Sample records for multiple wormian bones

  1. An anatomical study of wormian bones from the eastern part of India: is genetic influence a primary determinant of their morphogenesis?

    PubMed

    Ghosh, Sanjib Kumar; Biswas, Sudipa; Sharma, Suranjali; Chakraborty, Soumya

    2017-06-01

    Over the years a number of investigators have analysed the morphology of wormian bones in different population groups across the world. There have been significant variations between findings reported in these studies, and this has prompted researchers to focus on the influence of genetic factors on the morphology of these bones. In the light of the above observation, we considered it justified to conduct anatomical studies on wormian bones in different population groups; hence, we undertook the present study to look into the morphological details of these bones among a population in the eastern part of India. We observed a total of 120 adult dry human skulls of unknown age and sex, and noted the anatomical details of wormian bones when present. It was observed that wormian bones were present in 45 % of skulls, and that 30 % of skulls had more than one wormian bone. We also found that 2.5 % of the skulls had ten or more wormian bones, which is considered as pathognomonic. Maximum incidence (53.33 %) was observed at the lambdoid suture and minimum incidence at the bregma and metopic suture (0.61 % in each case). We noted a high incidence (21.21 %) of Inca bone/lambdoid ossicle, and bilaterally symmetrical wormian bones were present in 12.5 % study skulls. There were statistically significant (P < 0.05) variations between the findings of the present study and values reported in previous studies conducted in other regions of India and different parts of the world. Our observations favour the view that genetic influence primarily determines the morphology of wormian bones.

  2. Positive identification by a skull with multiple epigenetic traits and abnormal structure of the neurocranium, viscerocranium, and the skeleton.

    PubMed

    Kuharić, Josip; Kovacic, Natasa; Marusic, Petar; Marusic, Ana; Petrovecki, Vedrana

    2011-05-01

    Wormian bones are small ossicles appearing within the cranial sutures in more than 40% of skulls, most commonly at the lambdoid suture and pterion. During the skeletal analysis of an unidentified male war victim, we observed multiple wormian bones and a patent metopic suture. Additionally, the right elbow was deformed, probably as a consequence of an old trauma. The skull was analyzed by cranial measurements and computerized tomography, revealing the presence of cranial deformities including hyperbrachicrania, localized reduction in hemispheral widths, increased cranial capacity, and sclerosis of the viscerocranium. Besides unique anatomical features and their anthropological value, such skeletal abnormalities also have a forensic value as the evidence to support the final identification of the victim. © 2011 American Academy of Forensic Sciences.

  3. Congenital cutis laxa with ligamentous laxity and delayed development, Dandy-Walker malformation and minor heart and osseous defects.

    PubMed

    Biver, A; De Rijcke, S; Toppet, V; Ledoux-Corbusier, M; Van Maldergem, L

    1994-06-01

    We present a female infant exhibiting congenital cutis laxa with retardation of growth and motor development, ligamentous laxity and congenital dislocation of the hips. This connective tissue disorder was associated with Dandy-Walker malformation, atrial and ventricular defect and minor bone abnormalities including multiple wormian bones, abnormal tubulation of long bones and absent twelfth pair of ribs. This association is believed to be unique.

  4. 76 FR 48177 - Notice of Inventory Completion: Washington State Department of Natural Resources, Olympia, WA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... to be consistent with Native American morphology, based on cranial deformation and wormian bone evidence. No known individual was identified. The one associated funerary is a bird bone. This individual...

  5. [Osteogenesis imperfecta in monozygotic twins in Burundi].

    PubMed

    Armstrong, O; Karayuba, R; Ngendahayo, L; Habonimana, E

    1994-01-01

    Little data is available about osteogenesis imperfecta in Black African children. This defect was diagnosed in monozygotic twins from Rwanda who presented multiple fractures, in particular of the femur, when they began to walk. Osteogenesis imperfecta was confirmed by lower limb deformity, presence of wormian bones in the skull, blue sclera, and tooth defects. In addition to the fact that it is uncommon to encounter this condition in monozygotic twins, this case is interesting for several reasons. Was osteogenesis imperfecta in these patients type I, frequent, or type III, exceptional? More importantly, this case stresses the high prevalence of type III in Black Africa which could constitute a hot-bed in the world.

  6. Incidence and variation of interpretably bone (os incae) in northeastern Thailand.

    PubMed

    Thanapaisal, Chaiwit; Duangthongpon, Pichayen; Kitkuandee, Amnat; Chaiciwamongkol, Kowit; Morthong, Vilaiwan

    2013-09-01

    The squamous segment of occipital bone consists of cartilaginous and membranous origin. The cartilaginous part develops to supra-occipital bone. The membranous part has three primary ossification centers on each side. The first pair ossification center lies above the cartilaginous part between the superior nuchal line and the highest nuchal line and fuse with the cartilaginous part to form a supra-occipital segment of occipital bone. The second and third pairs have two nuclei each forming lateral and medial plates. All of these ossification centers fuse to form squamous segments of occipital bone. The fusion failure between ossification centers of second and third pair nuclei with each other or supra-occipital segment causes separated bone(s) called interparietal bone(s) or os incae. The interparietal bone should be differentiated from Wormian (intrasutural) bone. The incidence from various studies ranges from 0.37% to 9.50% of the population. To study the incidence and variation of interparietal bone in Northeastern Thailand as compared with other studies. A total of 400 Thai native skulls (276 male and 124 female) from the collection of Anatomical Museum of the Faculty of Medicine Khon Kaen University aged from 16 to 93 years old were examined by naked eye and photographed. Wormian bone was excluded by shape and site. The statistical method used was percentage of relative frequency. The incidence of interparietal bone in Northeastern Thailand is 7.25% (29 from 400). Males have a two times higher incidence rate than females, (8.33% versus 4.84%). Eleven patterns of interparietal bone were found. Fusion failure of a third pair ossification center is more common than second pair Knowledge of interparietal bone is useful for neurosurgeons and radiologists to avoid missed diagnosis of skull fracture. Presented interparietal bone may cause difficulty in surgery of occipital and parietal bone. Forensic scientist can use interparietal bone for personal identification.

  7. Inca - interparietal bones in neurocranium of human skulls in central India

    PubMed Central

    Marathe, RR; Yogesh, AS; Pandit, SV; Joshi, M; Trivedi, GN

    2010-01-01

    Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. Objectives: To find the incidence of Inca variants in Central India. Materials and Methods: In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Results: Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. Conclusions: This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists. PMID:21799611

  8. Inca - interparietal bones in neurocranium of human skulls in central India.

    PubMed

    Marathe, Rr; Yogesh, As; Pandit, Sv; Joshi, M; Trivedi, Gn

    2010-01-01

    Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. To find the incidence of Inca variants in Central India. In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.

  9. Coexistence of Wormian Bones With Metopism, and Vice Versa, in Adult Skulls.

    PubMed

    Cirpan, Sibel; Aksu, Funda; Mas, Nuket; Magden, Abdurrahman Orhan

    2016-03-01

    The aim of the study is to investigate coexistence of Wormian bones with metopism, and vice versa, in adult skulls. A total of 160 dry adult human skulls of unknown sex and ages were randomly selected from the Gross Anatomy Laboratory of Medical School of Dokuz Eylul University. The skulls were examined for presence of metopism, Wormian bones (WB), and coexistence of WBs with metopism and vice versa. Topographic distribution of the WBs was macroscopically evaluated within the skulls including metopism. The photographs were being taken with Canon 400B (55 mm objective). The frequency of metopism and WBs in 160 skulls is 7.50% (12/160) and 59.3% (95/160), respectively, P < 0.05 (). The incidence of coexistence of WBs with metopism was found as 11 of 12 skulls (91.66%), whereas the incidence of coexistence of metopism with WBs was found as 11 of 95 skulls (11.58%), P < 0.05 (). There were totally 23 sutures including WBs in 11 skulls, which had metopism (). The number (%) of metopic skulls for each specific suture including WBs were found as: 11 lamdoid sutures in 7/11 (63.63%) skulls, 4 lambda in 4/11 (36.36%) skulls, 2 asterion in 2/11 (18.18%) skulls, 1 squamous in 1/11 (9.09%) skull, 2 sagittal in 2/11 (18.18%) skulls, and 3 parieromsatoid sutures in 2/11 (18.18%) skulls (). The distribution of these 23 WBs in sutures of 11 skulls including metopisms is determined as follows: 11/23 (47.82%) WBs at lambdoid sutures [5/23 (21.74%) at the right lambdoid sutures and 6/23 (26.08%) at the left lambdoid sutures, and 4 pair of 11 WBs bilaterally located]; 4 (17.39%) WBs at lambda; 2/23 (8.69%) WBs at asterion [1/23 (4.34%) at the right asterion and 1/23 (4.34%) at the left asterion of 2 diverse skulls]; 2/23 (8.69%) WBs at sagittal sutures; 1/23 (4.34%) WBs at the left squamous suture; 3/23 (13.04%) WBs at parietomastoid sutures [2/23 (8.69%) at the right parietomastoid sutures and 1/23 (4.34%) at the left parietomastoid suture and 1 pair of them bilaterally located; , ].(Figure is included in full-text article.)(Table is included in full-text article.)(Table is included in full-text article.) : There was a significant difference in rates between coexistence of WBs with metopism (11/12, 91.66%) and coexistence of metopism with WBs (11/95, 11.58%). The factors leading to metopism may also lead to WBs, whereas that the factors leading to WBs may not lead to metopism.

  10. Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system.

    PubMed

    Gutch, Manish; Philip, Rajeev; Philip, Renjit; Toms, Ajit; Saran, Sanjay; Gupta, K K

    2013-10-01

    Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.

  11. Inactivation of Msx1 and Msx2 in neural crest reveals an unexpected role in suppressing heterotopic bone formation in the head

    PubMed Central

    Roybal, Paul G.; Wu, Nancy L.; Sun, Jingjing; Ting, Man-chun; Schaefer, Christopher; Maxson, Robert E.

    2011-01-01

    In an effort to understand the morphogenetic forces that shape the bones of the skull, we inactivated Msx1 and Msx2 conditionally in neural crest. We show that Wnt1-Cre inactivation of up to three Msx1/2 alleles results in a progressively larger defect in the neural crest-derived frontal bone. Unexpectedly, in embryos lacking all four Msx1/2 alleles, the large defect is filled in with mispatterned bone consisting of ectopic islands of bone between the reduced frontal bones, just anterior to the parietal bones. The bone is derived from neural crest, not mesoderm, and, from DiI cell marking experiments, originates in a normally non-osteogenic layer of cells through which the rudiment elongates apically. Associated with the heterotopic osteogeneis is an upregulation of Bmp signaling in this cell layer. Prevention of this upregulation by implantation of noggin-soaked beads in head explants also prevented heterotopic bone formation. These results suggest that Msx genes have a dual role in calvarial development: They are required for the differentiation and proliferation of osteogenic cells within rudiments, and they are also required to suppress an osteogenic program in a cell layer within which the rudiments grow. We suggest that the inactivation of this repressive activity may be one cause of Wormian bones, ectopic bones that are a feature of a variety of pathological conditions in which calvarial bone development is compromised. PMID:20398647

  12. Radiology of Osteogenesis Imperfecta, Rickets and Other Bony Fragility States.

    PubMed

    Calder, Alistair D

    2015-01-01

    This section gives an overview of radiological findings in bony fragility states, with a special focus on osteogenesis imperfecta (OI) and rickets. Conventional radiological assessment of bone density is inaccurate and imprecise and only reliably detects severe osteopaenia. However, other aspects of bone structure and morphology can be assessed, and it is possible to distinguish between osteopaenic and osteomalacic states. OI is a heterogeneous group of disorders of type 1 collagen formation and processing that are characterised by varying degrees of bony fragility, with presentations varying from perinatal lethality to asymptomatic. Radiological diagnosis of severe forms is usually straightforward, but that of milder disease may be challenging because specific features are often absent. However, a multidisciplinary approach is usually successful. Features of OI, including Wormian bones, skull base deformities, vertebral involvement and long bone fractures and deformities, are reviewed in this section. Rickets is best defined as a disorder of the growth plate characterised by the impaired apoptosis of hypertrophied chondrocytes. Vitamin D deficiency is a common cause of rickets. The patho-anatomical basis of radiological findings in rickets is reviewed and illustrated. Rickets is frequently accompanied by hyperparathyroidism and osteomalacia. Rickets used to be classified as calciopaenic or phosphopaenic but is now referred to as parathyroid hormone or fibroblast growth factor 23 mediated, respectively [1]. The radiological features of the two forms are reviewed. © 2015 S. Karger AG, Basel.

  13. Reconstructing the Life of an Unknown (ca. 500 Years-Old South American Inca) Mummy – Multidisciplinary Study of a Peruvian Inca Mummy Suggests Severe Chagas Disease and Ritual Homicide

    PubMed Central

    Panzer, Stephanie; Peschel, Oliver; Haas-Gebhard, Brigitte; Bachmeier, Beatrice E.; Pusch, Carsten M.; Nerlich, Andreas G.

    2014-01-01

    The paleopathological, paleoradiological, histological, molecular and forensic investigation of a female mummy (radiocarbon dated 1451–1642 AD) provides circumstantial evidence for massive skull trauma affecting a young adult female individual shortly before death along with chronic infection by Trypanosoma cruzi (Chagas disease). The mummy (initially assumed to be a German bog body) was localized by stable isotope analysis to South America at/near the Peruvian/Northern Chilean coast line. This is further supported by New World camelid fibers attached to her plaits, typical Inca-type skull deformation and the type of Wormian bone at her occiput. Despite an only small transverse wound of the supraorbital region computed tomography scans show an almost complete destruction of face and frontal skull bones with terrace-like margins, but without evidence for tissue reaction. The type of destruction indicates massive blunt force applied to the center of the face. Stable isotope analysis indicates South American origin: Nitrogen and hydrogen isotope patterns indicate an extraordinarily high marine diet along with C4-plant alimentation which fits best to the coastal area of Pacific South America. A hair strand over the last ten months of her life indicates a shift to a more “terrestric” nutrition pattern suggesting either a move from the coast or a change in her nutrition. Paleoradiology further shows extensive hypertrophy of the heart muscle and a distended large bowel/rectum. Histologically, in the rectum wall massive fibrosis alternates with residual smooth muscle. The latter contains multiple inclusions of small intracellular parasites as confirmed by immunohistochemical and molecular ancient DNA analysis to represent a chronic Trypanosoma cruzi infection. This case shows a unique paleopathological setting with massive blunt force trauma to the skull nurturing the hypothesis of a ritual homicide as previously described in South American mummies in an individual that suffered from severe chronic Chagas disease. PMID:24586848

  14. What every clinical geneticist should know about testing for osteogenesis imperfecta in suspected child abuse cases.

    PubMed

    Pepin, Melanie G; Byers, Peter H

    2015-12-01

    Non-accidental injury (NAI) is a major medical concern in the United States. One of the challenges in evaluation of children with unexplained fractures is that genetic forms of bone fragility are one of the differential diagnoses. Infants who present with fractures with mild forms of osteogenesis imperfecta (OI) (OI type I or OI type IV), the most common genetic form of bone disease leading to fractures might be missed if clinical evaluation alone is used to make the diagnosis. Diagnostic clinical features (blue sclera, dentinogenesis imperfecta, Wormian bones on X-rays or positive family history) may not be present or apparent at the age of evaluation. The evaluating clinician faces the decision about whether genetic testing is necessary in certain NAI cases. In this review, we outline clinical presentations of mild OI and review the history of genetic testing for OI in the NAI versus OI setting. We summarize our data of molecular testing in the Collagen Diagnostic Laboratory (CDL) from 2008 to 2014 where NAI was noted on the request for DNA sequencing of COL1A1 and COL1A2. We provide recommendations for molecular testing in the NAI versus OI setting. First, DNA sequencing of COL1A1, COL1A2, and IFITM5 simultaneously and duplication/deletion testing is recommended. If a causative variant is not identified, in the absence of a pathologic clinical phenotype, no additional gene testing is indicated. If a VUS is found, parental segregation studies are recommended. © 2015 Wiley Periodicals, Inc.

  15. CLINICAL FEATURES AND PATTERN OF FRACTURES AT THE TIME OF DIAGNOSIS OF OSTEOGENESIS IMPERFECTA IN CHILDREN.

    PubMed

    Brizola, Evelise; Zambrano, Marina Bauer; Pinheiro, Bruna de Souza; Vanz, Ana Paula; Félix, Têmis Maria

    2017-01-01

    To characterize the fracture pattern and the clinical history at the time of diagnosis of osteogenesis imperfecta. In this retrospective study, all patients with osteogenesis imperfecta, of both genders, aged 0-18 years, who were treated between 2002 and 2014 were included. Medical records were assessed to collect clinical data, including the presence of blue sclerae, dentinogenesis imperfecta, positive familial history of osteogenesis imperfecta, and the site of the fractures. In addition, radiographic findings at the time of the diagnosis were reviewed. Seventy-six patients (42 females) were included in the study. Individuals' age ranged from 0 to 114 months, with a median (interquartile range) age of 38 (6-96) months. Blue sclerae were present in 93.4% of patients, dentinogenesis imperfecta was observed in 27.6% of patients, and wormian bones in 29.4% of them. The number of fractures at diagnosis ranged from 0 to 17, with a median of 3 (2-8) fractures. Forty (57%) patients had fractures of the upper and lower extremities, and 9 patients also had spinal fractures. The diagnosis was performed at birth in 85.7% of patients with type 3, and 39.3% of those with type 4/5 of the disorder. Osteogenesis imperfecta is a genetic disorder with distinctive clinical features such as bone fragility, recurrent fractures, blue sclerae, and dentinogenesis imperfecta. It is important to know how to identify these characteristics in order to facilitate the diagnosis, optimize the treatment, and differentiate osteogenesis imperfecta from other disorders that also can lead to fractures.

  16. CLINICAL FEATURES AND PATTERN OF FRACTURES AT THE TIME OF DIAGNOSIS OF OSTEOGENESIS IMPERFECTA IN CHILDREN

    PubMed Central

    Brizola, Evelise; Zambrano, Marina Bauer; Pinheiro, Bruna de Souza; Vanz, Ana Paula; Félix, Têmis Maria

    2017-01-01

    ABSTRACT Objective: To characterize the fracture pattern and the clinical history at the time of diagnosis of osteogenesis imperfecta. Methods: In this retrospective study, all patients with osteogenesis imperfecta, of both genders, aged 0-18 years, who were treated between 2002 and 2014 were included. Medical records were assessed to collect clinical data, including the presence of blue sclerae, dentinogenesis imperfecta, positive familial history of osteogenesis imperfecta, and the site of the fractures. In addition, radiographic findings at the time of the diagnosis were reviewed. Results: Seventy-six patients (42 females) were included in the study. Individuals’ age ranged from 0 to 114 months, with a median (interquartile range) age of 38 (6-96) months. Blue sclerae were present in 93.4% of patients, dentinogenesis imperfecta was observed in 27.6% of patients, and wormian bones in 29.4% of them. The number of fractures at diagnosis ranged from 0 to 17, with a median of 3 (2-8) fractures. Forty (57%) patients had fractures of the upper and lower extremities, and 9 patients also had spinal fractures. The diagnosis was performed at birth in 85.7% of patients with type 3, and 39.3% of those with type 4/5 of the disorder. Conclusions: Osteogenesis imperfecta is a genetic disorder with distinctive clinical features such as bone fragility, recurrent fractures, blue sclerae, and dentinogenesis imperfecta. It is important to know how to identify these characteristics in order to facilitate the diagnosis, optimize the treatment, and differentiate osteogenesis imperfecta from other disorders that also can lead to fractures. PMID:28977334

  17. [Neurological paleopathology in the pre-Columbian cultures of the coast and the Andean plateau (I). Artificial cranial deformation].

    PubMed

    Carod Artal, F J; Vázquez Cabrera, C B

    The aim of this work was to study the cranial trepanations and deformations carried out by the ancient Paraca, Huari, Tiahuanaco and Inca cultures. To do so, we conducted a field study involving visits to archaeological remains and anthropological museums on the Andean plateau and the Peruvian coast. Cranial deformation was more common in the Andean regions and was performed by putting little pieces of wood or compressive bandages on newborn infants' heads in order to modify the growth axis of the cranial cavity. Cranial deformations were performed for aesthetic and magic religious reasons, but were also used as a means of ethnic or social identification, as a symbol of nobility or to distinguish the ruling classes. The immediate consequence of such deformation was the modification of the normal process by which the cranial sutures close. There is a significant correlation between the presence of posterior and lateral wormian bones, according to the degree of artificial deformation. The persistence of metopic suture and exostosis of the outer ear canal have been found in 5% of the skulls belonging to pre Columbine mummies. Other paleopathological findings include cranial fractures (7%), porotic hyperostosis (25% of children's skulls), spina bifida occulta, signs of spinal disk arthrosis and Pott's disease. Artificial cranial deformation was a very widespread practice in the Andean regions in pre Columbine times.

  18. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  19. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  20. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  1. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  2. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Single/multiple component metallic bone fixation....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  3. Bone marrow invasion in multiple myeloma and metastatic disease.

    PubMed

    Vilanova, J C; Luna, A

    2016-04-01

    Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  4. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone

    PubMed Central

    Mehta, Manav; Schmidt-Bleek, Katharina; Duda, Georg N; Mooney, David J

    2012-01-01

    Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing. PMID:22626978

  5. Maternal embryonic leucine zipper kinase inhibitor OTSSP167 has preclinical activity on multiple myeloma bone disease.

    PubMed

    Muller, Joséphine; Bolomsky, Arnold; Dubois, Sophie; Duray, Elodie; Stangelberger, Kathrin; Plougonven, Erwan; Lejeune, Margaux; Léonard, Angélique; Marty, Caroline; Hempel, Ute; Baron, Frédéric; Beguin, Yves; Cohen-Solal, Martine; Ludwig, Heinz; Heusschen, Roy; Caers, Jo

    2018-05-10

    Multiple myeloma bone disease is characterized by an uncoupling of bone remodeling in the multiple myeloma microenvironment, resulting in the development of lytic bone lesions. Most myeloma patients suffer from these bone lesions, which not only causes morbidity but also negatively impacts survival. The development of novel therapies, ideally with a combined anti-resorptive and bone-anabolic effect, is of great interest because lesions persist with the current standard of care, even in patients in complete remission. We have previously shown that MELK plays a central role in proliferation-associated high-risk multiple myeloma and its inhibition with OTSSP167 resulted in decreased tumor load. MELK inhibition in bone cells has not yet been explored, although some reports suggest factors downstream of MELK stimulate osteoclast activity and inhibit osteoblast activity, which makes MELK inhibition a promising therapeutic approach. Therefore, we assessed the effect of OTSSP167 on bone cell activity and the development of myeloma-induced bone disease. OTSSP167 inhibited osteoclast activity in vitro by decreasing progenitor viability as well as via a direct anti-resorptive effect on mature osteoclasts. In addition, OTSSP167 stimulated matrix deposition and mineralization by osteoblasts in vitro. This combined anti-resorptive and osteoblast-stimulating effect of OTSSP167 resulted in the complete prevention of lytic lesions and bone loss in myeloma-bearing mice. Immunohistomorphometric analyses corroborated our in vitro findings. In conclusion, we show that OTSSP167 has a direct effect on myeloma-induced bone disease in addition to its anti-multiple myeloma effect, which warrants further clinical development of MELK inhibition in multiple myeloma. Copyright © 2018, Ferrata Storti Foundation.

  6. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone.

    PubMed

    Mehta, Manav; Schmidt-Bleek, Katharina; Duda, Georg N; Mooney, David J

    2012-09-01

    Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Diagnosis and Treatment of Bone Disease in Multiple Myeloma: Spotlight on Spinal Involvement

    PubMed Central

    Tosi, Patrizia

    2013-01-01

    Bone disease is observed in almost 80% of newly diagnosed symptomatic multiple myeloma patients, and spine is the bone site that is more frequently affected by myeloma-induced osteoporosis, osteolyses, or compression fractures. In almost 20% of the cases, spinal cord compression may occur; diagnosis and treatment must be carried out rapidly in order to avoid a permanent sensitive or motor defect. Although whole body skeletal X-ray is considered mandatory for multiple myeloma staging, magnetic resonance imaging is presently considered the most appropriate diagnostic technique for the evaluation of vertebral alterations, as it allows to detect not only the exact morphology of the lesions, but also the pattern of bone marrow infiltration by the disease. Multiple treatment modalities can be used to manage multiple myeloma-related vertebral lesions. Surgery or radiotherapy is mainly employed in case of spinal cord compression, impending fractures, or intractable pain. Percutaneous vertebroplasty or balloon kyphoplasty can reduce local pain in a significant fraction of treated patients, without interfering with subsequent therapeutic programs. Systemic antimyeloma therapy with conventional chemotherapy or, more appropriately, with combinations of conventional chemotherapy and compounds acting on both neoplastic plasma cells and bone marrow microenvironment must be soon initiated in order to reduce bone resorption and, possibly, promote bone formation. Bisphosphonates should also be used in combination with antimyeloma therapy as they reduce bone resorption and prolong patients survival. A multidisciplinary approach is thus needed in order to properly manage spinal involvement in multiple myeloma. PMID:24381787

  8. Bone marrow biopsy in monoclonal gammopathies: correlations between pathological findings and clinical data. The Cooperative Group for Study and Treatment of Multiple Myeloma.

    PubMed Central

    Riccardi, A; Ucci, G; Luoni, R; Castello, A; Coci, A; Magrini, U; Ascari, E

    1990-01-01

    Between January 1987 and October 1989, 561 consecutive untreated patients with monoclonal gammopathy of undetermined clinical importance (MGUS) (n = 295) or with multiple myeloma (n = 266) were evaluated in a multicentre trial. Both bone marrow biopsy and aspiration (performed at different anatomical sites) were required at presentation. Bone marrow biopsy data indicated that changes in bone marrow composition from MGUS to early multiple myeloma and to advanced multiple myeloma followed a precise pattern, including an increased percentage of bone marrow plasma cells (BMPC%), a shift from plasmocytic to plasmoblastic cytology, an increase in bone marrow cellularity and fibrosis, a change in bone marrow infiltration (becoming diffuse rather than interstitial), a decrease in residual haemopoiesis and an increase in osteoclasts. In multiple myeloma the BMPC% of biopsy specimens and aspirate were closely related, although in 5% of cases the difference between the two values was greater than 20%. Some histological features were remarkably associated with each other. For example, BMPC% was higher in cases with plasmoblastic cytology, heavy fibrosis, or reduced residual haemopoiesis. Anaemia was the clinical characteristic most influenced by bone marrow histology. The BMPC% was the only histological variable which affected the greatest number of clinical and laboratory characteristics, including, besides haemoglobin concentration, erythrocyte sedimentation rate, radiographic skeletal bone disease, and serum concentrations of monoclonal component, calcium, beta 2-microglobulin and thymidine kinase activity. These data indicate that comparative bone marrow histology in monoclonal gammopathies has clinical importance. Images PMID:2199532

  9. Assessment of bone marrow plasma cell infiltrates in multiple myeloma: the added value of CD138 immunohistochemistry

    PubMed Central

    Al-Quran, Samer Z.; Yang, Lijun; Magill, James M.; Braylan, Raul C.; Douglas-Nikitin, Vonda K.

    2012-01-01

    Summary Assessment of bone marrow involvement by malignant plasma cells is an important element in the diagnosis and follow-up of patients with multiple myeloma and other plasma cell dyscrasias. Microscope-based differential counts of bone marrow aspirates are used as the primary method to evaluate bone marrow plasma cell percentages. However, multiple myeloma is often a focal process, a fact that impacts the accuracy and reliability of the results of bone marrow plasma cell percentages obtained by differential counts of bone marrow aspirate smears. Moreover, the interobserver and intraobserver reproducibility of counting bone marrow plasma cells microscopically has not been adequately tested. CD138 allows excellent assessment of plasma cell numbers and distribution in bone marrow biopsies. We compared estimates of plasma cell percentages in bone marrow aspirates and in hematoxylin-eosin– and CD138-stained bone marrow biopsy sections (CD138 sections) in 79 bone marrows from patients with multiple myeloma. There was a notable discrepancy in bone marrow plasma cell percentages using the different methods of observation. In particular, there was a relatively poor concordance of plasma cell percentage estimation between aspirate smears and CD138 sections. Estimates of plasma cell percentage using CD138 sections demonstrated the highest interobserver concordance. This observation was supported by computer-assisted image analysis. In addition, CD138 expression highlighted patterns of plasma cell infiltration indicative of neoplasia even in the absence of plasmacytosis. We conclude that examination of CD138 sections should be considered for routine use in the estimation of plasma cell load in the bone marrow. PMID:17714757

  10. Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome.

    PubMed

    Gripp, Karen W; Robbins, Katherine M; Sobreira, Nara L; Witmer, P Dane; Bird, Lynne M; Avela, Kristiina; Makitie, Outi; Alves, Daniela; Hogue, Jacob S; Zackai, Elaine H; Doheny, Kimberly F; Stabley, Deborah L; Sol-Church, Katia

    2015-02-01

    Lateral meningocele syndrome (LMS, OMIM%130720), also known as Lehman syndrome, is a very rare skeletal disorder with facial anomalies, hypotonia and meningocele-related neurologic dysfunction. The characteristic lateral meningoceles represent the severe end of the dural ectasia spectrum and are typically most severe in the lower spine. Facial features of LMS include hypertelorism and telecanthus, high arched eyebrows, ptosis, midfacial hypoplasia, micrognathia, high and narrow palate, low-set ears and a hypotonic appearance. Hyperextensibility, hernias and scoliosis reflect a connective tissue abnormality, and aortic dilation, a high-pitched nasal voice, wormian bones and osteolysis may be present. Lateral meningocele syndrome has phenotypic overlap with Hajdu-Cheney syndrome. We performed exome resequencing in five unrelated individuals with LMS and identified heterozygous truncating NOTCH3 mutations. In an additional unrelated individual Sanger sequencing revealed a deleterious variant in the same exon 33. In total, five novel de novo NOTCH3 mutations were identified in six unrelated patients. One had a 26 bp deletion (c.6461_6486del, p.G2154fsTer78), two carried the same single base pair insertion (c.6692_93insC, p.P2231fsTer11), and three individuals had a nonsense point mutation at c.6247A > T (pK2083*), c.6663C > G (p.Y2221*) or c.6732C > A, (p.Y2244*). All mutations cluster into the last coding exon, resulting in premature termination of the protein and truncation of the negative regulatory proline-glutamate-serine-threonine rich PEST domain. Our results suggest that mutant mRNA products escape nonsense mediated decay. The truncated NOTCH3 may cause gain-of-function through decreased clearance of the active intracellular product, resembling NOTCH2 mutations in the clinically related Hajdu-Cheney syndrome and contrasting the NOTCH3 missense mutations causing CADASIL. © 2014 Wiley Periodicals, Inc.

  11. Preclinical studies in support of defibrotide for the treatment of multiple myeloma and other neoplasias.

    PubMed

    Mitsiades, Constantine S; Rouleau, Cecile; Echart, Cinara; Menon, Krishna; Teicher, Beverly; Distaso, Maria; Palumbo, Antonio; Boccadoro, Mario; Anderson, Kenneth C; Iacobelli, Massimo; Richardson, Paul G

    2009-02-15

    Defibrotide, an orally bioavailable polydisperse oligonucleotide, has promising activity in hepatic veno-occlusive disease, a stem cell transplantation-related toxicity characterized by microangiopathy. The antithrombotic properties of defibrotide and its minimal hemorrhagic risk could serve for treatment of cancer-associated thrombotic complications. Given its cytoprotective effect on endothelium, we investigated whether defibrotide protects tumor cells from cytotoxic antitumor agents. Further, given its antiadhesive properties, we evaluated whether defibrotide modulates the protection conferred to multiple myeloma cells by bone marrow stromal cells. Defibrotide lacks significant single-agent in vitro cytotoxicity on multiple myeloma or solid tumor cells and does not attenuate their in vitro response to dexamethasone, bortezomib, immunomodulatory thalidomide derivatives, and conventional chemotherapeutics, including melphalan and cyclophosphamide. Importantly, defibrotide enhances in vivo chemosensitivity of multiple myeloma and mammary carcinoma xenografts in animal models. In cocultures of multiple myeloma cells with bone marrow stromal cells in vitro, defibrotide enhances the multiple myeloma cell sensitivity to melphalan and dexamethasone, and decreases multiple myeloma-bone marrow stromal cell adhesion and its sequelae, including nuclear factor-kappaB activation in multiple myeloma and bone marrow stromal cells, and associated cytokine production. Moreover, defibrotide inhibits expression and/or function of key mediators of multiple myeloma interaction with bone marrow stromal cell and endothelium, including heparanase, angiogenic cytokines, and adhesion molecules. Defibrotide's in vivo chemosensitizing properties and lack of direct in vitro activity against tumor cells suggest that it favorably modulates antitumor interactions between bone marrow stromal cells and endothelia in the tumor microenvironment. These data support clinical studies of defibrotide in combination with conventional and novel therapies to potentially improve patient outcome in multiple myeloma and other malignancies.

  12. Challenging the current approaches to multiple myeloma- and other cancer-related bone diseases: from bisphosphonates to targeted therapy.

    PubMed

    Kleber, Martina; Udi, Josefina; Metzke, Barbara; Terpos, Evangelos; Roodmann, G David; Morgan, Gareth; Dispenzieri, Angela; Einsele, Hermann; Wäsch, Ralph; Engelhardt, Monika

    2012-06-01

    An international myeloma meeting entitled "Challenging the current approaches to multiple myeloma- and other cancer-related bone diseases: from bisphosphonates to targeted therapy" was held in Freiburg, Germany in July 2011 to discuss novel insights into and approaches to myeloma bone disease and other bone-seeking tumors. This review briefly summarizes the most prominent data of the meeting and current literature on our understanding of bone disease, the role of imaging techniques, operative interventions and systemic bone-seeking treatment, all of which should further improve our future therapeutic choices.

  13. Maintaining Bone Health in Patients With Multiple Myeloma: Survivorship Care Plan of the International Myeloma Foundation Nurse Leadership Board

    PubMed Central

    Miceli, Teresa S.; Colson, Kathleen; Faiman, Beth M.; Miller, Kena; Tariman, Joseph D.

    2014-01-01

    About 90% of individuals with multiple myeloma will develop osteolytic bone lesions from increased osteoclastic and decreased osteoblastic activity. Severe morbidities from pathologic fractures and other skeletal events can lead to poor circulation, blood clots, muscle wasting, compromised performance status, and overall poor survival. Supportive care targeting bone disease is an essential adjunct to antimyeloma therapy. In addition, the maintenance of bone health in patients with multiple myeloma can significantly improve quality of life. Oncology nurses and other healthcare providers play a central role in the management of bone disease and maintenance throughout the course of treatment. Safe administration of bisphosphonates, promotion of exercise, maintenance of adequate nutrition, vitamin and mineral supplementation, scheduled radiographic examinations, and monitoring of bone complications are among the important functions that oncology nurses and healthcare providers perform in clinical practice. PMID:21816707

  14. Maintaining bone health in patients with multiple myeloma: survivorship care plan of the International Myeloma Foundation Nurse Leadership Board.

    PubMed

    Miceli, Teresa S; Colson, Kathleen; Faiman, Beth M; Miller, Kena; Tariman, Joseph D

    2011-08-01

    About 90% of individuals with multiple myeloma will develop osteolytic bone lesions from increased osteoclastic and decreased osteoblastic activity. Severe morbidities from pathologic fractures and other skeletal events can lead to poor circulation, blood clots, muscle wasting, compromised performance status, and overall poor survival. Supportive care targeting bone disease is an essential adjunct to antimyeloma therapy. In addition, the maintenance of bone health in patients with multiple myeloma can significantly improve quality of life. Oncology nurses and other healthcare providers play a central role in the management of bone disease and maintenance throughout the course of treatment. Safe administration of bisphosphonates, promotion of exercise, maintenance of adequate nutrition, vitamin and mineral supplementation, scheduled radiographic examinations, and monitoring of bone complications are among the important functions that oncology nurses and healthcare providers perform in clinical practice.

  15. Impaired ambulation and steroid therapy impact negatively on bone health in multiple sclerosis.

    PubMed

    Tyblova, M; Kalincik, T; Zikan, V; Havrdova, E

    2015-04-01

    The prevalence of osteopenia and osteoporosis is higher amongst patients with multiple sclerosis in comparison with the general population. In addition to the general determinants of bone health, two factors may contribute to reduced bone mineral density in multiple sclerosis: physical disability and corticosteroid therapy. The aim of this study was to examine the effect of physical disability and steroid exposure on bone health in weight-bearing bones and spine and on the incidence of low-trauma fractures in multiple sclerosis. In this retrospective analysis of prospectively collected data, associations between bone mineral density (at the femoral neck, total femur and the lumbar spine) and its change with disability or cumulative steroid dose were evaluated with random-effect models adjusted for demographic and clinical determinants of bone health. The incidence of low-trauma fractures during the study follow-up was evaluated with Andersen-Gill models. Overall, 474 and 438 patients were included in cross-sectional and longitudinal analyses (follow-up 2347 patient-years), respectively. The effect of severely impaired gait was more apparent in weight-bearing bones (P ≤ 10(-15) ) than in spine (P = 0.007). The effect of cumulative steroid dose was relatively less pronounced but diffuse (P ≤ 10(-4) ). Risk of low-trauma fractures was associated with disability (P = 0.02) but not with cumulative steroid exposure and was greater amongst patients with severely impaired gait (annual risk 3.5% vs. 3.0%). Synergistic effects were found only between cumulative steroid dose in patients ambulatory without support (P = 0.02). Bone health and the incidence of low-trauma fractures in multiple sclerosis are more related to impaired gait than to extended corticosteroid therapy. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.

  16. Hyperparathyroidism Mimicking Metastatic Bone Disease: A Case Report and Review of Literature.

    PubMed

    Gupta, Monica; Singhal, Lalita; Kumar, Akshay

    2018-06-01

    Multiple osteolytic lesions are usually associated with metastatic involvement of the bone; however, metabolic bone diseases should also be included in the differential diagnosis. In this study, we describe a case of primary hyperparathyroidism (PHPT) with multiple osteolytic lesions that was diagnosed initially as having metastatic bone involvement. The laboratory results showed hypercalcemia and raised alkaline phosphatase along with fibrosis in the bone marrow biopsy with no increase in tumor markers and normal serum protein electrophoresis. The parathyroid hormone levels were high, which pointed toward a diagnosis of PHPT. Sestamibi scan revealed uptake at the level of the left inferior pole of the thyroid gland, which was suggestive of parathyroid adenoma. The possibility of hyperparathyroidism should be kept in mind when a patient presents with multiple osteolytic lesions and hypercalcemia.

  17. Repression of Multiple Myeloma Growth and Preservation of Bone with Combined Radiotherapy and Anti-angiogenic Agent

    PubMed Central

    Jia, Dan; Koonce, Nathan A.; Halakatti, Roopa; Li, Xin; Yaccoby, Shmuel; Swain, Frances L.; Suva, Larry J.; Hennings, Leah; Berridge, Marc S.; Apana, Scott M.; Mayo, Kevin; Corry, Peter M.; Griffin, Robert J.

    2011-01-01

    The effects of ionizing radiation, with or without the antiangiogenic agent anginex (Ax), on multiple myeloma growth were tested in a SCID-rab mouse model. Mice carrying human multiple myeloma cell-containing pre-implanted bone grafts were treated weekly with various regimens for 8 weeks. Rapid multiple myeloma growth, assessed by bioluminescence intensity (IVIS), human lambda Ig light chain level in serum (ELISA), and the volume of bone grafts (caliper), was observed in untreated mice. Tumor burden in mice receiving combined therapy was reduced to 59% (by caliper), 43% (by ELISA), and 2% (by IVIS) of baseline values after 8 weeks of treatment. Ax or radiation alone slowed but did not stop tumor growth. Four weeks after the withdrawal of the treatments, tumor burden remained minimal in mice given Ax + radiation but increased noticeably in the other three groups. Multiple myeloma suppression by Ax + radiation was accompanied by a marked decrease in the number and activity of osteoclasts in bone grafts assessed by histology. Bone graft integrity was preserved by Ax + radiation but was lost in the other three groups, as assessed by microCT imaging and radiography. These results suggest that radiotherapy, when primed by anti-angiogenic agents, may be a potent therapy for focal multiple myeloma. PMID:20518660

  18. Orthodontic treatment for oral rehabilitation after multiple maxillofacial bone fractures.

    PubMed

    Nakamura, Yoshiki; Ogino, Tomoko Kuroiwa; Hirashita, Ayao

    2008-09-01

    We present the orthodontic treatment of a patient with occlusal dysfunction after plastic surgery for multiple maxillofacial bone fractures caused by a traffic accident. The patient had mandibular deviation to the right because of inappropriate repositioning and fixation of the fractured bone and complete avulsion of both mandibular central incisors. The bilateral mandibular incisors, canines, and premolars were also suspected of partial avulsion or alveolar bone fracture. Several tests, including percussion and dental computed tomography, were performed on these teeth to rule out ankylosis and confirm tooth movement. Camouflage orthodontic treatment was carried out with expansion of the maxillary arch, alignment of both arches, and space closure between the mandibular lateral incisors to improve the occlusion. Good occlusion and interdigitation were obtained. Orthodontic treatment is useful for the rehabilitation of occlusal dysfunction caused by multiple maxillofacial bone fractures.

  19. Importance of dual delivery systems for bone tissue engineering.

    PubMed

    Farokhi, Mehdi; Mottaghitalab, Fatemeh; Shokrgozar, Mohammad Ali; Ou, Keng-Liang; Mao, Chuanbin; Hosseinkhani, Hossein

    2016-03-10

    Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Bone scan as a screening test for missed fractures in severely injured patients.

    PubMed

    Lee, K-J; Jung, K; Kim, J; Kwon, J

    2014-12-01

    In many cases, patients with severe blunt trauma have multiple fractures throughout the body. These fractures are not often detectable by history or physical examination, and their diagnosis can be delayed or even missed. Thus, screening test fractures of the whole body is required after initial management. We performed this study to evaluate the reliability of bone scans for detecting missed fractures in patients with multiple severe traumas and we analyzed the causes of missed fractures by using bone scan. A bone scan is useful as a screening test for fractures of the entire body of severe trauma patients who are passed the acute phase. We reviewed the electronic medical records of severe trauma patients who underwent a bone scan from September 2009 to December 2010. Demographic and medical data were compared and statistically analyzed to determine whether missed fractures were detected after bone scan in the two groups. A total of 382 patients who had an injury severity score [ISS] greater than 16 points with multiple traumas visited the emergency room. One hundred and thirty-one patients underwent bone scan and 81 patients were identified with missed fractures by bone scan. The most frequent location for missed fractures was the rib area (55 cases, 41.98%), followed by the extremities (42 cases, 32.06%). The missed fractures that required surgery or splint were most common in extremities (11 cases). In univariate analysis, higher ISS scores and mechanism of injury were related with the probability that missed fractures would be found with a bone scan. The ISS score was statistically significant in multivariate analysis. Bone scan is an effective method of detecting missed fractures among patients with multiple severe traumas. Level IV, retrospective study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. [Effects of pamidronate disodium (Bonin) combined with chemotherapy on bone pain in multiple myeloma].

    PubMed

    Leng, Yun; Chen, Shi-lun; Shi, Hong-zhi

    2002-10-01

    Objective. To evaluate the therapeutic effects of Disodium Pamidronate (Bonin) on bone pain in multiple myeloma. Method. 18 patients received only chemotherapy and 16 patients with addition of Bonin were compared. Result. The bone pain was significantly relieved both in chemotherapy alone group and in the combination group of Bonin with chemotherapy after treatment (P<0.01, as compared with before therapy). However, the effects of combination group were more dramatical than that of the other group (P<0.05). No obvious side-effects were observed except mild fever in one patient in the combination group. Conclusion. Bonin, as a safe and effective Bisphosphonates preparation, could relieve bone pain in multiple myeloma more effectively when combined with chemotherapy.

  2. Cellular Mechanisms of Multiple Myeloma Bone Disease

    PubMed Central

    Oranger, Angela; Carbone, Claudia; Izzo, Maddalena; Grano, Maria

    2013-01-01

    Multiple myeloma (MM) is a hematologic malignancy of differentiated plasma cells that accumulates and proliferates in the bone marrow. MM patients often develop bone disease that results in severe bone pain, osteolytic lesions, and pathologic fractures. These skeletal complications have not only a negative impact on quality of life but also a possible effect in overall survival. MM osteolytic bone lesions arise from the altered bone remodeling due to both increased osteoclast activation and decreased osteoblast differentiation. A dysregulated production of numerous cytokines that can contribute to the uncoupling of bone cell activity is well documented in the bone marrow microenvironment of MM patients. These molecules are produced not only by malignant plasma cells, that directly contribute to MM bone disease, but also by bone, immune, and stromal cells interacting with each other in the bone microenvironment. This review focuses on the current knowledge of MM bone disease biology, with particular regard on the role of bone and immune cells in producing cytokines critical for malignant plasma cell proliferation as well as in osteolysis development. Therefore, the understanding of MM pathogenesis could be useful to the discovery of novel agents that will be able to both restore bone remodelling and reduce tumor burden. PMID:23818912

  3. Multiscale imaging of bone microdamage

    PubMed Central

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone’s propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  4. Reconstruction of the Midfoot Using a Free Vascularized Fibular Graft After En Bloc Excision for Giant Cell Tumor of the Tarsal Bones: A Case Report.

    PubMed

    Hara, Hitomi; Kawamoto, Teruya; Onishi, Yasuo; Fujioka, Hiroyuki; Nishida, Kotaro; Kuroda, Ryosuke; Kurosaka, Masahiro; Akisue, Toshihiro

    2016-01-01

    We report the case of a 32-year-old Japanese female with a giant cell tumor of bone involving multiple midfoot bones. Giant cell tumors of bone account for approximately 5% of all primary bone tumors and most often arise at the ends of long bones. The small bones, such as those of the hands and feet, are rare sites for giant cell tumors. Giant cell tumors of the small bones tend to exhibit more aggressive clinical behavior than those of the long bones. The present patient underwent en bloc tumor excision involving multiple tarsals and metatarsals. We reconstructed the longitudinal arch of the foot with a free vascularized fibular graft. At the 2-year follow-up visit, bony union had been achieved, with no tumor recurrence. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  5. A "reverse" Maffucci's syndrome: case report and short review of the literature.

    PubMed

    Matzaroglou, Charalampos; Megas, Panagiotis; Panagiotopoulos, Elias; Notopoulos, Athanasios; Saridis, Alkis; Sourgiadaki, Efrosini; Koumoundourou, Dimitra; Dimakopoulos, Panagiotis

    2005-01-01

    Maffucci's syndrome is a congenital, non-hereditary mesodermal dysplasia associated with multiple enchondromas and after some years accompanied by hemangiomas. We describe a rare case of "reverse" Maffucci's syndrome in a 42-year-old woman who has suffered from multiple hemangiomas for the last 24 years. The last two years she complained for heel pain. Bone scintigraphic examination showed abnormal findings in the left calcaneal bone. The scintigraphy, radiology and histology findings revealed multiple enchondromas, so the diagnosis was changed into Maffucci's syndrome. After one year, the left calcaneal bone showed sarcomatous transformation.

  6. Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry

    PubMed Central

    Pessoa de Magalhães, Roberto J.; Vidriales, María-Belén; Paiva, Bruno; Fernandez-Gimenez, Carlos; García-Sanz, Ramón; Mateos, Maria-Victoria; Gutierrez, Norma C.; Lecrevisse, Quentin; Blanco, Juan F; Hernández, Jose; de las Heras, Natalia; Martinez-Lopez, Joaquin; Roig, Monica; Costa, Elaine Sobral; Ocio, Enrique M.; Perez-Andres, Martin; Maiolino, Angelo; Nucci, Marcio; De La Rubia, Javier; Lahuerta, Juan-Jose; San-Miguel, Jesús F.; Orfao, Alberto

    2013-01-01

    Multiple myeloma remains largely incurable. However, a few patients experience more than 10 years of relapse-free survival and can be considered as operationally cured. Interestingly, long-term disease control in multiple myeloma is not restricted to patients with a complete response, since some patients revert to having a profile of monoclonal gammopathy of undetermined significance. We compared the distribution of multiple compartments of lymphocytes and dendritic cells in the bone marrow and peripheral blood of multiple myeloma patients with long-term disease control (n=28), patients with newly diagnosed monoclonal gammopathy of undetermined significance (n=23), patients with symptomatic multiple myeloma (n=23), and age-matched healthy adults (n=10). Similarly to the patients with monoclonal gammopathy of undetermined significance and symptomatic multiple myeloma, patients with long-term disease control showed an expansion of cytotoxic CD8+ T cells and natural killer cells. However, the numbers of bone marrow T-regulatory cells were lower in patients with long-term disease control than in those with symptomatic multiple myeloma. It is noteworthy that B cells were depleted in patients with monoclonal gammopathy of undetermined significance and in those with symptomatic multiple myeloma, but recovered in both the bone marrow and peripheral blood of patients with long-term disease control, due to an increase in normal bone marrow B-cell precursors and plasma cells, as well as pre-germinal center peripheral blood B cells. The number of bone marrow dendritic cells and tissue macrophages differed significantly between patients with long-term disease control and those with symptomatic multiple myeloma, with a trend to cell count recovering in the former group of patients towards levels similar to those found in healthy adults. In summary, our results indicate that multiple myeloma patients with long-term disease control have a constellation of unique immune changes favoring both immune cytotoxicity and recovery of B-cell production and homing, suggesting improved immune surveillance. PMID:22773604

  7. Theoretical and experimental investigation of multispectral photoacoustic osteoporosis detection method

    NASA Astrophysics Data System (ADS)

    Steinberg, Idan; Hershkovich, Hadas Sara; Gannot, Israel; Eyal, Avishay

    2014-03-01

    Osteoporosis is a widespread disorder, which has a catastrophic impact on patients lives and overwhelming related to healthcare costs. Recently, we proposed a multispectral photoacoustic technique for early detection of osteoporosis. Such technique has great advantages over pure ultrasonic or optical methods as it allows the deduction of both bone functionality from the bone absorption spectrum and bone resistance to fracture from the characteristics of the ultrasound propagation. We demonstrated the propagation of multiple acoustic modes in animal bones in-vitro. To further investigate the effects of multiple wavelength excitations and of induced osteoporosis on the PA signal a multispectral photoacoustic system is presented. The experimental investigation is based on measuring the interference of multiple acoustic modes. The performance of the system is evaluated and a simple two mode theoretical model is fitted to the measured phase signals. The results show that such PA technique is accurate and repeatable. Then a multiple wavelength excitation is tested. It is shown that the PA response due to different excitation wavelengths revels that absorption by the different bone constitutes has a profound effect on the mode generation. The PA response is measured in single wavelength before and after induced osteoporosis. Results show that induced osteoporosis alters the measured amplitude and phase in a consistent manner which allows the detection of the onset of osteoporosis. These results suggest that a complete characterization of the bone over a region of both acoustic and optical frequencies might be used as a powerful tool for in-vivo bone evaluation.

  8. Extending Rest between Unloading Cycles Does Not Enhance Bone's Long-Term Recovery.

    PubMed

    Manske, Sarah L; Vijayaraghavan, Surabhi; Tuthill, Alyssa; Brutus, Olivier; Yang, Jie; Gupta, Shikha; Judex, Stefan

    2015-10-01

    Multiple exposures to unloading are overall more deleterious to the skeleton than is single exposure, although the rate of bone loss may diminish during multiple exposures. Here, we determined whether extending the reambulation (RA) period from 3 wk to 9 wk will mitigate bone loss during three distinct 3-wk hindlimb unloading (HLU) periods and enhance long-term recovery in skeletally mature, genetically heterogeneous mice. Female adult mice (4 months old) were subjected to three cycles of 3-wk unloading with 3-wk or 9-wk RA periods in between. Mice were terminated 46 wk after initiation of the study. Outcome measures for the distal femur were determined from multiple in vivo micro-computed tomography scans and finite-element modeling. Tripling RA duration enhanced trabecular bone recovery in between HLU periods but also increased the rate of loss of bone volume fraction (bone volume/tissue volume) and metaphyseal stiffness during subsequent HLU periods. With shorter RA periods, the magnitude of bone loss decreased by the second HLU period, whereas this decrease was delayed with longer RA periods. RA duration did not affect long-term recovery 46 wk after the start of the experimental protocol, as both HLU groups had similar levels of bone volume/tissue volume, cortical area, and stiffness. Individual cage activity levels were unrelated to the magnitude of bone loss during HLU or bone recovery during RA. These data suggest that extending recovery duration between periods of unloading may provide temporary benefits but is an ineffective long-term strategy for combating the devastation of trabecular morphology and mechanics, as temporarily enhanced recovery is largely cancelled out by greater susceptibility to unloading. They also emphasize that cortical bone is more amenable to long-term recovery than is trabecular bone.

  9. Bone x-ray

    MedlinePlus

    ... different views of the bone may be uncomfortable. Why the Test is Performed A bone x-ray ... neoplasia (MEN) II Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Paget's disease Primary hyperparathyroidism Rickets Risks There ...

  10. Apo2L/TRAIL Inhibits Tumor Growth and Bone Destruction in a Murine Model of Multiple Myeloma

    PubMed Central

    Labrinidis, Agatha; Diamond, Peter; Martin, Sally; Hay, Shelley; Liapis, Vasilios; Zinonos, Irene; Sims, Natalie A.; Atkins, Gerald J.; Vincent, Cristina; Ponomarev, Vladimir; Findlay, David M.; Zannettino, Andrew C.W.; Evdokiou, Andreas

    2017-01-01

    Purpose Multiple myeloma is an incurable disease, for which the development of new therapeutic approaches is required. Here, we report on the efficacy of recombinant soluble Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to inhibit tumor progression and bone destruction in a xenogeneic model of human multiple myeloma. Experimental Design We established a mouse model of myeloma, in which Apo2L/TRAIL-sensitive RPMI-8226 or KMS-11 cells, tagged with a triple reporter gene construct (NES-HSV-TK/GFP/Luc), were transplanted directly into the tibial marrow cavity of nude mice. Tumor burden was monitored progressively by bioluminescence imaging and the development of myeloma-induced osteolysis was measured using high resolution in vivo micro-computed tomography. Results Tumor burden increased progressively in the tibial marrow cavity of mice transplanted with Apo2L/TRAIL-sensitive RPMI-8226 or KMS-11 cells associated with extensive osteolysis directly in the area of cancer cell transplantation. Treatment of mice with recombinant soluble Apo2L/TRAIL reduced myeloma burden in the bone marrow cavity and significantly protected against myeloma-induced osteolysis. The protective effects of Apo2L/TRAIL treatment on bone were mediated by the direct apoptotic actions of Apo2L/TRAIL on myeloma cells within the bone microenvironment. Conclusions This is the first in vivo study that investigates the efficacy of recombinant Apo2L/TRAIL on myeloma burden within the bone microenvironment and associated myeloma-induced bone destruction. Our findings that recombinant soluble Apo2L/TRAIL reduces myeloma burden within the bone microenvironment and protects the bone from myeloma-induced bone destruction argue against an inhibitory role of osteoprotegerin in Apo2L/TRAIL-induced apoptosis in vivo and highlight the need to clinically evaluate Apo2L/TRAIL in patients with multiple myeloma. PMID:19276263

  11. [Multiple myeloma with significant multifocal osteolysis in a dog without a detectible gammopathy].

    PubMed

    Souchon, F; Koch, A; Sohns, A

    2013-01-01

    Description of a variant of multiple myeloma in a dog lacking the gammopathy normally associated with this type of neoplasm. A Border Collie mongrel was presented with symptoms of progressive hind-leg weakness, lethargy and tiredness, which had started to appear 6 weeks previously. Radiographic examination showed small osteolytic areas in the spinal column, but also diffuse small areas of increased opacity as well as evidence of decreased bone density in the pelvis and of both femoral necks. Moderate regenerative anaemia, hypogammopathy and hypercalcaemia were diagnosed. Computed tomography scans displayed multifocal osteolysis and bone destruction in the skull, spinal column, scapulae, proximal humeri, pelvis and femoral necks. H&E staining of the biopsies showed bone destruction and monomorphic plasmacyotid cell populations, causing infiltrative bone marrow lesions and osteolysis. In many areas neoplastic plasma cell infiltration of the bone marrow was 70% and in some areas reached 100%. The diagnosis was non-secretory multiple myeloma without apparent secretion of paraproteins into the blood.

  12. Erythroblast apoptosis and microenvironmental iron restriction trigger anemia in the VK*MYC model of multiple myeloma

    PubMed Central

    Bordini, Jessica; Bertilaccio, Maria Teresa Sabrina; Ponzoni, Maurilio; Fermo, Isabella; Chesi, Marta; Bergsagel, P. Leif; Camaschella, Clara; Campanella, Alessandro

    2015-01-01

    Multiple myeloma is a malignant disorder characterized by bone marrow proliferation of plasma cells and by overproduction of monoclonal immunoglobulin detectable in the sera (M-spike). Anemia is a common complication of multiple myeloma, but the underlying pathophysiological mechanisms have not been completely elucidated. We aimed to identify the different determinants of anemia using the Vk*MYC mouse, which spontaneously develops an indolent bone marrow localized disease with aging. Affected Vk*MYC mice develop a mild normochromic normocytic anemia. We excluded the possibility that anemia results from defective erythropoietin production, inflammation or increased hepcidin expression. Mature erythroid precursors are reduced in Vk*MYC bone marrow compared with wild-type. Malignant plasma cells express the apoptogenic receptor Fas ligand and, accordingly, active caspase 8 is detected in maturing erythroblasts. Systemic iron homeostasis is not compromised in Vk*MYC animals, but high expression of the iron importer CD71 by bone marrow plasma cells and iron accumulation in bone marrow macrophages suggest that iron competition takes place in the local multiple myeloma microenvironment, which might contribute to anemia. In conclusion, the mild anemia of the Vk*MYC model is mainly related to the local effect of the bone marrow malignant clone in the absence of an overt inflammatory status. We suggest that this reproduces the initial events triggering anemia in patients. PMID:25715406

  13. Erythroblast apoptosis and microenvironmental iron restriction trigger anemia in the VK*MYC model of multiple myeloma.

    PubMed

    Bordini, Jessica; Bertilaccio, Maria Teresa Sabrina; Ponzoni, Maurilio; Fermo, Isabella; Chesi, Marta; Bergsagel, P Leif; Camaschella, Clara; Campanella, Alessandro

    2015-06-01

    Multiple myeloma is a malignant disorder characterized by bone marrow proliferation of plasma cells and by overproduction of monoclonal immunoglobulin detectable in the sera (M-spike). Anemia is a common complication of multiple myeloma, but the underlying pathophysiological mechanisms have not been completely elucidated. We aimed to identify the different determinants of anemia using the Vk*MYC mouse, which spontaneously develops an indolent bone marrow localized disease with aging. Affected Vk*MYC mice develop a mild normochromic normocytic anemia. We excluded the possibility that anemia results from defective erythropoietin production, inflammation or increased hepcidin expression. Mature erythroid precursors are reduced in Vk*MYC bone marrow compared with wild-type. Malignant plasma cells express the apoptogenic receptor Fas ligand and, accordingly, active caspase 8 is detected in maturing erythroblasts. Systemic iron homeostasis is not compromised in Vk*MYC animals, but high expression of the iron importer CD71 by bone marrow plasma cells and iron accumulation in bone marrow macrophages suggest that iron competition takes place in the local multiple myeloma microenvironment, which might contribute to anemia. In conclusion, the mild anemia of the Vk*MYC model is mainly related to the local effect of the bone marrow malignant clone in the absence of an overt inflammatory status. We suggest that this reproduces the initial events triggering anemia in patients. Copyright© Ferrata Storti Foundation.

  14. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer.

    PubMed

    Body, Jean-Jacques; Facon, Thierry; Coleman, Robert E; Lipton, Allan; Geurs, Filip; Fan, Michelle; Holloway, Donna; Peterson, Mark C; Bekker, Pirow J

    2006-02-15

    Receptor activator of nuclear factor-kappaB ligand (RANKL) is essential for the differentiation, function, and survival of osteoclasts, which play a key role in establishment and propagation of skeletal disease in patients with multiple myeloma or bone metastases as well as many other skeletal diseases. Denosumab (AMG 162), a fully human monoclonal antibody to RANKL, was developed to treat patients with skeletal diseases. This was a randomized, double-blind, double-dummy, active-controlled, multicenter study to determine the safety and efficacy of denosumab in patients with breast cancer (n = 29) or multiple myeloma (n = 25) with radiologically confirmed bone lesions. Patients received a single dose of either denosumab (0.1, 0.3, 1.0, or 3.0 mg/kg s.c.) or pamidronate (90 mg i.v.). Bone antiresorptive effect was assessed by changes in urinary and serum N-telopeptide levels. Pharmacokinetics of denosumab also were assessed. Following a single s.c. dose of denosumab, levels of urinary and serum N-telopeptide decreased within 1 day, and this decrease lasted through 84 days at the higher denosumab doses. Pamidronate also decreased bone turnover, but the effect diminished progressively through follow-up. Denosumab injections were well tolerated. Mean half-lives of denosumab were 33.3 and 46.3 days for the two highest dosages. A single s.c. dose of denosumab given to patients with multiple myeloma or bone metastases from breast cancer was well tolerated and reduced bone resorption for at least 84 days. The decrease in bone turnover markers was similar in magnitude but more sustained than with i.v. pamidronate.

  15. Current practice of antibiotic prophylaxis for surgical fixation of closed long bone fractures: a survey of 297 members of the Orthopaedic Trauma Association.

    PubMed

    Gans, Itai; Jain, Amit; Sirisreetreerux, Norachart; Haut, Elliott R; Hasenboehler, Erik A

    2017-01-01

    The risk of postoperative surgical site infection after long bone fracture fixation can be decreased with appropriate antibiotic use. However, there is no agreement on the superiority of a single- or multiple-dose perioperative regimen of antibiotic prophylaxis. The purpose of this study is to determine the following: 1) What are the current practice patterns of orthopaedic trauma surgeons in using perioperative antibiotics for closed long bone fractures? 2) What is the current knowledge of published antibiotic prophylaxis guidelines among orthopaedic trauma surgeons? 3) Are orthopaedic surgeons willing to change their current practices? A questionnaire was distributed via email between September and December 2015 to 955 Orthopaedic Trauma Association members, of whom 297 (31%) responded. Most surgeons (96%) use cefazolin as first-line infection prophylaxis. Fifty-nine percent used a multiple-dose antibiotic regimen, 39% used a single-dose regimen, and 2% varied this decision according to patient factors. Thirty-six percent said they were unfamiliar with Centers for Disease Control and Prevention (CDC) antibiotic prophylaxis guidelines; only 30% were able to select the correct CDC recommendation from a multiple-choice list. However, 44% of surgeons said they followed CDC recommendations. Fifty-six percent answered that a single-dose antibiotic prophylaxis regimen was not inferior to a multiple-dose regimen. If a level-I study comparing a single preoperative dose versus multiple perioperative antibiotic dosing regimen for treatment of closed long bone fractures were published, most respondents (64%) said they would fully follow these guidelines, and 22% said they would partially change their practice to follow these guidelines. There is heterogeneity in the use of single- versus multiple-dose antibiotic prophylaxis for surgical repair of closed long bone fractures. Many surgeons were unsure of current evidence-based recommendations regarding perioperative antibiotic use. Most respondents indicated they would be receptive to high-level evidence regarding the single- versus multiple-dose perioperative prophylactic antibiotics for the treatment of closed long bone fractures.

  16. Optimization of multiple quality characteristics in bone drilling using grey relational analysis

    PubMed Central

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2014-01-01

    Purpose Drilling of bone is common during bone fracture treatment to fix the fractured parts with screws wires or plates. Minimally invasive drilling of the bone has a great demand as it helps in better fixation and quick healing of the broken bones. The purpose of the present investigation is to determine the optimum cutting condition for the minimization of the temperature, force and surface roughness simultaneously during bone drilling. Method In this study, drilling experiments have been performed on bovine bone with different conditions of feed rate and drill rotational speed using full factorial design. Optimal level of the drilling parameters is determined by the grey relational grade (GRG) obtained from the GRA as the performance index of multiple quality characteristics. The effect of each drilling parameter on GRG is determined using analysis of variance (ANOVA) and the results obtained are validated by confirmation experiment. Results Grey relational analysis showed that the investigation with feed rate of 40 mm/min and spindle speed of 500 rpm has the highest grey relational grade and is recommended setting for minimum temperature, force and surface roughness simultaneously during bone drilling. Feed rate has the highest contribution (59.49%) on the multiple performance characteristics followed by the spindle speed (37.69%) as obtained from ANOVA analysis. Conclusions The use of grey relational analysis will simplify the complex process of optimization of the multi response characteristics in bone drilling by converting them into a single grey relational grade. The use of the above suggested methodology can greatly minimize the bone tissue injury during drilling. PMID:25829751

  17. Optimization of multiple quality characteristics in bone drilling using grey relational analysis.

    PubMed

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2015-03-01

    Drilling of bone is common during bone fracture treatment to fix the fractured parts with screws wires or plates. Minimally invasive drilling of the bone has a great demand as it helps in better fixation and quick healing of the broken bones. The purpose of the present investigation is to determine the optimum cutting condition for the minimization of the temperature, force and surface roughness simultaneously during bone drilling. In this study, drilling experiments have been performed on bovine bone with different conditions of feed rate and drill rotational speed using full factorial design. Optimal level of the drilling parameters is determined by the grey relational grade (GRG) obtained from the GRA as the performance index of multiple quality characteristics. The effect of each drilling parameter on GRG is determined using analysis of variance (ANOVA) and the results obtained are validated by confirmation experiment. Grey relational analysis showed that the investigation with feed rate of 40 mm/min and spindle speed of 500 rpm has the highest grey relational grade and is recommended setting for minimum temperature, force and surface roughness simultaneously during bone drilling. Feed rate has the highest contribution (59.49%) on the multiple performance characteristics followed by the spindle speed (37.69%) as obtained from ANOVA analysis. The use of grey relational analysis will simplify the complex process of optimization of the multi response characteristics in bone drilling by converting them into a single grey relational grade. The use of the above suggested methodology can greatly minimize the bone tissue injury during drilling.

  18. [Adjuvant cryosurgery in the treatment of unicameral bone cysts].

    PubMed

    Tena-Sanabria, Mario Edgar; Hernández-Hernández, Melissa Jesús; Tena-González, Mario Edgar; Mejía-Aranguré, Juan Manuel

    2014-01-01

    Multiple treatments have been used for the unicameral bone cyst lesion, such as steroid application, multiple perforations, bone curettages, partial resection and bone grafting. The purpose of this study was to describe the evolution of children with unicameral bone cyst who were treated with cryosurgery as coadjuvant therapy. Cross-sectional descriptive study over the period between January 2001 and December 2006. Twelve patients were studied and treated at the Pediatric Orthopedics Department of the Pediatrics Hospital at the Centro Médico Nacional Siglo XXI. Twelve patients were analyzed; all of them were treated with curettage, cryotherapy and bone grafting. In 7 patients, the lesions were located in the humerus (58.3 %), in 3 in the tibia (25 %), in 1 in the ilio-ischiopubic branch (8.3 %), and in 1 in the clavicle (8.3 %). Follow-up ranged from 12 to 36 months. Bone healing required 2 to 3 months after the surgery; the response was complete in 9 (75 %) patients and partial in 3 (25 %). Function was restored in all cases, without recurrences. Cryosurgery as an adjuvant treatment and autologous or homologous bone grafting prevented local recurrence of unicameral bone cyst lesions, favored bone healing and allowed for a full range of motion functionality without complications.

  19. Multiple myeloma: diagnosis and treatment.

    PubMed

    Nau, Konrad C; Lewis, William D

    2008-10-01

    Multiple myeloma, the most common bone malignancy, is occurring with increasing frequency in older persons. Typical symptoms are bone pain, malaise, anemia, renal insufficiency, and hypercalcemia. Incidental discovery on comprehensive laboratory panels is common. The disease is diagnosed with serum or urine protein electrophoresis or immunofixation and bone marrow aspirate analysis. Skeletal radiographs are important in staging multiple myeloma and revealing lytic lesions, vertebral compression fractures, and osteoporosis. Magnetic resonance imaging and positron emission tomography or computed tomography are emerging as useful tools in the evaluation of patients with myeloma; magnetic resonance imaging is preferred for evaluating acute spinal compression. Nuclear bone scans and dual energy x-ray absorptiometry have no role in the diagnosis and staging of myeloma. The differential diagnosis of monoclonal gammopathies includes monoclonal gammopathy of uncertain significance, smoldering (asymptomatic) and symptomatic multiple myeloma, amyloidosis, B-cell non-Hodgkin lymphoma, Waldenström macroglobulinemia, and rare plasma cell leukemia and heavy chain diseases. Patients with monoclonal gammopathy of uncertain significance or smoldering multiple myeloma should be followed closely, but not treated. Symptomatic multiple myeloma is treated with chemotherapy followed by autologous stem cell transplantation, if possible. Melphalan, prednisolone, dexamethasone, vincristine, doxorubicin, bortezomib, and thalidomide and its analogue lenalidomide have been used successfully. It is important that family physicians recognize and appropriately treat multiple myeloma complications. Bone pain is treated with opiates, bisphosphonates, radiotherapy, vertebroplasty, or kyphoplasty; nephrotoxic nonsteroidal anti-inflammatory drugs should be avoided. Hypercalcemia is treated with isotonic saline infusions, steroids, furosemide, or bisphosphonates. Because of susceptibility to infections, patients require broad-spectrum antibiotics for febrile illness and immunization against influenza, pneumococcus, and Haemophilus influenzae B. Five-year survival rates approach 33 percent, and the median survival rate is 33 months.

  20. Vascularized Bone Tissue Engineering: Approaches for Potential Improvement

    PubMed Central

    Nguyen, Lonnissa H.; Annabi, Nasim; Nikkhah, Mehdi; Bae, Hojae; Binan, Loïc; Park, Sangwon; Kang, Yunqing

    2012-01-01

    Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes. PMID:22765012

  1. Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma

    PubMed Central

    Mohanty, Sindhu T.; Seckinger, Anja; Terry, Rachael L.; Pettitt, Jessica A.; Simic, Marija K.; Le, Lawrence M. T.; Kramer, Ina; Falank, Carolyne; Fairfield, Heather; Ghobrial, Irene M.; Baldock, Paul A.; Little, David G.; Kneissel, Michaela; Vanderkerken, Karin; Bassett, J. H. Duncan; Williams, Graham R.; Oyajobi, Babatunde O.; Hose, Dirk

    2017-01-01

    Multiple myeloma (MM) is a plasma cell cancer that develops in the skeleton causing profound bone destruction and fractures. The bone disease is mediated by increased osteoclastic bone resorption and suppressed bone formation. Bisphosphonates used for treatment inhibit bone resorption and prevent bone loss but fail to influence bone formation and do not replace lost bone, so patients continue to fracture. Stimulating bone formation to increase bone mass and fracture resistance is a priority; however, targeting tumor-derived modulators of bone formation has had limited success. Sclerostin is an osteocyte-specific Wnt antagonist that inhibits bone formation. We hypothesized that inhibiting sclerostin would prevent development of bone disease and increase resistance to fracture in MM. Sclerostin was expressed in osteocytes from bones from naive and myeloma-bearing mice. In contrast, sclerostin was not expressed by plasma cells from 630 patients with myeloma or 54 myeloma cell lines. Mice injected with 5TGM1-eGFP, 5T2MM, or MM1.S myeloma cells demonstrated significant bone loss, which was associated with a decrease in fracture resistance in the vertebrae. Treatment with anti-sclerostin antibody increased osteoblast numbers and bone formation rate but did not inhibit bone resorption or reduce tumor burden. Treatment with anti-sclerostin antibody prevented myeloma-induced bone loss, reduced osteolytic bone lesions, and increased fracture resistance. Treatment with anti-sclerostin antibody and zoledronic acid combined increased bone mass and fracture resistance when compared with treatment with zoledronic acid alone. This study defines a therapeutic strategy superior to the current standard of care that will reduce fractures for patients with MM. PMID:28515094

  2. Palaeobiological implications of the bone histology of Pterodaustro guinazui.

    PubMed

    Chinsamy, Anusuya; Codorniú, Laura; Chiappe, Luis

    2009-09-01

    This study provides a comprehensive investigation of the bone microstructure of multiple bones of the Early Cretaceous filter-feeder, Pterodaustro guinazui, from the Largacito Formation of Central Argentina. We provide information regarding the bone histology of multiple elements from single skeletons, as well as a variety of bones from different individuals. In addition, we analysed changes in bone microstructure through ontogeny in growth series of several long bones of the taxon. Our investigation of skeletal and ontogenetic variation in Pterodaustro gives insights into the developmental growth dynamics of this unusual ctenochasmatid pterodactyloid from early ontogeny through to adulthood and also provides information pertaining to histological variability within and between bones of individuals. This study also documents the presence of what appears to be medullary bone tissue within the medullary cavity of a large femur of Pterodaustro. This suggests that, like birds, reproductively active female pterosaurs may have deposited a special bone tissue (medullary bone) to cope with the demand of calcium during eggshelling. Our study supports the hypothesis that small Jurassic pterodactyloids took several years to reach adult body size. More specifically, we provide data that suggests that Pterodaustro attained sexual maturity at about 2 years of age, and continued to grow for a further 3-4 years doubling in size before attaining skeletal maturity. (c) 2009 Wiley-Liss, Inc.

  3. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    USDA-ARS?s Scientific Manuscript database

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...

  4. Successful correction of tibial bone deformity through multiple surgical procedures, liquid nitrogen-pretreated bone tumor autograft, three-dimensional external fixation, and internal fixation in a patient with primary osteosarcoma: a case report.

    PubMed

    Takeuchi, Akihiko; Yamamoto, Norio; Shirai, Toshiharu; Nishida, Hideji; Hayashi, Katsuhiro; Watanabe, Koji; Miwa, Shinji; Tsuchiya, Hiroyuki

    2015-12-07

    In a previous report, we described a method of reconstruction using tumor-bearing autograft treated by liquid nitrogen for malignant bone tumor. Here we present the first case of bone deformity correction following a tumor-bearing frozen autograft via three-dimensional computerized reconstruction after multiple surgeries. A 16-year-old female student presented with pain in the left lower leg and was diagnosed with a low-grade central tibial osteosarcoma. Surgical bone reconstruction was performed using a tumor-bearing frozen autograft. Bone union was achieved at 7 months after the first surgical procedure. However, local tumor recurrence and lung metastases occurred 2 years later, at which time a second surgical procedure was performed. Five years later, the patient developed a 19° varus deformity and underwent a third surgical procedure, during which an osteotomy was performed using the Taylor Spatial Frame three-dimensional external fixation technique. A fourth corrective surgical procedure was performed in which internal fixation was achieved with a locking plate. Two years later, and 10 years after the initial diagnosis of tibial osteosarcoma, the bone deformity was completely corrected, and the patient's limb function was good. We present the first report in which a bone deformity due to a primary osteosarcoma was corrected using a tumor-bearing frozen autograft, followed by multiple corrective surgical procedures that included osteotomy, three-dimensional external fixation, and internal fixation.

  5. Multiple Small Diameter Drillings Increase Femoral Neck Stability Compared with Single Large Diameter Femoral Head Core Decompression Technique for Avascular Necrosis of the Femoral Head.

    PubMed

    Brown, Philip J; Mannava, Sandeep; Seyler, Thorsten M; Plate, Johannes F; Van Sikes, Charles; Stitzel, Joel D; Lang, Jason E

    2016-10-26

    Femoral head core decompression is an efficacious joint-preserving procedure for treatment of early stage avascular necrosis. However, postoperative fractures have been described which may be related to the decompression technique used. Femoral head decompressions were performed on 12 matched human cadaveric femora comparing large 8mm single bore versus multiple 3mm small drilling techniques. Ultimate failure strength of the femora was tested using a servo-hydraulic material testing system. Ultimate load to failure was compared between the different decompression techniques using two paired ANCOVA linear regression models. Prior to biomechanical testing and after the intervention, volumetric bone mineral density was determined using quantitative computed tomography to account for variation between cadaveric samples and to assess the amount of bone disruption by the core decompression. Core decompression, using the small diameter bore and multiple drilling technique, withstood significantly greater load prior to failure compared with the single large bore technique after adjustment for bone mineral density (p< 0.05). The 8mm single bore technique removed a significantly larger volume of bone compared to the 3mm multiple drilling technique (p< 0.001). However, total fracture energy was similar between the two core decompression techniques. When considering core decompression for the treatment of early stage avascular necrosis, the multiple small bore technique removed less bone volume, thereby potentially leading to higher load to failure.

  6. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  7. Synchronous occurrence of prostate carcinoma and multiple myeloma: a case report.

    PubMed

    Sehgal, Tushar; Sharma, Sudha; Naseem, Shano; Varma, Neelam; Das, Ashim; Sharma, S C

    2014-09-01

    We describe a rare case of metastatic prostate cancer to bone marrow and synchronous multiple myeloma as the second malignant disease. Various diagnostic procedures, including cytomorphology and immunohistochemistry analyses together contributed to the detection of metastasis of prostate cancer and synchronous plasma cell proliferation in the bone marrow. The association between these two disorders is poorly understood however, some studies show that bone marrow microenvironment may play a crucial role. The need for further research in this regard is required to unfold this fascinating association.

  8. Bone Marrow Diseases - Multiple Languages

    MedlinePlus

    ... Marrow Biopsy - العربية (Arabic) Bilingual PDF Health Information Translations Chinese, Simplified (Mandarin dialect) (简体中文) Expand Section Bone ... Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Chinese, Traditional (Cantonese dialect) (繁體中文) Expand Section Bone ...

  9. [Secondary osteoporosis or secondary contributors to bone loss in fracture. Endocrinological aspects of bone metabolism].

    PubMed

    Fukumoto, Seiji

    2013-09-01

    Bone works to play essential roles in mineral metabolism and hematopoiesis as well as to support our body and protect internal organs as a hard tissue. In order to accomplish these multiple functions, bone needs to communicate with other organs. Endocrine system functions as one of the communication pathways between bone and other organs. It has been known that bone is a target organ of many hormones. In addition, it has been established that bone itself produces hormones and works as an endocrine organ.

  10. Bone matrix, cellularity, and structural changes in a rat model with high-turnover osteoporosis induced by combined ovariectomy and a multiple-deficient diet.

    PubMed

    Govindarajan, Parameswari; Böcker, Wolfgang; El Khassawna, Thaqif; Kampschulte, Marian; Schlewitz, Gudrun; Huerter, Britta; Sommer, Ursula; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Szalay, Gabor; Wenisch, Sabine; Lips, Katrin S; Schnettler, Reinhard; Langheinrich, Alexander; Heiss, Christian

    2014-03-01

    In estrogen-deficient, postmenopausal women, vitamin D and calcium deficiency increase osteoporotic fracture risk. Therefore, a new rat model of combined ovariectomy and multiple-deficient diet was established to mimic human postmenopausal osteoporotic conditions under nutrient deficiency. Sprague-Dawley rats were untreated (control), laparatomized (sham), or ovariectomized and received a deficient diet (OVX-Diet). Multiple analyses involving structure (micro-computed tomography and biomechanics), cellularity (osteoblasts and osteoclasts), bone matrix (mRNA expression and IHC), and mineralization were investigated for a detailed characterization of osteoporosis. The study involved long-term observation up to 14 months (M14) after laparotomy or after OVX-Diet, with intermediate time points at M3 and M12. OVX-Diet rats showed enhanced osteoblastogenesis and osteoclastogenesis. Bone matrix markers (biglycan, COL1A1, tenascin C, and fibronectin) and low-density lipoprotein-5 (bone mass marker) were down-regulated at M12 in OVX-Diet rats. However, up-regulation of matrix markers and existence of unmineralized osteoid were seen at M3 and M14. Osteoclast markers (matrix metallopeptidase 9 and cathepsin K) were up-regulated at M14. Micro-computed tomography and biomechanics confirmed bone fragility of OVX-Diet rats, and quantitative RT-PCR revealed a higher turnover rate in the humerus than in lumbar vertebrae, suggesting enhanced bone formation and resorption in OVX-Diet rats. Such bone remodeling caused disturbed bone mineralization and severe bone loss, as reported in patients with high-turnover, postmenopausal osteoporosis. Therefore, this rat model may serve as a suitable tool to evaluate osteoporotic drugs and new biomaterials or fracture implants. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. The Efficacy of Cyclic Injection of Bone Morphogenetic Protein-2 in Large-Scale Calvarial Bone Defects.

    PubMed

    Choi, Jin Mi; Jeong, Woo Shik; Park, Eun Jung; Choi, Jong Woo

    2017-03-01

    Bone morphogenetic protein-2 (BMP-2) appears to be one of the most potent growth factors thus far studied. However, recent publications on the clinical application of BMP-2 revealed that its correct control is the paramount issue in clinical practice. For improving BMP-2 delivery, the cyclic administration might be an alternative. Accordingly, the authors cyclically injected BMP-2 in a cyclic injection model of large cranial defects to maintain the proper dosage during the bone healing process. A 10-mm diameter calvarial bone defect was produced using a round drill in 8-week-old Sprague-Dawley rats. Silk-hydroxyapatite scaffolds soaked in the appropriate concentration of BMP-2 were implanted into the defect. The animals were split into 4 single-injection groups and 3 multiple-injection groups; the latter groups received weekly subcutaneous injections of BMP-2 solution (1, 5, and 10 μg/mL) for 4 weeks, whereas the former groups received a single injection of BMP-2 at these concentrations. Each rat underwent computed tomography at 8 weeks. In terms of total volumes of the new bone, the 5 μg/mL multiple-injection BMP-2 group had significantly greater increases in bone volume than the single-injection groups. In terms of bone thickness, the multiple-injection groups had better outcomes than the single-injection groups. Thus, the cyclic injection protocol restored the original thickness without overgrowth. Cyclic injection of BMP-2 permits more accurate dosage control than single injection and improves thickness and dense bone regeneration. Therefore, it may represent a promising approach for future clinical trials. Further investigation using a greater number of animals is required.

  12. Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats

    PubMed Central

    de Bakker, Chantal M. J.; Altman-Singles, Allison R.; Li, Yihan; Tseng, Wei-Ju; Li, Connie; Liu, X. Sherry

    2017-01-01

    Pregnancy, lactation, and weaning result in dramatic changes in maternal calcium metabolism. In particular, the increased calcium demand during lactation causes a substantial degree of maternal bone loss. This reproductive bone loss has been suggested to be largely reversible, as multiple clinical studies have found that parity and lactation history have no adverse effect on post-menopausal fracture risk. However, the precise effects of pregnancy, lactation, and post-weaning recovery on maternal bone structure are not well understood. Our study aimed to address this question by longitudinally tracking changes in trabecular and cortical bone microarchitecture at the proximal tibia in rats throughout three cycles of pregnancy, lactation, and post-weaning using in vivo μCT. We found that the trabecular thickness underwent a reversible deterioration during pregnancy and lactation, which was fully recovered after weaning, while other parameters of trabecular microarchitecture (including trabecular number, spacing, connectivity density, and structure model index) underwent a more permanent deterioration which recovered minimally. Thus, pregnancy and lactation resulted in both transient and long-lasting alterations in trabecular microstructure. In the meantime, multiple reproductive cycles appeared to improve the robustness of cortical bone (resulting in an elevated cortical area and polar moment of inertia), as well as increase the proportion of the total load carried by the cortical bone at the proximal tibia. Taken together, changes in the cortical and trabecular compartments suggest that while rat tibial trabecular bone appears to be highly involved in maintaining calcium homeostasis during female reproduction, cortical bone adapts to increase its load-bearing capacity, allowing the overall mechanical function of the tibia to be maintained. PMID:28109138

  13. Constitutive activation of p38 MAPK in tumor cells contributes to osteolytic bone lesions in multiple myeloma

    PubMed Central

    Yang, Jing; He, Jin; Wang, Ji; Cao, Yabing; Ling, Jianhua; Qian, Jianfei; Lu, Yong; Li, Haiyan; Zheng, Yuhuan; Lan, Yongsheng; Hong, Sungyoul; Matthews, Jairo; Starbuck, Michael W; Navone, Nora M; Orlowski, Robert Z.; Lin, Pei; Kwak, Larry W.; Yi, Qing

    2012-01-01

    Bone destruction is a hallmark of multiple myeloma and affects more than 80% of patients. However, current therapy is unable to completely cure and/or prevent bone lesions. Although it is accepted that myeloma cells mediate bone destruction by inhibition of osteoblasts and activation of osteoclasts, the underlying mechanism is still poorly understood. This study demonstrates that constitutive activation of p38 mitogen-activated protein kinase in myeloma cells is responsible for myeloma-induced osteolysis. Our results show that p38 is constitutively activated in most myeloma cell lines and primary myeloma cells from patients. Myeloma cells with high/detectable p38 activity, but not those with low/undetectable p38 activity, injected into SCID or SCID-hu mice caused bone destruction. Inhibition or knockdown of p38 in human myeloma reduced or prevented myeloma-induced osteolytic bone lesions without affecting tumor growth, survival, or homing to bone. Mechanistic studies showed that myeloma cell p38 activity inhibited osteoblastogenesis and bone formation and activated osteoclastogenesis and bone resorption in myeloma-bearing SCID mice. This study elucidates a novel molecular mechanism—sactivation of p38 signaling in myeloma cells—by which myeloma cells induce osteolytic bone lesions and indicates that targeting myeloma cell p38 may be a viable approach to treating or preventing myeloma bone disease. PMID:22425892

  14. High-dose bone morphogenetic protein-induced ectopic abdomen bone growth.

    PubMed

    Deutsch, Harel

    2010-02-01

    Infuse [bone morphogenetic protein (BMP)] is increasingly used in spinal fusion surgery. The authors report a rare complication of BMP use. This is a case report. A 55-year-old male underwent a thoracic T8 to the pelvis fusion for degenerative lumbar disc disease and pseudarthrosis at another institution. The procedure involved an anterior and posterior approach with the use of multiple units of BMP. The patient presented to our institution with complaints of weight loss, pain, tenderness, and increasing solid growth in the left lower quadrant several months after his surgery. A computed tomography revealed ectopic bone growth in the retroperitoneal area and pelvis contiguous to the anterior lumbar exposure. The anterior wound was re-explored, and a large sheet of ectopic bone was removed from the retroperitoneal space. We report a rare case of extraspinal ectopic bone growth because of the use of multiple packages of BMP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. [Pregnancy and lactation are not risk factors for osteoporosis or fractures].

    PubMed

    Karlsson, Magnus K; Ahlborg, Henrik G; Karlsson, Caroline

    Observational and case control studies infer that a pregnancy and a period of lactation are followed by loss in bone mass of up to 5%. The reason for this loss is virtually impossible to conclude as so many factors known to influence the bone mass undergo changes during a pregnancy and lactation. The increased calcium demand, changed nutritional habits, reduced smoking and alcohol consumption seen in many women during these periods, the changes in body weight and fat content, the changed level of physical activity and the changed levels of hormones with potential to influence the bone metabolism could all influence the bone mass. Most studies also report that the deficit in "bone mass" normalises after weaning. Multiple pregnancies and long total duration of lactation can not be regarded as risk factors for osteoporosis and fragility fractures as most reports indicate that women with multiple pregnancies have similar or higher bone mass and similar or lower fracture incidence than their peers with no children.

  16. Total bone calcium in normal women: effect of age and menopause status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, J.C.; Goldgar, D.; Moy, A.

    1987-12-01

    Bone density in different regions of the skeleton was measured in 392 normal women aged 20-80 years by dual photon absorpiometry. In premenopausal women, aged 25-50 years, multiple regression analysis of regional bone density on age, height, and weight showed a small significant decrease in total bone density (less than 0.01) but no significant change in other regions of the skeleton. In postmenopausal women there were highly significant decreases in all regions of the skeleton (p less than 0.001), and bone density in these areas decreased as a logarithmic function of years since menopause. Based on multiple regression analyses, themore » decrease in spine density and total bone calcium was 2.5-3.0 times greater in the 25 years after menopause than the 25 years before menopause. The largest change, however, occurred in the first five years after menopause. During this time the estimated annual change in spine density and total bone calcium was about 10 times greater than that in the premenopausal period. These results demonstrate the important effect of the menopause in determining bone mass in later life.« less

  17. Patient-specific 3D microfluidic tissue model for multiple myeloma.

    PubMed

    Zhang, Wenting; Lee, Woo Y; Siegel, David S; Tolias, Peter; Zilberberg, Jenny

    2014-08-01

    In vitro culturing of primary multiple myeloma cells (MMC) has been a major challenge as this plasma cell malignancy depends on the bone marrow environment for its survival. Using a microfluidic platform to emulate the dynamic physiology of the bone marrow microenvironment, we report here a new approach for culturing difficult to preserve primary human MMC. The system uses a three-dimensional ossified tissue to mimic the tumor niche and recapitulate interactions between bone marrow cells and osteoblasts (OSB). To this end, the human fetal OSB cell line hFOB 1.19 was cultured in an eight-chamber microfluidic culture device to facilitate the seeding of mononuclear cells from bone marrow aspirates from three multiple myeloma patients. Optical microscopy, used for real-time monitoring of mononuclear cell interactions with the ossified tissue, confirmed that these are drawn toward the OSB layer. After 3 weeks, cocultures were characterized by flow cytometry to evaluate the amount of expansion of primary MMC (with CD138(+) and CD38(+)CD56(+) phenotypes) in this system. For each of the three patients analyzed, bone marrow mononuclear cells underwent, on an average, 2 to 5 expansions; CD38(+)CD56(+) cells underwent 1 to 3 expansions and CD138(+) cells underwent 2.5 to 4.6 expansions. This approach is expected to provide a new avenue that can facilitate: (1) testing of personalized therapeutics for multiple myeloma patients; (2) evaluation of new drugs without the need for costly animal models; and (3) studying the biology of multiple myeloma, and in particular, the mechanisms responsible for drug resistance and relapse.

  18. Osteopathia striata with cranial sclerosis: clinical, radiological, and bone histological findings in an adolescent girl.

    PubMed

    Ward, L M; Rauch, F; Travers, R; Roy, M; Montes, J; Chabot, G; Glorieux, F H

    2004-08-15

    Osteopathia striata with cranial sclerosis (OS-CS) is a rare skeletal dysplasia characterized by linear striations of the long bones, osteosclerosis of the cranium, and extra-skeletal anomalies. We provide a comprehensive description of the skeletal phenotype in a French-Canadian girl with a moderate to severe form of sporadic OS-CS. Multiple medical problems, including anal stenosis and the Pierre-Robin sequence, were evident in the first few years of life. At 14 years, she was fully mobile, with normal intellect and stature. She suffered chronic lower extremity pain in the absence of fractures, as well as severe headaches, unilateral facial paralysis, and bilateral mixed hearing loss. Biochemical indices of bone and mineral metabolism were within normal limits. Bone densitometry showed increased areal bone mineral density in the skull, trunk, and pelvis, but not in the upper and lower extremities. An iliac bone biopsy specimen revealed an increased amount of trabecular bone. Trabeculae were abnormally thick, but there was no evidence of disturbed bone remodeling. In a cranial bone specimen, multiple layers of periosteal bone were found that covered a compact cortical compartment containing tightly packed haversian canals. Bone lamellation was normal in both the iliac and skull samples. Osteoclast differentiation studies showed that peripheral blood osteoclast precursors from this patient formed functional osteoclasts in vitro. Thus, studies of bone metabolism did not explain why bone mass is increased in most skeletal areas of this patient. Cranial histology points to exuberant periosteal bone formation as a potential cause of the cranial sclerosis.

  19. Multiple Myeloma, Version 2.2016

    PubMed Central

    Anderson, Kenneth C.; Alsina, Melissa; Atanackovic, Djordje; Biermann, J. Sybil; Chandler, Jason C.; Costello, Caitlin; Djulbegovic, Benjamin; Fung, Henry C.; Gasparetto, Cristina; Godby, Kelly; Hofmeister, Craig; Holmberg, Leona; Holstein, Sarah; Huff, Carol Ann; Kassim, Adetola; Krishnan, Amrita Y.; Kumar, Shaji K.; Liedtke, Michaela; Lunning, Matthew; Raje, Noopur; Singhal, Seema; Smith, Clayton; Somlo, George; Stockerl-Goldstein, Keith; Treon, Steven P.; Weber, Donna; Yahalom, Joachim; Shead, Dorothy A.; Kumar, Rashmi

    2016-01-01

    Multiple myeloma (MM) is a malignant neoplasm of plasma cells that accumulate in bone marrow, leading to bone destruction and marrow failure. Recent statistics from the American Cancer Society indicate that the incidence of MM is increasing. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) included in this issue address management of patients with solitary plasmacytoma and newly diagnosed MM. PMID:26553768

  20. Multiple myeloma

    MedlinePlus

    Plasma cell dyscrasia; Plasma cell myeloma; Malignant plasmacytoma; Plasmacytoma of bone; Myeloma - multiple ... Multiple myeloma most commonly causes: Low red blood cell count ( anemia ), which can lead to fatigue and ...

  1. [Double mutant alleles in the EXT1 gene not previously reported in a teenager with hereditary multiple exostoses].

    PubMed

    Cammarata-Scalisi, Francisco; Cozar, Mónica; Grinberg, Daniel; Balcells, Susana; Asteggiano, Carla G; Martínez-Domenech, Gustavo; Bracho, Ana; Sánchez, Yanira; Stock, Frances; Delgado-Luengo, Wilmer; Zara-Chirinos, Carmen; Chacín, José Antonio

    2015-04-01

    Hereditary forms of multiple exostoses, now called EXT1/EXT2-CDG within Congenital Disorders of Glycosylation, are the most common benign bone tumors in humans and clinical description consists of the formation of several cartilage-capped bone tumors, usually benign and localized in the juxta-epiphyseal region of long bones, although wide body dissemination in severe cases is not uncommon. Onset of the disease is variable ranging from 2-3 years up to 13-15 years with an estimated incidence ranging from 1/18,000 to 1/50,000 cases in European countries. We present a double mutant alleles in the EXT1 gene not previously reported in a teenager and her family with hereditary multiple exostoses.

  2. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  3. Autologous Stem Cell Transplant Followed By Maintenance Therapy in Treating Elderly Patients With Multiple Myeloma

    ClinicalTrials.gov

    2018-02-27

    Extramedullary Plasmacytoma; Isolated Plasmacytoma of Bone; Light Chain Deposition Disease; Primary Systemic Amyloidosis; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Multiple Myeloma

  4. [Bone structure in rheumatoid arthritis].

    PubMed

    Ono, Kumiko; Ohashi, Satoru; Tanaka, Sakae; Matsumoto, Takuya

    2013-07-01

    In rheumatoid arthritis (RA) , the osteoclast pathway is activated by abnormal immune conditions accompanied by chronic inflammation, resulting in periarticular osteoporosis and local bone destruction around joints. In addition, multiple factors, including reduced physical activity and pharmacotherapies such as steroids, lead to systemic osteoporosis. These conditions cause decreasing bone mineral density and deterioration of bone quality, and expose patients to increased risk of fracture. Understanding the bone structures of RA and evaluating fracture risk are central to the treatment of RA.

  5. Responds of Bone Cells to Microgravity: Ground-Based Research

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Jingbao; Xu, Huiyun; Yang, Pengfei; Xie, Li; Qian, Airong; Zhao, Yong; Shang, Peng

    2015-11-01

    Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.

  6. Bone-Immune Cell Crosstalk: Bone Diseases

    PubMed Central

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma. PMID:26000310

  7. Bone-immune cell crosstalk: bone diseases.

    PubMed

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta; Brunetti, Giacomina

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.

  8. Stability of Spinal Bone Lesions in Patients With Multiple Myeloma After Radiotherapy-A Retrospective Analysis of 130 Cases.

    PubMed

    Lang, Kristin; König, Laila; Bruckner, Thomas; Förster, Robert; Sprave, Tanja; Schlampp, Ingmar; Bostel, Tilman; Welte, Stefan; Nicolay, Nils H; Debus, Jürgen; Rief, Harald

    2017-12-01

    The objective of the present retrospective analysis was the response evaluation regarding bone density and stability of patients with osteolytic spinal bone lesions due to multiple myeloma after palliative radiotherapy (RT). Patients with multiple myeloma who had undergone spinal RT from March 2003 to May 2016 were analyzed before and 3 and 6 months after RT. Assessment of spinal stability and bone density was performed using the internationally recognized Taneichi scoring system and measurement of bone density using computed tomography imaging-based Hounsfield units. For statistical analysis, we used the Bowker test, McNemar test, and κ statistics to detect possible asymmetries in the distribution of the Taneichi score over time. We used the Student t test for comparison of the density values (Hounsfield units) before and after treatment. Toxicity was evaluated using the Common Terminology Criteria for Adverse Events, version 4.0. Additionally, overall survival was calculated using the Kaplan-Meier method. We evaluated 130 patients (69% male; 31% female) with multiple myeloma and a median age of 58 years. The median follow-up period was 41 months. Before treatment, 51% of the lesions were classified as unstable. At 3 and 6 months after RT, this rate had decreased to 41% (P = .0047) and 24% (P = .2393), respectively. The computed tomography measurements showed a significant increase in bone density at 3 and 6 months after RT. Acute RT-related grade 1 and 2 complications were detected in 34% of patients. Late side effects (grade 1-2) were detected in 23% of the patients. No severe grade 3 or 4 acute or late toxicities were identified. The median overall survival was 19.7 months for all patients and 6.6 months for patients with a Karnofsky performance score of ≤ 70%. To the best of our knowledge, ours is the first report to analyze the bone density and stability in patients with multiple myeloma after RT using a validated scoring system and computed tomography imaging. Palliative RT is an effective method resulting in a significant increase in bone density for local response and stability without severe RT-related toxicity. Furthermore, recalcification could already be detected at 3 months after treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models.

    PubMed

    Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M; Zhao, Ming

    2015-10-13

    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting.

  10. Biomimetics of Bone Implants: The Regenerative Road.

    PubMed

    Brett, Elizabeth; Flacco, John; Blackshear, Charles; Longaker, Michael T; Wan, Derrick C

    2017-01-01

    The current strategies for healing bone defects are numerous and varied. At the core of each bone healing therapy is a biomimetic mechanism, which works to enhance bone growth. These range from porous scaffolds, bone mineral usage, collagen, and glycosaminoglycan substitutes to transplanted cell populations. Bone defects face a range of difficulty in their healing, given the composite of dense outer compact bone and blood-rich inner trabecular bone. As such, the tissue possesses a number of inherent characteristics, which may be clinically harnessed as promoters of bone healing. These include mechanical characteristics, mineral composition, native collagen content, and cellular fraction of bone. This review charts multiple biomimetic strategies to help heal bony defects in large and small osseous injury sites, with a special focus on cell transplantation.

  11. Hypophosphatemic osteomalacia induced by tenofovir in HIV-infected patients.

    PubMed

    Mateo, Lourdes; Holgado, Susana; Mariñoso, Maria Luisa; Pérez-Andrés, Ricard; Bonjoch, Anna; Romeu, Joan; Olivé, Alejandro

    2016-05-01

    Tenofovir disoproxil fumarate (TDF) is an adenine analogue reverse transcription inhibitor widely used in first-line treatment of human immunodeficiency virus (HIV) infection and also in hepatitis B virus infection. Its use has been linked to sporadic Fanconi syndrome, renal failure and bone disease. We present the clinical characteristics of tenofovir-induced osteomalacia, discuss bone biopsy findings, describe predisposing factors and compare our results with other reported cases. We describe five cases of hypophosphatemic osteomalacia induced by TDF and recorded at the rheumatology service of a university hospital between 2010 and 2014. We also report the characteristics of bone biopsies of this pathology, which have not been previously described. We include a review of published cases of proximal renal tubulopathy (PRT) and osteomalacia induced by TDF (PubMed 1995-2014; keywords: osteomalacia, tenofovir, Fanconi syndrome, hypophosphatemic osteomalacia, proximal renal tubulopathy, bone biopsy). Five HIV patients who developed hypophosphatemic osteomalacia under TDF treatment (>5 years) presented increasing bone pain and a progressive inability to walk without assistance as a result of multiple insufficiency fractures. Bone biopsy performed in three patients after tetracycline labelling showed increased osteoid thickness, confirming osteomalacia. A literature review retrieved 17 publications on this condition, including 53 cases: 26 patients developed isolated PRT, 25 presented PRT and with multiple insufficiency fractures and two presented isolated bone disease, including osteomalacia and osteoporosis. Rheumatologists should be alert to this complication in patients receiving tenofovir. The main complaint reported by these patients is diffuse pain, predominantly in the lower limbs, indicating multiple stress fractures. Serum phosphate and appropriate screening for abnormal proximal tubule function should be monitored. Bone scintigraphy should be carried out in cases of limb pain before the occurrence of more severe complications.

  12. Noninvasive imaging of multiple myeloma using near infrared fluorescent molecular probe

    NASA Astrophysics Data System (ADS)

    Hathi, Deep; Zhou, Haiying; Bollerman-Nowlis, Alex; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Multiple myeloma is a plasma cell malignancy characterized by monoclonal gammopathy and osteolytic bone lesions. Multiple myeloma is most commonly diagnosed in late disease stages, presenting with pathologic fracture. Early diagnosis and monitoring of disease status may improve quality of life and long-term survival for multiple myeloma patients from what is now a devastating and fatal disease. We have developed a near-infrared targeted fluorescent molecular probe with high affinity to the α4β1 integrin receptor (VLA-4)overexpressed by a majority of multiple myeloma cells as a non-radioactive analog to PET/CT tracer currently being developed for human diagnostics. A near-infrared dye that emits about 700 nm was conjugated to a high affinity peptidomimmetic. Binding affinity and specificity for multiple myeloma cells was investigated in vitro by tissue staining and flow cytometry. After demonstration of sensitivity and specificity, preclinical optical imaging studies were performed to evaluate tumor specificity in murine subcutaneous and metastatic multiple myeloma models. The VLA-4-targeted molecular probe showed high affinity for subcutaneous MM tumor xenografts. Importantly, tumor cells specific accumulation in the bone marrow of metastatic multiple myeloma correlated with GFP signal from transfected cells. Ex vivo flow cytometry of tumor tissue and bone marrow further corroborated in vivo imaging data, demonstrating the specificity of the novel agent and potential for quantitative imaging of multiple myeloma burden in these models.

  13. Pamidronate Injection

    MedlinePlus

    ... also used along with cancer chemotherapy to treat bone damage caused by multiple myeloma (cancer that begins ... by breast cancer that has spread to the bones. Pamidronate is also used to treat Paget's disease ( ...

  14. The direct and indirect costs of long bone fractures in a working age US population.

    PubMed

    Bonafede, Machaon; Espindle, Derek; Bower, Anthony G

    2013-01-01

    Information regarding the burden of fractures is limited, especially among working age patients. The objective of this study was to evaluate the direct and indirect costs associated with long bone fractures in a working age population using real-world claims data. This was a claims-based retrospective analysis, comparing adult patients in the 6 months before and 6 months after a long bone fracture between 1/1/2001 and 12/31/2008 using the MarketScan Research Databases. Outcomes included direct medical costs and utilization, as well as work absenteeism and short term disability, which was available for a sub-set of the patients. Observed and adjusted incremental costs (i.e., the difference in costs before and after a fracture) were evaluated and reported in 2008 US$. A total of 208,094 patients with at least one fracture were included in the study. Six, mutually exclusive fracture cohorts were evaluated: tibia shaft (n = 49,839), radius (n = 97,585), hip (n = 11,585), femur (n = 6788), humerus (n = 29,884), and those with multiple long bone fractures (n = 12,413). Average unadjusted direct costs in the 6-months before a long bone fracture ranged from $3291 (radius) to $12,923 (hip). The average incremental direct cost increase in the 6-months following a fracture ranged from $5707 (radius) to $39,041 (multiple fractures). Incremental absenteeism costs ranged from $950 (radius) to $2600 (multiple fractures), while incremental short-term disability costs ranged from $2050 (radius) to $4600 (multiple fractures). The results of this study indicate that long bone fractures are costly, both in terms of direct medical costs and lost productivity. Workplace absences and short-term disability represent a significant component of the burden of long bone fractures. These results may not be generalizable to all patients with fractures in the US, and do not reflect the burden of undiagnosed or sub-clinical fractures.

  15. [Osteoporosis in all young daughters of a mother with multiple osteoporotic fractures. A case of familial osteoporosis].

    PubMed

    Parisi, M S; Díaz, A G; Oliveri, M B; Di Gregorio, S; Mautalen, C A

    2001-01-01

    We herein describe a family whose female members are all osteoporotic: a postmenopausal mother and her three premenopausal daughters. The mother aged 60 presented axial and peripheral fractures, and very low bone mineral density (BMD). She reported that her grandmother had suffered a hip fracture. The eldest daughter aged 30 suffered multiple vertebral fractures during pregnancy and lactation associated with very low BMD. In view of these observations, the other two daughters aged 29 and 27 years respectively were evaluated. BMD was found to be severely diminished according to densitometric values for osteoporosis established by WHO, but they had no history of bone fractures. Probably the strong genetic component in bone mass is responsible for the severely diminished BMD observed in all the women in this family, as well as the occurrence of bone fractures in two of them. To our knowledge, there are no similar reports in the literature. Our results evidence the importance of evaluating bone mass in the offspring of an individual presenting severe osteoporosis, in order to detect family members with low bone mass and at high risk of developing bone fractures.

  16. A distinct regulatory region of the Bmp5 locus activates gene expression following adult bone fracture or soft tissue injury.

    PubMed

    Guenther, Catherine A; Wang, Zhen; Li, Emma; Tran, Misha C; Logan, Catriona Y; Nusse, Roel; Pantalena-Filho, Luiz; Yang, George P; Kingsley, David M

    2015-08-01

    Bone morphogenetic proteins (BMPs) are key signaling molecules required for normal development of bones and other tissues. Previous studies have shown that null mutations in the mouse Bmp5 gene alter the size, shape and number of multiple bone and cartilage structures during development. Bmp5 mutations also delay healing of rib fractures in adult mutants, suggesting that the same signals used to pattern embryonic bone and cartilage are also reused during skeletal regeneration and repair. Despite intense interest in BMPs as agents for stimulating bone formation in clinical applications, little is known about the regulatory elements that control developmental or injury-induced BMP expression. To compare the DNA sequences that activate gene expression during embryonic bone formation and following acute injuries in adult animals, we assayed regions surrounding the Bmp5 gene for their ability to stimulate lacZ reporter gene expression in transgenic mice. Multiple genomic fragments, distributed across the Bmp5 locus, collectively coordinate expression in discrete anatomic domains during normal development, including in embryonic ribs. In contrast, a distinct regulatory region activated expression following rib fracture in adult animals. The same injury control region triggered gene expression in mesenchymal cells following tibia fracture, in migrating keratinocytes following dorsal skin wounding, and in regenerating epithelial cells following lung injury. The Bmp5 gene thus contains an "injury response" control region that is distinct from embryonic enhancers, and that is activated by multiple types of injury in adult animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Suspected panosteitis in a camel.

    PubMed

    Levine, David G; Smith, Jennifer J; Richardson, Dean W; Brown, Valerie; Beech, Jill; Habecker, Perry; Adam, Emma

    2007-08-01

    A 6-month-old male Bactrian camel was examined because of a 3-week history of lameness of the left hind limb. Lameness was initially detected in the left hind limb but resolved and was detected in the right hind limb during treatment. Lameness increased during periods of rapid growth. Radiography revealed multiple small opacities of the medullary cavity of several long bones throughout treatment. Core bone biopsies of lesions in the tibiae revealed lamellar bone with areas of loose connective tissue, osteoblasts in the medullary cavity, and periosteal new bone formation, all which were consistent with panosteitis. Palliative treatment was attempted with epidural and transdermal administration of analgesics. Flunixin meglumine was administered PO, which coincided with an abrupt increase in serum creatinine concentration. Performance of multiple diagnostic bone biopsies led to remission of clinical signs of pain. Panosteitis should be a differential diagnosis for shifting limb lameness in young camels. Bone biopsies can be useful for diagnosis of panosteitis and possible relief of pain associated with the disease. Bactrian camels may be susceptible to the renal toxicity of flunixin meglumine, especially when dehydrated.

  18. Prevalence of Temporal Bone Fractures in Patients with Mandibular Fractures Using Multidetector-Row CT.

    PubMed

    Ogura, I; Kaneda, T; Sasaki, Y; Buch, K; Sakai, O

    2015-06-01

    Temporal bone fracture after mandibular trauma is thought to be rare, and its prevalence has not been reported in the literature. The purpose of this study was to investigate the prevalence of temporal bone fractures in patients with mandibular fractures and the relationship between temporal bone fractures and the mandibular fracture location using multidetector-row computed tomography (MDCT). A prospective study was performed in 201 patients with mandibular fractures who underwent 64-MDCT scans. The mandibular fracture locations were classified as median, paramedian, angle, and condylar types. Statistical analysis for the relationship between prevalence of temporal bone fractures and mandibular fracture locations was performed using χ(2) test with Fisher's exact test. A P-value < 0.05 was considered statistically significant. The percentage of cases with temporal bone fracture was 3.0 % of all patients with mandibular fractures and 19.0 % of those with multiple mandibular fractures of paramedian and condylar type. There was a significant relationship between the incidence of temporal bone fracture and the paramedian- and condylar-type mandibular fracture (P = 0.001). Multiple mandibular fractures of paramedian and condylar type may be a stronger indicator for temporal bone fractures. This study suggests that patients with mandibular fracture, especially the paramedian and condylar type, should be examined for coexisting temporal bone fracture using MDCT.

  19. Dietary Intake Can Predict and Protect Against Changes in Bone Metabolism during Spaceflight and Recovery (Pro K)

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, S. R.; Shackelford, L.; Heer, M.

    2009-01-01

    Bone loss is not only a well-documented effect of spaceflight on astronauts, but also a condition that affects millions of men and women on Earth each year. Many countermeasures aimed at preventing bone loss during spaceflight have been proposed, and many have been evaluated to some degree. To date, those showing potential have focused on either exercise or pharmacological interventions, but none have targeted dietary intake alone as a factor to predict or minimize bone loss during spaceflight. The "Dietary Intake Can Predict and Protect against Changes in Bone Metabolism during Spaceflight and Recovery" investigation ("Pro K") is one of the first inflight evaluations of a dietary countermeasure to lessen bone loss of astronauts. This protocol will test the hypothesis that the ratio of acid precursors to base precursors (specifically animal protein to potassium) in the diet can predict directional changes in bone mineral during spaceflight and recovery. The ratio of animal protein to potassium in the diet will be controlled for multiple short (4-day) periods before and during flight. Based on multiple sets of bed rest data, we hypothesize that a higher ratio of the intake of animal protein to the intake of potassium will yield higher concentrations of markers of bone resorption and urinary calcium excretion during flight and during recovery from bone mineral loss after long-duration spaceflight.

  20. [A case of fat embolism syndrome associated with pathological femoral fracture caused by metastatic adenocarcinoma of the lung].

    PubMed

    Sato, Takashi; Soejima, Kenzo; Nakayama, Sohei; Satomi, Ryosuke; Sayama, Koichi; Asano, Koichiro

    2010-10-01

    A 76-year-old woman with multiple bone metastases from lung adenocarcinoma was admitted due to a pathological femoral fracture. On the night after admission, her consciousness deteriorated rapidly and she developed progressive respiratory failure. Computed tomography of the chest revealed diffuse ground glass opacities in both lungs, and magnetic resonance imaging of the brain showed multiple acute infarctions. Her condition improved after several days of supportive treatment with oxygen, corticosteroids and diuretics. Fat embolism syndrome should be considered as a differential diagnosis if consciousness disturbance and respiratory failure occur in patients with metastatic bone carcinoma and pathological long bone fractures.

  1. Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion.

    PubMed

    Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia

    2017-07-01

    Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... multiple myeloma (tumor of bone marrow cells), Waldenstrom's macroglobulinemia (increased immunoglobulin production by the spleen and bone marrow cells), and lymphoma (tumor of the lymphoid tissues). (b...

  3. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... multiple myeloma (tumor of bone marrow cells), Waldenstrom's macroglobulinemia (increased immunoglobulin production by the spleen and bone marrow cells), and lymphoma (tumor of the lymphoid tissues). (b...

  4. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... multiple myeloma (tumor of bone marrow cells), Waldenstrom's macroglobulinemia (increased immunoglobulin production by the spleen and bone marrow cells), and lymphoma (tumor of the lymphoid tissues). (b...

  5. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... multiple myeloma (tumor of bone marrow cells), Waldenstrom's macroglobulinemia (increased immunoglobulin production by the spleen and bone marrow cells), and lymphoma (tumor of the lymphoid tissues). (b...

  6. Bone optical spectroscopy for the measurement of hemoglobin content

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Arambel, Paula; Piet, Judith; Shefelbine, Sandra; Markovic, Stacey; Niedre, Mark; DiMarzio, Charles A.

    2014-05-01

    Osteoporosis is a common side effect of spinal cord injuries. Blood perfusion in the bone provides an indication of bone health and may help to evaluate therapies addressing bone loss. Current methods for measuring blood perfusion of bone use dyes and ionizing radiation, and yield qualitative results. We present a device capable of measuring blood oxygenation in the tibia. The device illuminates the skin directly over the tibia with a white light source and measures the diffusely reflected light in the near infrared spectrum. Multiple source-detector distances are utilized so that the blood perfusion in skin and bone may be differentiated.

  7. Nanocomposites for bone tissue regeneration.

    PubMed

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  8. Bone disease in multiple myeloma and precursor disease: novel diagnostic approaches and implications on clinical management

    PubMed Central

    Kristinsson, Sigurdur Y; Minter, Alex R; Korde, Neha; Tan, Esther; Landgren, Ola

    2011-01-01

    The manifestations of bone involvement in patients with multiple myeloma (MM) can have devastating clinical effects and increase mortality. Recent studies demonstrate that patients with the precursor conditions smoldering MM (SMM) and monoclonal gammopathy of undetermined significance (MGUS) show evidence of bone disease and increased risk of fractures. The understanding of the pathogenesis of bone disease in MM has expanded in recent years. The traditional skeletal survey will probably be replaced by newer and more sensitive imaging techniques, which may have a prognostic impact and change our definition of MGUS and SMM. Bisphosphonates are recommended to prevent skeletal events in patients with MM, and have also been studied in SMM and MGUS. This article summarizes the current knowledge of bone disease in plasma cell disorders, and discusses the current standard and future role of novel imaging techniques, as well as the evidence and current guidelines for bisphosphonates in MM, SMM and MGUS. PMID:21745013

  9. Novel PLS3 variants in X-linked osteoporosis: Exploring bone material properties.

    PubMed

    Balasubramanian, Meena; Fratzl-Zelman, Nadja; O'Sullivan, Rory; Bull, Mary; Fa Peel, Nicola; Pollitt, Rebecca C; Jones, Rebecca; Milne, Elizabeth; Smith, Kath; Roschger, Paul; Klaushofer, Klaus; Bishop, Nicholas J

    2018-05-07

    Idiopathic Juvenile Osteoporosis (IJO) refers to significantly lower than expected bone mass manifesting in childhood with no identifiable aetiology. IJO classically presents in early pubertal period with multiple fractures including metaphyseal and vertebral crush fractures, and low bone-mass. Here we describe two patients and provide information on their clinical phenotype, genotype and bone material analysis in one of the patients. Patient 1: 40-year old adult male diagnosed with IJO in childhood who re-presented with a hip fracture as an adult. Genetic analysis identified a pathogenic PLS3 hemizygous variant, c.1765del in exon 16. Patient 2: 15-year old boy with multiple vertebral fractures and bone biopsy findings suggestive of IJO who also has a diagnosis of autism spectrum disorder. Genetic analysis identified a maternally inherited PLS3 pathogenic c.1295T>A variant in exon 12. Analyses of the transiliac bone sample revealed severe reduction of trabecular volume and bone turnover indices and elevated bone matrix mineralisation. We propose that genetic testing for PLS3 should be undertaken in patients presenting with a current or previous history of IJO as this has implications for genetic counselling and cascade screening. The extensive evaluation of the transiliac biopsy sample of Patient 2 revealed a novel bone phenotype. This report includes a review of IJO and genetic causes of osteoporosis, and suggests that existing cases of IJO should be screened for PLS3. Through analysis of bone material properties in Patient 2, we can conclude that PLS3 does have a role in bone mineralisation. © 2018 Wiley Periodicals, Inc.

  10. Solitary Plasmacytoma.

    PubMed

    Grammatico, Sara; Scalzulli, Emilia; Petrucci, Maria Teresa

    2017-01-01

    Solitary plasmacytoma is a rare disease characterized by a localized proliferation of neoplastic monoclonal plasma cells, without evidence of systemic disease. It can be subdivided into solitary bone plasmacytoma if the lesion originates in bone, or solitary extramedullary plasmacytoma if the lesion involves a soft tissue. The incidence of solitary bone plasmacytoma is higher than solitary extramedullary plasmacytoma. Also, the prognosis is different: even if both forms respond well to treatment, overall survival and progression-free survival of solitary bone plasmacytoma are poorer than solitary extramedullary plasmacytoma due to its higher rate of evolution in multiple myeloma. However, the recent advances in the diagnosis of multiple myeloma can better refine also the diagnosis of plasmacytoma. Flow cytometry studies and molecular analysis may reveal clonal plasma cells in the bone marrow; magnetic resonance imaging or 18 Fluorodeoxyglucose positron emission tomography could better define osteolytic bone lesions. A more explicit exclusion of possible occult systemic involvement can avoid cases of misdiagnosed multiple myeloma patients, which were previously considered solitary plasmacytoma and less treated, with an unavoidable poor prognosis. Due to the rarity of the disease, there is no uniform consensus about prognostic factors and treatment. Radiotherapy is the treatment of choice; however, some authors debate about the radiotherapy dose and the relationship with the response rate. Moreover, the role of surgery and chemotherapy is still under debate. Nevertheless, we must consider that the majority of studies include a small number of patients and analyze the efficacy of conventional chemotherapy; few cases are reported concerning the efficacy of novel agents.

  11. Multiple primary Ewing’s sarcomas in cerebral cranium of a child: a case report and review of the literature

    PubMed Central

    Wang, Dawei; Guo, Zongze

    2015-01-01

    Ewing’s sarcoma is the second most common pediatric bone tumor. Primary Ewing’s sarcoma occurring in the cerebral cranium is exceptionally rare, with only one reported case of multiple tumor lesions in adolescence to date. We report a case of a 5-year-old male patient with multiple primary Ewing’s sarcomas associated with the cranial bones, the first pediatric case report to date. We also review 71 cases Ewing’s sarcoma involving intracranial extension. The purpose of this article is to provide data concerning the clinical and therapeutic course of multiple primary Ewing’s sarcomas in associated with cerebral cranium. PMID:26261672

  12. Reciprocal Interactions between Multiple Myeloma Cells and Osteoprogenitor Cells Affect Bone Formation and Tumor Growth

    DTIC Science & Technology

    2014-10-01

    representation of the mechanism of affinity of Ald-PP NPs with bone mineral ( gray , bone mineral; red, Ald; green, PEG; yellow, PLGA). (C) Representative...8217-TCTGCCAGTCCCCCTAGAC-3’ MicroRNAs RNU6B 5’CGCAAGGATGACACGCAAATT-3’ ------------------ URP ------------------ 5’- GTG CAG GGT CCG AGG-3’ hsa-mir-199a

  13. Abutment Disconnection/Reconnection Affects Peri-implant Marginal Bone Levels: A Meta-Analysis.

    PubMed

    Koutouzis, Theofilos; Gholami, Fatemeh; Reynolds, John; Lundgren, Tord; Kotsakis, Georgios A

    Preclinical and clinical studies have shown that marginal bone loss can be secondary to repeated disconnection and reconnection of abutments that affect the peri-implant mucosal seal. The aim of this systematic review and meta-analysis was to evaluate the impact of abutment disconnections/reconnections on peri-implant marginal bone level changes. To address this question, two reviewers independently performed an electronic search of three major databases up to October 2015 complemented by manual searches. Eligible articles were selected on the basis of prespecified inclusion and exclusion criteria after a two-phase search strategy and assessed for risk of bias. A random-effects meta-analysis was performed for marginal bone loss. The authors initially identified 392 titles and abstracts. After evaluation, seven controlled clinical studies were included. Qualitative assessment of the articles revealed a trend toward protective marginal bone level preservation for implants with final abutment placement (FAP) at the time of implant placement compared with implants for which there were multiple abutment placements (MAP). The FAP group exhibited a marginal bone level change ranging from 0.08 to 0.34 mm, whereas the MAP group exhibited a marginal bone level change ranging from 0.09 to 0.55 mm. Meta-analysis of the seven studies reporting on 396 implants showed significantly greater bone loss in cases of multiple abutment disconnections/reconnections. The weighted mean difference in marginal bone loss was 0.19 mm (95% confidence interval, 0.06-0.32 mm), favoring bone preservation in the FAP group. Within the limitations of this meta-analysis, abutment disconnection and reconnection significantly affected peri-implant marginal bone levels. These findings pave the way for revisiting current restorative protocols at the restorative treatment planning stage to prevent incipient marginal bone loss.

  14. Multiple Low Energy Long Bone Fractures in the Setting of Rothmund-Thomson Syndrome.

    PubMed

    Beckmann, Nicholas

    2015-01-01

    Rothmund-Thomson syndrome is a rare autosomal recessive genodermatosis characterized by a poikilodermatous rash starting in infancy as well as various skeletal anomalies, juvenile cataracts, and predisposition to certain cancers. Although Rothmund-Thomson syndrome is associated with diminished bone mineral density in addition to multiple skeletal abnormalities, there are few reports of the association with stress fractures or pathologic fractures in low energy trauma or delayed healing of fractures. Presented is a case of a young adult male with Rothmund-Thomson syndrome presenting with multiple episodes of long bone fractures caused by low energy trauma with one of the fractures exhibiting significantly delayed healing. The patient was also found to have an asymptomatic stress fracture of the lower extremity, another finding of Rothmund-Thomson syndrome rarely reported in the literature. A thorough review of the literature and comprehensive presentation of Rothmund-Thomson syndrome is provided in conjunction with our case.

  15. Meeting report of the 2016 bone marrow adiposity meeting.

    PubMed

    van der Eerden, Bram; van Wijnen, André

    2017-10-02

    There is considerable interest in the physiology and pathology, as well as the cellular and molecular biology, of bone marrow adipose tissue (BMAT). Because bone marrow adiposity is linked not only to systemic energy metabolism, but also to both bone marrow and musculoskeletal disorders, this biologic compartment has become of major interest to investigators from diverse disciplines. Bone marrow adiposity represents a virtual multi-tissue endocrine organ, which encompasses cells from multiple developmental lineages (e.g., mesenchymal, myeloid, lymphoid) and occupies all the non-osseous and non-cartilaginous space within long bones. A number of research groups are now focusing on bone marrow adiposity to understand a range of clinical afflictions associated with bone marrow disorders and to consider mechanisms-based strategies for future therapies.

  16. Increasing bone sclerosis during bortezomib therapy in multiple myeloma patients: results of a reduced-dose whole-body MDCT study.

    PubMed

    Schulze, Maximilian; Weisel, Katja; Grandjean, Caroline; Oehrlein, Katharina; Zago, Manola; Spira, Daniel; Horger, Marius

    2014-01-01

    The objective of our study was to assess the frequency, location, extent, and patterns of bone sclerosis occurring in patients with multiple myeloma (MM) during bortezomib-based therapy. From June 2003 through December 2011, 593 whole-body reduced-dose MDCT studies were performed of 79 consecutive patients receiving bortezomib. The median surveillance time was 21 months (range, 3-67 months). Baseline studies were compared with follow-up studies during therapy (follow-up 1), at the end of therapy (follow-up 2), and 12 months after cessation of bortezomib therapy (follow-up 3). We recorded any sclerotic change occurring inside or along the margins of the osteolytic lesions, in the cancellous bone, or inside preexistent medullary or extramedullary lesions. The time point of occurrence of bone sclerosis was correlated with the best hematologic response category. Fourteen (17.7%) patients developed focal (n = 11) or diffuse (n = 3) bone sclerosis. The time window from bortezomib initiation to radiographic detection of bone sclerosis was 8 months (SD, 7 months). Sclerosis occurred at multiple sites (n = 7) or at an isolated site (n = 7). On subsequent whole-body reduced-dose MDCT studies, sclerosis further increased in seven (50%) patients. Hematologic best response during bortezomib treatment was complete response (n = 1), very good partial response (n = 2), partial response (n = 8), and stable disease (n = 3). Radiologic response at the time of sclerosis detection was partial response (n = 8), stable disease (n = 2), and progressive disease (n = 4). Bone remineralization may occur during bortezomib-based therapy for MM in a substantial proportion of patients. The extent, location, and patterns of sclerosis differ among patients and are unpredictable. Sclerosis was documented even in patients showing suboptimal hematologic response.

  17. A fatal case of bone marrow embolism of unknown cause masquerading clinically as dengue shock syndrome.

    PubMed

    Selvi, Subramanian Kalaivani; Kar, Rakhee; Vadivelan, Mehalingam; Subrahmanyam, Dharanipragada Krishna Suri

    2012-01-01

    Bone marrow fat embolism usually occurs following multiple bone fractures, intraosseous surgical procedures, following vigorous cardiac resuscitation, ecclampsia, sickle cell anemia, malignancies, etc. We present a case of 70-year-old male who presented with fever, cough with expectoration, respiratory distress, altered sensorium, hypotension and thrombocytopenia, and diagnosed to have dengue shock syndrome and expired within 1 day of admission. Postmortem lung biopsy revealed bone marrow fat embolism.

  18. Evaluating bone quality in patients with chronic kidney disease

    PubMed Central

    Malluche, Hartmut H.; Porter, Daniel S.; Pienkowski, David

    2013-01-01

    Bone of normal quality and quantity can successfully endure physiologically imposed mechanical loads. Chronic kidney disease–mineral and bone disorder (CKD–MBD) adversely affects bone quality through alterations in bone turnover and mineralization, whereas bone quantity is affected through changes in bone volume. Changes in bone quality can be associated with altered bone material, structure, or microdamage, which can result in an elevated rate of fracture in patients with CKD–MBD. Fractures cannot always be explained by reduced bone quantity and, therefore, bone quality should be assessed with a variety of techniques from the macro-organ level to the nanoscale level. In this Review, we demonstrate the importance of evaluating bone from multiple perspectives and hierarchical levels to understand CKD–MBD-related abnormalities in bone quality. Understanding the relationships between variations in material, structure, microdamage, and mechanical properties of bone in patients with CKD–MBD should aid in the development of new modalities to prevent, or treat, these abnormalities. PMID:24100399

  19. [Current approaches in multiple myeloma and other cancer-related bone diseases].

    PubMed

    Engelhardt, M; Kleber, M; Udi, J; Wäsch, R

    2012-05-01

    Multiple myeloma (MM) ranges second of all hematological malignancies and occurs most commonly in elderly patients. Almost all MM patients develop bone lesions in the course of their disease or have evidence of bone loss at initial diagnosis. Whole-body conventional radiography remains the gold standard in the diagnostic evaluation, albeit computed tomography (CT) and magnetic resonance imaging (MRI) are increasingly used as complementary techniques in the more sensitive detection of osteolytic processes. Bisphosphonates like zoledronate or pamidronate represent the cornerstone therapeutics in osteolytic disease, and are effective supportives to potent anti-myeloma therapies, including novel agents such as the proteasome inhibitor bortezomib or immunomodulatory drugs (IMIDs, e. g. thalidomide or lenalidomide). Several studies are ongoing to investigate the effects of alternative bone-seeking agents and their therapeutic potential for the management of myeloma bone disease, such as denosumab (RANKL-neutralizing antibody), anti-sclerostin (monoclonal antibody, generated against sclerostin) or sotatercept (potent activin-A inhibitor). This review summarizes the most prominent data on myeloma bone disease pathogenesis, the role of imaging techniques as well as therapy and prevention of lytic complications in myeloma which may similarly or equally be true for other bone metastases-inducing solid tumors. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Change in bone mineral density and its determinants in pre- and perimenopausal Chinese women: the Hong Kong Perimenopausal Women Osteoporosis Study.

    PubMed

    Ho, S C; Chan, S G; Yip, Y B; Chan, C S Y; Woo, J L F; Sham, A

    2008-12-01

    This 30-month study investigating bone change and its determinants in 438 perimenopausal Chinese women revealed that the fastest bone loss occurred in women undergoing menopausal transition but maintenance of body weight and physical fitness were beneficial for bone health. Soy protein intake also seemed to exert a protective effect. This 30-month follow-up study aims to investigate change in bone mineral density and its determinants in Hong Kong Chinese perimenopausal women. Four hundred and thirty-eight women aged 45 to 55 years were recruited through random telephone dialing and primary care clinic. Bone mass, body composition, lifestyle measurements were obtained at baseline and at 9-, 18- and 30-month follow-ups. Univariate and stepwise multiple regression analyses were performed with the regression coefficients of BMD/C (derived from baseline and follow-up measurements) as the outcome variables. Menopausal status was classified as pre- or postmenopausal or transitional. Menopausal status was the strongest determinant of bone changes. An annual bone loss of about 0.5% was observed among premenopausal, 2% to 2.5% among transitional, and about 1.5% in postmenopausal women. Multiple regression analyses, revealed that a positive regression slope of body weight was protective for follow-up bone loss at all sites. Number of pregnancy, soy protein intake and walking were protective for total body BMC. Higher baseline LM was also protective for neck of femur BMD. Maintenance of body weight and physical fitness were observed to have a protective effect on for bone loss in Chinese perimenopausal women.

  1. Multiple myeloma in an Amur tiger (Panthera tigris altaica)

    PubMed Central

    Lee, Alison M.; Guppy, Naomi; Bainbridge, John; Jahns, Hanne

    2017-01-01

    The Amur tiger (Panthera tigris altaica) is an endangered tiger subspecies. An adult zoo-bred female was found collapsed, and died despite supportive treatment. Hematology and biochemistry showed pancytopenia and hyperglobulinemia, and serum protein electrophoresis revealed a monoclonal band in the β-globulin region. Necropsy demonstrated hemoabdomen, multifocal lytic bone marrow lesions, splenomegaly, and hemorrhagic hepatic nodules, with left medial lobe rupture. There were mutifocal hemorrhages in the subcutis, lung, epicardium, and intestinal mucosa. Histopathology demonstrated plasmacytoid cells infiltrating the bone marrow, liver and spleen, and circulating within blood vessels. On immunohistochemistry, cell infiltrates of the three tissues were positive for λ light chains, bone marrow infiltrates were positive for MUM-1 and bone marrow and spleen infiltrates were positive for CD20. These findings indicate that this animal died of hemoabdomen subsequent to multiple myeloma. This is the first time this disease has been reported in a tiger. PMID:29138744

  2. Multiple myeloma in an Amur tiger (Panthera tigris altaica).

    PubMed

    Lee, Alison M; Guppy, Naomi; Bainbridge, John; Jahns, Hanne

    2017-01-01

    The Amur tiger ( Panthera tigris altaica ) is an endangered tiger subspecies. An adult zoo-bred female was found collapsed, and died despite supportive treatment. Hematology and biochemistry showed pancytopenia and hyperglobulinemia, and serum protein electrophoresis revealed a monoclonal band in the β-globulin region. Necropsy demonstrated hemoabdomen, multifocal lytic bone marrow lesions, splenomegaly, and hemorrhagic hepatic nodules, with left medial lobe rupture. There were mutifocal hemorrhages in the subcutis, lung, epicardium, and intestinal mucosa. Histopathology demonstrated plasmacytoid cells infiltrating the bone marrow, liver and spleen, and circulating within blood vessels. On immunohistochemistry, cell infiltrates of the three tissues were positive for λ light chains, bone marrow infiltrates were positive for MUM-1 and bone marrow and spleen infiltrates were positive for CD20. These findings indicate that this animal died of hemoabdomen subsequent to multiple myeloma. This is the first time this disease has been reported in a tiger.

  3. Polarized Raman spectroscopy of bone tissue: watch the scattering

    NASA Astrophysics Data System (ADS)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-02-01

    Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.

  4. Combined TRAF6 Targeting and Proteasome Blockade Has Anti-myeloma and Anti-Bone Resorptive Effects.

    PubMed

    Chen, Haiming; Li, Mingjie; Sanchez, Eric; Wang, Cathy S; Lee, Tiffany; Soof, Camilia M; Casas, Christian E; Cao, Jasmin; Xie, Colin; Udd, Kyle A; DeCorso, Kevin; Tang, George Y; Spektor, Tanya M; Berenson, James R

    2017-05-01

    TNF receptor-associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of IκB kinase (IKK) to regulate the NF-κB and JNK signaling pathways. Here, TRAF6 protein was determined to be overexpressed in bone marrow mononuclear cells (BMMC) from patients with multiple myeloma. TRAF6 expression in BMMCs from patients with progressive disease is significantly elevated as compared with individuals in complete remission, with monoclonal gammopathy of undetermined significance, or healthy subjects. Furthermore, TRAF6 dominant-negative (TRAF6dn) peptides were constructed which specifically reduced TRAF6 signaling and activation of IKK. TRAF6 not only reduced cellular growth but also increased the apoptosis of multiple myeloma tumor cells in a concentration-dependent fashion. Because TRAF6 activates IKK through polyubiquitination, independent of its proteasome activity, a TRAF6dn peptide was combined with the proteasome inhibitors bortezomib or carfilzomib to treat multiple myeloma. Importantly, targeting of TRAF6 in the presence of proteasome inhibition enhanced anti-multiple myeloma effects and also decreased TLR/TRAF6/NF-κB-related signaling. Finally, TRAF6dn dose dependently inhibited osteoclast cell formation from CD14 + monocytes, induced with RANKL and mCSF , and markedly reduced bone resorption in dentin pits. In all, these data demonstrate that blocking TRAF6 signaling has anti-multiple myeloma effects and reduces bone loss. Implications: The ability to target TRAF6 signaling and associated pathways in multiple myeloma suggests a promising new therapeutic approach. Mol Cancer Res; 15(5); 598-609. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Quality of Bone Healing: Perspectives and Assessment Techniques

    DTIC Science & Technology

    2014-01-01

    connective tissue specialized for load bearing . Embryologically, the formation of bone occurs via two routes: intramembranous and endochondral ossification.1...primarily suited to load bearing with two distinct configurations: an inner, porous, cancellous architecture and an outer, denser, cortical bone...delineate the multiple functions served by the human skeleton and then evaluate techniques for clinical assessment. Mechanical load bearing and transduction

  6. Takayasu's arteritis presenting with focal periostitis affecting two limbs.

    PubMed

    Kim, J E; Kolh, E M; Kim, D K

    1998-12-31

    Takayasu's arteritis (TA) is a vasculitis of large and medium sized arteries. Involvement of bone in TA is very rare. We report a case of young woman who presented with multiple painful bone lesions which were identified as periostitis with new bone formation associated with TA. Our case is unique in that bony involvement in TA could occur independent of vascular stenosis.

  7. Ready to Use Tissue Construct for Military Bone & Cartilage Trauma

    DTIC Science & Technology

    2015-12-01

    loss, bone loss, cartilage loss, stiffness, limping, pain , arthritis, and permanent disability, often requiring multiple reconstructive surgeries and...immediate, short-term and long-term consequences such as acute limb loss, bone loss, cartilage loss, stiffness, limping, pain , arthritis, and permanent...blast-injury. Osteochondral injuries of any size require anatomically perfect reconstruction to prevent pain and post-traumatic arthritis. We

  8. Practical use of bone scan in patients with an osteoporotic vertebral compression fracture.

    PubMed

    Jun, Deuk Soo; An, Byoung Keun; Yu, Chang Hun; Hwang, Kyung Hoon; Paik, Je Won

    2015-02-01

    Rib fractures are one of main causes of chest or flank pain when related to an osteoporotic vertebral compression fracture (OVCF). The authors investigated the incidence and risk factors of rib fracture in 284 patients with OVCF using bone scans and evaluated the feasibility as to whether bone scans could be utilized as a useful screening tool. Hot uptake lesions on ribs were found in 122 cases (43.0%). The factors analyzed were age, sex, number and locations of fractured vertebrae, BMD, and compression rates as determined using initial radiography. However, no statistical significances were found. In 16 cases (5.6%), there were concurrent multiple fractures of both the thoracic and lumbar spines not detected by single site MRI. Sixty cases (21.1%) of OVCF with the a compression rate of less than 15% could not be identified definitely by initial plain radiography, but were confirmed by bone scans. It is concluded that a bone scan has outstanding ability for the screening of rib fractures associated with OVCF. Non-adjacent multiple fractures in both thoracic and lumbar spines and fractures not identified definitely by plain radiography were detected on bone scans, which provided a means for determining management strategies and predicting prognosis.

  9. Quantitative polarized Raman spectroscopy in highly turbid bone tissue

    NASA Astrophysics Data System (ADS)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-05-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  10. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    PubMed

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  11. Peak bone strength is influenced by calcium intake in growing rats.

    PubMed

    Viguet-Carrin, S; Hoppler, M; Membrez Scalfo, F; Vuichoud, J; Vigo, M; Offord, E A; Ammann, P

    2014-11-01

    In this study we investigated the effect of supplementing the diet of the growing male rat with different levels of calcium (from low to higher than recommended intakes at constant Ca/P ratio), on multiple factors (bone mass, strength, size, geometry, material properties, turnover) influencing bone strength during the bone accrual period. Rats, age 28days were supplemented for 4weeks with high Ca (1.2%), adequate Ca (0.5%) or low Ca level (0.2%). Bone metabolism and structural parameters were measured. No changes in body weight or food intake were observed among the groups. As anticipated, compared to the adequate Ca intake, low-Ca intake had a detrimental impact on bone growth (33.63 vs. 33.68mm), bone strength (-19.7% for failure load), bone architecture (-58% for BV/TV) and peak bone mass accrual (-29% for BMD) due to the hormonal disruption implied in Ca metabolism. In contrast, novel, surprising results were observed in that higher than adequate Ca intake resulted in improved peak bone strength (106 vs. 184N/mm for the stiffness and 61 vs. 89N for the failure load) and bone material properties (467 vs. 514mPa for tissue hardness) but these effects were not accompanied by changes in bone mass, size, microarchitecture or bone turnover. Hormonal factors, IGF-I and bone modeling were also evaluated. Compared to the adequate level of Ca, IGF-I level was significantly lower in the low-Ca intake group and significantly higher in the high-Ca intake group. No detrimental effects of high Ca were observed on bone modeling (assessed by histomorphometry and bone markers), at least in this short-term intervention. In conclusion, the decrease in failure load in the low calcium group can be explained by the change in bone geometry and bone mass parameters. Thus, improvements in mechanical properties can be explained by the improved quality of intrinsic bone tissue as shown by nanoindentation. These results suggest that supplemental Ca may be beneficial for the attainment of peak bone strength and that multiple factors linked to bone mass and strength should be taken into account when setting dietary levels of adequate mineral intake to support optimal peak bone mass acquisition. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Bone marrow uptake of 99mTc-MIBI in patients with multiple myeloma.

    PubMed

    Fonti, R; Del Vecchio, S; Zannetti, A; De Renzo, A; Di Gennaro, F; Catalano, L; Califano, C; Pace, L; Rotoli, B; Salvatore, M

    2001-02-01

    In a previous study, we showed the ability of technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) scan to identify active disease in patients with multiple myeloma (Eur J Nucl Med 1998; 25: 714-720). In particular, a semiquantitative score of the extension and intensity of bone marrow uptake was derived and correlated with both the clinical status of the disease and plasma cell bone marrow infiltration. In order to estimate quantitatively 99mTc-MIBI bone marrow uptake and to verify the intracellular localization of the tracer, bone marrow samples obtained from 24 multiple myeloma patients, three patients with monoclonal gammopathy of undetermined significance (MGUS) and two healthy donors were studied for in vitro uptake. After centrifugation over Ficoll-Hypaque gradient, cell suspensions were incubated with 99mTc-MIBI and the uptake was expressed as the percentage of radioactivity specifically retained within the cells. The cellular localization of the tracer was assessed by micro-autoradiography. Twenty-two out of 27 patients underwent 99mTc-MIBI scan within a week of bone marrow sampling. Whole-body images were obtained 10 min after intravenous injection of 555 MBq of the tracer; the extension and intensity of 99mTc-MIBI uptake were graded using the semiquantitative score. A statistically significant correlation was found between in vitro uptake of 99mTc-MIBI and both plasma cell infiltration (Pearson's coefficient of correlation r=0.69, P<0.0001) and in vivo score (Spearman rank correlation coefficient r=0.60, P<0.01). No specific tracer uptake was found in bone marrow samples obtained from the two healthy donors. Micro-autoradiography showed localization of 99mTc-MIBI inside the plasma cells infiltrating the bone marrow. Therefore, our findings show that the degree of tracer uptake both in vitro and in vivo is related to the percentage of infiltrating plasma cells which accumulate the tracer in their inner compartments.

  13. Prolonged Hypocalcemia Following a Single Dose of Denosumab for Diffuse Bone Metastasis of Gastric Cancer after Total Gastrectomy.

    PubMed

    Iizumi, Sakura; Shimoi, Tatsunori; Nishikawa, Tadaaki; Kitano, Atsuko; Sasada, Shinsuke; Shimomura, Akihiko; Noguchi, Emi; Yunokawa, Mayu; Yonemori, Kan; Shimizu, Chikako; Fujiwara, Yasuhiro; Tamura, Kenji

    2017-11-01

    Hypocalcemia is a significant adverse effect of denosumab. We herein report a case of prolonged hypocalcemia in a patient with multiple risk factors for hypocalcemia, including gastrectomy, increased bone turnover, and a poor performance status. Hypocalcemia developed after denosumab treatment for diffuse bone metastasis of gastric cancer, despite oral supplementation with vitamin D and calcium. To avoid serious prolonged hypocalcemia, a thorough assessment of the bone calcium metabolism is required before initiating denosumab treatment.

  14. Prolonged Hypocalcemia Following a Single Dose of Denosumab for Diffuse Bone Metastasis of Gastric Cancer after Total Gastrectomy

    PubMed Central

    Iizumi, Sakura; Shimoi, Tatsunori; Nishikawa, Tadaaki; Kitano, Atsuko; Sasada, Shinsuke; Shimomura, Akihiko; Noguchi, Emi; Yunokawa, Mayu; Yonemori, Kan; Shimizu, Chikako; Fujiwara, Yasuhiro; Tamura, Kenji

    2017-01-01

    Hypocalcemia is a significant adverse effect of denosumab. We herein report a case of prolonged hypocalcemia in a patient with multiple risk factors for hypocalcemia, including gastrectomy, increased bone turnover, and a poor performance status. Hypocalcemia developed after denosumab treatment for diffuse bone metastasis of gastric cancer, despite oral supplementation with vitamin D and calcium. To avoid serious prolonged hypocalcemia, a thorough assessment of the bone calcium metabolism is required before initiating denosumab treatment. PMID:28943574

  15. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-relatedmore » structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.« less

  16. Taylor spatial frame fixation in patients with multiple traumatic injuries: study of 57 long-bone fractures.

    PubMed

    Sala, Francesco; Elbatrawy, Yasser; Thabet, Ahmed M; Zayed, Mahmoud; Capitani, Dario

    2013-08-01

    To evaluate the Taylor spatial frame (TSF) for primary and definitive fixation of lower limb long-bone fractures in patients with multiple traumatic injuries. Retrospective. Level I trauma center. Consecutive series of 52 patients, 57 fractures (25 femoral and 32 tibial), treated between 2005 and 2009. Forty-nine fractures (86%) were open. Injury Severity Score ≥16 for all patients. Fifty-four fractures (95%) underwent definitive fixation with the TSF and 3 were treated primarily within 48 hours of injury. In 22 cases (39%), fractures were acutely reduced with the TSF, fixed to bone and the struts in sliding mode without further adjustment, and in 35 cases (61%), the total residual deformity correction program was undertaken. Clinical and radiological. Complete union was obtained in 52 fractures (91%) without additional surgery at an average of 29 weeks. Four nonunions and 1 delayed union occurred. Results based on Association for the Study and Application of the Method of Ilizarov criteria: 74% excellent, 16% good, 4% fair, and 7% poor for bone outcomes and 35% excellent, 47% good, and 18% fair for functional outcomes. Eighty-eight percent of patients returned to preinjury work activities. Primary and definitive fixation with the TSF is effective. Advantages include continuity of device until union, reduced risk of infection, early mobilization, restoration of primary defect caused by bone loss, easy and accurate application, convertibility and versatility compared with a monolateral fixator, and improved union rate and range of motion for lower extremity long-bone fractures in patients with multiple traumatic injuries.

  17. Comparing diagnostic accuracy of bedside ultrasound and radiography for bone fracture screening in multiple trauma patients at the ED.

    PubMed

    Bolandparvaz, Shahram; Moharamzadeh, Payman; Jamali, Kazem; Pouraghaei, Mahboob; Fadaie, Maryam; Sefidbakht, Sepideh; Shahsavari, Kavous

    2013-11-01

    Long bone fractures are currently diagnosed using radiography, but radiography has some disadvantages (radiation and being time consuming). The present study compared the diagnostic accuracy of bedside ultrasound and radiography in multiple trauma patients at the emergency department (ED). The study assessed 80 injured patients with multiple trauma from February 2011 to July 2012. The patients were older than 18 years and triaged to the cardiopulmonary resuscitation ward of the ED. Bedside ultrasound and radiography were conducted for them. The findings were separately and blindly assessed by 2 radiologists. Sensitivity, specificity, the positive and negative predictive value, and κ coefficient were measured to assess the accuracy and validity of ultrasound as compared with radiography. The sensitivity of ultrasound for diagnosis of limb bone fractures was not high enough and ranged between 55% and 75% depending on the fracture site. The specificity of this diagnostic method had an acceptable range of 62% to 84%. Ultrasound negative prediction value was higher than other indices under study and ranged between 73% and 83%, but its positive prediction value varied between 33.3% and 71%. The κ coefficient for diagnosis of long bone fractures of upper limb (κ = 0.58) and upper limb joints (κ = 0.47) and long bones of lower limb (κ = 0.52) was within the medium range. However, the value for diagnosing fractures of lower limb joints (κ = 0.47) was relatively low. Bedside ultrasound is not a reliable method for diagnosing fractures of upper and lower limb bones compared with radiography. © 2013 Elsevier Inc. All rights reserved.

  18. Meeting report of the 2016 bone marrow adiposity meeting

    PubMed Central

    van der Eerden, Bram; van Wijnen, André

    2017-01-01

    Abstract There is considerable interest in the physiology and pathology, as well as the cellular and molecular biology, of bone marrow adipose tissue (BMAT). Because bone marrow adiposity is linked not only to systemic energy metabolism, but also to both bone marrow and musculoskeletal disorders, this biologic compartment has become of major interest to investigators from diverse disciplines. Bone marrow adiposity represents a virtual multi-tissue endocrine organ, which encompasses cells from multiple developmental lineages (e.g., mesenchymal, myeloid, lymphoid) and occupies all the non-osseous and non-cartilaginous space within long bones. A number of research groups are now focusing on bone marrow adiposity to understand a range of clinical afflictions associated with bone marrow disorders and to consider mechanisms-based strategies for future therapies. PMID:28410005

  19. Activation of Wnt Signaling by Mechanical Loading Is Impaired in the Bone of Old Mice

    PubMed Central

    Holguin, Nilsson; Brodt, Michael D; Silva, Matthew J

    2017-01-01

    Aging diminishes bone formation engendered by mechanical loads, but the mechanism for this impairment remains unclear. Because Wnt signaling is required for optimal loading-induced bone formation, we hypothesized that aging impairs the load-induced activation of Wnt signaling. We analyzed dynamic histomorphometry of 5-month-old, 12-month-old, and 22-month-old C57Bl/6JN mice subjected to multiple days of tibial compression and corroborated an age-related decline in the periosteal loading response on day 5. Similarly, 1 day of loading increased periosteal and endocortical bone formation in young-adult (5-month-old) mice, but old (22-month-old) mice were unresponsive. These findings corroborated mRNA expression of genes related to bone formation and the Wnt pathway in tibias after loading. Multiple bouts (3 to 5 days) of loading upregulated bone formation–related genes, e.g., Osx and Col1a1, but older mice were significantly less responsive. Expression of Wnt negative regulators, Sost and Dkk1, was suppressed with a single day of loading in all mice, but suppression was sustained only in young-adult mice. Moreover, multiple days of loading repeatedly suppressed Sost and Dkk1 in young-adult, but not in old tibias. The age-dependent response to loading was further assessed by osteocyte staining for Sclerostin and LacZ in tibia of TOPGAL mice. After 1 day of loading, fewer osteocytes were Sclerostin-positive and, corroboratively, more osteocytes were LacZ-positive (Wnt active) in both 5-month-old and 12-month-old mice. However, although these changes were sustained after multiple days of loading in 5-month-old mice, they were not sustained in 12-month-old mice. Last, Wnt1 and Wnt7b were the most load-responsive of the 19 Wnt ligands. However, 4 hours after a single bout of loading, although their expression was upregulated threefold to 10-fold in young-adult mice, it was not altered in old mice. In conclusion, the reduced bone formation response of aged mice to loading may be due to failure to sustain Wnt activity with repeated loading. PMID:27357062

  20. Denosumab for the management of bone disease in patients with solid tumors.

    PubMed

    Body, Jean-Jacques

    2012-03-01

    Many patients with advanced cancer develop bone metastases, which reduces their quality of life. Bone metastases are associated with an increased risk of skeletal-related events, which can lead to increased morbidity and mortality. In patients with bone metastases, tumor cells disrupt the normal process of bone remodeling, leading to increased bone destruction. Denosumab is a fully human monoclonal antibody against receptor activator of NF-κB ligand (RANKL), a key regulatory factor in bone remodeling. By binding to RANKL, denosumab disrupts the cycle of bone destruction. In clinical studies in patients with prostate or breast cancer and bone metastases, denosumab was superior to the current standard of care, zoledronic acid, for delaying skeletal-related events, while in patients with other solid tumors or multiple myeloma, denosumab was noninferior to zoledronic acid. This article examines the pharmacokinetics, efficacy, and safety and tolerability of denosumab for the management of bone events in patients with cancer.

  1. Local measurements of the diffusion constant in multiple scattering media: Application to human trabecular bone imaging

    NASA Astrophysics Data System (ADS)

    Aubry, Alexandre; Derode, Arnaud; Padilla, Frédéric

    2008-03-01

    We present local measurements of the diffusion constant for ultrasonic waves undergoing multiple scattering. The experimental setup uses a coherent array of programmable transducers. By achieving Gaussian beamforming at emission and reception, an array of virtual sources and receivers located in the near field is constructed. A matrix treatment is proposed to separate the incoherent intensity from the coherent backscattering peak. Local measurements of the diffusion constant D are then achieved. This technique is applied to a real case: a sample of human trabecular bone for which the ultrasonic characterization of multiple scattering is an issue.

  2. Clinical Considerations of Adapted Drilling Protocol by Bone Quality Perception.

    PubMed

    Toia, Marco; Stocchero, Michele; Cecchinato, Francesca; Corrà, Enrico; Jimbo, Ryo; Cecchinato, Denis

    To evaluate insertion torque value (ITV) and marginal bone loss (MBL) of an implant system after a clinically perceived bone quality-adapted drilling. This multicenter retrospective study included patients treated with implants, conventionally loaded, in completely healed sites. Operators customized the osteotomy preparation according to radiographic assessment and their perception of bone quality. Drilling sequence, bone quality, and ITV were recorded at the time of surgery. Radiographs were taken at the time of implant placement and permanent restoration. MBL between implant placement and permanent restoration was calculated. The implant was used as the statistical unit. Demographic and implant characteristics were shown by means of descriptive statistics. Outcome values were compared using analysis of variance (ANOVA) and Kruskal-Wallis tests. Multiple regression models were used to test the effect of independent variables on ITV and MBL. One hundred eighty-eight implants placed in 87 patients were included in the analysis. The mean observation period was 144 ± 59 days. The mean ITV was 30.8 ± 15.1 Ncm. ITV differed significantly based on arches (mandible/maxilla) (P = .001), bone quality (P < .001), implant diameter (P = .032), and drilling protocol (P = .019). Median MBL was 0.05 mm (0.00; 0.24). A significant difference was found between the mandible and maxilla (P = .008) and between drilling protocols (P = .011). In particular, significantly higher MBL was found in the undersized drilling protocol. Multiple regression analysis showed that ITV was influenced by bone quality and implant diameter. MBL was influenced by bone quality, implant diameter, ITV, and the interaction between bone quality and ITV. It was estimated that MBL was greater with increased bone density and ITV. Excessive ITV in dense bone can cause negative marginal bone responses. A presurgical radiographic assessment and the perception of bone quality are necessary to select an optimal drilling protocol and to minimize surgical trauma.

  3. Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules.

    PubMed

    Kibler, C; Schermutzki, F; Waller, H D; Timpl, R; Müller, C A; Klein, G

    1998-06-01

    Multiple myeloma represents a human B cell malignancy which is characterized by a predominant localization of the malignant cell clone within the bone marrow. With the exception of the terminal stage of the disease the myeloma tumor cells do not circulate in the peripheral blood. The bone marrow microenvironment is believed to play an important role in homing, proliferation and terminal differentiation of myeloma cells. Here we have studied the expression of several extracellular matrix (ECM) molecules in the bone marrow of multiple myeloma patients and analyzed their adhesive capacities with four different human myeloma-derived cell lines. All ECM molecules analyzed (tenascin, laminin, fibronectin, collagen types I, III, V and VI) could be detected in bone marrow cryostat sections of multiple myeloma patients. Adhesion assays showed that only laminin, the microfibrillar collagen type VI and fibronectin were strong adhesive components for the myeloma cell lines U266, IM-9, OPM-2 and NCI-H929. Tenascin and collagen type I were only weak adhesive substrates for these myeloma cells. Adhesion to laminin and fibronectin was beta 1-integrin-mediated since addition of anti-beta 1-integrin antibodies could inhibit the binding of the four different cell types to both matrix molecules. In contrast, integrins do not seem to be involved in binding of the myeloma cells to collagen type VI. Instead, inhibition of binding by heparin suggested that membrane-bound heparan sulfate proteoglycans are responsible ligands for binding to collagen type VI. Adhesion assays with several B-cell lines resembling earlier differentiation stages revealed only weak interactions with tenascin and no interactions with collagen type VI, laminin or fibronectin. In summary, the interactions of human myeloma cells with the extracellular matrix may explain the specific retention of the plasma cells within the bone marrow.

  4. The Use of the Roentgen Ray by the Medical Department of the United States Army in the War with Spain (1898)

    DTIC Science & Technology

    1900-01-01

    scientific value by showing the character of the bone lesions, the form of fracture, and the amount of bone comminution produced by the small-caliber and...without increasing its value. As the scientific value of the plates depends upon their being true representations of the objects as shown by the Rintgen...is adopted, and in such cases one of the metthods of localization by multiple observation must be resorted to. LOCALIZATION BY MULTIPLE OBSERVATION

  5. Development of a bone-fixation prosthetic attachment. [with quick-disconnect coupling

    NASA Technical Reports Server (NTRS)

    Owens, L. J.

    1975-01-01

    An artificial limb attached directly to the bone by a quick-disconnect coupling was tested in-place at a California medical rehabilitation center. Its design concept and development, made possible by multiple spinoffs of aerospace technology, are discussed.

  6. Injection of demineralized bone matrix with bone marrow concentrate improves healing in unicameral bone cyst.

    PubMed

    Di Bella, Claudia; Dozza, Barbara; Frisoni, Tommaso; Cevolani, Luca; Donati, Davide

    2010-11-01

    Unicameral bone cysts are benign lesions that usually spontaneously regress with skeletal maturity; however, the high risk of pathologic fractures often justifies treatment that could reinforce a weakened bone cortex. Various treatments have been proposed but there is no consensus regarding the best procedure. We compared the healing rates and failures of two methods of cure based on multiple injections of corticosteroid or a single injection of demineralized bone matrix (DBM) in association with bone marrow concentrate (BMC). We retrospectively reviewed 184 patients who had one of the two treatments for unicameral bone cysts with cortical erosion. Clinical records were reviewed for treatment failures and radiographs for healing in all patients. The minimum followup was 12 months for the Steroids Group (mean, 48 months; range, 12-120 months) and 12 months for the DBM + BMC Group (mean, 20 months; range, 12-28 months). After one treatment we observed a lower healing rate of cysts treated with multiple injections of steroids compared with the healing after the first injection of DBM + BMC (21% versus 58%, respectively). At last followup, 38% healed with steroids and 71% with DBM + BMC. The rate of failure after one steroid injection was higher than after a single injection of BDM + BMC (63% versus 24%, respectively). We observed no difference in fracture rates after treatment between the two groups. A single injection of DBM added with autologous bone marrow concentrate appears to provide a higher healing rate with a lower number of failures compared with a single injection of steroids.

  7. In Silico Investigations of the Anti-Catabolic Effects of Pamidronate and Denosumab on Multiple Myeloma-Induced Bone Disease

    PubMed Central

    Wang, Yan; Lin, Bo

    2012-01-01

    It is unclear whether the new anti-catabolic agent denosumab represents a viable alternative to the widely used anti-catabolic agent pamidronate in the treatment of Multiple Myeloma (MM)-induced bone disease. This lack of clarity primarily stems from the lack of sufficient clinical investigations, which are costly and time consuming. However, in silico investigations require less time and expense, suggesting that they may be a useful complement to traditional clinical investigations. In this paper, we aim to (i) develop integrated computational models that are suitable for investigating the effects of pamidronate and denosumab on MM-induced bone disease and (ii) evaluate the responses to pamidronate and denosumab treatments using these integrated models. To achieve these goals, pharmacokinetic models of pamidronate and denosumab are first developed and then calibrated and validated using different clinical datasets. Next, the integrated computational models are developed by incorporating the simulated transient concentrations of pamidronate and denosumab and simulations of their actions on the MM-bone compartment into the previously proposed MM-bone model. These integrated models are further calibrated and validated by different clinical datasets so that they are suitable to be applied to investigate the responses to the pamidronate and denosumab treatments. Finally, these responses are evaluated by quantifying the bone volume, bone turnover, and MM-cell density. This evaluation identifies four denosumab regimes that potentially produce an overall improved bone-related response compared with the recommended pamidronate regime. This in silico investigation supports the idea that denosumab represents an appropriate alternative to pamidronate in the treatment of MM-induced bone disease. PMID:23028650

  8. Solitary Bone Plasmacytoma Progressing into Retroperitoneal Plasma Cell Myeloma with No Related End Organ or Tissue Impairment: A Case Report and Review of the Literature

    PubMed Central

    Tikku, Gargi; Jain, Monica; Mridha, Asit; Grover, Rajesh

    2014-01-01

    Solitary bone plasmacytomas and plasma cell myeloma are clonal proliferations of plasma cells. Many patients with solitary bone plasmacytomas develop plasma cell myeloma on follow-up. We present a case of a 70-year-old man who presented with fracture and a lytic lesion in the subtrochanteric region of the left femur and was assigned a diagnosis of solitary bone plasmacytoma. He received local curative radiotherapy. However, 4 months later his serum M protein and β2-microglobulin levels increased to 2.31 g/dL and 5.965 mg/L, respectively. He complained of abdominal fullness and constipation. Ultrasound and non-contrast CT imaging revealed multiple retroperitoneal masses. Colonoscopic examination was normal. Biopsy of the a retroperitoneal mass confirmed it to be a plasmacytoma. Repeat hemogram, blood urea, serum creatinine, skeletal survey, and bone marrow examination revealed no abnormalities. This is an unusual presentation of plasma cell myeloma, which manifested as multiple huge extramedullary retroperitoneal masses and arose from a solitary bone plasmacytoma, without related end organ or tissue impairment and bone marrow plasmacytosis. The patient succumbed to his disease 8 months after the appearance of the retroperitoneal masses. This case highlights the importance of close monitoring of patients diagnosed with solitary bone plasmacytoma with increased serum M protein and serum β2-microglobulin levels, so that early therapy can be instituted to prevent conversion to plasma cell myeloma. PMID:25330522

  9. Comparison of methodologies in determining bone marrow fat percentage under different environmental conditions.

    PubMed

    Murden, David; Hunnam, Jaimie; De Groef, Bert; Rawlin, Grant; McCowan, Christina

    2017-01-01

    The use of bone marrow fat percentage has been recommended in assessing body condition at the time of death in wild and domestic ruminants, but few studies have looked at the effects of time and exposure on animal bone marrow. We investigated the utility of bone marrow fat extraction as a tool for establishing antemortem body condition in postmortem specimens from sheep and cattle, particularly after exposure to high heat, and compared different techniques of fat extraction for this purpose. Femora were collected from healthy and "skinny" sheep and cattle. The bones were either frozen or subjected to 40°C heat; heated bones were either wrapped in plastic to minimize desiccation or were left unwrapped. Marrow fat percentage was determined at different time intervals by oven-drying, or by solvent extraction using hexane in manual equipment or a Soxhlet apparatus. Extraction was performed, where possible, on both wet and dried tissue. Multiple samples were tested from each bone. Bone marrow fat analysis using a manual, hexane-based extraction technique was found to be a moderately sensitive method of assessing antemortem body condition of cattle up to 6 d after death. Multiple replicates should be analyzed where possible. Samples from "skinny" sheep showed a different response to heat from those of "healthy" sheep; "skinny" samples were so reduced in quantity by day 6 (the first sampling day) that no individual testing could be performed. Further work is required to understand the response of sheep marrow.

  10. Adipose, Bone and Myeloma: Contributions from the Microenvironment

    PubMed Central

    McDonald, Michelle; Fairfield, Heather; Falank, Carolyne; Reagan, Michaela R.

    2017-01-01

    Researchers globally are working towards finding a cure for multiple myeloma (MM), a destructive blood cancer diagnosed yearly in ~750,000 people worldwide [1]. Although MM targets multiple organ systems, it is the devastating skeletal destruction experienced by over 90% of patients that often most severely impacts patient morbidity, pain, and quality of life. Preventing bone disease is therefore a priority in MM treatment, and understanding how and why myeloma cells target the bone marrow (BM) is fundamental to this process. This review focuses on a key area of MM research: the contributions of the bone microenvironment to disease origins, progression, and drug resistance. We describe some of the key cell types in the BM niche: osteoclasts, osteoblasts, osteocytes, adipocytes and mesenchymal stem cells. We then focus on how these key cellular players are, or could be, regulating a range of disease-related processes spanning MM growth, drug resistance, and bone disease (including osteolysis, fracture, and hypercalcemia). We summarize the literature regarding MM-bone cell and MM-adipocyte relationships and subsequent phenotypic changes or adaptations in MM cells, with the aim of providing a deeper understanding of how myeloma cells grow in the skeleton to cause bone destruction. We identify avenues and therapies that intervene in these networks to stop tumor growth and/or induce bone regeneration. Overall, we aim to illustrate how novel therapeutic target molecules, proteins, and cellular mediators may offer new avenues to attack this disease while reviewing currently utilized therapies. PMID:27343063

  11. Metabolic Bone Disease in the Context of Metastatic Neuroendocrine Tumor: Differentiation from Skeletal Metastasis, the Molecular PET-CT Imaging Features, and Exploring the Possible Etiopathologies Including Parathyroid Adenoma (MEN1) and Paraneoplastic Humoral Hypercalcemia of Malignancy Due to PTHrP Hypersecretion.

    PubMed

    Ranade, Rohit; Basu, Sandip

    2017-01-01

    Three cases of metabolic bone disease in the setting of metastatic neuroendocrine tumor (NET) are illustrated with associated etiopathologies.  One of these cases harbored mixed lesions in the form of vertebral metastasis (biopsy proven) while the other skeletal lesions were caused due to metabolic bone disease related to multiple parathyroid adenomas. While the metastatic lesion was positive on 68Ga-DOTATATE positron emission tomography-computed tomography (PET-CT), the lesions of metabolic bone disease were negative and the 18F-fluoride PET-CT demonstrated the features of metabolic bone scan. Similar picture of metabolic bone disease [18-sodium fluoride (18NaF)/68Ga-DOTATATE mismatch] was documented in the other two patients, while fluorodeoxyglucose (FDG)-PET-CT was variably positive, primarily showing tracer uptake in the metabolic skeletal lesions of the patient with hypersecretion of parathyroid hormone-related protein (PTHrP) by the underlying tumor. Discordance between 18NaF PET-CT and 68Ga-DOTATATE PET-CT serves as a good marker for identification of metabolic bone disease and diagnosing such a clinical entity. In a patient of NET with metabolic bone disease and hypercalcemia, thus, two causes need to be considered: (i) Coexisting parathyroid adenoma in multiple endocrine neoplasia type I (MEN-I) syndrome and (ii) humoral hypercalcemia of malignancy (HHM) related to hypersecretion of PTHrP by the tumor. The correct diagnosis of metabolic bone disease in metastatic NET can alter the management substantially. Interestingly, peptide receptor radionuclide therapy (PRRT) can emerge as a very promising treatment modality in patients of metabolic bone disease caused by HHM in the setting of NET.

  12. Association with replication between estrogen-related receptor gamma (ESRRgamma) polymorphisms and bone phenotypes in women of European ancestry.

    PubMed

    Elfassihi, Latifa; Giroux, Sylvie; Bureau, Alexandre; Laflamme, Nathalie; Cole, David Ec; Rousseau, François

    2010-04-01

    Osteoporosis is a bone disease characterized by low bone mineral density (BMD), a highly heritable polygenic trait. Women are more prone than men to develop osteoporosis owing to a lower peak bone mass and accelerated bone loss at menopause. Lack of estrogen thus is a major risk factor for osteoporosis. In addition to having strong similarity to the estrogen receptor 1 (ESR1), the orphan nuclear estrogen-related receptor gamma (ESRRgamma) is widely expressed and shows overlap with ESR1 expression in tissues where estrogen has important physiologic functions. For these reasons, we have undertaken a study of ESRRgamma sequence variants in association with bone measurements [heel quantitative ultrasound (QUS) by measurements of broadband ultrasound attenuation (BUA), speed of sound (SOS), and stiffness index (SI) and dual-energy X-ray absorptiometry (DXA) at the femoral neck (FN) and lumbar spine (LS)]. A silent variant was found to be associated with multiple bone measurements (LS, BUA, SOS, and SI), the p values ranging from .006 to .04 in a sample of 5144 Quebec women. The region of this variant was analyzed using the HapMap database and the Gabriel method to define a block of 20 kb. Using the Tagger method, eight TagSNPs were identified and genotyped in a sample of 1335 women. Four of these SNPs capture the five major block haplotypes. One SNP (rs2818964) and one haplotype were significantly associated with multiple bone measures. All SNPs involved in the associations were analyzed in two other sample sets with significant results in the same direction. These results suggest involvement of ESRRgamma in the determination of bone density in women. Copyright 2010 American Society for Bone and Mineral Research.

  13. Muscle-Bone Interactions in Pediatric Bone Diseases.

    PubMed

    Veilleux, Louis-Nicolas; Rauch, Frank

    2017-10-01

    Here, we review the skeletal effects of pediatric muscle disorders as well as muscle impairment in pediatric bone disorders. When starting in utero, muscle disorders can lead to congenital multiple contractures. Pediatric-onset muscle weakness such as cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, or spina bifida typically are associated with small diameter of long-bone shafts, low density of metaphyseal bone, and increased fracture incidence in the lower extremities, in particular, the distal femur. Primary bone diseases can affect muscles through generic mechanisms, such as decreased physical activity or in disease-specific ways. For example, the collagen defect underlying the bone fragility of osteogenesis imperfecta may also affect muscle force generation or transmission. Transforming growth factor beta released from bone in Camurati Engelman disease may decrease muscle function. Considering muscle-bone interactions does not only contribute to the understanding of musculoskeletal disorders but also can identify new targets for therapeutic interventions.

  14. Leptin promotes ossification through multiple ways of bone metabolism in osteoblast: a pilot study.

    PubMed

    Zhang, Jing; Li, Tingting; Xu, Liangzhi; Li, Wenjuan; Cheng, Meng; Zhuang, Jing; Chen, Yan; Xu, Wenming

    2013-08-01

    Leptin may be a potential option in preventing osteoporosis for menopausal women. The objective of this study is to explore the molecular mechanism of leptin on bone metabolism in osteoblast. Primary osteoblasts were isolated from parietal bone of adult female rats. mRNA level of OB-Rb in osteoblasts was inhibited by siRNA to block leptin signal transmission. The whole genome expression was tested by using gene chip to preliminarily explore the molecular mechanism of leptin in regulating osteoblast activity. The optimal concentration of siRNA was 25 nM, resulting in a maximal inhibition of OB-Rb mRNA. Ossification (p < 0.05) and bone mineralization (p = 0.0001) were downregulated by inhibiting leptin signal transmission, while bone resorption (p = 0.007), osteoblast differentiation (p = 0.026) and negative regulation of bone remodeling (p = 0.004) were upregulated. The expressions of some genes were regulated by OB-Rb siRNA. The expressions of alkaline phosphatase (p = 0.014) and osteocalcin (p = 0.002) were reduced, while that of vascular endothelial growth factor A (p = 0.0076) and IL-6 (p = 0.021) were increased. In a model of osteoblast, leptin positively promotes ossification through multiple ways including bone mineralization, remodeling, resorption and osteoblast differentiation, but which way plays the most critical role is not discussed in this study and needs to be clarified in future.

  15. Validation of multiple subject-specific finite element models of unicompartmental knee replacement.

    PubMed

    Tuncer, Mahmut; Cobb, Justin P; Hansen, Ulrich N; Amis, Andrew A

    2013-10-01

    Accurate computer modelling of the fixation of unicompartmental knee replacements (UKRs) is a valuable design tool. However, models must be validated with in vitro mechanical tests to have confidence in the results. Ten fresh-frozen cadaveric knees with differing bone densities were CT-scanned to obtain geometry and bone density data, then implanted with cementless medial Oxford UKRs by an orthopaedic surgeon. Five strain gauge rosettes were attached to the tibia and femur of each knee and the bone constructs were mechanically tested. They were re-tested following implanting the cemented versions of the implants. Finite element models of four UKR tibiae and femora were developed. Sensitivity assessments and convergence studies were conducted to optimise modelling parameters. The cemented UKR pooled R(2) values for predicted versus measured bone strains were 0.85 and 0.92 for the tibia and femur respectively. The cementless UKR pooled R(2) values were slightly lower at 0.62 and 0.73 which may have been due to the irregularity of bone resections. The correlation of the results was attributed partly to the improved material property prediction method used in this project. This study is the first to validate multiple UKR tibiae and femora for bone strain across a range of specimen bone densities. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Age-associated bone loss and intraskeletal variability in the Imperial Romans.

    PubMed

    Cho, Helen; Stout, Sam Darrel

    2011-01-01

    An Imperial Roman sample from the Isola Sacra necropolis (100-300 A.D.) offered an opportunity to histologically examine bone loss and intraskeletal variability in an urban archaeological population. Rib and femur samples were analyzed for static indices of bone remodeling and measures of bone mass. The Imperial Romans experienced normal age-associated bone loss via increased intracortical porosity and endosteal expansion, with females exhibiting greater bone loss and bone turnover rates than in males. Life events such as menopause and lactation coupled with cultural attitudes and practices regarding gender and food may have led to increased bone loss in females. Remodeling dynamics differ between the rib and femur and the higher remodeling rates in the rib may be attributed to different effective age of the adult compacta or loading environment. This study demonstrates that combining multiple methodologies to examine bone loss is necessary to shed light on the biocultural factors that influence bone mass and bone loss.

  17. Effects of Condensation on Peri-implant Bone Density and Remodeling

    PubMed Central

    Wang, L.; Wu, Y.; Perez, K.C.; Hyman, S.; Brunski, J.B.; Tulu, U.; Bao, C.; Salmon, B.; Helms, J.A.

    2017-01-01

    Bone condensation is thought to densify interfacial bone and thus improve implant primary stability, but scant data substantiate either claim. We developed a murine oral implant model to test these hypotheses. Osteotomies were created in healed maxillary extraction sites 1) by drilling or 2) by drilling followed by stepwise condensation with tapered osteotomes. Condensation increased interfacial bone density, as measured by a significant change in bone volume/total volume and trabecular spacing, but it simultaneously damaged the bone. On postimplant day 1, the condensed bone interface exhibited microfractures and osteoclast activity. Finite element modeling, mechanical testing, and immunohistochemical analyses at multiple time points throughout the osseointegration period demonstrated that condensation caused very high interfacial strains, marginal bone resorption, and no improvement in implant stability. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability. PMID:28048963

  18. Effects of Condensation on Peri-implant Bone Density and Remodeling.

    PubMed

    Wang, L; Wu, Y; Perez, K C; Hyman, S; Brunski, J B; Tulu, U; Bao, C; Salmon, B; Helms, J A

    2017-04-01

    Bone condensation is thought to densify interfacial bone and thus improve implant primary stability, but scant data substantiate either claim. We developed a murine oral implant model to test these hypotheses. Osteotomies were created in healed maxillary extraction sites 1) by drilling or 2) by drilling followed by stepwise condensation with tapered osteotomes. Condensation increased interfacial bone density, as measured by a significant change in bone volume/total volume and trabecular spacing, but it simultaneously damaged the bone. On postimplant day 1, the condensed bone interface exhibited microfractures and osteoclast activity. Finite element modeling, mechanical testing, and immunohistochemical analyses at multiple time points throughout the osseointegration period demonstrated that condensation caused very high interfacial strains, marginal bone resorption, and no improvement in implant stability. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability.

  19. Melorheostosis with bilateral involvement in a black African patient.

    PubMed

    Biaou, Olivier; Avimadje, Martin; Guira, Oumar; Adjagba, Alex; Zannou, Marcel; Hauzeur, Jean-Philippe

    2004-01-01

    Melorheostosis is a rare chronic bone disease of unknown etiology that often affects a single limb. Onset usually occurs in childhood or early adolescence. A flowing wax appearance along the surface of the bone and multiple areas of bone sclerosis produce a typical radiographic picture. We describe the first case reported in a black African, in whom an exceedingly rare feature was a bilateral distribution of the lesions.

  20. Sarcoidosis: nail dystrophy without underlying bone changes.

    PubMed

    Wakelin, S H; James, M P

    1995-06-01

    Sarcoidosis is a chronic granulomatous disease of unknown origin that affects multiple organs and may present with a variety of skin lesions. Involvement of the nails is rare and almost invariably associated with underlying bone disease. We describe a patient with sarcoid nail dystrophy in whom this diagnosis was confirmed by a proximal nail fold biopsy. Radiologic investigation did not show evidence of an associated bone dystrophy in this case.

  1. Radioisotope bone scanning in a case of sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinti, D.C.; Hawkins, H.B.; Slavin, J.D. Jr.

    1985-03-01

    The application of radioisotope scanning to osseous involvement from systemic sarcoidosis has been infrequently described in the scientific literature. Most commonly, the small bones of the hands and feet are affected if sarcoidosis involves the skeleton. Nonetheless, there are also occasional manifestations of sarcoid in the skull, long bones, and vertebral bodies. This paper describes a case of sarcoid involving the lung parenchyma with multiple lesions in the skull and ribs demonstrated by bone scanning with Tc-99m MDP. Following treatment with steroids, the bone scan showed complete resolution of the rib lesions and almost complete resolution of the lesions inmore » the calvarium.« less

  2. Purinergic signalling in bone

    PubMed Central

    Rumney, Robin M. H.; Wang, Ning; Agrawal, Ankita; Gartland, Alison

    2012-01-01

    Purinergic signaling in bone was first proposed in the early 1990s with the observation that extracellular ATP could modulate events crucial to the normal functioning of bone cells. Since then the expression of nearly all the P2Y and P2X receptors by osteoblasts and osteoclasts has been reported, mediating multiple processes including cell proliferation, differentiation, function, and death. This review will highlight the most recent developments in the field of purinergic signaling in bone, with a special emphasis on recent work resulting from the European Framework 7 funded collaboration ATPBone, as well as Arthritis Research UK and Bone Research Society supported projects. PMID:23049524

  3. Reduced cellularity of bone marrow in multiple sclerosis with decreased MSC expansion potential and premature ageing in vitro.

    PubMed

    Redondo, Juliana; Sarkar, Pamela; Kemp, Kevin; Virgo, Paul F; Pawade, Joya; Norton, Aimie; Emery, David C; Guttridge, Martin G; Marks, David I; Wilkins, Alastair; Scolding, Neil J; Rice, Claire M

    2017-05-01

    Autologous bone-marrow-derived cells are currently employed in clinical studies of cell-based therapy in multiple sclerosis (MS) although the bone marrow microenvironment and marrow-derived cells isolated from patients with MS have not been extensively characterised. To examine the bone marrow microenvironment and assess the proliferative potential of multipotent mesenchymal stromal cells (MSCs) in progressive MS. Comparative phenotypic analysis of bone marrow and marrow-derived MSCs isolated from patients with progressive MS and control subjects was undertaken. In MS marrow, there was an interstitial infiltrate of inflammatory cells with lymphoid (predominantly T-cell) nodules although total cellularity was reduced. Controlling for age, MSCs isolated from patients with MS had reduced in vitro expansion potential as determined by population doubling time, colony-forming unit assay, and expression of β-galactosidase. MS MSCs expressed reduced levels of Stro-1 and displayed accelerated shortening of telomere terminal restriction fragments (TRF) in vitro. Our results are consistent with reduced proliferative capacity and ex vivo premature ageing of bone-marrow-derived cells, particularly MSCs, in MS. They have significant implication for MSC-based therapies for MS and suggest that accelerated cellular ageing and senescence may contribute to the pathophysiology of progressive MS. The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Funding for this study was provided by the Medical Research Council, UK (grant no. MR/K004166/1). The ACTiMuS study is sup-ported by the Silverman Family Foundation, Multiple Sclerosis Trust, Rosetree’s Trust, Catholic Bishops of England and Wales and Friends of Frenchay and SIAMMS-II by the Sir Halley Stewart Trust. C.M.R., P.S., and K.K. received support from the Burden Neurological Institute.

  4. Sudden multiple fractures in a patient with sarcoidosis in multiple organs.

    PubMed

    Sada, Mitsuru; Saraya, Takeshi; Ishii, Haruyuki; Goto, Hajime

    2014-04-07

    A 30-year-old man who incidentally fractured his right olecranon and other multiple phalanges was admitted to our hospital. He had a 2-year history of uveitis and bilateral hilar lymphadenopathy (BHL), and pulmonary sarcoidosis was diagnosed from transbronchial lung biopsy. Right elbow arthrodesis was performed, and biopsied specimens showed non-caseating epithelioid cell granuloma, suggesting osseous sarcoidosis. He was discharged uneventfully without further treatment, but BHL had progressed with the appearance of lung parenchymal lesions 3 months later. At that time, involvement of other organs was also noted on Gallium-67 scintigraphy, showing accumulations in BHL, axillary and inguinal lymph nodes, enlarged liver and spleen and subcutaneous areas. After initiation of steroid therapy, multiple organ involvement improved, and no further bone involvement has been recognised to date. Osseous sarcoidosis complicated by bone fracture is an extremely rare presentation, but should be considered in patients with sarcoidosis, especially when multiple organs are involved.

  5. Atypical progression of multiple myeloma with extensive extramedullary disease.

    PubMed Central

    Jowitt, S N; Jacobs, A; Batman, P A; Sapherson, D A

    1994-01-01

    Multiple myeloma is a neoplastic disorder caused by the proliferation of a transformed B lymphoid progenitor cell that gives rise to a clone of immunoglobulin-secreting cells. Other plasma cell tumours include solitary plasmacytoma of bone (SPB) and extramedullary plasmacytomas (EMP). Despite an apparent common origin there exist pathological and clinical differences between these neoplasms and the association between them is not completely understood. A case of IgG multiple myeloma that presented with typical clinical and laboratory features, including a bone marrow infiltrated by well differentiated plasma cells, is reported. The tumour had an unusual evolution, with the development of extensive extramedullary disease while maintaining mature histological features. Images PMID:8163701

  6. Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma.

    PubMed

    Teoh, G; Anderson, K C

    1997-02-01

    Adhesion molecules play an important role in the growth regulation and migration of multiple myeloma (MM) cells. They mediate homing of MM cells to the bone marrow and MM cell to bone marrow stromal cell adhesion, with resultant interleukin-6 related autocrine and paracine growth and antiapoptotic affects. Their pattern of expression on tumor cells correlates with the development of plasma cell leukemia or extramedullary disease. Clinically, expression of adhesion molecules on tumor cells or in the serum has already shown prognostic utility. Finally, since adhesion molecules are involved at multiple steps in the pathogenesis of MM, therapeutic studies may target these molecules.

  7. Otogenic pneumocephalus as a complication of multiple myeloma.

    PubMed

    Maguire, Melissa J; Nath, Uma; Bignardi, Guiseppe E

    2012-09-01

    We report a case of otogenic pneumocephalus in an 80-year-old woman with multiple myeloma. The pneumocephalus was associated with Haemophilus influenzae otitis media and reactive meningitis in the absence of an intracranial brain abscess. Myeloma causes thinning of bone trabeculae and destructive lytic bone lesions. This can predispose to a risk of pathologic fractures and, in patients with skull vault involvement, to the rare complication of pneumocephalus. Therefore, pneumocephalus should be considered in the differential diagnosis of acute headache in patients with multiple myeloma, especially those with skull vault involvement. Prompt computed tomography and liaison between the otolaryngology and neurology teams may assist in making an early diagnosis and preventing life-threatening intracranial complications.

  8. The use of XFEM to assess the influence of intra-cortical porosity on crack propagation.

    PubMed

    Rodriguez-Florez, Naiara; Carriero, Alessandra; Shefelbine, Sandra J

    2017-03-01

    This study aimed at using eXtended finite element method (XFEM) to characterize crack growth through bone's intra-cortical pores. Two techniques were compared using Abaqus: (1) void material properties were assigned to pores; (2) multiple enrichment regions with independent crack-growth possibilities were employed. Both were applied to 2D models of transverse images of mouse bone with differing porous structures. Results revealed that assigning multiple enrichment regions allows for multiple cracks to be initiated progressively, which cannot be captured when the voids are filled. Therefore, filling pores with one enrichment region in the model will not create realistic fracture patterns in Abaqus-XFEM.

  9. Identification of homogeneous genetic architecture of multiple genetically correlated traits by block clustering of genome-wide associations.

    PubMed

    Gupta, Mayetri; Cheung, Ching-Lung; Hsu, Yi-Hsiang; Demissie, Serkalem; Cupples, L Adrienne; Kiel, Douglas P; Karasik, David

    2011-06-01

    Genome-wide association studies (GWAS) using high-density genotyping platforms offer an unbiased strategy to identify new candidate genes for osteoporosis. It is imperative to be able to clearly distinguish signal from noise by focusing on the best phenotype in a genetic study. We performed GWAS of multiple phenotypes associated with fractures [bone mineral density (BMD), bone quantitative ultrasound (QUS), bone geometry, and muscle mass] with approximately 433,000 single-nucleotide polymorphisms (SNPs) and created a database of resulting associations. We performed analysis of GWAS data from 23 phenotypes by a novel modification of a block clustering algorithm followed by gene-set enrichment analysis. A data matrix of standardized regression coefficients was partitioned along both axes--SNPs and phenotypes. Each partition represents a distinct cluster of SNPs that have similar effects over a particular set of phenotypes. Application of this method to our data shows several SNP-phenotype connections. We found a strong cluster of association coefficients of high magnitude for 10 traits (BMD at several skeletal sites, ultrasound measures, cross-sectional bone area, and section modulus of femoral neck and shaft). These clustered traits were highly genetically correlated. Gene-set enrichment analyses indicated the augmentation of genes that cluster with the 10 osteoporosis-related traits in pathways such as aldosterone signaling in epithelial cells, role of osteoblasts, osteoclasts, and chondrocytes in rheumatoid arthritis, and Parkinson signaling. In addition to several known candidate genes, we also identified PRKCH and SCNN1B as potential candidate genes for multiple bone traits. In conclusion, our mining of GWAS results revealed the similarity of association results between bone strength phenotypes that may be attributed to pleiotropic effects of genes. This knowledge may prove helpful in identifying novel genes and pathways that underlie several correlated phenotypes, as well as in deciphering genetic and phenotypic modularity underlying osteoporosis risk. Copyright © 2011 American Society for Bone and Mineral Research.

  10. Non-invasive photo acoustic approach for human bone diagnosis.

    PubMed

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via IR sensors, and acoustic wave signals may be detected via sensitive pressure transducer, which is reserved for future realization.

  11. Brief communication: unusual finding at Pueblo Bonito: multiple cases of hyperostosis frontalis interna.

    PubMed

    Mulhern, Dawn M; Wilczak, Cynthia A; Dudar, J Christopher

    2006-08-01

    Hyperostosis frontalis interna (HFI) is a disease characterized by excess bone growth on the internal lamina of the frontal bone and, occasionally, other cranial bones. Although the disease is fairly common in modern populations, its etiology is poorly understood. Hyperostosis frontalis interna has been identified in antiquity, primarily in the Old World, but with a much lower frequency than in modern groups. The purpose of the present study is to report multiple cases of HFI at Pueblo Bonito (Chaco Canyon, New Mexico). Twelve out of 37 adults with observable frontal bones exhibited HFI, ranging from mild to severe, including 11 females and one male. This is the first published case report of HFI in archaeological remains from the New World having a frequency comparable with modern groups. Most archaeological cases of HFI are isolated, so comparative data for multiple cases at one site are rare. The results of this study emphasize the importance of looking for HFI in archaeological remains, although it is rarely observed. Possible genetic and environmental factors for the high frequency of HFI at Chaco Canyon are considered, but additional research is needed to discover the etiology and to better understand why HFI sometimes occurs at modern frequencies in ancient populations.

  12. Obesity is a concern for bone health with aging.

    PubMed

    Shapses, Sue A; Pop, L Claudia; Wang, Yang

    2017-03-01

    Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Obesity is a concern for bone health with aging

    PubMed Central

    Shapses, Sue A.; Pop, L. Claudia; Wang, Yang

    2017-01-01

    Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. PMID:28385284

  14. Idiopathic bone cavities of the mandible: an update on recurrence rates and case report.

    PubMed

    Horne, Robert P; Meara, Daniel J; Granite, Edwin L

    2014-02-01

    Idiopathic bone cavities (IBCs) are usually an incidental finding, often found in long bones but also in the craniofacial skeleton. Typically solitary, IBCs can present at multiple sites. Surgical exploration alone has proved effective, although recurrence does occur, particularly in cases with multiple lesions. The average time necessary to observe either recurrence or complete healing has been reported to be more than 3 years. Previously reported low recurrence rates for IBCs in the craniofacial skeleton may have been artificially low because of insufficient long-term follow-up. Providers should be prepared for long-term follow-up and care of these patients. The case of the patient presented here supports the need for long-term follow-up. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Total Hip Arthroplasty Using a Polished Tapered Cemented Stem in Hereditary Multiple Exostosis

    PubMed Central

    Kanda, Akio; Kaneko, Kazuo; Obayashi, Osamu; Mogami, Atsuhiko

    2016-01-01

    A 61-year-old Japanese man underwent right total hip arthroplasty for hereditary multiple exostosis. At first presentation, he had suffered from coxalgia for a long time. On radiographic images, there was a gigantic femoral head, increased shaft angle, and large diameter of the femoral neck. He had also developed coxarthrosis and severe pain of the hip joint. The transformation of the proximal femur bone causes difficulty in setting a cementless total hip prosthesis. Therefore, total hip arthroplasty using a cemented polished tapered stem was performed via a direct lateral approach. Using a cemented polished tapered stem allowed us to deal with the femoral bone transformation and bone substance defectiveness due to exostosis and also minimized the invasiveness of the operation. PMID:27127668

  16. Coralline hydroxyapatite: a bone graft alternative in foot and ankle surgery.

    PubMed

    Rahimi, F; Maurer, B T; Enzweiler, M G

    1997-01-01

    The use of coralline hydroxyapatite has become a viable bone grafting alternative. Its efficacy has been well established through multiple human and animal studies. Coralline hydroxyapatite enhances osteogenesis by providing a biocompatible lattice for the passage and assembly of vascular, fibroblastic, and osteoblastic tissues. It also provides support for surrounding osseous structures. The uses of this material are expanding into the realm of foot and ankle surgery. Its consideration as an appropriate bone graft substitute as well as multiple case studies demonstrating its surgical applicability are discussed. The implants utilized at Thorek Hospital and Medical Center over the past eight years, with an average follow-up of three and one-half years, have proven to be a valuable resource for augmentation where an osseous defect has occurred.

  17. Bone Lengthening in the Pediatric Upper Extremity.

    PubMed

    Farr, Sebastian; Mindler, Gabriel; Ganger, Rudolf; Girsch, Werner

    2016-09-07

    ➤Bone lengthening has been used successfully for several congenital and acquired conditions in the pediatric clavicle, humerus, radius, ulna, and phalanges.➤Common indications for bone lengthening include achondroplasia, radial longitudinal deficiency, multiple hereditary exostosis, brachymetacarpia, symbrachydactyly, and posttraumatic and postinfectious growth arrest.➤Most authors prefer distraction rates of <1 mm/day for each bone in the upper extremity except the humerus, which can safely be lengthened by 1 mm/day.➤Most authors define success by the amount of radiographic bone lengthening, joint motion after lengthening, and subjective patient satisfaction rather than validated patient-related outcome measures.➤Bone lengthening of the upper extremity is associated with a high complication rate, with complications including pin-track infections, fixation device failure, nerve lesions, nonunion, fracture of regenerate bone, and joint dislocations. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  18. Cost of skeletal complications from bone metastases in six European countries.

    PubMed

    Pereira, J; Body, J-J; Gunther, O; Sleeboom, H; Hechmati, G; Maniadakis, N; Terpos, E; Acklin, Y P; Finek, J; von Moos, R

    2016-06-01

    Objective Patients with bone metastases or lesions secondary to solid tumors or multiple myeloma often experience bone complications (skeletal-related events [SREs]-radiation to bone, pathologic fracture, surgery to bone, and spinal cord compression); however, recent data that can be used to assess the value of treatments to prevent SREs across European countries are limited. This study aimed to provide estimates of health resource utilization (HRU) and cost associated with all SRE types in Europe. HRU data were reported previously; cost data are reported herein. Methods Eligible patients from 49 centers across Austria (n = 57), the Czech Republic (n = 59), Finland (n = 60), Greece (n = 59), Portugal (n = 59), and Sweden (n = 62) had bone metastases or lesions secondary to breast, lung, or prostate cancer, or multiple myeloma, and ≥1 index SRE (a SRE preceded by a SRE-free period of ≥ 6.5 months). SRE-related costs were estimated from a payer perspective using health resource utilization data from patient charts (before and after the index SRE diagnosis). Country-specific unit costs were from 2010 and local currencies were converted to 2010 euros. Results The mean costs across countries were €7043, €5242, €11,101, and €11,509 per radiation to bone, pathologic fracture, surgery to bone, and spinal cord compression event, respectively. Purchasing power parity (PPP)-adjusted mean cost ratios were similar in most countries, with the exception of radiation to bone. Limitations The overall burden of SREs may have been under-estimated owing to home visits and evaluations outside the hospital setting not being reported here. Conclusions All SREs were associated with substantial costs. Variation in SRE-associated costs between countries was most likely driven by differences in treatment practices and unit costs.

  19. Risk factors for low bone mineral density in children and adolescents with inflammatory bowel disease.

    PubMed

    Lopes, Letícia Helena Caldas; Sdepanian, Vera Lucia; Szejnfeld, Vera Lúcia; de Morais, Mauro Batista; Fagundes-Neto, Ulysses

    2008-10-01

    To evaluate bone mineral density of the lumbar spine in children and adolescents with inflammatory bowel disease, and to identify the clinical risk factors associated with low bone mineral density. Bone mineral density of the lumbar spine was evaluated using dual-energy X-ray absorptiometry (DXA) in 40 patients with inflammatory bowel disease. Patients were 11.8 (SD = 4.1) years old and most of them were male (52.5%). Multiple linear regression analysis was performed to identify potential associations between bone mineral density Z-score and age, height-for-age Z-score, BMI Z-score, cumulative corticosteroid dose in milligrams and in milligrams per kilogram, disease duration, number of relapses, and calcium intake according to the dietary reference intake. Low bone mineral density (Z-score bellow -2) was observed in 25% of patients. Patients with Crohn's disease and ulcerative colitis had equivalent prevalence of low bone mineral density. Multiple linear regression models demonstrated that height-for-age Z-score, BMI Z-score, and cumulative corticosteroid dose in mg had independent effects on BMD, respectively, beta = 0.492 (P = 0.000), beta = 0.460 (P = 0.001), beta = - 0.014 (P = 0.000), and these effects remained significant after adjustments for disease duration, respectively, beta = 0.489 (P = 0.013), beta = 0.467 (P = 0.001), and beta = - 0.005 (P = 0.015). The model accounted for 54.6% of the variability of the BMD Z-score (adjusted R2 = 0.546). The prevalence of low bone mineral density in children and adolescents with inflammatory bowel disease is considerably high and independent risk factors associated with bone mineral density are corticosteroid cumulative dose in milligrams, height-for-age Z-score, and BMI Z-score.

  20. Adipose, Bone, and Myeloma: Contributions from the Microenvironment.

    PubMed

    McDonald, Michelle M; Fairfield, Heather; Falank, Carolyne; Reagan, Michaela R

    2017-05-01

    Researchers globally are working towards finding a cure for multiple myeloma (MM), a destructive blood cancer diagnosed yearly in ~750,000 people worldwide (Podar et al. in Expert Opin Emerg Drugs 14:99-127, 2009). Although MM targets multiple organ systems, it is the devastating skeletal destruction experienced by over 90 % of patients that often most severely impacts patient morbidity, pain, and quality of life. Preventing bone disease is therefore a priority in MM treatment, and understanding how and why myeloma cells target the bone marrow (BM) is fundamental to this process. This review focuses on a key area of MM research: the contributions of the bone microenvironment to disease origins, progression, and drug resistance. We describe some of the key cell types in the BM niche: osteoclasts, osteoblasts, osteocytes, adipocytes, and mesenchymal stem cells. We then focus on how these key cellular players are, or could be, regulating a range of disease-related processes spanning MM growth, drug resistance, and bone disease (including osteolysis, fracture, and hypercalcemia). We summarize the literature regarding MM-bone cell and MM-adipocyte relationships and subsequent phenotypic changes or adaptations in MM cells, with the aim of providing a deeper understanding of how myeloma cells grow in the skeleton to cause bone destruction. We identify avenues and therapies that intervene in these networks to stop tumor growth and/or induce bone regeneration. Overall, we aim to illustrate how novel therapeutic target molecules, proteins, and cellular mediators may offer new avenues to attack this disease while reviewing currently utilized therapies.

  1. Increased expression of a set of genes enriched in oxygen binding function discloses a predisposition of breast cancer bone metastases to generate metastasis spread in multiple organs.

    PubMed

    Capulli, Mattia; Angelucci, Adriano; Driouch, Keltouma; Garcia, Teresa; Clement-Lacroix, Philippe; Martella, Francesco; Ventura, Luca; Bologna, Mauro; Flamini, Stefano; Moreschini, Oreste; Lidereau, Rosette; Ricevuto, Enrico; Muraca, Maurizio; Teti, Anna; Rucci, Nadia

    2012-11-01

    Bone is the preferential site of distant metastasis in breast carcinoma (BrCa). Patients with metastasis restricted to bone (BO) usually show a longer overall survival compared to patients who rapidly develop multiple metastases also involving liver and lung. Hence, molecular predisposition to generate bone and visceral metastases (BV) represents a clear indication of poor clinical outcome. We performed microarray analysis with two different chip platforms, Affymetrix and Agilent, on bone metastasis samples from BO and BV patients. The unsupervised hierarchical clustering of the resulting transcriptomes correlated with the clinical progression, segregating the BO from the BV profiles. Matching the twofold significantly regulated genes from Affymetrix and Agilent chips resulted in a 15-gene signature with 13 upregulated and two downregulated genes in BV versus BO bone metastasis samples. In order to validate the resulting signature, we isolated different MDA-MB-231 clonal subpopulations that metastasize only in the bone (MDA-BO) or in bone and visceral tissues (MDA-BV). Six of the signature genes were also significantly upregulated in MDA-BV compared to MDA-BO clones. A group of upregulated genes, including Hemoglobin B (HBB), were involved in oxygen metabolism, and in vitro functional analysis of HBB revealed that its expression in the MDA subpopulations was associated with a reduced production of hydrogen peroxide. Expression of HBB was detected in primary BrCa tissue but not in normal breast epithelial cells. Metastatic lymph nodes were frequently more positive for HBB compared to the corresponding primary tumors, whereas BO metastases had a lower expression than BV metastases, suggesting a positive correlation between HBB and ability of bone metastasis to rapidly spread to other organs. We propose that HBB, along with other genes involved in oxygen metabolism, confers a more aggressive metastatic phenotype in BrCa cells disseminated to bone. Copyright © 2012 American Society for Bone and Mineral Research.

  2. Simultaneous segmentation of the bone and cartilage surfaces of a knee joint in 3D

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Zhang, X.; Anderson, D. D.; Brown, T. D.; Hofwegen, C. Van; Sonka, M.

    2009-02-01

    We present a novel framework for the simultaneous segmentation of multiple interacting surfaces belonging to multiple mutually interacting objects. The method is a non-trivial extension of our previously reported optimal multi-surface segmentation. Considering an example application of knee-cartilage segmentation, the framework consists of the following main steps: 1) Shape model construction: Building a mean shape for each bone of the joint (femur, tibia, patella) from interactively segmented volumetric datasets. Using the resulting mean-shape model - identification of cartilage, non-cartilage, and transition areas on the mean-shape bone model surfaces. 2) Presegmentation: Employment of iterative optimal surface detection method to achieve approximate segmentation of individual bone surfaces. 3) Cross-object surface mapping: Detection of inter-bone equidistant separating sheets to help identify corresponding vertex pairs for all interacting surfaces. 4) Multi-object, multi-surface graph construction and final segmentation: Construction of a single multi-bone, multi-surface graph so that two surfaces (bone and cartilage) with zero and non-zero intervening distances can be detected for each bone of the joint, according to whether or not cartilage can be locally absent or present on the bone. To define inter-object relationships, corresponding vertex pairs identified using the separating sheets were interlinked in the graph. The graph optimization algorithm acted on the entire multiobject, multi-surface graph to yield a globally optimal solution. The segmentation framework was tested on 16 MR-DESS knee-joint datasets from the Osteoarthritis Initiative database. The average signed surface positioning error for the 6 detected surfaces ranged from 0.00 to 0.12 mm. When independently initialized, the signed reproducibility error of bone and cartilage segmentation ranged from 0.00 to 0.26 mm. The results showed that this framework provides robust, accurate, and reproducible segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multi-object segmentation problems.

  3. Osteosclerotic myeloma with polyneuropathy and hypocalcemia.

    PubMed

    Ludescher, C; Grünewald, K; Fend, F; Dietze, O; Thaler, J; Schmid, K W

    1989-04-01

    A case is presented of a 46-year-old man with multifocal osteosclerotic bone lesions, peripheral polyneuropathy and hypocalcemia. Histologic examination of a bone marrow biopsy disclosed a multiple myeloma. Immunoelectrophoresis revealed a small M-component identified as IgG-lambda. Osteosclerotic myeloma lacking any osteolytic lesions seems to be very rare and shows several different features as compared with classical myeloma. A review of the current literature suggests that multiple myeloma is not a uniform disease but rather a group of clinical syndromes characterized by the special properties of their proliferating plasma cell clones.

  4. Wideband Single-Crystal Transducer for Bone Characterization

    NASA Technical Reports Server (NTRS)

    Liang, Yu; Snook, Kevin

    2012-01-01

    The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an excitation signal to the transducer and amplifying the signal received from the transducer. The excitation signal may be either a wide-bandwidth signal to excite the transducer across its entire operational spectrum, or a narrow-bandwidth signal optimized for a particular measurement technique. The transducer face is applied to the skin covering the bone to be characterized, and may be operated in through transmission mode using two transducers, or in pulse-echo mode.

  5. Increased expression of metalloproteinase-2 and -9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinase-1 and -2 (TIMP-1, TIMP-2), and EMMPRIN (CD147) in multiple myeloma.

    PubMed

    Urbaniak-Kujda, Donata; Kapelko-Slowik, Katarzyna; Prajs, Iwona; Dybko, Jarosław; Wolowiec, Dariusz; Biernat, Monika; Slowik, Miroslaw; Kuliczkowski, Kazimierz

    2016-01-01

    Activity of metalloproteinases (MMP) is controlled both by specific tissue inhibitors (TIMP) and activators (extracellular matrix metalloproteinase inducer, EMMPRIN). There are few data available concerning concentration the bone marrow of MMP-2, MMP-9, TIMP-1, and TIMP-2, or EMMPRIM expression by bone marrow mesenchymal stromal cells (BMSCs) in patients with multiple myeloma (MM). We studied 40 newly diagnosed, untreated patients: 18 males and 22 females with de novo MM and 11 healthy controls. Bone marrow was collected prior to therapy. BMSCs were derived by culturing bone marrow cells on MesenCult. Protein concentrations were determined in bone marrow plasma and culture supernatants by ELISA. EMMPRIN expression by BMSCs was assessed by flow cytometry. The median concentrations of MMP-9, TIMP-1, and TIMP-2 in both marrow plasma and culture supernatants were significantly higher in MM patients than controls. EMMPRIN expression and ratios MMP-9/TIMP-1 and MMP-2/TIMP-2 were higher in MM patients, our results demonstrate that in MM patients MMP-2 and MMP-9 are secreted in higher amounts and are not balanced by inhibitors.

  6. Towards optical brain imaging: getting light through a bone

    NASA Astrophysics Data System (ADS)

    Thompson, J. V.; Hokr, B. H.; Nodurft, D. T.; Yakovlev, V. V.

    2018-06-01

    Optical imaging and detection in biological samples is severely limited by scattering effects. In particular, optical techniques for measuring conditions beneath the skull and within the bone marrow hold significant promise when it comes to speed, sensitivity and specificity. However, the strong optical scattering due to bone hinders the realization of these methods. In this article, we propose a technique to enhance the transmittance of light through bone. This is achieved by injecting light below the top surface of the bone and utilizing multiple scattering to increase transmittance. This technique suggests that enhancements of 2-6 times may be realized by injection of light 1 mm below the surface of the bone. By enhancing the transmittance of light through bone, we will greatly improve our ability to utilize optical methods to better understand and diagnose conditions within biological media.

  7. Nonlinear viscoelastic characterization of bovine trabecular bone.

    PubMed

    Manda, Krishnagoud; Wallace, Robert J; Xie, Shuqiao; Levrero-Florencio, Francesc; Pankaj, Pankaj

    2017-02-01

    The time-independent elastic properties of trabecular bone have been extensively investigated, and several stiffness-density relations have been proposed. Although it is recognized that trabecular bone exhibits time-dependent mechanical behaviour, a property of viscoelastic materials, the characterization of this behaviour has received limited attention. The objective of the present study was to investigate the time-dependent behaviour of bovine trabecular bone through a series of compressive creep-recovery experiments and to identify its nonlinear constitutive viscoelastic material parameters. Uniaxial compressive creep and recovery experiments at multiple loads were performed on cylindrical bovine trabecular bone samples ([Formula: see text]). Creep response was found to be significant and always comprised of recoverable and irrecoverable strains, even at low stress/strain levels. This response was also found to vary nonlinearly with applied stress. A systematic methodology was developed to separate recoverable (nonlinear viscoelastic) and irrecoverable (permanent) strains from the total experimental strain response. We found that Schapery's nonlinear viscoelastic constitutive model describes the viscoelastic response of the trabecular bone, and parameters associated with this model were estimated from the multiple load creep-recovery (MLCR) experiments. Nonlinear viscoelastic recovery compliance was found to have a decreasing and then increasing trend with increasing stress level, indicating possible stiffening and softening behaviour of trabecular bone due to creep. The obtained parameters from MLCR tests, expressed as second-order polynomial functions of stress, showed a similar trend for all the samples, and also demonstrate stiffening-softening behaviour with increasing stress.

  8. Spinal focal lesion detection in multiple myeloma using multimodal image features

    NASA Astrophysics Data System (ADS)

    Fränzle, Andrea; Hillengass, Jens; Bendl, Rolf

    2015-03-01

    Multiple myeloma is a tumor disease in the bone marrow that affects the skeleton systemically, i.e. multiple lesions can occur in different sites in the skeleton. To quantify overall tumor mass for determining degree of disease and for analysis of therapy response, volumetry of all lesions is needed. Since the large amount of lesions in one patient impedes manual segmentation of all lesions, quantification of overall tumor volume is not possible until now. Therefore development of automatic lesion detection and segmentation methods is necessary. Since focal tumors in multiple myeloma show different characteristics in different modalities (changes in bone structure in CT images, hypointensity in T1 weighted MR images and hyperintensity in T2 weighted MR images), multimodal image analysis is necessary for the detection of focal tumors. In this paper a pattern recognition approach is presented that identifies focal lesions in lumbar vertebrae based on features from T1 and T2 weighted MR images. Image voxels within bone are classified using random forests based on plain intensities and intensity value derived features (maximum, minimum, mean, median) in a 5 x 5 neighborhood around a voxel from both T1 and T2 weighted MR images. A test data sample of lesions in 8 lumbar vertebrae from 4 multiple myeloma patients can be classified at an accuracy of 95% (using a leave-one-patient-out test). The approach provides a reasonable delineation of the example lesions. This is an important step towards automatic tumor volume quantification in multiple myeloma.

  9. Bone density in the obese child - clinical considerations and diagnostic challenges

    PubMed Central

    Kelley, Jennifer; Crabtree, Nicola; Zemel, Babette S.

    2017-01-01

    The prevalence of obesity in children has reached epidemic proportions. Concern about bone health in obese children, in part, derives from the potentially increased fracture risk associated with obesity. Additional risk factors that affect bone mineral accretion, may also contribute to obesity, such as low physical activity and nutritional factors. Consequences of obesity, such as inflammation, insulin resistance and non-alcoholic fatty liver disease, may also affect bone mineral acquisition, especially during the adolescent years when rapid increases in bone contribute to attaining peak bone mass. Further, numerous pediatric health conditions are associated with excess adiposity, altered body composition or endocrine disturbances that can affect bone accretion. Thus, there is a multitude of reasons for considering clinical assessment of bone health in an obese child. Multiple diagnostic challenges affect the measurement of bone density and its interpretation. These include greater precision error, difficulty in positioning, and the effects of increased lean and fat tissue on bone health outcomes. Future research is required to address these issues to improve bone health assessment in obese children. PMID:28105511

  10. Repairing Fractured Bones by Use of Bioabsorbable Composites

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    2006-01-01

    A proposed method of surgical repair of fractured bones would incorporate recent and future advances in the art of composite materials. The composite materials used in this method would be biocompatible and at least partly bioabsorbable: that is, during the healing process following surgery, they would be wholly or at least partly absorbed into the bones and other tissues in which they were implanted. Relative to the traditional method, the proposed method would involve less surgery, pose less of a risk of infection, provide for better transfer of loads across fracture sites, and thereby promote better healing while reducing the need for immobilization by casts and other external devices. One requirement that both the traditional and proposed methods must satisfy is to fix the multiple segments of a broken bone in the correct relative positions. Mechanical fixing techniques used in the traditional method include the use of plates spanning the fracture site and secured to the bone by screws, serving of wire along the bone across the fracture site, insertion of metallic intramedullary rods through the hollow portion of the fractured bone, and/or inserting transverse rods through the bone, muscle, and skin to stabilize the fractured members. After the bone heals, a second surgical operation is needed to remove the mechanical fixture(s). In the proposed method, there would be no need for a second surgical operation. The proposed method is based partly on the observation that in the fabrication of a structural member, it is generally more efficient and reliable to use multiple small fasteners to transfer load across a joint than to use a single or smaller number of larger fasteners, provided that the stress fields of neighboring small fasteners do not overlap or interact. Also, multiple smaller fasteners are more reliable than are larger and fewer fasteners. However, there is a trade-off between structural efficiency and the cost of insertion time and materials. The proposed method is further based partly on the conjecture that through-the-thickness reinforcements could be excellent for fixing bone segments for surgical repair. The through-the-thickness reinforcements would superficially resemble nails in both form and function. Denoted small-diameter rods (SDRs) to distinguish them from other narrow rods, these reinforcements would be shot or otherwise inserted through adjacent segments of fractured bone to fix them in their correct relative positions (see figure). Shot insertion would be effected by use an applicator that would amount to a miniaturized and highly refined version of the pneumatic guns often used in carpentry to drive nails and brads. The applicator, envisioned to be about the size of a ball-point-pen, would be driven by pressurized carbon dioxide. To further promote stabilization of the segments, layers of bone glue could be applied to the fracture surfaces prior to insertion of the SDRs. The bone glue could be therapeutically loaded with chemicals to promote growth of bone and fight infection

  11. Non Secretory Multiple Myeloma With Extensive Extramedullary Plasmacytoma: A Diagnostic Dilemma

    PubMed Central

    Low, Soo Fin; Mohd Tap, Nor Hanani; Kew, Thean Yean; Ngiu, Chai Soon; Sridharan, Radhika

    2015-01-01

    Multiple myeloma (MM) is characterized by progressive proliferation of malignant plasma cells, usually initiating in the bone marrow. MM can affect any organ; a total of 7 - 18% of patients with MM demonstrate extramedullary involvement at diagnosis. Non-secretory multiple myeloma (NSMM) is a rare variant that accounts for 1 - 5% of all cases of multiple myeloma. The disease is characterized by the absence of monoclonal gammopathy in serum and urine electrophoresis. Our case report highlights the diagnostic challenge of a case of NSMM with extensive extramedullary involvement in a young female patient who initially presented with right shoulder pain and bilateral breasts lumps. Skeletal survey showed multiple lytic bony lesions. The initial diagnosis was primary breast carcinoma with osseous metastases. No monoclonal gammopathy was found in the serum or urine electrophoresis. Bone marrow and breast biopsies revealed marked plasmacytosis. The diagnosis was delayed for a month in view of the lack of clinical suspicion of multiple myeloma in a young patient and scant biochemical expression of non-secretory type of multiple myeloma. PMID:26528383

  12. Immediate fall of bone formation and transient increase of bone resorption in the course of high-dose, short-term glucocorticoid therapy in young patients with multiple sclerosis.

    PubMed

    Dovio, Andrea; Perazzolo, Laura; Osella, Giangiacomo; Ventura, Massimo; Termine, Angela; Milano, Eva; Bertolotto, Antonio; Angeli, Alberto

    2004-10-01

    Glucocorticoid (GC)-induced osteoporosis is the leading form of secondary osteoporosis. Bone loss can be rapid. However, longitudinal studies at the very beginning of treatment are scarce. Patients relapsing from multiple sclerosis are treated with high-dose, short-term iv GCs. A number of them are young, without concomitant disease affecting bone and with no substantial impairment of mobility. Such patients were selected for the present study. Thirteen patients suffering from multiple sclerosis [11 females, two males; age 32 +/- 2 yr (mean +/- se)] and receiving iv methylprednisolone 15 mg/kg daily for 10 d completed the study. We measured serum osteocalcin (OC), aminoterminal propeptide of type I collagen (PINP), bone isoform of alkaline phosphatase (bALP), carboxyterminal telopeptide of type I collagen (CTX), and urinary calcium/creatinine ratio (uCa/Cr) during the 10-d cycle and 3 months later. Dual-energy x-ray absorptiometry and calcaneal quantitative ultrasonometry were performed before and 6 months after therapy. We found an immediate, impressive fall of OC and PINP (-80 +/- 3 and -54 +/- 5% at d 2, respectively), which persisted throughout the whole treatment period (P < 0.0001 for both markers). bALP levels showed only a modest decrease at d 6 (-19 +/- 7%, P < 0.05), with subsequent return to baseline in d 7-10. After 3 months, OC, PINP, and bALP levels rose to +51 +/- 22, +37 +/- 16 (not significant), and +61 +/- 17% (P < 0.01) with respect to baseline, respectively. uCa/Cr and CTX showed a progressive, marked increase during treatment, peaking at d 7-9 (+92 +/- 44 and +149 +/- 63%, respectively), with subsequent decrement at d 10 (P < 0.01 and P < 0.05, respectively) despite continuing GC administration. After 3 months, uCa/Cr and CTX levels were also higher than baseline. No change in quantitative ultrasonometry parameters and bone mineral density was observed 6 months after therapy. In conclusion, high-dose, short-term iv GC regimens cause an immediate and persistent decrease in bone formation and a rapid and transient increase of bone resorption. Our data also support the concept that discontinuation of such regimens is followed by a high bone turnover phase.

  13. [Cat-scratch disease with bone compromise: atypical manifestation].

    PubMed

    Rodríguez C, Magdalena; Giachetto L, Gustavo; Cuneo E, Alejandro; Gutiérrez B, María del C; Shimchack R, Mario; Pírez G, M Catalina

    2009-08-01

    Fever, headache, myalgias and lymphadenopathy are characteristic manifestations of cat-scratch disease but other less common findings are described in 2 to 10% of cases. We report two children that presented with hepatosplenic abscesses and bone involvement. One child, had multiple areas of increased uptake in the bone scintigram with a positive serology (IgG > 1/256, IgM slightly positive). The second child had destruction of the L2 vertebral body that compromised the channel and right foramen as visualized by MRI. In both cases, bacilli were observed in the bone biopsy by Warthing-Starry stain.

  14. Bone Health Monitoring in Astronauts: Recommended Use of Quantitative Computed Tomography [QCT] for Clinical and Operational Decisions

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Truskowski, P.

    2010-01-01

    This slide presentation reviews the concerns that astronauts in long duration flights might have a greater risk of bone fracture as they age than the general population. A panel of experts was convened to review the information and recommend mechanisms to monitor the health of bones in astronauts. The use of Quantitative Computed Tomography (QCT) scans for risk surveillance to detect the clinical trigger and to inform countermeasure evaluation is reviewed. An added benefit of QCT is that it facilitates an individualized estimation of bone strength by Finite Element Modeling (FEM), that can inform approaches for bone rehabilitation. The use of FEM is reviewed as a process that arrives at a composite number to estimate bone strength, because it integrates multiple factors.

  15. Effect of vitamin D, calcium and multiple micronutrient supplementation on vitamin D and bone status in Bangladeshi premenopausal garment factory workers with hypovitaminosis D: a double-blinded, randomised, placebo-controlled 1-year intervention.

    PubMed

    Islam, Md Zahirul; Shamim, Abu Ahmed; Viljakainen, Heli T; Akhtaruzzaman, Mohammad; Jehan, Atia H; Khan, Habib Ullah; Al-Arif, Ferdaus Ahmad; Lamberg-Allardt, Christel

    2010-07-01

    Due to little outdoor activity and low dietary intake of vitamin D (VD), Bangladeshi low-income women are at risk for osteoporosis at an early age. The present study assessed the effect of VD, Ca and multiple micronutrient supplementation on VD and bone status in Bangladeshi young female garment factory workers. This placebo-controlled 1-year intervention randomly assigned 200 apparently healthy subjects (aged 16-36 years) to four groups: VD group, daily 10 microg VD; VD and Ca (VD-Ca) group, daily 10 microg VD+600 mg Ca; multiple micronutrient and Ca (MMN-Ca) group, 10 microg VD and other micronutrients+600 mg Ca; a placebo group. Serum 25-hydroxyvitamin D (S-25OHD), intact parathyroid hormone (S-iPTH), Ca, phosphate and alkaline phosphatase were measured. Bone mineral density and bone mineral content were measured by dual-energy X-ray absorptiometry. All measurements were made at baseline and at 12 months. Significantly (P < 0.001) higher S-25OHD concentrations were observed in the supplemented groups than in the placebo group after the intervention. Supplementation had an effect (P < 0.001) on S-iPTH in the VD-Ca and MMN-Ca groups compared with the placebo group. Bone mineral augmentation increased at the femur in the supplemented groups. Supplementation with VD-Ca should be recommended as a strategic option to reduce the risk of osteomalacia and osteoporosis in these subjects. MMN-Ca may have analogous positive health implications with additional non-skeletal benefits.

  16. High-dose etoposide (VP-16)-containing preparatory regimens in allogeneic and autologous bone marrow transplantation for hematologic malignancies.

    PubMed

    Blume, K G; Forman, S J

    1992-12-01

    High-dose etoposide has been added to total body irradiation, cyclophosphamide, carmustine, or busulfan in preparatory regimens for allogeneic or autologous bone marrow transplantation for patients with leukemia, Hodgkin's disease, lymphoma, or multiple myeloma. The treatment results are encouraging, indicating that etoposide may be a valuable addition to the previously established regimens. Etoposide should be incorporated into collaborative, prospective trials to define its ultimate role in bone marrow transplantation.

  17. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells

    PubMed Central

    Suvannasankha, Attaya; Tompkins, Douglas R.; Edwards, Daniel F.; Petyaykina, Katarina V.; Crean, Colin D.; Fournier, Pierrick G.; Parker, Jamie M.; Sandusky, George E.; Ichikawa, Shoji; Imel, Erik A.; Chirgwin, John M.

    2015-01-01

    Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone. PMID:25944690

  18. Osteomalacia: a case series of patients with atypical clinical orthopaedic presentations.

    PubMed

    Fok, A W M; Ng, T P

    2010-12-01

    Osteomalacia is uncommon in an affluent subtropical city like Hong Kong, where sunlight exposure is adequate and nutritional support is good. We present three patients who had osteomalacia with different presentations. A 74-year-old male with oncogenic osteomalacia presented with multiple bone pain. His biochemical markers returned to normal 4 days postoperatively after resection of a second toe giant cell tumour of tendon sheath. A 62-year-old woman with a history of liver problem and proximal muscle weakness was admitted with atraumatic fracture of the left distal humerus due to osteomalacia. An 81-year-old vegetarian woman with inadequate sun exposure complained of multiple bone pains. Subsequent investigation revealed dietary- and sunlight-deficient osteomalacia with multiple bony abnormalities including marked femur bowing.

  19. MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity

    PubMed Central

    Cordes, Christian; Baum, Thomas; Dieckmeyer, Michael; Ruschke, Stefan; Diefenbach, Maximilian N.; Hauner, Hans; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2016-01-01

    Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios. PMID:27445977

  20. Bone marrow derived stem cells in joint and bone diseases: a concise review.

    PubMed

    Marmotti, Antonio; de Girolamo, Laura; Bonasia, Davide Edoardo; Bruzzone, Matteo; Mattia, Silvia; Rossi, Roberto; Montaruli, Angela; Dettoni, Federico; Castoldi, Filippo; Peretti, Giuseppe

    2014-09-01

    Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the treatment of bone, cartilage and meniscus tissues.

  1. Traumatic fracture in a healthy man: benign or pathologic?

    PubMed

    Nora, Elizabeth H; Kennel, Kurt A; Christian, Rose C

    2006-01-01

    To describe the challenge of determining the correct diagnosis in a healthy adult male patient with a recent femoral fracture and a history of multiple bone fractures. We present clinical, radiologic, laboratory, and histopathologic details in a patient with a history of recurrent fractures associated with minimal trauma. Moreover, the various types of osteopetrosis are reviewed. A 34-year-old African American man was in his usual state of good health when he fell hard on concrete. Immediately after the fall, he was able to bear weight, although pain prompted him to seek medical care. Besides a personal history of multiple fractures, he had no other medical problems. He had never smoked, denied illicit drug use, and had no family history of bone disorders or recurrent fractures. Findings on physical examination were unremarkable. Radiography disclosed an incomplete femoral fracture and osteosclerosis. Bone survey revealed diffuse, symmetric osteosclerosis of both the axial and the appendicular skeleton. The long bones showed areas of almost complete obliteration of the medullary canal, along with prominent hyperostosis. Additionally, a "bone-within-bone" appearance to the thickened endosteum was noted. A bone scan demonstrated numerous areas of symmetric radiotracer uptake. Laboratory analyses were unremarkable, including a complete blood cell count, electrolytes, serum protein electrophoresis, thyrotropin, and parathyroid hormone. Total alkaline phosphatase was mildly elevated at 162 U/L (normal range, 35 to 130). Seven needles were broken during attempts to perform a bone biopsy. Histologic examination showed normal bone marrow with "woven" bone and areas of primary spongiosa within mature osteoid. Autosomal dominant osteopetrosis type 2 was diagnosed on the basis of his clinical presentation and the radiologic and pathologic findings. The preliminary diagnosis for this patient's condition was Paget's disease, and determining the correct diagnosis of osteopetosis prevented the administration of inappropriate therapy. In addition, this case report reminds the clinician that genetic disease may manifest in adulthood.

  2. PET/MRI of metabolic activity in osteoarthritis: A feasibility study.

    PubMed

    Kogan, Feliks; Fan, Audrey P; McWalter, Emily J; Oei, Edwin H G; Quon, Andrew; Gold, Garry E

    2017-06-01

    To evaluate positron emission tomography / magnetic resonance imaging (PET/MRI) knee imaging to detect and characterize osseous metabolic abnormalities and correlate PET radiotracer uptake with osseous abnormalities and cartilage degeneration observed on MRI. Both knees of 22 subjects with knee pain or injury were scanned at one timepoint, without gadolinium, on a hybrid 3.0T PET-MRI system following injection of 18 F-fluoride or 18 F-fluorodeoxyglucose (FDG). A musculoskeletal radiologist identified volumes of interest (VOIs) around bone abnormalities on MR images and scored bone marrow lesions (BMLs) and osteophytes using a MOAKS scoring system. Cartilage appearance adjacent to bone abnormalities was graded with MRI-modified Outerbridge classifications. On PET standardized uptake values (SUV) maps, VOIs with SUV greater than 5 times the SUV in normal-appearing bone were identified as high-uptake VOI (VOI High ). Differences in 18 F-fluoride uptake between bone abnormalities, BML, and osteophyte grades and adjacent cartilage grades on MRI were identified using Mann-Whitney U-tests. SUV max in all subchondral bone lesions (BML, osteophytes, sclerosis) was significantly higher than that of normal-appearing bone on MRI (P < 0.001 for all). Of the 172 high-uptake regions on 18 F-fluoride PET, 63 (37%) corresponded to normal-appearing subchondral bone on MRI. Furthermore, many small grade 1 osteophytes (40 of 82 [49%]), often described as the earliest signs of osteoarthritis (OA), did not show high uptake. Lastly, PET SUV max in subchondral bone adjacent to grade 0 cartilage was significantly lower compared to that of grades 1-2 (P < 0.05) and grades 3-4 cartilage (P < 0.001). PET/MRI can simultaneously assess multiple early metabolic and morphologic markers of knee OA across multiple tissues in the joint. Our findings suggest that PET/MR may detect metabolic abnormalities in subchondral bone, which appear normal on MRI. 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;45:1736-1745. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET/CT) Findings in an Unusual Case of Multiple Myeloma Presenting with a Large Extra-Axial Intracranial Mass.

    PubMed

    Ayaz, Sevin; Ayaz, Ümit Yaşar

    2016-01-01

    We aimed to present unusual cranial FDG PET/CT findings of a 56-year-old female with multiple myeloma (MM). Plain CT images revealed a lytic lesion in the right parietal bone, filled with an oval-shaped, large, extra-axial, extradural, intracranial mass which measured 75×75×40 mm and had smooth borders. The right parietal lobe was compressed by the mass. The maximum standardized uptake value (SUV max ) of the mass lesion was 8.94 on FDG PET/CT images. Multiple lytic lesions with an increased uptake were also detected in other calvarial bones, in several vertebras and in the proximal left femur. After seven months, a control FDG PET/CT following radiotherapy and chemotherapy revealed almost complete regression of the right parietal extra-axial mass lesion. The number, size and metabolism of lytic lesions in other bones also decreased. FDG PET/CT was useful for an initial evaluation of MM lesions and was effective in monitoring the response of these lesions to therapy.

  4. Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine.

    PubMed

    Li, Guanqun; Liu, Xujun; Du, Qian; Gao, Mei; An, Jing

    2015-08-01

    The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field. © 2015 by the Society for Experimental Biology and Medicine.

  5. Mesenchymal stem cells for bone repair and metabolic bone diseases.

    PubMed

    Undale, Anita H; Westendorf, Jennifer J; Yaszemski, Michael J; Khosla, Sundeep

    2009-10-01

    Human mesenchymal stem cells offer a potential alternative to embryonic stem cells in clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues, including bone, cartilage, fat, and other tissues of mesenchymal origin, makes them an attractive candidate for clinical applications. Patients who experience fracture nonunion and metabolic bone diseases, such as osteogenesis imperfecta and hypophosphatasia, have benefited from human mesenchymal stem cell therapy. Because of their ability to modulate immune responses, allogeneic transplant of these cells may be feasible without a substantial risk of immune rejection. The field of regenerative medicine is still facing considerable challenges; however, with the progress achieved thus far, the promise of stem cell therapy as a viable option for fracture nonunion and metabolic bone diseases is closer to reality. In this review, we update the biology and clinical applicability of human mesenchymal stem cells for bone repair and metabolic bone diseases.

  6. Usefulness of postoperative hip irradiation in the prevention of heterotopic bone formation in a high risk group of patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLennan, I.; Keys, H.M.; Evarts, C.M.

    1984-01-01

    Heterotopic ossification is a complication of total hip arthroplasty in 14 to 30% of patients. Significant functional impairment will occur in up to 28% of patients with ectopic bone. The high risk group includes those with preexisting heterotopic bone in either hip, those suffering from hypertrophic osteoarthritis or ankylosing spondylitis and patients who have had multiple procedures on the hip. Fifty-eight patients (67 hips) were irradiated after surgical removal of ectopic bone (53 hips) or received radiation prophylaxis of heterotopic ossification (14 hips). Ninety-five percent of patients had either no bone visible or insignificant amounts of ectopic bone visible onmore » postoperative hip X-rays. Only 5% of patients showed significant persistence of ectopic bone. Postoperative hip function was dramatically improved compared to preoperative function in all patients treated. The importance of early commencement of irradiation is emphasized.« less

  7. Bone Plating in Patients with Type III Osteogenesis Imperfecta: Results and Complications

    PubMed Central

    Enright, William J; Noonan, Kenneth J

    2006-01-01

    The results of bone plating in four children (6 femurs, 2 tibias) with osteogenesis imperfecta type III were analyzed. Average age at time of operation was 44 months. In three of the femurs, multiple platings were performed for a total of 13 bone platings in the eight bones studied. Average time to revision following plating was 27 months. Indications for revision included fracture (6), deformity (3), hardware failure (3), and nonunion (1). Other complications included one case of compartment syndrome. All eight bones were ultimately revised to elongating intramedullary Bailey-Dubow rods. Bone plating in skeletally immature patients with osteogenesis imperfecta does not provide better outcome than elongating rods. Complications from bone plating leading to revision, such as refracture or hardware failure, are higher than in those children managed with elongating rods, as previously reported in the literature. PMID:16789446

  8. Animal Models of Bone Metastasis

    PubMed Central

    Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.

    2015-01-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  9. Bone-seeking TRAP conjugates: surprising observations and their implications on the development of gallium-68-labeled bisphosphonates

    PubMed Central

    2012-01-01

    Background Bisphosphonates possess strong affinity to bone. 99mTc bisphosphonate complexes are widely used for bone scintigraphy. For positron emission tomography (PET) bone imaging, Ga-68-based PET tracers based on bisphosphonates are highly desirable. Findings Two trimeric bisphosphonate conjugates of the triazacyclononane-phosphinate (TRAP) chelator were synthesized, labeled with Ga-68, and used for microPET imaging of bone in male Lewis rats. Both Ga-68 tracers show bone uptake and, thus, are suitable for PET bone imaging. Surprisingly, Ga-71 nuclear magnetic resonance data prove that Ga(III) is not located in the chelating cavity of TRAP and must therefore be bound by the conjugated bisphosphonate units. Conclusion The intrinsic Ga-68 chelating properties of TRAP are not needed for Ga-68 PET bone imaging with TRAP-bisphosphonate conjugates. Here, TRAP serves only as a trimeric scaffold. For preparation of Ga-68-based bone seekers for PET, it appears sufficient to equip branched scaffolds with multiple bisphosphonate units, which serve both Ga-68-binding and bone-targeting purposes. PMID:22464278

  10. Efficacy of bone substitute material in preserving volume when placing a maxillary immediate complete denture: study protocol for the PANORAMIX randomized controlled trial.

    PubMed

    Rignon-Bret, Christophe; Hadida, Alain; Aidan, Alexis; Nguyen, Thien-Huong; Pasquet, Gerard; Fron-Chabouis, Helene; Wulfman, Claudine

    2016-05-20

    Bone preservation is an essential issue in the context of last teeth extraction and complete edentulism. The intended treatment, whether a complete denture or an implant placement, is facilitated with a voluminous residual ridge. Bone resorption after multiple extractions has not been as well studied as the bone resorption that occurs after the extraction of a single tooth. Recent advances in bone substitute materials have revived this issue. The purpose of this study is to evaluate the interest in using bone substitute material to fill the socket after last teeth extraction in a maxillary immediate complete denture procedure compared with the conventional protocol without socket filling. A randomized, controlled, clinical trial was designed. The 34 participants eligible for maxillary immediate complete denture were divided into two groups. Complete dentures were prepared despite persistence of the last anterior teeth. The control group received a conventional treatment including denture placement immediately after extractions. In the experimental group, in addition to the immediate denture placement, a xenograft bone-substitute material (Bio-Oss Collagen®) was placed in the fresh sockets. The primary outcome of the study is to compare mean bone ridge height loss 1 year after maxillary immediate complete denture placement, with or without bone-substitute material, in incisor and canine sockets. The secondary outcomes are to compare the average bone ridge height and width loss for each extraction site. An original quantitative evaluation method using cone beam computed tomography was designed for reproducible measurements, with a radio-opaque denture duplicate. Two independent operators perform the radiologic measurements. The immediate complete denture technique limits bone resorption in multiple extraction situations and thus allows better denture retention and better options for implant placement. To compare the benefit of using any bone socket-filling material, we proposed a quantitative evaluation protocol of resorption in the specific case of the last anterior maxillary teeth extraction with immediate denture placement. ClinicalTrials.gov, NCT02120053 . Registered on 18 April 2014.

  11. [Unilateral exophthalmos as the debut of a non-secretory multiple myeloma].

    PubMed

    Castro-Rebollo, M; Cañones-Zafra, R; Vleming-Pinilla, E N; Drake-Rodríguez-Casanova, P; Pérez-Rico, C

    2009-12-01

    A 56 year-old male presented blurred vision and diplopia for 2 months, left unilateral exophthalmos, restricted ocular motility and papilledema. The imaging proofs showed osteolytic lesions in the left sphenoid bone, fourth rib and fourth dorsal vertebral body with associated masses of soft tissues. Biopsy was performed and the diagnosis of plasma cell neoplasm was established. The diagnosis of non-secretory multiple myeloma was made by analytical criteria and bone marrow biopsy. Local radiotherapy and polychemotherapy was prescribed. The ophthalmologist can play an important role in the diagnosis of systemic neoplasms that require the intervention of a multidisciplinary team.

  12. Management bone loss of the proximal femur in revision hip arthroplasty: Update on reconstructive options

    PubMed Central

    Sakellariou, Vasileios I; Babis, George C

    2014-01-01

    The number of revision total hip arthroplasties is expected to rise as the indications for arthroplasty will expand due to the aging population. The prevalence of extensive proximal femoral bone loss is expected to increase subsequently. The etiology of bone loss from the proximal femur after total hip arthroplasty is multifactorial. Stress shielding, massive osteolysis, extensive loosening and history of multiple surgeries consist the most common etiologies. Reconstruction of extensive bone loss of the proximal femur during a revision hip arthroplasty is a major challenge for even the most experienced orthopaedic surgeon. The amount of femoral bone loss and the bone quality of the remaining metaphyseal and diaphyseal bone dictate the selection of appropriate reconstructive option. These include the use of impaction allografting, distal press-fit fixation, allograft-prosthesis composites and tumor megaprostheses. This review article is a concise review of the current literature and provides an algorithmic approach for reconstruction of different types of proximal femoral bone defects. PMID:25405090

  13. Sex steroids, bone mass, and bone loss. A prospective study of pre-, peri-, and postmenopausal women.

    PubMed

    Slemenda, C; Longcope, C; Peacock, M; Hui, S; Johnston, C C

    1996-01-01

    Although bone loss around the time of menopause is driven by estrogen deficiency, the roles of estrogens and androgens in the preservation of skeletal mass at other stages of life are less well understood. To address this issue we studied 231 women between the ages of 32 and 77 with multiple measurements of sex steroids and bone mass over a period of 2-8 yr. In all women bone mass was negatively associated with concentrations of sex-hormone binding globulin, and positively associated with weight. Bone loss occurred from all skeletal sites in peri- and postmenopausal women, but premenopausal women lost bone only from the hip (-0.3%/yr) and had positive rates of change in the radius and spine. Bone loss was significantly associated with lower androgen concentrations in premenopausal women, and with lower estrogens and androgens in peri- and postmenopausal women. Sex steroids are important for the maintenance of skeletal integrity before menopause, and for as long as 20-25 yr afterwards.

  14. Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering.

    PubMed

    Li, Jiao Jiao; Ebied, Mohamed; Xu, Jen; Zreiqat, Hala

    2018-03-01

    The successful regeneration of bone tissue to replace areas of bone loss in large defects or at load-bearing sites remains a significant clinical challenge. Over the past few decades, major progress is achieved in the field of bone tissue engineering to provide alternative therapies, particularly through approaches that are at the interface of biology and engineering. To satisfy the diverse regenerative requirements of bone tissue, the field moves toward highly integrated approaches incorporating the knowledge and techniques from multiple disciplines, and typically involves the use of biomaterials as an essential element for supporting or inducing bone regeneration. This review summarizes the types of approaches currently used in bone tissue engineering, beginning with those primarily based on biology or engineering, and moving into integrated approaches in the areas of biomaterial developments, biomimetic design, and scalable methods for treating large or load-bearing bone defects, while highlighting potential areas for collaboration and providing an outlook on future developments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. [Multiple sites extrapodal actinomycetoma: Favorable outcome to treatment with a combination of cotrimoxazole and NSAI].

    PubMed

    Diallo, B; Barro-Traoré, F; Bamba, S; Sanou-Lamien, A; Traoré, S S; Andonaba, J-B; Konaté, I; Niamba, P; Traoré, A; Guiguemdé, T R

    2015-12-01

    Mycetoma is a bacteriological or fungal infectious disease affecting the skin and/or soft tissues, which can be complicated by bone involvement. The most common feature is a tumor of the foot, but extrapodal localizations have been described. We report one case of a 47-year-old man who presented with tumefaction of a leg with multiple skin fistulae. Histopathological examination permitted to confirm the diagnosis of actinomycetoma and TDM showed the degree of bone and soft tissues involvement. Our case was characterized by the very inflammatory aspect of the tumor, its localization to the leg without foot involvement, the modest functional signs compared to the importance of radiological bone involvements, the deep destruction of the fibula while the tibia was apparently intact and the good response to treatment. In spite of its characteristic features, diagnosis of mycetoma is still late in our country, often with bone and/or articular spread. Priority may be given to measures for reduction of mycetoma diagnosis lateness. Copyright © 2015. Published by Elsevier Masson SAS.

  16. Molecular, Phenotypic Aspects and Therapeutic Horizons of Rare Genetic Bone Disorders

    PubMed Central

    Dhawan, Naveen; Vohra, Shivani; Tu, Khin; Abdelmagid, Samir M.

    2014-01-01

    A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD) of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities. PMID:25530967

  17. Notch signaling drives multiple myeloma induced osteoclastogenesis

    PubMed Central

    Colombo, Michela; Thümmler, Katja; Mirandola, Leonardo; Garavelli, Silvia; Todoerti, Katia; Apicella, Luana; Lazzari, Elisa; Lancellotti, Marialuigia; Platonova, Natalia; Akbar, Moeed; Chiriva-Internati, Maurizio; Soutar, Richard; Neri, Antonino; Goodyear, Carl S.; Chiaramonte, Raffaella

    2014-01-01

    Multiple myeloma (MM) is closely associated with bone destruction. Once migrated to the bone marrow, MM cells unbalance bone formation and resorption via the recruitment and maturation of osteoclast precursors. The Notch pathway plays a key role in different types of cancer and drives several biological processes relevant in MM, including cell localization within the bone marrow, proliferation, survival and pharmacological resistance. Here we present evidences that MM can efficiently drive osteoclastogenesis by contemporaneously activating Notch signaling on tumor cells and osteoclasts through the aberrant expression of Notch ligands belonging to the Jagged family. Active Notch signaling in MM cells induces the secretion of the key osteoclastogenic factor, RANKL, which can be boosted in the presence of stromal cells. In turn, MM cells-derived RANKL causes the upregulation of its receptor, RANK, and Notch2 in pre-osteoclasts. Notch2 stimulates osteoclast differentiation by promoting autocrine RANKL signaling. Finally, MM cells through Jagged ligands expression can also activate Notch signaling in pre-osteoclast by direct contact. Such synergism between tumor cells and pre-osteoclasts in MM-induced osteoclastogenesis can be disrupted by silencing tumor-derived Jagged1 and 2. These results make the Jagged ligands new promising therapeutic targets in MM to contrast bone disease and the associated co-morbidities. PMID:25257302

  18. Icariin: does it have an osteoinductive potential for bone tissue engineering?

    PubMed

    Zhang, Xin; Liu, Tie; Huang, Yuanliang; Wismeijer, Daniel; Liu, Yuelian

    2014-04-01

    Traditional Chinese medicines have been recommended for bone regeneration and repair for thousands of years. Currently, the Herba Epimedii and its multi-component formulation are the attractive native herbs for the treatment of osteoporosis. Icariin, a typical flavonol glycoside, is considered to be the main active ingredient of the Herba Epimedii from which icariin has been successfully extracted. Most interestingly, it has been reported that icariin can be delivered locally by biomaterials and that it has an osteoinductive potential for bone tissue engineering. This review focuses on the performance of icariin in bone tissue engineering and on blending the information from icariin with the current knowledge relevant to molecular mechanisms and signal pathways. The osteoinductive potential of icariin could be attributed to its multiple functions in the musculoskeletal system which is involved in the regulation of multiple signaling pathways in anti-osteoporosis, osteogenesis, anti-osteoclastogenesis, chondrogenesis, angiogenesis, and anti-inflammation. The osteoinductive potential and the low price of icariin make it a very attractive candidate as a substitute of osteoinductive protein-bone morphogenetic proteins (BMPs), or as a promoter for enhancing the therapeutic effects of BMPs. However, the effectiveness of the local delivery of icariin needs to be investigated further. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    PubMed Central

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696

  20. How tough is Brittle Bone? Investigating Osteogenesis Imperfecta in Mouse Bone††

    PubMed Central

    Carriero, A.; Zimmermann, E. A.; Paluszny, A.; Tang, S. Y.; Bale, H.; Busse, B.; Alliston, T.; Kazakia, G.

    2015-01-01

    The multiscale hierarchical structure of bone is naturally optimized to resist fractures. In osteogenesis imperfecta, or brittle bone disease, genetic mutations affect the quality and/or quantity of collagen, dramatically increasing bone fracture risk. Here we reveal how the collagen defect results in bone fragility in a mouse model of osteogenesis imperfecta (oim), which has homotrimeric α1(I) collagen. At the molecular level we attribute the loss in toughness to a decrease in the stabilizing enzymatic crosslinks and an increase in non-enzymatic crosslinks, which may break prematurely inhibiting plasticity. At the tissue level, high vascular canal density reduces the stable crack growth, and extensive woven bone limits the crack-deflection toughening during crack growth. This demonstrates how modifications at the bone molecular level have ramifications at larger length scales affecting the overall mechanical integrity of the bone; thus, treatment strategies have to address multiscale properties in order to regain bone toughness. In this regard, findings from the heterozygous oim bone, where defective as well as normal collagen are present, suggest that increasing the quantity of healthy collagen in these bones helps to recover toughness at the multiple length scales. PMID:24420672

  1. Dietary nutraceuticals as backbone for bone health.

    PubMed

    Pandey, Manoj K; Gupta, Subash C; Karelia, Deepkamal; Gilhooley, Patrick J; Shakibaei, Mehdi; Aggarwal, Bharat B

    2018-03-27

    Bone loss or osteoporosis, is a slow-progressing disease that results from dysregulation of pro-inflammatory cytokines. The FDA has approved number of drugs for bone loss prevention, nonetheless all are expensive and have multiple side effects. The nutraceuticals identified from dietary agents such as butein, cardamonin, coronarin D curcumin, diosgenin, embelin, gambogic acid, genistein, plumbagin, quercetin, reseveratrol, zerumbone and more, can modulate cell signaling pathways and reverse/slow down osteoporosis. Most of these nutraceuticals are inexpensive; show no side effect while still possessing anti-inflammatory properties. This review provides various mechanisms of osteoporosis and how nutraceuticals can potentially prevent the bone loss. Published by Elsevier Inc.

  2. Plasma Cell Neoplasms (Including Multiple Myeloma)—Health Professional Version

    Cancer.gov

    There are several types of plasma cell neoplasms, including monoclonal gammopathy of undetermined significance (MGUS), isolated plasmacytoma of the bone, extramedullary plasmacytoma, and multiple myeloma. Find evidence-based information on plasma cell neoplasms treatment, research, and statistics.

  3. Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells.

    PubMed

    Baker, Amelia H; Watt, James; Huang, Cassie K; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2015-06-15

    Organotins are members of the environmental obesogen class of contaminants because they activate peroxisome proliferator-activated receptor γ (PPARγ), the essential regulator of adipogenesis. Exposure to thiazolidinediones (PPARγ ligands used to treat type 2 diabetes) is associated with increased fractures. Diminished bone quality likely results from PPARγ's role in promoting adipogenesis while suppressing osteogenesis of bone marrow multipotent mesenchymal stromal cells (BM-MSC). We hypothesized that tributyltin (TBT) would be a potent modifier of BM-MSC differentiation and a negative regulator of bone formation. Organotins interact with both PPARγ and retinoid X receptors (RXR), suggesting that they activate multiple nuclear receptor pathways. To investigate the role of RXR in the actions of TBT, the effects of PPARγ (rosiglitazone) and RXR (bexarotene, LG100268) agonists were compared to the effects of TBT in BMS2 cells and primary mouse BM-MSC cultures. In BMS2 cells, TBT induced the expression of Fabp4, Abca1, and Tgm2 in an RXR-dependent manner. All agonists suppressed osteogenesis in primary mouse BM-MSC cultures, based on decreased alkaline phosphatase activity, mineralization, and expression of osteoblast-related genes. While rosiglitazone and TBT strongly activated adipogenesis, based on lipid accumulation and expression of adipocyte-related genes, the RXR agonists did not. Extending these analyses to other RXR heterodimers showed that TBT and the RXR agonists activated the liver X receptor pathway, whereas rosiglitazone did not. Application of either a PPARγ antagonist (T0070907) or an RXR antagonist (HX531) significantly reduced rosiglitazone-induced suppression of bone nodule formation. Only the RXR antagonist significantly reduced LG100268- and TBT-induced bone suppression. The RXR antagonist also inhibited LG100268- and TBT-induced expression of Abca1, an LXR target gene, in primary BM-MSC cultures. These results provide novel evidence that TBT activates multiple nuclear receptor pathways in BM-MSCs, activation of RXR is sufficient to suppress osteogenesis, and TBT suppresses osteogenesis largely through its direct interaction with RXR.

  4. Awareness, concern, and communication between physicians and patients on bone health in cancer.

    PubMed

    Tripathy, Debu; Durie, Brian G M; Mautner, Beatrice; Ferenz, Krag S; Moul, Judd W

    2014-06-01

    This study aims to explore physician-patient communications about bone metastases and cancer treatment-induced bone loss (CTIBL). The study utilizes online survey of patients with breast cancer, prostate cancer, and multiple myeloma, and the physicians who treat them. Even though 69 and 48 % of patients with nonmetastatic breast and prostate cancer aware of treatment-induced bone loss, only 39 and 23 %, respectively, were concerned about bone loss. Yet, 62 and 71 % of oncologists treating breast and prostate cancer felt that their patients were concerned. Among patients with metastatic breast and prostate cancer, two thirds had not discussed treatment for bone metastases with their doctor; when discussed, 88 and 91 % of discussions were initiated by the doctor, usually prior to initiating treatment. Most myeloma patients (77 %) had discussed treatment options with their physicians; 99 % of hematologists reported discussing treatment of bone disease with patients. Physicians are primary sources of information to patients regarding bone health. There is a gap between what physicians assume their patients know about bone health and the patients' perceptions, presenting a need for systematic awareness and education.

  5. Two-Stage Surgical Management of Multilevel Symptomatic Thoracic Haemangioma Using Ethanol and Iliac Crest Bone Graft

    PubMed Central

    Brahmajoshyula, Venkatramana; Mayi, Shivanand; Teegala, Suman

    2014-01-01

    This article presents a 56-year-old obese female who presented with back pain and progressive weakness in her lower limbs for three months. She was bed-ridden for one week before reporting to our hospital. Plain radiographs showed vertical striations in multiple vertebrae classical of haemangioma. Magnetic resonance imaging (MRI) spine revealed multiple thoracic and lumbar vertebral haemangiomas. Extra osseous extension of haemangioma at T12 was causing spinal cord compression. Two-stage surgery was performed with absolute alcohol (ethanol) injection followed by pedicle screw fixation and decompression with tricortical iliac crest bone graft into the vertebral body. Postoperatively rapid neurological improvement was seen. After three weeks, she could walk independently. One year later, computed tomography showed complete incorporation of bone graft and maintained vertebral body height. MRI showed complete resolution of the cord edema at T12. These findings indicated diminished vascularity of the tumor. PMID:25187869

  6. MicroRNA Transfer Between Bone Marrow Adipose and Multiple Myeloma Cells.

    PubMed

    Soley, Luna; Falank, Carolyne; Reagan, Michaela R

    2017-06-01

    Multiple myeloma remains an incurable disease, largely due to the tumor-supportive role of the bone marrow microenvironment. Bone marrow adipose tissue (BMAT) is one component of the fertile microenvironment which is believed to contribute to myeloma progression and drug resistance, as well as participate in a vicious cycle of osteolysis and tumor growth. MicroRNAs (miRNAs) have recently emerged as instrumental regulators of cellular processes that enable the development and dissemination of cancer. This review highlights the intersection between two emerging research fields and pursues the scientific and clinical implications of miRNA transfer between BMAT and myeloma cells. This review provides a concise and provocative summary of the evidence to support exosome-mediated transfer of tumor-supportive miRNAs. The work may prompt researchers to better elucidate the mechanisms by which this novel means of genetic communication between tumor cells and their environment could someday yield targeted therapeutics.

  7. A prospective randomized controlled trial of two-window versus solo-window technique by lateral sinus floor elevation in atrophic posterior maxilla: Results from a 1-year observational phase.

    PubMed

    Yu, Huajie; Qiu, Lixin

    2017-10-01

    Implant failures are more common when multiple missing posterior teeth need lateral sinus floor elevation owing to inadequate tissue maturation after grafting. Effects of lateral window dimensions on vital bone formation have rarely been compared. To compare endo-sinus bone formation between two- and solo-window techniques to rehabilitate multiple missing posterior teeth that need substantial augmentation. Patients with severely atrophic posterior maxilla were randomized to receive lateral sinus floor elevation via solo or two bony windows. Bone core specimens harvested from lateral aspect of the augmentation sites were histomorphometrically analyzed. Proportions of mineralized bone (MB), bone substitute materials (BS), and nonmineralized tissue (NMT) were quantified. Twenty-one patients underwent 23 maxillary sinus augmentations. One patient in each group dropped out during the follow-up period. Lateral window dimensions were 81.65 ± 4.59 and 118.04 ± 19.53 mm 2 in the test and control groups, respectively. Histomorphometric analysis revealed mean MB of 42.32% ± 13.07% and 26.00% ± 15.23%, BS of 40.34% ± 9.52% and 60.03% ± 10.13%, and NMT of 18.14% ± 14.24% and 14.75% ± 10.38% in test and control groups, respectively, with significant differences. The two-window technique could facilitate faster maturation and consolidation of the grafted volume and is an effective alternative for rehabilitation of severely atrophic posterior maxilla with multiple missing posterior teeth. © 2017 Wiley Periodicals, Inc.

  8. Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: results of the Basel Osteoporosis Study.

    PubMed

    Hartl, F; Tyndall, A; Kraenzlin, M; Bachmeier, C; Gückel, C; Senn, U; Hans, D; Theiler, R

    2002-02-01

    The discriminatory potential to classify subjects with or without vertebral fractures was tested cross-sectionally with different methods for the measurement of bone status in a population-based sample of postmenopausal women. Quantitative ultrasound (QUS) measurement at the calcaneus (Lunar Achilles, Hologic Sahara), the proximal phalanges (Igea Bone Profiler), and measurement of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA; Lunar Expert) at several anatomic sites was performed in 500 postmenopausal women (aged 65-75 years) randomly selected from the population. In addition, 50 young female subjects (20-40 years old) had QUS measurements and served as controls to express QUS results as T-score values. Radiographs of the lumbar and thoracic spine were performed in the elderly women. Two independent radiologists reviewed the X-rays for the presence of vertebral fractures. Of 486 eligible study participants, no fracture was seen in 396 participants. Single vertebral fractures were observed in 71 subjects; 19 individuals presented multiple fractures. The overall prevalence of vertebral fractures was 18.5%. Participants without vertebral fractures were compared with subjects with vertebral fractures. Normal statistical distributions were found for all bone measurement results. Risk of vertebral fracture in subjects with no and multiple vertebral fracture was estimated using age adjusted odds ratios (ORs) for QUS and dual-energy X-ray absorptiometry (DXA) values. Each SD decrease in bone measurement increased the risk of multiple vertebral fracture by 3.0 (95% CI, 1.6-5.6) for the Achilles stiffness, by 3.8 (95% CI, 1.8-8.2) for the Sahara QUI, 2.1 (95% CI, 1.3-3.4) for the Bone Profiler amplitude-dependent speed of sound (AD-SOS), and 2.1 (95% CI, 1.2-3.9) and 2.4 (95% CI, 1.3-4.3) for DXA lumbar spine and for DXA total hip, respectively. Results of a discriminant analysis showed sensitivities between 84% and 58% and specificities between 72% and 58% for the respective DXA and QUS parameters. Optimum fracture thresholds for QUS measurements derived from this analysis were calculated also. Optimum T-score threshold values for QUS measurements tended to be higher than those for DXA measurements. However, the performance of QUS measurements is at least comparable with DXA measurements in identifying subjects with multiple vertebral fractures randomly selected from the population.

  9. Functional reconstruction of critical-sized load-bearing bone defects using a Sclerostin-targeting miR-210-3p-based construct to enhance osteogenic activity.

    PubMed

    Hu, Bin; Li, Yan; Wang, Mohan; Zhu, Youming; Zhou, Yong; Sui, Baiyan; Tan, Yu; Ning, Yujie; Wang, Jie; He, Jiacai; Yang, Chi; Zou, Duohong

    2018-06-10

    A considerable amount of research has focused on improving regenerative therapy strategies for repairing defects in load-bearing bones. The enhancement of tissue regeneration with microRNAs (miRNAs) is being developed because miRNAs can simultaneously regulate multiple signaling pathways in an endogenous manner. In this study, we developed a miR-210-based bone repair strategy. We identified a miRNA (miR-210-3p) that can simultaneously up-regulate the expression of multiple key osteogenic genes in vitro. This process resulted in enhanced bone formation in a subcutaneous mouse model with a miR-210-3p/poly-L-lactic acid (PLLA)/bone marrow-derived stem cell (BMSC) construct. Furthermore, we constructed a model of critical-sized load-bearing bone defects and implanted a miR-210-3p/β-tricalcium phosphate (β-TCP)/bone mesenchymal stem cell (BMSC) construct into the defect. We found that the load-bearing defect was almost fully repaired using the miR-210-3p construct. We also identified a new mechanism by which miR-210-3p regulates Sclerostin protein levels. This miRNA-based strategy may yield novel therapeutic methods for the treatment of regenerative defects in vital load-bearing bones by utilizing miRNA therapy for tissue engineering. The destroyed maxillofacial bone reconstruction is still a real challenge for maxillofacial surgeon, due to that functional bone reconstruction involved load-bearing. Base on the above problem, this paper developed a novel miR-210-3p/β-tricalcium phosphate (TCP)/bone marrow-derived stem cell (BMSC) construct (miR-210-3p/β-TCP/BMSCs), which lead to functional reconstruction of critical-size mandible bone defect. We found that the load-bearing defect was almost fully repaired using the miR-210-3p construct. In addition, we also found the mechanism of how the delivered microRNA activated the signaling pathways of endogenous stem cells, leading to the defect regeneration. This miRNA-based strategy can be used to regenerate defects in vital load-bearing bones, thus addressing a critical challenge in regenerative medicine by utilizing miRNA therapy for tissue engineering. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Efficacy of different bone volume expanders for augmenting lumbar fusions.

    PubMed

    Epstein, Nancy E

    2008-01-01

    A wide variety of bone volume expanders are being used in performing posterolateral lumbar noninstrumented and instrumented lumbar fusions. This article presents a review of their efficacy based on fusion rates, complications, and outcomes. Lumbar noninstrumented and instrumented fusions frequently use laminar autografts and different bone graft expanders. This review presents the utility of multiple forms/ratios of DBMs containing allografts. It also discusses the efficacy of artificial bone graft substitutes, including HA and B-TCP. Dynamic x-ray and/or CT examinations were used to document fusion in most series. Outcomes were variously assessed using Odom's criteria or different outcome questionnaires (Oswestry Questionnaire, SF-36, Dallas Pain Questionnaire, and/or Low Back Pain Rating Scale). Performing noninstrumented and instrumented lumbar posterolateral fusions resulted in comparable fusion rates in many series. Similar outcomes were also documented based on Odom's criteria or the multiple patient-based questionnaires. However, in some studies, the addition of spinal instrumentation increased the reoperation rate, operative time, blood loss, and cost. Various forms of DBMs, applied in different ratios to autografts, effectively supplemented spinal fusions in animal models and patient series. beta-Tricalcium phosphate, which is used to augment autograft fusions addressing idiopathic scoliosis or lumbar disease, also proved to be effective. Different types of bone volume expanders, including various forms of allograft-based DBMs, and artificial bone graft substitutes (HA and B-TCP) effectively promote posterolateral lumbar noninstrumented and instrumented fusions when added to autografts.

  11. Deregulation of Bone Forming Cells in Bone Diseases and Anabolic Effects of Strontium-Containing Agents and Biomaterials

    PubMed Central

    Tan, Shuang; Zhang, Binbin; Zhu, Xiaomei; Ao, Ping; Guo, Huajie; Yi, Weihong; Zhou, Guang-Qian

    2014-01-01

    Age-related bone loss and osteoporosis are associated with bone remodeling changes that are featured with decreased trabecular and periosteal bone formation relative to bone resorption. Current anticatabolic therapies focusing on the inhibition of bone resorption may not be sufficient in the prevention or reversal of age-related bone deterioration and there is a big need in promoting osteoblastogenesis and bone formation. Enhanced understanding of the network formed by key signaling pathways and molecules regulating bone forming cells in health and diseases has therefore become highly significant. The successful development of agonist/antagonist of the PTH and Wnt signaling pathways are profits of the understanding of these key pathways. As the core component of an approved antiosteoporosis agent, strontium takes its effect on osteoblasts at multilevel through multiple pathways, representing a good example in revealing and exploring anabolic mechanisms. The recognition of strontium effects on bone has led to its expected application in a variety of biomaterial scaffolds used in tissue engineering strategies aiming at bone repairing and regeneration. While summarizing the recent progress in these respects, this review also proposes the new approaches such as systems biology in order to reveal new insights in the pathology of osteoporosis as well as possible discovery of new therapies. PMID:24800251

  12. Radionuclide bone imaging: an illustrative review.

    PubMed

    Love, Charito; Din, Anabella S; Tomas, Maria B; Kalapparambath, Tomy P; Palestro, Christopher J

    2003-01-01

    Bone scintigraphy with technetium-99m-labeled diphosphonates is one of the most frequently performed of all radionuclide procedures. Radionuclide bone imaging is not specific, but its excellent sensitivity makes it useful in screening for many pathologic conditions. Moreover, some conditions that are not clearly depicted on anatomic images can be diagnosed with bone scintigraphy. Bone metastases usually appear as multiple foci of increased activity, although they occasionally manifest as areas of decreased uptake. Traumatic processes can often be detected, even when radiographic findings are negative. Most fractures are scintigraphically detectable within 24 hours, although in elderly patients with osteopenia, further imaging at a later time is sometimes indicated. Athletic individuals are prone to musculoskeletal trauma, and radionuclide bone imaging is useful for identifying pathologic conditions such as plantar fasciitis, stress fractures, "shin splints," and spondylolysis, for which radiographs may be nondiagnostic. A combination of focal hyperperfusion, focal hyperemia, and focally increased bone uptake is virtually diagnostic for osteomyelitis in patients with nonviolated bone. Bone scintigraphy is also useful for evaluating disease extent in Paget disease and for localizing avascular necrosis in patients with negative radiographs. Radionuclide bone imaging will likely remain a popular and important imaging modality for years to come. Copyright RSNA, 2003

  13. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    PubMed Central

    Cannonier, Shellese A.; Sterling, Julie A.

    2015-01-01

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors. PMID:26343726

  14. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction

    PubMed Central

    Morse, Leslie R.

    2015-01-01

    Background: Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. Methods: We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Conclusions: Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail. PMID:26689691

  15. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction.

    PubMed

    Troy, Karen L; Morse, Leslie R

    2015-01-01

    Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.

  16. Testing the Hypothesis of Biofilm as a Source for Soft Tissue and Cell-Like Structures Preserved in Dinosaur Bone

    PubMed Central

    2016-01-01

    Recovery of still-soft tissue structures, including blood vessels and osteocytes, from dinosaur bone after demineralization was reported in 2005 and in subsequent publications. Despite multiple lines of evidence supporting an endogenous source, it was proposed that these structures arose from contamination from biofilm-forming organisms. To test the hypothesis that soft tissue structures result from microbial invasion of the fossil bone, we used two different biofilm-forming microorganisms to inoculate modern bone fragments from which organic components had been removed. We show fundamental morphological, chemical and textural differences between the resultant biofilm structures and those derived from dinosaur bone. The data do not support the hypothesis that biofilm-forming microorganisms are the source of these structures. PMID:26926069

  17. Limb salvage after infected knee arthroplasty with bone loss and extensor mechanism deficiency using a modular segmental replacement system.

    PubMed

    Namdari, Surena; Milby, Andrew H; Garino, Jonathan P

    2011-09-01

    Multiple total knee arthroplasty revisions pose significant surgical challenges, such as bone loss and soft tissue compromise. For patients with bone loss and extensor mechanism insufficiency after total knee arthroplasty, arthrodesis is a treatment option for the avoidance of amputation. However, arthrodesis is both difficult to achieve in situations with massive bone loss and potentially undesirable due to the dramatic shortening that follows. Although intramedullary nailing for knee arthrodesis has been widely reported, this technique has traditionally relied on the achievement of bony union. We report a case of a patient with massive segmental bone loss in which a modular intercalary prosthesis was used for arthrodesis to preserve limb length without bony union. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Testing the Hypothesis of Biofilm as a Source for Soft Tissue and Cell-Like Structures Preserved in Dinosaur Bone.

    PubMed

    Schweitzer, Mary Higby; Moyer, Alison E; Zheng, Wenxia

    2016-01-01

    Recovery of still-soft tissue structures, including blood vessels and osteocytes, from dinosaur bone after demineralization was reported in 2005 and in subsequent publications. Despite multiple lines of evidence supporting an endogenous source, it was proposed that these structures arose from contamination from biofilm-forming organisms. To test the hypothesis that soft tissue structures result from microbial invasion of the fossil bone, we used two different biofilm-forming microorganisms to inoculate modern bone fragments from which organic components had been removed. We show fundamental morphological, chemical and textural differences between the resultant biofilm structures and those derived from dinosaur bone. The data do not support the hypothesis that biofilm-forming microorganisms are the source of these structures.

  19. Scanning electron microscopy of bone: instrument, specimen, and issues.

    PubMed

    Boyde, A; Jones, S J

    1996-02-01

    There are many ways available now to maximise and analyse the information that can be obtained on the structure and constitution of bone using SEM. This paper considers a range of methods and the problems that arise relating to instrumentation and methodology as they apply to the use of SEM in the study of bone. In addition to the review content, some novel technical approaches to the SEM of bone are considered here for the first time; these include low kV imaging for the detection of new surface bone packets (and residual demineralized matrix after resorption), low kV BSE imaging of uncoated, embedded, and unembedded samples, environmental SEM for the study of wet tissue, low distortion, very low magnification imaging for the study of cancellous bone architecture, the use of multiple detectors for fast electrons in improving the imaging of porous samples, and high resolution, low voltage imaging for the study of collagen degradation during bone resorption.

  20. Osteogenesis imperfecta: from diagnosis and multidisciplinary treatment to future perspectives.

    PubMed

    Bregou Bourgeois, Aline; Aubry-Rozier, Bérengère; Bonafé, Luisa; Laurent-Applegate, Lee; Pioletti, Dominique P; Zambelli, Pierre-Yves

    2016-01-01

    Osteogenesis imperfecta is an inherited connective tissue disorder with wide phenotypic and molecular heterogeneity. A common issue associated with the molecular abnormality is a disturbance in bone matrix synthesis and homeostasis inducing bone fragility. In very early life, this can lead to multiple fractures and progressive bone deformities, including long bone bowing and scoliosis. Multidisciplinary management improves quality of life for patients with osteogenesis imperfecta. It consists of physical therapy, medical treatment and orthopaedic surgery as necessary. Medical treatment consists of bone-remodelling drug therapy. Bisphosphonates are widely used in the treatment of moderate to severe osteogenesis imperfecta, from infancy to adulthood. Other more recent drug therapies include teriparatide and denosumab. All these therapies target the symptoms and have effects on the mechanical properties of bone due to modification of bone remodelling, therefore influencing skeletal outcome and orthopaedic surgery. Innovative therapies, such as progenitor and mesenchymal stem cell transplantation, targeting the specific altered pathway rather than the symptoms, are in the process of development.

  1. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis.

    PubMed

    Schweitzer, Mary H; Zheng, Wenxia; Organ, Chris L; Avci, Recep; Suo, Zhiyong; Freimark, Lisa M; Lebleu, Valerie S; Duncan, Michael B; Vander Heiden, Matthew G; Neveu, John M; Lane, William S; Cottrell, John S; Horner, John R; Cantley, Lewis C; Kalluri, Raghu; Asara, John M

    2009-05-01

    Molecular preservation in non-avian dinosaurs is controversial. We present multiple lines of evidence that endogenous proteinaceous material is preserved in bone fragments and soft tissues from an 80-million-year-old Campanian hadrosaur, Brachylophosaurus canadensis [Museum of the Rockies (MOR) 2598]. Microstructural and immunological data are consistent with preservation of multiple bone matrix and vessel proteins, and phylogenetic analyses of Brachylophosaurus collagen sequenced by mass spectrometry robustly support the bird-dinosaur clade, consistent with an endogenous source for these collagen peptides. These data complement earlier results from Tyrannosaurus rex (MOR 1125) and confirm that molecular preservation in Cretaceous dinosaurs is not a unique event.

  2. Multiple roles of tumor necrosis factor-alpha in fracture healing.

    PubMed

    Karnes, Jonathan M; Daffner, Scott D; Watkins, Colleen M

    2015-09-01

    This review presents a summary of basic science evidence examining the influence of tumor necrosis factor-alpha (TNF-α) on secondary fracture healing. Multiple studies suggest that TNF-α, in combination with the host reservoir of peri-fracture mesenchymal stem cells, is a main determinant in the success of bone healing. Disease states associated with poor bone healing commonly have inappropriate TNF-α responses, which likely contributes to the higher incidence of delayed and nonunions in these patient populations. Appreciation of TNF-α in fracture healing may lead to new therapies to augment recovery and reduce the incidence of complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Short-term, high-dose glucocorticoid treatment does not contribute to reduced bone mineral density in patients with multiple sclerosis.

    PubMed

    Olsson, A; Oturai, D B; Sørensen, P S; Oturai, P S; Oturai, A B

    2015-10-01

    Patients with multiple sclerosis (MS) are at increased risk of reduced bone mineral density (BMD). A contributing factor might be treatment with high-dose glucocorticoids (GCs). The objective of this paper is to assess bone mass in patients with MS and evaluate the importance of short-term, high-dose GC treatment and other risk factors that affect BMD in patients with MS. A total of 260 patients with MS received short-term high-dose GC treatment and had their BMD measured by dual x-ray absorptiometry. BMD was compared to a healthy age-matched reference population (Z-scores). Data regarding GCs, age, body mass index (BMI), serum 25(OH)D, disease duration and severity were collected retrospectively and analysed in a multiple linear regression analysis to evaluate the association between each risk factor and BMD. Osteopenia was present in 38% and osteoporosis in 7% of the study population. Mean Z-score was significantly below zero, indicating a decreased BMD in our MS patients. Multiple linear regression analysis showed no significant association between GCs and BMD. In contrast, age, BMI and disease severity were independently associated with both lumbar and femoral BMD. Reduced BMD was prevalent in patients with MS. GC treatment appears not to be the primary underlying cause of secondary osteoporosis in MS patients. © The Author(s), 2015.

  4. Multiple intraosseous inflammatory myofibroblastic tumors presenting with an aggressive clinical course: case report.

    PubMed

    Sasagawa, Yasuo; Akai, Takuya; Itou, Shoutarou; Iizuka, Hideaki

    2011-10-01

    The authors report a rare case of multiple intraosseous inflammatory myofibroblastic tumors presenting with an aggressive clinical course. A 60-year-old man presented with a 3-month history of headache and 2 weeks of jaw pain. Magnetic resonance imaging showed a homogeneously enhancing mass in the right parietal bone with subcutaneous and intracranial invasion. Bone scintigraphy revealed 4 intraosseous lesions involving the cranium, mandible, ischium, and calcaneum. After admission, the patient showed left hemiparesis and seizures caused by rapid intracranial tumor extension. The cranial and mandible tumors were resected. Histopathological examinations of both specimens revealed myofibroblastic spindle cell proliferation with inflammatory cell infiltration, and a diagnosis of inflammatory myofibroblastic tumor was made. Two days postoperatively, the patient presented with a high fever and disturbance of consciousness with swelling of the subcutaneous tissues of the head and mandibular lesions. Magnetic resonance imaging revealed a massive intracranial extension of the tumor. Corticosteroid therapy induced remarkable shrinkage of all lesions, and relief from symptoms was obtained. Radiotherapy was then performed for residual tumors. Multiple intraosseous inflammatory myofibroblastic tumors of the bone are very uncommon and may mimic malignant tumors. It is important to recognize that this entity can occur in the cranium and as multiple bony lesions. The recommended treatment is complete surgical resection with adjuvant steroid treatment. Considering the aggressive nature of this entity, additional chemo- and/or radiotherapy may be warranted.

  5. Advanced skeletal maturity in children and adolescents with myelomeningocele.

    PubMed

    Roiz, Ronald; Mueske, Nicole M; Van Speybroeck, Alexander; Ryan, Deirdre D; Gilsanz, Vicente; Wren, Tishya A L

    2017-12-11

    Atypical skeletal development is common in youth with myelomeningocele (MM), though the underlying reasons have not been fully elucidated. This study assessed skeletal maturity in children and adolescents with MM and examined the effects of sex, age, sexual development, ethnicity, anthropometrics and shunt status. Forty-three males and 35 females with MM, 6-16 years old, underwent hand radiographs for bone age determination. The difference between bone age and chronological age was evaluated using Wilcoxon sign rank tests. Relationships between age discrepancy (skeletal-chronological) and participant characteristics were assessed using multiple linear regression with forward selection. Overall, forty percent (31/78) of MM participants had an advanced bone age of 1 year or greater (median: 2.5 years), while 47% (37/78) were within 1 year above or below their chronological age (-0.001 years) and 13% (10/78) were delayed by more than 1 year (-1.4 years). Bone age was advanced compared to chronologic age in both males and females (p⩽ 0.024). Advanced bone age was observed in early to late puberty and after maturation (p⩽ 0.07), as well as in Hispanic participants (p= 0.003) and in those with a shunt (p= 0.0004). Advanced bone age was positively correlated with height, weight and body mass index (BMI) percentiles (p= 0.004). In multiple linear regression analysis, advanced bone age was most strongly associated with higher Tanner stage of sexual development, and higher weight, height or BMI percentile. Advanced skeletal maturity is common in children/adolescents with MM over 8 years of age who have reached puberty (65%), particularly those who are overweight (80%). Hormonal effects associated with adiposity and sexual maturity likely influence skeletal maturation. Clinicians may use Tanner stage and weight or BMI to gain insight into skeletal maturity.

  6. Human regulatory T cells do not suppress the antitumor immunity in the bone marrow: a role for bone marrow stromal cells in neutralizing regulatory T cells.

    PubMed

    Guichelaar, Teun; Emmelot, Maarten E; Rozemuller, Henk; Martini, Bianka; Groen, Richard W J; Storm, Gert; Lokhorst, Henk M; Martens, Anton C; Mutis, Tuna

    2013-03-15

    Regulatory T cells (Tregs) are potent tools to prevent graft-versus-host disease (GVHD) induced after allogeneic stem cell transplantation or donor lymphocyte infusions. Toward clinical application of Tregs for GVHD treatment, we investigated the impact of Tregs on the therapeutic graft-versus-tumor (GVT) effect against human multiple myeloma tumors with various immunogenicities, progression rates, and localizations in a humanized murine model. Immunodeficient Rag2(-/-)γc(-/-) mice, bearing various human multiple myeloma tumors, were treated with human peripheral blood mononuclear cell (PBMC) alone or together with autologous ex vivo cultured Tregs. Mice were analyzed for the in vivo engraftment, homing of T-cell subsets, development of GVHD and GVT. In additional in vitro assays, Tregs that were cultured together with bone marrow stromal cells were analyzed for phenotype and functions. Treatment with PBMC alone induced variable degrees of antitumor response, depending on the immunogenicity and the growth rate of the tumor. Coinfusion of Tregs did not impair the antitumor response against tumors residing within the bone marrow, irrespective of their immunogenicity or growth rates. In contrast, Tregs readily inhibited the antitumor effect against tumors growing outside the bone marrow. Exploring this remarkable phenomenon, we discovered that bone marrow stroma neutralizes the suppressive activity of Tregs in part via production of interleukin (IL)-1β/IL-6. We furthermore found in vitro and in vivo evidence of conversion of Tregs into IL-17-producing T cells in the bone marrow environment. These results provide new insights into the Treg immunobiology and indicate the conditional benefits of future Treg-based therapies.

  7. Robust patella motion tracking using intensity-based 2D-3D registration on dynamic bi-plane fluoroscopy: towards quantitative assessment in MPFL reconstruction surgery

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Esnault, Matthieu; Grupp, Robert; Kosugi, Shinichi; Sato, Yoshinobu

    2016-03-01

    The determination of in vivo motion of multiple-bones using dynamic fluoroscopic images and computed tomography (CT) is useful for post-operative assessment of orthopaedic surgeries such as medial patellofemoral ligament reconstruction. We propose a robust method to measure the 3D motion of multiple rigid objects with high accuracy using a series of bi-plane fluoroscopic images and a multi-resolution, intensity-based, 2D-3D registration. A Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimizer was used with a gradient correlation similarity metric. Four approaches to register three rigid objects (femur, tibia-fibula and patella) were implemented: 1) an individual bone approach registering one bone at a time, each with optimization of a six degrees of freedom (6DOF) parameter, 2) a sequential approach registering one bone at a time but using the previous bone results as the background in DRR generation, 3) a simultaneous approach registering all the bones together (18DOF) and 4) a combination of the sequential and the simultaneous approaches. These approaches were compared in experiments using simulated images generated from the CT of a healthy volunteer and measured fluoroscopic images. Over the 120 simulated frames of motion, the simultaneous approach showed improved registration accuracy compared to the individual approach: with less than 0.68mm root-mean-square error (RMSE) for translation and less than 1.12° RMSE for rotation. A robustness evaluation was conducted with 45 trials of a randomly perturbed initialization showed that the sequential approach improved robustness significantly (74% success rate) compared to the individual bone approach (34% success) for patella registration (femur and tibia-fibula registration had a 100% success rate with each approach).

  8. A Case of Teriparatide on Pregnancy-Induced Osteoporosis

    PubMed Central

    Lee, Seok Hong; Hong, Moon-Ki; Park, Seung Won; Park, Hyoung-Moo; Kim, Jaetaek

    2013-01-01

    Pregnancy-induced osteoporosis is a rare disorder characterized by fragility fracture and low bone mineral density (BMD) during or shortly after pregnancy, and its etiology is still unclear. We experienced a case of a 39-year-old woman who suffered from lumbago 3 months after delivery. Biochemical evidence of increased bone resorption is observed without secondary causes of osteoporosis. Radiologic examination showed multiple compression fractures on her lumbar vertebrae. We report a case of patient with pregnancy-induced osteoporosis improved her clinical symptom, BMD and bone turnover marker after teriparatide therapy. PMID:24524067

  9. A multi-method assessment of bone maintenance and loss in an Imperial Roman population: Implications for future studies of age-related bone loss in the past.

    PubMed

    Beauchesne, Patrick; Agarwal, Sabrina C

    2017-09-01

    One of the hallmarks of contemporary osteoporosis and bone loss is dramatically higher prevalence of loss and fragility in females post-menopause. In contrast, bioarchaeological studies of bone loss have found a greater diversity of age- and sex-related patterns of bone loss in past populations. We argue that the differing findings may relate to the fact that most studies use only a single methodology to quantify bone loss and do not account for the heterogeneity and complexity of bone maintenance across the skeleton and over the life course. We test the hypothesis that bone mass and maintenance in trabecular bone sites versus cortical bone sites will show differing patterns of age-related bone loss, with cortical bone sites showing sex difference in bone loss that are similar to contemporary Western populations, and trabecular bone loss at earlier ages. We investigated this hypothesis in the Imperial Roman population of Velia using three methods: radiogrammetry of the second metacarpal (N = 71), bone histology of ribs (N = 70), and computerized tomography of trabecular bone architecture (N = 47). All three methods were used to explore sex and age differences in patterns of bone loss. The suite of methods utilized reveal differences in the timing of bone loss with age, but all methods found no statistically significant differences in age-related bone loss. We argue that a multi-method approach reduces the influence of confounding factors by building a reconstruction of bone turnover over the life cycle that a limited single-method project cannot provide. The implications of using multiple methods beyond studies of bone loss are also discussed. © 2017 Wiley Periodicals, Inc.

  10. Clinical application of quantitative computed tomography in osteogenesis imperfecta-suspected cat.

    PubMed

    Won, Sungjun; Chung, Woo-Jo; Yoon, Junghee

    2017-09-30

    One-year-old male Persian cat presented with multiple fractures and no known traumatic history. Marked decrease of bone radiopacity and thin cortices of all long bones were identified on radiography. Tentative diagnosis was osteogenesis imperfecta, a congenital disorder characterized by fragile bone. To determine bone mineral density (BMD), quantitative computed tomography (QCT) was performed. The QCT results revealed a mean trabecular BMD of vertebral bodies of 149.9 ± 86.5 mg/cm 3 . After bisphosphonate therapy, BMD of the same site increased significantly (218.5 ± 117.1 mg/cm 3 , p < 0.05). QCT was a useful diagnostic tool to diagnose osteopenia and quantify response to medical treatment.

  11. Pituitary adenylate cyclase-activating polypeptide is a potent inhibitor of the growth of light chain-secreting human multiple myeloma cells.

    PubMed

    Li, Min; Cortez, Shirley; Nakamachi, Tomoya; Batuman, Vecihi; Arimura, Akira

    2006-09-01

    Multiple myeloma represents a malignant proliferation of plasma cells in the bone marrow, which often overproduces immunoglobulin light chains. We have shown previously that pituitary adenylate cyclase-activating polypeptide (PACAP) markedly suppresses the release of proinflammatory cytokines from light chain-stimulated human renal proximal tubule epithelial cells and prevents the resulting tubule cell injury. In this study, we have shown that PACAP suppresses the proliferation of human kappa and lambda light chain-secreting multiple myeloma-derived cells. The addition of PACAP suppressed light chain-producing myeloma cell-stimulated interleukin 6 (IL-6) secretion by the bone marrow stromal cells (BMSCs). A specific antagonist to either the human PACAP-specific receptor or the vasoactive intestinal peptide receptor attenuated the suppressive effect of PACAP on IL-6 production in the adhesion of human multiple myeloma cells to BMSCs. The secretion of IL-6 by BMSCs was completely inhibited by 10(-9) mol/L PACAP, which also attenuated the phosphorylation of both p42/44 and p38 mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappaB (NF-kappaB) activation in response to the adhesion of multiple myeloma cells to BMSCs, whereas the inhibition of p42/44 MAPK signaling attenuated PACAP action. The signaling cascades involved in the inhibitory effect of PACAP on IL-6-mediated paracrine stimulation of light chain-secreting myeloma cell growth was mediated through the suppression of p38 MAPK as well as modulation of activation of transcription factor NF-kappaB. These findings suggest that PACAP may be a new antitumor agent that directly suppresses light chain-secreting myeloma cell growth and indirectly affects tumor cell growth by modifying the bone marrow milieu of the multiple myeloma.

  12. Multiple melanocortin receptors are expressed in bone cells

    NASA Technical Reports Server (NTRS)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  13. Osteoblastic molecular scaffold Gab1 is required for maintaining bone homeostasis.

    PubMed

    Weng, Tujun; Mao, Fengfeng; Wang, Youliang; Sun, Qiang; Li, Ruixin; Yang, Guan; Zhang, Xizheng; Luo, Jincai; Feng, Gen-Sheng; Yang, Xiao

    2010-03-01

    The Grb2-associated binder 1 (Gab1), which serves as a scaffolding adaptor protein, plays a crucial role in transmitting key signals that control cell growth, differentiation and function from multiple receptors. However, its biological role in osteoblast activity and postnatal bone metabolism remains unclear. To elucidate the in vivo function of Gab1 in postnatal bone remodeling, we generated osteoblast-specific Gab1 knockout mice. Disruption of Gab1 expression in osteoblasts led to decreased trabecular bone mass with a reduced bone formation rate and a decreased bone resorption. Bones from Gab1 mutants also exhibited inferior mechanical properties. Moreover, primary osteoblasts from Gab1 mutant mice demonstrated markedly suppressed osteoblast mineralization, increased susceptibility to apoptosis and decreased expression of receptor activator of NF-kappaB ligand (RANKL). Activation of serine-threonine Akt kinase and extracellular signal-regulated kinase in response to insulin and insulin-like growth factor 1 was attenuated in Gab1 mutant osteoblasts. Our results show that Gab1-mediated signals in osteoblasts are crucial for normal postnatal bone homeostasis.

  14. New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures.

    PubMed

    Yeon, Yeung Kyu; Park, Hae Sang; Lee, Jung Min; Lee, Ji Seung; Lee, Young Jin; Sultan, Md Tipu; Seo, Ye Bin; Lee, Ok Joo; Kim, Soon Hee; Park, Chan Hum

    Open reduction with internal fixation is commonly used for the treatment of bone fractures. However, postoperative infection associated with internal fixation devices (intramedullary nails, plates, and screws) remains a significant complication, and it is technically difficult to fix multiple fragmented bony fractures using internal fixation devices. In addition, drilling in the bone to install devices can lead to secondary fracture, bone necrosis associated with postoperative infection. In this study, we developed bone clip type internal fixation device using three- dimensional (3D) printing technology. Standard 3D model of the bone clip was generated based on computed tomography (CT) scan of the femur in the rat. Polylacticacid (PLA), hydroxyapatite (HA), and silk were used for bone clip material. The purpose of this study was to characterize 3D printed PLA, PLA/HA, and PLA/HA/Silk composite bone clip and evaluate the feasibility of these bone clips as an internal fixation device. Based on the results, PLA/HA/Silk composite bone clip showed similar mechanical property, and superior biocompatibility compared to other types of the bone clip. PLA/HA/Silk composite bone clip demonstrated excellent alignment of the bony segments across the femur fracture site with well-positioned bone clip in an animal study. Our 3D printed bone clips have several advantages: (1) relatively noninvasive (drilling in the bone is not necessary), (2) patient-specific design (3) mechanically stable device, and (4) it provides high biocompatibility. Therefore, we suggest that our 3D printed PLA/HA/Silk composite bone clip is a possible internal fixation device.

  15. Role of magnetic resonance imaging and scintigraphy in the diagnosis and follow-up of osteomyelitis in cat-scratch disease.

    PubMed

    Rozmanic, Vojko; Banac, Srdjan; Miletic, Damir; Manestar, Koraljka; Kamber, Silvija; Paparic, Sime

    2007-01-01

    Cat-scratch disease (CSD) is a self-limiting infectious disease characterised with lymphadenopathy in a patient with a history of cat contact. Cases of bone involvement in patients with CSD are rare. We reported a case of 11-year-old boy with prolonged intermittent fever, inguinal lymphadenopathy and osteomyelitis. He had a history of exposure to kittens. The physical examination revealed a febrile boy without an apparent site of infection except an enlarged inguinal lymph node. Its histopathology demonstrated granulomatous lesion with no presence of acid-fast bacilli. Serum titers for Bartonella henselae were positive. Multiple bone lesions were detected by skeletal scintigraphy. Magnetic resonance imaging (MRI) confirmed and characterised osteolytic masses. The oral combination of azithromycin and rifampicin were given for 6 weeks with a good clinical response. At follow-up, the boy was without symptoms or signs of the disease. Successive MRI controls showed gradual regression of the bone lesions together with significant decrease of acute-phase reactants. In conclusion, CSD should be considered in the differential diagnosis of osteomyelitis. MRI is more reliable for the characterisation, evaluation of soft-tissue extension and follow-up of the bone lesions than scintigraphy. However, the later method permits an overview of the multiple osseous lesions. Therefore, standard MRI equipment may not exclude bone scintigraphy. Both methods are required until whole-body MRI units become routine.

  16. Deep onchocercomata close to the thigh bones of a Liberian patient.

    PubMed

    Kilian, H D

    1988-12-01

    During nodulectomies on a 53 year old Liberian woman, multiple onchocercomata were detected on the femur distal to the greater trochanter on both sides of the body. The nodules were attached to the periosteum. This location along the shaft of the thigh bone provides a further hint as to where clinically undetectable deep onchocercomata can be located.

  17. Mutiple Spontaneous Rib Fractures in Patient with Cushing's Syndrome.

    PubMed

    Lee, Hyun Jung; Je, Ji Hye; Seo, Ji Hye; Na, Young Ju; Yoo, Hye Jin

    2014-11-01

    Glucocorticoid (GC) excess, including Cushing's syndrome, is a common cause of secondary osteoporosis. Thirty to fifty percent of Cushing's syndrome patients experience non-traumatic fractures, which is often the presenting manifestation of Cushing's syndrome. However, there have been rare cases of Cushing's syndrome diagnosed only based upon bone manifestations. We describe a case of Cushing's syndrome that was diagnosed in a 44-year-old woman who initially visited our hospital due to multiple non-traumatic rib fractures. She did not exhibit any other manifestations of Cushing's syndrome such as moon face, buffalo hump or abdominal striae. Initially, we evaluated her for bone metastases from a cancer of unknown origin, but there was no evidence of metastatic cancer. Instead, we found a left adrenal incidentaloma. As a result of the hormone study, she was diagnosed as having Cushing's syndrome. Interestingly, her bony manifestation of Cushing's syndrome, which was evident in the bone scan and bone mineral densitometry, completely recovered after a left adrenalectomy. Therefore, the possibility of Cushing's syndrome as a cause of secondary osteoporosis should be considered in young patients with non-traumatic multiple fractures, with or without any other typical features of Cushing's syndrome.

  18. Integrative analysis of GWAS, eQTLs and meQTLs data suggests that multiple gene sets are associated with bone mineral density.

    PubMed

    Wang, W; Huang, S; Hou, W; Liu, Y; Fan, Q; He, A; Wen, Y; Hao, J; Guo, X; Zhang, F

    2017-10-01

    Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data METHOD: We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients' BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05. We identified multiple gene sets associated with BMD in one or more regions, including relevant known biological gene sets such as the Reactome Circadian Clock (GSEA p-value = 1.0 × 10 -4 for LS and 2.7 × 10 -2 for femoral necks BMD in eQTLs-based GSEA) and insulin-like growth factor receptor binding (GSEA p-value = 5.0 × 10 -4 for femoral necks and 2.6 × 10 -2 for lumbar spines BMD in meQTLs-based GSEA). Our results provided novel clues for subsequent functional analysis of bone metabolism, and illustrated the benefit of integrating eQTLs and meQTLs data into pathway association analysis for genetic studies of complex human diseases. Cite this article : W. Wang, S. Huang, W. Hou, Y. Liu, Q. Fan, A. He, Y. Wen, J. Hao, X. Guo, F. Zhang. Integrative analysis of GWAS, eQTLs and meQTLs data suggests that multiple gene sets are associated with bone mineral density. Bone Joint Res 2017;6:572-576. © 2017 Wang et al.

  19. Bone: best papers of the year 2017.

    PubMed

    Laurent, Michaël R

    2018-03-15

    An overview of selected papers related to bone published in 2017 is provided. This paper accompanies a lecture at the 2018 Belgian Bone Club annual Clinical Update Symposium held in Brussels on January 20th, discussing the best papers (in the opinion of the author) published in the previous year. A PubMed search using the keyword "bone" and articles published in 2017. Hot topics include screening for osteoporosis, novel anabolic drugs such as romosozumab and abaloparatide for osteoporosis and rare metabolic bone diseases, as well as long-term efficacy of denosumab and possible risk of multiple vertebral fractures following its discontinuation. Other selected articles cover effectiveness of bisphosphonates and changes in mineralization after long-term use, new guidelines for glucocorticoid- and aromatase inhibitor-induced osteoporosis, increasing use of high-dose vitamin D supplements despite lack of evidence for their widespread high-dose use, and cardiovascular safety concerns surrounding the use of calcium supplements. Other topics discussed are effects of diabetes on bone health, reciprocal crosstalk between bone cells and adipose tissue, and resistance exercise training to prevent bone loss and sarcopenia. These papers offer a hopeful outlook for a better treatment and management of patients with osteoporosis and other metabolic bone diseases anno 2018.

  20. Force-induced bone growth and adaptation: A system theoretical approach to understanding bone mechanotransduction

    NASA Astrophysics Data System (ADS)

    Maldonado, Solvey; Findeisen, Rolf

    2010-06-01

    The modeling, analysis, and design of treatment therapies for bone disorders based on the paradigm of force-induced bone growth and adaptation is a challenging task. Mathematical models provide, in comparison to clinical, medical and biological approaches an structured alternative framework to understand the concurrent effects of the multiple factors involved in bone remodeling. By now, there are few mathematical models describing the appearing complex interactions. However, the resulting models are complex and difficult to analyze, due to the strong nonlinearities appearing in the equations, the wide range of variability of the states, and the uncertainties in parameters. In this work, we focus on analyzing the effects of changes in model structure and parameters/inputs variations on the overall steady state behavior using systems theoretical methods. Based on an briefly reviewed existing model that describes force-induced bone adaptation, the main objective of this work is to analyze the stationary behavior and to identify plausible treatment targets for remodeling related bone disorders. Identifying plausible targets can help in the development of optimal treatments combining both physical activity and drug-medication. Such treatments help to improve/maintain/restore bone strength, which deteriorates under bone disorder conditions, such as estrogen deficiency.

  1. Weight loss and bone mineral density.

    PubMed

    Hunter, Gary R; Plaisance, Eric P; Fisher, Gordon

    2014-10-01

    Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.

  2. Sarcoidosis and multiple myeloma: Concurrent presentation of an unusual association

    PubMed Central

    Nair, Vidya; Prajapat, Deepak; Talwar, Deepak

    2016-01-01

    Literature on concurrent association of sarcoidosis with lymphoproliferative malignancies other than lymphoma e.g. multiple myeloma is meager. The rarity of the situation prompted us to report this patient who was a 51-year-old woman with a 2-years history of breathlessness, cough with expectoration, chest pain and backache. Initial evaluation revealed mild anemia, increased alkaline phosphatase with chest skiagram showing both lower zone non homogenous opacities with calcified hilar lymph nodes. CECT chest showed mediastinal with bilateral hilar lymphadenopathy, parenchymal fibrosis, traction bronchiectasis, ground glass opacities, septal and peribronchovascular thickening affecting mid and lower lung zones bilaterally. MRI Dorsolumbar spine was suggestive of marrow infiltrative disorder. EBUS FNA of intrathoracic nodes, EBB and TBLB confirmed sarcoidosis. PET CT revealed hyper metabolic activity in lung, multiple lymph nodes and lytic bone lesions. Serum protein electrophoresis and immunofixation revealed a monoclonal paraprotein, immunoglobulin IgG kappa type. Bone marrow biopsy revealed an increase in plasma cells (15%), but no granulomas. Diagnosis of Indolent or multiple myeloma with sarcoidosis was established. 12 cases of sarcoidosis and multiple myeloma have been reported in literature, and mostly preceding the onset of multiple myeloma by many years, in our case both were diagnosed concurrently. PMID:26933313

  3. 3D Printed Pediatric Temporal Bone: A Novel Training Model.

    PubMed

    Longfield, Evan A; Brickman, Todd M; Jeyakumar, Anita

    2015-06-01

    Temporal bone dissection is a fundamental element of otologic training. Cadaveric temporal bones (CTB) are the gold standard surgical training model; however, many institutions do not have ready access to them and their cost can be significant: $300 to $500. Furthermore, pediatric cadaveric temporal bones are not readily available. Our objective is to develop a pediatric temporal bone model. Temporal bone model. Tertiary Children's Hospital. Pediatric patient model. We describe the novel use of a 3D printer for the generation of a plaster training model from a pediatric high- resolution CT temporal bone scan of a normal pediatric temporal bone. Three models were produced and were evaluated. The models utilized multiple colors (white for bone, yellow for the facial nerve) and were of high quality. Two models were drilled as a proof of concept and found to be an acceptable facsimile of the patient's anatomy, rendering all necessary surgical landmarks accurately. The only negative comments pertaining to the 3D printed temporal bone as a training model were the lack of variation in hardness between cortical and cancellous bone, noting a tactile variation from cadaveric temporal bones. Our novel pediatric 3D temporal bone training model is a viable, low-cost training option for previously inaccessible pediatric temporal bone training. Our hope is that, as 3D printers become commonplace, these models could be rapidly reproduced, allowing for trainees to print models of patients before performing surgery on the living patient.

  4. Guided bone regeneration: A novel approach in the treatment of pediatric dentoalveolar trauma

    PubMed Central

    Murthy, Prashanth Sadashiva; Shivamallu, Avinash Bettahalli; Deshmukh, Seema; Nandlal, Bhojraj; Thotappa, Srilatha K.

    2015-01-01

    Traumatic injuries in the primary dentition pose major challenges for management. This emergency treatment requires proper planning so as to achieve favorable results. Trauma causing severe dentoalveolar injuries, especially in children, needs an interdisciplinary approach so as to retain normal functional anatomy for that age. This article describes a clinical innovative technique, which utilizes a resorbable membrane in management of pediatric dentoalveolar trauma. The membrane was shaped to cover the multiple alveolar bone fracture, thereby favoring the healing of the bone defects. The use of this resorbable membrane maintained a secluded space for the bone growth and prevented overgrowth of the soft tissue in the region of the defect. This resulted in uneventful healing leading to well-maintained functional bone contour, which further favored the esthetic rehabilitation as well as protected the underlying permanent tooth buds. PMID:26005471

  5. Changes in mineral metabolism with immobilization/space flight

    NASA Technical Reports Server (NTRS)

    Gallagher, J. C.

    1989-01-01

    Researchers are still unsure of the accuracy of previous bone density measurements of their significance following a period of weightlessness. Rapid technological advances in the measurement of bone density will enable us now to measure bone density accurately at multiple sites in the skeleton with doses of radiation less than that given by a spine x ray. It may not be possible to obtain this type of information before the next series of space flights take place, although the bed-rest model may provide supporting information. Extensive testing of bone density on every astronaut should be performed before and after the space flight. Prevention and treatment can only be undertaken after gathering sufficient baseline information. The use of exercise in preventing bone loss is still highly speculative, but represents a relatively easy approach to the problem in terms of study.

  6. TU-G-204-02: Automatic Sclerotic Bone Metastases Detection in the Pelvic Region From Dual Energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehr, D; Schmidtlein, C; Hwang, S

    Purpose: To automatically detect sclerotic bone metastases in the pelvic region using dual energy computed tomography (DECT). Methods: We developed a two stage algorithm to automatically detect sclerotic bone metastases in the pelvis from DECT for patients with multiple bone metastatic lesions and with hip implants. The first stage consists of extracting the bone and marrow regions by using a support vector machine (SVM) classifier. We employed a novel representation of the DECT images using multi-material decomposition, which represents each voxel as a mixture of different physical materials (e.g. bone+water+fat). Following the extraction of bone and marrow, in the secondmore » stage, a bi -histogram equalization method was employed to enhance the contrast to reveal the bone metastases. Next, meanshift segmentation was performed to separate the voxels by their intensity levels. Finally, shape-based filtering was performed to extract the possible locations of the metastatic lesions using multiple shape criteria. We used the following shape parameters: area, eccentricity, major and minor axis, perimeter and skeleton. Results: A radiologist with several years of experience with DECT manually labeled 64 regions consisting of metastatic lesions from 10 different patients. However, the patients had many more metastasic lesions throughout the pelvis. Our method correctly identified 46 of the marked 64 regions (72%). In addition, our method also identified several other lesions, which can then be validated by the radiologist. The missed lesions were typically very large elongated regions consisting of several islands of very small (<4mm) lesions. Conclusion: We developed an algorithm to automatically detect sclerotic lesions in the pelvic region from DECT. Preliminary assessment shows that our algorithm generated lesions agreeing with the radiologist generated candidate regions. Furthermore, our method reveals additional lesions that can be inspected by the radiologist, thereby, reducing radiologist effort in identifying all the lesions with poor contrast from the DECT images.« less

  7. The association between childhood fractures and adolescence bone outcomes: a population-based study, the Tromsø Study, Fit Futures.

    PubMed

    Christoffersen, T; Emaus, N; Dennison, E; Furberg, A-S; Gracia-Marco, L; Grimnes, G; Nilsen, O A; Vlachopoulos, D; Winther, A; Ahmed, L A

    2018-02-01

    Childhood fracture may predict persistent skeletal fragility, but it may also reflect high physical activity which is beneficial to bone development. We observe a difference in the relationship between previous fracture and bone outcome across physical activity level and sex. Further elaboration on this variation is needed. Childhood fracture may be an early marker of skeletal fragility, or increased levels of physical activity (PA), which are beneficial for bone mineral accrual. This study investigated the association between a previous history of childhood fracture and adolescent bone mineral outcomes by various PA levels. We recruited 469 girls and 492 boys aged 15-18 years to this study. We assessed PA levels by questionnaire and measured areal bone mineral density (aBMD) and bone mineral content (BMC) using dual-energy X-ray absorptiometry (DXA) at arm, femoral neck (FN), total hip (TH), and total body (TB) and calculated bone mineral apparent density (BMAD, g/cm 3 ). Fractures from birth to time of DXA measurements were retrospectively recorded. We analyzed differences among participants with and without fractures using independent sample t test. Multiple linear regression was used to examine the association between fractures and aBMD and BMC measurements according to adolescent PA. Girls with and without a previous history of fracture had similar BMC, aBMD, and BMAD at all sites. In multiple regression analyses stratified by physical activity intensity (PAi), there was a significant negative association between fracture and aBMD-TH and BMC-FN yet only in girls reporting low PAi. There was a significant negative association between forearm fractures, BMAD-FN, and BMAD-arm among vigorously active boys. Our findings indicate a negative association between childhood fractures and aBMD/BMC in adolescent girls reporting low PAi. In boys, such an association appears only in vigorously active participants with a history of forearm fractures.

  8. Animal models for bone tissue engineering and modelling disease

    PubMed Central

    Griffin, Michelle

    2018-01-01

    ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995

  9. Quantitative MRI and spectroscopy of bone marrow

    PubMed Central

    Ruschke, Stefan; Dieckmeyer, Michael; Diefenbach, Maximilian; Franz, Daniela; Gersing, Alexandra S.; Krug, Roland; Baum, Thomas

    2017-01-01

    Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353. PMID:28570033

  10. A computer-guided bone block harvesting procedure: a proof-of-principle case report and technical notes.

    PubMed

    De Stavola, Luca; Fincato, Andrea; Albiero, Alberto Maria

    2015-01-01

    During autogenous mandibular bone harvesting, there is a risk of damage to anatomical structures, as the surgeon has no three-dimensional control of the osteotomy planes. The aim of this proof-of-principle case report is to describe a procedure for harvesting a mandibular bone block that applies a computer-guided surgery concept. A partially dentate patient who presented with two vertical defects (one in the maxilla and one in the mandible) was selected for an autogenous mandibular bone block graft. The bone block was planned using a computer-aided design process, with ideal bone osteotomy planes defined beforehand to prevent damage to anatomical structures (nerves, dental roots, etc) and to generate a surgical guide, which defined the working directions in three dimensions for the bone-cutting instrument. Bone block dimensions were planned so that both defects could be repaired. The projected bone block was 37.5 mm in length, 10 mm in height, and 5.7 mm in thickness, and it was grafted in two vertical bone augmentations: an 8 × 21-mm mandibular defect and a 6.5 × 18-mm defect in the maxilla. Supraimposition of the preoperative and postoperative computed tomographic images revealed a procedure accuracy of 0.25 mm. This computer-guided bone harvesting technique enables clinicians to obtain sufficient autogenous bone to manage multiple defects safely.

  11. Therapies for the bone in mucopolysaccharidoses

    PubMed Central

    Tomatsu, Shunji; Alméciga-Díaz, Carlos J.; Montaño, Adriana M.; Yabe, Hiromasa; Tanaka, Akemi; Dung, Vu Chi; Giugliani, Roberto; Kubaski, Francyne; Mason, Robert W.; Yasuda, Eriko; Sawamoto, Kazuki; Mackenzie, William; Suzuki, Yasuyuki; Orii, Kenji E.; Barrera, Luis A.; Sly, William S.; Orii, Tadao

    2014-01-01

    Patients with mucopolysaccharidoses (MPS) have accumulation of glycosaminoglycans in multiple tissues which may cause coarse facial features, mental retardation, recurrent ear and nose infections, inguinal and umbilical hernias, hepatosplenomegaly, and skeletal deformities. Clinical features related to bone lesions may include marked short stature, cervical stenosis, pectus carinatum, small lungs, joint rigidity (but laxity for MPS IV), kyphoscoliosis, lumbar gibbus, and genu valgum. Patients with MPS are often wheelchair-bound and physical handicaps increase with age as a result of progressive skeletal dysplasia, abnormal joint mobility, and osteoarthritis, leading to 1) stenosis of the upper cervical region, 2) restrictive small lung, 3) hip dysplasia, 4) restriction of joint movement, and 5) surgical complications. Patients often need multiple orthopedic procedures including cervical decompression and fusion, carpal tunnel release, hip reconstruction and replacement, and femoral or tibial osteotomy through their lifetime. Current measures to intervene in bone disease progression are not perfect and palliative, and improved therapies are urgently required. Enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), and gene therapy are available or in development for some types of MPS. Delivery of sufficient enzyme to bone, especially avascular cartilage, to prevent or ameliorate the devastating skeletal dysplasias remains an unmet challenge. The use of an anti-inflammatory drug is also under clinical study. Therapies should start at a very early stage prior to irreversible bone lesion, and damage since the severity of skeletal dysplasia is associated with level of activity during daily life. This review illustrates a current overview of therapies and their impact for bone lesions in MPS including ERT, HSCT, gene therapy, and anti-inflammatory drugs. PMID:25537451

  12. What Happens to bone health during and after spaceflight?

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Evans, Harlan J.; Spector, Elisabeth R.; Maddocks, Mary J.; Smith, Scott A.; Shackelford, Linda C.; LeBlanc, Adrian D.

    2006-01-01

    Weightless conditions of space flight accelerate bone loss. There are no reports to date that address whether the bone that is lost during spaceflight could ever be recovered. Spaceinduced bone loss in astronauts is evaluated at the Johnson Space Center (JSC) by measurement of bone mineral density (BMD) by Dual-energy x-ray absorptiometry (DXA) scans. Astronauts are routinely scanned preflight and at various time points postflight (greater than or equal to Return+2 days). Two sets of BMD data were used to model spaceflight-induced loss and skeletal recovery in crewmembers following long-duration spaceflight missions (4-6 months). Group I was from astronauts (n=7) who were systematically scanned at multiple time points during the postflight period as part of a research protocol to investigate skeletal recovery. Group II came from a total of 49 sets of preflight and postflight data obtained by different protocols. These data were from 39 different crewmembers some of whom served on multiple flights. Changes in BMD (between pre- and postflight BMD) were plotted as a function of time (days-after-landing); plotted data were fitted to an exponential equation which enabled estimations of i) BMD change at day 0 after landing and ii) the number of days by which 50% of the lost bone is recovered (half-life). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. There was consistency between the models for BMD recovery. Based upon the exponential model of BMD restoration, recovery following long-duration missions appears to be substantially complete in crewmembers within 36 months following return to Earth.

  13. Usefulness of the Trabecular Bone Score for assessing the risk of osteoporotic fracture.

    PubMed

    Redondo, L; Puigoriol, E; Rodríguez, J R; Peris, P; Kanterewicz, E

    2018-04-01

    The trabecular bone score (TBS) is an imaging technique that assesses the condition of the trabecular microarchitecture. Preliminary results suggest that TBS, along with the bone mineral density assessment, could improve the calculation of the osteoporotic fracture risk. The aim of this study was to analyse TBS values and their relationship with the clinical characteristics, bone mineral density and history of fractures of a cohort of posmenopausal women. We analysed 2,257 posmenopausal women from the FRODOS cohort, which was created to determine the risk factors for osteoporotic fracture through a clinical survey and bone densitometry with vertebral morphometry. TBS was applied to the densitometry images. TBS values ≤1230 were considered indicative of degraded microarchitecture. We performed a simple and multiple linear regression to determine the factors associated with this index. The mean TBS value in L1-L4 was 1.203±0.121. Some 55.3% of the women showed values indicating degraded microarchitecture. In the multiple linear regression analysis, the factors associated with low TBS values were age, weight, height, spinal T-score, glucocorticoid treatment, presence of type 2 diabetes and a history of fractures due to frailty. TBS showed microarchitecture degradation values in the participants of the FRODOS cohort and was associated with anthropometric factors, low bone mineral density values, the presence of fractures, a history of type 2 diabetes mellitus and the use of glucocorticoids. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  14. In anemia of multiple myeloma hepcidin is induced by increased bone-morphogenetic protein-2

    USDA-ARS?s Scientific Manuscript database

    Hepcidin is the principal iron-regulatory hormone and pathogenic factor in anemia of inflammation. Patients with multiple myeloma (MM) frequently present with anemia. We showed that MM patients had increased serum hepcidin, which inversely correlated with hemoglobin, suggesting that hepcidin contrib...

  15. Disruption of collagen/apatite alignment impairs bone mechanical function in osteoblastic metastasis induced by prostate cancer.

    PubMed

    Sekita, Aiko; Matsugaki, Aira; Nakano, Takayoshi

    2017-04-01

    Prostate cancer (PCa) frequently metastasizes to the bone, generally inducing osteoblastic alterations that increase bone brittleness. Although there is growing interest in the management of the physical capability of patients with bone metastasis, the mechanism underlying the impairment of bone mechanical function remains unclear. The alignment of both collagen fibrils and biological apatite (BAp) c-axis, together with bone mineral density, is one of the strongest contributors to bone mechanical function. In this study, we analyzed the bone microstructure of the mouse femurs with and without PCa cell inoculation. Histological assessment revealed that the bone-forming pattern in the PCa-bearing bone was non-directional, resulting in a spongious structure, whereas that in the control bone was unidirectional and layer-by-layer, resulting in a compact lamellar structure. The degree of preferential alignment of collagen fibrils and BAp, which was evaluated by quantitative polarized microscopy and microbeam X-ray diffraction, respectively, were significantly lower in the PCa-bearing bone than in the control bone. Material parameters including Young's modulus and toughness, measured by the three-point bending test, were simultaneously decreased in the PCa-bearing bone. Specifically, there was a significant positive correlation between the degree of BAp c-axis orientation and Young's modulus. In conclusion, the impairment of mechanical function in the PCa-bearing bone is attributable to disruption of the anisotropic microstructure of bone in multiple phases. This is the first report demonstrating that cancer bone metastasis induces disruption of the collagen/BAp alignment in long bones, thereby impairing their mechanical function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. A promising approach for treatment of tumor-induced bone diseases: utilizing bisphosphonate derivatives of nucleoside antimetabolites.

    PubMed

    Reinholz, Monica M; Zinnen, Shawn P; Dueck, Amylou C; Dingli, David; Reinholz, Gregory G; Jonart, Leslie A; Kitzmann, Kathleen A; Bruzek, Amy K; Negron, Vivian; Abdalla, Abdalla K; Arendt, Bonnie K; Croatt, Anthony J; Sanchez-Perez, Luis; Sebesta, David P; Lönnberg, Harri; Yoneda, Toshiyuki; Nath, Karl A; Jelinek, Diane F; Russell, Stephen J; Ingle, James N; Spelsberg, Thomas C; Dixon, Henry B F Hal; Karpeisky, Alexander; Lingle, Wilma L

    2010-07-01

    Despite palliative treatments, tumor-induced bone disease (TIBD) remains highly debilitating for many cancer patients and progression typically results in death within two years. Therefore, more effective therapies with enhanced anti-resorptive and cytotoxic characteristics are needed. We developed bisphosphonate-chemotherapeutic conjugates designed to bind bone and hydrolyze, releasing both compounds, thereby targeting both osteoclasts and tumor cells. This study examined the effects of our lead compound, MBC-11 (the anhydride formed between arabinocytidine (AraC)-5'-phosphate and etidronate), on bone tumor burden, bone volume, femur bone mineral density (BMD), and overall survival using two distinct mouse models of TIBD, the 4T1/luc breast cancer and the KAS-6/1-MIP1alpha multiple myeloma models. In mice orthotopically inoculated with 4T1/luc mouse mammary cells, MBC-11 (0.04 microg/day; s.c.) reduced the incidence of bone metastases to 40% (4/10), compared to 90% (9/10; p=0.057) and 100% (5/5; p=0.04) of PBS- or similarly-dosed, zoledronate-treated mice, respectively. MBC-11 also significantly decreased bone tumor burden compared to PBS- or zoledronate-treated mice (p=0.021, p=0.017, respectively). MBC-11 and zoledronate (0.04 microg/day) significantly increased bone volume by two- and four-fold, respectively, compared to PBS-treated mice (p=0.005, p<0.001, respectively). In mice systemically injected with human multiple myeloma KAS-6/1-MIP1alpha cells, 0.04 and 4.0 microg/day MBC-11 improved femur BMD by 13% and 16%, respectively, compared to PBS (p=0.025, p=0.017, respectively) at 10 weeks post-tumor cell injection and increased mean survival to 95 days compared to 77 days in mice treated with PBS (p=0.047). Similar doses of zoledronate also improved femur BMD (p< or =0.01 vs PBS) and increased mean survival to 86 days, but this was not significantly different than in PBS-treated mice (p=0.53). These results demonstrate that MBC-11 decreases bone tumor burden, maintains bone structure, and may increase overall survival, warranting further investigation as a treatment for TIBD. 2010 Elsevier Inc. All rights reserved.

  17. Systemic administration of mesenchymal stem cells combined with parathyroid hormone therapy synergistically regenerates multiple rib fractures.

    PubMed

    Cohn Yakubovich, Doron; Sheyn, Dmitriy; Bez, Maxim; Schary, Yeshai; Yalon, Eran; Sirhan, Afeef; Amira, May; Yaya, Alin; De Mel, Sandra; Da, Xiaoyu; Ben-David, Shiran; Tawackoli, Wafa; Ley, Eric J; Gazit, Dan; Gazit, Zulma; Pelled, Gadi

    2017-03-09

    A devastating condition that leads to trauma-related morbidity, multiple rib fractures, remain a serious unmet clinical need. Systemic administration of mesenchymal stem cells (MSCs) has been shown to regenerate various tissues. We hypothesized that parathyroid hormone (PTH) therapy would enhance MSC homing and differentiation, ultimately leading to bone formation that would bridge rib fractures. The combination of human MSCs (hMSCs) and a clinically relevant PTH dose was studied using immunosuppressed rats. Segmental defects were created in animals' fifth and sixth ribs. The rats were divided into four groups: a negative control group, in which animals received vehicle alone; the PTH-only group, in which animals received daily subcutaneous injections of 4 μg/kg teriparatide, a pharmaceutical derivative of PTH; the hMSC-only group, in which each animal received five injections of 2 × 10 6 hMSCs; and the hMSC + PTH group, in which animals received both treatments. Longitudinal in vivo monitoring of bone formation was performed biweekly using micro-computed tomography (μCT), followed by histological analysis. Fluorescently-dyed hMSCs were counted using confocal microscopy imaging of histological samples harvested 8 weeks after surgery. PTH significantly augmented the number of hMSCs that homed to the fracture site. Immunofluorescence of osteogenic markers, osteocalcin and bone sialoprotein, showed that PTH induced cell differentiation in both exogenously administered cells and resident cells. μCT scans revealed a significant increase in bone volume only in the hMSC + PTH group, beginning by the 4 th week after surgery. Eight weeks after surgery, 35% of ribs in the hMSC + PTH group had complete bone bridging, whereas there was complete bridging in only 6.25% of ribs (one rib) in the PTH-only group and in none of the ribs in the other groups. Based on the μCT scans, biomechanical analysis using the micro-finite element method demonstrated that the healed ribs were stiffer than intact ribs in torsion, compression, and bending simulations, as expected when examining bone callus composed of woven bone. Administration of both hMSCs and PTH worked synergistically in rib fracture healing, suggesting this approach may pave the way to treat multiple rib fractures as well as additional fractures in various anatomical sites.

  18. Multiple bone metastases from glioblastoma multiforme without local brain relapse: a case report and review of the literature.

    PubMed

    Takanen, Silvia; Bangrazi, Caterina; Caiazzo, Rossella; Raffetto, Nicola; Tombolini, Vincenzo

    2013-01-01

    Extracranial metastases from glioblastoma multiforme (GBM) are a very rare event, even if an increasing incidence has been documented. We report the case of a young woman with primary GBM who developed bone metastases without local brain relapse. Because of persistent headache and visual disturbances, in March 2011 the patient underwent magnetic resonance imaging (MRI) evidencing a temporoparietal mass, which was surgically resected. Histology revealed GBM. She was given concomitant chemoradiotherapy according to the Stupp regimen. After a 4-week break, the patient received 6 cycles of adjuvant temozolomide according to the standard 5-day schedule every 28 days. In December 2011 she complained of progressive low back pain, and MRI showed multiple bone metastases from primary GBM, confirmed by histology. Cases of metastatic GBM in concurrence with a primary brain tumor or local relapse are more common in the literature; only a few cases have been reported where extracranial metastases from GBM occurred without any relapse in the brain. Here we report our experience.

  19. [A wrong move in an amateur football player reveals a light chain myeloma].

    PubMed

    Peyneau, Marine; Nassiri, Shiva; Myara, Anne; Ohana, Salomon; Laplanche, Sophie

    2016-01-01

    Light chain multiple myeloma is a hematologic malignancy characterized by an excess of tumor plasma cells in the bone marrow and a monoclonal light chain in blood. It is generally diagnosed in patients aged 60-75 years old. Hypercalcemia, anemia, kidney failure, and bone pains are the main clinical and biological signs. Here is an atypical case report about a 30 year-old man who was diagnosed a light chain multiple myeloma. This patient had been suffering from back pain for 5 months. Osteolytic lesions were discovered on X-rays prescribed by the family practitioner. Admitted to the Emergency department, all blood tests showed results within the normal range. The serum protein electrophoresis was also normal. Only the urine analysis showed proteinuria. The urine immunofixation electrophoresis showed a massive κ light chain. The bone marrow aspiration cell count confirmed the myeloma diagnosis with an infiltration of dystrophic plasma cells. The patient was transferred to the hematology ward of Necker Hospital for treatment of light chain myeloma.

  20. MicroRNA Transfer between Bone Marrow Adipose and Multiple Myeloma Cells

    PubMed Central

    Soley, Luna; Falank, Carolyne; Reagan, Michaela R.

    2017-01-01

    Purpose of Review Multiple myeloma remains an incurable disease, largely due to the tumor-supportive role of the bone marrow microenvironment. Bone marrow adipose tissue (BMAT) is one component of the fertile microenvironment which is believed to contribute to myeloma progression and drug resistance, as well as participate in a vicious cycle of osteolysis and tumor growth. Recent Findings MicroRNAs (miRNAs) have recently emerged as instrumental regulators of cellular processes that enable the development and dissemination of cancer. This review highlights the intersection between two emerging research fields and pursues the scientific and clinical implications of miRNA transfer between BMAT and myeloma cells. Summary This review provides a concise and provocative summary of the evidence to support exosome-mediated transfer of tumor-supportive miRNAs. The work may prompt researchers to better elucidate the mechanisms by which this novel means of genetic communication between tumor cells and their environment could someday yield targeted therapeutics. PMID:28432594

  1. Multiple myeloma: Diagnosis and management issues in patients with pre-existing chronic kidney disease.

    PubMed

    Vadlamudi, Srilatha; Annapareddy, Siva Nagendra Reddy

    2016-01-01

    Multiple myeloma is one of the most common malignancies encountered in clinical practice. Renal involvement in myeloma is a well-recognized entity. Although rare, another special situation that a nephrologist can encounter is myeloma occurring in a patient with preexisting chronic kidney disease (CKD) due to other etiologies. Anemia, bone pains and hypercalcemia, which commonly indicate the diagnosis of myeloma in the general population, are not useful in the presence of CKD. The sensitivity and specificity of serum free light chain assay is decreased in the presence of renal failure. Chemotherapy-related adverse effects are high compared with that in patients without CKD; this is attributed to the decreased clearance of drugs and the additive effect of chemotherapy-related adverse effects to the complications of CKD. Autologous and allogenic bone marrow transplantation can be attempted in this group of patients with non-myeloablative-conditioning regimens. Combined bone marrow and renal transplantation remains a viable option in this group of patients to increase life expectancy and quality of life.

  2. Alveolar Bone Morphology Following Periodontally Accelerated Osteogenic Orthodontics: A Clinical and Radiographic Analysis.

    PubMed

    Chackartchi, Tali; Barkana, Idit; Klinger, Avigdor

    The aim of this study was to analyze alveolar bone morphology following periodontally accelerated osteogenic orthodontics. Treated patients were called for a full periodontal examination and a cone beam computed tomography scan. Mean treatment time was 6.08 months. Mean probing pocket depth was 2.7 mm. No gingival recessions were noted. In the maxilla, buccal plate thickness was 0.48 to 2.14 mm. In the mandible, bone thickness was 0.2 to 1.82 mm. Root fenestrations and dehiscences were present in up to 40% of the anterior teeth. Although clinical outcomes were favorable, due to the presence of multiple posttreatment bone fenestrations and dehiscences, a revision of the treatment protocol might be considered.

  3. Low Bone Mineral Density Risk Factors and Testing Patterns in Institutionalized Adults with Intellectual and Developmental Disabilities

    ERIC Educational Resources Information Center

    Hess, Mailee; Campagna, Elizabeth J.; Jensen, Kristin M.

    2018-01-01

    Background: Adults with intellectual or developmental disability (ID/DD) have multiple risks for low bone mineral density (BMD) without formal guidelines to guide testing. We sought to identify risk factors and patterns of BMD testing among institutionalized adults with ID/DD. Methods: We evaluated risk factors for low BMD (Z-/T-score < -1) and…

  4. Development of a Finite Element Model of the Human Shoulder to Investigate the Mechanical Responses and Injuries in Side Impact

    NASA Astrophysics Data System (ADS)

    Iwamoto, Masami; Miki, Kazuo; Yang, King H.

    Previous studies in both fields of automotive safety and orthopedic surgery have hypothesized that immobilization of the shoulder caused by the shoulder injury could be related to multiple rib fractures, which are frequently life threatening. Therefore, for more effective occupant protection, it is important to understand the relationship between shoulder injury and multiple rib fractures in side impact. The purpose of this study is to develop a finite element model of the human shoulder in order to understand this relationship. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder. The model also included approaches to represent bone fractures and joint dislocations. The relationships between shoulder injury and immobilization of the shoulder are discussed using model responses for lateral shoulder impact. It is also discussed how the injury can be related to multiple rib fractures.

  5. Three-Dimensional Geometric Analysis of Felid Limb Bone Allometry

    PubMed Central

    Doube, Michael; Conroy, Alexis Wiktorowicz; Christiansen, Per; Hutchinson, John R.; Shefelbine, Sandra

    2009-01-01

    Background Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats) to investigate regional complexities in bone allometry. Method/Principal Findings Computed tomographic (CT) images (16435 slices in 116 stacks) were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus) to tiger (Panthera tigris). Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft. Conclusions/Significance Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals. PMID:19270749

  6. Follow-up of bone lesions in an experimental multiple myeloma mouse model: description of an in vivo technique using radiography dedicated for mammography.

    PubMed Central

    Vanderkerken, K.; Goes, E.; De Raeve, H.; Radl, J.; Van Camp, B.

    1996-01-01

    The evolution of bone lesions in transplantable C57BL/KaLwRjj 5T mouse myeloma (MM) has been followed in vivo. Mice were anaesthetised and a radiograph of the pelvis and hind legs was performed by a radiograph dedicated for mammography. This is the first description of an in vivo technique under experimental conditions whereby the development of bone lesions owing to the MM growth was demonstrated. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:8664113

  7. Solitary plasmacytoma of the mandible: A rare case report

    PubMed Central

    Sharma, Naresh Kumar; Singh, Akhilesh Kumar; Pandey, Arun; Verma, Vishal

    2015-01-01

    Plasmacytoma is a monoclonal, neoplastic proliferation of plasma cells that usually arises within bone marrow or soft tissue sites. It can involve either a single bone (solitary) or multiple bones. Solitary plasmacytoma has a predisposition for the red marrow-containing axial skeleton and is most frequently seen in the thoracic vertebrae, followed by the ribs, sternum, clavicle, or scapula. Its presence in the jaws is extremely rare. We present a case of a 54-year-old female with a well-defined radiolucency of the body region of the mandible later diagnosed as solitary plasmacytoma. PMID:26668458

  8. Identification of predisposing factors for osteonecrosis of the jaw after marginal mandibulectomy in the surgical management of oral squamous cell carcinoma.

    PubMed

    Ito, Ran; Huang, Jung-Ju; Hsieh, Wei-Chuan; Kao, Huang-Kai; Lao, William Wei-Kai; Fang, Ku-Hao; Huang, Yenlin; Chang, Yu-Liang; Cheng, Ming-Huei; Chang, Kai-Ping

    2018-03-01

    The aim of this study is to evaluate osteonecrosis of the jaw (ONJ) with the extent of marginal mandibulectomy. Between January 2006 and December 2012, 3087 patients undergoing ablative resection were consecutively enrolled. Among them, 345 cases undergoing marginal mandibulectomy were retrospectively reviewed. The occurrence of ONJ was 5.51% and associated with body mass index, overall stage, diabetes, concomitant mandibulotomy, and radiotherapy (P = 0.023, 0.033, 0.009, 0.016, and 0.006, respectively). As for bone parameters based on radiological measurements after marginal mandibulectomy, resected bone height, remaining bone height to original bone height ratio, and resected bone height to original bone height ratio were associated with ONJ. In multivariate logistic analyses, concomitant mandibulotomy, radiotherapy, diabetes, resected bone height of >14.5 mm, resected bone height to original bone height ratio of >49.5%, and remaining bone height to original bone height ratio of <53.5% indicated higher risks for ONJ (adjusted HR: 4.345, 4.152, 4.079, 3.402, 3.541, and 3.211; P = 0.018, 0.013, 0.009, 0.021, 0.018, and 0.043, respectively). This study demonstrated the predisposing factors and parameters associated with ONJ with marginal mandibulectomy; more caution is necessitated in performing marginal mandibulectomy in patients with multiple risks to prevent ONJ. © 2017 Wiley Periodicals, Inc.

  9. Milk thistle: a future potential anti-osteoporotic and fracture healing agent.

    PubMed

    Mohd Fozi, Nur Farhana; Mazlan, Mazliadiyana; Shuid, Ahmad Nazrun; Isa Naina, Mohamed

    2013-12-01

    Osteoporosis is a progressive disease of the skeleton characterised by bone fragility due to a reduction in bone mass and possibly to alteration in bone architecture that lead to a propensity to fracture with minimum trauma. Most osteoporotic fractures occur at locations rich in trabecular or cancellous bone and usually related to post menopausal women. Recently, silymarin received attention due to its alternative beneficial effect on bone formation. It is a mixture of flavonoids with powerful antioxidant properties. This review focuses on the use of milk thistle or silymarin for the treatment of osteoporosis that may be related to fracture bone. Silymarin shows potent antioxidant herb that may modulate multiple genes in favour of helping to build bone and prevent bone loss. In the mouse fracture healing model, silymarin supplementation improved tibial healing with elevated BMD and serum levels of ALP and osteocalcin. Silymarin also demonstrated clear estrogenic antiosteoporotic effects in bone structure. Silymarin appears to play a crucial role to prevent bone loss and might regulate osteogenesis and may be beneficial for fracture healing. If silymarin is considered for the use of post menopausal women, it may be used for the treatment of osteoporosis. It would be of great benefit to postmenopausal women to develop an oestrogen antagonist that is as potent and efficacious as oestrogen in preventing bone loss without the major side effect associated with HRT.

  10. Effects of controlled whole-body vibration training in improving fall risk factors among individuals with multiple sclerosis: A pilot study.

    PubMed

    Yang, Feng; Finlayson, Marcia; Bethoux, Francois; Su, Xiaogang; Dillon, Loretta; Maldonado, Hector M

    2018-03-01

    The purpose of this study was to systematically examine the effect of an 8-week controlled whole-body vibration training on improving fall risk factors and the bone mineral density among people with multiple sclerosis (PwMS). This study adopted a single group pre-test-post-test design. Twenty-five PwMS (50.3 years SD 14.1) received vibration training on a side-alternating vibration platform. Each training session was repeated three times every week for 8 weeks. Prior to and following the 8-week training course, a battery of fall risk factors were evaluated: the body balance, functional mobility, muscle strength, range of motion, and fear of falling. Bone density at both calcanei was also assessed. Twenty-two participants completed the study. Compared with pre-test, almost all fall risk factors and the bone density measurement were significantly improved at post-test, with moderate to large effect sizes varying between 0.571 and 1.007. The 8-week vibration training was well accepted by PwMS and improved their fall risk factors. The important findings of this study were that vibration training may increase the range of motion of ankle joints on the sagittal plane, lower the fear of falling, and improve bone density. IMPLICATIONS FOR REHABILITATION An 8-week vibration training course could be well-accepted by people with multiple sclerosis (MS). Vibration training improves the risk factors of falls in people living with MS. Vibration training could be a promising rehabilitation intervention in individuals with MS.

  11. Pseudofracture: an acute peripheral tissue trauma model.

    PubMed

    Darwiche, Sophie S; Kobbe, Philipp; Pfeifer, Roman; Kohut, Lauryn; Pape, Hans-Christoph; Billiar, Timothy

    2011-04-18

    Following trauma there is an early hyper-reactive inflammatory response that can lead to multiple organ dysfunction and high mortality in trauma patients; this response is often accompanied by a delayed immunosuppression that adds the clinical complications of infection and can also increase mortality. Many studies have begun to assess these changes in the reactivity of the immune system following trauma. Immunologic studies are greatly supported through the wide variety of transgenic and knockout mice available for in vivo modeling; these strains aid in detailed investigations to assess the molecular pathways involved in the immunologic responses. The challenge in experimental murine trauma modeling is long term investigation, as fracture fixation techniques in mice, can be complex and not easily reproducible. This pseudofracture model, an easily reproduced trauma model, overcomes these difficulties by immunologically mimicking an extremity fracture environment, while allowing freedom of movement in the animals and long term survival without the continual, prolonged use of anaesthesia. The intent is to recreate the features of long bone fracture; injured muscle and soft tissue are exposed to damaged bone and bone marrow without breaking the native bone. The pseudofracture model consists of two parts: a bilateral muscle crush injury to the hindlimbs, followed by injection of a bone solution into these injured muscles. The bone solution is prepared by harvesting the long bones from both hindlimbs of an age- and weight-matched syngeneic donor. These bones are then crushed and resuspended in phosphate buffered saline to create the bone solution. Bilateral femur fracture is a commonly used and well-established model of extremity trauma, and was the comparative model during the development of the pseudofracture model. Among the variety of available fracture models, we chose to use a closed method of fracture with soft tissue injury as our comparison to the pseudofracture, as we wanted a sterile yet proportionally severe peripheral tissue trauma model. Hemorrhagic shock is a common finding in the setting of severe trauma, and the global hypoperfusion adds a very relevant element to a trauma model. The pseudofracture model can be easily combined with a hemorrhagic shock model for a multiple trauma model of high severity.

  12. Improved Follow-Up and Response Monitoring of Thoracic Cage Involvement in Multiple Myeloma Using a Novel CT Postprocessing Software: The Lessons We Learned.

    PubMed

    Bier, Georg; Mustafa, Deedar Farhad; Kloth, Christopher; Weisel, Katja; Ditt, Hendrik; Nikolaou, Konstantin; Horger, Marius

    2016-01-01

    The purpose of this study is to evaluate the benefit of using novel CT postprocessing software that generates unfolded rib images for more-accurate evaluation of multiple myeloma (MM) at follow-up, response monitoring, and visualization of treatment-related bone changes. Between January 2012 and February 2015, 40 consecutive patients with MM underwent repeated whole-body reduced-dose CT at our institution. The results were retrospectively evaluated and compared with established hematologic markers. Unfolded rib reformatted images were compared with 5- and 1-mm-thick slices with regard to bone changes, bone marrow attenuation, and bone sclerosis. Hematologic response categories at follow-up were complete response (CR; n = 2), very good partial response (VGPR; n = 1), partial response (PR; n = 9), stable disease (n = 9), and progressive disease (PD; n = 19). The number of lesions increased in 11 patients (all with PD), decreased in two patients (both with CR), and stayed unchanged in 27 patients. The size of the lesions increased in 14 patients (all with PD), decreased in five patients (two with CR, two with PR, and one with stable disease), and remained unchanged in 21 patients. There was a mean (± SD) difference of 27.99 ± 19.71 HU in bone marrow attenuation for patients with PD (p < 0.0001) and -31.24 ± 13.57 HU in the responders group (p = 0.002), whereas patients with stable disease showed stable bone marrow attenuation at follow-up (mean, -3.37 ± 10.55 HU). Increased bone sclerosis was detected in 12 patients (all of whom were receiving therapy). The sensitivity and specificity of unfolded rib images, 5-mm slices, and 1-mm slices were, respectively, 78.9% and 100%, 52.6% and 100%, and 63.2% and 100% for accurate bone response assessment; 100% and 95.2%, 94.74% and 42.9%, and 89.47% and 47.62% for bone marrow attenuation; and 100% and 100%, 58.3% and 100%, and 91.67% and 100% for sclerosis. For therapy response assessment, unfolded rib reading is more accurate than transverse CT slices.

  13. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  14. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers.

    PubMed

    Kruger, Thomas E; Miller, Andrew H; Godwin, Andrew K; Wang, Jinxi

    2014-02-01

    The mechanisms underlying malignant cell metastasis to secondary sites such as bone are complex and no doubt multifactorial. Members of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs) family, particularly bone sialoprotein (BSP) and osteopontin (OPN), exhibit multiple activities known to promote malignant cell proliferation, detachment, invasion, and metastasis of several osteotropic cancers. The expression level of BSP and OPN is elevated in a variety of human cancers, particularly those that metastasize preferentially to the skeleton. Recent studies suggest that the "osteomimicry" of malignant cells is not only conferred by transmembrane receptors bound by BSP and OPN, but includes the "switch" in gene expression repertoire typically expressed in cells of skeletal lineage. Understanding the role of BSP and OPN in tumor progression, altered pathophysiology of bone microenvironment, and tumor metastasis to bone will likely result in development of better diagnostic approaches and therapeutic regimens for osteotropic malignant diseases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Osteoimmunology: the study of the relationship between the immune system and bone tissue.

    PubMed

    Arboleya, Luis; Castañeda, Santos

    2013-01-01

    Bone tissue is a highly regulated structure, which plays an essential role in various physiological functions. Through autocrine and paracrine mechanisms, bone tissue is involved in hematopoiesis, influencing the fate of hematopoietic stem cells. There are a number of molecules shared by bone cells and immune system cells indicating that there are multiple connections between the immune system and bone tissue. In order to pool all the knowledge concerning both systems, a new discipline known under the term «osteoimmunology» has been developed. Their progress in recent years has been exponential and allowed us to connect and increase our knowledge in areas not seemingly related such as rheumatoid erosion, postmenopausal osteoporosis, bone metastases or periodontal disease. In this review, we have tried to summarize the most important advances that have occurred in the last decade, especially in those areas of interest related to rheumatology. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  16. [Tumor-like bone lesions of the forearm after karate training].

    PubMed

    Steckel, H; Oldenburg, M; Klinger, H M; Schultz, W

    2005-03-01

    Differentiation between malignant bone tumors and tumor-like lesions after repetitive microtrauma following sport activities can be difficult just using radiographic methods. We present the case of a fifteen year old karate fighter, who was examined by imaging diagnostics because of a progressive swelling and pain in the distal right forearm. A tumor-like appearance with bone mass formation in the x-ray, an enhancement in the surrounding tissue shown in the MRI and an increased activity in the bone scintigraphy made the diagnosis of an osteosarcoma very likely. Blood tests were not helpful. Only the evaluation of a bone biopsy could demonstrate hypertrophic reparative bone formation after multiple osseous microtrauma. Cast immobilisation reduced the osseous alteration. With the start of the training the swelling reappeared again but then finally vanished after modifying the training technique. The case demonstrates that even modern imaging techniques cannot always distinguish between tumor and tumor-like lesions caused by sports. It also stresses the importance of a correct technique in sports like karate.

  17. Multiple congenital brachymetatarsia. A one-stage combined shortening and lengthening procedure without iliac bone graft.

    PubMed

    Kim, J S; Baek, G H; Chung, M S; Yoon, P W

    2004-09-01

    We performed nine metatarsal and three proximal phalangeal lengthenings in five patients with congenital brachymetatarsia of the first and one or two other metatarsal bones, by a one-stage combined shortening and lengthening procedure using intercalcary autogenous bone grafts from adjacent shortened metatarsal bones. Instead of the isolated lengthening of the first and the other metatarsal bones, we shortened the adjacent normal metatarsal and used the excised bone to lengthen the short toes, except for the great toe, to restore the normal parabola. One skin incision was used. All the operations were performed bilaterally and the patients were followed up for a mean period of 69.5 months (29 to 107). They all regained a nearly normal parabola and were satisfied with the cosmetic results. Our technique is straightforward and produces good cosmetic results. Satisfactory, bony union is achieved, morbidity is low, and no additional surgery is required for the removal of metal implants.

  18. Major depressive disorder is a risk factor for low bone mass, central obesity, and other medical conditions

    PubMed Central

    Cizza, Giovanni

    2011-01-01

    Major depressive disorder (MDD) is one of the most common psychiatric illnesses in the adult population. It is often associated with an increased risk of cardiovascular disease. Osteoporosis is also a major public health threat. Multiple studies have reported an association between depression and low bone mineral density, but a causal link between these two conditions is disputed. Here the most important findings of the POWER (Premenopausal, Osteoporosis Women, Alendronate, Depression) Study, a large prospective study of bone turnover in premenopausal women with major depression, are summarized. The endocrine and immune alterations secondary to depression that might affect bone mass, and the possible role of poor lifestyle in the etiology of osteoporosis in subjects with depression, are also reviewed, as is the potential effect of antidepressants on bone loss. It is proposed that depression induces bone loss and osteoporotic fractures, primarily via specific immune and endocrine mechanisms, with poor lifestyle habits as potential contributory factors. PMID:21485748

  19. Three different methods for treating multiple enchondromatosis in one hand.

    PubMed

    Lu, Hui; Chen, Qiang; Shen, Hui; Shen, Xiang-Qian; Wu, Shou-Cheng; Lin, Xiang-Jin

    2015-01-01

    Ollier's disease remains comparatively rare, and is a non-hereditary cartilage dysplasia of bone. It is usually associated with problems such as deformity and fracture. Three different methods were used in a one-hand of 15-year-old boy reporting his pain in the left hand and swellings. After the curettage of tumor, regarding as the differences of all parts of the bone structure reconstruction in the patient's hand, we chose three following methods for this boy, i.e. fixed by the locking plate with calcium phosphate cement, filled with allograft bone, curetted the tumor without any bone graft. After the surgery, the patient was able to perform full motion of the operated hand. No evidence of recurrence was noted four years after surgery. To choose the different ways with bone grafts or not that relies on the patients' conditions for bone structure reconstruction. However, patients with large osseous defects or pathological fracture, we demand full bone graft and reliable internal fixation. After surgery, early exercises can reach a desirable result and functional recovery.

  20. Bone density changes in premature ovarian insufficiency patients who have had term pregnancies.

    PubMed

    Velasco, Mariana; Holloway, Debra; Rymer, Janice

    2014-12-01

    Premature ovarian insufficiency affects 1% of women under the age of 40 and is associated with a hypoestrogenic state, potentially leading to multiple comorbidities including reduced bone density and fertility. An unpredictable ovarian function is observed in 50% of patients with 5-10% being able to achieve a pregnancy. Longitudinal studies have shown a temporary decline in bone mineral density of up to 5% during pregnancy and lactation in healthy women, with the loss of bone density post-partum being proportional to the period of breastfeeding. Effects of pregnancy in women with premature ovarian insufficiency have not been widely documented. Nevertheless, a lower bone mineral density baseline has been observed pre-conceptually, associated with both the hypoestrogenic state of the condition and the possibility that premature ovarian insufficiency was developed prior to achieving peak bone mass. This may suggest that breastfeeding could cause further deterioration in bone mineral density that may not be easy to recover from due to the reduced baseline levels. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Impact of endocrine hyperfunction and phosphate wasting on bone in McCune-Albright syndrome.

    PubMed

    Lala, R; Matarazzo, P; Andreo, M; Defilippi, C; de Sanctis, C

    2002-01-01

    Skin dysplasia, as café-au-lait spots, bone fibrous dysplasia and peripheral endocrinopathies are the main clinical features of McCune-Albright syndrome (MAS). This illness is due to activating mutations of the Gsalpha protein and is spread with a mosaic pattern in affected tissues that consist of intermixed areas of normal and mutated cells. Peripheral endocrine secretion, free of hypothalamic pituitary control, is the hallmark of the endocrine syndromes: precocious puberty, Cushing's syndrome, hyperthyroidism and gigantism/acromegaly. In addition, phosphate wasting as hyperphosphaturia is often present. The impact of hormonal hypersecretion and phosphate loss on the bones of patients with MAS is poorly understood both in normal and fibrous bone tissue. As hypercortisolism and hyperthyroidism increase bone resorption, hyperestrogenism and growth hormone hypersecretion stimulate bone growth and mineralization, and phosphate wasting reduces bone mineral content. All these actions can be exerted at varying times and degrees in a single patient on lesional and non-lesional bones. Sonographic evidence of multiple diffused hyperechogenic spots in the testes of patients with MAS do not seem to be related to alterations in calcium-phosphate metabolism but rather to zonal dysplasia/hyperplasia of testicular tissue.

  2. Pulmonary Embolization of Fat and Bone Marrow in Cynomolgus Macaques (Macaca fascicularis)

    PubMed Central

    Fong, Derek L.; Murnane, Robert D.; Hotchkiss, Charlotte E.; Green, Damian J.; Hukkanen, Renee R.

    2011-01-01

    Fat embolization (FE), the introduction of bone marrow elements into circulation, is a known complication of bone fractures. Although FE has been described in other animal models, this study represents the first reported cases of FE and bone marrow embolism in nonhuman primates. Histopathologic findings from cynomolgus macaques (Macaca fascicularis) indicated that in all 5 cases, fat and bone marrow embolization occurred subsequent to multiple bone marrow biopsies. In the most severe case, extensive embolization was associated pulmonary damage consistent with acute respiratory distress syndrome. Fat embolism syndrome (FES) is an infrequent clinical outcome of FE and is triggered by systemic biochemical and mechanical responses to fat in circulation. Although clinical criteria diagnostic of FES were not investigated at the time of death, this severe case may represent the fulminant form of FES, which occurs within 12 h after trauma. Bone marrow biopsy as an etiology of FES has been reported only once in humans. In addition, the association of embolization with bone marrow biopsies suggests that nonhuman primates may be a useful animal model of FE. FE and FES represent important research confounders and FES should be considered as a differential diagnosis for clinical complications subsequent to skeletal trauma. PMID:21819686

  3. Pulmonary embolization of fat and bone marrow in cynomolgus Macaques (Macaca fascicularis).

    PubMed

    Fong, Derek L; Murnane, Robert D; Hotchkiss, Charlotte E; Green, Damian J; Hukkanen, Renee R

    2011-02-01

    Fat embolization (FE), the introduction of bone marrow elements into circulation, is a known complication of bone fractures. Although FE has been described in other animal models, this study represents the first reported cases of FE and bone marrow embolism in nonhuman primates. Histopathologic findings from cynomolgus macaques (Macaca fascicularis) indicated that in all 5 cases, fat and bone marrow embolization occurred subsequent to multiple bone marrow biopsies. In the most severe case, extensive embolization was associated pulmonary damage consistent with acute respiratory distress syndrome. Fat embolism syndrome (FES) is an infrequent clinical outcome of FE and is triggered by systemic biochemical and mechanical responses to fat in circulation. Although clinical criteria diagnostic of FES were not investigated at the time of death, this severe case may represent the fulminant form of FES, which occurs within 12 h after trauma. Bone marrow biopsy as an etiology of FES has been reported only once in humans. In addition, the association of embolization with bone marrow biopsies suggests that nonhuman primates may be a useful animal model of FE. FE and FES represent important research confounders and FES should be considered as a differential diagnosis for clinical complications subsequent to skeletal trauma.

  4. Fabrication of Trabecular Bone-Templated Tissue-Engineered Constructs by 3D Inkjet Printing.

    PubMed

    Vanderburgh, Joseph P; Fernando, Shanik J; Merkel, Alyssa R; Sterling, Julie A; Guelcher, Scott A

    2017-11-01

    3D printing enables the creation of scaffolds with precisely controlled morphometric properties for multiple tissue types, including musculoskeletal tissues such as cartilage and bone. Computed tomography (CT) imaging has been combined with 3D printing to fabricate anatomically scaled patient-specific scaffolds for bone regeneration. However, anatomically scaled scaffolds typically lack sufficient resolution to recapitulate the <100 micrometer-scale trabecular architecture essential for investigating the cellular response to the morphometric properties of bone. In this study, it is hypothesized that the architecture of trabecular bone regulates osteoblast differentiation and mineralization. To test this hypothesis, human bone-templated 3D constructs are fabricated via a new micro-CT/3D inkjet printing process. It is shown that this process reproducibly fabricates bone-templated constructs that recapitulate the anatomic site-specific morphometric properties of trabecular bone. A significant correlation is observed between the structure model index (a morphometric parameter related to surface curvature) and the degree of mineralization of human mesenchymal stem cells, with more concave surfaces promoting more extensive osteoblast differentiation and mineralization compared to predominately convex surfaces. These findings highlight the significant effects of trabecular architecture on osteoblast function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Applicability of cranial models in urethane resin and foam as a substitute for bone: are synthetic materials reliable?

    PubMed

    Muccino, Enrico; Porta, Davide; Magli, Francesca; Cigada, Alfredo; Sala, Remo; Gibelli, Daniele; Cattaneo, Cristina

    2013-09-01

    As literature is poor in functional synthetic cranial models, in this study, synthetic handmade models of cranial vaults were produced in two different materials (a urethane resin and a self-hardening foam), from multiple bone specimens (eight original cranial vaults: four human and four swine), in order to test their resemblance to bone structure in behavior, during fracture formation. All the vaults were mechanically tested with a 2-kg impact weight and filmed with a high-speed camera. Fracture patterns were homogeneous in all swine vaults and heterogeneous in human vaults, with resin fractures more similar to bone fractures. Mean fracture latency time extrapolated by videos were of 0.75 msec (bone), 1.5 msec (resin), 5.12 msec (foam) for human vaults and of 0.625 msec (bone), 1.87 msec (resin), 3.75 msec (foam) for swine vaults. These data showed that resin models are more similar to bone than foam reproductions, but that synthetic material may behave quite differently from bone as concerns fracture latency times. © 2013 American Academy of Forensic Sciences.

  6. Established role of bisphosphonate therapy for prevention of skeletal complications from myeloma bone disease.

    PubMed

    Terpos, Evangelos; Dimopoulos, Meletios A; Berenson, James

    2011-02-01

    Patients with advanced multiple myeloma (MM) often have increased osteolytic activity of osteoclasts and impaired osteogenesis by osteoblasts, resulting in osteolytic bone lesions that increase the risk of skeletal-related events (SREs) including pathologic fracture, the need for radiotherapy or surgery to bone, and spinal cord compression. Such SREs are potentially life-limiting, and can reduce patients' functional independence and quality of life. Bisphosphonates (e.g., oral clodronate and intravenous pamidronate and zoledronic acid) can inhibit osteoclast-mediated osteolysis, thereby reducing the risk of SREs, ameliorating bone pain, and potentially prolonging survival in patients with MM. Extensive clinical experience demonstrates that bisphosphonates are generally well tolerated, and common adverse events are typically mild and manageable. Studies are ongoing to optimize the timing and duration of bisphosphonate therapy in patients with bone lesions from MM. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Osteoporosis and Periodontitis.

    PubMed

    Wang, Chin-Wei Jeff; McCauley, Laurie K

    2016-12-01

    Osteoporosis and periodontitis are both diseases characterized by bone resorption. Osteoporosis features systemic degenerative bone loss that leads to loss of skeletal cancellous microstructure and subsequent fracture, whereas periodontitis involves local inflammatory bone loss, following an infectious breach of the alveolar cortical bone, and it may result in tooth loss. Most cross-sectional studies have confirmed the association of osteoporosis and periodontitis primarily on radiographic measurements and to a lesser degree on clinical parameters. Multiple shared risk factors include age, genetics, hormonal change, smoking, as well as calcium and vitamin D deficiency. Both diseases could also be risk factors for each other and have a mutual impact that requires concomitant management. Suggested mechanisms underlying the linkage are disruption of the homeostasis concerning bone remodeling, hormonal balance, and inflammation resolution. A mutual interventional approach is emerging with complex treatment interactions. Prevention and management of both diseases require interdisciplinary approaches and warrants future well-controlled longitudinal and interventional studies for evidence-based clinical guidelines.

  8. The use of autologous blood-derived growth factors in bone regeneration

    PubMed Central

    Civinini, Roberto; Macera, Armando; Nistri, Lorenzo; Redl, Birgit; Innocenti, Massimo

    2011-01-01

    Platelet-rich plasma (PRP) is defined as a portion of the plasma fraction of autologous blood having platelet concentrations above baseline. When activated the platelets release growth factors that play an essential role in bone healing such as Platelet-derived Growth Factor, Transforming Growth Factor-β, Vascular Endothelial Growth Factor and others. Multiple basic science and in vivo animal studies agree that PRP has a role in the stimulation of the healing cascade in ligament, tendon, muscle cartilage and in bone regeneration in the last years PRP had a widespread diffusion in the treatment of soft tissue and bone healing. The purpose of this review is to describe the biological properties of platelets and its factors, the methods used for producing PRP, to provide a background on the underlying basic science and an overview of evidence based medicine on clinical application of PRP in bone healing. PMID:22461800

  9. [Multiple long bone fractures in a child with pycnodysostosis. A case report].

    PubMed

    Rojas, Paula I; Niklitschek, Nathia E; Sepúlveda, Matías F

    2016-06-01

    Fractures are an important entity to consider in pediatric patients. There are certain diseases in which bones fracture with a minimal trauma. Pycnodysostosis is an autosomal recessive unusual type of cráneo metaphyseal dysplasia, that presents frequently as fracture in a pathological bone. A 9 year old caucasian female, diagnosed with pycnodysostosis, was admitted with a right femur fracture as a result of a low energy trauma. Radiographic studies showed bilateral femur fractures, proximal fracture and non-union in antecurvatum of the left tibia. Pycnodysostosis is a rare disease, generally diagnosed at an early age by growth restriction, frequent fractures or fractures with low energy trauma. Therapy alternatives are limited, and no permanent cure has been developed. If a patient has dysmorphic facial features and fractures in a pathological bone, it is important to suspect bone dysplasia, such as pycnodysostosis and its differential diagnoses. Sociedad Argentina de Pediatría.

  10. Effects of Anorexia Nervosa on the Endocrine System.

    PubMed

    Baskaran, Charumathi; Misra, Madhusmita; Klibanski, Anne

    2017-03-01

    Anorexia nervosa (AN) is characterized by severe undernutrition associated with alterations in multiple endocrine axes, which are primarily adaptive to the state of caloric deprivation. Hormonal changes include growth hormone (GH) resistance with low insulin like growth factor-1 (IGF-1) levels, hypothalamic hypogonadism, relative hypercortisolemia and changes in appetite regulating hormones, including leptin, ghrelin, and peptide YY. These alterations contribute to abnormalities in bone metabolism leading to low bone mass, impaired bone microarchitecture, and increased risk for fracture, and may also negatively impact cognition, emotions and mood. The best strategy to improve all biologic outcomes is weight and menstrual recovery. Physiological estrogen replacement improves bone accrual rates and measures of trait anxiety in adolescents with AN. Other therapies including testosterone and IGF-1 replacement, and use of DHEA with oral estrogen-progesterone combination pills, bisphosphonates and teriparatide have also been studied to improve bone outcomes. Copyright© of YS Medical Media ltd.

  11. [Fat embolism syndrome after bone fractures].

    PubMed

    Campo-López, C; Flors-Villaverde, P; Calabuig-Alborch, J R

    2012-11-01

    To review the incidence, clinical features, diagnosis, therapy and mortality rates of fat embolism syndrome (FES) in a tertiary referral hospital in the last decade. Retrospective and descriptive study of patients diagnosed with post-traumatic FES between january 2001 and december 2011. A total of 19 patients, 16 men and 3 women, with an average age of 27 years were evaluated. All had long bone fractures, multiple in 78.9%, as a result of multiple injuries. Respiratory symptoms were the most frequent (89.5%), followed by neurological symptoms (68.4%) and petechial rash (63.2%). The average time of presentation of the syndrome after admission was 42 hours. All patients underwent early stabilisation of the fracture prior to the embolic event. Steroids prophylaxis was not used in any of the cases. Definitive surgical treatment had mean delay of 7 days. The mean hospital stay was 34 days. The overall incidence of FES was 0.14%, and mortality was 10.5%. Post-traumatic FES mainly affected young patients with multiple injuries and long bone fractures. They all had symptoms of the classic clinical triad (respiratory, neurological, rash) after an initial asymptomatic period of less than 2 days. The overall incidence was low. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  12. Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery

    PubMed Central

    Santo, Vítor E.; Mano, João F.; Reis, Rui L.

    2013-01-01

    The development of controlled release systems for the regeneration of bone, cartilage, and osteochondral interface is one of the hot topics in the field of tissue engineering and regenerative medicine. However, the majority of the developed systems consider only the release of a single growth factor, which is a limiting step for the success of the therapy. More recent studies have been focused on the design and tailoring of appropriate combinations of bioactive factors to match the desired goals regarding tissue regeneration. In fact, considering the complexity of extracellular matrix and the diversity of growth factors and cytokines involved in each biological response, it is expected that an appropriate combination of bioactive factors could lead to more successful outcomes in tissue regeneration. In this review, the evolution on the development of dual and multiple bioactive factor release systems for bone, cartilage, and osteochondral interface is overviewed, specifically the relevance of parameters such as dosage and spatiotemporal distribution of bioactive factors. A comprehensive collection of studies focused on the delivery of bioactive factors is also presented while highlighting the increasing impact of platelet-rich plasma as an autologous source of multiple growth factors. PMID:23249320

  13. Integrated approach to pain management for a patient with multiple bone metastases of uterine cervical cancer.

    PubMed

    Qin, De-An; Song, Jie-Fu; Song, Li-Ping; Feng, Gui-Sheng

    2018-05-01

    Background Pain management for multiple bone metastases is complex and often requires multidisciplinary treatment. We herein describe patient-centered multidisciplinary pain management for metastatic cancer. A 61-year-old woman with multiple bone metastases of uterine cervical cancer developed intractable low back pain. After external beam radiotherapy failed, we performed lumbar spinal intralesional curettage, pedicle screw fixation, and nerve decompression. However, the neuralgia persisted. We then percutaneously injected epirubicin into the intervertebral foramina under computed tomography guidance for L5 dorsal root ganglion destruction. Osteoplasty was performed under C-arm X-ray guidance; however, the sacrum was mistaken for the ilium, and treatment was ineffective. We administered zoledronic acid and strontium-89. The last resort was outpatient implantation of an epidural bupivacaine-morphine infusion system. A visual analog scale (VAS) was used for pain evaluation. Lumbar spinal intralesional curettage and fixation, epirubicin-induced ganglion destruction, and administration of zoledronic acid and strontium-89 decreased her VAS pain score from 7-8 to 3-4. Radiotherapy and nerve decompression and release were ineffective, as was osteoplasty because of the location error. The epidural infusion system decreased the VAS score from 7-8 to 2-3 and was highly efficient. Conclusions Multidisciplinary integrated treatment for metastatic cancer can be effective.

  14. Establishing a method to measure bone structure using spectral CT

    NASA Astrophysics Data System (ADS)

    Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.

    2017-03-01

    Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.

  15. Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone diseases

    PubMed Central

    Zhai, Yuankun; Tyagi, Suresh C.; Tyagi, Neetu

    2017-01-01

    Bone homeostasis requires a balance between the bone formation of osteoblasts and bone resorption of osteoclasts to maintain ideal bone mass and bone quality. An imbalance in bone remodeling processes results in bone metabolic disorders such as osteoporosis. Hydrogen sulfide (H2S), a gasotransmitter, has attracted the focus of many researchers due to its multiple physiological functions. It has been implicated in anti-inflammatory, vasodilatory, angiogenic, cytoprotective, anti-oxidative and anti-apoptotic mechanisms. H2S has also been shown to exert osteoprotective activity through its anti-inflammatory and anti-oxidative effects. However, the underlying molecular mechanisms by which H2S mitigates bone diseases are not completely understood. Experimental evidence suggests that H2S may regulate signaling pathways by directly influencing a gene in the cascade or interacting with some other gasotransmitter (carbon monoxide or nitric oxide) or both. MicroRNAs (miRNAs) are short non-coding RNAs which regulate gene expression by targeting, binding and suppressing mRNAs; thus controlling cell fate. Certainly, bone remodeling is also regulated by miRNAs expression and has been reported in many studies. MicroRNAs also regulate H2S biosynthesis. The inter-regulation of microRNAs and H2S opens a new possibility for exploring the H2S-microRNA crosstalk in bone diseases. However, the relationship between miRNAs, bone development, and H2S is still not well explained. This review focuses on miRNAs and their roles in regulating bone remodeling and possible mechanisms behind H2S mediated bone loss inhibition, H2S-miRNAs crosstalk in relation to the pathophysiology of bone remodeling, and future perspectives for miRNA-H2S as a therapeutic agent for bone diseases. PMID:28618652

  16. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurmio, Mirja, E-mail: Mirja.Nurmio@utu.fi; Department of Pediatrics, University of Turku; Joki, Henna, E-mail: Henna.Joki@utu.fi

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bonemore » physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.« less

  17. Repeat Intracranial Expansion After Skull Regrowth in Hyperostotic Disease: Technical Note.

    PubMed

    Wong, Timothy; Herschman, Yehuda; Patel, Nitesh V; Patel, Tushar; Hanft, Simon

    2017-06-01

    Camurati-Engelmann disease (CED) is a rare, autosomal-dominant genetic disorder resulting in hyperostosis of the long bones and skull. Patients often develop cranial nerve dysfunction and increased intracranial pressure secondary to stenosis of nerve foramina and hyperostosis. Surgical decompression may provide symptomatic relief in select patients; however, a small number of reports document the recurrence of symptoms due to bony regrowth. We present a patient who had been treated previously with bilateral frontal and parietal craniotomy who experienced recurrence of symptoms due to reossification of her cranial bones. This report underscores the progressive nature of CED and its influence on surgical management. Furthermore, we propose a novel surgical approach with multiple craniectomies and titanium mesh cranioplasties that could potentially offer long-term symptomatic relief. A 46-year-old female patient with CED who was treated with ventriculoperitoneal shunting, posterior fossa decompression, and multiple craniotomies 2 decades prior presented with signs and symptoms of increased intracranial pressure. Studies of the skull at presentation demonstrated rethickening of cranial bones that resulted in severely decreased intracranial volume. A radical craniectomy, requiring 4 separate bone flaps made up of bilateral frontal and parietal bones, was performed. The remaining coronal and sagittal bony struts were drilled to approximately 1 cm thick. Cranioplasties with 4 separate titanium meshes were performed to preserve the natural contour of the patient's skull. Although surgical decompression could provide some patients with CED symptomatic relief, clinicians should consider managing CED as a chronic condition. To the authors' knowledge, this is one of few case reports documenting the recurrence of symptoms in a patient with CED treated by surgical intervention. Furthermore, we propose that multiple craniectomies with titanium mesh cranioplasties confer more permanent symptomatic control, and, more importantly, lower the risk of recurrence secondary to cranial hyperostosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Association Between Bone Marrow Dosimetric Parameters and Acute Hematologic Toxicity in Anal Cancer Patients Treated With Concurrent Chemotherapy and Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mell, Loren K.; Schomas, David A.; Salama, Joseph K.

    Purpose: To test the hypothesis that the volume of pelvic bone marrow (PBM) receiving 10 and 20 Gy or more (PBM-V{sub 10} and PBM-V{sub 20}) is associated with acute hematologic toxicity (HT) in anal cancer patients treated with concurrent chemoradiotherapy. Methods and Materials: We analyzed 48 consecutive anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiation therapy. The median radiation dose to gross tumor and regional lymph nodes was 50.4 and 45 Gy, respectively. Pelvic bone marrow was defined as the region extending from the iliac crests to the ischial tuberosities, including the os coxae, lumbosacral spine, and proximalmore » femora. Endpoints included the white blood cell count (WBC), absolute neutrophil count (ANC), hemoglobin, and platelet count nadirs. Regression models with multiple independent predictors were used to test associations between dosimetric parameters and HT. Results: Twenty patients (42%) had Stage T3-4 disease; 15 patients (31%) were node positive. Overall, 27 (56%), 24 (50%), 4 (8%), and 13 (27%) experienced acute Grade 3-4 leukopenia, neutropenia, anemia, and thrombocytopenia, respectively. On multiple regression analysis, increased PBM-V{sub 5}, V{sub 10}, V{sub 15}, and V{sub 20} were significantly associated with decreased WBC and ANC nadirs, as were female gender, decreased body mass index, and increased lumbosacral bone marrow V{sub 10}, V{sub 15}, and V{sub 20} (p < 0.05 for each association). Lymph node positivity was significantly associated with a decreased WBC nadir on multiple regression analysis (p < 0.05). Conclusion: This analysis supports the hypothesis that increased low-dose radiation to PBM is associated with acute HT during chemoradiotherapy for anal cancer. Techniques to limit bone marrow irradiation may reduce HT in anal cancer patients.« less

  19. Sex determination using discriminant analysis of upper and lower extremity bones: New approach using the volume and surface area of digital model.

    PubMed

    Lee, U-Young; Kim, In-Beom; Kwak, Dai-Soon

    2015-08-01

    This study used 110 CT images taken from donated Korean cadavers to create 3-D models of the following upper and lower limb bones: the clavicle, scapula, humerus, radius, ulna, hip bone (os coxa), femur, patella (knee cap), tibia, talus, and calcaneus. In addition, the bone volume and surface area were calculated to determine sex differences using discriminant analysis. Significant sex differences were found in all bones with respect to volume and surface area (p<0.01). The order of volume was the same in females and males (femur>hip bone>tibia>humerus>scapula), although the order of surface area was different. The largest surface area in men was the femur and in women was the hip bone (p<0.01). An interesting finding of this study was that the ulna is the bone with the highest accuracy for sex determination (94%). When using the surface area of multiple bones, the maximum accuracy (99.4%) was achieved. The equation was as follows: (discriminant equation of surface area; female<0

  20. Building better bone: The weaving of biologic and engineering strategies for managing bone loss.

    PubMed

    Schwartz, Andrew M; Schenker, Mara L; Ahn, Jaimo; Willett, Nick J

    2017-09-01

    Segmental bone loss remains a challenging clinical problem for orthopaedic trauma surgeons. In addition to the missing bone itself, the local tissues (soft tissue, vascular) are often highly traumatized as well, resulting in a less than ideal environment for bone regeneration. As a result, attempts at limb salvage become a highly expensive endeavor, often requiring multiple operations and necessitating the use of every available strategy (autograft, allograft, bone graft substitution, Masquelet, bone transport, etc.) to achieve bony union. A cost-sensitive, functionally appropriate, and volumetrically adequate engineered substitute would be practice-changing for orthopaedic trauma surgeons and these patients with difficult clinical problems. In tissue engineering and bone regeneration fields, numerous research efforts continue to make progress toward new therapeutic interventions for segmental bone loss, including novel biomaterial development as well as cell-based strategies. Despite an ever-evolving literature base of these new therapeutic and engineered options, there remains a disconnect with the clinical practice, with very few translating into clinical use. A symposium entitled "Building better bone: The weaving of biologic and engineering strategies for managing bone loss," was presented at the 2016 Orthopaedic Research Society Conference to further explore this engineering-clinical disconnect, by surveying basic, translational, and clinical researchers along with orthopaedic surgeons and proposing ideas for pushing the bar forward in the field of segmental bone loss. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1855-1864, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. (18)F-FDG dynamic PET/CT in patients with multiple myeloma: patterns of tracer uptake and correlation with bone marrow plasma cell infiltration rate.

    PubMed

    Sachpekidis, Christos; Mai, Elias K; Goldschmidt, Hartmut; Hillengass, Jens; Hose, Dirk; Pan, Leyun; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-06-01

    The value of F-FDG PET in the diagnostic approach of multiple myeloma (MM) remains incompletely elicited. Little is known about the kinetics of F-FDG in the bone marrow and extramedullary sites in MM. This study aimed to evaluate quantitative data on kinetics and distribution patterns of F-FDG in MM patients with regard to pelvic bone marrow plasma cell infiltration. The study included 40 patients with primary MM. Dynamic PET/CT scanning of the lower lumbar spine and pelvis was performed after the administration of F-FDG. Whole-body PET/CT studies were performed. Sites of focal increased tracer uptake were considered as highly suggestive of myelomatous involvement after taking into account the patient history and CT findings. Bone marrow of the os ilium without pathologic tracer accumulation served as reference. The evaluation of dynamic PET/CT studies was based in addition to the conventional visual (qualitative) assessment, on semiquantitative (SUV) calculations, as well as on absolute quantitative estimations after application of a 2-tissue compartment model and a noncompartmental approach. F-FDG quantitative information and corresponding distribution patterns were correlated with pelvic bone marrow plasma cell infiltration. Fifty-two myelomatous lesions were detected in the pelvis. All parameters in suspected MM lesions ranged in significantly higher levels than in reference tissue (P < 0.01). Correlative analyses revealed that bone marrow plasma cell infiltration rate correlated significantly with SUVaverage, SUVmax, and the parameters K1, influx, and fractal dimension of F-FDG in reference bone marrow (P < 0.01). In addition, whole-body static PET/CT imaging demonstrated 4 patterns of tracer uptake; these are as follows: negative, focal, diffuse, and mixed (focal/diffuse) tracer uptake. Patients with a mixed pattern of radiotracer uptake had the highest mean plasma cell infiltration rate in their bone marrow, whereas those with negative PET/CT scans demonstrated the lowest bone marrow plasma cell infiltration. In total, 265 focal myeloma-indicative F-FDG-avid lesions were detected, 129 of which correlated with low-dose CT osteolytic findings. No significant correlation between the number of focal lesions detected in PET/CT and bone marrow infiltration was detected. The F-FDG kinetic parameters K1, influx, and fractal dimension as well as SUVaverage from reference tissue correlated significantly with bone marrow malignant plasma cell infiltration rate. Patients with negative PET/CT demonstrated the lowest bone marrow infiltration by malignant plasma cells, whereas those with a mixed pattern of tracer uptake had the highest infiltration.

  2. Adipokines, adiposity, and bone marrow adipocytes: Dangerous accomplices in multiple myeloma.

    PubMed

    Morris, Emma V; Edwards, Claire M

    2018-06-26

    Obesity has become a global epidemic influencing the establishment and progression of a wide range of diseases, such as diabetes, cardiovascular disease, and cancer. In 2016, International Agency for Research on Cancer reported that obesity is now associated with 13 different cancers, one of which is multiple myeloma (MM), a destructive cancer of plasma cells that predominantly reside in the bone marrow. Obesity is the accumulation of excess body fat, which causes metabolic, endocrine, immunologic, and inflammatory-like changes. Obesity is usually associated with an increase in visceral and/or subcutaneous fat; however, an additional fat depot that also responds to diet-induced changes is bone marrow adipose tissue (BMAT). There have been several studies over the past few decades that have identified BMAT as a key driver in MM progression. Adipocytes secrete numerous adipokines, such as leptin, adiponectin, resistin, adipsin, and visfatin, which when secreted at normal controlled levels have protective properties. However, in obesity these levels of secretion change, coupled with an increase in adipocyte number and size causing a profound and lasting effect on the bone microenvironment, contributing to MM cell growth, survival, and migration as well as potentially fueling bone destruction. Obesity is a modifiable risk factor making it an attractive option for targeted therapy. This review discusses the link between obesity, monoclonal gammopathy of undetermined significance (a benign condition that precedes MM), and myeloma, and the contribution of key adipokines to disease establishment and progression. © 2018 Wiley Periodicals, Inc.

  3. Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling

    PubMed Central

    Accardi, Fabrizio; Toscani, Denise; Dalla Palma, Benedetta; Aversa, Franco; Giuliani, Nicola

    2015-01-01

    Multiple myeloma (MM) is characterized by a high capacity to induce alterations in the bone remodeling process. The increase in osteoclastogenesis and the suppression of osteoblast formation are both involved in the pathophysiology of the bone lesions in MM. The proteasome inhibitor (PI) bortezomib is the first drug designed and approved for the treatment of MM patients by targeting the proteasome. However, recently novel PIs have been developed to overcome bortezomib resistance. Interestingly, several preclinical data indicate that the proteasome complex is involved in both osteoclast and osteoblast formation. It is also evident that bortezomib either inhibits osteoclast differentiation induced by the receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) or stimulates the osteoblast differentiation. Similarly, the new PIs including carfilzomib and ixazomib can inhibit bone resorption and stimulate the osteoblast differentiation. In a clinical setting, PIs restore the abnormal bone remodeling by normalizing the levels of bone turnover markers. In addition, a bone anabolic effect was described in responding MM patients treated with PIs, as demonstrated by the increase in the osteoblast number. This review summarizes the preclinical and clinical evidence on the effects of bortezomib and other new PIs on myeloma bone disease. PMID:26579531

  4. Combining coherent hard X-ray tomographies with phase retrieval to generate three-dimensional models of forming bone

    NASA Astrophysics Data System (ADS)

    Bortel, Emely L.; Langer, Max; Rack, Alexander; Forien, Jean-Baptiste; Duda, Georg N.; Fratzl, Peter; Zaslansky, Paul

    2017-11-01

    Holotomography, a phase sensitive synchrotron-based μCT modality, is a quantitative 3D imaging method. By exploiting partial spatial X-ray coherence, bones can be imaged volumetrically with high resolution coupled with impressive density sensitivity. This tomographic method reveals the main characteristics of the important tissue compartments in forming bones, including the rapidly-changing soft tissue and the partially or fully mineralized bone regions, while revealing subtle density differences in 3D. Here we show typical results observed within the growing femur bone midshafts of healthy mice that are 1, 3, 7, 10 and 14 days old (postpartum). Our results make use of partially-coherent synchrotron radiation employing inline Fresnel-propagation in multiple tomographic datasets obtained in the imaging beamline ID19 of the ESRF. The exquisite detail creates maps of the juxtaposed soft, partially mineralized and highly mineralized bone revealing the environment in which bone cells create and shape the matrix. This high resolution 3D data is a step towards creating realistic computational models that may be used to study the dynamic processes involved in bone tissue formation and adaptation. Such data will enhance our understanding of the important biomechanical interactions directing maturation and shaping of the bone micro- and macro-geometries.

  5. Clinical guideline on bone conduction implants.

    PubMed

    Lavilla Martín de Valmaseda, María José; Cavalle Garrido, Laura; Huarte Irujo, Alicia; Núñez Batalla, Faustino; Manrique Rodriguez, Manuel; Ramos Macías, Ángel; de Paula Vernetta, Carlos; Gil-Carcedo Sañudo, Elisa; Lassaleta, Luis; Sánchez-Cuadrado, Isabel; Espinosa Sánchez, Juan Manuel; Batuecas Caletrio, Ángel; Cenjor Español, Carlos

    2018-04-13

    During the last decade there have been multiple and relevant advances in conduction and mixed hearing loss treatment. These advances and the appearance of new devices have extended the indications for bone-conduction implants. The Scientific Committee of Audiology of the Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello SEORL-CCC (Spanish Society of Otolaryngology and Head and Neck Surgery), together with the Otology and Otoneurology Committees, have undertaken a review of the current state of bone-conduction devices with updated information, to provide a clinical guideline on bone-conduction implants for otorhinolaryngology specialists, health professionals, health authorities and society in general. This clinical guideline on bone-conduction implants contains information on the following: 1) Definition and description of bone-conduction devices; 2) Current and upcoming indications for bone conduction devices: Magnetic resonance compatibility; 3) Organization requirements for a bone-conduction implant programme. The purpose of this guideline is to describe the different bone-conduction implants, their characteristics and their indications, and to provide coordinated instructions for all the above-mentioned agents for decision making within their specific work areas. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells.

    PubMed

    Andersen, Thomas L; Søe, Kent; Sondergaard, Teis E; Plesner, Torben; Delaisse, Jean-Marie

    2010-02-01

    Osteolytic lesions are a hallmark of multiple myeloma. They are due to the hyperactivity of bone resorbing osteoclasts and hypoactivity of bone forming osteoblasts, in response to neighbouring myeloma cells. This study identified a structure that deeply affects this response, because of its impact on the physical organisation of the myeloma cell microenvironment. The proximity between myeloma cells and osteoclasts or osteoblasts was shown to be conditioned by the recently discovered layer of flat cells that separates the osteoclasts and osteoblasts from the bone marrow, by forming a canopy over bone remodelling compartment (BRC). These canopies are frequently disrupted in myeloma, and this disruption correlates with increased proximity and density of myeloma cells. In vitro evidence indicates that this disruption may be due to direct contact between myeloma and BRC canopy cells. Importantly, this disruption and increased proximity and density of myeloma cells coincides with key myeloma-induced bone events, such as osteolytic lesions, impaired bone formation despite increased bone resorption, and fusion of myeloma cells with osteoclasts thereby forming myeloma-osteoclast hybrid cells. These findings strongly support a critical role of BRC canopies in myeloma-induced bone disease. BRC canopies could therefore be considered as a new therapeutic target.

  7. Bone-associated gene evolution and the origin of flight in birds.

    PubMed

    Machado, João Paulo; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2016-05-18

    Bones have been subjected to considerable selective pressure throughout vertebrate evolution, such as occurred during the adaptations associated with the development of powered flight. Powered flight evolved independently in two extant clades of vertebrates, birds and bats. While this trait provided advantages such as in aerial foraging habits, escape from predators or long-distance travels, it also imposed great challenges, namely in the bone structure. We performed comparative genomic analyses of 89 bone-associated genes from 47 avian genomes (including 45 new), 39 mammalian, and 20 reptilian genomes, and demonstrate that birds, after correcting for multiple testing, have an almost two-fold increase in the number of bone-associated genes with evidence of positive selection (~52.8 %) compared with mammals (~30.3 %). Most of the positive-selected genes in birds are linked with bone regulation and remodeling and thirteen have been linked with functional pathways relevant to powered flight, including bone metabolism, bone fusion, muscle development and hyperglycemia levels. Genes encoding proteins involved in bone resorption, such as TPP1, had a high number of sites under Darwinian selection in birds. Patterns of positive selection observed in bird ossification genes suggest that there was a period of intense selective pressure to improve flight efficiency that was closely linked with constraints on body size.

  8. Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group.

    PubMed

    Cavo, Michele; Terpos, Evangelos; Nanni, Cristina; Moreau, Philippe; Lentzsch, Suzanne; Zweegman, Sonja; Hillengass, Jens; Engelhardt, Monika; Usmani, Saad Z; Vesole, David H; San-Miguel, Jesus; Kumar, Shaji K; Richardson, Paul G; Mikhael, Joseph R; da Costa, Fernando Leal; Dimopoulos, Meletios-Athanassios; Zingaretti, Chiara; Abildgaard, Niels; Goldschmidt, Hartmut; Orlowski, Robert Z; Chng, Wee Joo; Einsele, Hermann; Lonial, Sagar; Barlogie, Bart; Anderson, Kenneth C; Rajkumar, S Vincent; Durie, Brian G M; Zamagni, Elena

    2017-04-01

    The International Myeloma Working Group consensus aimed to provide recommendations for the optimal use of 18 fluorodeoxyglucose ( 18 F-FDG) PET/CT in patients with multiple myeloma and other plasma cell disorders, including smouldering multiple myeloma and solitary plasmacytoma. 18 F-FDG PET/CT can be considered a valuable tool for the work-up of patients with both newly diagnosed and relapsed or refractory multiple myeloma because it assesses bone damage with relatively high sensitivity and specificity, and detects extramedullary sites of proliferating clonal plasma cells while providing important prognostic information. The use of 18 F-FDG PET/CT is mandatory to confirm a suspected diagnosis of solitary plasmacytoma, provided that whole-body MRI is unable to be performed, and to distinguish between smouldering and active multiple myeloma, if whole-body X-ray (WBXR) is negative and whole-body MRI is unavailable. Based on the ability of 18 F-FDG PET/CT to distinguish between metabolically active and inactive disease, this technique is now the preferred functional imaging modality to evaluate and to monitor the effect of therapy on myeloma-cell metabolism. Changes in FDG avidity can provide an earlier evaluation of response to therapy compared to MRI scans, and can predict outcomes, particularly for patients who are eligible to receive autologous stem-cell transplantation. 18 F-FDG PET/CT can be coupled with sensitive bone marrow-based techniques to detect minimal residual disease (MRD) inside and outside the bone marrow, helping to identify those patients who are defined as having imaging MRD negativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Value of FDG PET in the assessment of patients with multiple myeloma.

    PubMed

    Bredella, Miriam A; Steinbach, Lynne; Caputo, Gary; Segall, George; Hawkins, Randall

    2005-04-01

    Our objective was to evaluate if whole-body PET with FDG is able to detect bone marrow involvement in patients with multiple myeloma and to assess its appearance and distribution pattern. Seventeen whole-body FDG PET scans were performed in 13 patients with multiple myeloma. Four patients were referred for evaluation of extent of disease pretherapy and nine patients were referred for assessment of therapy response (chemotherapy, radiation therapy, bone marrow transplant). FDG PET images were evaluated for distribution and uptake pattern. Standardized uptake values were obtained to quantify FDG uptake. Results of other imaging examinations (MRI, CT, radiography), laboratory data, biopsies, and the clinical course were used for verification of detected lesions. FDG PET was able to detect medullary involvement of multiple myeloma. There were two false-negative results. In one patient, the radiographic skeletal survey showed subcentimeter lytic lesions within the ribs that were not detected on FDG PET and in the other patient, a lytic lesion detected on radiographs showed only mildly increased FDG uptake that was not identified prospectively. There was one false-positive FDG PET result in a patient who had undergone radiation therapy 3 weeks before PET. FDG PET was helpful in differentiating between posttherapeutic changes and residual/recurrent tumor and in assessing response to therapy. FDG PET resulted in upstaging of disease in four patients, which influenced subsequent management and prognosis. Sensitivity of FDG PET in detecting myelomatous involvement was 85% and specificity was 92%. FDG PET is able to detect bone marrow involvement in patients with multiple myeloma. FDG PET is useful in assessing extent of disease at time of initial diagnosis, contributing to staging that is more accurate. FDG PET is also useful for evaluating therapy response.

  10. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone.

    PubMed

    Acevedo, Claire; Bale, Hrishikesh; Gludovatz, Bernd; Wat, Amy; Tang, Simon Y; Wang, Mingyue; Busse, Björn; Zimmermann, Elizabeth A; Schaible, Eric; Allen, Matthew R; Burr, David B; Ritchie, Robert O

    2015-12-01

    Bisphosphonates are widely used to treat osteoporosis, but have been associated with atypical femoral fractures (AFFs) in the long term, which raises a critical health problem for the aging population. Several clinical studies have suggested that the occurrence of AFFs may be related to the bisphosphonate-induced changes of bone turnover, but large discrepancies in the results of these studies indicate that the salient mechanisms responsible for any loss in fracture resistance are still unclear. Here the role of bisphosphonates is examined in terms of the potential deterioration in fracture resistance resulting from both intrinsic (plasticity) and extrinsic (shielding) toughening mechanisms, which operate over a wide range of length-scales. Specifically, we compare the mechanical properties of two groups of humeri from healthy beagles, one control group comprising eight females (oral doses of saline vehicle, 1 mL/kg/day, 3 years) and one treated group comprising nine females (oral doses of alendronate used to treat osteoporosis, 0.2mg/kg/day, 3 years). Our data demonstrate treatment-specific reorganization of bone tissue identified at multiple length-scales mainly through advanced synchrotron x-ray experiments. We confirm that bisphosphonate treatments can increase non-enzymatic collagen cross-linking at molecular scales, which critically restricts plasticity associated with fibrillar sliding, and hence intrinsic toughening, at nanoscales. We also observe changes in the intracortical architecture of treated bone at microscales, with partial filling of the Haversian canals and reduction of osteon number. We hypothesize that the reduced plasticity associated with BP treatments may induce an increase in microcrack accumulation and growth under cyclic daily loadings, and potentially increase the susceptibility of cortical bone to atypical (fatigue-like) fractures. Published by Elsevier Inc.

  11. Lifestyle in Multiple Myeloma - a longitudinal cohort study protocol.

    PubMed

    Heinrich, M; Fisher, A; Paton, B; McCourt, O; Beeken, R J; Hackshaw, A; Wardle, J; Yong, K

    2016-07-04

    Deterioration in bone health is one of the presenting symptoms of Multiple Myeloma (MM), a cancer of plasma cells. As a consequence of this condition, patients suffer bone pain and bone damage and report cancer-related fatigue, resulting in deterioration in their quality of life. Evidence in patients with solid tumours shows promise for the positive effects of physical activity on quality of life. However, in the case of patients with MM a better understanding of the association between physical fitness and quality of life factors is still required. Therefore, this cohort study aims to objectively and longitudinally assess activity and fitness levels in patients with MM in order to explore their role in bone health, fatigue and quality of life for this patient population. The study is a prospective cohort study of MM patients in remission to assess physical activity, fatigue and bone health. Clinical markers of health, self-reported measures of psychological and physical well-being, and lifestyle behaviours are assessed at baseline, 3, 6 and 12 months. At each time point, patients complete cardiopulmonary exercise testing (CPET) along with a series of objective tests to assess physical fitness (eg accelerometry) and a number of self-report measures. A complementary qualitative study will be carried out in order to explore patients' desire for lifestyle advice and when in their cancer journey they deem such advice to be useful. This study will be the first to prospectively and longitudinally explore associations between physical fitness and well-being, bone health, and fatigue (along with a number of other physical and clinical outcomes) in a cohort of patients with MM with the use of objective measures. The findings will also help to identify time points within the MM pathway at which physical activity interventions may be introduced for maximum benefit.

  12. International Myeloma Working Group Recommendations for the Treatment of Multiple Myeloma–Related Bone Disease

    PubMed Central

    Terpos, Evangelos; Morgan, Gareth; Dimopoulos, Meletios A.; Drake, Matthew T.; Lentzsch, Suzanne; Raje, Noopur; Sezer, Orhan; García-Sanz, Ramón; Shimizu, Kazuyuki; Turesson, Ingemar; Reiman, Tony; Jurczyszyn, Artur; Merlini, Giampaolo; Spencer, Andrew; Leleu, Xavier; Cavo, Michele; Munshi, Nikhil; Rajkumar, S. Vincent; Durie, Brian G.M.; Roodman, G. David

    2013-01-01

    Purpose The aim of the International Myeloma Working Group was to develop practice recommendations for the management of multiple myeloma (MM) –related bone disease. Methodology An interdisciplinary panel of clinical experts on MM and myeloma bone disease developed recommendations based on published data through August 2012. Expert consensus was used to propose additional recommendations in situations where there were insufficient published data. Levels of evidence and grades of recommendations were assigned and approved by panel members. Recommendations Bisphosphonates (BPs) should be considered in all patients with MM receiving first-line antimyeloma therapy, regardless of presence of osteolytic bone lesions on conventional radiography. However, it is unknown if BPs offer any advantage in patients with no bone disease assessed by magnetic resonance imaging or positron emission tomography/computed tomography. Intravenous (IV) zoledronic acid (ZOL) or pamidronate (PAM) is recommended for preventing skeletal-related events in patients with MM. ZOL is preferred over oral clodronate in newly diagnosed patients with MM because of its potential antimyeloma effects and survival benefits. BPs should be administered every 3 to 4 weeks IV during initial therapy. ZOL or PAM should be continued in patients with active disease and should be resumed after disease relapse, if discontinued in patients achieving complete or very good partial response. BPs are well tolerated, but preventive strategies must be instituted to avoid renal toxicity or osteonecrosis of the jaw. Kyphoplasty should be considered for symptomatic vertebral compression fractures. Low-dose radiation therapy can be used for palliation of uncontrolled pain, impending pathologic fracture, or spinal cord compression. Orthopedic consultation should be sought for long-bone fractures, spinal cord compression, and vertebral column instability. PMID:23690408

  13. Search for familial clustering of multiple myeloma with any cancer.

    PubMed

    Frank, C; Fallah, M; Chen, T; Mai, E K; Sundquist, J; Försti, A; Hemminki, K

    2016-03-01

    Multiple myeloma (MM) is a disease of immunoglobulin-producing plasma cells, which reside mainly in the bone marrow. Family members of MM patients are at a risk of MM, but whether other malignancies are in excess in family members is not established and is the aim of this study. MM patients (24 137) were identified from the Swedish Cancer Registry from years 1958 to 2012. Relative risks (RRs) were calculated for MM defined by any cancer diagnosed in first-degree relatives and compared with individuals whose relatives had no cancer. MM was reliably associated with relative's colorectal, breast and prostate cancers, non-thyroid endocrine tumors, leukemia and cancer of unknown primary; in addition, MM was associated with subsites of bone and connective tissue tumors and of non-Hodgkin lymphoma, including lymphoplasmacytic lymphoma/Waldenström macroglobulinema (RR 3.47). MM showed a strong association (RR 1.91) in colorectal cancer families, possibly as part of an unidentified syndrome. All the associations of MM with discordant cancers are novel suggesting that MM shares genetic susceptibility with many cancers. The associations of MM bone and connective tissue tumors were supported by at least two independent results. Whether the results signal bone-related biology shared by MM and these tumors deserves further study.

  14. The role of multislice spiral computed tomography in the diagnosis and management of acute facial trauma in patients with multiple injuries.

    PubMed

    Nemsadze, G; Urushadze, O

    2011-11-01

    Using of mutislice spiral CT as first line examination for the diagnosis of Acute Facial trauma in the setting of Polytrauma reduces both: valuable time and cost of patient treatment. After a brief clinical examination, MDCT was performed depending on the area of injury, using a slice thickness of 0.65 mm. The obtained data were analyzed using 3D, MIP and Standard axial with Bone reconstruction protocols. 64 polytrauma patients were evaluated with both Anterior and Lateral craniography (plain skull X ray: AP and Lateral) and Multi Slice CT. Craniography detected only 18 cases of traumatic injuries of facial bones, but exact range of dislocation and accurate management plan could not be established. In the same 64 cases, Multislice CT revealed localization of all existed fractures, range of fragment dislocation, soft tissue damage and status of Paranasal sinus in 62 cases (96.8%). In two cases MS CT missed the facial fracture, in one case the examination was complicated because of bone thinness and numerous fracture fragments, in another multiple foreign body artifacts complicated the investigation. The study results show that, CT investigation based on our MDCT polytrauma protocol, detects all more or less serious facial bone injuries.

  15. Osteogenic Response to BMP-2 of hMSCs Grown on Apatite-Coated Scaffolds

    PubMed Central

    Davis, Hillary E.; Case, Erin M.; Miller, Stephanie L.; Genetos, Damian C.; Leach, J. Kent

    2011-01-01

    Osteoconductive materials play a critical role in promoting integration with surrounding bone tissue and resultant bone repair in vivo. However, the impact of 3D osteoconductive substrates coupled with soluble signals on progenitor cell differentiation is not clear. In this study, we investigated the influence of bone morphogenetic protein-2 (BMP-2) concentration on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) when seeded in carbonated apatite-coated polymer scaffolds. Mineralized scaffolds were more hydrophilic and adsorbed more BMP-2 compared to nonmineralized scaffolds. Changes in alkaline phosphatase (ALP) activity within stimulated hMSCs were dependent on the dose of BMP-2 and the scaffold composition. We detected more cell-secreted calcium on mineralized scaffolds at all time points, and higher BMP-2 concentrations resulted in increased ALP and calcium levels. RUNX2 and IBSP gene expression within hMSCs was affected by both substrate and soluble signals, SP7 by soluble factors, and SPARC by substrate-mediated cues. The present data indicate that a combination of apatite and BMP-2 do not simply enhance the osteogenic response of hMSCs, but act through multiple pathways that may be both substrate- and growth factor-mediated. Thus, multiple signaling strategies will likely be necessary to achieve optimal bone regeneration. PMID:21656707

  16. Evaluation of the utility of 99m Tc-MDP bone scintigraphy versus MIBG scintigraphy and cross-sectional imaging for staging patients with neuroblastoma.

    PubMed

    Gauguet, Jean-Marc; Pace-Emerson, Tamara; Grant, Frederick D; Shusterman, Suzanne; DuBois, Steven G; Frazier, A Lindsay; Voss, Stephan D

    2017-11-01

    Accurate staging of neuroblastoma requires multiple imaging examinations. The purpose of this study was to determine the relative contribution of 99m Tc-methylene diphosphonate (MDP) bone scintigraphy (bone scan) versus metaiodobenzylguanidine scintigraphy (MIBG scan) for accurate staging of neuroblastoma. A medical record search by the identified patients with neuroblastoma from 1993 to 2012 who underwent both MIBG and bone scan for disease staging. Cross-sectional imaging was used to corroborate the scintigraphy results. Clinical records were used to correlate imaging findings with clinical staging and patient management. One hundred thirty-two patients underwent both MIBG and bone scan for diagnosis. All stage 1 (n = 12), 2 (n = 8), and 4S (n = 4) patients had a normal bone scan with no skeletal MIBG uptake. Six of 30 stage 3 patients had false (+) bone scans. In the 78 stage 4 patients, 58/78 (74%) were both skeletal MIBG(+)/bone scan (+). In 56 of the 58 cases, skeletal involvement detected with MIBG was equal to or greater than that detected by bone scan. Only 3/78 had (-) skeletal MIBG uptake and (+) bone scans; all 3 had other sites of metastatic disease. Five of 78 had (+) skeletal MIBG with a (-) bone scan, while 12/78 had no skeletal involvement by either MIBG or bone scan. In no case did a positive bone scan alone determine a stage 4 designation. In the staging of neuroblastoma, 99m Tc-MDP bone scintigraphy does not identify unique sites of disease that affect disease stage or clinical management, and in the majority of cases bone scans can be omitted from the routine neuroblastoma staging algorithm. © 2017 Wiley Periodicals, Inc.

  17. Autocrine inhibition of the c-fms proto-oncogene reduces breast cancer bone metastasis assessed with in vivo dual-modality imaging.

    PubMed

    Jeffery, Justin J; Lux, Katie; Vogel, John S; Herrera, Wynetta D; Greco, Stephen; Woo, Ho-Hyung; AbuShahin, Nisreen; Pagel, Mark D; Chambers, Setsuko K

    2014-04-01

    Breast cancer cells preferentially home to the bone microenvironment, which provides a unique niche with a network of multiple bidirectional communications between host and tumor, promoting survival and growth of bone metastases. In the bone microenvironment, the c-fms proto-oncogene that encodes for the CSF-1 receptor, along with CSF-1, serves as one critical cytokine/receptor pair, functioning in paracrine and autocrine fashion. Previous studies concentrated on the effect of inhibition of host (mouse) c-fms on bone metastasis, with resulting decrease in osteolysis and bone metastases as a paracrine effect. In this report, we assessed the role of c-fms inhibition within the tumor cells (autocrine effect) in the early establishment of breast cancer cells in bone and the effects of this early c-fms inhibition on subsequent bone metastases and destruction. This study exploited a multidisciplinary approach by employing two non-invasive, in vivo imaging methods to assess the progression of bone metastases and bone destruction, in addition to ex vivo analyses using RT-PCR and histopathology. Using a mouse model of bone homing human breast cancer cells, we showed that an early one-time application of anti-human c-fms antibody delayed growth of bone metastases and bone destruction for at least 31 days as quantitatively measured by bioluminescence imaging and computed tomography, compared to controls. Thus, neutralizing human c-fms in the breast cancer cell alone decreases extent of subsequent bone metastasis formation and osteolysis. Furthermore, we are the first to show that anti-c-fms antibodies can impact early establishment of breast cancer cells in bone.

  18. What Is Breast in the Bone?

    PubMed

    Shemanko, Carrie S; Cong, Yingying; Forsyth, Amanda

    2016-10-22

    The normal developmental program that prolactin generates in the mammary gland is usurped in the cancerous process and can be used out of its normal cellular context at a site of secondary metastasis. Prolactin is a pleiotropic peptide hormone and cytokine that is secreted from the pituitary gland, as well as from normal and cancerous breast cells. Experimental and epidemiologic data suggest that prolactin is associated with mammary gland development, and also the increased risk of breast tumors and metastatic disease in postmenopausal women. Breast cancer spreads to the bone in approximately 70% of cases with advanced breast cancer. Despite treatment, new bone metastases will still occur in 30%-50% of patients. Only 20% of patients with bone metastases survive five years after the diagnosis of bone metastasis. The breast cancer cells in the bone microenvironment release soluble factors that engage osteoclasts and/or osteoblasts and result in bone breakdown. The breakdown of the bone matrix, in turn, enhances the proliferation of the cancer cells, creating a vicious cycle. Recently, it was shown that prolactin accelerated the breast cancer cell-mediated osteoclast differentiation and bone breakdown by the regulation of breast cancer-secreted proteins. Interestingly, prolactin has the potential to affect multiple proteins that are involved in both breast development and likely bone metastasis, as well. Prolactin has normal bone homeostatic roles and, combined with the natural "recycling" of proteins in different tissues that can be used for breast development and function, or in bone function, increases the impact of prolactin signaling in breast cancer bone metastases. Thus, this review will focus on the role of prolactin in breast development, bone homeostasis and in breast cancer to bone metastases, covering the molecular aspects of the vicious cycle.

  19. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method.

    PubMed

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-17

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  20. Melatonin effects on bone: potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures.

    PubMed

    Maria, Sifat; Witt-Enderby, Paula A

    2014-03-01

    An important role for melatonin in bone formation and restructuring has emerged, and studies demonstrate the multiple mechanisms for these beneficial actions. Statistical analysis shows that even with existing osteoporotic therapies, bone-related disease, and mortality are on the rise, creating a huge financial burden for societies worldwide. These findings suggest that novel alternatives need to be developed to either prevent or reverse bone loss to combat osteoporosis-related fractures. The focus of this review describes melatonin's role in bone physiology and discusses how disruption of melatonin rhythms by light exposure at night, shift work, and disease can adversely impact on bone. The signal transduction mechanisms underlying osteoblast and osteoclast differentiation and coupling with one another are discussed with a focus on how melatonin, through the regulation of RANKL and osteoprotegerin synthesis and release from osteoblasts, can induce osteoblastogenesis while inhibiting osteoclastogenesis. Also, melatonin's free-radical scavenging and antioxidant properties of this indoleamine are discussed as yet an additional mechanism by which melatonin can maintain one's bone health, especially oral health. The clinical use for melatonin in bone-grafting procedures, in reversing bone loss due to osteopenia and osteoporosis, and in managing periodontal disease is discussed. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  2. Adrenal steroid hormones and metaphyseal bone in children.

    PubMed

    Remer, Thomas; Boye, Kai R; Hartmann, Michaela F; Neu, Christina; Schoenau, Eckhard; Manz, Friedrich; Wudy, Stefan A

    2004-01-01

    The responses of metaphyseal bone tissue to physiological variations of endogenous adrenal steroid hormones during childhood are unclear. Therefore, we studied potential hormonal influences in children before the appearance of pubic hair (onset of pubarche). Excretions of major glucocorticoid metabolites (C21), cortisol, sum of adrenarchal dehydroepiandrosterone and its immediate 16-hydroxylated metabolites (DHEA&M), and 5-androstene-3beta,17beta-diol (hermaphrodiol) were analyzed in a cross-sectional study in 24-hour urine samples of 109 healthy boys and girls, aged 6-13 years, using steroid profiling by gas chromatography-mass spectrometry. Total and trabecular volumetric bone mineral densities, bone mineral content (BMC) and bone strength strain index were determined with peripheral quantitative computed tomography at the distal forearm. In multiple regression analyses significant associations with the metaphyseal radius were seen for grip force, age, or BMI depending on gender and bone variable analyzed. DHEA&M did not contribute to the explanation of the variance of any bone variable. However, hermaphrodiol positively explained a significant part of variation of bone mineral densities, and BMC (p < 0.01) in girls. Significantly negative associations with all bone variables were seen in boys for cortisol. The steroid hormones, cortisol and hermaphrodiol, in their physiological ranges, but not the adrenarche marker DHEA&M, appear to associate with metaphyseal bone in a sex-dependent manner during childhood. Copyright (c) 2004 S. Karger AG, Basel.

  3. Bone and mineral disorders after kidney transplantation: therapeutic strategies

    PubMed Central

    Molnar, Miklos Z.; Naser, Mohamed S.; Rhee, Connie M.; Kalantar-Zadeh, Kamyar; Bunnapradist, Suphamai

    2017-01-01

    Mineral and bone diseases (MBD) are common in patients with chronic kidney disease who undergo kidney transplantation. The incidence, types and severity of MBD varies according to the duration of chronic kidney disease, presence of comorbid conditions and intake of certain medications. Moreover, multiple types of pathology may be responsible for MBD. After successful reversal of uremia by kidney transplantation, many bone and mineral disorders improve, while immunosuppression, other medications, and new and existing comorbidities may result in new or worsening MBD. Chronic kidney disease is also common after kidney transplantation and may impact bone and mineral disease. In this article, we reviewed the prevalence, pathophysiology, and impact of MBD on post-transplant outcomes. We also discussed the diagnostic approach; immunosuppression management and potential treatment of MBD in kidney transplant recipients. PMID:24462303

  4. Symbolic bones and interethnic violence in a frontier zone, northwest Mexico, ca. 500–900 C.E.

    PubMed Central

    Nelson, Ben A.; Martin, Debra L.

    2015-01-01

    Although extensive deposits of disarticulated, commingled human bones are common in the prehispanic Northern Frontier of Mesoamerica, detailed bioarchaeological analyses of them are not. To our knowledge, this article provides the first such analysis of bone from a full residential-ceremonial complex and evaluates multiple hypotheses about its significance, concluding that the bones actively represented interethnic violence as well as other relationships among persons living and dead. Description of these practices is important to the discussion of multiethnic societies because the frontier was a context where urbanism and complexity were emerging and groups with the potential to form multiethnic societies were interacting, possibly in the same ways that groups did before the formation of larger multiethnic city-states in the core of Mesoamerica. PMID:25941398

  5. Symbolic bones and interethnic violence in a frontier zone, northwest Mexico, ca. 500-900 C.E.

    PubMed

    Nelson, Ben A; Martin, Debra L

    2015-07-28

    Although extensive deposits of disarticulated, commingled human bones are common in the prehispanic Northern Frontier of Mesoamerica, detailed bioarchaeological analyses of them are not. To our knowledge, this article provides the first such analysis of bone from a full residential-ceremonial complex and evaluates multiple hypotheses about its significance, concluding that the bones actively represented interethnic violence as well as other relationships among persons living and dead. Description of these practices is important to the discussion of multiethnic societies because the frontier was a context where urbanism and complexity were emerging and groups with the potential to form multiethnic societies were interacting, possibly in the same ways that groups did before the formation of larger multiethnic city-states in the core of Mesoamerica.

  6. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality

    PubMed Central

    Okagbare, Paul I.; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A.

    2012-01-01

    Abstract. We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies. PMID:23085899

  7. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality.

    PubMed

    Okagbare, Paul I; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A; Morris, Michael D

    2012-09-01

    We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies.

  8. Computed tomographic findings of cerebral fat embolism following multiple bone fractures.

    PubMed

    Law, Huong Ling; Wong, Siong Lung; Tan, Suzet

    2013-02-01

    Fat embolism to the lungs and brain is an uncommon complication following fractures. Few reports with descriptions of computed tomographic (CT) findings of emboli to the brain or cerebral fat embolism are available. We report a case of cerebral fat embolism following multiple skeletal fractures and present its CT findings here.

  9. A 130,000-year-old archaeological site in southern California, USA.

    PubMed

    Holen, Steven R; Deméré, Thomas A; Fisher, Daniel C; Fullagar, Richard; Paces, James B; Jefferson, George T; Beeton, Jared M; Cerutti, Richard A; Rountrey, Adam N; Vescera, Lawrence; Holen, Kathleen A

    2017-04-26

    The earliest dispersal of humans into North America is a contentious subject, and proposed early sites are required to meet the following criteria for acceptance: (1) archaeological evidence is found in a clearly defined and undisturbed geologic context; (2) age is determined by reliable radiometric dating; (3) multiple lines of evidence from interdisciplinary studies provide consistent results; and (4) unquestionable artefacts are found in primary context. Here we describe the Cerutti Mastodon (CM) site, an archaeological site from the early late Pleistocene epoch, where in situ hammerstones and stone anvils occur in spatio-temporal association with fragmentary remains of a single mastodon (Mammut americanum). The CM site contains spiral-fractured bone and molar fragments, indicating that breakage occured while fresh. Several of these fragments also preserve evidence of percussion. The occurrence and distribution of bone, molar and stone refits suggest that breakage occurred at the site of burial. Five large cobbles (hammerstones and anvils) in the CM bone bed display use-wear and impact marks, and are hydraulically anomalous relative to the low-energy context of the enclosing sandy silt stratum. 230 Th/U radiometric analysis of multiple bone specimens using diffusion-adsorption-decay dating models indicates a burial date of 130.7 ± 9.4 thousand years ago. These findings confirm the presence of an unidentified species of Homo at the CM site during the last interglacial period (MIS 5e; early late Pleistocene), indicating that humans with manual dexterity and the experiential knowledge to use hammerstones and anvils processed mastodon limb bones for marrow extraction and/or raw material for tool production. Systematic proboscidean bone reduction, evident at the CM site, fits within a broader pattern of Palaeolithic bone percussion technology in Africa, Eurasia and North America. The CM site is, to our knowledge, the oldest in situ, well-documented archaeological site in North America and, as such, substantially revises the timing of arrival of Homo into the Americas.

  10. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women.

    PubMed

    Vennin, S; Desyatova, A; Turner, J A; Watson, P A; Lappe, J M; Recker, R R; Akhter, M P

    2017-04-01

    Osteoporotic (low-trauma) fractures are a significant public health problem. Over 50% of women over 50yrs. of age will suffer an osteoporotic fracture in their remaining lifetimes. While current therapies reduce skeletal fracture risk by maintaining or increasing bone density, additional information is needed that includes the intrinsic material strength properties of bone tissue to help develop better treatments, since measurements of bone density account for no more than ~50% of fracture risk. The hypothesis tested here is that postmenopausal women who have sustained osteoporotic fractures have reduced bone quality, as indicated with measures of intrinsic material properties compared to those who have not fractured. Transiliac biopsies (N=120) were collected from fracturing (N=60, Cases) and non-fracturing postmenopausal women (N=60, age- and BMD-matched Controls) to measure intrinsic material properties using the nano-indentation technique. Each biopsy specimen was embedded in epoxy resin and then ground, polished and used for the nano-indentation testing. After calibration, multiple indentations were made using quasi-static (hardness, modulus) and dynamic (storage and loss moduli) testing protocols. Multiple indentations allowed the median and variance to be computed for each type of measurement for each specimen. Cases were found to have significantly lower median values for cortical hardness and indentation modulus. In addition, cases showed significantly less within-specimen variability in cortical modulus, cortical hardness, cortical storage modulus and trabecular hardness, and more within-specimen variability in trabecular loss modulus. Multivariate modeling indicated the presence of significant independent mechanical effects of cortical loss modulus, along with variability of cortical storage modulus, cortical loss modulus, and trabecular hardness. These results suggest mechanical heterogeneity of bone tissue may contribute to fracture resistance. Although the magnitudes of differences in the intrinsic properties were not overwhelming, this is the first comprehensive study to investigate, and compare the intrinsic properties of bone tissue in fracturing and non-fracturing postmenopausal women. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Plasma cell quantification in bone marrow by computer-assisted image analysis.

    PubMed

    Went, P; Mayer, S; Oberholzer, M; Dirnhofer, S

    2006-09-01

    Minor and major criteria for the diagnosis of multiple meloma according to the definition of the WHO classification include different categories of the bone marrow plasma cell count: a shift from the 10-30% group to the > 30% group equals a shift from a minor to a major criterium, while the < 10% group does not contribute to the diagnosis. Plasma cell fraction in the bone marrow is therefore critical for the classification and optimal clinical management of patients with plasma cell dyscrasias. The aim of this study was (i) to establish a digital image analysis system able to quantify bone marrow plasma cells and (ii) to evaluate two quantification techniques in bone marrow trephines i.e. computer-assisted digital image analysis and conventional light-microscopic evaluation. The results were compared regarding inter-observer variation of the obtained results. Eighty-seven patients, 28 with multiple myeloma, 29 with monoclonal gammopathy of undetermined significance, and 30 with reactive plasmocytosis were included in the study. Plasma cells in H&E- and CD138-stained slides were quantified by two investigators using light-microscopic estimation and computer-assisted digital analysis. The sets of results were correlated with rank correlation coefficients. Patients were categorized according to WHO criteria addressing the plasma cell content of the bone marrow (group 1: 0-10%, group 2: 11-30%, group 3: > 30%), and the results compared by kappa statistics. The degree of agreement in CD138-stained slides was higher for results obtained using the computer-assisted image analysis system compared to light microscopic evaluation (corr.coeff. = 0.782), as was seen in the intra- (corr.coeff. = 0.960) and inter-individual results correlations (corr.coeff. = 0.899). Inter-observer agreement for categorized results (SM/PW: kappa 0.833) was in a high range. Computer-assisted image analysis demonstrated a higher reproducibility of bone marrow plasma cell quantification. This might be of critical importance for diagnosis, clinical management and prognostics when plasma cell numbers are low, which makes exact quantifications difficult.

  12. Transfer of free fillet lateral arm flap for facial reconstruction.

    PubMed

    Bayram, Fazli Cengiz; Dadaci, Mehmet; Ince, Bilsev; Altuntas, Zeynep

    2014-07-01

    We describe a 16-year-old male patient who had a major right facial degloving injury resulting in a soft-tissue defect with exposed zygoma as well as temporal and frontal bones. Multiple operations were undertaken in a staged manner for reconstruction. Lateral arm free fillet flap transfer was initially performed with fixation of bones with miniplates, which is followed by flap debulking, lateral canthopexy, scalp tissue expansion for hairline reconstruction, as well as ear reconstruction with costal cartilage and local flap techniques. After a follow-up period of 2 years, a good and impressive reconstructive result was achieved through the use of multiple contemporary reconstructive procedures after a successful free fillet flap transfer from an amputated part.

  13. Cerebral fat embolism syndrome causing brain death after long-bone fractures and acetazolamide therapy.

    PubMed

    Walshe, Criona M; Cooper, James D; Kossmann, Thomas; Hayes, Ivan; Iles, Linda

    2007-06-01

    A 19-year-old woman with multiple fractures and mild brain injury developed severe cerebral fat embolism syndrome after "damage control" orthopaedic surgery. Acetazolamide therapy to manage ocular trauma, in association with hyperchloraemia, caused a profound metabolic acidosis with appropriate compensatory hypocapnia. During ventilator weaning, unexpected brainstem coning followed increased sedation and brief normalisation of arterial carbon dioxide concentration. Autopsy found severe cerebral fat embolism and brain oedema. In patients with multiple trauma, cerebral fat embolism syndrome is difficult to diagnose, and may be more common after delayed fixation of long-bone fractures. Acetazolamide should be used with caution, as sudden restoration of normocapnia during compensated metabolic acidosis in patients with raised intracranial pressure may precipitate coning.

  14. Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis.

    PubMed

    Simon, Dominic; Derer, Anja; Andes, Fabian T; Lezuo, Patrick; Bozec, Aline; Schett, Georg; Herrmann, Martin; Harre, Ulrike

    2017-12-01

    Bone tissue undergoes permanent and lifelong remodeling with a concerted action of bone-building osteoblasts and bone-resorbing osteoclasts. A precise cooperation between those two cell types is critical in the complex process of bone renewal. Galectin-3 is a member of the β-galactoside-binding lectin family playing multiple roles in cell growth, differentiation and aggregation. As it has been described to be expressed in bone, galectin-3 might influence bone homeostasis by regulating the function and/or interplay of osteoblasts and osteoclasts. Here, we investigated the role of galectin-3 in osteoclastogenesis and osteoblast-osteoclast interactions. Bone histomorphometric analysis and μCT measurements revealed a decreased trabecular bone volume and an increased osteoclast number in 12weeks old male galectin-3 knockout mice compared to wildtype littermates. Galectin-3 deficient bone marrow cells displayed a higher osteoclastogenic capacity in ex vivo differentiation assays, associated with elevated TRAF6 mRNA levels, suggesting an intrinsic inhibition of osteoclastogenesis by galectin-3 interfering with RANKL-mediated signaling. Furthermore, the addition of extracellular galectin-3 to murine or human osteoclastogenesis assays inhibited osteoclast formation and osteoclast numbers were higher in co-culture assays with galectin-3 deficient osteoblasts. In conclusion, our data suggest the secretion of galectin-3 as a novel mechanism for osteoblasts to control osteoclastogenesis and to maintain trabecular bone homeostasis independently of the RANKL/OPG-axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Influence of Alveolar Bone Defects on the Stress Distribution in Quad Zygomatic Implant-Supported Maxillary Prosthesis.

    PubMed

    Duan, Yuanyuan; Chandran, Ravi; Cherry, Denise

    The purpose of this study was to create three-dimensional composite models of quad zygomatic implant-supported maxillary prostheses with a variety of alveolar bone defects around implant sites, and to investigate the stress distribution in the surrounding bone using the finite element analysis (FEA) method. Three-dimensional models of titanium zygomatic implants, maxillary prostheses, and human skulls were created and assembled using Mimics based on microcomputed tomography and cone beam computed tomography images. A variety of additional bone defects were created at the locations of four zygomatic implants to simulate multiple clinical scenarios. The volume meshes were created and exported into FEA software. Material properties were assigned respectively for all the structures, and von Mises stress data were collected and plotted in the postprocessing module. The maximum stress in the surrounding bone was located in the crestal bone around zygomatic implants. The maximum stress in the prostheses was located at the angled area of the implant-abutment connection. The model with anterior defects had a higher peak stress value than the model with posterior defects. All the models with additional bone defects had higher maximum stress values than the control model without additional bone loss. Additional alveolar bone loss has a negative influence on the stress concentration in the surrounding bone of quad zygomatic implant-supported prostheses. More care should be taken if these additional bone defects are at the sites of anterior zygomatic implants.

  16. The BPAQ: a bone-specific physical activity assessment instrument.

    PubMed

    Weeks, B K; Beck, B R

    2008-11-01

    A newly developed bone-specific physical activity questionnaire (BPAQ) was compared with other common measures of physical activity for its ability to predict parameters of bone strength in healthy, young adults. The BPAQ predicted indices of bone strength at clinically relevant sites in both men and women, while other measures did not. Only certain types of physical activity (PA) are notably osteogenic. Most methods to quantify levels of PA fail to account for bone relevant loading. Our aim was to examine the ability of several methods of PA assessment and a new bone-specific measure to predict parameters of bone strength in healthy adults. We recruited 40 men and women (mean age 24.5). Subjects completed the modifiable activity questionnaire, Bouchard 3-day activity record, a recently published bone loading history questionnaire (BLHQ), and wore a pedometer for 14 days. We also administered our bone-specific physical activity questionnaire (BPAQ). Calcaneal broadband ultrasound attenuation (BUA) (QUS-2, Quidel) and densitometric measures (XR-36, Norland) were examined. Multiple regression and correlation analyses were performed on the data. The current activity component of BPAQ was a significant predictor of variance in femoral neck bone mineral density (BMD), lumbar spine BMD, and whole body BMD (R(2) = 0.36-0.68, p < 0.01) for men, while the past activity component of BPAQ predicted calcaneal BUA (R(2) = 0.48, p = 0.001) for women. The BPAQ predicted indices of bone strength at skeletal sites at risk of osteoporotic fracture while other PA measurement tools did not.

  17. Musculoskeletal phenotype through the life course: the role of nutrition.

    PubMed

    Ward, Kate

    2012-02-01

    This review considers the definition of a healthy bone phenotype through the life course and the modulating effects of muscle function and nutrition. In particular, it will emphasise that optimal bone strength (and how that is regulated) is more important than simple measures of bone mass. The forces imposed on bone by muscle loading are the primary determinants of musculoskeletal health. Any factor that changes muscle loading on the bone, or the response of bone to loading results in alterations of bone strength. Advances in technology have enhanced the understanding of a healthy bone phenotype in different skeletal compartments. Multiple components of muscle strength can also be quantified. The critical evaluation of emerging technologies for assessment of bone and muscle phenotype is vital. Populations with low and moderate/high daily Ca intakes and/or different vitamin D status illustrate the importance of nutrition in determining musculoskeletal phenotype. Changes in mass and architecture maintain strength despite low Ca intake or vitamin D status. There is a complex interaction between body fat and bone which, in addition to protein intake, is emerging as a key area of research. Muscle and bone should be considered as an integrative unit; the role of body fat requires definition. There remains a lack of longitudinal evidence to understand how nutrition and lifestyle define musculoskeletal health. In conclusion, a life-course approach is required to understand the definition of healthy skeletal phenotype in different populations and at different stages of life.

  18. Fat Mass Is Positively Associated with Estimated Hip Bone Strength among Chinese Men Aged 50 Years and above with Low Levels of Lean Mass.

    PubMed

    Han, Guiyuan; Chen, Yu-Ming; Huang, Hua; Chen, Zhanyong; Jing, Lipeng; Xiao, Su-Mei

    2017-04-24

    This study investigated the relationships of fat mass (FM) and lean mass (LM) with estimated hip bone strength in Chinese men aged 50-80 years (median value: 62.0 years). A cross-sectional study including 889 men was conducted in Guangzhou, China. Body composition and hip bone parameters were generated by dual-energy X-ray absorptiometry (DXA). The relationships of the LM index (LMI) and the FM index (FMI) with bone phenotypes were detected by generalised additive models and multiple linear regression. The associations between the FMI and the bone variables in LMI tertiles were further analysed. The FMI possessed a linear relationship with greater estimated hip bone strength after adjustment for the potential confounders ( p < 0.05). Linear relationships were also observed for the LMI with most bone phenotypes, except for the cross-sectional area ( p < 0.05). The contribution of the LMI (4.0%-12.8%) was greater than that of the FMI (2.0%-5.7%). The associations between the FMI and bone phenotypes became weaker after controlling for LMI. Further analyses showed that estimated bone strength ascended with FMI in the lowest LMI tertile ( p < 0.05), but not in the subgroups with a higher LMI. This study suggested that LM played a critical role in bone health in middle-aged and elderly Chinese men, and that the maintenance of adequate FM could help to promote bone acquisition in relatively thin men.

  19. Plasmacytoma of larynx--a case report.

    PubMed

    Pratibha, C B; Sreenivas, V; Babu, M K; Rout, Pritilata; Nayar, Ravi C

    2009-11-01

    Plasma cell myeloma, the most common plasma cell neoplasm, is characterized by the presence of multiple lesions in the bone marrow. A single isolated lesion may occur either in bone (solitary plasmacytoma of bone) or in soft tissue (extramedullary plasmacytoma). Most cases of extramedullary plasmacytoma occur in the head and neck region. The diagnosis is established by histopathology and immunohistochemistry. A detailed evaluation for lesions at other sites is recommended as extramedullary plasmacytoma treated by radiation therapy has better survival rates than plasma cell myeloma, which is treated by chemotherapy. A case of plasmacytoma of the larynx is presented highlighting clinical and histological features with a review of literature.

  20. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation

    PubMed Central

    Kozhemyakina, Elena; Lassar, Andrew B.; Zelzer, Elazar

    2015-01-01

    Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the ‘engine’ of bone elongation. PMID:25715393

  1. The Association of Fat and Lean Tissue With Whole Body and Spine Bone Mineral Density Is Modified by HIV Status and Sex in Children and Youth.

    PubMed

    Jacobson, Denise L; Lindsey, Jane C; Coull, Brent A; Mulligan, Kathleen; Bhagwat, Priya; Aldrovandi, Grace M

    2018-01-01

    HIV-infected (HIV-pos) male children/youth showed lower bone mineral density at sexual maturity than HIV-uninfected (HIV-neg) females. It is not known whether complications of HIV disease, including abnormal body fat distribution, contribute to lower bone accrual in male HIV-pos adolescents. In a cross-sectional study, we evaluated the relationship between body composition (fat and lean mass) and bone mass in HIV-pos and HIV-neg children/youth and determined if it is modified by HIV status and sex. We used generalized estimating equations to simultaneously model the effect of fat/lean mass on multiple bone outcomes, including total body bone mineral density and bone mineral content and spine bone mineral density. We evaluated effect modification by HIV and sex. The analysis cohort consisted of 143 HIV-neg and 236 HIV-pos, of whom 55% were black non-Hispanic and 53% were male. Ages ranged from 7 to < 25 years. Half of the children/youth were at Tanner stage 1 and 20% at Tanner 5. Fat mass was more strongly positively correlated with bone mass in HIV-neg than HIV-pos children/youth and these relationships were more evident for total body bone than spine outcomes. Within HIV strata, fat mass and bone were more correlated in female than male children/youth. The relationship between lean mass and bone varied by sex, but not by HIV status. HIV disease diminishes the positive relationship of greater fat mass on bone mass in children/youth. Disruptions in body fat distribution, which are common in HIV disease, may have an impact on bone accretion during pubertal development.

  2. Influence of bone density on the cement fixation of femoral hip resurfacing components.

    PubMed

    Bitsch, Rudi G; Jäger, Sebastian; Lürssen, Marcus; Loidolt, Travis; Schmalzried, Thomas P; Clarius, Michael

    2010-08-01

    In clinical outcome studies, small component sizes, female gender, femoral shape, focal bone defects, bad bone quality, and biomechanics have been associated with failures of resurfacing arthroplasties. We used a well-established experimental setup and human bone specimens to analyze the effects of bone density on cement fixation of femoral hip resurfacing components. Thirty-one fresh frozen femora were prepared for resurfacing using the original instruments. ASR resurfacing prostheses were implanted after dual-energy X-ray densitometer scans. Real-time measurements of pressure and temperature during implantation, analyses of cement penetration, and measurements of micro motions under torque application were performed. The associations of bone density and measurement data were examined calculating regression lines and multiple correlation coefficients; acceptability was tested with ANOVA. We found significant relations between bone density and micro motion, cement penetration, cement mantle thickness, cement pressure, and interface temperature. Mean bone density of the femora was 0.82 +/- 0.13 g/cm(2), t-score was -0.7 +/- 1.0, and mean micro motion between bone and femoral resurfacing component was 17.5 +/- 9.1 microm/Nm. The regression line between bone density and micro motion was equal to -56.7 x bone density + 63.8, R = 0.815 (p < 0.001). Bone density scans are most helpful for patient selection in hip resurfacing, and a better bone quality leads to higher initial component stability. A sophisticated cementing technique is recommended to avoid vigorous impaction and incomplete seating, since increasing bone density also results in higher cement pressures, lower cement penetration, lower interface temperatures, and thicker cement mantles. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Anemia

    MedlinePlus

    ... inherited Pregnancy Problems with bone marrow such as lymphoma, leukemia, myelodysplasia, multiple myeloma, or aplastic anemia Slow blood loss (for example, from heavy menstrual periods or stomach ulcers ) Sudden heavy blood loss

  4. Toll-like receptor (TLR)-1/2 triggering of multiple myeloma cells modulates their adhesion to bone marrow stromal cells and enhances bortezomib-induced apoptosis.

    PubMed

    Abdi, Jahangir; Mutis, Tuna; Garssen, Johan; Redegeld, Frank A

    2014-01-01

    In multiple myeloma (MM), the malignant plasma cells usually localize to the bone marrow where they develop drug resistance due to adhesion to stromal cells and various environmental signals. Hence, modulation of this interaction is expected to influence drug sensitivity of MM cells. Toll-like receptor (TLR) ligands have displayed heterogeneous effects on B-cell malignancies and also on MM cells in a few recent studies, but effects on adhesion and drug sensitivity of myeloma cells in the context of bone marrow stromal cells (BMSCs) have never been investigated. In the present study, we explored the modulatory effects of TLR1/2 ligand (Pam3CSK4) on adhesion of human myeloma cells to BMSCs. It is shown that TLR1/2 triggering has opposite effects in different HMCLs on their adhesion to BMSCs. Fravel, L363, UM-6, UM-9 and U266 showed increased adhesion to BMSC in parallel with an increased surface expression of integrin molecules α4 and αVβ3. OPM-1, OPM-2 and NCI-H929 showed a dose-dependent decrease in adhesion upon TLR activation following a downregulation of β7 integrin expression. Importantly, TLR1/2 triggering increased cytotoxic and apoptotic effects of bortezomib in myeloma cells independent of the effect on stromal cell adhesion. Moreover, the apoptosis-enhancing effect of Pam3CSK4 paralleled induction of cleaved caspase-3 protein in FACS analysis suggesting a caspase-dependent mechanism. Our findings uncover a novel role of TLR activation in MM cells in the context of bone marrow microenvironment. Stimulation of TLR1/2 bypasses the protective shield of BMSCs and may be an interesting strategy to enhance drug sensitivity of multiple myeloma cells.

  5. Vitamin D and nutritional status are related to bone fractures in alcoholics.

    PubMed

    González-Reimers, Emilio; Alvisa-Negrín, Julio; Santolaria-Fernández, Francisco; Candelaria Martín-González, M; Hernández-Betancor, Iván; Fernández-Rodríguez, Camino M; Viña-Rodríguez, J; González-Díaz, Antonieta

    2011-01-01

    Bone fractures are common in alcoholics. To analyse which factors (ethanol consumption; liver function impairment; bone densitometry; hormone changes; nutritional status, and disrupted social links and altered eating habits) are related to bone fractures in 90 alcoholic men admitted to our hospitalization unit because of organic problems. Bone homoeostasis-related hormones were measured in patients and age- and sex-matched controls. Whole-body densitometry was performed by a Hologic QDR-2000 (Waltham, MA, USA) densitometer, recording bone mineral density (BMD) and fat and lean mass; nutritional status and liver function were assessed. The presence of prevalent fractures was assessed by anamnesis and chest X-ray film. Forty-nine patients presented at least one fracture. We failed to find differences between patients with and without fractures regarding BMD parameters. Differences regarding fat mass were absent, but lean mass was lower among patients with bone fracture. The presence of fracture was significantly associated with impaired subjective nutritional evaluation (χ² = 5.79, P = 0.016), lower vitamin D levels (Z = 2.98, P = 0.003) and irregular eating habits (χ² = 5.32, P = 0.02). Reduced lean mass and fat mass, and altered eating habits were more prevalent among patients with only rib fractures (n = 36) than in patients with multiple fractures and/or fractures affecting other bones (n = 13). These last were more closely related to decompensated liver disease. Serum vitamin D levels showed a significant relationship with handgrip strength (ρ = 0.26, P = 0.023) and lean mass at different parts of the body, but not with fat mass. By logistic regression analysis, only vitamin D and subjective nutritional evaluation were significantly, independently related with fractures. Prevalent fractures are common among heavy alcoholics. Their presence is related more closely to nutritional status, lean mass and vitamin D levels than to BMD. Lean mass is more reduced, nutritional status is more impaired and there is a trend to more altered eating habits among patients with rib fractures, whereas multiple fractures depend more heavily on advanced liver disease.

  6. Novel Genetic Loci Control Calcium Absorption and Femur Bone Mass as well as Their Response to Low Calcium Intake in Male BXD Recombinant Inbred Mice†

    PubMed Central

    Reyes Fernandez, Perla C.; Replogle, Rebecca A.; Wang, Libo; Zhang, Min; Fleet, James C.

    2016-01-01

    Low dietary calcium (Ca) intake during growth limits peak bone mass but physiological adaptation can prevent this adverse effect. To assess the genetic control on the physiologic response to dietary Ca restriction (RCR) we conducted a study in 51 BXD lines fed either 0.5% (basal) or 0.25% (low) Ca diets from 4–12 wks of age (n=8/line/diet). Ca absorption (CaAbs), femur bone mineral density (BMD), and bone mineral content (BMC) were examined. ANCOVA with body size as covariate was used to detect significant line and diet main effects, and line-by-diet interactions. Body size-corrected residuals were used for linkage mapping and to estimate heritability (h2). Loci controlling the phenotypes were identified using composite interval mapping on each diet and for the RCR. h2 of basal phenotypes (0.37– 0.43) and their RCR (0.32–0.38) was moderate. For each phenotype we identified multiple QTL on each diet and for the RCR. Several loci affected multiple traits: Chr 1 (88.3–90.6 cM, CaAbs, BMC), Chr 4 (45.8–49.2 cM, CaAbs, BMD, BMC), Chr 8 (28.6–31.6 cM, CaAbs, BMD RCR), and Chr 15 (13.6–24 cM, BMD, BMC), and (32.3–36 cM, CaAbs RCR, BMD). This suggests that gene clusters may regulate interdependent bone-related phenotypes. Using in silico expression QTL (eQTL) mapping and bioinformatic tools we identified novel candidates for the regulation of bone under Ca stress (Ext1, Deptor), and for the first time, we report genes modulating Ca absorption (Inadl, Sc4mol, Sh3rf1 and Dennd3), and both Ca and bone metabolism (Tceanc2, Tll1 and Aadat). Our data reveal gene-by-diet interactions and the existence of novel relationships between bone and Ca metabolism during growth. This article is protected by copyright. All rights reserved PMID:26636428

  7. [Stress fractures of the ribs with acute thoracic pain in a young woman, diagnosed by the bone scan].

    PubMed

    Georgitzikis, Athanasios; Siopi, Dimitra; Doumas, Argyrios; Mitka, Ekaterini; Antoniadis, Antonios

    2010-01-01

    We report the unusual case of a 29 -year old woman with emotional instability who presented with acute onset chest pain after severe chronic cough. The chest X-ray and the serological tests were normal but the CT scanning, and the bone scanning revealed multiple bilateral rib stress fractures, caused by severe coughing and physical activity and worsened by the patient's emotional instability.

  8. Preventing Cartilage Degeneration in Warfighters by Elucidating Novel Mechanisms Regulating Osteocyte-Mediated Perilacunar Bone Remodeling

    DTIC Science & Technology

    2016-10-01

    sclerosis as in human PTOA. We also find that PLR is deregulated in human PTOA. We have made great strides in understanding the mechanosensitive regulation...conditions. We conducted an extremely thorough analysis of multiple experimental variables (loading regimen, mouse age, time course analysis) to better...Aim 3. Determine the extent of causality between defective PLR and cartilage degeneration in PTOA. A role for PLR in bone sclerosis

  9. Soy Isoflavones and Osteoporotic Bone Loss: A Review with an Emphasis on Modulation of Bone Remodeling

    PubMed Central

    Zheng, Xi; Lee, Sun-Kyeong

    2016-01-01

    Abstract Osteoporosis is an age-related disorder that affects both women and men, although estrogen deficiency induced by menopause accelerates bone loss in older women. As the demographic shifts to a more aged population, a growing number of men and women will be afflicted with osteoporosis. Since the current drug therapies available have multiple side effects, including increased risk of developing certain types of cancer or complications, a search for potential nonpharmacologic alternative therapies for osteoporosis is of prime interest. Soy isoflavones (SI) have demonstrated potential bone-specific effects in a number of studies. This article provides a systematic review of studies on osteoporotic bone loss in relation to SI intake from diet or supplements to comprehensively explain how SI affect the modulation of bone remodeling. Evidence from epidemiologic studies supports that dietary SI attenuate menopause-induced osteoporotic bone loss by decreasing bone resorption and stimulating bone formation. Other studies have also illustrated that bone site-specific trophic and synergistic effects combined with exercise intervention might contribute to improve the bioavailability of SI or strengthen the bone-specific effects. To date, however, the effects of dietary SI on osteoporotic bone loss remain inconclusive, and study results vary from study to study. The current review will discuss the potential factors that result in the conflicting outcomes of these studies, including dosages, intervention materials, study duration, race, and genetic differences. Further well-designed studies are needed to fully understand the underlying mechanism and evaluate the effects of SI on osteoporosis in humans. PMID:26670451

  10. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study.

    PubMed

    Ross, P D; Kress, B C; Parson, R E; Wasnich, R D; Armour, K A; Mizrahi, I A

    2000-01-01

    The aim of this study was to assess the ability of serum bone-specific alkaline phosphatase (bone ALP), creatinine-corrected urinary collagen crosslinks (CTx) and calcaneus bone mineral density (BMD) to identify postmenopausal women who have an increased risk of osteoporotic fractures. Calcaneus BMD and biochemical markers of bone turnover (serum bone ALP and urinary CTx) were measured in 512 community-dwelling postmenopausal women (mean age at baseline 69 years) participating in the Hawaii Osteoporosis Study. New spine and nonspine fractures subsequent to the BMD and biochemical bone markers measurements were recorded over an average of 2.7 years. Lateral spinal radiographs were used to identify spine fractures. Nonspine fractures were identified by self-report at the time of each examination. During the 2.7-year follow-up, at least one osteoporotic fracture occurred in 55 (10.7%) of the 512 women. Mean baseline serum bone ALP and urinary CTx were significantly higher among women who experienced an osteoporotic fracture compared with those women who did not fracture. In separate age-adjusted logistic regression models, serum bone ALP, urinary CTx and calcaneus BMD were each significantly associated with new fractures (odds ratios of 1.53, 1.54 and 1.61 per SD, respectively). Multiple variable logistic regression analysis identified BMD and serum bone ALP as significant predictors of fracture (p = 0.002 and 0.017, respectively). The results from this investigation indicate that increased bone turnover is significantly associated with an increased risk of osteoporotic fracture in postmenopausal women. This association is similar in magnitude and independent of that observed for BMD.

  11. Constitutional bone impairment in Noonan syndrome.

    PubMed

    Baldassarre, Giuseppina; Mussa, Alessandro; Carli, Diana; Molinatto, Cristina; Ferrero, Giovanni Battista

    2017-03-01

    Noonan syndrome (NS) is an autosomal dominant trait characterized by genotypic and phenotypic variability. It belongs to the Ras/MAPK pathway disorders collectively named Rasopathies or neurocardiofaciocutaneous syndromes. Phenotype is characterized by short stature, congenital heart defects, facial dysmorphisms, skeletal and ectodermal anomalies, cryptorchidism, mild to moderate developmental delay/learning disability, and tumor predisposition. Short stature and skeletal dysmorphisms are almost constant and several studies hypothesized a role for the RAS pathway in regulating bone metabolism. In this study, we investigated the bone quality assessed by phalangeal quantitative ultrasound (QUS) and the metabolic bone profiling in a group of patients with NS, to determine whether low bone mineralization is primary or secondary to NS characteristics. Thirty-five patients were enrolled, including 20 males (55.6%) and 15 females (44.5%) aged 1.0-17.8 years (mean 6.4 ± 4.5, median 4.9 years). Each patients was submitted to clinical examination, estimation of the bone age, laboratory assays, and QUS assessment. Twenty-five percent of the cohort shows reduced QUS values for their age based on bone transmission time. Bone measurement were adjusted for multiple factors frequently observed in NS patients, such as growth retardation, delayed bone age, retarded puberty, and reduced body mass index, potentially affecting bone quality or its appraisal. In spite of the correction attempts, QUS measurement indicates that bone impairment persists in nearly 15% of the cohort studied. Our results indicate that bone impairment in NS is likely primary and not secondary to any of the phenotypic traits of NS, nor consistent with metabolic disturbances. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Multiple Tibial Insufficiency Fractures in the Same Tibia

    PubMed Central

    Defoort, Saartje; Mertens, Peter

    2011-01-01

    Stress fractures were first described by Briethaupt in 1855. Since then, there have been many discussions in the literature concerning stress fractures, which have been described in both weight-bearing and non-weight-bearing bones. Currently, the tibia is the most frequent location, but multiple stress fractures in the same tibia are rare. This paper presents an unusual case of a 60-year-old woman with multiple tibial stress fractures of spontaneous onset. PMID:23569673

  13. Rare, simultaneous, multiple, and recurrent mandibular bone cysts.

    PubMed

    Mupparapu, Muralidhar; Milles, Maano; Singer, Steven R; Rinaggio, Joseph

    2008-04-01

    Simple bone cysts, also referred to as traumatic bone cysts, are benign connective tissue-lined cavities occurring most commonly in young people. Most of the time, they occur as solitary radiolucencies. In the jaws, they also have been reported to occur concurrently with benign fibro-osseous lesions. The radiographic appearance of simple bone cysts could be confused with other jaw cysts and benign tumors. This case report presents a patient who had 3 separate lesions simultaneously within the mandible. The right mandibular lesion presented as a multilocular radiolucency. The 2 left mandibular lesions were periapical, with mixed radiodensities and radiographically mimicked lesions of focal or periapical cemento-osseous dysplasia. More aggressive benign lesions of the jaw were initially included in the differential diagnosis, as well. A biopsy revealed the diagnosis of simple bone cysts in all 3 locations. Minimal surgical management resulted in complete recovery of these osseous defects only to recur in 2 years on the mandibular left premolar-molar region. A new biopsy confirmed that the lesion was a recurrent simple bone cyst. Simultaneous presence of benign cemento-osseous dysplasia was also considered, as it is known to coexist with the simple bone cysts.

  14. Site specific measurements of bone formation using [18F] sodium fluoride PET/CT

    PubMed Central

    Puri, Tanuj; Siddique, Musib; Frost, Michelle L.; Moore, Amelia E. B.; Fogelman, Ignac

    2018-01-01

    Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([18F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [18F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [18F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [18F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer. PMID:29541623

  15. Identification and characterization of glycation adducts on osteocalcin

    PubMed Central

    Thomas, Corinne J.; Cleland, Timothy P.; Zhang, Sheng; Gundberg, Caren M.; Vashishth, Deepak

    2017-01-01

    Osteocalcin is an important extracellular matrix bone protein that contributes to the structural properties of bone through its interactions with hydroxyapatite mineral and with collagen I. This role may be affected by glycation, a labile modification the levels of which has been shown to correlate with bone fragility. Glycation starts with the spontaneous addition of a sugar onto a free amine group on a protein, forming an Amadori product, and then proceeds through several environment-dependent stages resulting in the formation of an advanced glycation end product. Here, we induce the first step of this modification on synthetic osteocalcin, and then use multiple mass spectrometry fragmentation techniques to determine the location of this modification. Collision-induced dissociation resulted in spectra dominated by neutral loss, and was unable to identify Amadori products. Electron-transfer dissociation showed that the Amadori product formed solely on osteocalcin’s N-terminus. This suggests that the glycation of osteocalcin is unlikely to interfere with osteocalcin’s interaction with hydroxyapatite. Instead, glycation may interfere with its interaction with collagen I or another bone protein, osteopontin. Potentially, the levels of glycated osteocalcin fragments released from bone during bone resorption could be used to assess bone quality, should the N-terminal fragments be targeted. PMID:28237256

  16. Engineered decellularized matrices to instruct bone regeneration processes.

    PubMed

    Papadimitropoulos, Adam; Scotti, Celeste; Bourgine, Paul; Scherberich, Arnaud; Martin, Ivan

    2015-01-01

    Despite the significant progress in the field of bone tissue engineering, cell-based products have not yet reached the stage of clinical adoption. This is due to the uncertain advantages from the standard-of-care, combined with challenging cost-and regulatory-related issues. Novel therapeutic approaches could be based on exploitation of the intrinsic regenerative capacity of bone tissue, provided the development of a deeper understanding of its healing mechanisms. While it is well-established that endogenous progenitors can be activated toward bone formation by overdoses of single morphogens, the challenge to stimulate the healing processes by coordinated and controlled stimulation of specific cell populations remains open. Here, we review the recent approaches to generate osteoinductive materials based on the use of decellularized extracellular matrices (ECM) as reservoirs of multiple factors presented at physiological doses and through the appropriate ligands. We then propose the generation of customized engineered and decellularized ECM (i) as a tool to better understand the processes of bone regeneration and (ii) as safe and effective "off-the-shelf" bone grafts for clinical use. This article is part of a Special Issue entitled Stem Cells and Bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Site specific measurements of bone formation using [18F] sodium fluoride PET/CT.

    PubMed

    Blake, Glen M; Puri, Tanuj; Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac

    2018-02-01

    Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([ 18 F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [ 18 F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [ 18 F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [ 18 F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer.

  18. Birth-associated long-bone fractures.

    PubMed

    Basha, Asma; Amarin, Zouhair; Abu-Hassan, Freih

    2013-11-01

    To assess the incidence and outcome of neonatal long-bone fractures at a tertiary teaching hospital. A retrospective study of all neonates with long-bone fractures delivered at Jordan University Hospital between January 1, 2000, and December 31, 2010. Among a total of 34 519 live births, 8 neonates had a long-bone fracture (incidence 0.23/1000 live births); of these, 6 had a femur fracture (0.17/1000 live births) and 2 had a humerus fracture (0.05/1000 live births). The route of delivery was emergency cesarean delivery for 6 infants, elective cesarean delivery for 1 infant, and the vaginal route for 1 infant. The mean birth weight was 2723g. All neonates weighed more than 2200g and their gestational age was more than 35weeks, with the exception of 1 neonate born at 31weeks weighing 1500g. The mean time interval from birth to fracture diagnosis was 1.5days. All fractures healed with no residual deformity. Emergency cesarean delivery carries a higher risk of long-bone fracture than vaginal delivery. Prematurity, malpresentation, abnormal lie, and multiple pregnancies may predispose to long-bone fractures. The prognosis of birth-associated long-bone fractures is good. © 2013.

  19. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy.

    PubMed

    Eltoukhy, Hussam S; Sinha, Garima; Moore, Caitlyn; Gergues, Marina; Rameshwar, Pranela

    2018-05-31

    The secretome produced by cells within the bone marrow is significant to homeostasis. The bone marrow, a well-studied organ, has multiple niches with distinct roles for supporting stem cell functions. Thus, an understanding of mediators involved in the regulation of stem cells could serve as a model for clinical problems and solutions such as tissue repair and regeneration. The exosome secretome of bone marrow stem cells is a developing area of research with respect to the regenerative potential by bone marrow cell, particularly the mesenchymal stem cells. The bone marrow niche regulates endogenous processes such as hematopoiesis but could also support the survival of tumors such as facilitating the cancer stem cells to exist in dormancy for decades. The bone marrow-derived secretome will be critical to future development of therapeutic strategies for oncologic diseases, in addition to regenerative medicine. This article discusses the importance for parallel studies to determine how the same secretome may compromise safety during the use of stem cells in regenerative medicine. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. A cemented cup with acetabular impaction bone grafting is more cost-effective than an uncemented cup in patients under 50 years.

    PubMed

    Busch, Vincent J J F; Verschueren, Joost; Adang, Eddy M; Lie, Stein A; Havelin, Leif I; Schreurs, Berend W

    2016-01-01

    Acetabular deficiencies in young patients can be restored in several ways during total hip arthroplasty. Currently, cementless cups are most frequently used. Impaction bone grafting of acetabular defects is a more biological approach, but is it cost-effective in young patients on the long term? We designed a decision model for a cost-utility analysis of a cemented cup with acetabular impaction bone grafting versus an uncemented cup, in terms of cost per quality-adjusted life year (QALY) for the young adult with acetabular bone deficiency, in need for a primary total hip arthroplasty. Outcome probabilities and effectiveness were derived from the Radboud University Nijmegen Medical Centre and the Norwegian Hip Register. Multiple sensitivity analyses were used to assess the contribution of the included variables in the model's outcome. Cemented cups with impaction bone grafting were more cost-effective compared to the uncemented option in terms of costs per QALY. A scenario suggesting equal primary survival rates of both cemented and uncemented cups still showed an effect gain of the cemented cup with impaction bone grafting, but at higher costs. Based on this model, the first choice of treatment of the acetabular bone deficient osteoarthritic hip in a young patient is reconstruction with impaction bone grafting and a cemented cup.

  1. Deletion of Nrf2 reduces skeletal mechanical properties and decreases load-driven bone formation.

    PubMed

    Sun, Yong-Xin; Li, Lei; Corry, Kylie A; Zhang, Pei; Yang, Yang; Himes, Evan; Mihuti, Cristina Layla; Nelson, Cecilia; Dai, Guoli; Li, Jiliang

    2015-05-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor expressed in many cell types, including osteoblasts, osteocytes, and osteoclasts. Nrf2 has been considered a master regulator of cytoprotective genes against oxidative and chemical insults. The lack of Nrf2 can induce pathologies in multiple organs. The aim of this study was to investigate the role of Nrf2 in load-driven bone metabolism using Nrf2 knockout (KO) mice. Compared to age-matched littermate wild-type controls, Nrf2 KO mice have significantly lowered femoral bone mineral density (-7%, p<0.05), bone formation rate (-40%, p<0.05), as well as ultimate force (-11%, p<0.01). The ulna loading experiment showed that Nrf2 KO mice were less responsive than littermate controls, as indicated by reduction in relative mineralizing surface (rMS/BS, -69%, p<0.01) and relative bone formation rate (rBFR/BS, -84%, p<0.01). Furthermore, deletion of Nrf2 suppressed the load-driven gene expression of antioxidant enzymes and Wnt5a in cultured primary osteoblasts. Taken together, the results suggest that the loss-of-function mutation of Nrf2 in bone impairs bone metabolism and diminishes load-driven bone formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Role of mastoid pneumatization in temporal bone fractures.

    PubMed

    Ilea, A; Butnaru, A; Sfrângeu, S A; Hedeşiu, M; Dudescu, C M; Berce, P; Chezan, H; Hurubeanu, L; Trombiţaş, V E; Câmpian, R S; Albu, S

    2014-07-01

    The mastoid portion of the temporal bone has multiple functional roles in the organism, including regulation of pressure in the middle ear and protection of the inner ear. We investigated whether mastoid pneumatization plays a role in the protection of vital structures in the temporal bone during direct lateral trauma. The study was performed on 20 human temporal bones isolated from cadavers. In the study group formed by 10 temporal bone samples, mastoid cells were removed and the resulting neocavities were filled. The mastoids were maintained intact in the control group. All samples were impacted at the same speed and kinetic energy. The resultant temporal bone fractures were evaluated by CT. Temporal squama fractures were 2.88 times more frequent, and mastoid fractures were 2.76 times more frequent in the study group. Facial nerve canal fractures were 6 times more frequent in the study group and involved all the segments of the facial nerve. Carotid canal fractures and jugular foramen fractures were 2.33 and 2.5 times, respectively, more frequent in the study group. The mastoid portion of the temporal bone plays a role in the absorption and dispersion of kinetic energy during direct lateral trauma to the temporal bone, reducing the incidence of fracture in the setting of direct trauma. © 2014 by American Journal of Neuroradiology.

  3. The Skeletal Site-Specific Role of Connective Tissue Growth Factor in Prenatal Osteogenesis

    PubMed Central

    Lambi, Alex G.; Pankratz, Talia L.; Mundy, Christina; Gannon, Maureen; Barbe, Mary F.; Richtsmeier, Joan T.; Popoff, Steven N.

    2013-01-01

    Background Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. Results We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. Conclusions We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation. PMID:23073844

  4. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2

    PubMed Central

    Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia

    2017-01-01

    The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960

  5. G-CSF-Treated Donor Bone Marrow Transplant in Treating Patients With Hematologic Disorders

    ClinicalTrials.gov

    2012-05-24

    Chronic Myeloproliferative Disorders; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Sarcoma

  6. 12-O-Tetradecanoylphorbol-13-acetate in Treating Patients With Hematologic Cancer or Bone Marrow Disorder

    ClinicalTrials.gov

    2010-01-25

    Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Precancerous/Nonmalignant Condition

  7. Evolutionary medicine and bone loss in chronic inflammatory diseases--A theory of inflammation-related osteopenia.

    PubMed

    Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto

    2015-10-01

    Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Anatomic Site Variability in Rat Skeletal Uptake and Desorption Of Fluorescently Labeled Bisphosphonate

    PubMed Central

    Wen, D.; Qing, L.; Harrison, G.; Golub, E.; Akintoye, S.O.

    2010-01-01

    Objectives Bisphosphonates commonly used to treat osteoporosis, Paget’s disease, multiple myeloma, hypercalcemia of malignancy and osteolytic lesions of cancer metastasis have been associated with bisphosphonate-associated jaw osteonecrosis (BJON). The underlying pathogenesis of BJON is unclear, but disproportionate bisphosphonate concentration in the jaw has been proposed as one potential etiological factor. This study tested the hypothesis that skeletal biodistribution of intravenous bisphosphonate is anatomic site-dependent in a rat model system. Materials and Methods Fluorescently labeled pamidronate was injected intravenously in athymic rats of equal weights followed by in vivo whole body fluorimetry, ex vivo optical imaging of oral, axial and appendicular bones and ethylenediaminetetraacetic acid bone decalcification to assess hydroxyapatite-bound bisphosphonate. Results Bisphosphonate uptake and bisphosphonate released per unit calcium were similar in oral and appendicular bones but lower than those in axial bones. Hydroxyapatite-bound bisphosphonate liberated by sequential acid decalcification was highest in oral relative to axial and appendicular bones (p < 0.05). Conclusions This study demonstrates regional differences in uptake and release of bisphosphonate from oral, axial and appendicular bones of immune deficient rats. PMID:21122034

  9. Evolutionary medicine and bone loss in chronic inflammatory diseases – a theory of inflammation-related osteopenia

    PubMed Central

    Straub, Rainer H.; Cutolo, Maurizio; Pacifici, Roberto

    2015-01-01

    Objective Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflammaging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an “accident of inflammation”. Methods Extensive literature search in PubMed central. Results Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. Conclusions The article highlights the complexity of interwoven pathways of osteopenia. PMID:26044543

  10. Nano-engineered titanium for enhanced bone therapy

    NASA Astrophysics Data System (ADS)

    Gulati, Karan; Atkins, Gerald J.; Findlay, David M.; Losic, Dusan

    2013-09-01

    Current treatment of a number of orthopaedic conditions, for example fractures, bone infection, joint replacement and bone cancers, could be improved if mechanical support could be combined with drug delivery. A very challenging example is that of infection following joint replacement, which is very difficult to treat, can require multiple surgeries and compromises both the implant and the patient's wellbeing. An implant capable of providing appropriate biomechanics and releasing drugs/proteins locally might ensure improved healing of the traumatized bone. We propose fabrication of nanoengineered titanium bone implants using bioinert titanium wires in order to achieve this goal. Titanium in the form of flat foils and wires were modified by fabrication of titania nanotubes (TNTs), which are hollow self-ordered cylindrical tubes capable of accommodating substantial drug amounts and releasing them locally. To further control the release of drug to over a period of months, a thin layer of biodegradable polymer PLGA poly(lactic-coglycolic acid) was coated onto the drug loaded TNTs. This delayed release of drug and additionally the polymer enhanced bone cell adhesion and proliferation.

  11. Tissue engineering for lateral ridge augmentation with recombinant human bone morphogenetic protein 2 combination therapy: a case report.

    PubMed

    Mandelaris, George A; Spagnoli, Daniel B; Rosenfeld, Alan L; McKee, James; Lu, Mei

    2015-01-01

    This case report describes a tissue-engineered reconstruction with recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ ACS) + cancellous allograft and space maintenance via Medpor Contain mesh in the treatment of a patient requiring maxillary and mandibular horizontal ridge augmentation to enable implant placement. The patient underwent a previously unsuccessful corticocancellous bone graft at these sites. Multiple and contiguous sites in the maxilla and in the mandibular anterior, demonstrating advanced lateral ridge deficiencies, were managed using a tissue engineering approach as an alternative to autogenous bone harvesting. Four maxillary and three mandibular implants were placed 9 and 10 months, respectively, after tissue engineering reconstruction, and all were functioning successfully after 24 months of follow-up. Histomorphometric analysis of a bone core obtained at the time of the maxillary implant placement demonstrated a mean of 76.1% new vital bone formation, 22.2% marrow/cells, and 1.7% residual graft tissue. Tissue engineering for lateral ridge augmentation with combination therapy requires further research to determine predictability and limitations.

  12. Attenuated BMP1 Function Compromises Osteogenesis, Leading to Bone Fragility in Humans and Zebrafish

    PubMed Central

    Asharani, P.V.; Keupp, Katharina; Semler, Oliver; Wang, Wenshen; Li, Yun; Thiele, Holger; Yigit, Gökhan; Pohl, Esther; Becker, Jutta; Frommolt, Peter; Sonntag, Carmen; Altmüller, Janine; Zimmermann, Katharina; Greenspan, Daniel S.; Akarsu, Nurten A.; Netzer, Christian; Schönau, Eckhard; Wirth, Radu; Hammerschmidt, Matthias; Nürnberg, Peter; Wollnik, Bernd; Carney, Thomas J.

    2012-01-01

    Bone morphogenetic protein 1 (BMP1) is an astacin metalloprotease with important cellular functions and diverse substrates, including extracellular-matrix proteins and antagonists of some TGFβ superfamily members. Combining whole-exome sequencing and filtering for homozygous stretches of identified variants, we found a homozygous causative BMP1 mutation, c.34G>C, in a consanguineous family affected by increased bone mineral density and multiple recurrent fractures. The mutation is located within the BMP1 signal peptide and leads to impaired secretion and an alteration in posttranslational modification. We also characterize a zebrafish bone mutant harboring lesions in bmp1a, demonstrating conservation of BMP1 function in osteogenesis across species. Genetic, biochemical, and histological analyses of this mutant and a comparison to a second, similar locus reveal that Bmp1a is critically required for mature-collagen generation, downstream of osteoblast maturation, in bone. We thus define the molecular and cellular bases of BMP1-dependent osteogenesis and show the importance of this protein for bone formation and stability. PMID:22482805

  13. Multiple Perforations of the Sinus Floor During Maxillary Sinus Floor Augmentation to Provide Access to the Bone Marrow Space: A Technical Report.

    PubMed

    Ulm, Christian; Bertl, Kristina; Strbac, Georg D; Esfandeyari, Azadeh; Stavropoulos, Andreas; Zechner, Werner

    2017-12-01

    Sinus floor augmentation is a routinely used surgical technique for increasing the bone height/volume of the atrophic posterior maxilla. Optimal integration of the implanted augmentation material within the newly formed bone will-at least partly-depend on adequate vascularization to ensure sufficient recruitment of osteoblast and osteoclast precursor cells. The present technical note describes a modification intended to facilitate increased blood inflow into the augmented space. After preparation of the lateral window and elevation of the Schneiderian membrane, the cortical bone of the sinus floor is perforated several times either by using a piezoelectric device or a microsurgical handpiece with the corresponding tip or bur; these perforations should extend into the trabecular bone. The experiences with this modified technique after 12 patients are presented and discussed. It is expected that by means of this relatively simple technique, increased blood and cell inflow into the augmented space is achieved. This may, in turn, enhance new bone formation and improve the integration of the augmentation material.

  14. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone.

    PubMed

    Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel

    2016-01-01

    Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.

  15. Acute myelofibrosis and acute lymphoblastic leukemia in an elderly patient with previously treated multiple myeloma.

    PubMed

    Gonzalez, Maria M; Kidd, Laura; Quesada, Jorge; Nguyen, Nghia; Chen, Lei

    2013-01-01

    Multiple myeloma (MM) is a plasma cell neoplasm involving the bone marrow with organ damage and/or a monoclonal protein (M-spike in the serum and/or urine). This neoplasm typically affects adults over the age of 50. Acute lymphoblastic leukemia (ALL) is a hematological disorder involving at least 20% lymphoblasts in the bone marrow of the B-cell lineage. Acute lymphoblastic leukemia most commonly affects young children with 75% of cases occurring in children less than 6 years old. This case report describes a patient diagnosed with MM in 2000 who achieved a complete remission in 2006 after chemotherapy. Four years later, the patient presented with sudden pancytopenia. A bone marrow biopsy was obtained revealing a B lymphoblastic leukemia in an extensively fibrotic marrow without evidence of MM. A diagnosis of ALL with myelofibrosis is rare in the adult population, acute myelofibrosis (AMF) is more commonly associated with myeloproliferative disorders, and the development of acute leukemia in myeloma is rare. To the best of our knowledge, the presence of MM, ALL, and myelofibrosis in one patient has never been reported.

  16. The adipose organ and multiple myeloma: Impact of adipokines on tumor growth and potential sites for therapeutic intervention.

    PubMed

    Allegra, Alessandro; Innao, Vanessa; Gerace, Demetrio; Allegra, Andrea Gaetano; Vaddinelli, Doriana; Bianco, Oriana; Musolino, Caterina

    2018-07-01

    In addition to its capacity to store lipids the adipose tissue is now identified as a real organ with both endocrine and metabolic roles. Preclinical results indicate that modifying adipose tissue and bone marrow adipose tissue (BMAT) could be a successful multiple myeloma (MM) therapy. BMAT interrelates with bone marrow cells and other immune cells, and may influence MM disease progression. The BM adipocytes may have a role in MM progression, bone homing, chemoresistance, and relapse, due to local endocrine, paracrine, or metabolic factors. BM adipocytes isolated from MM subjects have been shown to increase myeloma growth in vitro and may preserve cells from chemotherapy-induced apoptosis. By producing free fatty acids and emitting signaling molecules such as growth factors and adipokines, BM adipocytes are both an energy font and an endocrine signaling factory. This review should suggest future research approaches toward developing novel treatments to target MM by targeting BMAT and its products. Copyright © 2018 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  17. Steroid osteopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, J.J.; Weiss, S.C.

    1984-01-01

    Patients receiving steroids or having disease processes which increase natural steroid production often demonstrate ''the classic x-ray changes'' of avascular necrosis of bone. Bone scintigraphy in these patients most frequently demonstrates an increased radionuclide localization. The literature suggests that the increased activity is related to healing of the avascular process. In a recent study of Legg-Calve-Perthes Disease (LCPD), 37 of the children had multiple studies and increased activity within the epiphysis during revascularization was extremely rare. Not only are the scintigraphic findings in steroid osteopathy dissimilar to that in healing LCPD, but the time interval for healing is much tomore » short for that of a vascular necrosis and no patients demonstrated an avascular phase on bone scintigraphy. Of 15 children with renal transplants on steroid therapy, 9 demonstrated x-ray and clinical findings of osteopathy. In 8 of 9 instances, bone scintigraphy showed increased localization of radionuclide in the affected bone. Improvement or a return to normal occurred in those patients in whom steroids were discontinued. The following is a proposed mechanism for steroid osteopathy. Steroids affect the osteoblastic and osteoclastic activity of bone and weaken its internal structure. Ordinary stress produces microtrabecular fractures. Fractures characteristically stimulate reactive hyperemia and increase bone metabolism. The result is increased bone radiopharmaceutical localization. The importance of recognizing this concept is that steroid osteopathy is preventable by reducing the administered steroid dose. As opposed to avascular necrosis, bone changes are reversible.« less

  18. Multi-frequency Axial Transmission Bone Ultrasonometer

    PubMed Central

    Tatarinov, Alexey; Egorov, Vladimir; Sarvazyan, Noune; Sarvazyan, Armen

    2014-01-01

    The last decade has seen a surge in the development of axial transmission QUS (Quantitative UltraSound) technologies for the assessment of long bones using various modes of acoustic waves. The condition of cortical bones and the development of osteoporosis are determined by numerous mechanical, micro-structural, and geometrical or macro-structural bone properties like hardness, porosity and cortical thickness. Such complex manifestations of osteoporosis require the evaluation of multiple parameters with different sensitivities to the various properties of bone that are affected by the disease. This objective may be achieved by using a multi-frequency ultrasonic examination The ratio of the acoustic wavelength to the cortical thickness can be changed by varying the frequency of the ultrasonic pulse propagating through the long bone that results in the change in composition of the induced wave comprised of a set of numerous modes of guided, longitudinal, and surface acoustic waves. The multi-frequency axial transmission QUS method developed at Artann Laboratories (Trenton, NJ) is implemented in the Bone Ultrasonic Scanner (BUSS). In the current version of the BUSS, a train of ultrasonic pulses with 60, 100, 400, 800, and 1200 kHz frequencies is used. The developed technology was tested on a variety of bone phantoms simulating normal, osteopenic, and osteoporotic bones. The results of this study confirm the feasibility of the multi-frequency approach for the assessment of the processes leading to osteoporosis. PMID:24206675

  19. Preclinical and clinical studies on the use of growth factors for bone repair: a systematic review.

    PubMed

    Fisher, Daniel Mark; Wong, James Min-Leong; Crowley, Conor; Khan, Wasim S

    2013-05-01

    Bone healing is a complex process. Whilst the majority of fractures heal with conventional treatment, open fractures, large bone defects and non unions still provide great challenges to Orthopaedic Surgeons. Whilst autologous bone graft is seen as the gold standard, the use of growth factors is a growing area of research to find an effective alternative with lower side effects such as donor site morbidity and the finite amount available. This systematic review aims to summarize the pre clinical in-vivo studies and examine the clinical studies on the use of growth factors in bone healing. Databases: PubMed, Medline, OVID, and Cochrane library. The following key words and search terms were used: Growth Factors, Bone Healing, Bone Morphogenic Protein, Transforming Growth Factor Beta, Insulin Like Growth Factor, Platelet Derived Growth Factor, Fracture. All articles were screened based on title with abstracts and full text articles reviewed as appropriate. Reference lists were reviewed from relevant articles to ensure comprehensive and systematic review. Three tables of studies were constructed focussing on Bone Morphogenic Proteins, Platelet Rich Plasma and Growth Factors and Tissue Engineering. Bone Morphogenic Proteins and Platelet Rich Plasma, which contains multiple growth factors, have been shown in preclinical and clinical trials to be an effective alternative to autologous bone graft. Bone Morphogenic Proteins have been shown to be effective in fracture non union, and in open tibial fractures. Platelet Rich Plasma has shown promise in preclinical trials and some small clinical trials, however numbers are limited. Bone Morphogenic Proteins have been shown to be superior to Platelet Rich Protein in one trial. Combining these growth factors with tissue engineering techniques is the focus of ongoing research, and through further clinical trials the most effective techniques for enhancing bone healing will be revealed.

  20. Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma

    PubMed Central

    Chang, Betty Y.; Kong, Sun-Young; Fulciniti, Mariateresa; Yang, Guang; Calle, Yolanda; Hu, Yiguo; Lin, Jianhong; Zhao, Jian-Jun; Cagnetta, Antonia; Cea, Michele; Sellitto, Michael A.; Zhong, Mike Y.; Wang, Qiuju; Acharya, Chirag; Carrasco, Daniel R.; Buggy, Joseph J.; Elias, Laurence; Treon, Steven P.; Matsui, William; Richardson, Paul; Munshi, Nikhil C.; Anderson, Kenneth C.

    2012-01-01

    Bruton tyrosine kinase (Btk) has a well-defined role in B-cell development, whereas its expression in osteoclasts (OCs) further suggests a role in osteoclastogenesis. Here we investigated effects of PCI-32765, an oral and selective Btk inhibitor, on osteoclastogenesis as well as on multiple myeloma (MM) growth within the BM microenvironment. PCI-32765 blocked RANKL/M-CSF–induced phosphorylation of Btk and downstream PLC-γ2 in OCs, resulting in diminished TRAP5b (ED50 = 17nM) and bone resorption activity. PCI-32765 also inhibited secretion of multiple cytokines and chemokines from OC and BM stromal cell cultures from both normal donors (ED50 = 0.5nM) and MM patients. It decreased SDF-1–induced migration of MM cells, and down-regulated MIP1-α/CCL3 in MM cells. It also blocked MM cell growth and survival triggered by IL-6 or coculture with BM stromal cells or OCs in vitro. Importantly, PCI-32765 treatment significantly inhibits in vivo MM cell growth (P < .03) and MM cell–induced osteolysis of implanted human bone chips in SCID mice. Moreover, PCI-32765 prevents in vitro colony formation by stem-like cells from MM patients. Together, these results delineate functional sequelae of Btk activation mediating osteolysis and growth of MM cells, supporting evaluation of PCI-32765 as a novel therapeutic in MM. PMID:22689860

  1. Prevalence of Osteoporosis and Low Bone Mass in Older Chinese Population Based on Bone Mineral Density at Multiple Skeletal Sites

    PubMed Central

    Lu, Yi-Chien; Lin, Ying Chin; Lin, Yen-Kuang; Liu, Yi-Jui; Chang, Kwang-Hwa; Chieng, Poon-Ung; Chan, Wing P.

    2016-01-01

    Diagnosis of osteoporosis is based on bone mineral density (BMD) measurement, which is site dependent and commonly discordant between measurement sites. We aimed to determine the prevalence of osteoporosis diagnosed based on BMD T-scores measured by dual-energy x-ray absorptiometry (DXA) at different sites: the lumbar spine (LS) alone, femoral neck (FN) alone, or both. A total of 1712 women and 2028 men with LS and FN BMD measurements were enrolled. Over 50% discordance was found between osteoporosis classifications based on T-scores measured at the LS and FN. Use of the lowest T-scores measured at both the LS and right and left FN (rather than one site) significantly increased the prevalence of osteoporosis from 4.03 to 10.75% in postmenopausal women and 1.82 to 4.29% in men aged ≧50 years (p < 0.001). The trends of overall and age-adjusted prevalence of osteoporosis were similar in women and men. Osteoporosis was diagnosed at a higher rate if the USA reference rather than the Asia reference was used to calculate the T-score (26.64% vs. 10.75%). In conclusion, diagnosis based on the lowest T-score from multiple site BMD measurement can increase the prevalence of osteoporosis, demonstrating the higher sensitivity of the multiple site measurement strategy. PMID:27143609

  2. Management of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM).

    PubMed

    Kyle, Robert A; Rajkumar, S Vincent

    2011-06-01

    Monoclonal gammopathy of undetermined significance (MGUS) is defined as a serum M protein level of less than 3 g/dL, less than 10% clonal plasma cells in the bone marrow, and the absence of end-organ damage. The prevalence of MGUS is 3.2% in the white population but is approximately twice that high in the black population. MGUS may progress to multiple myeloma, AL amyloidosis, Waldenström macroglobulinemia, or lymphoma. The risk of progression is approximately 1% per year, but the risk continues even after more than 25 years of observation. Risk factors for progression include the size of the serum M protein, the type of serum M protein, the number of plasma cells in the bone marrow, and the serum free light chain ratio. Smoldering (asymptomatic) multiple myeloma (SMM) is characterized by the presence of an M protein level of 3 g/dL or higher and/or 10% or more monoclonal plasma cells in the bone marrow but no evidence of end-organ damage. The overall risk of progression to a malignant condition is 10% per year for the first 5 years, approximately 3% per year for the next 5 years, and 1% to 2% per year for the following 10 years. Patients with both MGUS and SMM must be followed up for their lifetime.

  3. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)—Patient Version

    Cancer.gov

    Plasma cell neoplasms occur when abnormal plasma cells or myeloma cells form tumors in the bones or soft tissues of the body. Multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are different types of plasma cell neoplasms. Find out about risk factors, symptoms, diagnostic tests, prognosis, and treatment for these diseases.

  4. Carmustine

    MedlinePlus

    ... injection is used to treat certain types of brain tumors. Carmustine injection is also used along with prednisone to treat multiple myeloma (a type of cancer of the bone marrow). It is also used ...

  5. Biochemical markers of bone turnover in diagnosis of myeloma bone disease.

    PubMed

    Dizdar, Omer; Barista, Ibrahim; Kalyoncu, Umut; Karadag, Omer; Hascelik, Gulsen; Cila, Aysenur; Pinar, Asli; Celik, Ismail; Kars, Ayse; Tekuzman, Gulten

    2007-03-01

    This study was designed to explore the value of markers of bone turnover, macrophage inflammatory protein-1alpha (MIP-1alpha), and osteopontin (OPN) in the diagnosis of myeloma bone disease. Twenty-five patients with newly diagnosed and untreated multiple myeloma (MM), and 22 age-, sex-, and bone mineral density-matched control subjects were enrolled. Levels of MIP-1alpha, OPN, carboxy-terminal telopeptide of Type-1 collagen (C-telopeptide or Ctx), deoxypyridinoline (DPD), Type-1 collagen propeptide (T1Pro), and bone-specific alkaline phosphatase (BALP) were assessed in both groups. Twenty-two of the patients had bone involvement documented by skeletal surveys and lumbar spinal magnetic resonance imaging. Levels of serum Ctx, OPN, MIP-1alpha, and urine DPD were significantly higher in MM patients with bone disease than in controls (P<0.01). Serum Ctx levels were elevated in 90.9% of patients with MM and 40.9% of controls (P<0.001). Urine DPD levels were elevated in 90.4% of the patients and 31.8% of the controls (P<0.001). The serum OPN and MIP-1alpha levels of the patients were significantly correlated with beta2-microglobulin and lactate dehydrogenase levels (P<0.05). Our study indicates that Ctx and DPD are sensitive markers of bone disease in MM, and higher than normal values suggest presence of bone disease rather than benign osteoporosis in MM. The utility of OPN and MIP-1alpha needs to be further investigated. Copyright (c) 2006 Wiley-Liss, Inc.

  6. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases.

    PubMed

    Yamashita, Shugo; Katsumi, Hidemasa; Hibino, Nozomi; Isobe, Yugo; Yagi, Yumiko; Kusamori, Kosuke; Sakane, Toshiyasu; Yamamoto, Akira

    2017-09-28

    In this study, we aimed to develop a polyethylene glycol (PEG)-conjugated third generation polyamidoamine (PAMAM) dendrimer with multiple carboxylic acids as a bone-targeting carrier for the treatment of bone diseases. We conjugated PAMAM backbones to various carboxylic acids [aspartic acid (Asp), glutamic acid (Glu), succinic acid (Suc), or aconitic acid (Aco)] to obtain four different types of carboxylic acid-modified PAMAMs. PEG was covalently bound to carboxylic acid-modified PAMAMs to obtain PEGylated carboxylic acid-modified PAMAMs. In a tissue distribution study, the amount of 111 In-labeled unmodified PAMAM taken up by the bone after intravenous injection in mice was 11.3%. In contrast, the dose of 111 In-labeled PEG(5)-Asp-PAMAM, PEG(5)-Glu-PAMAM, PEG(5)-Suc-PAMAM, or PEG(5)-Aco-PAMAM that accumulated in the bone after injection was approximately 46.0, 15.6, 22.6, and 24.5%, respectively. The bone clearance rates of 111 In-labeled PEGylated carboxylic acid-modified PAMAMs were proportional to their affinities to hydroxyapatite and Ca 2+ . An intra-bone distribution study showed that fluorescein isothiocyanate-labeled PEG(5)-Asp-PAMAM predominantly accumulated on eroded and quiescent surfaces, a pattern associated with the pathogenesis of bone diseases, such as rheumatoid arthritis and osteoporosis. Our findings indicate that PEG(5)-Asp-PAMAM is a promising drug carrier for efficient drug targeting to the bones. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Direct Role of Collagen Glycation in Bone Fracture

    PubMed Central

    Poundarik, Atharva A.; Wu, Ping-Cheng; Evis, Zafer; Sroga, Grazyna E.; Ural, Ani; Rubin, Mishaela; Vashishth, Deepak

    2015-01-01

    Non-enzymatic glycation (NEG) is an age-related process accelerated by diseases like diabetes, and causes the accumulation of advanced glycation end-products (AGEs). NEG-mediated modification of bone’s organic matrix, principally collagen type-I, has been implicated in impairing skeletal physiology and mechanics. Here, we present evidence, from in vitro and in vivo models, and establish a causal relationship between collagen glycation and alterations in bone fracture at multiple length scales. Through atomic force spectroscopy, we established that NEG impairs collagen’s ability to dissipate energy. Mechanical testing of in vitro glycated human bone specimen revealed that AGE accumulation due to NEG dramatically reduces the capacity of organic and mineralized matrix to creep and caused bone to fracture under impact at low levels of strain (3000–5000 μstrain) typically associated with fall. Fracture mechanics tests of NEG modified human cortical bone of varying ages, and their age-matched controls revealed that NEG disrupted microcracking based toughening mechanisms and reduced bone propagation and initiation fracture toughness across all age groups. A comprehensive mechanistic model, based on experimental and modeling data, was developed to explain how NEG and AGEs are causal to, and predictive of bone fragility. Furthermore, fracture mechanics and indentation testing on diabetic mice bones revealed that diabetes mediated NEG severely disrupts bone matrix quality in vivo. Finally, we show that AGEs are predictive of bone quality in aging humans and have diagnostic applications in fracture risk. PMID:26530231

  8. Excess TGF-β mediates muscle weakness associated with bone metastases in mice

    PubMed Central

    Reiken, Steven; Xie, Wenjun; Andersson, Daniel C.; John, Sutha; Chiechi, Antonella; Wright, Laura E.; Umanskaya, Alisa; Niewolna, Maria; Trivedi, Trupti; Charkhzarrin, Sahba; Khatiwada, Pooja; Wronska, Anetta; Haynes, Ashley; Benassi, Maria Serena; Witzmann, Frank A.; Zhen, Gehua; Wang, Xiao; Cao, Xu; Roodman, G. David; Marks, Andrew R.; Guise, Theresa A.

    2015-01-01

    Cancer-associated muscle weakness is poorly understood and there is no effective treatment. Here, we find that seven different mouse models of human osteolytic bone metastases, representing breast, lung and prostate cancers, as well as multiple myeloma exhibited impaired muscle function, implicating a role for the tumor-bone microenvironment in cancer-associated muscle weakness. We found that TGF-β, released from the bone surface as a result of metastasis-induced bone destruction upregulated NADPH oxidase 4 (Nox4), resulting in elevated oxidization of skeletal muscle proteins, including the ryanodine receptor/calcium (Ca2+) release channel (RyR1). The oxidized RyR1 channels leaked Ca2+, resulting in lower intracellular signaling required for proper muscle contraction. We found that inhibiting RyR1 leak, TGF-β signaling, TGF-β release from bone or Nox4 all improved muscle function in mice with MDA-MB-231 bone metastases. Humans with breast cancer- or lung cancer-associated bone metastases also had oxidized skeletal muscle RyR1 that is not seen in normal muscle. Similarly, skeletal muscle weakness, higher levels of Nox4 protein and Nox4 binding to RyR1, and oxidation of RyR1 were present in a mouse model of Camurati-Engelmann disease, a non-malignant metabolic bone disorder associated with increased TGF-β activity. Thus, metastasis-induced TGF-β release from bone contributes to muscle weakness by decreasing Ca2+-induced muscle force production. PMID:26457758

  9. Marginal bone level in two Danish cross-sectional population samples in 1997-1998 and 2007-2008.

    PubMed

    Bahrami, Golnosh; Vaeth, Michael; Wenzel, Ann; Isidor, Flemming

    2018-04-12

    The aim of this study was to compare the marginal bone level of two randomly selected population samples from 1997/1998 and 2007/2008, with special emphasis on the role of smoking habits and gender. Two cross-sectional randomly selected population samples [1997/1998 (N = 616) and 2007/2008 (N = 396)] were analysed with respect to the marginal bone level. The marginal bone level was measured in full-mouth intraoral radiographs. Information on smoking was gathered using questionnaires. Multiple regression analysis was used in order to adjust for correlating factors (gender, age, smoking habits and number of teeth). After adjusting for confounding factors, the population sample from 2007/2008 had on average a slightly, but statistically significantly, more reduced average marginal bone level (0.15 mm) than the population sample from 1997/1998. Men had more reduced marginal bone level than women (0.12 mm). Smokers in both population samples had more reduced marginal bone level than non-smokers (0.39 mm and 0.12 mm for 1997/1998; 0.65 mm and 0.16 mm for 2007/2008). In these populations, sampled 10 years apart, the 2007/2008 population sample had a slightly more reduced marginal bone level than the 1997/1998 population sample. Men had more reduced marginal bone level than women, and smoking is considered a major risk factor for a reduced marginal bone level.

  10. Top down and bottom up engineering of bone.

    PubMed

    Knothe Tate, Melissa L

    2011-01-11

    The goal of this retrospective article is to place the body of my lab's multiscale mechanobiology work in context of top-down and bottom-up engineering of bone. We have used biosystems engineering, computational modeling and novel experimental approaches to understand bone physiology, in health and disease, and across time (in utero, postnatal growth, maturity, aging and death, as well as evolution) and length scales (a single bone like a femur, m; a sample of bone tissue, mm-cm; a cell and its local environment, μm; down to the length scale of the cell's own skeleton, the cytoskeleton, nm). First we introduce the concept of flow in bone and the three calibers of porosity through which fluid flows. Then we describe, in the context of organ-tissue, tissue-cell and cell-molecule length scales, both multiscale computational models and experimental methods to predict flow in bone and to understand the flow of fluid as a means to deliver chemical and mechanical cues in bone. Addressing a number of studies in the context of multiple length and time scales, the importance of appropriate boundary conditions, site specific material parameters, permeability measures and even micro-nanoanatomically correct geometries are discussed in context of model predictions and their value for understanding multiscale mechanobiology of bone. Insights from these multiscale computational modeling and experimental methods are providing us with a means to predict, engineer and manufacture bone tissue in the laboratory and in the human body. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    PubMed

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  12. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activitymore » in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.« less

  13. Arthrodesis Using Pedicled Fibular Flap After Failed Infected Knee Arthroplasty

    PubMed Central

    Minear, Steve C.; Lee, Gordon; Kahn, David; Goodman, Stuart

    2011-01-01

    Objective: Severe bone loss associated with failed revision total knee arthroplasty is a challenging scenario. The pedicled fibular flap is a method to obtain vascularized bone for use in knee arthrodesis after failure of a total knee arthroplasty, with substantial loss of bone. Methods: We report 2 successful knee arthrodeses using this method in patients with infected, failed multiply revised total knee arthroplasties. The failed prosthesis was removed, and the bones were aligned and stabilized. The fibular flap was then harvested, fed through a subcutaneous tunnel, and placed within the medullary canal at the arthrodesis site. The soft tissue was closed over the grafts and flaps. Results: Two elderly women presented with pain and drainage from previous total knee arthroplasties after multiple revisions. Arthrodeses were performed as described, and both patients were pain-free with the knee fused at 1 year. Conclusions: Thus, pedicled vascularized flaps are a viable alternative in the treatment of failed revision arthroplasty with large segmental bone loss. PMID:22132250

  14. Bilateral first rib anomalous articulations with pseudarthroses mimicking healing fractures in an infant with abusive head injury.

    PubMed

    Pasquale-Styles, Melissa A; Crowder, Christian M; Fridie, Jeannette; Milla, Sarah S

    2014-11-01

    Bilateral symmetric bone nodules were observed in the anterolateral first ribs of an infant with shaking injuries at autopsy. The location prompted diagnostic considerations of healing fractures versus anomalous articulations with pseudarthroses. The forensic pathologist worked with forensic anthropologists and pediatric radiologists to evaluate autopsy findings and compare premortem and postmortem X-rays. Gross examination of the bones by the pathologist and anthropologists confirmed bilateral, callus-like bone nodules in first-rib locations associated with pseudarthroses. Histologic examination of one of the bones further showed features most consistent with pseudarthrosis, not a healing fracture. Radiologists then compared multiple premortem and postmortem radiographs that showed no remodeling of the bone over a 2-week interval between the time of injury and death, which would be unexpected for a healing fracture in an infant. This multidisciplinary approach resulted in the appropriate diagnosis of pseudarthroses due to anomalous articulations, an uncommon finding in forensic pathology. © 2014 American Academy of Forensic Sciences.

  15. Review of ectodermal dysplasia: case report on treatment planning and surgical management of oligodontia with implant restorations.

    PubMed

    Li, Dehua; Liu, Yanpu; Ma, Wei; Song, Yingliang

    2011-10-01

    Dental implants have proven to be a reliable modality for the rehabilitation of missing teeth. However, there are limited reports on managing anodontia related to ectodermal dysplasia in the scientific literature. The severely reduced bone quantity due to the congenital absence of multiple natural teeth is the biggest challenge for the surgeon. There are a variety of bone augmentation procedures to establish adequate bone quantity, and the surgical planning should be used on an individual case basis. This is a report of a 19-year-old male patient affected by hypohidrotic ectodermal dysplasia. Oligodontia associated with severe atrophy of jaws was the chief complaint for seeking treatment. Based on clinical and radiographic examinations, 2 bone augmentation procedures were used to obtain sufficient width of alveolus for implant placement by performing an onlay bone graft in the maxilla and vertical distraction osteogenesis in the mandible. The treatment planning was discussed and informed consent was obtained.

  16. Role of FGFs/FGFRs in skeletal development and bone regeneration.

    PubMed

    Du, Xiaolan; Xie, Yangli; Xian, Cory J; Chen, Lin

    2012-12-01

    Fibroblast growth factor (FGF)/FGF (FGFR) signaling is an important pathway involved in skeletal development. Missense mutations in FGFs and FGFRs were found clinically to cause multiple congenital skeleton diseases including chondrodysplasia, craniosynostosis, syndromes with dysregulated phosphate metabolism. FGFs/FGFRs also have crucial roles in bone fracture repair and bone regeneration. Understanding the molecular mechanisms for the role of FGFs/FGFRs in the regulation of skeletal development, genetic skeletal diseases, and fracture healing will ultimately lead to better treatment of skeleton diseases caused by mutations of FGFs/FGFRs and fracture. This review summarizes the major findings on the role of FGF signaling in skeletal development, genetic skeletal diseases and bone healing, and discusses issues that remain to be resolved in applying FGF signaling-related measures to promote bone healing. This review has also provided a perspective view on future work for exploring the roles and action mechanisms of FGF signaling in skeletal development, genetic skeletal diseases, and fracture healing. Copyright © 2012 Wiley Periodicals, Inc.

  17. Biodegradable hybrid tissue engineering scaffolds for reconstruction of large bone defects

    NASA Astrophysics Data System (ADS)

    Barati, Danial

    Complex skeletal injuries and large bone fractures are still a significant clinical problem in US. Approximately 1.5 million Americans (veterans, their families, and civilians) every year suffer from bone loss due to traumatic skeletal injuries, infection, and resection of primary tumors that require extensive grafting to bridge the gap. The US bone graft market is over $2.2 billion a year. Due to insufficient mechanical stability, lack of vascularity, and inadequate resorption of the graft, patients with traumatic large skeletal injuries undergo multiple costly operations followed by extensive recovery steps to maintain proper bone alignment and length. Current strategies for repairing damaged or diseased bones include autologous or allograft bone transplantations. However, limited availability of autografts and risk of disease transmission associated with allografts have necessitated the search for the development of new bone graft options and strategies. The overall goal of this project is to develop a much-needed bone-mimetic engineered graft as a substitute for current strategies providing required bone grafts for reconstruction of large bone defects. This project will use the structure of natural cortical bone as a guide to produce an engineered bone graft with balanced strength, osteogenesis, vascularization, and resorption. The outcome of this project will be a biodegradable hybrid scaffold system (similar to natural cortical bone) including a mechanically strong scaffold allowing for mechanical stability of the load-bearing defect site and a soft and highly porous structure such as a hydrogel phase which will allow for efficient cell and growth factor delivery into the defect implantation site, cell niche establishment and promotion of mineralization. Successful completion of this project will transform bone graft technology for regeneration of complex bone defects from a frozen or freeze-dried allograft to a safe, infection-free, mechanically-stable, osteoinductive, and vasculogenic graft that is ultimately displaced by the patient's own tissue.

  18. Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone diseases.

    PubMed

    Zhai, Yuankun; Tyagi, Suresh C; Tyagi, Neetu

    2017-08-01

    Bone homeostasis requires a balance between the bone formation of osteoblasts and bone resorption of osteoclasts to maintain ideal bone mass and bone quality. An imbalance in bone remodeling processes results in bone metabolic disorders such as osteoporosis. Hydrogen sulfide (H 2 S), a gasotransmitter, has attracted the focus of many researchers due to its multiple physiological functions. It has been implicated in anti-inflammatory, vasodilatory, angiogenic, cytoprotective, anti-oxidative and anti-apoptotic mechanisms. H 2 S has also been shown to exert osteoprotective activity through its anti-inflammatory and anti-oxidative effects. However, the underlying molecular mechanisms by which H 2 S mitigates bone diseases are not completely understood. Experimental evidence suggests that H 2 S may regulate signaling pathways by directly influencing a gene in the cascade or interacting with some other gasotransmitter (carbon monoxide or nitric oxide) or both. MicroRNAs (miRNAs) are short non-coding RNAs which regulate gene expression by targeting, binding and suppressing mRNAs; thus controlling cell fate. Certainly, bone remodeling is also regulated by miRNAs expression and has been reported in many studies. MicroRNAs also regulate H 2 S biosynthesis. The inter-regulation of microRNAs and H 2 S opens a new possibility for exploring the H 2 S-microRNA crosstalk in bone diseases. However, the relationship between miRNAs, bone development, and H 2 S is still not well explained. This review focuses on miRNAs and their roles in regulating bone remodeling and possible mechanisms behind H 2 S mediated bone loss inhibition, H 2 S-miRNAs crosstalk in relation to the pathophysiology of bone remodeling, and future perspectives for miRNA-H 2 S as a therapeutic agent for bone diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Skeletal development of mice lacking bone sialoprotein (BSP)--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    PubMed

    Bouleftour, Wafa; Boudiffa, Maya; Wade-Gueye, Ndeye Marième; Bouët, Guénaëlle; Cardelli, Marco; Laroche, Norbert; Vanden-Bossche, Arnaud; Thomas, Mireille; Bonnelye, Edith; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie Hélène; Malaval, Luc

    2014-01-01

    Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing primary mineralization.

  20. Analysis of the independent power of age-related, anthropometric and mechanical factors as determinants of the structure of radius and tibia in normal adults. A pQCT study.

    PubMed

    Reina, P; Cointry, G R; Nocciolino, L; Feldman, S; Ferretti, J L; Rittweger, J; Capozza, R F

    2015-03-01

    To compare the independent influence of mechanical and non-mechanical factors on bone features, multiple regression analyses were performed between pQCT indicators of radius and tibia bone mass, mineralization, design and strength as determined variables, and age or time since menopause (TMP), body mass, bone length and regional muscles' areas as selected determinant factors, in Caucasian, physically active, untrained healthy men and pre- and post-menopausal women. In men and pre-menopausal women, the strongest influences were exerted by muscle area on radial features and by both muscle area and bone length on the tibia. Only for women, was body mass a significant factor for tibia traits. In men and pre-menopausal women, mass/design/strength indicators depended more strongly on the selected determinants than the cortical vBMD did (p<0.01-0.001 vs n.s.), regardless of age. However, TMP was an additional factor for both bones (p<0.01-0.001). The selected mechanical factors (muscle size, bone lengths) were more relevant than age/TMP or body weight to the development of allometrically-related bone properties (mass/design/strength), yet not to bone tissue 'quality' (cortical vBMD), suggesting a determinant, rather than determined role for cortical stiffness. While the mechanical impacts of muscles and bone levers on bone structure were comparable in men and pre-menopausal women, TMP exerted a stronger impact than allometric or mechanical factors on bone properties, including cortical vBMD.

  1. As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones.

    PubMed

    Kulstein, Galina; Hadrys, Thorsten; Wiegand, Peter

    2018-01-01

    Short tandem repeat (STR) typing from skeletal remains can be a difficult task. Dependent on the environmental conditions of the provenance of the bones, DNA can be degraded and STR typing inhibited. Generally, dense and compact bones are known to preserve DNA better. Several studies already proved that femora and teeth have high DNA typing success rates. Unfortunately, these elements are not present in all cases involving skeletal remains. Processing partial or singular skeletal elements, it is favorable to select bone areas where DNA preservation is comparably higher. Especially, cranial bones are often accidentally discovered during criminal investigations. The cranial bone is composed of multiple parts. In this examination, we evaluated the potential of the petrous bone for human identification of skeletal remains in forensic case work. Material from different sections of eight unknown cranial bones and-where available-additionally other skeletal elements, collected at the DNA department of the Institute of Legal Medicine in Ulm, Germany, from 2010 to 2017, were processed with an optimized DNA extraction and STR typing strategy. The results highlight that STR typing from the petrous bones leads to reportable profiles in all individuals, even in cases where the analysis of the parietal bone failed. Moreover, the comparison of capillary electrophorese (CE) typing to massively parallel sequencing (MPS) analysis shows that MPS has the potential to analyze degraded human remains and is even capable to provide additional information about phenotype and ancestry of unknown individuals.

  2. Immunological dysregulation in multiple myeloma microenvironment.

    PubMed

    Romano, Alessandra; Conticello, Concetta; Cavalli, Maide; Vetro, Calogero; La Fauci, Alessia; Parrinello, Nunziatina Laura; Di Raimondo, Francesco

    2014-01-01

    Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo- and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target.

  3. Multiple stress fractures in a young female runner.

    PubMed

    Dusek, T; Pećina, M; Loncar-Dusek, M; Bojanic, I

    2004-01-01

    The effect of exercise on female's bone metabolism has received much attention in recent years. We report on unusual case of a female runner with low body mass and amenorrhea, who suffered 4 stress fractures. Three of the stress fractures occurred during her sports career, and the fourth occurred 7 years after the cessation of sports activities. It seems that exercise-induced amenorrhea together with food restriction in the young age may cause long-term consequences on bone metabolism.

  4. Combination therapy with carfilzomib, lenalidomide and dexamethasone (KRd) results in an unprecedented purity of the stem cell graft in newly diagnosed patients with myeloma.

    PubMed

    Tageja, Nishant; Korde, Neha; Kazandjian, Dickran; Panch, Sandhya; Manasanch, Elisabet; Bhutani, Manisha; Kwok, Mary; Mailankody, Sham; Yuan, Constance; Stetler-Stevenson, Maryalice; Leitman, Susan F; Sportes, Claude; Landgren, Ola

    2018-05-04

    Still, many physicians give 4 cycles of combination therapy to multiple myeloma patients prior to collection of stem cells for autologous bone marrow transplant. This tradition originates from older doxorubicin-containing regiments which limited the number of cycles due to cumulative cardiotoxicity. Using older regiments, most patients had residual myeloma cells in their autologous stem-cell grafts during collection. Emerging data show that newly diagnosed multiple myeloma patients treated with modern carfilzomib/lenalidomide/dexamethasone (KRd) therapy, on average, take 6 cycles until reaching minimal residual disease (MRD) negativity. We assessed newly diagnosed patients treated with KRd focusing MRD status both in the individual patient's bone marrow, and the corresponding autologous hematopoietic progenitor cell grafts during collection. Per protocol, stem-cell collection was allowed after 4 to 8 cycles of KRd. We found similar stem-cell yield independent of the number of cycles of KRd. At stem-cell collection, 11/30 patients (36.6%) were MRD negative in their bone marrow; all 11 patients had MRD negative hematopoietic progenitor cell grafts. Furthermore, 18/19 patients who were MRD positive in their bone marrows also had MRD negative hematopoietic progenitor cell grafts. These observations support 6 cycles of KRd as an efficacious and safe induction strategy prior to stem-cell collection.

  5. Skeletal accumulation of fluorescently tagged zoledronate is higher in animals with early stage chronic kidney disease.

    PubMed

    Swallow, E A; Aref, M W; Chen, N; Byiringiro, I; Hammond, M A; McCarthy, B P; Territo, P R; Kamocka, M M; Winfree, S; Dunn, K W; Moe, S M; Allen, M R

    2018-06-11

    This work examines the skeletal accumulation of fluorescently tagged zoledronate in an animal model of chronic kidney disease. The results show higher accumulation in 24-h post-dose animals with lower kidney function due to greater amounts of binding at individual surfaces. Chronic kidney disease (CKD) patients suffer from increased rates of skeletal-related mortality from changes driven by biochemical abnormalities. Bisphosphonates are commonly used in reducing fracture risk in a variety of diseases, yet their use is not recommended in advanced stages of CKD. This study aimed to characterize the accumulation of a single dose of fluorescently tagged zoledronate (FAM-ZOL) in the setting of reduced kidney function. At 25 weeks of age, FAM-ZOL was administered to normal and CKD rats. Twenty-four hours later, multiple bones were collected and assessed using bulk fluorescence imaging, two-photon imaging, and dynamic histomorphometry. CKD animals had significantly higher levels of FAM-ZOL accumulation in the proximal tibia, radius, and ulna, but not in lumbar vertebral body or mandible, based on multiple measurement modalities. Although a majority of trabecular bone surfaces were covered with FAM-ZOL in both normal and CKD animals, the latter had significantly higher levels of fluorescence per unit bone surface in the proximal tibia. These results provide new data regarding how reduced kidney function affects drug accumulation in rat bone.

  6. Rickets: case series and diagnostic review of hypovitaminosis D in swine.

    PubMed

    Madson, Darin M; Ensley, Steve M; Gauger, Phil C; Schwartz, Kent J; Stevenson, Greg W; Cooper, Vickie L; Janke, Bruce H; Burrough, Eric R; Goff, Jesse P; Horst, Ronald L

    2012-11-01

    Rickets can be attributed to nutritional, genetic, hormonal, or toxic disturbances and is classified as a metabolic bone disease. Rickets is most often associated with inappropriate dietary levels of calcium, phosphorus, and/or vitamin D. During a 27-month period (January 2010 through March 2012), the Iowa State University Veterinary Diagnostic Laboratory investigated causes of sudden, unexpected death and lameness in growing pigs throughout the Midwestern United States. Clinical observations from 17 growing pig cases included weakness, lameness, reluctance to move, muscle fasciculations and/or tremors, tetany, and death. Ribs were weak, soft, and bent prior to breaking; rachitic lesions were apparent at costochondral junctions in multiple cases. Acute and/or chronic bone fractures were also noted in multiple bones. Failure of endochondral ossification, expanded physes, infractions, thin trabeculae, and increased osteoclasts were noted microscopically. Decreased bone ash and serum 25(OH)D(3), combined with clinical and microscopic evaluation, confirmed a diagnosis of vitamin D-dependent rickets in all cases. In 3 cases, disease was linked to a specific nutrient supplier that ultimately resulted in a voluntary feed recall; however, most cases in the current investigation were not associated with a particular feed company. The present report describes vitamin D-associated rickets and its importance as a potential cause of weakness, lameness, muscle fasciculations, recumbency or sudden unexpected death in swine, and describes appropriate samples and tests for disease diagnosis.

  7. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease

    PubMed Central

    Garcia-Gomez, Antonio; Las Rivas, Javier De; Ocio, Enrique M.; Díaz-Rodríguez, Elena; Montero, Juan C.; Martín, Montserrat; Blanco, Juan F.; Sanchez-Guijo, Fermín M.; Pandiella, Atanasio; San Miguel, Jesús F.; Garayoa, Mercedes

    2014-01-01

    Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease. PMID:25268740

  8. Vertebral sarcoidosis: demonstration of bone involvement by computerized axial tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinerstein, S.L.; Kovarsky, J.

    1984-08-01

    A report is given of a rare case of vertebral sarcoidosis with negative conventional spinal x-ray films, yet with typical cystic lesions of the spine found incidentally during abdominal computerized axial tomography (CAT). The patient was a 28-year-old black man, who was admitted for evaluation of a 1 1/2-year history of diffuse myalgias, intermittent fever to 102 F orally, bilateral hilar adenopathy, and leukopenia. A technetium polyphosphate bone scan revealed diffuse areas of increased uptake over the sternum, entire vertebral column, and pelvis. Conventional x-ray films of the cervical, thoracic, and lumbar spine, and an AP view of the pelvismore » were all normal. Chest x-ray film revealed only bilateral hilar adenopathy. During the course of an extensive negative evaluation for infection, an abdominal CAT scan was done, showing multiple, small, sclerotic-rimmed cysts at multiple levels of the lower thoracic and lumbar spine. Bone marrow biopsy revealed only changes consistent with anemia of chronic disease. Mediastinal lymph node biopsy revealed noncaseating granulomas. A tentative diagnosis of sarcoidosis was made, and treatment with prednisone, isoniazid and rifampin was begun. Within two weeks of initiation of prednisone therapy, the patient was symptom-free. A repeat technetium polyphosphate bone scan revealed only a small residual area of mildly increased uptake over the upper thoracic vertebrae.« less

  9. Bone-like crack resistance in hierarchical metastable nanolaminate steels

    NASA Astrophysics Data System (ADS)

    Koyama, Motomichi; Zhang, Zhao; Wang, Meimei; Ponge, Dirk; Raabe, Dierk; Tsuzaki, Kaneaki; Noguchi, Hiroshi; Tasan, Cemal Cem

    2017-03-01

    Fatigue failures create enormous risks for all engineered structures, as well as for human lives, motivating large safety factors in design and, thus, inefficient use of resources. Inspired by the excellent fracture toughness of bone, we explored the fatigue resistance in metastability-assisted multiphase steels. We show here that when steel microstructures are hierarchical and laminated, similar to the substructure of bone, superior crack resistance can be realized. Our results reveal that tuning the interface structure, distribution, and phase stability to simultaneously activate multiple micromechanisms that resist crack propagation is key for the observed leap in mechanical response. The exceptional properties enabled by this strategy provide guidance for all fatigue-resistant alloy design efforts.

  10. Neonatal Death Dwarfism in a Girl with Distinctive Bone Dysplasia Compatible with Grebe Chondrodysplasia: Analysis by CT Scan-based Phenotype.

    PubMed

    Al Kaissi, Ali; Chehida, Farid Ben; Ganger, Rudolf; Grill, Franz

    2014-01-01

    We report on a female fetus noted to have severe malformative type of skeletal dysplasia on ultrasonography done at 35 weeks gestation. The girl died shortly after birth. Clinical examination showed a fetus with severe dwarfism, extensive long and short bones, and bone deficiencies associated with multiple dislocations. Computed tomography (CT) scan-based phenotype showed a complex constellation of malformations consistent with the diagnosis of Grebe syndrome. Parents being first cousins (consanguineous marriage) strongly suggests autosomal recessive pattern of inheritance. To our knowledge, this is the first report of neonatal death dwarfism of Grebe syndrome analyzed by CT scan-based phenotype.

  11. Identification of Prevotella in pedal osteomyelitis of a diabetic patient.

    PubMed

    Dominiak, Barbara J; Oxberry, William; Chen, Patrick C

    2003-01-01

    Osteomyelitis in a diabetic patient with a nonhealing foot ulcer, multiple medical conditions, and recurrent hospitalization for antibiotic therapy was found to be associated with gram-negative bacteria Prevotella melanginoganica and Prevotella melaninoganica hemagglutinating variant. Those organisms were identified due to the morphologically distinct features in electron microscopy and sequencing of the genes after Polymerase chain reaction amplification from the pathological material. The bacteria invaded the bone and resided in osteocyte, osteoblast, and endothelial cells. The bacteria are usually associated with periodontal plaques, causing inflammation and destruction of gingival tissue and resorption of the alveolar bone. This is the first ultrastructural and molecular study of a diabetic bone lesion with anaerobic bacterial infection.

  12. [Advances in bone dysplasias].

    PubMed

    Borrego, E; Farrington, D M; Downey, F J

    2014-01-01

    The prevalence of bone dysplasias is estimated to be one case per 1,000 inhabitants, which suggests that, at some point in the career of an orthopaedic surgeon, he will face with one of these patients. The aim of this paper is to review the general aspects of bone dysplasias and focus on those, which due to their frequency and importance, we consider most relevant (achondroplasia, multiple epiphyseal dysplasia, spondyloepiphyseal dysplasia, osteogenesis imperfecta), reviewing their fundamental features and the latest therapeutic advances. There is no cure for these diseases, so early diagnosis and appropriate therapeutic management, becomes the key to improving quality of life of these patients. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.

  13. Neuroimaging findings of extensive sphenoethmoidal dysplasia in NF1.

    PubMed

    Tam, Allison; Sliepka, Joseph M; Bellur, Sunil; Bray, Collin Douglas; Lincoln, Christie M; Nagamani, Sandesh C S

    2018-05-16

    Whereas isolated sphenoid wing dysplasia (SWD) is a well-known clinical feature in neurofibromatosis 1 (NF1), extensive cranial defects involving multiple bones have been rarely reported in this disorder. In this report, we describe the clinical course of a 20-year-old male with NF1 and an extensive cranial bone dysplasia. The large sphenoethmoidal defect was associated with transethmoidal and orbital cephalocele as well as inferolateral herniation of the frontal lobe. In spite of the large defect, the individual did not have any symptoms or complications resulting from the osteopathy. We review the current knowledge of the pathogenesis and management of cranial bone dysplasia in NF1. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Micro-CT evaluation of bone defects: applications to osteolytic bone metastases, bone cysts, and fracture.

    PubMed

    Buie, Helen R; Bosma, Nick A; Downey, Charlene M; Jirik, Frank R; Boyd, Steven K

    2013-11-01

    Bone defects can occur in various forms and present challenges to performing a standard micro-CT evaluation of bone quality because most measures are suited to homogeneous structures rather than ones with spatially focal abnormalities. Such defects are commonly associated with pain and fragility. Research involving bone defects requires quantitative approaches to be developed if micro-CT is to be employed. In this study, we demonstrate that measures of inter-microarchitectural bone spacing are sensitive to the presence of focal defects in the proximal tibia of two distinctly different mouse models: a burr-hole model for fracture healing research, and a model of osteolytic bone metastases. In these models, the cortical and trabecular bone compartments were both affected by the defect and were, therefore, evaluated as a single unit to avoid splitting the defects into multiple analysis regions. The burr-hole defect increased mean spacing (Sp) by 27.6%, spacing standard deviation (SpSD) by 113%, and maximum spacing (Spmax) by 72.8%. Regression modeling revealed SpSD (β=0.974, p<0.0001) to be a significant predictor of the defect volume (R(2)=0.949) and Spmax (β=0.712, p<0.0001) and SpSD (β=0.271, p=0.022) to be significant predictors of the defect diameter (R(2)=0.954). In the mice with osteolytic bone metastases, spacing parameters followed similar patterns of change as reflected by other imaging technologies, specifically bioluminescence data which is indicative of tumor burden. These data highlight the sensitivity of spacing measurements to bone architectural abnormalities from 3D micro-CT data and provide a tool for quantitative evaluation of defects within a bone. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. How does bone quality differ between healthy-weight and overweight adolescents and young adults?

    PubMed

    Hoy, Christa L; Macdonald, Heather M; McKay, Heather A

    2013-04-01

    Overweight youth have greater bone mass than their healthy-weight peers but sustain more fractures. However, it is unclear whether and how excess body fat influences bone quality in youth. We determined whether overweight status correlated with three-dimensional aspects of bone quality influencing bone strength in adolescent and young adult females and males. We categorized males (n=103; mean age, 17 years) and females (n=85; mean age, 18 years) into healthy-weight and overweight groups. We measured lean mass (LM) and fat mass (FM) with dual-energy x-ray absorptiometry (DXA). We used high-resolution peripheral quantitative CT to assess the distal radius (7% site) and distal tibia (8% site). Bone quality measures included total bone mineral density (Tt.BMD), total area (Tt.Ar), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), separation (Tb.Sp), and thickness (Tb.Th). We used multiple regression to compare bone quality between healthy-weight and overweight adolescents adjusting for age, ethnicity, limb length, LM, and FM. Overweight males had higher (10%-21%) Tt.BMD, BV/TV, and Tb.N and lower Tb.Sp at the tibia and lower Tt.Ar at the radius than healthy-weight males. No differences were observed between overweight and healthy-weight females. LM attenuated the differences in bone quality between groups in males while FM negatively predicted Tt.BMD, BV/TV, Tb.N, and Tb.Th. Our data suggest overweight males have enhanced bone quality compared with healthy-weight males; however, when group differences are interpreted in the context of the mechanostat theory, it appears bone quality of overweight adolescents adapts to LM and not to greater FM.

  16. Mice lacking bone sialoprotein (BSP) lose bone after ovariectomy and display skeletal site-specific response to intermittent PTH treatment.

    PubMed

    Wade-Gueye, Ndéye Marième; Boudiffa, Maya; Laroche, Norbert; Vanden-Bossche, Arnaud; Fournier, Carole; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie-Hélène; Malaval, Luc

    2010-11-01

    Bone sialoprotein (BSP) belongs to the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family, whose members play multiple and distinct roles in the development, turnover, and mineralization of bone and dentin. The functions of BSP in bone remodeling are not yet well established. We previously showed that BSP knockout (BSP(-/-)) mice exhibit a higher trabecular bone volume, concomitant with lower bone remodeling, than wild-type (BSP(+/+)) mice. To determine whether bone turnover can be stimulated in the absence of BSP, we subjected BSP(+/+) and BSP(-/-) mice to catabolic [ovariectomy (OVX)] or anabolic (intermittent PTH administration) hormonal challenges. BSP(-/-) mice progressively develop hypocalcemia and high serum PTH between 2 and 4 months of age. Fifteen and 30 d after OVX, microtomography analysis showed a significant decrease of trabecular bone volume in tibiae of both genotypes. Histomorphometric parameters of bone formation and resorption were significantly increased by OVX. PTH treatment resulted in an increase of trabecular thickness and both bone formation and resorption parameters at all skeletal sites in both genotypes and a decrease of trabecular bone volume in tibiae of BSP(+/+) but not BSP(-/-) mice. PTH increased cortical thickness and bone area in BSP(+/+) but not BSP(-/-) mice and stimulated the bone formation rate specifically in the endosteum of BSP(+/+) mice and the periosteum of BSP(-/-) mice. PTH enhanced the expression of RANKL, MEPE, and DMP1 in both genotypes but increased OPG and OPN expression only in BSP(-/-) mice. In conclusion, despite the low basal turnover, both catabolic and anabolic challenges increase bone formation and resorption in BSP(-/-) mice, suggesting that compensatory pathways are operative in the skeleton of BSP-deficient mice. Although up-regulation of one or several other SIBLINGs is a possible mechanism, further studies are needed to analyze the interplay and cross-regulation involved in compensating for the absence of BSP.

  17. Dual delivery of rhPDGF-BB and bone marrow mesenchymal stromal cells expressing the BMP2 gene enhance bone formation in a critical-sized defect model.

    PubMed

    Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo; Seol, Yang-Jo

    2013-11-01

    Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis.

  18. Implications of combined Ovariectomy/Multi-Deficiency Diet on rat bone with age-related variation in Bone Parameters and Bone Loss at Multiple Skeletal Sites by DEXA

    PubMed Central

    Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C.; Zahner, Daniel; Hemdan, Nasr Y.; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Background Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Material/Methods Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. Results BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below −5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Conclusions Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk. PMID:23446183

  19. Implications of combined ovariectomy/multi-deficiency diet on rat bone with age-related variation in bone parameters and bone loss at multiple skeletal sites by DEXA.

    PubMed

    Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C; Zahner, Daniel; Hemdan, Nasr Y; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian

    2013-02-28

    Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below -5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk.

  20. Accumulation of carboxymethyl-lysine (CML) in human cortical bone.

    PubMed

    Thomas, Corinne J; Cleland, Timothy P; Sroga, Grazyna E; Vashishth, Deepak

    2018-05-01

    Advanced glycation end-products (AGEs) are a category of post translational modification associated with the degradation of the structural properties of multiple different types of tissues. Typically, AGEs are the result of a series of post-translational modification reactions between sugars and proteins through a process known as non-enzymatic glycation (NEG). Increases in the rate of NEG of bone tissue are associated with type 2 diabetes and skeletal fragility. Current methods of assessing NEG and its impact on bone fracture risk involve measurement of pentosidine or total fluorescent AGEs (fAGEs). However, pentosidine represents only a small fraction of possible fAGEs present in bone, and neither pentosidine nor total fAGE measurement accounts for non-fluorescent AGEs, which are known to form in significant amounts in skin and other collagenous tissues. Carboxymethyl-lysine (CML) is a non-fluorescent AGE that is often measured and has been shown to accumulate in tissues such as skin, heart, arteries, and intervertebral disks, but is currently not assessed in bone. Here we show the localization of CML to collagen I using mass spectrometry for the first time in human bone. We then present a new method using demineralization followed by heating and trypsin digestion to measure CML content in human bone and demonstrate that CML in bone is 40-100 times greater than pentosidine (the current most commonly used marker of AGEs in bone). We then establish the viability of CML as a measurable AGE in bone by showing that levels of CML, obtained from bone using this technique, increase with age (p<0.05) and are correlated with previously reported measures of bone toughness. Thus, CML is a viable non-fluorescent AGE target to assess AGE accumulation and fragility in bone. The method developed here to extract and measure CML from human bone could facilitate the development of a new diagnostic assay to evaluate fracture risk and potentially lead to new therapeutic approaches to address bone fragility. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Smoldering multiple myeloma requiring treatment: time for a new definition?

    PubMed Central

    Stewart, A. Keith; Chanan-Khan, Asher; Rajkumar, S. Vincent; Kyle, Robert A.; Fonseca, Rafael; Kapoor, Prashant; Bergsagel, P. Leif; McCurdy, Arleigh; Gertz, Morie A.; Lacy, Martha Q.; Lust, John A.; Russell, Stephen J.; Zeldenrust, Steven R.; Reeder, Craig; Roy, Vivek; Buadi, Francis; Dingli, David; Hayman, Suzanne R.; Leung, Nelson; Lin, Yi; Mikhael, Joseph; Kumar, Shaji K.

    2013-01-01

    Smoldering multiple myeloma (SMM) bridges the gap between monoclonal gammopathy of undetermined significance (a mostly premalignant disorder) and active multiple myeloma (MM). Until recently, no interventional study in patients with SMM showed improved overall survival (OS) with therapy as compared with observation. A report from the PETHEMA-GEM (Programa Español de Tratamientos en Hematologica) group described both fewer myeloma-related events and better OS among patients with high-risk SMM who were treated with lenalidomide and dexamethasone. This unique study prompted us to review current knowledge about SMM and address the following questions: (1) Are there patients currently defined as SMM who should be treated routinely? (2) Should the definitions of SMM and MM be reconsidered? (3) Has the time come when not treating is more dangerous than treating? (4) Could unintended medical harm result from overzealous intervention? Our conclusion is that those patients with the highest-risk SMM (extreme bone marrow plasmacytosis, extremely abnormal serum immunoglobulin free light chain ratio, and multiple bone lesions detected only by modern imaging) should be reclassified as active MM so that they can receive MM-appropriate therapy and the paradigm of careful observation for patients with SMM can be preserved. PMID:24144641

  2. Caregiver Support in the Coping of Patients Who Are Undergoing a Donor Bone Marrow Transplant

    ClinicalTrials.gov

    2018-01-25

    Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Psychosocial Effects of Cancer and Its Treatment

  3. Investigation into mechanical properties of bone and its main constituents

    NASA Astrophysics Data System (ADS)

    Evdokimenko, Ekaterina

    Bone is a hierarchically structured natural composite material, consisting of organic phase (type-I collagen), inorganic phase (hydroxyapatite), and water. Studies of the two main bone constituents, utilizing controlled demineralization and deproteinization, can shed light on mineral-collagen interaction which makes bone such a unique biological material. This knowledge is necessary for computational analysis of bone structure to identify preferential sites in the collagen matrix and mineral network that degrade more easily. The main goal of this work is to develop a comprehensive picture of mechanical properties of bone and its main constituents. Following the Introduction, Chapter 2 presents an investigation of microstructure and compressive mechanical properties of bovine femur cortical bone carried out on completely demineralized, completely deproteinized, and untreated bone samples in three anatomical directions. Anisotropic nature of bone was clearly identified in all cases. Extra levels of porosity along with microstructural differences for the three directions were found to be the main sources of the anisotropy. In Chapter 3, a new theoretical model of cortical and trabecular bone as composite materials with hierarchical structure spanning from nanometer (collagen-mineral) level to millimeter (bone) level was developed. Compression testing was performed on untreated, demineralized, and deproteinized cortical and trabecular bovine femur bone samples to verify the model. The experimental data were compared with theoretical predictions; excellent agreement was found between the theory and experiments for all bone phases. Optical microscopy, scanning electron microscopy, and micro-computed tomography techniques were applied to characterize the structure of the samples at multiple length scales and provide further inputs for the modeling. Chapter 4 presents a comparative study of mechanical properties, microstructure, and porosity of mature and young bovine femur cortical bone. It was found that the amount of porosity decreases, while the microhardness increases with maturation. Osteoporotic degradation of trabecular bone elasticity, described in Chapter 5, was modeled using a cellular mechanics approach. Evolution equations for elastic modulus of bone in terms of those of mineral and protein trabeculae and in terms of demineralized and deproteinized bones were formulated and verified by the analysis of compressive properties of bovine femur trabecular bone.

  4. Analysis of bone marrow plasma cells in patients with solitary bone plasmacytoma.

    PubMed

    Bhaskar, Archana; Gupta, Ritu; Sharma, Atul; Kumar, Lalit; Jain, Paresh

    Local radiotherapy is the treatment of choice for solitary bone plasmacytoma (SBP) and the role of adjuvant systemic chemotherapy in preventing progression to multiple myeloma (MM) is controversial. The purpose of this study was to examine the presence of systemic disease in the form of neoplastic plasma cells (PC) in bone marrow of patients with SBP. Flow cytometric immunophenotyping of PC was carried out on bone marrow aspirate of 7 patients using monoclonal antibodies: CD19 FITC, CD45 FITC, CD20 FITC, CD52 PE, CD117 PE, CD56 PE, CD38 PerCP-Cy5.5, CD138 APC, anti-kappa (κ) FITC and anti-lambda (λ) PE. The neoplastic as well as normal PC were identified in bone marrow aspirate of all the patients at the time of diagnosis; the neoplastic PC ranged from 0.1%to 0.7% of all BM cells and 33.5% to 89.7% of total BMPC. The κ:λ ratio was normal in all the samples ranging from 0.5% to 1.6%. The present work shows the presence of systemic disease in the form of neoplastic PC in bone marrow of patients with SBP. Prospective studies would be required to study if the levels of neoplastic PC in the bone marrow may help us identify patients who are likely to progress to overt MM and benefit from systemic chemotherapy.

  5. Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro.

    PubMed

    Wear, Keith A; Nagaraja, Srinidhi; Dreher, Maureen L; Sadoughi, Saghi; Zhu, Shan; Keaveny, Tony M

    2017-10-01

    Clinical bone sonometers applied at the calcaneus measure broadband ultrasound attenuation and speed of sound. However, the relation of ultrasound measurements to bone strength is not well-characterized. Addressing this issue, we assessed the extent to which ultrasonic measurements convey in vitro mechanical properties in 25 human calcaneal cancellous bone specimens (approximately 2×4×2cm). Normalized broadband ultrasound attenuation, speed of sound, and broadband ultrasound backscatter were measured with 500kHz transducers. To assess mechanical properties, non-linear finite element analysis, based on micro-computed tomography images (34-micron cubic voxel), was used to estimate apparent elastic modulus, overall specimen stiffness, and apparent yield stress, with models typically having approximately 25-30 million elements. We found that ultrasound parameters were correlated with mechanical properties with R=0.70-0.82 (p<0.001). Multiple regression analysis indicated that ultrasound measurements provide additional information regarding mechanical properties beyond that provided by bone quantity alone (p≤0.05). Adding ultrasound variables to linear regression models based on bone quantity improved adjusted squared correlation coefficients from 0.65 to 0.77 (stiffness), 0.76 to 0.81 (apparent modulus), and 0.67 to 0.73 (yield stress). These results indicate that ultrasound can provide complementary (to bone quantity) information regarding mechanical behavior of cancellous bone. Published by Elsevier Inc.

  6. Modeling of Blood Lead Levels in Astronauts Exposed to Lead from Microgravity-Accelerated Bone Loss

    NASA Technical Reports Server (NTRS)

    Garcia, H.; James, J.; Tsuji, J.

    2014-01-01

    Human exposure to lead has been associated with toxicity to multiple organ systems. Studies of various population groups with relatively low blood lead concentrations (<10 µg/dL) have indicated associations of blood lead level with lower cognitive test scores in children, later onset of puberty in girls, and increased blood pressure and cardiovascular mortality rates in adults. Cognitive effects are considered by regulatory agencies to be the most sensitive endpoint at low doses. Although 95% of the body burden of lead is stored in the bones, the adverse effects of lead correlate with the concentration of lead in the blood better than with that in the bones. NASA has found that prolonged exposure to microgravity during spaceflight results in a significant loss of bone minerals, the extent of which varies from individual to individual and from bone to bone, but generally averages about 0.5% per month. During such bone loss, lead that had been stored in bones would be released along with calcium. The effects on the concentration of lead in the blood (PbB) of various concentrations of lead in drinking water (PbW) and of lead released from bones due to accelerated osteoporosis in microgravity, as well as changes in exposure to environmental lead before, during, and after spaceflight were evaluated using a physiologically based pharmacokinetic (PBPK) model that incorporated exposure to environmental lead both on earth and in flight and included temporarily increased rates of osteoporosis during spaceflight.

  7. Immobilization and long-term recovery results in large changes in bone structure and strength but no corresponding alterations of osteocyte lacunar properties.

    PubMed

    Bach-Gansmo, Fiona Linnea; Wittig, Nina Kølln; Brüel, Annemarie; Thomsen, Jesper Skovhus; Birkedal, Henrik

    2016-10-01

    The ability of osteocytes to demineralize the perilacunar matrix, osteocytic osteolysis, and thereby participate directly in bone metabolism, is an aspect of osteocyte biology that has received increasing attention during the last couple of years. The aim of the present work was to investigate whether osteocyte lacunar properties change during immobilization and subsequent recovery. A rat cortical bone model with negligible Haversian remodeling effects was used, with temporary immobilization of one hindlimb induced by botulinum toxin. Several complementary techniques covering multiple length scales enabled correlation of osteocyte lacunar properties to changes observed on the organ and tissue level of femoral bone. Bone structural parameters measured by μCT and mechanical properties were compared to sub-micrometer resolution SR μCT data mapping an unprecedented number (1.85 million) of osteocyte lacunae. Immobilization induced a significant reduction in aBMD, bone volume, tissue volume, and load to fracture, as well as the muscle mass of rectus femoris. During the subsequent recovery period, the bone structural and mechanical properties were only partly regained in spite of a long-term (28weeks) study period. No significant changes in osteocyte lacunar volume, density, oblateness, stretch, or orientation were detected upon immobilization or subsequent recovery. In conclusion, the bone architecture and not osteocyte lacunar properties or bone material characteristics dominate the immobilization response as well as the subsequent recovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Central genes, pathways and modules that regulate bone mass.

    PubMed

    Quiros-Gonzalez, Isabel; Yadav, Vijay K

    2014-11-01

    Bones are structures that give the shape and defined features to vertebrates, protect several soft organs and perform multiple endocrine influences on other organs. To achieve these functions bones are first modeled early during life and then constantly remodeled throughout life. The process of bone (re)modeling happens simultaneously at multitude of locations in the skeleton and ensures that vertebrates have a mechanically strong yet a flexible skeleton to the most part of their life. Given the extent of its occurrence in the body, bone remodeling is a highly energy demanding process and is co-ordinated with other physiological processes as diverse as energy metabolism, sleep-wake cycle and reproduction. Neuronal circuits in the brain play a very important role in the coordination of bone remodeling with other organ system functions, and perform this function in sync with environmental and peripheral hormonal cues. In this review, we will focus on the roles of hormonal signals and neural circuits that originate in, or impinge on, the brain in the regulation of bone mass. We will provide herein an updated view of how advances in molecular genetics have refined the neural circuits involved in the regulation of bone mass, from the whole brain level to the specific neuronal populations and their neurotransmitters. This will help to understand the mechanisms whereby vertebrate brain regulates bone mass by fine-tuning metabolic signals that originate in the brain or elsewhere in the body. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The supramolecular structure of bone: X-ray scattering analysis and lateral structure modeling

    PubMed Central

    Zhou, Hong-Wen; Burger, Christian; Wang, Hao; Hsiao, Benjamin S.; Chu, Benjamin; Graham, Lila

    2016-01-01

    The evolution of vertebrates required a key development in supramolecular evolution: internally mineralized collagen fibrils. In bone, collagen molecules and mineral crystals form a nanocomposite material comparable to cast iron in tensile strength, but several times lighter and more flexible. Current understanding of the internal nanoscale structure of collagen fibrils, derived from studies of rat tail tendon (RTT), does not explain how nucleation and growth of mineral crystals can occur inside a collagen fibril. Experimental obstacles encountered in studying bone have prevented a solution to this problem for several decades. This report presents a lateral packing model for collagen molecules in bone fibrils, based on the unprecedented observation of multiple resolved equatorial reflections for bone tissue using synchrotron small-angle X-ray scattering (SAXS; ∼1 nm resolution). The deduced structure for pre-mineralized bone fibrils includes features that are not present in RTT: spatially discrete microfibrils. The data are consistent with bone microfibrils similar to pentagonal Smith microfibrils, but are not consistent with the (nondiscrete) quasi-hexagonal microfibrils reported for RTT. These results indicate that collagen fibrils in bone and tendon differ in their internal structure in a manner that allows bone fibrils, but not tendon fibrils, to internally mineralize. In addition, the unique pattern of collagen cross-link types and quantities in mineralized tissues can be can be accounted for, in structural/functional terms, based on a discrete microfibril model. PMID:27599731

  10. Multiscale Analyses of the Bone-implant Interface

    PubMed Central

    Cha, J.Y.; Pereira, M.D.; Smith, A.A.; Houschyar, K.S.; Yin, X.; Mouraret, S.; Brunski, J.B.

    2015-01-01

    Implants placed with high insertion torque (IT) typically exhibit primary stability, which enables early loading. Whether high IT has a negative impact on peri-implant bone health, however, remains to be determined. The purpose of this study was to ascertain how peri-implant bone responds to strains and stresses created when implants are placed with low and high IT. Titanium micro-implants were inserted into murine femurs with low and high IT using torque values that were scaled to approximate those used to place clinically sized implants. Torque created in peri-implant tissues a distribution and magnitude of strains, which were calculated through finite element modeling. Stiffness tests quantified primary and secondary implant stability. At multiple time points, molecular, cellular, and histomorphometric analyses were performed to quantitatively determine the effect of high and low strains on apoptosis, mineralization, resorption, and collagen matrix deposition in peri-implant bone. Preparation of an osteotomy results in a narrow zone of dead and dying osteocytes in peri-implant bone that is not significantly enlarged in response to implants placed with low IT. Placing implants with high IT more than doubles this zone of dead and dying osteocytes. As a result, peri-implant bone develops micro-fractures, bone resorption is increased, and bone formation is decreased. Using high IT to place an implant creates high interfacial stress and strain that are associated with damage to peri-implant bone and therefore should be avoided to best preserve the viability of this tissue. PMID:25628271

  11. Use of Animal Models in Understanding Cancer-induced Bone Pain

    PubMed Central

    Slosky, Lauren M; Largent-Milnes, Tally M; Vanderah, Todd W

    2015-01-01

    Many common cancers have a propensity to metastasize to bone. Although malignancies often go undetected in their native tissues, bone metastases produce excruciating pain that severely compromises patient quality of life. Cancer-induced bone pain (CIBP) is poorly managed with existing medications, and its multifaceted etiology remains to be fully elucidated. Novel analgesic targets arise as more is learned about this complex and distinct pain state. Over the past two decades, multiple animal models have been developed to study CIBP’s unique pathology and identify therapeutic targets. Here, we review animal models of CIBP and the mechanistic insights gained as these models evolve. Findings from immunocompromised and immunocompetent host systems are discussed separately to highlight the effect of model choice on outcome. Gaining an understanding of the unique neuromolecular profile of cancer pain through the use of appropriate animal models will aid in the development of more effective therapeutics for CIBP. PMID:26339191

  12. Neandertal cannibalism and Neandertal bones used as tools in Northern Europe

    PubMed Central

    Rougier, Hélène; Crevecoeur, Isabelle; Beauval, Cédric; Posth, Cosimo; Flas, Damien; Wißing, Christoph; Furtwängler, Anja; Germonpré, Mietje; Gómez-Olivencia, Asier; Semal, Patrick; van der Plicht, Johannes; Bocherens, Hervé; Krause, Johannes

    2016-01-01

    Almost 150 years after the first identification of Neandertal skeletal material, the cognitive and symbolic abilities of these populations remain a subject of intense debate. We present 99 new Neandertal remains from the Troisième caverne of Goyet (Belgium) dated to 40,500–45,500 calBP. The remains were identified through a multidisciplinary study that combines morphometrics, taphonomy, stable isotopes, radiocarbon dating and genetic analyses. The Goyet Neandertal bones show distinctive anthropogenic modifications, which provides clear evidence for butchery activities as well as four bones having been used for retouching stone tools. In addition to being the first site to have yielded multiple Neandertal bones used as retouchers, Goyet not only provides the first unambiguous evidence of Neandertal cannibalism in Northern Europe, but also highlights considerable diversity in mortuary behaviour among the region’s late Neandertal population in the period immediately preceding their disappearance. PMID:27381450

  13. Recurrent Fat Embolic Strokes in a Patient With Duchenne Muscular Dystrophy With Long Bone Fractures and a Patent Foramen Ovale.

    PubMed

    Bugnitz, Christopher J; Cripe, Linda H; Lo, Warren D; Flanigan, Kevin M

    2016-10-01

    Individuals with Duchenne muscular dystrophy have an increased risk of long bone fractures. Such fractures are sometimes associated with brain dysfunction due to fat embolism syndrome, although this syndrome has seldom been documented in muscular dystrophy patients. We describe a child with Duchenne muscular dystrophy who developed fat embolism syndrome with neurological dysfunction following multiple long bone fractures. He experienced recurrent cerebral infarctions that probably resulted from embolization through a patent foramen ovale. The patent foramen ovale was closed by an occluder device in the cardiac catheterization laboratory, and he did not experience further infarctions. Fat embolism with ischemic cerebral infarction can occur in individuals with Duchenne muscular dystrophy following long bone fractures. In this setting it is important to identify and close atrial level shunts in order to prevent additional infarctions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Bone and bone turnover.

    PubMed

    Crofton, Patricia M

    2009-01-01

    Children with cancer are exposed to multiple influences that may adversely affect bone health. Some treatments have direct deleterious effects on bone whilst others may have indirect effects mediated through various endocrine abnormalities. Most clinical outcome studies have concentrated on survivors of acute lymphoblastic leukaemia (ALL). There is now good evidence that earlier treatment protocols that included cranial irradiation with doses of 24 Gy or greater may result in growth hormone deficiency and low bone mineral density (BMD) in the lumbar spine and femoral neck. Under current protocols, BMD decreases during intensive chemotherapy and fracture risk increases. Although total body BMD may eventually return to normal after completion of chemotherapy, lumbar spine trabecular BMD may remain low for many years. The implications for long-term fracture risk are unknown. Risk factors for low BMD include high dose methotrexate, higher cumulative doses of glucocorticoids, male gender and low physical activity. BMD outcome in non-ALL childhood cancers has been less well studied but there is evidence that survivors of childhood brain or bone tumours, and survivors of bone marrow transplants for childhood malignancy, all have a high risk of long-term osteopenia. Long-term follow-up is required, with appropriate treatment of any endocrine abnormalities identified. Copyright (c) 2009 S. Karger AG, Basel.

  15. Early experience and results of bone graft enriched with autologous platelet gel for recalcitrant nonunions of lower extremity.

    PubMed

    Chiang, Chao-Ching; Su, Chen-Yao; Huang, Ching-Kuei; Chen, Wei-Ming; Chen, Tain-Hsiung; Tzeng, Yun-Hsuan

    2007-09-01

    Refractory nonunions of the tibia or femur are physically and mentally devastating conditions for the patients, and the treatment is challenging for orthopedic surgeons. The goal of this study was to assess the feasibility and outcome of surgical treatment in recalcitrant nonunions of a lower extremity with bone graft enriched with autologous platelet gel (APG). Twelve patients with four femoral and eight tibial atrophic nonunions after multiple prior procedures were included. All of them were treated with the bone grafting procedures with autograft complex enriched with APG. They were evaluated with radiographs, bone mineral density for bony healing process, and the Short-Form 36 Health Survey for functional outcome. Of the 12 patients, 11 healed at an average of 19.7 weeks after the first attempt and 1 healed after the second attempt at 21 weeks. The bone mineral density continued to increase steadily from early healing to the remodeling phase. Functional status was greatly improved at an average follow-up of 32.4 months. The results of this preliminary study implied the possible potential of bone graft enriched with APG in the treatment of recalcitrant nonunions of the lower extremity. More research is necessary to clarify its role in augmentation of bone graft to enhance healing of nonunion.

  16. CHIP regulates bone mass by targeting multiple TRAF family members in bone marrow stromal cells.

    PubMed

    Wang, Tingyu; Li, Shan; Yi, Dan; Zhou, Guang-Qian; Chang, Zhijie; Ma, Peter X; Xiao, Guozhi; Chen, Di

    2018-01-01

    Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in different cellular functions. Our previous studies demonstrated that Chip deficient mice display bone loss phenotype due to increased osteoclast formation through enhancing TRAF6 activity in osteoclasts. In this study we provide novel evidence about the function of CHIP. We found that osteoblast differentiation and bone formation were also decreased in Chip KO mice. In bone marrow stromal (BMS) cells derived from Chip -/- mice, expression of a panel of osteoblast marker genes was significantly decreased. ALP activity and mineralized bone matrix formation were also reduced in Chip- deficient BMS cells. We also found that in addition to the regulation of TRAF6, CHIP also inhibits TNFα-induced NF-κB signaling through promoting TRAF2 and TRAF5 degradation. Specific deletion of Chip in BMS cells downregulated expression of osteoblast marker genes which could be reversed by the addition of NF-κB inhibitor. These results demonstrate that the osteopenic phenotype observed in Chip -/- mice was due to the combination of increased osteoclast formation and decreased osteoblast differentiation. Taken together, our findings indicate a significant role of CHIP in bone remodeling.

  17. FROM ANEURYSMAL BONE CYST TO TELANGIECTATIC OSTEOSARCOMA WITH METASTASIS IN INGUINAL LYMPH NODES - CASE REPORT.

    PubMed

    Janevska, Vesna; Spasevska, Liljana; Samardziski, Milan; Nikodinovskai, Violeta; Zhivadinovik, Julija; Trajkovskai, Elizabeta

    2015-01-01

    Aneurysmal bone cyst is a benign bone lesion composed of blood filled cystic cavities lined by fibrous septa. Its malignant transformation of is a rare event. We report a case of a lesion in the second metatarsal bone in a 29-year-old male, presented as a slight swelling of the right foot. After the curettage had been done, the diagnosis of aneurysmal bone cyst was made but the recurrence occurred 4 years later. The biopsy of the recurrent tumor showed compact neoplastic tissue consistent with diagnosis of giant cell tumor with malignancy. The malignant component was recognized as a high grade sarcoma with osteoid production. A tumor mass with the whole II metatarsal bone was extirpated and a resected part of fibula was transplanted. A year later, another recurrence occurred, an amputation was performed and a teleangiectatic osteosarcoma with ingvinal lymph nodes metastases was diagnosed. No other tumor mass was confirmed, either clinically or by imaging techniques at the time of his third operation. He died 4 months later with multiple pulmonary metastases. We emphasize the importance of team work in order to achieve the accurate diagnosis, highlighting careful radiological examinations, good sampling and awareness of unusual cases in bone tumor pathology.

  18. Automatic detection of bone fragments in poultry using multi-energy x-rays

    DOEpatents

    Gleason, Shaun S [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Mullens, James A [Knoxville, TN

    2002-04-09

    At least two linear arrays of x-ray detectors are placed below a conveyor belt in a poultry processing plant. Multiple-energy x-ray sources illuminate the poultry and are detected by the detectors. Laser profilometry is used to measure the poultry thickness as the x-ray data is acquired. The detector readout is processed in real time to detect the presence of small highly attenuating fragments in the poultry, i.e., bone, metal, and cartilage.

  19. Acute radiation nephritis. Its evolution on sequential bone imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palestro, C.; Fineman, D.; Goldsmith, S.J.

    1988-11-01

    Acute radiation nephritis typically affects the kidneys 3-12 months after radiation exposure and may occur with doses as low as 2500 rads. After an initial latent period, the affected portions of the kidneys become swollen and edematous, and develop multiple petechiae. Necrotizing vasculitis and interstitial hemorrhage occur, and the end stage is that of scarring. Two patients are presented in whom localized acute radiation nephritis developed, and whose kidneys demonstrated the characteristic sequential changes of this entity on serial bone imaging.

  20. On some properties of bone functional adaptation phenomenon useful in mechanical design.

    PubMed

    Nowak, Michał

    2010-01-01

    The paper discusses some unique properties of trabecular bone functional adaptation phenomenon, useful in mechanical design. On the basis of the biological process observations and the principle of constant strain energy density on the surface of the structure, the generic structural optimisation system has been developed. Such approach allows fulfilling mechanical theorem for the stiffest design, comprising the optimisations of size, shape and topology, using the concepts known from biomechanical studies. Also the biomimetic solution of multiple load problems is presented.

  1. Degradable Bone Graft Substitute for Effective Delivery of Multiple Growth Factors in the Treatment of Nonunion Fractures

    DTIC Science & Technology

    2012-08-01

    growth factors directly to the bone defect site can enhance repair of non-union fractures. In this study, a new chitosan /xylan composite hydrogel was...delivery aspect of this study did not succeed, treatment with the new xylan/ chitosan hydrogel alone was enough to heal serious fractures that did not...characteristics of the hydrogel in question could be tested as well as performing in vitro cell work. The previous supplier of chitosan , the main polymer

  2. Osteopenia and bone fractures in a man with anorexia nervosa and hypogonadism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigotti, N.A.; Neer, R.M.; Jameson, L.

    Women with anorexia nervosa have reduced skeletal mass. Both anorexia and osteopenia are less common in men. We describe a 22-year-old man with anorexia nervosa and severe osteopenia involving both cortical and trabecular bone who developed a pelvic fracture and multiple vertebral compression fractures. He was found to have secondary hypogonadotropic hypogonadism that was reversible with weight gain. This case illustrates the need to consider osteopenia as a potential complication of anorexia nervosa in males as well as females.

  3. Mechanisms of "kidney governing bones" theory in traditional Chinese medicine.

    PubMed

    Ju, Dahong; Liu, Meijie; Zhao, Hongyan; Wang, Jun

    2014-09-01

    Studies conducted by our group on the mechanism of "kidney governing bones" theory in traditional Chinese medicine (TCM) are reviewed in this paper. Conclusions can be summarized as follows. (1) Neuroendocrine-immune network (NIN)-osteoclast regulatory pathway OPG-RANKL-RANK is one of the mechanisms of "kidney governing bones." Although kidney-reinforcing therapy is regarded as one of the holistic regulatory mechanisms of the body, characteristic holistic regulation in TCM can be reflected through nonselective regulation of the NIN during kidney reinforcement therapy, which can be used to treat osteoporosis through microadjustments in the microenvironment of the bone marrow. (2) Marrow exhaustion in TCM, which is the state wherein lipocytes in the bone marrow increase whereas other cells decrease, serves as the pathogenesis of osteoporosis brought about by failure of the "kidney governing bones." (3) The kidney in TCM can be regarded as a complex system comprising multiple functional units in the body, including the unit "governing bones." Kidney deficiency refers to a deficiency in only one or more units of the kidney system and not the whole system itself, which explains the kidney-reinforcing effect of many herbs; some herbs can treat osteoporosis, but some cannot. Although both classified as kidney-reinforcing agents, the former can resolve failure of the "kidney governing bones" unit while the latter regulates the failure of other units in the kidney system. Despite the current understanding on "kidney governing bones" theory, the mechanism of "kidney governing bones" remains complicated and unresolved. Thus, further studies in this area are warranted.

  4. Bone pain and extremely low bone mineral density due to severe vitamin D deficiency in celiac disease.

    PubMed

    Rabelink, Noortje M; Westgeest, Hans M; Bravenboer, Nathalie; Jacobs, Maarten A J M; Lips, Paul

    2011-01-01

    A 29-year-old wheelchair-bound woman was presented to us by the gastroenterologist with suspected osteomalacia. She had lived in the Netherlands all her life and was born of Moroccan parents. Her medical history revealed iron deficiency, growth retardation, and celiac disease, for which she was put on a gluten-free diet. She had progressive bone pain since 2 years, difficulty with walking, and about 15 kg weight loss. She had a short stature, scoliosis, and pronounced kyphosis of the spine and poor condition of her teeth. Laboratory results showed hypocalcemia, an immeasurable serum 25-hydroxyvitamin D level, and elevated parathyroid hormone and alkaline phosphatase levels. Spinal radiographs showed unsharp, low contrast vertebrae. Bone mineral density measurement at the lumbar spine and hip showed a T-score of -6.0 and -6.5, respectively. A bone scintigraphy showed multiple hotspots in ribs, sternum, mandible, and long bones. A duodenal biopsy revealed villous atrophy (Marsh 3C) and positive antibodies against endomysium, transglutaminase, and gliadin, compatible with active celiac disease. A bone biopsy showed severe osteomalacia but normal bone volume. She was treated with calcium intravenously and later orally. Furthermore, she was treated with high oral doses of vitamin D and a gluten-free diet. After a few weeks of treatment, her bone pain decreased, and her muscle strength improved. In this article, the pathophysiology and occurrence of osteomalacia as a complication of celiac disease are discussed. Low bone mineral density can point to osteomalacia as well as osteoporosis.

  5. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    PubMed Central

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  6. Bone mass, depressive and anxiety symptoms in adolescent girls: Variation by smoking and alcohol use

    PubMed Central

    Dorn, L.D.; Pabst, S.; Sontag, L.M.; Kalkwarf, H.; Hillman, J.B.; Susman, E.J.

    2011-01-01

    PURPOSE The purpose of the study was to examine (a) the association between depressive and anxiety symptoms with bone health, (b) the association of smoking or alcohol use with bone health, and, in turn, (c) whether the association between depressive and anxiety symptoms with bone health varied by smoking or alcohol use individually or by combined use. Bone health included total body bone mineral content (TB BMC) and bone mineral density (BMD) of the lumbar spine, total hip, and femoral neck. Previous literature has not examined these issues in adolescence, a time when more than 50% of bone mass is accrued. METHODS An observational study enrolled 262 healthy adolescent girls by age cohort (11, 13, 15, and 17 years). Participants completed questionnaires and interviews on substance use, depressive symptoms, and anxiety. BMC and BMD were measured by dual energy x-ray absorptiometry. RESULTS Higher depressive symptoms were associated with lower TB BMC and BMD (total hip, femoral neck). Those with the lowest level of smoking had higher BMD of the hip and femoral neck whereas no differences were noted by alcohol use. Regular users of both cigarettes and alcohol demonstrated a stronger negative association between depressive symptoms and TB BMC compared with non-users/experimental users and regular alcohol users. Findings were parallel for anxiety symptoms. CONCLUSION Depressive and anxiety symptoms may negatively influence bone health in adolescent girls. Consideration of multiple substances, rather than cigarettes or alcohol separately, may be particularly informative with respect to the association of depression with bone health. PMID:22018564

  7. Multiple Myeloma

    MedlinePlus

    ... a type of white blood cell called a plasma cell. Plasma cells help you fight infections by making antibodies ... Doctors know that myeloma begins with one abnormal plasma cell in your bone marrow — the soft, blood- ...

  8. Caregiver Support in the Quality of Life of Patients Who Are Undergoing Donor Bone Marrow Transplantation

    ClinicalTrials.gov

    2012-03-13

    Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Psychosocial Effects of Cancer and Its Treatment

  9. WNT1-induced Secreted Protein-1 (WISP1), a Novel Regulator of Bone Turnover and Wnt Signaling*

    PubMed Central

    Maeda, Azusa; Ono, Mitsuaki; Holmbeck, Kenn; Li, Li; Kilts, Tina M.; Kram, Vardit; Noonan, Megan L.; Yoshioka, Yuya; McNerny, Erin M. B.; Tantillo, Margaret A.; Kohn, David H.; Lyons, Karen M.; Robey, Pamela G.; Young, Marian F.

    2015-01-01

    WISP1/CCN4 (hereafter referred to as WISP1), a member of the CCN family, is found in mineralized tissues and is produced by osteoblasts and their precursors. In this study, Wisp1-deficient (Wisp1−/−) mice were generated. Using dual-energy x-ray absorptiometry, we showed that by 3 months, the total bone mineral density of Wisp1−/− mice was significantly lower than that of WT mice. Further investigation by micro-computed tomography showed that female Wisp1−/− mice had decreased trabecular bone volume/total volume and that both male and female Wisp1−/− mice had decreased cortical bone thickness accompanied by diminished biomechanical strength. The molecular basis for decreased bone mass in Wisp1−/− mice arises from reduced bone formation likely caused by osteogenic progenitors that differentiate poorly compared with WT cells. Osteoclast precursors from Wisp1−/− mice developed more tartrate-resistant acid phosphatase-positive cells in vitro and in transplants, suggesting that WISP1 is also a negative regulator of osteoclast differentiation. When bone turnover (formation and resorption) was induced by ovariectomy, Wisp1−/− mice had lower bone mineral density compared WT mice, confirming the potential for multiple roles for WISP1 in controlling bone homeostasis. Wisp1−/− bone marrow stromal cells had reduced expression of β-catenin and its target genes, potentially caused by WISP1 inhibition of SOST binding to LRP6. Taken together, our data suggest that the decreased bone mass found in Wisp1−/− mice could potentially be caused by an insufficiency in the osteodifferentiation capacity of bone marrow stromal cells arising from diminished Wnt signaling, ultimately leading to altered bone turnover and weaker biomechanically compromised bones. PMID:25864198

  10. Infant milk feeding influences adult bone health: a prospective study from birth to 32 years.

    PubMed

    Pirilä, Satu; Taskinen, Mervi; Viljakainen, Heli; Kajosaari, Merja; Turanlahti, Maila; Saarinen-Pihkala, Ulla M; Mäkitie, Outi

    2011-04-27

    Peak bone mass, attained by early adulthood, is influenced by genetic and life-style factors. Early infant feeding and duration of breastfeeding in particular, associate with several health-related parameters in childhood. The aim of this study was to examine whether the effects of early infant feeding extend to peak bone mass and other bone health characteristics at adult age. A cohort of 158 adults (76 males) born in Helsinki, Finland, 1975, prospectively followed up from birth, underwent physical examination and bone densitometry to study bone area, bone mineral content (BMC), and bone mineral density (BMD) at 32 years of age. Life-style factors relevant for bone health were recorded. For data analysis the cohort was divided into three equal-size groups according to the total duration of breastfeeding (BF): Short (≤3 months), Intermediate and Prolonged (≥7 months) BF groups. In males short BF is associated with higher bone area, BMC, and BMD compared to longer BF. Males in the Short BF group had on average 4.7% higher whole body BMD than males in the Prolonged BF group. In multivariate analysis, after controlling for multiple confounding factors, the influence of BF duration on adult bone characteristics persisted in males. Differences between the three feeding groups were observed in lumbar spine bone area and BMC, and whole body BMD (MANCOVA; p = 0.025, p = 0.013, and p = 0.048, respectively), favoring the Short BF group. In women no differences were observed. In men, early infant milk feeding may have a significant impact on adult bone health. A potential explanation is that the calcium and phosphate contents were strikingly higher in formula milk and commercial cow milk/cow milk dilutions as opposed to human milk. Our novel finding merits further studies to determine means to ensure optimal bone mass development in infants with prolonged breastfeeding.

  11. Using modern human cortical bone distribution to test the systemic robusticity hypothesis.

    PubMed

    Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E

    2018-06-01

    The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial vault thickness has been measured. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A 130,000-year-old archaeological site in southern California, USA

    USGS Publications Warehouse

    Holen, Steven R.; Deméré, Thomas A.; Fisher, Daniel C.; Fullagar, Richard; Paces, James B.; Jefferson, George T.; Beeton, Jared M.; Cerutti, Richard A.; Rountrey, Adam N.; Vescera, Lawrence; Holen, Kathleen A.

    2017-01-01

    The earliest dispersal of humans into North America is a contentious subject, and proposed early sites are required to meet the following criteria for acceptance: (1) archaeological evidence is found in a clearly defined and undisturbed geologic context; (2) age is determined by reliable radiometric dating; (3) multiple lines of evidence from interdisciplinary studies provide consistent results; and (4) unquestionable artefacts are found in primary context1,2. Here we describe the Cerutti Mastodon (CM) site, an archaeological site from the early late Pleistocene epoch, where in situ hammerstones and stone anvils occur in spatio-temporal association with fragmentary remains of a single mastodon (Mammut americanum). The CM site contains spiral-fractured bone and molar fragments, indicating that breakage occured while fresh. Several of these fragments also preserve evidence of percussion. The occurrence and distribution of bone, molar and stone refits suggest that breakage occurred at the site of burial. Five large cobbles (hammerstones and anvils) in the CM bone bed display use-wear and impact marks, and are hydraulically anomalous relative to the low-energy context of the enclosing sandy silt stratum. 230Th/U radiometric analysis of multiple bone specimens using diffusion–adsorption–decay dating models indicates a burial date of 130.7 ± 9.4 thousand years ago. These findings confirm the presence of an unidentified species of Homo at the CM site during the last interglacial period (MIS 5e; early late Pleistocene), indicating that humans with manual dexterity and the experiential knowledge to use hammerstones and anvils processed mastodon limb bones for marrow extraction and/or raw material for tool production. Systematic proboscidean bone reduction, evident at the CM site, fits within a broader pattern of Palaeolithic bone percussion technology in Africa3,4,5,6, Eurasia7,8,9 and North America10,11,12. The CM site is, to our knowledge, the oldest in situ, well-documented archaeological site in North America and, as such, substantially revises the timing of arrival of Homo into the Americas.

  13. Evaluating acetate metabolism for imaging and targeting in multiple myeloma

    PubMed Central

    Fontana, Francesca; Ge, Xia; Su, Xinming; Hathi, Deep; Xiang, Jingyu; Cenci, Simone; Civitelli, Roberto; Shoghi, Kooresh I.; Akers, Walter J.; D’avignon, Andre

    2016-01-01

    Purpose We hypothesized that in multiple myeloma cells (MMC), high membrane biosynthesis will induce acetate uptake in vitro and in vivo. Here, we studied acetate metabolism and targeting in MMC in vitro and tested the efficacy of 11C-acetate-PET (positron emission tomography) to detect and quantitatively image myeloma treatment response in vivo. Experimental design Acetate fate tracking using 13C-edited-1H NMR (nuclear magnetic resonance) was performed to study in vitro acetate uptake and metabolism in MMC. Effects of pharmacological modulation of acetate transport or acetate incorporation into lipids on MMC cell survival and viability were assessed. Preclinical mouse MM models of subcutaneous and bone tumors were evaluated using 11C-acetate-PET/CT imaging and tissue biodistribution. Results In vitro, NMR showed significant uptake of acetate by MMC, and acetate incorporation into intracellular metabolites and membrane lipids. Inhibition of lipid synthesis and acetate transport was toxic to MMC, while sparing resident bone cells or normal B cells. In vivo, 11C-acetate uptake by PET imaging was significantly enhanced in subcutaneous and bone MMC tumors compared to unaffected bone or muscle tissue. Likewise, 11C-acetate uptake was significantly reduced in MM tumors after treatment. Conclusions Uptake of acetate from the extracellular environment was enhanced in MMC and was critical to cellular viability. 11C-acetate-PET detected the presence of myeloma cells in vivo, including uptake in intramedullary bone disease. 11C-acetate-PET also detected response to therapy in vivo. Our data suggested that acetate metabolism and incorporation into lipids was crucial to MM cell biology and that 11C-acetate-PET is a promising imaging modality for MM. PMID:27486177

  14. Serum Protein Electrophoresis in the Evaluation of Lytic Bone Lesions

    PubMed Central

    Nystrom, Lukas M.; Buckwalter, Joseph A.; Syrbu, Sergei; Miller, Benjamin J.

    2013-01-01

    Serum protein electrophoresis (SPEP) is often obtained at the initial evaluation of a radiolucent bone lesion of unknown etiology. The results are considered convincing evidence of the presence or absence of a plasma cell neoplasm. The sensitivity and specificity of the SPEP have not been reported in this clinical scenario. Our purpose is to assess the diagnostic value of the SPEP in the initial work-up of the radiolucent bone lesion. We identified 182 patients undergoing evaluation of a radiolucent bone lesion that included tissue biopsy and an SPEP value. We then calculated the sen-sitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of SPEP as a diagnostic test for a plasma cell neo-plasm in this clinical scenario. Forty-six of 182 (25.3%) patients in our series were diagnosed with a plasma cell neo-plasm by histopathologic analysis. The sensitivity of SPEP was 71% and the specificity was 83%. PPV was 47% and NPV was 94%. When analyzing only those presenting with multiple lesions, the percentage of patients diag-nosed with multiple myeloma increased to 44.7% (34 of 76 patients). The SPEP, however, did not have a substantially increased diagnostic accuracy with sensitivity of 71%, specificity 79%, PPV 40% and NPV 93%. SPEP lacks sensitivity and positive predictive value to provide a definitive diagnosis of myeloma in radiolucent bone lesions, but has a high negative predictive value which may make it useful in ruling out the disease. We recommend that this test either be performed in conjunction with urine electrophoresis, immunofixation electro-phoresis and free light chain assay, or after biopsy confirming the diagnosis of myeloma. PMID:24027470

  15. Nutritional and biochemical parameters associated with 6-year change in bone mineral density in community-dwelling Japanese women aged 69 years and older: The Muramatsu Study.

    PubMed

    Nakamura, Kazutoshi; Oyama, Mari; Saito, Toshiko; Oshiki, Rieko; Kobayashi, Ryosaku; Nishiwaki, Tomoko; Nashimoto, Mitsue; Tsuchiya, Yasuo

    2012-04-01

    Predictors of bone loss in elderly Asian women have been unclear. This cohort study aimed to assess lifestyle, nutritional, and biochemical predictors of bone loss in elderly Japanese women. Subjects included 389 community-dwelling women aged 69 y and older from the Muramatsu cohort initiated in 2003; follow-up ended in 2009. We obtained data on physical characteristics, osteoporosis treatment (with bisphosphonates or selective estrogen receptor modulators), physical activity, calcium intake, serum 25-hydroxyvitamin D, undercarboxylated osteocalcin, serum albumin, and bone turnover markers as predictors. The outcome was a 6-y change in forearm BMD (ΔBMD). Osteoporosis treatment was coded as 0 for none, 1 for sometimes, and 2 for always during the follow-up period. Stepwise multiple linear regression analysis was used to identify independent predictors of ΔBMD. Mean age of the subjects was 73.3 y. Mean values of ΔBMD and Δweight were -0.019 g/cm(2) (-5.8%) and -2.2 kg, respectively. Stepwise multiple linear regression analysis revealed baseline BMD (β = -0.137, P < 0.0001), osteoporosis treatment (β = 0.0068, P = 0.0105), serum albumin levels (β = 0.0122, P = 0.0319), and Δweight (β = 0.0015, P = 0.0009) as significant independent predictors of ΔBMD. However, none of the other nutritional or biochemical indices were found to be significant predictors of ΔBMD. Our findings indicate that adequate general nutrition and appropriate osteoporosis medication, rather than specific nutritional regimens, may be effective in preventing bone loss in elderly women. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells.

    PubMed

    Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora; Shwish, Najla Bin; Hamam, Rimi; Kassem, Moustapha; Alfayez, Musaad; Aldahmash, Abdullah; Alajez, Nehad M

    2018-02-28

    Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profiling during adipocyte differentiation of human bone marrow stromal (mesenchymal) stem cells (hMSCs) and identified 2,589 up-regulated and 2,583 down-regulated mRNA transcripts. Pathway analysis on the up-regulated gene list untraveled enrichment in multiple signaling pathways including insulin receptor signaling, focal Adhesion, metapathway biotransformation, a number of metabolic pathways e.g. selenium metabolism, Benzo(a)pyrene metabolism, fatty acid, triacylglycerol, ketone body metabolism, tryptophan metabolism, and catalytic cycle of mammalian flavin-containing monooxygenase (FMOs). On the other hand, pathway analysis on the down-regulated genes revealed significant enrichment in pathways related to cell cycle regulation. Based on these data, we assessed the effect of pharmacological inhibition of FAK signaling using PF-573228, PF-562271, and InsR/IGF-1R using NVP-AEW541 and GSK-1904529A on adipocyte differentiation. hMSCs exposed to FAK or IGF-1R/InsR inhibitors exhibited fewer adipocyte formation (27-58% inhibition, P <0005). Concordantly, the expression of adipocyte-specific genes AP2, AdipoQ, and CEBPα was significantly reduced. On the other hand, we did not detect significant effects on cell viability as a result of FAK or IGF-1R/InsR inhibition. Our data identified FAK and insulin signaling as important intracellular signaling pathways relevant to bone marrow adipogenesis. © 2018 The Author(s).

  17. The Nell-1 Growth Factor Stimulates Bone Formation by Purified Human Perivascular Cells

    PubMed Central

    Zhang, Xinli; Péault, Bruno; Chen, Weiwei; Li, Weiming; Corselli, Mirko; James, Aaron W.; Lee, Min; Siu, Ronald K.; Shen, Pang; Zheng, Zhong; Shen, Jia; Kwak, Jinny; Zara, Janette N.; Chen, Feng; Zhang, Hong; Yin, Zack; Wu, Ben; Ting, Kang

    2011-01-01

    The search for novel sources of stem cells other than bone marrow mesenchymal stem cells (MSCs) for bone regeneration and repair has been a critical endeavor. We previously established an effective protocol to homogeneously purify human pericytes from multiple fetal and adult tissues, including adipose, bone marrow, skeletal muscle, and pancreas, and identified pericytes as a primitive origin of human MSCs. In the present study, we further characterized the osteogenic potential of purified human pericytes combined with a novel osteoinductive growth factor, Nell-1. Purified pericytes grown on either standard culture ware or human cancellous bone chip (hCBC) scaffolds exhibited robust osteogenic differentiation in vitro. Using a nude mouse muscle pouch model, pericytes formed significant new bone in vivo as compared to scaffold alone (hCBC). Moreover, Nell-1 significantly increased pericyte osteogenic differentiation, both in vitro and in vivo. Interestingly, Nell-1 significantly induced pericyte proliferation and was observed to have pro-angiogenic effects, both in vitro and in vivo. These studies suggest that pericytes are a potential new cell source for future efforts in skeletal regenerative medicine, and that Nell-1 is a candidate growth factor able to induce pericyte osteogenic differentiation. PMID:21615216

  18. Bone age detection via carpogram analysis using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Torres, Felipe; Bravo, María. Alejandra; Salinas, Emmanuel; Triana, Gustavo; Arbeláez, Pablo

    2017-11-01

    Bone age assessment is a critical factor for determining delayed development in children, which can be a sign of pathologies such as endocrine diseases, growth abnormalities, chromosomal, neurological and congenital disorders among others. In this paper we present BoneNet, a methodology to assess automatically the skeletal maturity state in pediatric patients based on Convolutional Neural Networks. We train and evaluate our algorithm on a database of X-Ray images provided by the hospital Fundacion Santa Fe de Bogot ´ a with around 1500 images of patients between the ages 1 to 18. ´ We compare two different architectures to classify the given data in order to explore the generality of our method. To accomplish this, we define multiple binary age assessment problems, dividing the data by bone age and differentiating the patients by their gender. Thus, exploring several parameters, we develop BoneNet. Our approach is holistic, efficient, and modular, since it is possible for the specialists to use all the networks combined to determine how is the skeletal maturity of a patient. BoneNet achieves over 90% accuracy for most of the critical age thresholds, when differentiating the images between over or under a given age.

  19. Investigation into Variation of Endogenous Metabolites in Bone Marrow Cells and Plasma in C3H/He Mice Exposed to Benzene

    PubMed Central

    Sun, Rongli; Zhang, Juan; Yin, Lihong; Pu, Yuepu

    2014-01-01

    Benzene is identified as a carcinogen. Continued exposure of benzene may eventually lead to damage to the bone marrow, accompanied by pancytopenia, aplastic anemia or leukemia. This paper explores the variations of endogenous metabolites to provide possible clues for the molecular mechanism of benzene-induced hematotoxicity. Liquid chromatography coupled with time of flight-mass spectrometry (LC-TOF-MS) and principal component analysis (PCA) was applied to investigate the variation of endogenous metabolites in bone marrow cells and plasma of male C3H/He mice. The mice were injected subcutaneously with benzene (0, 300, 600 mg/day) once daily for seven days. The body weights, relative organ weights, blood parameters and bone marrow smears were also analyzed. The results indicated that benzene caused disturbances in the metabolism of oxidation of fatty acids and essential amino acids (lysine, phenylalanine and tyrosine) in bone marrow cells. Moreover, fatty acid oxidation was also disturbed in plasma and thus might be a common disturbed metabolic pathway induced by benzene in multiple organs. This study aims to investigate the underlying molecular mechanisms involved in benzene hematotoxicity, especially in bone marrow cells. PMID:24658442

  20. Exercise interventions: defusing the world's osteoporosis time bomb.

    PubMed Central

    Kai, Ming Chan; Anderson, Mary; Lau, Edith M. C.

    2003-01-01

    Osteoporosis is a major public health problem, affecting millions of people worldwide. The associated health care costs are growing in parallel with increases in elderly populations, and it is expected that the number of osteoporotic fractures will double over the next 50 years. The best way to address osteoporosis is prevention. Some interventions to maximize and preserve bone mass have multiple health benefits and are cost-effective. For example, modifications to diet and lifestyle can help to prevent osteoporosis, and could potentially lead to a significant decrease in fracture rates; and exercise is a valuable adjunct to programmes aimed at alleviating the risks and symptoms of osteoporosis. Practising exercise at a young age helps maximize the mineral density of bones while they are still growing and maturing, and continuing to excercise minimizes bone loss later in life. Not only does exercise improve bone health, it also increases muscle strength, coordination, balance, flexibility and leads to better overall health. Walking, aerobic exercise, and t'ai chi are the best forms of exercise to stimulate bone formation and strengthen the muscles that help support bones. Encouraging physical activity at all ages is therefore a top priority to prevent osteoporosis. PMID:14758410

  1. Esophageal squamous cell carcinoma with dural and bone marrow metastases.

    PubMed

    Chen, Yen-Hao; Huang, Cheng-Hua

    2014-09-21

    Patients with esophageal squamous cell carcinoma generally present at an advanced stage at the time of diagnosis. The most common sites of visceral metastasis are the lung, liver and bone, but brain and bone marrow involvement is exceedingly rare. Herein, we report a 62-year-old man with a 4-wk history of progressive low back pain with radiation to bilateral lower legs, dysphagia and body weight loss. Esophageal squamous cell carcinoma with regional lymph node, liver and bone metastases was diagnosed. He underwent concurrent chemoradiotherapy and got a partial response. Four months later, he complained of headache, diplopia and severe hearing impairment in the left ear. There was no evidence for bacterial, fungal, tuberculous infection or neoplastic infiltration. Magnetic resonance imaging of the brain demonstrated thickening and enhancement of bilateral pachymeninges and multiple enhancing masses in bilateral skull. Dural metastasis was diagnosed and he received whole brain irradiation. In addition, laboratory examination revealed severe thrombocytopenia and leucopenia, and bone marrow study confirmed the diagnosis of metastatic squamous cell carcinoma. This is the first described case of esophageal squamous cell carcinoma with dural and bone marrow metastases. We also discuss the pathogenesis of unusual metastatic diseases and differential diagnosis of pachymeningeal thickening.

  2. Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework

    NASA Astrophysics Data System (ADS)

    Jain, Ameet K.; Taylor, Russell H.

    2004-04-01

    The registration of preoperative CT to intra-operative reality systems is a crucial step in Computer Assisted Orthopedic Surgery (CAOS). The intra-operative sensors include 3D digitizers, fiducials, X-rays and Ultrasound (US). Although US has many advantages over others, tracked US for Orthopedic Surgery has been researched by only a few authors. An important factor limiting the accuracy of tracked US to CT registration (1-3mm) has been the difficulty in determining the exact location of the bone surfaces in the US images (the response could range from 2-4mm). Thus it is crucial to localize the bone surface accurately from these images. Moreover conventional US imaging systems are known to have certain inherent inaccuracies, mainly due to the fact that the imaging model is assumed planar. This creates the need to develop a bone segmentation framework that can couple information from various post-processed spatially separated US images (of the bone) to enhance the localization of the bone surface. In this paper we discuss the various reasons that cause inherent uncertainties in the bone surface localization (in B-mode US images) and suggest methods to account for these. We also develop a method for automatic bone surface detection. To do so, we account objectively for the high-level understanding of the various bone surface features visible in typical US images. A combination of these features would finally decide the surface position. We use a Bayesian probabilistic framework, which strikes a fair balance between high level understanding from features in an image and the low level number crunching of standard image processing techniques. It also provides us with a mathematical approach that facilitates combining multiple images to augment the bone surface estimate.

  3. Combined treatment with a transforming growth factor beta inhibitor (1D11) and bortezomib improves bone architecture in a mouse model of myeloma-induced bone disease.

    PubMed

    Nyman, Jeffry S; Merkel, Alyssa R; Uppuganti, Sasidhar; Nayak, Bijaya; Rowland, Barbara; Makowski, Alexander J; Oyajobi, Babatunde O; Sterling, Julie A

    2016-10-01

    Multiple myeloma (MM) patients frequently develop tumor-induced bone destruction, yet no therapy completely eliminates the tumor or fully reverses bone loss. Transforming growth factor-β (TGF-β) activity often contributes to tumor-induced bone disease, and pre-clinical studies have indicated that TGF-β inhibition improves bone volume and reduces tumor growth in bone metastatic breast cancer. We hypothesized that inhibition of TGF-β signaling also reduces tumor growth, increases bone volume, and improves vertebral body strength in MM-bearing mice. We treated myeloma tumor-bearing (immunocompetent KaLwRij and immunocompromised Rag2-/-) mice with a TGF-β inhibitory (1D11) or control (13C4) antibody, with or without the anti-myeloma drug bortezomib, for 4weeks after inoculation of murine 5TGM1 MM cells. TGF-β inhibition increased trabecular bone volume, improved trabecular architecture, increased tissue mineral density of the trabeculae as assessed by ex vivo micro-computed tomography, and was associated with significantly greater vertebral body strength in biomechanical compression tests. Serum monoclonal paraprotein titers and spleen weights showed that 1D11 monotherapy did not reduce overall MM tumor burden. Combination therapy with 1D11 and bortezomib increased vertebral body strength, reduced tumor burden, and reduced cortical lesions in the femoral metaphysis, although it did not significantly improve cortical bone strength in three-point bending tests of the mid-shaft femur. Overall, our data provides rationale for evaluating inhibition of TGF-β signaling in combination with existing anti-myeloma agents as a potential therapeutic strategy to improve outcomes in patients with myeloma bone disease. Published by Elsevier Inc.

  4. Feeding soy protein isolate and oils rich in omega-3 polyunsaturated fatty acids affected mineral balance, but not bone in a rat model of autosomal recessive polycystic kidney disease.

    PubMed

    Maditz, Kaitlin H; Smith, Brenda J; Miller, Matthew; Oldaker, Chris; Tou, Janet C

    2015-02-10

    Polycystic kidney disease (PKD), a genetic disorder characterized by multiple cysts and renal failure at an early age. In children, kidney disease is often accompanied by disordered mineral metabolism, failure to achieve peak bone mass, and reduced adult height. Optimizing bone health during the growth stage may preserve against bone loss associated with early renal dysfunction in PKD. Dietary soy protein and omega-3 polyunsaturated fatty acid (n-3 PUFA) have been reported to ameliorate PKD and to promote bone health. The study objective was to determine the bone effects of feeding soy protein and/or n-3 PUFAs in a rat model of PKD. Weanling female PCK rats (n = 12/group) were randomly assigned to casein + corn oil (Casein + CO), casein + soybean oil (Casein + SO), soy protein isolate + soybean oil (SPI + SO) or soy protein isolate + 1:1 soybean oil:salmon oil blend (SPI + SB) for 12 weeks. Rats fed SPI + SO diet had shorter (P = 0.001) femur length than casein-fed rats. Rats fed SPI + SO and SPI + SB diet had higher (P = 0.04) calcium (Ca) and phosphorus (P) retention. However, there were no significant differences in femur and tibial Ca, P or bone mass between diet groups. There were also no significant difference in bone microarchitecture measured by micro-computed tomography or bone strength determined by three-point bending test between diet groups. Early diet management of PKD using SPI and/or n-3 PUFAs influenced bone longitudinal growth and mineral balance, but neither worsened nor enhanced bone mineralization, microarchitecture or strength.

  5. The effectiveness of the bone bridge transtibial amputation technique: A systematic review of high-quality evidence.

    PubMed

    Kahle, Jason T; Highsmith, M Jason; Kenney, John; Ruth, Tim; Lunseth, Paul A; Ertl, Janos

    2017-06-01

    This literature review was undertaken to determine if commonly held views about the benefits of a bone bridge technique are supported by the literature. Four databases were searched for articles pertaining to surgical strategies specific to a bone bridge technique of the transtibial amputee. A total of 35 articles were identified as potential articles. Authors included methodology that was applied to separate topics. Following identification, articles were excluded if they were determined to be low quality evidence or not pertinent. Nine articles were identified to be pertinent to one of the topics: Perioperative Care, Acute Care, Subjective Analysis and Function. Two articles sorted into multiple topics. Two articles were sorted into the Perioperative Care topic, 4 articles sorted into the Acute Care topic, 2 articles into the Subjective Analysis topic and 5 articles into the Function topic. There are no high quality (level one or two) clinical trials reporting comparisons of the bone bridge technique to traditional methods. There is limited evidence supporting the clinical outcomes of the bone bridge technique. There is no agreement supporting or discouraging the perioperative and acute care aspects of the bone bridge technique. There is no evidence defining an interventional comparison of the bone bridge technique. Current level III evidence supports a bone bridge technique as an equivalent option to the non-bone bridge transtibial amputation technique. Formal level I and II clinical trials will need to be considered in the future to guide clinical practice. Clinical relevance Clinical Practice Guidelines are evidence based. This systematic literature review identifies the highest quality evidence to date which reports a consensus of outcomes agreeing bone bridge is as safe and effective as alternatives. The clinical relevance is understanding bone bridge could additionally provide a mechanistic advantage for the transtibial amputee.

  6. Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls.

    PubMed

    Milovanovic, Petar; Rakocevic, Zlatko; Djonic, Danijela; Zivkovic, Vladimir; Hahn, Michael; Nikolic, Slobodan; Amling, Michael; Busse, Bjoern; Djuric, Marija

    2014-07-01

    To unravel the origins of decreased bone strength in the superolateral femoral neck, we assessed bone structural features across multiple length scales at this cortical fracture initiating region in postmenopausal women with hip fracture and in aged-matched controls. Our combined methodological approach encompassed atomic force microscopy (AFM) characterization of cortical bone nano-structure, assessment of mineral content/distribution via quantitative backscattered electron imaging (qBEI), measurement of bone material properties by reference point indentation, as well as evaluation of cortical micro-architecture and osteocyte lacunar density. Our findings revealed a wide range of differences between the fracture group and the controls, suggesting a number of detrimental changes at various levels of cortical bone hierarchical organization that may render bone fragile. Namely, mineral crystals at external cortical bone surfaces of the fracture group were larger (65.22nm±41.21nm vs. 36.75nm±18.49nm, p<0.001), and a shift to a higher mineral content and more homogenous mineralization profile as revealed via qBEI were found in the bone matrix of the fracture group. Fracture cases showed nearly 35% higher cortical porosity and showed significantly reduced osteocyte lacunar density compared to controls (226±27 vs. 247±32#/mm(2), p=0.05). Along with increased crystal size, a shift towards higher mineralization and a tendency to increased cortical porosity and reduced osteocyte lacunar number delineate that cortical bone of the superolateral femoral neck bears distinct signs of fragility at various levels of its structural organization. These results contribute to the understanding of hierarchical bone structure changes in age-related fragility. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Prediction of low bone mass using a combinational approach of cortical and trabecular bone measures from dental panoramic radiographs.

    PubMed

    Kathirvelu, D; Anburajan, M

    2014-09-01

    The aim of this study is to extract cortical and trabecular features of the mandible and to develop a novel combinational model of mandibular cortical thickness, trabecular bone area and age in order to predict low bone mineral density or osteoporosis from a dental panoramic radiograph. The study involved 64 south Indian women (age = 52.5 ± 12.7 years) categorised into two groups (normal and low bone mineral density) based on total femur bone mineral density. The dental panoramic radiographs were obtained by a digital scanner, and measurement of total bone mineral density at the right femur was performed by a dual-energy X-ray absorptiometry scanner. The mandibular cortical thickness and panoramic mandibular index were measured bilaterally, and the mean values were considered. The region of interest of 128 × 128 pixels around the mental foramen region was manually cropped and subjected to pre-processing, normalisation and average threshold-based segmentation to determine trabecular bone area. Multiple linear regression analyses of cortical and trabecular measures along with age were performed to develop a combinational model to classify subjects as normal and low bone mineral density. The proposed approach demonstrated strong correlation (r = 0.76; p < 0.01) against the total bone mineral density and resulted in accuracy, sensitivity and positive predictive values of 0.84, 0.92 and 0.85, respectively; the receiver operating characteristic outcomes disclosed that the area under the curve was 0.89.Our results suggest that the proposed combinational model could be useful to diagnose subjects with low bone mineral density. © IMechE 2014.

  8. Wideband Single-Crystal Transducer for Bone Characterization

    NASA Technical Reports Server (NTRS)

    Liang, Yu; Snook, Kevin

    2012-01-01

    The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an excitation signal to the transducer and amplifying the signal received from the transducer. The excitation signal may be either a wide-bandwidth signal to excite the transducer across its entire operational spectrum, or a narrow-bandwidth signal optimized for a particular measurement technique. The transducer face is applied to the skin covering the bone to be characterized, and may be operated in through-transmission mode using two transducers, or in pulse-echo mode. The transducer is a unique combination of material, design, and fabrication technique. It is based on single-crystal lead magnesium niobate lead titanate (PMN-PT) piezoelectric material. As compared to the commonly used piezoceramics, this piezocrystal has superior piezoelectric and elastic properties, which results in devices with superior bandwidth, source level, and power requirements. This design necessitates a single resonant frequency. However, by operating in a transverse length-extensional mode, with the electric field applied orthogonally to the extensional direction, resonators of different sizes can share common electrodes, resulting in a multiply-resonant structure. With carefully sized resonators, and the superior bandwidth of piezocrystal, the resonances can be made to overlap to form a smooth, wide-bandwidth characteristic.

  9. Identification of Metastatic Lesions in a Patient With Low Back Pain Following a Motor Vehicle Collision.

    PubMed

    Plass, Lindsey M; McGee, Terrence G; Elliott, James M

    2016-02-01

    A 58-year-old man was referred to physical therapy with a primary complaint of intermittent low back pain (LBP) 2 weeks after being in a motor vehicle collision. The absence of red flags justified the initiation of treatment, but when symptoms of unrelenting LBP emerged, he was referred to his primary care physician with a request for further medical workup. Before further imaging work-up was performed, the patient presented to the emergency room with a urinary complaint; this, in combination with unrelenting LBP, prompted further imaging follow-up. Lumbar/thoracic spine magnetic resonance imaging revealed multiple compression fractures and diffuse bone marrow heterogeneity consistent with a malignant infiltrative marrow process. The patient underwent additional laboratory testing and a bone marrow aspirate and biopsy that confirmed the diagnosis of multiple myeloma.

  10. Multiple myeloma.

    PubMed Central

    MacLennan, I. C.; Drayson, M.; Dunn, J.

    1994-01-01

    Multiple myeloma occurs in over 2000 new patients in England and Wales each year. It presents most frequently as bone pain and patients tend to become dehydrated and may develop renal failure. No available treatment is curative, but about two thirds of patients achieve a stable response with low dose combination chemotherapy. Combination chemotherapy including doxorubicin and carmustine with the alkylating agents cyclophosphamide and melphalan achieve a higher stable response rate than conventional treatment with melphalan and prednisone without additional haematological toxicity. These responses are associated with loss of bone pain and patients remain symptom free for months without further treatment. Relapse occurs on average in a little under two years and, though second responses are frequently obtained, the disease eventually becomes refractory. This paper looks at who should be treated and the benefits that may be expected from the treatments available. PMID:8068084

  11. Vegetarian-style dietary pattern during adolescence has long-term positive impact on bone from adolescence to young adulthood: a longitudinal study.

    PubMed

    Movassagh, Elham Z; Baxter-Jones, Adam D G; Kontulainen, Saija; Whiting, Susan; Szafron, Michael; Vatanparast, Hassan

    2018-02-28

    The amount of bone accrued during adolescence is an important determinant of later osteoporosis risk. Little is known about the influence of dietary patterns (DPs) on the bone during adolescence and their potential long-term implications into adulthood. We examined the role of adolescent DPs on adolescent and young adult bone and change in DPs from adolescence to young adulthood. We recruited participants from the Saskatchewan Pediatric Bone Mineral Accrual Study (1991-2011). Data from 125 participants (53 females) for adolescent analysis (age 12.7 ± 2 years) and 115 participants (51 females) for adult analysis (age 28.2 ± 3 years) were included. Bone mineral content (BMC) and areal bone mineral density (aBMD) of total body (TB), femoral neck (FN) and lumbar spine (LS) were measured using dual-energy X-ray absorptiometry. Adolescent dietary intake data from multiple 24-h recalls were summarized into 25 food group intakes and were used in the principal component analysis to derive DPs during adolescence. Associations between adolescent DPs and adolescent or adult BMC/BMD were analyzed using multiple linear regression and multivariate analysis of covariance while adjusting for sex, age, the age of peak height velocity, height, weight, physical activity and total energy intake. Generalized estimating equations were used for tracking DPs. We derived five DPs including "Vegetarian-style", "Western-like", "High-fat, high-protein", "Mixed" and "Snack" DPs. The "Vegetarian-style" DP was a positive independent predictor of adolescent TBBMC, and adult TBBMC, TBaBMD (P < 0.05). Mean adolescent TBaBMD and young adult TBBMC, TBaBMD, FNBMC and FNaBMD were 5%, 8.5%, 6%, 10.6% and 9% higher, respectively, in third quartile of "Vegetarian-style" DP compared to first quartile (P < 0.05). We found a moderate tracking (0.47-0.63, P < 0.001) in DP scores at individual levels from adolescence to adulthood. There were an upward trend in adherence to "Vegetarian-style" DP and an downward trend in adherence to "High-fat, high-protein" DP from adolescence to young adulthood (P < 0.01). A "Vegetarian-style" DP rich in dark green vegetables, eggs, non-refined grains, 100% fruit juice, legumes/nuts/seeds, added fats, fruits and low-fat milk during adolescence is positively associated with bone health.

  12. Alterations in bone marrow and blood mononuclear cell polyamine and methylglyoxal bis(guanylhydrazone) levels: phase I evaluation of alpha-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) treatment of human hematological malignancies.

    PubMed

    Maddox, A M; Freireich, E J; Keating, M J; Haddox, M K

    1988-03-01

    Nine patients with hematological malignancies were treated with difluoromethylornithine and methylglyoxal bis(guanylhydrazone). The number of circulating blast cells decreased in all of the patients treated with DFMO and MGBG for longer than 1 wk. Morphological evidence of myeloid maturation was evident in four patients with leukemia and the circulating M Protein decreased in one patient with multiple myeloma. The polyamine content of the mononuclear cells in both the peripheral blood and bone marrow was transiently increased after the initial MGBG dose. During administration of DFMO decreases were achieved in the peripheral blood mononuclear cell putrescine levels in 7 patients, spermidine levels in 5 patients, and spermine levels in 4 patients. Alterations in bone marrow mononuclear cell polyamine levels were similar to those which occurred in the peripheral cells. An average of 9 days of DFMO treatment was required to lower mononuclear cell polyamine levels. Three of the 4 evaluable patients receiving multiple MGBG doses had an increased mononuclear cell content of MGBG after DFMO pretreatment. Enhancement of cellular MGBG levels was not directly correlated to the degree of cellular polyamine depletion.

  13. Bone Metastasis in Prostate Cancer: Recurring Mitochondrial DNA Mutation Reveals Selective Pressure Exerted by the Bone Microenvironment

    PubMed Central

    Arnold, Rebecca S.; Fedewa, Stacey A.; Goodman, Michael; Osunkoya, Adeboye O.; Kissick, Haydn T.; Morrissey, Colm; True, Lawrence D.; Petros, John A.

    2015-01-01

    Background Cancer progression and metastasis occurs such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell’s description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. Methods We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Results Somatic mutations were significantly more numerous in bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (np) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at np 10436 and a tRNA Thr mutation at np 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to bone and also occurred in three patients. Conclusions Mitochondrial genomic variation was greater in metastatic sites than the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational “hot-spot” was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific “survival of the fittest” as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. PMID:25952970

  14. Bone metastasis in prostate cancer: Recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment.

    PubMed

    Arnold, Rebecca S; Fedewa, Stacey A; Goodman, Michael; Osunkoya, Adeboye O; Kissick, Haydn T; Morrissey, Colm; True, Lawrence D; Petros, John A

    2015-09-01

    Cancer progression and metastasis occur such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell's description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary tumor and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Somatic mutations were significantly more numerous in the bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (n.p.) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in the bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at n.p. 10436 and a tRNA Thr mutation at n.p. 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to the bone and also occurred in three patients. Mitochondrial genomic variation was greater in metastatic sites than in the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational "hot-spot" was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific "survival of the fittest" as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. Published by Elsevier Inc.

  15. Brain infarction due to vertebral artery dissection caused by a bone protrusion from the condylar fossa in a juvenile case.

    PubMed

    Fujii, Mutsumi; Ohgushi, Miki; Chin, Takaaki

    2018-02-06

    A 16-year-old boy presented with multiple posterior circulation ischemic strokes resulting from vertebral artery (VA) dissection. Three-dimensional computed tomography showed aberrant sub-occipital bone protuberance, proximal to the VA dissection. Since the patient was a habitual neck cracker, VA dissection was thought to result from the impact shock of the rotational head movement. This could be due to either the osseous prominence or the compression between the prominence and the C1. Although it is a rare etiology of Bow Hunter's syndrome, VA dissection due to sub-occipital bone spur because of neck cracking should be considered in the diagnosis of Bow Hunter's syndrome in juvenile patients.

  16. Metrology applied to ultrasound characterization of trabecular bones using the AIB parameter

    NASA Astrophysics Data System (ADS)

    Braz, D. S.; Silva, C. E.; Alvarenga, A. V.; Junior, D. S.; Costa-Félix, R. P. B.

    2016-07-01

    Apparent Integrated Backscattering (AIB) presents correlation between Apparent Backscatter Transfer Function and the transducer bandwidth. Replicas of trabecular bones (cubes of 20 mm side length) created by 3D printing technique were characterized using AIB with a 2.25 MHz center frequency transducer. A mechanical scanning system was used to acquire multiple backscatter signals. An uncertainty model in measurement was proposed based on the Guide to the Expression of Uncertainty in Measurement. Initial AIB results are not metrologically reliable, presenting high measurement uncertainties (sample: 5_0.2032/AIB: -15.1 dB ± 13.9 dB). It is noteworthy that the uncertainty model proposed contributes as unprecedented way for metrological assessment of trabecular bone characterization using AIB.

  17. Decreased nitric oxide levels stimulate osteoclastogenesis and bone resorption both in vitro and in vivo on the chick chorioallantoic membrane in association with neoangiogenesis.

    PubMed

    Collin-Osdoby, P; Rothe, L; Bekker, S; Anderson, F; Osdoby, P

    2000-03-01

    High nitric oxide (NO) levels inhibit osteoclast (OC)-mediated bone resorption in vivo and in vitro, and nitrate donors protect against estrogen-deficient bone loss in postmenopausal women. Conversely, decreased NO production potentiates OC bone resorption in vitro and is associated with in vivo bone loss in rats and humans. Previously, we reported that bone sections from rats administered aminoguanidine (AG), a selective inhibitor of NO production via inducible NO synthase, exhibited both increased OC resorptive activity as well as greater numbers of OC. Here, we investigated further whether AG promoted osteoclastogenesis, in addition to stimulating mature OC function, using a modified in vivo chick chorioallantoic membrane (CAM) system and an in vitro chick bone marrow OC-like cell developmental model. AG, focally administered in small agarose plugs placed directly adjacent to a bone chip implanted on the CAM, dose-dependently elicited neoangiogenesis while stimulating the number, size, and bone pit resorptive activity of individual OC ectopically formed in vivo. In addition to enhancing OC precursor recruitment via neoangiogenesis, AG also exerted other vascular-independent effects on osteoclastogenesis. Thus, AG promoted the in vitro fusion and formation from bone marrow precursor cells of larger OC-like cells that contained more nuclei per cell and exhibited multiple OC differentiation markers. AG stimulated development was inversely correlated with declining medium nitrite levels. In contrast, three different NO donors each dose-dependently inhibited in vitro OC-like cell development while raising medium nitrite levels. Therefore, NO sensitively regulates OC-mediated bone resorption through affecting OC recruitment (angiogenesis), formation (fusion and differentiation), and bone resorptive activity in vitro and in vivo. Possibly, the stimulation of neoangiogenesis and OC-mediated bone remodeling via AG or other pro-angiogenic agents may find clinical applications in reconstructive surgery, fracture repair, or the treatment of avascular necrosis.

  18. Hypophosphatemic osteomalacia induced by low-dose adefovir therapy: focus on manifestations in the skeletal system and literature review.

    PubMed

    Kim, Du Hwan; Sung, Duk Hyun; Min, Yong Ki

    2013-03-01

    Osteomalacia is a metabolic bone disease that leads to softening of the bones and can be caused by hypophosphatemia. Large clinical studies of low-dose adefovir dipivoxil (adefovir) have found no evidence of renal tubular dysfunction leading to hypophosphatemia after 48 weeks of treatment. We report two cases of low-dose adefovir-induced hypophosphatemic osteomalacia that initially presented with diffuse musculoskeletal pain. The first patient was a 62-year-old man with a 2-year history of bone pain involving the dorsal mid-thorax, lower anterior chest wall, right sacroiliac joint area, and both knees. The patient had been receiving adefovir for 5 years before confirmation of hypophosphatemia and urinary phosphate wasting. Bone scintigraphy revealed multifocal lesions including multiple ribs, costochondral junctions, costovertebral junctions, sacrum, both posterior iliac bones, both proximal tibia, right calcaneus, and the left second metatarsophalangeal joint area, which were suggestive of metabolic bone disorder. Bone pain was significantly reduced within 3 months after supplementation with phosphate and calcitriol. The second patient was a 54-year-old male who presented with an 18-month history of severe bone pain of the right medial knee and low back. The patient had been taking adefovir for approximately 40 months before the development of bone pain. Laboratory data revealed hypophosphatemia and vitamin D deficiency. Bone scintigraphy showed increased uptake in bilateral ribs, sternum, both scapulae, both costovertebral junctions, both pelvic bones, medial cortex of the right proximal femur, right proximal tibia, and the left lateral tarsal bone. The symptoms improved by changing the antiviral agent from adefovir to entecavir. Because osteomalacia often presents with diffuse bone pain, non-specific radiologic findings and non-characteristic routine serum biochemical changes, the disease can be confused with various musculoskeletal diseases and a high index of suspicion is necessary for an early diagnosis in patients receiving adefovir therapy.

  19. The Skeletal Biology of Hibernating Woodchucks (Marmota monax)

    NASA Astrophysics Data System (ADS)

    Doherty, Alison H.

    Long periods of inactivity in most mammals lead to significant bone loss that may not be completely recovered during an individual's lifetime regardless of future activity. Extended bouts of inactivity are the norm for hibernating mammals. It remains largely unknown, however, how these animals avoid adversely affecting bone, their quality, and ultimately survival given the challenges posed to their skeletons by inactivity and nutritional deprivation during hibernation. The primary goal of this project was to identify the physiological mechanisms regulating bone density, area and strength during extended periods of annual inactivity in hibernating woodchucks (Marmota monax). The overall hypothesis that bone integrity is unaffected by several months of inactivity during hibernation in woodchucks was tested across multiple levels of biological function. To gain a holistic assessment of seasonal bone integrity, the locomotor behavior and estimated stresses acting on woodchuck bones were investigated in conjunction with computed tomography scans and three-point bending tests to determine bone density, geometry, and mechanical properties of the long bones throughout the year. In addition, serum protein expression was examined to ascertain bone resorption and formation processes indicative of overall annual skeletal health. It was determined that woodchucks avoid significant changes in gait preference, but experience a decrease in bending stresses acting on distal limb bones following hibernation. Computed tomography scans indicated that bone mass, distribution, and trabecular structure are maintained in these animals throughout the year. Surprisingly, cortical density increased significantly posthibernation. Furthermore, three-point bending tests revealed that although less stiff, woodchuck femora were just as tough during the hibernation season, unlike brittle bones associated with osteoporosis. Finally, bone serum markers suggested a net maintenance of bone resorption and formation processes throughout the year. Taken together, these findings strongly suggest that woodchucks do not lose bone to the extent that would be expected from a non-hibernating animal during four months of inactivity. It is concluded that bone integrity is not adversely affected by hibernation in woodchucks. The results of this work have several broader implications toward skeletal biology research, the evolution of skeletal plasticity, and biomedical applications to osteoporosis prevention and treatment.

  20. Exaggerated inflammatory response after use of recombinant bone morphogenetic protein in recurrent unicameral bone cysts.

    PubMed

    MacDonald, Kevin M; Swanstrom, Morgan M; McCarthy, James J; Nemeth, Blaise A; Guliani, Teresa A; Noonan, Kenneth J

    2010-03-01

    Recurrent unicameral bone cysts (UBCs) can result in significant morbidity during a child's physical and emotional development. Multiple treatment options are available and a review of the literature fails to clearly define the optimal treatment for UBCs. Recombinant bone morphogenetic protein (BMP) has been used with success in other disorders of poor bone formation. This manuscript is the first to report on the use of recombinant BMP in the treatment of UBCs. Three patients with recurrent UBCs underwent revision surgery with recombinant BMP. Radiographic and medical review was performed and is reported here. In these patients, the use of BMP failed to fully resolve their UBC; 2 patients had complete recurrence that required further surgery. In addition to poor radiographic results, all patients developed exaggerated inflammatory responses in the acute postoperative period. Each child developed clinically significant limb swelling and pain that mimicked infection. On the basis of our poor radiographic results and a paradoxical clinical result, we no longer recommend the use of recombinant BMP in the manner reported here for the treatment of recurrent UBCs. Level IV, case series.

Top