavior of heterogeneous frictional fault interfaces. Fault zones are composed of a mixture of materials with contrasting strength, which may affect the spatial variability of seismic coupling, the location of high-frequency radiation and the diversity of slip behavior observed in natural faults. To develop a quantitative understanding of the effect of strength heterogeneity on the mechanical behavior of faults, here we investigate a fault model with spatially variable frictional properties and pore pressure. Conceptually, this model may correspond to two rough surfaces in contact along discrete asperities, the space in between being filled by compressed gouge. The asperities have different permeability than the gouge matrix and may be hydraulically sealed, resulting in different pore pressure. We consider faults governed by rate-and-state friction, with mixtures of velocity-weakening and velocity-strengthening materials and contrasts of effective normal stress. We systematically study the diversity of slip behaviors generated by this model through multi-cycle simulations and linear stability analysis. The fault can be either stable without spontaneous slip transients, or unstable with spontaneous rupture. When the fault is unstable, slip can rupture either part or the entire fault. In some cases the fault alternates between these behaviors throughout multiple cycles. We determine how the fault behavior is controlled by the proportion of velocity-weakening and velocity-strengthening materials, their relative strength and other frictional properties. We also develop, through heuristic approximations, closed-form equations to predict the stability of slip on heterogeneous faults. Our study shows that a fault model with heterogeneous materials and pore pressure contrasts is a viable framework to reproduce the full spectrum of fault behaviors observed in natural faults: from fast earthquakes, to slow transients, to stable sliding. In particular, this model constitutes a building block for models of episodic tremor and slow slip events.

  3. Validation and application of Acoustic Mapping Velocimetry

    NASA Astrophysics Data System (ADS)

    Baranya, Sandor; Muste, Marian

    2016-04-01

    The goal of this paper is to introduce a novel methodology to estimate bedload transport in rivers based on an improved bedform tracking procedure. The measurement technique combines components and processing protocols from two contemporary nonintrusive instruments: acoustic and image-based. The bedform mapping is conducted with acoustic surveys while the estimation of the velocity of the bedforms is obtained with processing techniques pertaining to image-based velocimetry. The technique is therefore called Acoustic Mapping Velocimetry (AMV). The implementation of this technique produces a whole-field velocity map associated with the multi-directional bedform movement. Based on the calculated two-dimensional bedform migration velocity field, the bedload transport estimation is done using the Exner equation. A proof-of-concept experiment was performed to validate the AMV based bedload estimation in a laboratory flume at IIHR-Hydroscience & Engineering (IIHR). The bedform migration was analysed at three different flow discharges. Repeated bed geometry mapping, using a multiple transducer array (MTA), provided acoustic maps, which were post-processed with a particle image velocimetry (PIV) method. Bedload transport rates were calculated along longitudinal sections using the streamwise components of the bedform velocity vectors and the measured bedform heights. The bulk transport rates were compared with the results from concurrent direct physical samplings and acceptable agreement was found. As a first field implementation of the AMV an attempt was made to estimate bedload transport for a section of the Ohio river in the United States, where bed geometry maps, resulted by repeated multibeam echo sounder (MBES) surveys, served as input data. Cross-sectional distributions of bedload transport rates from the AMV based method were compared with the ones obtained from another non-intrusive technique (due to the lack of direct samplings), ISSDOTv2, developed by the US Army Corps of Engineers. The good agreement between the results from the two different methods is encouraging and suggests further field tests in varying hydro-morphological situations.

  4. SMA OBSERVATIONS OF THE W3(OH) COMPLEX: PHYSICAL AND CHEMICAL DIFFERENTIATION BETWEEN W3(H{sub 2}O) AND W3(OH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Sheng-Li; Schilke, Peter; Sánchez-Monge, Álvaro

    2015-04-10

    We report on the Submillimeter Array (SMA) observations of molecular lines at 270 GHz toward the W3(OH) and W3(H{sub 2}O) complex. Although previous observations already resolved the W3(H{sub 2}O) into two or three sub-components, the physical and chemical properties of the two sources are not well constrained. Our SMA observations clearly resolved the W3(OH) and W3(H{sub 2}O) continuum cores. Taking advantage of the line fitting tool XCLASS, we identified and modeled a rich molecular spectrum in this complex, including multiple CH{sub 3}CN and CH{sub 3}OH transitions in both cores. HDO, C{sub 2}H{sub 5}CN, O{sup 13}CS, and vibrationally excited lines ofmore » HCN, CH{sub 3}CN, and CH{sub 3}OCHO were only detected in W3(H{sub 2}O). We calculate gas temperatures and column densities for both cores. The results show that W3(H{sub 2}O) has higher gas temperatures and larger column densities than W3(OH) as previously observed, suggesting physical and chemical differences between the two cores. We compare the molecular abundances in W3(H{sub 2}O) to those in the Sgr B2(N) hot core, the Orion KL hot core, and the Orion Compact Ridge, and discuss the chemical origin of specific species. An east–west velocity gradient is seen in W3(H{sub 2}O), and the extension is consistent with the bipolar outflow orientation traced by water masers and radio jets. A north–south velocity gradient across W3(OH) is also observed. However, with current observations we cannot be assured whether the velocity gradients are caused by rotation, outflow, or radial velocity differences of the sub-components of W3(OH)« less

  5. Remote measurement of surface-water velocity using infrared videography and PIV: a proof-of-concept for Alaskan rivers

    USGS Publications Warehouse

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.; Conaway, Jeffrey S.

    2017-01-01

    Thermal cameras with high sensitivity to medium and long wavelengths can resolve features at the surface of flowing water arising from turbulent mixing. Images acquired by these cameras can be processed with particle image velocimetry (PIV) to compute surface velocities based on the displacement of thermal features as they advect with the flow. We conducted a series of field measurements to test this methodology for remote sensing of surface velocities in rivers. We positioned an infrared video camera at multiple stations across bridges that spanned five rivers in Alaska. Simultaneous non-contact measurements of surface velocity were collected with a radar gun. In situ velocity profiles were collected with Acoustic Doppler Current Profilers (ADCP). Infrared image time series were collected at a frequency of 10Hz for a one-minute duration at a number of stations spaced across each bridge. Commercial PIV software used a cross-correlation algorithm to calculate pixel displacements between successive frames, which were then scaled to produce surface velocities. A blanking distance below the ADCP prevents a direct measurement of the surface velocity. However, we estimated surface velocity from the ADCP measurements using a program that normalizes each ADCP transect and combines those normalized transects to compute a mean measurement profile. The program can fit a power law to the profile and in so doing provides a velocity index, the ratio between the depth-averaged and surface velocity. For the rivers in this study, the velocity index ranged from 0.82 – 0.92. Average radar and extrapolated ADCP surface velocities were in good agreement with average infrared PIV calculations.

  6. Improved virtual cardiac phantom with variable diastolic filling rates and coronary artery velocities

    NASA Astrophysics Data System (ADS)

    Sturgeon, Gregory M.; Richards, Taylor W.; Samei, E.; Segars, W. P.

    2017-03-01

    To facilitate studies of measurement uncertainty in computed tomography angiography (CTA), we investigated the cardiac motion profile and resulting coronary artery motion utilizing innovative dynamic virtual and physical phantoms. The four-chamber cardiac finite element (FE) model developed in the Living Heart Project (LHP) served as the computational basis for our virtual cardiac phantom. This model provides deformation or strain information at high temporal and spatial resolution, exceeding that of speckle tracking echocardiography or tagged MRI. This model was extended by fitting its motion profile to left ventricular (LV) volume-time curves obtained from patient echocardiography data. By combining the dynamic patient variability from echo with the local strain information from the FE model, a series of virtual 4D cardiac phantoms were developed. Using the computational phantoms, we characterized the coronary motion and its effect on plaque imaging under a range of heart rates subject to variable diastolic function. The coronary artery motion was sampled at 248 spatial locations over 500 consecutive time frames. The coronary artery velocities were calculated as their average velocity during an acquisition window centered at each time frame, which minimized the discretization error. For the initial set of twelve patients, the diastatic coronary artery velocity ranged from 36.5 mm/s to 2.0 mm/s with a mean of 21.4 mm/s assuming an acquisition time of 75 ms. The developed phantoms have great potential in modeling cardiac imaging, providing a known truth and multiple realistic cardiac motion profiles to evaluate different image acquisition or reconstruction methods.

  7. Ocular Reflex Phase During Off-Vertical Axis Rotation In Humans Is Modified By Head-On-Trunk Position

    NASA Technical Reports Server (NTRS)

    Wood, Scott; Clement, Gilles; Denise, Pierre; Reschke, Millard

    2005-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.

  8. Measurements of ion velocity separation and ionization in multi-species plasma shocks

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Wilks, S. C.; Katz, J.; Hoffman, N. M.; Kagan, G.; Vold, E. L.; Keenan, B. D.; Simakov, A. N.; Chacón, L.

    2018-05-01

    The ion velocity structure of a strong collisional shock front in a plasma with multiple ion species is directly probed in laser-driven shock-tube experiments. Thomson scattering of a 263.25 nm probe beam is used to diagnose ion composition, temperature, and flow velocity in strong shocks ( M ˜6 ) propagating through low-density ( ρ˜0.1 mg/cc) plasmas composed of mixtures of hydrogen (98%) and neon (2%). Within the preheat region of the shock front, two velocity populations of ions are observed, a characteristic feature of strong plasma shocks. The ionization state of the Ne is observed to change within the shock front, demonstrating an ionization-timescale effect on the shock front structure. The forward-streaming proton feature is shown to be unexpectedly cool compared to predictions from ion Fokker-Planck simulations; the neon ionization gradient is evaluated as a possible cause.

  9. Application of optical correlation techniques to particle imaging velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1988-01-01

    Pulsed laser sheet velocimetry yields nonintrusive measurements of velocity vectors across an extended 2-dimensional region of the flow field. The application of optical correlation techniques to the analysis of multiple exposure laser light sheet photographs can reduce and/or simplify the data reduction time and hardware. Here, Matched Spatial Filters (MSF) are used in a pattern recognition system. Usually MSFs are used to identify the assembly line parts. In this application, the MSFs are used to identify the iso-velocity vector contours in the flow. The patterns to be recognized are the recorded particle images in a pulsed laser light sheet photograph. Measurement of the direction of the partical image displacements between exposures yields the velocity vector. The particle image exposure sequence is designed such that the velocity vector direction is determined unambiguously. A global analysis technique is used in comparison to the more common particle tracking algorithms and Young's fringe analysis technique.

  10. Estimating discharge measurement uncertainty using the interpolated variance estimator

    USGS Publications Warehouse

    Cohn, T.; Kiang, J.; Mason, R.

    2012-01-01

    Methods for quantifying the uncertainty in discharge measurements typically identify various sources of uncertainty and then estimate the uncertainty from each of these sources by applying the results of empirical or laboratory studies. If actual measurement conditions are not consistent with those encountered in the empirical or laboratory studies, these methods may give poor estimates of discharge uncertainty. This paper presents an alternative method for estimating discharge measurement uncertainty that uses statistical techniques and at-site observations. This Interpolated Variance Estimator (IVE) estimates uncertainty based on the data collected during the streamflow measurement and therefore reflects the conditions encountered at the site. The IVE has the additional advantage of capturing all sources of random uncertainty in the velocity and depth measurements. It can be applied to velocity-area discharge measurements that use a velocity meter to measure point velocities at multiple vertical sections in a channel cross section.

  11. Evolving Gravitationally Unstable Disks over Cosmic Time: Implications for Thick Disk Formation

    NASA Astrophysics Data System (ADS)

    Forbes, John; Krumholz, Mark; Burkert, Andreas

    2012-07-01

    Observations of disk galaxies at z ~ 2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. We present a one-dimensional simulation code, which we have made publicly available, that economically evolves these galaxies from z ~ 2 to z ~ 0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H2-regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity-dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z ~ 2 decreases along with the cosmological accretion rate, while at lower redshift the dynamically colder gas forms the low velocity dispersion stars of the thin disk.

  12. Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.

    2017-06-01

    Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the particles results in the decreasing compressibility at the onset of electron excitation and ionization. In the P-ρ -T contour with the experiments and the calculations, our multiple compression states from insulating to semiconducting fluid (from transparent to opaque fluid) are illustrated. Our results give an elaborate validation of EOS models and have applications for planetary and stellar opaque atmospheres.

  13. GPR attenuation analyses using spectral ratios of primary and multiple arrivals: examples from Welsh peat bogs

    NASA Astrophysics Data System (ADS)

    Booth, A.; Carless, D.; Kulessa, B.

    2014-12-01

    Ground penetrating radar (GPR) is widely applied to qualitative and quantitative interpretation of near-surface targets. Surface deployments of GPR most widely characterise physical properties in terms of some measure of GPR wavelet velocity. Wavelet amplitude is less-often considered, potentially due to difficulties in measuring this quantity: amplitudes are distorted by the anisotropic radiation pattern of antennas, and the ringy GPR wavelet can make successive events difficult to isolate. However, amplitude loss attributes could provide a useful means of estimating the physical properties of a target. GPR energy loss is described by the bandwidth-limited quality factor Q* which, for low-loss media, is proportional to the ratio of dielectric permittivity, ɛ, and electrical conductivity, σ. Comparing the frequency content of two arrivals yields an estimate of interval Q*, but only if they are sufficiently distinct. There may be sufficient separation between a primary reflection and its long-path multiple (i.e. a 'repeat path' of the primary reflection) therefore a dataset that is rich in multiples may be suitable for robust Q* analysis. The Q* between a primary and multiple arrival describes all frequency-dependent loss mechanisms in the interval between the free-surface and the multiple-generating horizon: assuming that all reflectivity is frequency-independent, Q* can be used to estimate ɛ and/or σ. We measure Q* according to the spectral ratio method, for synthetic and real GPR datasets. Our simulations are performed using the finite-difference algorithm GprMax, and represent our example data of GPR acquisitions over peat bogs. These data are a series of 100 MHz GPR acquisitions over sites in the Brecon Beacons National Park of South Wales. The base of the bogs (the basal peat/mineral soil contact) is often a strong multiple-generating horizon. As an example, data from Waun Ddu bog show these events lagging by ~75 ns: GPR velocity is measured here at 0.034 m/ns (relative ɛ of 77.9) and spectral ratios suggest Q* of 19.9 [-6.6 +19.4]. This Q* implies that the bulk σ of the bog is 21.7 [-10.7 +10.8] mS/m. Our measurements require in situ verification (e.g. comparison with co-located electrical resistivity profiles) but our method provides a promising addition to the suite of GPR analysis tools.

  14. Structure of the Lithosphere and Asthenosphere beneath the Western US from Simultaneous Multi-Parameter Inversion

    NASA Astrophysics Data System (ADS)

    Steck, L.; Maceira, M.; Herrmann, R. B.; Ammon, C. J.

    2012-12-01

    Joint inversion of multiple datasets should produce more realistic images of Earth structure. Here we simultaneously invert surface wave dispersion, gravity, and receiver functions to determine structure of the crust and upper mantle of the western United States. To date our receiver function dataset, from the EARS system, spans California and western Nevada, but it will be expanded to include the entire study area as the project continues. Rayleigh and Love dispersion data come from multiple filter analysis of regional earthquakes, while the PACES and GRACE campaigns provide the gravity measurements. Our starting model is comprised of an oceanic PREM model west of the Pacific coast, a western US model between that and the eastern front of the Rocky Mountains, and a continental PREM model east of the Rocky Mountain Front. Our inversion reduces surface wave residuals by 57% and receiver function residuals by about 10%, when the two datasets are weighted equally. Gravity residuals are reduced to less than 3 Mgal. Results are consistent with numerous previous studies in the region. In general, the craton exhibits higher velocities than the tectonically active regions to its west. We see high mid-crustal velocities under the Snake River Plain and the Colorado Plateau. In the lower crust we observe lowest velocities in the western Basin and Range and under the Colorado Mineral Belt. At 80km depth we see broad low velocities fanning out from the Snake River Plain associated with the mantle plume feeding Yellowstone Caldera. Other high and low velocity anomalies along the west coast and to the east are likely related to ongoing subduction processes beneath the western US.

  15. Pyroclast acceleration and energy partitioning in fake explosive eruptions

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Taddeucci, Jacopo; Scheu, Bettina; Valentine, Greg; Capponi, Antonio; Kueppers, Ulrich; Graettiger, Allison; Sonder, Ingo

    2014-05-01

    Explosive eruptions are characterized by the fast release of energy, with gas expansion playing a lead role. An excess of pressure may be generated either by the exsolution and accumulation of volatiles (e.g., vulcanian and strombolian explosions) or by in situ vaporization of water (e.g., phreato-magmatic explosions). The release of pressurized gas ejects magma and country rock pyroclasts at velocities that can reach several hundred of meters per second. The amount and velocity of pyroclasts is determined not only by the total released energy, but also by the system-specific dynamics of the energy transfer from gas to pyroclasts. In this context, analogue experiments are crucial, since the amount of available energy is determined. Here, we analyze three different experiments, designed to reproduce different aspects of explosive volcanism, focusing on the acceleration phase of the pyroclasts, in order to compare how the potential energy is transferred to the pyroclasts in different systems. In the first, shock-tube-type experiment, salt crystals resting in a pressurized Plexiglas cylinder are accelerated when a diaphragm set is suddenly opened, releasing the gas. In the second experiment, a pressurized air bubble is released in a water-filled Plexiglas pipe; diaphragm opening causes sudden expansion and bursting of the bubble and ejection of water droplets. In the last experiment, specifically focusing on phreatomagmatic eruptions, buried explosive charges accelerate the overlying loose material. All experiments were monitored by multiple high speed cameras and a variety of sensors. Despite the largely differing settings and processes, particle ejection velocity above the vent from the three experiments share a non-linear decay over time. Fitting this decay allows to estimate a characteristic depth that is related to the specific acceleration processes. Given that the initial available energy is experimentally controlled a priori, the information on the acceleration processes (and related kinetic energy) can be used to brings new constraints on the energy partition and general pyroclasts ejection mechanisms during eruptions.

  16. Solfatara volcano subsurface imaging: two different approaches to process and interpret multi-variate data sets

    NASA Astrophysics Data System (ADS)

    Bernardinetti, Stefano; Bruno, Pier Paolo; Lavoué, François; Gresse, Marceau; Vandemeulebrouck, Jean; Revil, André

    2017-04-01

    The need to reduce model uncertainty and produce a more reliable geophysical imaging and interpretations is nowadays a fundamental task required to geophysics techniques applied in complex environments such as Solfatara Volcano. The use of independent geophysical methods allows to obtain many information on the subsurface due to the different sensitivities of the data towards parameters such as compressional and shearing wave velocities, bulk electrical conductivity, or density. The joint processing of these multiple physical properties can lead to a very detailed characterization of the subsurface and therefore enhance our imaging and our interpretation. In this work, we develop two different processing approaches based on reflection seismology and seismic P-wave tomography on one hand, and electrical data acquired over the same line, on the other hand. From these data, we obtain an image-guided electrical resistivity tomography and a post processing integration of tomographic results. The image-guided electrical resistivity tomography is obtained by regularizing the inversion of the electrical data with structural constraints extracted from a migrated seismic section using image processing tools. This approach enables to focus the reconstruction of electrical resistivity anomalies along the features visible in the seismic section, and acts as a guide for interpretation in terms of subsurface structures and processes. To integrate co-registrated P-wave velocity and electrical resistivity values, we apply a data mining tool, the k-means algorithm, to individuate relationships between the two set of variables. This algorithm permits to individuate different clusters with the objective to minimize the sum of squared Euclidean distances within each cluster and maximize it between clusters for the multivariate data set. We obtain a partitioning of the multivariate data set in a finite number of well-correlated clusters, representative of the optimum clustering of our geophysical variables (P-wave velocities and electrical resistivities). The result is an integrated tomography that shows a finite number of homogeneous geophysical facies, and therefore permits to highlight the main geological features of the subsurface.

  17. Bottom boundary layer forced by finite amplitude long and short surface waves motions

    NASA Astrophysics Data System (ADS)

    Elsafty, H.; Lynett, P.

    2018-04-01

    A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave nonlinearity.

  18. The difference in visuomotor feedback velocity control during spiral drawing between Parkinson's disease and essential tremor.

    PubMed

    Chen, Kai-Hsiang; Lin, Po-Chieh; Yang, Bing-Shiang; Chen, Yu-Jung

    2018-06-01

    In a spiral task, the accuracy of the spiral trajectory, which is affected by tracing or tracking ability, differs between patients with Parkinson's disease (PD) and essential tremor (ET). However, not many studies have analyzed velocity differences between the groups during this task. This study aimed to examine differences between the groups related to this characteristic using a tablet. Fourteen PD, 12 ET, and 12 control group participants performed two tasks: tracing a given spiral (T1) and following a guiding point (T2). A digitized tablet was used to record movements and trajectory. Effects of direct visual feedback on intergroup and intragroup velocity were measured. Although PD patients had a significantly lower T1 velocity than the control group (p < 0.05), they could match the velocity of the guiding point (3.0 cm/s) in T2. There was no significant difference in the average T1 velocity between ET and the control groups (p = 0.26); however, the T2 velocity of ET patients was significantly higher than the control group (p < 0.05). They were also unable to adjust the velocity to match the guiding point, indicating that ET patients have a poorer ability to follow dynamic guidance. When both groups of patients have similar action tremor severity, their ability to follow dynamic guidance was still significantly different. Our study combined visual feedback with spiral drawing and demonstrated differences in the following-velocity distribution in PD and ET. This method may be used to distinguish the tremor presentation of both diseases, and thus, provide accurate diagnosis.

  19. Staging and laser acceleration of ions in underdense plasma

    NASA Astrophysics Data System (ADS)

    Ting, Antonio; Hafizi, Bahman; Helle, Michael; Chen, Yu-Hsin; Gordon, Daniel; Kaganovich, Dmitri; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Markus; Miao, Chenlong; Dover, Nicholas; Najmudin, Zulfikar; Ettlinger, Oliver

    2017-03-01

    Accelerating ions from rest in a plasma requires extra considerations because of their heavy mass. Low phase velocity fields or quasi-electrostatic fields are often necessary, either by operating above or near the critical density or by applying other slow wave generating mechanisms. Solid targets have been a favorite and have generated many good results. High density gas targets have also been reported to produce energetic ions. It is interesting to consider acceleration of ions in laser-driven plasma configurations that will potentially allow continuous acceleration in multiple consecutive stages. The plasma will be derived from gaseous targets, producing plasma densities slightly below the critical plasma density (underdense) for the driving laser. Such a plasma is experimentally robust, being repeatable and relatively transparent to externally injected ions from a previous stage. When optimized, multiple stages of this underdense laser plasma acceleration mechanism can progressively accelerate the ions to a high final energy. For a light mass ion such as the proton, relativistic velocities could be reached, making it suitable for further acceleration by high phase velocity plasma accelerators to energies appropriate for High Energy Physics applications. Negatively charged ions such as antiprotons could be similarly accelerated in this multi-staged ion acceleration scheme.

  20. The effect of fibre orientation on a TWCP composite

    NASA Astrophysics Data System (ADS)

    Barnes, N. R.; Hughes, A.; Wood, D. C.; Appleby-Thomas, G. J.; Leighs, J. A.; Goff, M.; Hazell, P. J.

    2014-05-01

    Multiple authors have shown that orientation can greatly affect the shock profiles seen in composites. Carbon fibre composites are employed in multiple sectors, with their use in the aerospace industry becoming more prevalent. An angle of 20° between the outer surface and the weave direction has been shown to provide a good compromise between strength and ablation, making orientation an important property. Using a single stage gas gun with manganin pressure gauges the shock response of both a 90° and 45° layup TWCP composite was investigated up to a particle velocity of approximately 1 mm μs-1, in both the Us-up and pressure-volume planes. Comparisons in terms of shock propagation were also made with a previously investigated TWCP orientation of 0° . This allowed a detailed interrogation of the effects of weave orientation in this important TWCP composite to be made. It was found that the shock response was not greatly altered by orientation of the carbon fibre weave above a certain particle velocity. This was due to the 90° behaving elastically until a particle velocity of 0.6 mm μs-1. Above this value the experimental data had very little deviation regardless of the angle.

  1. Foundation stiffness in the linear modeling of wind turbines

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Yu, Chih-Peng; Chen, Yan-Hao; Lai, Jiunnren; Hsu, Keng-Tsang; Cheng, Chia-Chi

    2017-04-01

    Effects of foundation stiffness on the linear vibrations of wind turbine systems are of concerns for both planning and construction of wind turbine systems. Current study performed numerical modeling for such a problem using linear spectral finite elements. The effects of foundation stiffness were investigated for various combinations of shear wave velocity of soil, size of tower base plate, and pile length. Multiple piles are also included in the models such that the foundation stiffness can be analyzed more realistically. The results indicate that the shear wave velocity of soil and the size of tower base plate have notable effects on the dominant frequency of the turbine-tower system. The larger the lateral dimension, the stiffer the foundation. Large pile cap and multiple spaced piles result in higher stiffness than small pile cap and a mono-pile. The lateral stiffness of a mono-pile mainly depends on the shear wave velocity of soil with the exception for a very short pile that the end constraints may affect the lateral vibration of the superstructure. Effective pile length may be determined by comparing the simulation results of the frictional pile to those of the end-bearing pile.

  2. A Compact VLSI System for Bio-Inspired Visual Motion Estimation.

    PubMed

    Shi, Cong; Luo, Gang

    2018-04-01

    This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.

  3. Experimental investigation of flow over two-dimensional multiple hill models.

    PubMed

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke

    2017-12-31

    The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Las Vegas Basin Seismic Response Project: Measured Shallow Soil Velocities

    NASA Astrophysics Data System (ADS)

    Luke, B. A.; Louie, J.; Beeston, H. E.; Skidmore, V.; Concha, A.

    2002-12-01

    The Las Vegas valley in Nevada is a deep (up to 5 km) alluvial basin filled with interlayered gravels, sands, and clays. The climate is arid. The water table ranges from a few meters to many tens of meters deep. Laterally extensive thin carbonate-cemented lenses are commonly found across parts of the valley. Lenses range beyond 2 m in thickness, and occur at depths exceeding 200 m. Shallow seismic datasets have been collected at approximately ten sites around the Las Vegas valley, to characterize shear and compression wave velocities in the near surface. Purposes for the surveys include modeling of ground response to dynamic loads, both natural and manmade, quantification of soil stiffness to aid structural foundation design, and non-intrusive materials identification. Borehole-based measurement techniques used include downhole and crosshole, to depths exceeding 100 m. Surface-based techniques used include refraction and three different methods involving inversion of surface-wave dispersion datasets. This latter group includes two active-source techniques, the Spectral Analysis of Surface Waves (SASW) method and the Multi-Channel Analysis of Surface Waves (MASW) method; and a new passive-source technique, the Refraction Mictrotremor (ReMi) method. Depths to halfspace for the active-source measurements ranged beyond 50 m. The passive-source method constrains shear wave velocities to 100 m depths. As expected, the stiff cemented layers profoundly affect local velocity gradients. Scale effects are evident in comparisons of (1) very local measurements typified by borehole methods, to (2) the broader coverage of the SASW and MASW measurements, to (3) the still broader and deeper resolution made possible by the ReMi measurements. The cemented layers appear as sharp spikes in the downhole datasets and are problematic in crosshole measurements due to refraction. The refraction method is useful only to locate the depth to the uppermost cemented layer. The surface-wave methods, on the other hand, can process velocity inversions. With the broader coverage of the active-source surface wave measurements, through careful inversion that takes advantage of prior information to the greatest extent possible, multiple, shallow, stiff layers can be resolved. Data from such broader-coverage methods also provide confidence regarding continuity of the cemented layers. For the ReMi measurements, which provide the broadest coverage of all methods used, the more generalized shallow profile is sometimes characterized by a strong stiffness inversion at a depth of approximately 10 m. We anticipate that this impedance contrast represents the vertical extent of the multiple layered deposits of cemented media.

  5. One-dimensional numerical study of charged particle trajectories in turbulent electrostatic wave fields

    NASA Technical Reports Server (NTRS)

    Graham, K. N.; Fejer, J. A.

    1976-01-01

    The paper describes a numerical simulation of electron trajectories in weak random electric fields under conditions that are approximately true for Langmuir waves whose wavelength is much longer than the Debye length. Two types of trajectory calculations were made: (1) the initial particle velocity was made equal to the mean phase velocity of the waves, or (2) it was equal to 0.7419 times the mean velocity of the waves, so that the initial velocity differed substantially from all phase velocities of the wave spectrum. When the autocorrelation time is much greater than the trapping time, the particle motion can change virtually instantaneously from one of three states - high-velocity, low-velocity, or trapped state - to another. The probability of instantaneous transition from a high- or low-velocity state becomes small when the difference between the particle velocity and the mean phase velocity of the waves becomes high in comparison to the trapping velocity. Diffusive motion becomes negligible under these conditions also.

  6. Development and Sliding Wear Response of Epoxy Composites Filled with Coal Mine Overburden Material

    NASA Astrophysics Data System (ADS)

    Das, Prithika; Satapathy, Alok; Mishra, M. K.

    2018-03-01

    The paper reports on development and characterization of epoxy based composites filled with micro-sized mine overburden material. Coal mine overburden material is typically highly heterogeneous and is considered as waste material. For excavating each ton of coal, roughly 5 tons of overburden materials are removed and is dumped nearby occupying large space. Gainful utilization of this waste is a major challenge. In the present work, this material is used as filler materials in making a new class of epoxy matrix composites. Composites with different weight proportions of fillers (0, 10, 20, 30 and 40) wt. % are prepared by hand layup technique. Compression tests are performed as per corresponding ASTM standards to assess the compressive strength of these composites. Further, dry sliding tests are performed following ASTM G99 standards using a pin on disk machine. A design of experiment approach based on Taguchi’s L16 orthogonal arrays is adopted. Tests are performed at different sliding velocities for multiple sliding distances under varying normal loads. Specific wear rates of the composites under different test conditions are obtained. The analysis of the test results revealed that the filler content and the sliding velocity are the most predominant control factors affecting the wear rate. This work thus, opens up a new avenue for the value added utilization of coal mine overburden material.

  7. The failure of 1D seismic model fitting to constrain lower mantle composition

    NASA Astrophysics Data System (ADS)

    Houser, C. T.; Hernlund, J. W.; Valencia-Cardona, J. J.; Wentzcovitch, R.

    2017-12-01

    Tests of lower mantle composition models often compare mineral physics data bearing on the elasticity and density of lower mantle phases to the average seismic velocity profile determined by seismology, such a PREM or ak135. We demonstrate why such comparisons between mineralogy and seismology are an inadequate method for definitive discrimination between different scenarios. One issue is that the seismic velocity is more sensitive to temperature than composition for most lower mantle minerals. In practice, this allows one the freedom to choose the geotherm that brings the predicted seismic and density data into agreement with observations. It is commonly assumed that the temperature profile should be adiabatic, however, such a profile presupposes a particular state of the mantle and is only applicable in the absence of layering, buoyancy fluctuations, compositional segregation, and rheological complexities. The mantle temperature should depend on the composition since the latter influences the viscosity of rocks. However, the precise relation between composition, viscosity, and heat transfer would need to be specified, but unfortunately remains highly uncertain. If the mantle contains a mixture of domains with multiple bulk compositions, then the 1D seismic profile comparison is inherently non-unique. Rocks with different bulk composition likely have different isotopic abundances, and can exhibit differing degrees of internal heating and therefore distinct temperatures. Different composition domains can also exhibit variable densities, and tend to congregate at different depths in ways that also affect their thermal evolution and temperature. Therefore, fitting a 1D seismic model alone is an inadequate tool to evaluate lower mantle composition.

  8. Influence of stellar multiplicity on planet formation. II. Planets are less common in multiple-star systems with separations smaller than 1500 AU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei

    2014-08-20

    Almost half of the stellar systems in the solar neighborhood are made up of multiple stars. In multiple-star systems, planet formation is under the dynamical influence of stellar companions, and the planet occurrence rate is expected to be different from that of single stars. There have been numerous studies on the planet occurrence rate of single star systems. However, to fully understand planet formation, the planet occurrence rate in multiple-star systems needs to be addressed. In this work, we infer the planet occurrence rate in multiple-star systems by measuring the stellar multiplicity rate for planet host stars. For a subsamplemore » of 56 Kepler planet host stars, we use adaptive optics (AO) imaging and the radial velocity (RV) technique to search for stellar companions. The combination of these two techniques results in high search completeness for stellar companions. We detect 59 visual stellar companions to 25 planet host stars with AO data. Three stellar companions are within 2'' and 27 within 6''. We also detect two possible stellar companions (KOI 5 and KOI 69) showing long-term RV acceleration. After correcting for a bias against planet detection in multiple-star systems due to flux contamination, we find that planet formation is suppressed in multiple-star systems with separations smaller than 1500 AU. Specifically, we find that compared to single star systems, planets in multiple-star systems occur 4.5 ± 3.2, 2.6 ± 1.0, and 1.7 ± 0.5 times less frequently when a stellar companion is present at a distance of 10, 100, and 1000 AU, respectively. This conclusion applies only to circumstellar planets; the planet occurrence rate for circumbinary planets requires further investigation.« less

  9. VizieR Online Data Catalog: Velocities of RGB stars in the Leo II dwarf galaxy (Spencer+, 2017)

    NASA Astrophysics Data System (ADS)

    Spencer, M. E.; Mateo, M.; Walker, M. G.; Olszewski, E. W.; McConnachie, A. W.; Kirby, E. N.; Koch, A.

    2018-05-01

    We use radial velocity data from four studies. The first set comprises 31 red giant branch (RGB) stars with a median radial velocity error of 3 km/s (Vogt et al. 1995AJ....109..151V). It contains the first spectroscopic observations of RGB stars in Leo II, and remained the only kinematic data set for over a decade. The second study, by Koch et al. (2007, J/AJ/134/566, hereafter KK07), consists of radial velocities for 171 member stars. KK07 published average velocities taken during three epochs between 2003 and 2004. The third data set comes from Kirby et al. (2010, J/ApJS/191/352). They used Keck/DEIMOS to obtain medium resolution spectroscopy for the purpose of chemical abundance measurements, but also extracted radial velocities to help identify member stars. The fourth and final data set is published in Spencer et al. (2017, J/ApJ/836/202), which contains radial velocities for 175 member stars. Fifty of these have two or more observations, which were taken over the course of eight years with Hectochelle (Szentgyorgyi et al. 1998SPIE.3355..242S) on the Multiple Mirror Telescope. This data set contains five epochs between the years 2006 and 2013. (1 data file).

  10. Research on the middle-of-receiver-spread assumption of the MASW method

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2009-01-01

    The multichannel analysis of surface wave (MASW) method has been effectively used to determine near-surface shear- (S-) wave velocity. Estimating the S-wave velocity profile from Rayleigh-wave measurements is straightforward. A three-step process is required to obtain S-wave velocity profiles: acquisition of a multiple number of multichannel records along a linear survey line by use of the roll-along mode, extraction of dispersion curves of Rayleigh waves, and inversion of dispersion curves for an S-wave velocity profile for each shot gather. A pseudo-2D S-wave velocity section can be generated by aligning 1D S-wave velocity models. In this process, it is very important to understand where the inverted 1D S-wave velocity profile should be located: the midpoint of each spread (a middle-of-receiver-spread assumption) or somewhere between the source and the last receiver. In other words, the extracted dispersion curve is determined by the geophysical structure within the geophone spread or strongly affected by the source geophysical structure. In this paper, dispersion curves of synthetic datasets and a real-world example are calculated by fixing the receiver spread and changing the source location. Results demonstrate that the dispersion curves are mainly determined by structures within a receiver spread. ?? 2008 Elsevier Ltd. All rights reserved.

  11. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.

    PubMed

    Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei

    2018-01-24

    An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.

  12. Vertical transportation systems embedded on shuffled frog leaping algorithm for manufacturing optimisation problems in industries.

    PubMed

    Aungkulanon, Pasura; Luangpaiboon, Pongchanun

    2016-01-01

    Response surface methods via the first or second order models are important in manufacturing processes. This study, however, proposes different structured mechanisms of the vertical transportation systems or VTS embedded on a shuffled frog leaping-based approach. There are three VTS scenarios, a motion reaching a normal operating velocity, and both reaching and not reaching transitional motion. These variants were performed to simultaneously inspect multiple responses affected by machining parameters in multi-pass turning processes. The numerical results of two machining optimisation problems demonstrated the high performance measures of the proposed methods, when compared to other optimisation algorithms for an actual deep cut design.

  13. Flyby Anomaly Test Integrating Multiple Approaches (FATIMA)

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Jaroux, Belgacem Amar

    2014-01-01

    FATIMA is a mission concept for a small satellite to investigate the flyby anomaly - a possible velocity increase that has been observed in some earlier satellites when they have performed gravitational swingy maneuvers of the earth.

  14. Measuring Taylor Slough boundary and internal flows, Everglades National Park, Florida

    USGS Publications Warehouse

    Tillis, G.M.

    2001-01-01

    Four intensive data-collection efforts, intended to represent the spectrum of precipitation events and associated flow conditions, were conducted during 1997 and 1998 in the Taylor Slough Basin, Everglades National Park. Flow velocities were measured by newly developed, portable Acoustic Doppler Velocity meters along three transects bisecting the Taylor Slough Basin from east to west, roughly perpendicular to the centerline axis of the slough as well as a fourth transect along the slough's axis. These meters provided the required levels of accuracy in flow-velocity measurements while enabling the rapid collection of multiple time series of flow data at remote sites. Concurrently, flow measurements were made along bordering road culverts and under L-31W and Taylor Slough bridges. Flows across the study area's boundaries provided net flow of water into the system and transect measurements provided flow data within the basin. Collected data are available through the World Wide Web (http://sofia.usgs.gov/projects/flow_velocity/). The high-water and low-water events corresponded with the highest and lowest flow velocities, respectively. The July 1998 data had lower than expected flow velocities and, in some cases, strong winds reversed flow direction.

  15. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trichandi, Rahmantara, E-mail: rachmantara.tri@gmail.com; Yudistira, Tedi; Nugraha, Andri Dian

    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possiblemore » station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.« less

  16. Medusa spectroscopy of A400, A576, A1767, and A2124

    NASA Technical Reports Server (NTRS)

    Hintzen, P.; Hill, J. M.; Lindley, D.; Scott, J. S.; Angel, J. R. P.

    1982-01-01

    Galaxy velocity data taken with the Steward Observatory multiple aperture fiber optic spectrograph are presented for four Abell clusters. The root-mean-square external errors in these velocities are about 100 km/s; accuracy which compares favorably with that obtained from single-object observations. It is expected that the recent adoption of a CCD detector should decrease external errors to about 50 km/s. All four of the clusters observed are known X-ray sources and the present data agree well with empirically derived velocity dispersion-X-ray luminosity relations for clusters of galaxies. Abell 400 is interesting in this regard, since both its X-ray luminosity and its velocity dispersion are quite small. Such objects are particularly important in determining the slope of the velocity dispersion-X-ray luminosity relation. The large microwave decrement observed in A576 was initially interpreted as due to Compton scattering of the microwave background by the X-ray-emitting intracluster gas. White and Silk have presented Einstein X-ray data which indicate that A576 contains too little gas to produce the observed microwave decrement by Compton scattering. The velocity dispersion obtained here for 47 members of this cluster strengthens their conclusion.

  17. Throwing velocities, anthropometric characteristics, and efficacy indices of women's European water polo subchampions.

    PubMed

    Alcaraz, Pedro E; Abraldes, J Arturo; Ferragut, Carmen; Rodríguez, Nuria; Argudo, Francisco M; Vila, Helena

    2011-11-01

    Water polo is a team sport characterized by a high-intensity, intermittent activity, where technical and tactical aspect are of a great importance. For that reason, the main aim of this study was to define the anthropometrical characteristics, maximum isometric grip strength, training and competition throwing velocities, and the efficacy indices in female high-level water polo players. A second purpose was to examine the differences between the throwing velocities in training vs. European championships in the water polo female national team. Ten elite trained female water polo players participated in this study. Before the competitive phase of their season, the following measures were taken: standard anthropometry, static and dynamic training throwing velocities, and hand-grip dynamometry. In the competitive phase, efficacy indices, average and maximum throwing velocities from all the participants were also determined. Significant differences (p ≤ 0.05) were found between different training situations and different competitive throwing velocities. We concluded that elite female water polo players modify their throwing velocity depending if the throw is performed during training or competitive situation.

  18. Evolution of Multiple Double Layer in Glow discharge and its inherent Properties

    NASA Astrophysics Data System (ADS)

    Alex, Prince; A, Saravanan; Sinha, Suraj

    2016-10-01

    Formation and evolution of multiple anodic double layers (MADLs) were experimentally studied in glow discharge plasma. The boundary condition for the existence of MADL was identified in terms of threshold bias and ambient working pressure. The MADL formation is accompanied by an explosive growth in anode current and consequent current-voltage characteristics follows a hysteresis loop. The analysis yield that stable MADLs is only observed when the control voltage V2 is between a certain critical values (Vq > νte MADL completely transforms to an intense high current carrying unstable anode glow. The floating potential analysis carried out using three axially positioned electrostatic probes shows a bipolar signature of DL with as the control parameter is varied. The floating potential analysis also shows that hysteresis arises due to the difference in magnitude of electric field required to align the space charges in the DL sheet at the control voltage changes forward and backward. The effect of pressure on MADL indicates that the MADL structure advances towards anode surface as the pressure is increases. The power dumped (W) in the MADL is estimated to decrease with increase in pressure while the same increase in the anode glow.

  19. The Three-Dimensional Morphology of VY Canis Majoris. I. The Kinematics of the Ejecta

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Helton, L. Andrew; Jones, Terry J.

    2007-06-01

    Images of the complex circumstellar nebula associated with the famous red supergiant VY CMa show evidence for multiple and asymmetric mass-loss events over the past 1000 yr. Doppler velocities of the arcs and knots in the ejecta show that they are not only spatially distinct but also kinematically separate from the surrounding diffuse material. In this paper we describe second-epoch HST WFPC2 images to measure the transverse motions, which when combined with the radial motions provide a complete picture of the kinematics of the ejecta, including the total space motions and directions of the outflows. Our results show that the arcs and clumps of knots are moving at different velocities, in different directions, and at different angles relative to the plane of the sky and to the star, confirming their origin from eruptions at different times and from physically separate regions on the star. We conclude that the morphology and kinematics of the arcs and knots are consistent with a history of mass ejections not aligned with any presumed axis of symmetry. The arcs and clumps represent relatively massive outflows and ejections of gas very likely associated with large-scale convective activity and magnetic fields. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  20. Evaluating the Morphology of the Local Interstellar Medium: Using New Data to Distinguish between Multiple Discrete Clouds and a Continuous Medium

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Linsky, Jeffrey L.

    2015-10-01

    Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield & Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry & Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that the multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS AR-09525.01A. These observations are associated with programs #11568.

  1. Core-Log-Seismic Integrative Study of a Subduction Zone Megasplay Fault -An Example from the Nobeoka Thrust, Shimanto Belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hamahashi, M.; Tsuji, T.; Saito, S.; Tanikawa, W.; Hamada, Y.; Hashimoto, Y.; Kimura, G.

    2016-12-01

    Investigating the mechanical properties and deformation patterns of megathrusts in subduction zones is important to understand the generation of large earthquakes. The Nobeoka Thrust, a fossilized megasplay fault in Kyushu Shimanto Belt, southwest Japan, exposes foliated fault rocks that were formed under the temperature range of 180-350° (Kondo et al., 2005). During the Nobeoka Thrust Drilling Project (2011), core samples and geophysical logging data were obtained recovering a continuous distribution of multiple fault zones, which provide the opportunity to examine their structure and physical properties in various scales (Hamahashi et al., 2013; 2015). By performing logging data analysis, discrete sample physical property measurements, and synthetic modeling of seismic reflections along the Nobeoka Thrust, we conducted core-log-seismic integrative study to characterize the effects of damage zone architecture and structural anisotropy towards the physical properties of the megasplay. A clear contrast in physical properties across the main fault core and surrounding damage zones were identified, where the fault rocks preserve the porosity of 4.8% in the hanging wall and 7.6% in the footwall, and P-wave velocity of 4.8 km/s and 4.2 km/s, respectively. Multiple sandstone-rich- and shale-rich damage zones were found from the drilled cores, in which velocity decreases significantly in the brecciated zones. The internal structure of these foliated fault rocks consist of heterogeneous lithology and texture, and velocity anisotropy ranges 1-18% (P-wave) and 1.5-80% (S-wave), affected by structural dip angle, foliation density, and sandstone/mudstone ratio. To evaluate the fault properties at the seismogenic depth, we developed velocity/earth models and synthetic modeling of seismic reflection using acoustic logs across the thrust and parameterized lithological and structural elements in the identified multiple damage zones.

  2. A direct measurement of the high-mass end of the velocity dispersion function at z ~ 0.55 from SDSS-III/BOSS

    DOE PAGES

    Montero-Dorta, Antonio D.; Bolton, Adam S.; Shu, Yiping

    2017-02-24

    When two galaxies that are distant from one another (and also distant from Earth) happen to lie along a single line of sight in the sky, the resulting phenomenon is known as a “gravitational lens.” The gravity of the more nearby galaxy warps the image of the more distant galaxy into multiple images or complete rings (know as “Einstein rings” since the quantitative description of the gravitational lensing effect relies on Einstein’s theory of gravity.) Strong gravitational lens systems have multiple scientific applications. If the more distant galaxy happens to contain a time-varying quasar (bright emission powered by a supermassivemore » black hole at the galaxy’s center) or supernova explosion, the time delay between multiple images can be used as a probe of the expansion rate of the universe (and other cosmological parameters.) Forecasting the incidence of gravitational lenses in future large-scale sky surveys relies on quantifying the population of potential lens galaxies in the universe in terms of their abundance and their lensing efficiency. The lensing efficiency is most directly correlated with the galaxy’s “velocity dispersion:” the characteristic speed with which stars in the galaxy are orbiting under the influence of the galaxy’s overall gravitational field. This paper uses previous results quantifying the combined demographics of galaxies in brightness and velocity dispersion to compute the demographics of massive “elliptical” galaxies in velocity dispersion alone, thereby providing the essential ingredient for forecasting the expected incidence of strong gravitational lensing by these types of galaxies in future sky surveys such as DESI and LSST. These results are also applicable to the association of massive galaxies with their associated dark-matter “halos,” which is an essential ingredient for the most accurate and informative extraction of cosmological parameters from the data sets produced by large-scale surveys of the universe.« less

  3. Layers in the Central Orion nebula

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.

    2018-07-01

    The existence of multiple layers in the inner Orion nebula has been revealed using data from an Atlas of spectra at 2 arcsec and 12 km s-1 resolution. These data were sometimes grouped over Samples of 10 arcsec×10 arcsecto produce high signal-to-noise spectra and sometimes grouped into sequences of pseudo-slit Spectra of 12^''.8-39 arcsec width for high spatial resolution studies. Multiple velocity systems were found: V_{MIF} traces the Main Ionization Front (MIF), V_{scat} arises from back-scattering of V_{MIF} emission by particles in the background Photon Dissociation Region (PDR), V_{low} is an ionized layer in front of the MIF and if it is the source of the stellar absorption lines seen in the Trapezium stars, it must lie between the foreground Veil and those stars, V_{new,[O III] may represent ionized gas evaporating from the Veil away from the observer. There are features such as the Bright Bar where variations of velocities are due to changing tilts of the MIF, but velocity changes above about 25 arcsec arise from variations in velocity of the background PDR. In a region 25 arcsec ENE of the Orion-S Cloud one finds dramatic changes in the [OIII] components, including the signals from the V_{low,[O III] and V_{MIF,[O III] becoming equal, indicating shadowing of gas from stellar photons of >24.6 eV. This feature is also seen in areas to the west and south of the Orion-S Cloud.

  4. The Multiple-component Binary Hyad, vA 351 - a Progress Report

    NASA Astrophysics Data System (ADS)

    Benedict, George Fritz; Franz, Otto G.; Wasserman, Lawrence H.

    2017-06-01

    We extend results first announced by Franz et al. (1998) in the abstract, http://adsabs.harvard.edu/abs/1998AAS...19310207F ,that identified vA 351 = H346 in the Hyades as a multiple star system containing a white dwarf. With HST/FGS fringe tracking and scanning, spanning four years, we establish a parallax, relative orbit, and mass fraction for the A-B components, with a period, P~5.47y. With ground-based radial velocities from the McDonald Observatory Struve 2.1m telescope and Sandiford Spectrograph, spanning 14 years, we find that component B consists of BC, two M dwarf stars orbiting with a very short period (P(BC)~0.75 days), having a mass ratio C/B~0.94. We confirm that the total mass of the system can only be reconciled with the distance and component photometry by including a fainter, higher mass component, proposed to be a ~0.8Msun white dwarf. Thus, the quadruple system consists of three M dwarfs (A,B,C) and one white dwarf (D). The M dwarf masses and absolute magnitudes are consistent with the Benedict et al. (2016, http://adsabs.harvard.edu/abs/2016AJ....152..141B) lower Main Sequence Mass-Luminosity Relation. The radial velocity signal has so far yielded a signature only for the short-period BC orbital motion. Velocities from H-α and He I emission lines confirm the BC period from absorption lines, with similar (He I) and higher (H-α) velocity amplitudes.

  5. Layers in the Central Orion Nebula

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.

    2018-04-01

    The existence of multiple layers in the inner Orion Nebula has been revealed using data from an Atlas of spectra at 2″ and 12 km s-1 resolution. These data were sometimes grouped over Samples of 10″×10″ to produce high Signal to Noise spectra and sometimes grouped into sequences of pseudo-slit Spectra of 12{^''.}8 - 39″width for high spatial resolution studies. Multiple velocity systems were found: V_{MIF} traces the Main Ionization Front (MIF), V_{scat} arises from back-scattering of V_{MIF} emission by particles in the background Photon Dissociation Region (PDR), V_{low} is an ionized layer in front of the MIF and if it is the source of the stellar absorption lines seen in the Trapezium stars, it must lie between the foreground Veil and those stars, V_{new,[O III]} may represent ionized gas evaporating from the Veil away from the observer. There are features such as the Bright Bar where variations of velocities are due to changing tilts of the MIF, but velocity changes above about 25″ arise from variations in velocity of the background PDR. In a region 25″ ENE of the Orion-S Cloud one finds dramatic changes in the [O III] components, including the signals from the V_{low,[O III]} and V_{MIF,[O III]} becoming equal, indicating shadowing of gas from stellar photons of >24.6 eV. This feature is also seen in areas to the west and south of the Orion-S Cloud.

  6. Tuning the group delay of optical wave packets in liquid-crystal light valves

    NASA Astrophysics Data System (ADS)

    Bortolozzo, U.; Residori, S.; Huignard, J. P.

    2009-05-01

    By performing two-wave mixing experiments in a liquid-crystal light valve, optical pulses are slowed down to group velocities as slow as a few tenths of mm/s, corresponding to a very large group index. We present experiments and model of the slow-light process occurring in the liquid-crystal light valve, showing that this is characterized by multiple-beam diffraction in the Raman-Nath regime. Depending on the initial frequency detuning between pump and signal, the different output order beams are distinguished by different group delays. The group delay can be tuned by changing the main parameters of the experiment: the detuning between the pump and the input wave packet, the strength of the nonlinearity, and the intensity of the pump beam.

  7. Multiple bubbles in a Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasconcelos, G.L.

    A new class of exact solutions is reported for an infinite stream of identical groups of bubbles moving with a constant velocity [ital U] in a Hele-Shaw cell when surface tension is neglected. It is suggested that the existence of these solutions might explain some of the complex behavior observed in recent experiments on rising bubbles in a Hele-Shaw cell. Solutions for a finite number of bubbles in a channel are also obtained. In this case, it is shown that solutions with an arbitrary bubble velocity [ital U][gt][ital V], where [ital V] is the fluid velocity at infinity, can inmore » general be obtained from a simple transformation of the solutions for [ital U]=2[ital V].« less

  8. A Star on the Run

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    Usually stars that are born together tend to move together but sometimes stars can go rogue and run away from their original birthplace. A pair of astronomers have now discovered the first runaway red supergiant (RSG) ever identified in another galaxy. With a radial velocity discrepancy of 300 km/s, its also the fastest runaway massive star known. Discrepant Speeds: When massive stars form in giant molecular clouds, they create what are known as OB associations: groups of hot, massive, short-lived stars that have similar velocities because theyre moving through space together. But sometimes stars that appear to be part of an OB association dont have the same velocity as the rest of the group. These stars are called runaways.What causes an OB star to run away is still debated, but we know that a fairly significant fraction of OB stars are runaways. In spite of this, surprisingly few runaways have been found that are evolved massive stars i.e., the post-main-sequence state of OB stars. This is presumably because these evolved stars have had more time to move away from their birthplace, and its more difficult to identify a runaway without the context of its original group. An Evolved Runaway: Difference between observed velocity and expected velocity, plotted as a function of expected velocity. The black points are foreground stars. The red points are expected RSGs, clustered around a velocity difference of zero. The green pentagon is the runaway RSG J004330.06+405258.4. [Evans Massey 2015]Despite this challenge, a recent survey of RSGs in the galaxy M31 has led to the detection of a massive star on the run! Kate Evans (Lowell Observatory and California Institute of Technology) and Philip Massey (Lowell Observatory and Northern Arizona University) discovered that RSG J004330.06+405258.4 is moving through the Andromeda Galaxy with a radial velocity thats off by about 300 km/s from the radial velocity expected for its location.Evans and Massey discovered this rogue star via a photometric survey of RSGs in M31, followed up by spectroscopy with the Multiple Mirror Telescope. They determined that the star is also separated from other massive stars in the disk of the galaxy by about 4.6 kpc which is roughly the distance it would be expected to travel, given its discrepant motion, in an assumed age of about 10 Myr.The authors suggest that this star may be a high-mass analog of hypervelocity stars stars within the Milky Way that are moving fast enough to escape the galaxy. The authors demonstrate that the total discrepant speed of RSG J004330.06+405258.4 is probably comparable to the escape velocity of M31s disk.But whether or not this star is moving fast enough to escape turns out to be moot: it will only live another million years, which means it wont have enough time to leave the galaxy before ending its life in a spectacular supernova. Citation: Kate Anne Evans and Philip Massey 2015 AJ 150 149. doi:10.1088/0004-6256/150/5/149

  9. Measuring Thermal Conductivity of a Small Insulation Sample

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Kuczmarski, Maria A.

    2009-01-01

    A multiple-throat venturi system has been invented for measuring laminar flow of air or other gas at low speed (1 to 30 cm/s) in a duct while preserving the laminar nature of the flow and keeping the velocity profile across the duct as nearly flat as possible. While means for measuring flows at higher speeds are well established, heretofore, there have been no reliable means for making consistent, accurate measurements in this speed range. In the original application for which this system was invented, the duct leads into the test section of a low-speed wind tunnel wherein uniform, low-speed, laminar flow is required for scientific experiments. The system could also be used to monitor a slow flow of gas in an industrial process like chemical vapor deposition. In the original application, the multiple- throat venturi system is mounted at the inlet end of the duct having a rectangular cross section of 19 by 14 cm, just upstream of an assembly of inlet screens and flow straighteners that help to suppress undesired flow fluctuations (see Figure 1). The basic venturi measurement principle is well established: One measures the difference in pressure between (1) a point just outside the inlet, where the pressure is highest and the kinetic energy lowest; and (2) the narrowest part (the throat) of the venturi passage, where the kinetic energy is highest and the pressure is lowest. Then by use of Bernoulli s equation for the relationship between pressure and kinetic energy, the volumetric flow speed in the duct can be calculated from the pressure difference and the inlet and throat widths. The design of this system represents a compromise among length, pressure recovery, uniformity of flow, and complexity of assembly. Traditionally, venturis are used to measure faster flows in narrower cross sections, with longer upstream and downstream passages to maintain accuracy. The dimensions of the passages of the present venturi system are sized to provide a readily measurable pressure drop. Multiple throats are used to minimize the length needed to recover internal energy and enable the velocity profile to recover to near flatness.

  10. Analysis of current-meter data at Columbia River gaging stations, Washington and Oregon

    USGS Publications Warehouse

    Savini, John; Bodhaine, G.L.

    1971-01-01

    The U.S. Geological Survey developed equipment to measure stream velocity simultaneously with 10 current meters arranged in a vertical and to measure velocity closer to the streambed than attainable with conventional equipment. With the 10 current meters, synchronous velocities were recorded for a period of 66 minutes at 10 different depths in one vertical of one gaging-station cross section. In addition, with a current meter installed on a special bracket to allow measurements to 0.5 foot above streambed, data were obtained at two to four verticals in four gaging-station cross sections. The mean velocity determined for the 66-minute period of record was 3.30 fps (feet per second). The graphic record of velocity was analyzed on a minute-by-minute basis. It was noted that the shape of the vertical velocity curves (plot of horizontal flow velocities measured in a vertical) changed from one minute to the next, but the change seemed to be random. Velocities obtained at different depths in the, profile fluctuated significantly, with the 1-minute velocities obtained at 0.05 depth (5 percent of total depths measured from the surface at indicated vertical) showing the smallest range--0.66 fps--and those at 0.55 depth the largest range--l.22 fps. The standard deviation, expressed in feet per second, of the velocity at each point in the vertical tended to increase with depth--from 0.16 fps at 0.05 depth to a maximum of 0.24 fps at 0.75 depth. The standard deviation, expressed as a percentage of the mean velocity, ranged from about 4 percent near the surface to 11 percent at 0.95 depth. In spite of the fluctuation in mean velocity that occurred during the 66 minutes and observation period of 4 minutes yields a mean velocity that differs from the 66-minute mean by less than one-half of a percent. Determining the mean velocity by averaging the 10-point observations of the 66minute run proved to be as accurate as by plotting the vertical velocity curvy (from the averaged 10 points) and then integrating the depth-velocity profile. In comparing the velocity obtained by integrating the depth-velocity profile with the 10-point mean velocity for other field data, collected beyond that obtained during the 66-minute run, the difference ranged from -1.3 to +1.7 percent and averaged -0.2 percent. Extension of the curve below the 0.95 depth by use of a power function proved to be fairly accurate (when compared with actual measurements within this reach made with the special current-meter bracket). However, the extension did not improve significantly the accuracy of the integrated-curve mean velocity. Both the one- and two-point methods were found to agree with the 10-point velocity. In computing mean river velocity, values determined by the two-point method ranged from -1.4 to +1.6 percent when compared with the base integrated-curve mean river velocity. The one-point method yielded results that ranged from -1.9 to +4.4 percent and averaged 40.1 percent. In determining river flow by use of the midsection and mean-section methods, the mean-section method uniformly yields lower flows for the same dart.. The range in difference is from -0.2 percent to -1.6 percent, with an average difference of -0.6 percent.

  11. Determination of Strength Exercise Intensities Based on the Load-Power-Velocity Relationship

    PubMed Central

    Jandačka, Daniel; Beremlijski, Petr

    2011-01-01

    The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s−1) to maximal velocity (m•s−1). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function. PMID:23486484

  12. Determination of strength exercise intensities based on the load-power-velocity relationship.

    PubMed

    Jandačka, Daniel; Beremlijski, Petr

    2011-06-01

    The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s(-1)) to maximal velocity (m•s(-1)). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.

  13. Ring-Shaped Microlanes and Chemical Barriers as a Platform for Probing Single-Cell Migration.

    PubMed

    Schreiber, Christoph; Segerer, Felix J; Wagner, Ernst; Roidl, Andreas; Rädler, Joachim O

    2016-05-31

    Quantification and discrimination of pharmaceutical and disease-related effects on cell migration requires detailed characterization of single-cell motility. In this context, micropatterned substrates that constrain cells within defined geometries facilitate quantitative readout of locomotion. Here, we study quasi-one-dimensional cell migration in ring-shaped microlanes. We observe bimodal behavior in form of alternating states of directional migration (run state) and reorientation (rest state). Both states show exponential lifetime distributions with characteristic persistence times, which, together with the cell velocity in the run state, provide a set of parameters that succinctly describe cell motion. By introducing PEGylated barriers of different widths into the lane, we extend this description by quantifying the effects of abrupt changes in substrate chemistry on migrating cells. The transit probability decreases exponentially as a function of barrier width, thus specifying a characteristic penetration depth of the leading lamellipodia. Applying this fingerprint-like characterization of cell motion, we compare different cell lines, and demonstrate that the cancer drug candidate salinomycin affects transit probability and resting time, but not run time or run velocity. Hence, the presented assay allows to assess multiple migration-related parameters, permits detailed characterization of cell motility, and has potential applications in cell biology and advanced drug screening.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pe’er, Asaf; Long, Killian; Casella, Piergiorgio

    Internal shocks between propagating plasma shells, originally ejected at different times with different velocities, are believed to play a major role in dissipating the kinetic energy, thereby explaining the observed light curves and spectra in a large range of transient objects. Even if initially the colliding plasmas are cold, following the first collision, the plasma shells are substantially heated, implying that in a scenario of multiple collisions, most collisions take place between plasmas of non-zero temperatures. Here, we calculate the dynamical properties of plasmas resulting from a collision between arbitrarily hot plasma shells, moving at arbitrary speeds. We provide simplemore » analytical expressions valid for both ultrarelativistic and Newtonian velocities for both hot and cold plasmas. We derive the minimum criteria required for the formation of the two-shock wave system, and show that in the relativistic limit, the minimum Lorentz factor is proportional to the square root of the ratio of the initial plasmas enthalpies. We provide basic scaling laws of synchrotron emission from both the forward and reverse-shock waves, and show how these can be used to deduce the properties of the colliding shells. Finally, we discuss the implications of these results in the study of several astronomical transients, such as X-ray binaries, radio-loud quasars, and gamma-ray bursts.« less

  15. Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2016-03-01

    Seismic wavefields interact with low-velocity fault damage zones. Waveforms of ballistic fault zone head waves, trapped waves, reflected waves and signatures of trapped noise can provide important information on structural and mechanical fault zone properties. Here we extend the class of observable fault zone waves and reconstruct in-fault reverberations or multiples in a strike-slip faulting environment. Manifestations of the reverberations are significant, consistent wave fronts in the coda of cross-correlation functions that are obtained from scattered earthquake waveforms and seismic noise recorded by a linear fault zone array. The physical reconstruction of Green's functions is evident from the high similarity between the signals obtained from the two different scattered wavefields. Modal partitioning of the reverberation wavefield can be tuned using different data normalization techniques. The results imply that fault zones create their own ambiance, and that the here reconstructed reverberations are a key seismic signature of wear zones. Using synthetic waveform modelling we show that reverberations can be used for the imaging of structural units by estimating the location, extend and magnitude of lateral velocity contrasts. The robust reconstruction of the reverberations from noise records suggests the possibility to resolve the response of the damage zone material to various external and internal loading mechanisms.

  16. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-07-01

    A range of force (F) and velocity (V) data obtained from functional movement tasks (e.g., running, jumping, throwing, lifting, cycling) performed under variety of external loads have typically revealed strong and approximately linear F-V relationships. The regression model parameters reveal the maximum F (F-intercept), V (V-intercept), and power (P) producing capacities of the tested muscles. The aim of the present study was to evaluate the level of agreement between the routinely used "multiple-load model" and a simple "two-load model" based on direct assessment of the F-V relationship from only 2 external loads applied. Twelve participants were tested on the maximum performance vertical jumps, cycling, bench press throws, and bench pull performed against a variety of different loads. All 4 tested tasks revealed both exceptionally strong relationships between the parameters of the 2 models (median R = 0.98) and a lack of meaningful differences between their magnitudes (fixed bias below 3.4%). Therefore, addition of another load to the standard tests of various functional tasks typically conducted under a single set of mechanical conditions could allow for the assessment of the muscle mechanical properties such as the muscle F, V, and P producing capacities.

  17. On the performance of a high head Francis turbine at design and off-design conditions

    NASA Astrophysics Data System (ADS)

    Aakti, B.; Amstutz, O.; Casartelli, E.; Romanelli, G.; Mangani, L.

    2015-01-01

    In the present paper, fully 360 degrees transient and steady-state simulations of a Francis turbine were performed at three operating conditions, namely at part load (PL), best efficiency point (BEP), and high load (HL), using different numerical approaches for the pressure-velocity coupling. The simulation domain includes the spiral casing with stay and guide vanes, the runner and the draft tube. The main target of the investigations is the numerical prediction of the overall performance of the high head Francis turbine model as well as local and integral quantities of the complete machine in different operating conditions. All results were compared with experimental data published by the workshop organization. All CFD simulations were performed at model scale with a new in-house, 3D, unstructured, object-oriented finite volume code within the framework of the open source OpenFOAM library. The novel fully coupled pressure-based solver is designed to solve the incompressible RANS- Equations and is capable of handling multiple references of frame (MRF). The obtained results show that the overall performance is well captured by the simulations. Regarding the local flow distributions within the inlet section of the draft-tube, the axial velocity is better estimated than the circumferential component.

  18. Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen

    NASA Astrophysics Data System (ADS)

    Kido, Hiroyuki; Nakahara, Masaya; Hashimoto, Jun; Barat, Dilmurat

    In order to clarify the turbulent burning velocity of multi-component fuel mixtures, both lean and rich two-component fuel mixtures, in which methane, propane and hydrogen were used as fuels, were prepared while maintaining the laminar burning velocity approximately constant. A distinct difference in the measured turbulent burning velocity at the same turbulence intensity is observed for two-component fuel mixtures having different addition rates of fuel, even the laminar burning velocities are approximately the same. The burning velocities of lean mixtures change almost constantly as the rate of addition changes, whereas the burning velocities of the rich mixtures show no such tendency. This trend can be explained qualitatively based on the mean local burning velocity, which is estimated by taking into account the preferential diffusion effect for each fuel component. In addition, a model of turbulent burning velocity proposed for single-component fuel mixtures may be applied to two-component fuel mixtures by considering the estimated mean local burning velocity of each fuel.

  19. The SDSS-III DR12 MARVELS radial velocity data release: the first data release from the multiple object Doppler exoplanet survey

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Thomas, Neil B.; Li, Rui; Senan Seieroe Grieves, Nolan; Ma, Bo; de Lee, Nathan M.; Lee, Brian C.; Liu, Jian; Bolton, Adam S.; Thakar, Aniruddha R.; Weaver, Benjamin; SDSS-Iii Marvels Team

    2015-01-01

    We present the first data release from the SDSS-III Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) through the SDSS-III DR12. The data include 181,198 radial velocity (RV) measurements for a total of 5520 different FGK stars with V~7.6-12, of which more than 80% are dwarfs and subdwarfs while remainders are GK giants, among a total of 92 fields nearly randomly spread out over the entire northern sky taken with a 60-object MARVELS dispersed fixed-delay interferometer instrument over four years (2008-2012). There were 55 fields with a total of 3300 FGK stars which had 14 or more observations over about 2-year survey window. The median number of observations for these plates is 27 RV measurements. This represents the largest homogeneous sample of precision RV measurements of relatively bright stars. In this first released data, a total of 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries with additional 96 targets having RV variability indicative of a giant planet companion are reported. The released data were produced by the MARVELS finalized 1D pipeline. We will also report preliminary statistical results from the MARVELS 2D data pipeline which has produced a median RV precision of ~30 m/s for stable stars.

  20. Effects of fidarestat, an aldose reductase inhibitor, on nerve conduction velocity and bladder function in streptozotocin-treated female rats.

    PubMed

    Zotova, Elena G; Christ, George J; Zhao, Weixin; Tar, Moses; Kuppam, Srini D; Arezzo, Joseph C

    2007-01-01

    The effects of fidarestat, an aldose reductase inhibitor (ARI), were assessed on nerve conduction velocity (NCV) in somatic nerves and on multiple measures of bladder function in rats made hyperglycemic with streptozotocin (STZ) and in age-matched controls. Nerve conduction velocity was recorded at baseline and at 10, 20, 30, and 50 days after confirmation of the STZ-induced hyperglycemia in all rats (N=47); bladder function was assessed in a representative subset of rats (N=20) at Day 50. Caudal NCV was markedly slowed by STZ, and this effect was significantly reversed by fidarestat. The initial deficit and treatment-related improvement were especially evident for responses driven by high-frequency repetitive stimulation. Of the 11 parameters of bladder activity assessed, four measures-bladder capacity, micturition volume, micturition frequency, and bladder weight-were significantly different in the control and STZ-treated groups. These deficits were not affected by fidarestat. At Day 50, the induced deficits in bladder function were highly correlated with caudal NCV (r values ranging from 0.70 to 0.96; P values ranging from .02 to <.0001). These results suggested that fidarestat improved the slowing of somatic nerve NCV in hyperglycemic rats, but it was not effective in reversing associated bladder dysfunction, in spite of the highly significant correlation between these two diabetes-induced deficits. Possible explanations for this dissociation are discussed.

Top