NASA Astrophysics Data System (ADS)
Choi, In-Young; Lee, Sang-Pil; Shen, Jun
2005-01-01
A single-shot multiple quantum filtering method is developed that uses two double-band frequency selective pulses for enhanced spectral selectivity in combination with a slice-selective 90°, a slice-selective universal rotator 90°, and a spectral-spatial pulse composed of two slice-selective universal rotator 45° pulses for single-shot three-dimensional localization. The use of this selective multiple quantum filtering method for C3 and C4 methylene protons of GABA resulted in improved spectral selectivity for GABA and effective suppression of overlapping signals such as creatine and glutathione in each single scan, providing reliable measurements of the GABA doublet in all subjects. The concentration of GABA was measured to be 0.7 ± 0.2 μmol/g (means ± SD, n = 15) in the fronto-parietal region of the human brain in vivo.
Rotational fluxons of Bose-Einstein condensates in coplanar double-ring traps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, J.; Institute of Natural Sciences, Massey University; Haigh, T. J.
Rotational analogs to magnetic fluxons in conventional Josephson junctions are predicted to emerge in the ground state of rotating tunnel-coupled annular Bose-Einstein condensates (BECs). Such topological condensate-phase structures can be manipulated by external potentials. We determine conditions for observing macroscopic quantum tunneling of a fluxon. Rotational fluxons in double-ring BECs can be created, manipulated, and controlled by external potentials in different ways than is possible in the solid-state system, thus rendering them a promising candidate system for studying and utilizing quantum properties of collective many-particle degrees of freedom.
Electric dipole moment of magnetoexciton in concentric quantum rings
NASA Astrophysics Data System (ADS)
García, L. F.; Mikhailov, I. D.; Revinova, S. Yu
2017-12-01
We study properties of exciton in a weakly coupled concentric quantum rings, penetrated by an axially directed magnetic flux and subjected to an electric field in the ring’s plane. To this end, we adopt a simple model of quasi-one-dimensional rotator, for which the wave functions and the corresponding energies we found by using the double Fourier series expansion method. Revealed multiple intersections of the energy levels provide conditions for abrupt changes of the radial and the angular quantum numbers, making possible the tunnelling of carriers between rings and allowing the formation of a permanent large dipole moment. We show that the electric and magnetic polarizability of concentric quantum rings with a trapped exciton are very sensible to external electric and magnetic fields.
Self-assembly of concentric quantum double rings.
Mano, Takaaki; Kuroda, Takashi; Sanguinetti, Stefano; Ochiai, Tetsuyuki; Tateno, Takahiro; Kim, Jongsu; Noda, Takeshi; Kawabe, Mitsuo; Sakoda, Kazuaki; Kido, Giyuu; Koguchi, Nobuyuki
2005-03-01
We demonstrate the self-assembled formation of concentric quantum double rings with high uniformity and excellent rotational symmetry using the droplet epitaxy technique. Varying the growth process conditions can control each ring's size. Photoluminescence spectra emitted from an individual quantum ring complex show peculiar quantized levels that are specified by the carriers' orbital trajectories.
NASA Astrophysics Data System (ADS)
Stukopin, Vladimir
2018-02-01
Main result is the multiplicative formula for universal R-matrix for Quantum Double of Yangian of strange Lie superalgebra Qn type. We introduce the Quantum Double of the Yangian of the strange Lie superalgebra Qn and define its PBW basis. We compute the Hopf pairing for the generators of the Yangian Double. From the Hopf pairing formulas we derive a factorized multiplicative formula for the universal R-matrix of the Yangian Double of the Lie superalgebra Qn . After them we obtain coefficients in this multiplicative formula for universal R-matrix.
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.
Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A
2014-07-03
The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
NASA Astrophysics Data System (ADS)
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
Secure entanglement distillation for double-server blind quantum computation.
Morimae, Tomoyuki; Fujii, Keisuke
2013-07-12
Blind quantum computation is a new secure quantum computing protocol where a client, who does not have enough quantum technologies at her disposal, can delegate her quantum computation to a server, who has a fully fledged quantum computer, in such a way that the server cannot learn anything about the client's input, output, and program. If the client interacts with only a single server, the client has to have some minimum quantum power, such as the ability of emitting randomly rotated single-qubit states or the ability of measuring states. If the client interacts with two servers who share Bell pairs but cannot communicate with each other, the client can be completely classical. For such a double-server scheme, two servers have to share clean Bell pairs, and therefore the entanglement distillation is necessary in a realistic noisy environment. In this Letter, we show that it is possible to perform entanglement distillation in the double-server scheme without degrading the security of blind quantum computing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baart, T. A.; Vandersypen, L. M. K.; Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.
NASA Astrophysics Data System (ADS)
Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.
1994-08-01
We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
NASA Astrophysics Data System (ADS)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; Lagally, Max G.; Foote, Ryan H.; Friesen, Mark; Coppersmith, Susan N.; Eriksson, Mark A.
2016-10-01
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of double quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. We further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau-Zener-Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.
Crossed-coil detection of two-photon excited nuclear quadrupole resonance
NASA Astrophysics Data System (ADS)
Eles, Philip T.; Michal, Carl A.
2005-08-01
Applying a recently developed theoretical framework for determining two-photon excitation Hamiltonians using average Hamiltonian theory, we calculate the excitation produced by half-resonant irradiation of the pure quadrupole resonance of a spin-3/2 system. This formalism provides expressions for the single-quantum and double-quantum nutation frequencies as well as the Bloch-Siegert shift. The dependence of the excitation strength on RF field orientation and the appearance of the free-induction signal along an axis perpendicular to the excitation field provide an unmistakable signature of two-photon excitation. We demonstrate single- and double-quantum excitation in an axially symmetric system using 35Cl in a single crystal of potassium chlorate ( ωQ = 28 MHz) with crossed-coil detection. A rotation plot verifies the orientation dependence of the two-photon excitation, and double-quantum coherences are observed directly with the application of a static external magnetic field.
Local Gate Control of a Carbon Nanotube Double Quantum Dot
2016-04-04
Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...computation. Carbon nanotubes have been considered lead- ing candidates for nanoscale electronic applica- tions (1, 2). Previous measurements of nano- tube...electronics have shown electron confine- ment (quantum dot) effects such as single- electron charging and energy-level quantization (3–5). Nanotube
A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector
2002-01-01
Proc. Vol. 692 © 2002 Materials Research Society H4.2 A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector ...on photon-assisted tunneling (PAT) between the two electron layers in a double quantum well (DQW) heterostructure, will be explained. The detector is...the frequency and strength of that radiation. The THz detector discussed in this paper makes use of photon- assisted tunnelling (PAT) between multiple
Controlled Quantum Operations of a Semiconductor Three-Qubit System
NASA Astrophysics Data System (ADS)
Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2018-02-01
In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.
Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser
NASA Astrophysics Data System (ADS)
Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song
2018-01-01
We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.
NASA Astrophysics Data System (ADS)
Bhakta, S.; Prajapati, R. P.; Dolai, B.
2017-08-01
The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; ...
2016-10-18
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
Molecular Quantum Mechanics: Analytic Gradients and Beyond - Program and Abstracts
2007-06-03
Kutzelnigg (Bochum, Germany) Chair: Pekka Pyykko (Helsinki, Finland) Which Masses are Vibrating or Rotating in a Molecule? 15:40-16:15 O30...Krylov (Los Angeles, CA, U.S.A.) Multiconfigurational Quantum Chemistry for Actinide Containing Systems: From Isolated Molecules to Condensed...the genetic algorithm will be critically assessed. For B4n, the double rings are notably stable. The DFT calculations provide strong indications of
When is a product of finite order qubit gates of infinite order?
NASA Astrophysics Data System (ADS)
Karnas, Katarzyna; Sawicki, Adam
2018-02-01
We consider a product of two finite order quantum SU(2) -gates U 1, U 2 and ask when U_1\\cdot U2 has an infinite order. Using the fact that SU(2) is a double cover of SO(3) we actually study the product O(γ, k12) of two rotations O(φ, k_1)\\in SO(3) and O(φ, k_2)\\in SO(3) about axes k1 , k_2\\in {R}3 . In particular, we focus on the case when k_1\\cdotk_2=0 , and φ_1=φ=φ2 are rational multiples of π and show that γ is not a rational multiple of π unless φ\\in\\{\\frac{kπ}{2}:k\\in{Z}\\} . The proof presented in this paper boils down to finding all pairs γ, φ\\in \\{aπ : a\\in{Q}\\} that are solutions of \\cos\\fracγ{2}=\\cos^2\\fracφ{2} .
Voltage-selective bidirectional polarization and coherent rotation of nuclear spins in quantum dots.
Takahashi, R; Kono, K; Tarucha, S; Ono, K
2011-07-08
We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.
Field tuning the g factor in InAs nanowire double quantum dots.
Schroer, M D; Petersson, K D; Jung, M; Petta, J R
2011-10-21
We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society
Multi-bit dark state memory: Double quantum dot as an electronic quantum memory
NASA Astrophysics Data System (ADS)
Aharon, Eran; Pozner, Roni; Lifshitz, Efrat; Peskin, Uri
2016-12-01
Quantum dot clusters enable the creation of dark states which preserve electrons or holes in a coherent superposition of dot states for a long time. Various quantum logic devices can be envisioned to arise from the possibility of storing such trapped particles for future release on demand. In this work, we consider a double quantum dot memory device, which enables the preservation of a coherent state to be released as multiple classical bits. Our unique device architecture uses an external gating for storing (writing) the coherent state and for retrieving (reading) the classical bits, in addition to exploiting an internal gating effect for the preservation of the coherent state.
Bulk Rotational Symmetry Breaking in Kondo Insulator SmB 6
Xiang, Z.; Lawson, B.; Asaba, T.; ...
2017-09-25
The Kondo insulator samarium hexaboride (SmB 6) has been intensely studied in recent years as a potential candidate of a strongly correlated topological insulator. One of the most exciting phenomena observed in SmB 6 is the clear quantum oscillations appearing in magnetic torque at a low temperature despite the insulating behavior in resistance. These quantum oscillations show multiple frequencies and varied effective masses. The origin of quantum oscillation is, however, still under debate with evidence of both two-dimensional Fermi surfaces and three-dimensional Fermi surfaces. Here, we carry out angle-resolved torque magnetometry measurements in a magnetic field up to 45 Tmore » and a temperature range down to 40 mK. With the magnetic field rotated in the (010) plane, the quantum oscillation frequency of the strongest oscillation branch shows a fourfold rotational symmetry. However, in the angular dependence of the amplitude of the same branch, this fourfold symmetry is broken and, instead, a twofold symmetry shows up, which is consistent with the prediction of a two-dimensional Lifshitz-Kosevich model. No deviation of Lifshitz-Kosevich behavior is observed down to 40 mK. Our results suggest the existence of multiple light-mass surface states in SmB 6, with their mobility significantly depending on the surface disorder level.« less
Double Ramification Cycles and Quantum Integrable Systems
NASA Astrophysics Data System (ADS)
Buryak, Alexandr; Rossi, Paolo
2016-03-01
In this paper, we define a quantization of the Double Ramification Hierarchies of Buryak (Commun Math Phys 336:1085-1107, 2015) and Buryak and Rossi (Commun Math Phys, 2014), using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new (1+1)-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, extended Toda, etc. Finally, we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.
Magic angle for barrier-controlled double quantum dots
NASA Astrophysics Data System (ADS)
Yang, Xu-Chen; Wang, Xin
2018-01-01
We show that the exchange interaction of a singlet-triplet spin qubit confined in double quantum dots, when being controlled by the barrier method, is insensitive to a charged impurity lying along certain directions away from the center of the double-dot system. These directions differ from the polar axis of the double dots by the magic angle, equaling arccos(1 /√{3 })≈54 .7∘ , a value previously found in atomic physics and nuclear magnetic resonance. This phenomenon can be understood from an expansion of the additional Coulomb interaction created by the impurity, but also relies on the fact that the exchange interaction solely depends on the tunnel coupling in the barrier-control scheme. Our results suggest that for a scaled-up qubit array, when all pairs of double dots rotate their respective polar axes from the same reference line by the magic angle, crosstalk between qubits can be eliminated, allowing clean single-qubit operations. While our model is a rather simplified version of actual experiments, our results suggest that it is possible to minimize unwanted couplings by judiciously designing the layout of the qubits.
Quantum dynamics of a plane pendulum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibscher, Monika; Schmidt, Burkhard
A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schroedinger equation is solved for pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time evolution ofmore » the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes, and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed.« less
Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeiffer, M., E-mail: mpfeiffer@irs.uni-stuttgart.de; Nizenkov, P., E-mail: nizenkov@irs.uni-stuttgart.de; Mirza, A., E-mail: mirza@irs.uni-stuttgart.de
2016-02-15
Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methodsmore » are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.« less
Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases
NASA Astrophysics Data System (ADS)
Pfeiffer, M.; Nizenkov, P.; Mirza, A.; Fasoulas, S.
2016-02-01
Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn's Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.
The set of triple-resonance sequences with a multiple quantum coherence evolution period
NASA Astrophysics Data System (ADS)
Koźmiński, Wiktor; Zhukov, Igor
2004-12-01
The new pulse sequence building block that relies on evolution of heteronuclear multiple quantum coherences is proposed. The particular chemical shifts are obtained in multiple quadrature, using linear combinations of frequencies taken from spectra measured at different quantum levels. The pulse sequences designed in this way consist of small number of RF-pulses, are as short as possible, and could be applied for determination of coupling constants. The examples presented involve 2D correlations H NCO, H NCA, H N(CO) CA, and H(N) COCA via heteronuclear zero and double coherences, as well as 2D H NCOCA technique with simultaneous evolution of triple and three distinct single quantum coherences. Applications of the new sequences are presented for 13C, 15N-labeled ubiquitin.
Two-axis control of a singlet-triplet qubit with an integrated micromagnet.
Wu, Xian; Ward, D. R.; Prance, J. R.; ...
2014-08-04
The qubit is the fundamental building block of a quantum computer. We fabricate a qubit in a silicon double-quantum dot with an integrated micromagnet in which the qubit basis states are the singlet state and the spin-zero triplet state of two electrons. Because of the micromagnet, the magnetic field difference ΔB between the two sides of the double dot is large enough to enable the achievement of coherent rotation of the qubit’s Bloch vector around two different axes of the Bloch sphere. By measuring the decay of the quantum oscillations, the inhomogeneous spin coherence time T*2 is determined. By measuringmore » T*2 at many different values of the exchange coupling J and at two different values of ΔB, we provide evidence that the micromagnet does not limit decoherence, with the dominant limits on T*2 arising from charge noise and from coupling to nuclear spins.« less
Quantum Communication without Alignment using Multiple-Qubit Single-Photon States
NASA Astrophysics Data System (ADS)
Aolita, L.; Walborn, S. P.
2007-03-01
We propose a scheme for encoding logical qubits in a subspace protected against collective rotations around the propagation axis using the polarization and transverse spatial degrees of freedom of single photons. This encoding allows for quantum key distribution without the need of a shared reference frame. We present methods to generate entangled states of two logical qubits using present day down-conversion sources and linear optics, and show that the application of these entangled logical states to quantum information schemes allows for alignment-free tests of Bell’s inequalities, quantum dense coding, and quantum teleportation.
New Ways of Treating Data for Diatomic Molecule 'shelf' and Double-Minimum States
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.; Tao, Jason; Khanna, Shirin; Pashov, Asen; Tellinghuisen, Joel
2017-06-01
Electronic states whose potential energy functions have 'shelf' or double-minimum shapes have always presented special challenges because, as functions of vibrational quantum number, the vibrational energies/spacings and inertial rotational constants either have an abrupt change of character with discontinuous slope, or past a given point, become completely chaotic. The present work shows that a `traditional' methodology developed for deep `regular' single-well potentials can also provide accurate `parameter-fit' descriptions of the v-dependence of the vibrational energies and rotational constants of shelf-state potentials that allow a conventional RKR calculation of their Potential energy functions. It is also shown that a merging of Pashov's uniquely flexible 'spline point-wise' potential function representation with Le Roy's `Morse/Long-Range' (MLR) analytic functional form which automatically incorporates the correct theoretically known long-range form, yields an analytic function that incorporates most of the advantages of both approaches. An illustrative application of this method to data to a double-minimum state of Na_2 will be described.
Silicon based quantum dot hybrid qubits
NASA Astrophysics Data System (ADS)
Kim, Dohun
2015-03-01
The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories under contract DE-AC04-94AL85000.
The HCO+-H2 van der Waals interaction: Potential energy and scattering
NASA Astrophysics Data System (ADS)
Massó, H.; Wiesenfeld, L.
2014-11-01
We compute the rigid-body, four-dimensional interaction potential between HCO+ and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO+ and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.
The HCO⁺-H₂ van der Waals interaction: potential energy and scattering.
Massó, H; Wiesenfeld, L
2014-11-14
We compute the rigid-body, four-dimensional interaction potential between HCO(+) and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO(+) and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.
Opatrný, Tomáš; Richterek, Lukáš; Opatrný, Martin
2018-01-31
We show that the classical model of Euler top (freely rotating, generally asymmetric rigid body), possibly supplemented with a rotor, corresponds to a generalized Lipkin-Meshkov-Glick (LMG) model describing phenomena of various branches of quantum physics. Classical effects such as free precession of a symmetric top, Feynman's wobbling plate, tennis-racket instability and the Dzhanibekov effect, attitude control of satellites by momentum wheels, or twisting somersault dynamics, have their counterparts in quantum effects that include spin squeezing by one-axis twisting and two-axis countertwisting, transitions between the Josephson and Rabi regimes of a Bose-Einstein condensate in a double-well potential, and other quantum critical phenomena. The parallels enable us to expand the range of explored quantum phase transitions in the generalized LMG model, as well as to present a classical analogy of the recently proposed LMG Floquet time crystal.
Full-dimensional quantum dynamics of rovibrationally inelastic scattering between CN and H2
NASA Astrophysics Data System (ADS)
Yang, Benhui; Wang, X. H.; Stancil, P. C.; Bowman, J. M.; Balakrishnan, N.; Forrey, R. C.
2016-12-01
We report six-dimensional (6D) potential energy surface (PES) and rovibrational scattering calculations for the CN-H2 collision system. The PES was computed using the high-level ab initio spin-restricted coupled-cluster with single, double, and perturbative triple excitations-F12B method and fitted to an analytic function using an invariant polynomial method in 6D. Quantum close-coupling calculations are reported for rotational transitions in CN by H2 and D2 collisions in 6D as well as four-dimensional (4D) within a rigid rotor model for collision energies of 1.0-1500 cm-1. Comparisons with experimental data and previous 4D calculations are presented for CN rotational levels j1 = 4 and 11. For the first time, rovibrational quenching cross sections and rate coefficients of CN (v1 = 1,j1 = 0) in collisions with para- and ortho-H2 are also reported in full-dimension. Agreement for pure rotational transitions is found to be good, but no experimental data on rovibrational collisional quenching for CN-H2 are available. Applications of the current rotational and rovibrational rate coefficients in astrophysical modeling are briefly discussed.
An advanced NMR protocol for the structural characterization of aluminophosphate glasses.
van Wüllen, Leo; Tricot, Grégory; Wegner, Sebastian
2007-10-01
In this work a combination of complementary advanced solid-state nuclear magnetic resonance (NMR) strategies is employed to analyse the network organization in aluminophosphate glasses to an unprecedented level of detailed insight. The combined results from MAS, MQMAS and (31)P-{(27)Al}-CP-heteronuclear correlation spectroscopy (HETCOR) NMR experiments allow for a detailed speciation of the different phosphate and aluminate species present in the glass. The interconnection of these local building units to an extended three-dimensional network is explored employing heteronuclear dipolar and scalar NMR approaches to quantify P-O-Al connectivity by (31)P{(27)Al}-heteronuclear multiple quantum coherence (HMQC), -rotational echo adiabatic passage double resonance (REAPDOR) and -HETCOR NMR as well as (27)Al{(31)P}-rotational echo double resonance (REDOR) NMR experiments, complemented by (31)P-2D-J-RESolved MAS NMR experiments to probe P-O-P connectivity utilizing the through bond scalar J-coupling. The combination of the results from the various NMR approaches enables us to not only quantify the phosphate units present in the glass but also to identify their respective structural environments within the three-dimensional network on a medium length scale employing a modified Q notation, Q(n)(m),(AlO)(x), where n denotes the number of connected tetrahedral phosphate, m gives the number of aluminate species connected to a central phosphate unit and x specifies the nature of the bonded aluminate species (i.e. 4, 5 or 6 coordinate aluminium).
Low loss InGaAs/InP multiple quantum well waveguides
NASA Astrophysics Data System (ADS)
Koren, U.; Miller, B. I.; Koch, T. L.; Boyd, G. D.; Capik, R. J.
1986-12-01
Double heterostructure planar waveguides with an InGaAs/InP multiple quantum well (MQW) core and InP cladding layers were grown by atmospheric pressure metalorganic chemical vapor deposition. Ridge waveguides had a low propagation loss of 0.8 dB/cm for 1.52 micron input light. The indices of refraction for the guided TE and TM modes have been measured and the bulk dispersion curves of the MQW material for the 1.46-1.55 micron wavelength region were derived.
NASA Astrophysics Data System (ADS)
Lagoudakis, K. G.; Fischer, K. A.; Sarmiento, T.; McMahon, P. L.; Radulaski, M.; Zhang, J. L.; Kelaita, Y.; Dory, C.; Mueller, K. M.; Vuckovic, J.
Although individual spins in quantum dots have been extensively used as qubits, their investigation under strong resonant driving in view of accessing Mollow physics is still an open question. We have grown high quality positively charged quantum dots (QD) embedded in a planar microcavity that enable enhanced light matter interactions. Applying a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above band and resonant excitation, we observe the formation of Mollow triplets. We investigate the regime where the Mollow sideband splittings are equal to the Zeeman splitting; we observe strong interactions between the Mollow sidebands of the inner transitions and the outer transitions in the form of very clear anticrossings. We investigated these anticrossings and we were able to modify the observed anticrossing splittings on demand by rotating the polarization of the resonant laser. We also developed a quantum-optical model of our system that fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of our positively charged quantum dot. The authors acknowledge financial support from the Army Research Office (Grant No. W911NF1310309) and support from the National Science Foundation, Division of Materials Research (Grant No. 1503759).
Sensitivity enhancements in MQ-MAS NMR of spin-5/2 nuclei using modulated rf mixing pulses
NASA Astrophysics Data System (ADS)
Vosegaard, Thomas; Massiot, Dominique; Grandinetti, Philip J.
2000-08-01
An X- overlineX pulse train with stepped modulation frequency was employed to enhance the multiple-quantum to single-quantum coherence transfer in the mixing period of the multiple-quantum magic-angle spinning (MQ-MAS) experiment for spin I=5/2 nuclei. Two MQ-MAS pulse sequences employing this mixing scheme for the triple-to-single and quintuple-to-single quantum coherence transfers have been designed and their performance is demonstrated for 27Al on samples of NaSi 3AlO 8 and 9Al 2O 3·2B 2O 3 . Compared to the standard single-pulse mixing sequences, the sensitivity is approximately doubled in the present experiments.
Rotational spectroscopy with an optical centrifuge.
Korobenko, Aleksey; Milner, Alexander A; Hepburn, John W; Milner, Valery
2014-03-07
We demonstrate a new spectroscopic method for studying electronic transitions in molecules with extremely broad range of angular momentum. We employ an optical centrifuge to create narrow rotational wave packets in the ground electronic state of (16)O2. Using the technique of resonance-enhanced multi-photon ionization, we record the spectrum of multiple ro-vibrational transitions between X(3)Σg(-) and C(3)Πg electronic manifolds of oxygen. Direct control of rotational excitation, extending to rotational quantum numbers as high as N ≳ 120, enables us to interpret the complex structure of rotational spectra of C(3)Πg beyond thermally accessible levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Z.; Lawson, B.; Asaba, T.
The Kondo insulator samarium hexaboride (SmB 6) has been intensely studied in recent years as a potential candidate of a strongly correlated topological insulator. One of the most exciting phenomena observed in SmB 6 is the clear quantum oscillations appearing in magnetic torque at a low temperature despite the insulating behavior in resistance. These quantum oscillations show multiple frequencies and varied effective masses. The origin of quantum oscillation is, however, still under debate with evidence of both two-dimensional Fermi surfaces and three-dimensional Fermi surfaces. Here, we carry out angle-resolved torque magnetometry measurements in a magnetic field up to 45 Tmore » and a temperature range down to 40 mK. With the magnetic field rotated in the (010) plane, the quantum oscillation frequency of the strongest oscillation branch shows a fourfold rotational symmetry. However, in the angular dependence of the amplitude of the same branch, this fourfold symmetry is broken and, instead, a twofold symmetry shows up, which is consistent with the prediction of a two-dimensional Lifshitz-Kosevich model. No deviation of Lifshitz-Kosevich behavior is observed down to 40 mK. Our results suggest the existence of multiple light-mass surface states in SmB 6, with their mobility significantly depending on the surface disorder level.« less
Highly efficient organic light-emitting diodes with a quantum dot interfacial layer.
Ryu, Seung Yoon; Hwang, Byoung Har; Park, Ki Wan; Hwang, Hyeon Seok; Sung, Jin Woo; Baik, Hong Koo; Lee, Chang Ho; Song, Seung Yong; Lee, Jun Yeob
2009-02-11
Advanced organic light-emitting diodes (OLEDs), based on a multiple structure, were achieved in combination with a quantum dot (QD) interfacial layer. The authors used core/shell CdSe/ZnS QDs passivated with trioctylphosphine oxide (TOPO) and TOPO-free QDs as interlayers. Multiple-structure OLEDs (MOLEDs) with TOPO-free QDs showed higher device efficiency because of a well-defined interfacial monolayer formation. Additionally, the three-unit MOLED showed high performance for device efficiency with double-structured QD interfacial layers due to the enhanced charge balance and recombination probability.
New Frontiers at the Interface of General Relativity and Quantum Optics
NASA Astrophysics Data System (ADS)
Feiler, C.; Buser, M.; Kajari, E.; Schleich, W. P.; Rasel, E. M.; O'Connell, R. F.
2009-12-01
In the present paper we follow three major themes: (i) concepts of rotation in general relativity, (ii) effects induced by these generalized rotations, and (iii) their measurement using interferometry. Our journey takes us from the Foucault pendulum via the Sagnac interferometer to manifestations of gravito-magnetism in double binary pulsars and in Gödel’s Universe. Throughout our article we emphasize the emerging role of matter wave interferometry based on cold atoms or Bose-Einstein condensates leading to superior inertial sensors. In particular, we advertise recent activities directed towards the operation of a coherent matter wave interferometer in an extended free fall.
A programmable five qubit quantum computer using trapped atomic ions
NASA Astrophysics Data System (ADS)
Debnath, Shantanu
2017-04-01
In order to harness the power of quantum information processing, several candidate systems have been investigated, and tailored to demonstrate only specific computations. In my thesis work, we construct a general-purpose multi-qubit device using a linear chain of trapped ion qubits, which in principle can be programmed to run any quantum algorithm. To achieve such flexibility, we develop a pulse shaping technique to realize a set of fully connected two-qubit rotations that entangle arbitrary pairs of qubits using multiple motional modes of the chain. Following a computation architecture, such highly expressive two-qubit gates along with arbitrary single-qubit rotations can be used to compile modular universal logic gates that are effected by targeted optical fields and hence can be reconfigured according to any algorithm circuit programmed in the software. As a demonstration, we run the Deutsch-Jozsa and Bernstein-Vazirani algorithm, and a fully coherent quantum Fourier transform, that we use to solve the `period finding' and `quantum phase estimation' problem. Combining these results with recent demonstrations of quantum fault-tolerance, Grover's search algorithm, and simulation of boson hopping establishes the versatility of such a computation module that can potentially be connected to other modules for future large-scale computations.
Quantum Rotational Effects in Nanomagnetic Systems
NASA Astrophysics Data System (ADS)
O'Keeffe, Michael F.
Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions. These transitions coincide in time with changes in the oscillator dynamics. A large number of spins on a single oscillator coupled only through the in-phase oscillations behaves as a single large spin, greatly enhancing the spin-phonon coupling.
Harmonic mode-locking using the double interval technique in quantum dot lasers.
Li, Yan; Chiragh, Furqan L; Xin, Yong-Chun; Lin, Chang-Yi; Kim, Junghoon; Christodoulou, Christos G; Lester, Luke F
2010-07-05
Passive harmonic mode-locking in a quantum dot laser is realized using the double interval technique, which uses two separate absorbers to stimulate a specific higher-order repetition rate compared to the fundamental. Operating alone these absorbers would otherwise reinforce lower harmonic frequencies, but by operating together they produce the harmonic corresponding to their least common multiple. Mode-locking at a nominal 60 GHz repetition rate, which is the 10(th) harmonic of the fundamental frequency of the device, is achieved unambiguously despite the constraint of a uniformly-segmented, multi-section device layout. The diversity of repetition rates available with this method is also discussed.
Universal non-adiabatic geometric manipulation of pseudo-spin charge qubits
NASA Astrophysics Data System (ADS)
Azimi Mousolou, Vahid
2017-01-01
Reliable quantum information processing requires high-fidelity universal manipulation of quantum systems within the characteristic coherence times. Non-adiabatic holonomic quantum computation offers a promising approach to implement fast, universal, and robust quantum logic gates particularly useful in nano-fabricated solid-state architectures, which typically have short coherence times. Here, we propose an experimentally feasible scheme to realize high-speed universal geometric quantum gates in nano-engineered pseudo-spin charge qubits. We use a system of three coupled quantum dots containing a single electron, where two computational states of a double quantum dot charge qubit interact through an intermediate quantum dot. The additional degree of freedom introduced into the qubit makes it possible to create a geometric model system, which allows robust and efficient single-qubit rotations through careful control of the inter-dot tunneling parameters. We demonstrate that a capacitive coupling between two charge qubits permits a family of non-adiabatic holonomic controlled two-qubit entangling gates, and thus provides a promising procedure to maintain entanglement in charge qubits and a pathway toward fault-tolerant universal quantum computation. We estimate the feasibility of the proposed structure by analyzing the gate fidelities to some extent.
Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.
2015-01-01
We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304
Leakage and sweet spots in triple-quantum-dot spin qubits: A molecular-orbital study
NASA Astrophysics Data System (ADS)
Zhang, Chengxian; Yang, Xu-Chen; Wang, Xin
2018-04-01
A triple-quantum-dot system can be operated as either an exchange-only qubit or a resonant-exchange qubit. While it is generally believed that the decisive advantage of the resonant-exchange qubit is the suppression of charge noise because it is operated at a sweet spot, we show that the leakage is also an important factor. Through molecular-orbital-theoretic calculations, we show that when the system is operated in the exchange-only scheme, the leakage to states with double electron occupancy in quantum dots is severe when rotations around the axis 120∘ from z ̂ is performed. While this leakage can be reduced by either shrinking the dots or separating them further, the exchange interactions are also suppressed at the same time, making the gate operations unfavorably slow. When the system is operated as a resonant-exchange qubit, the leakage is three to five orders of magnitude smaller. We have also calculated the optimal detuning point which minimizes the leakage for the resonant-exchange qubit, and have found that although it does not coincide with the double sweet spot for the charge noise, they are rather close. Our results suggest that the resonant-exchange qubit has another advantage, that leakage can be greatly suppressed compared to the exchange-only qubit, and operating at the double sweet spot point should be optimal both for reducing charge noise and suppressing leakage.
Doppler-resolved kinetics of saturation recovery
Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; ...
2015-04-08
Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore » recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less
Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hong-Kang, E-mail: zhaohonk@yahoo.com; Zou, Wei-Ke; Chen, Qiao
We have investigated the shot noise and Fano factor of the dynamic spin-polarized quantum dot under the perturbations of a rotating magnetic field (RMF), and an oscillating magnetic field (OMF) by employing the non-equilibrium Green's function approach. The shot noise is enhanced from sub-Poissonian to super-Poissonian due to the application of RMF and OMF, and it is controlled sensitively by the tilt angle θ of RMF. The magnitude of shot noise increases as the photon energy ℏω of OMF increases, and its valley eventually is reversed to peaks as the photon energy is large enough. Double-peak structure of Fano factormore » is exhibited as the frequency of OMF increases to cover a large regime. The Zeeman energy μ{sub 0}B{sub 0} acts as an effective gate bias to exhibit resonant behavior, and novel peak emerges associated with the applied OMF.« less
Microwave-driven coherent operation of a semiconductor quantum dot charge qubit
Kim, Dohun; Ward, D. R.; Simmons, C. B.; ...
2015-02-16
An intuitive realization of a qubit is an electron charge at two well-defined positions of a double quantum dot. The qubit is simple and has the potential for high-speed operation because of its strong coupling to electric fields. But, charge noise also couples strongly to this qubit, resulting in rapid dephasing at all but one special operating point called the ‘sweet spot’. In previous studies d.c. voltage pulses have been used to manipulate semiconductor charge qubits but did not achieve high-fidelity control, because d.c. gating requires excursions away from the sweet spot. Here, by using resonant a.c. microwave driving wemore » achieve fast (greater than gigahertz) and universal single qubit rotations of a semiconductor charge qubit. The Z-axis rotations of the qubit are well protected at the sweet spot, and we demonstrate the same protection for rotations about arbitrary axes in the X–Y plane of the qubit Bloch sphere. We characterize the qubit operation using two tomographic approaches: standard process tomography and gate set tomography. Moreover, both methods consistently yield process fidelities greater than 86% with respect to a universal set of unitary single-qubit operations.« less
Puzzarini, Cristina; Cazzoli, Gabriele; López, Juan Carlos; Alonso, José Luis; Baldacci, Agostino; Baldan, Alessandro; Stopkowicz, Stella; Cheng, Lan; Gauss, Jürgen
2012-07-14
Supported by accurate quantum-chemical calculations, the rotational spectra of the mono- and bi-deuterated species of fluoroiodomethane, CHDFI and CD(2)FI, as well as of the (13)C-containing species, (13)CH(2)FI, were recorded for the first time. Three different spectrometers were employed, a Fourier-transform microwave spectrometer, a millimeter/submillimter-wave spectrometer, and a THz spectrometer, thus allowing to record a huge portion of the rotational spectrum, from 5 GHz up to 1.05 THz, and to accurately determine the ground-state rotational and centrifugal-distortion constants. Sub-Doppler measurements allowed to resolve the hyperfine structure of the rotational spectrum and to determine the complete iodine quadrupole-coupling tensor as well as the diagonal elements of the iodine spin-rotation tensor. The present investigation of rare isotopic species of CH(2)FI together with the results previously obtained for the main isotopologue [C. Puzzarini, G. Cazzoli, J. C. López, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss, J. Chem. Phys. 134, 174312 (2011); G. Cazzoli, A. Baldacci, A. Baldan, and C. Puzzarini, Mol. Phys. 109, 2245 (2011)] enabled us to derive a semi-experimental equilibrium structure for fluoroiodomethane by means of a least-squares fit procedure using the available experimental ground-state rotational constants together with computed vibrational corrections. Problems related to the missing isotopic substitution of fluorine and iodine were overcome thanks to the availability of an accurate theoretical equilibrium geometry (computed at the coupled-cluster singles and doubles level augmented by a perturbative treatment of triple excitations).
Single-qubit unitary gates by graph scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumer, Benjamin A.; Underwood, Michael S.; Feder, David L.
2011-12-15
We consider the effects of plane-wave states scattering off finite graphs as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are attached at arbitrary points of a given graph, representing the input and output registers of a single qubit. For a range of momentum eigenstates, we enumerate all of the graphs with up to n=9 vertices for which the scattering implements a single-qubit gate. As n increases, the number of new unitary operations increases exponentially, and for n>6 the majority correspond to rotations about axes distributed roughly uniformlymore » across the Bloch sphere. Rotations by both rational and irrational multiples of {pi} are found.« less
Wigner tomography of multispin quantum states
NASA Astrophysics Data System (ADS)
Leiner, David; Zeier, Robert; Glaser, Steffen J.
2017-12-01
We study the tomography of multispin quantum states in the context of finite-dimensional Wigner representations. An arbitrary operator can be completely characterized and visualized using multiple shapes assembled from linear combinations of spherical harmonics [A. Garon, R. Zeier, and S. J. Glaser, Phys. Rev. A 91, 042122 (2015), 10.1103/PhysRevA.91.042122]. We develop a general methodology to experimentally recover these shapes by measuring expectation values of rotated axial spherical tensor operators and provide an interpretation in terms of fictitious multipole potentials. Our approach is experimentally demonstrated for quantum systems consisting of up to three spins using nuclear magnetic resonance spectroscopy.
Experimental demonstration of spinor slow light
NASA Astrophysics Data System (ADS)
Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.
2016-03-01
Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.
Free-energy landscapes from adaptively biased methods: Application to quantum systems
NASA Astrophysics Data System (ADS)
Calvo, F.
2010-10-01
Several parallel adaptive biasing methods are applied to the calculation of free-energy pathways along reaction coordinates, choosing as a difficult example the double-funnel landscape of the 38-atom Lennard-Jones cluster. In the case of classical statistics, the Wang-Landau and adaptively biased molecular-dynamics (ABMD) methods are both found efficient if multiple walkers and replication and deletion schemes are used. An extension of the ABMD technique to quantum systems, implemented through the path-integral MD framework, is presented and tested on Ne38 against the quantum superposition method.
How to construct self/anti-self charge conjugate states for higher spins
NASA Astrophysics Data System (ADS)
Dvoeglazov, Valeriy V.
2012-10-01
We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2,0)⊕(0,1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Diraclike and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2,0)⊕(0,1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M. Kirchbach et al. on neutrinoless double beta decay, and G.J.Ni et al. on meson lifetimes.
How to construct self/anti-self charge conjugate states?
NASA Astrophysics Data System (ADS)
Dvoeglazov, V. V.
2014-03-01
We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2, 0)⊕(0, 1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2, 0) ⊕ (0, 1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M. Kirchbach et al. on neutrinoless double beta decay, and G. J. Ni et al. on meson lifetimes.
How to Construct the Anti-Self Charge Conjugate States?
NASA Astrophysics Data System (ADS)
Dvoeglazov, Valeriy V.
2015-01-01
We construct self/anti-self charge conjugate (Majorana-like) states in the (1/2, 0) ⊕ (0, 1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2, 0) ⊕ (0, 1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M.Kirchbach et al. on neutrinoless double beta decay, and G.J.Ni et al. on meson lifetimes.
Quantum measurement of a rapidly rotating spin qubit in diamond.
Wood, Alexander A; Lilette, Emmanuel; Fein, Yaakov Y; Tomek, Nikolas; McGuinness, Liam P; Hollenberg, Lloyd C L; Scholten, Robert E; Martin, Andy M
2018-05-01
A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T 2 . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.
Quantum measurement of a rapidly rotating spin qubit in diamond
Fein, Yaakov Y.; Hollenberg, Lloyd C. L.; Scholten, Robert E.
2018-01-01
A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T2. We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors. PMID:29736417
Single-server blind quantum computation with quantum circuit model
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqian; Weng, Jian; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing; Song, Tingting
2018-06-01
Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client's quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.
Zerbetto, Mirco; Carlotto, Silvia; Polimeno, Antonino; Corvaja, Carlo; Franco, Lorenzo; Toniolo, Claudio; Formaggio, Fernando; Barone, Vincenzo; Cimino, Paola
2007-03-15
In this work we address the interpretation, via an ab initio integrated computational approach, of the CW-ESR spectra of the double spin labeled, 310-helical, peptide Fmoc-(Aib-Aib-TOAC)2-Aib-OMe dissolved in acetonitrile. Our approach is based on the determination of geometric and local magnetic parameters of the heptapeptide by quantum mechanical density functional calculations taking into account solvent and, when needed, vibrational averaging contributions. The system is then described by a stochastic Liouville equation for the two electron spins interacting with each other and with two 14N nuclear spins, in the presence of diffusive rotational dynamics. Parametrization of the diffusion rotational tensor is provided by a hydrodynamic model. CW-ESR spectra are simulated with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing 3D structural and dynamic information on molecular systems.
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
High Visibility Coherent Oscillations in a Si/SiGe Quantum Dot Hybrid Qubit
NASA Astrophysics Data System (ADS)
Eriksson, Mark
2014-03-01
We discuss measurement and manipulation of a quantum dot hybrid qubit formed in a Si/SiGe heterostructure. X-rotations on the Bloch sphere are performed by pulsing a gate voltage so that the detuning of a double quantum dot makes the (1,2) and (2,1) occupation ground states degenerate. The resulting rotation rate is approximately 5 GHz and reveals an experimentally measured visibilty greater than 80 percent. Z-rotations on the Bloch sphere are performed by pulsing a gate voltage away from the (1,2)-(2,1) degeneracy point, resulting in oscillations at a rate of approximately 10 GHz and measured visibility greater than 85 percent. The T2* time at this detuning is greater than 15 ns, many times longer than the 100 ps gate operation time. In part because of the large ratio between the gate time and the dephasing time, improvements in the pulses used in the experiment are expected to enhance the visibility beyond that reported here and to enable high fidelity quantum gates. This work was supported in part by ARO (W911NF-12-0607), NSF (DMR-1206915), and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was performed in collaboration with Dohun Kim, Zhan Shi, C. B. Simmons, D. R. Ward, J. R. Prance, Xian Wu, R. T. Mohr, Teck Seng Koh, John King Gamble, Ryan Foote, D. E. Savage, M. G. Lagally, Mark Friesen, and S. N. Coppersmith.
Two-dimensional Electronic Double-Quantum Coherence Spectroscopy
Kim, Jeongho; Mukamel, Shaul
2009-01-01
CONSPECTUS The theory of electronic structure of many-electron systems like molecules is extraordinarily complicated. A lot can be learned by considering how electron density is distributed, on average, in the average field of the other electrons in the system. That is, mean field theory. However, to describe quantitatively chemical bonds, reactions, and spectroscopy requires consideration of the way that electrons avoid each other by the way they move; this is called electron correlation (or in physics, the many-body problem for fermions). While great progress has been made in theory, there is a need for incisive experimental tests that can be undertaken for large molecular systems in the condensed phase. Here we report a two-dimensional (2D) optical coherent spectroscopy that correlates the double excited electronic states to constituent single excited states. The technique, termed two-dimensional double-coherence spectroscopy (2D-DQCS), makes use of multiple, time-ordered ultrashort coherent optical pulses to create double- and single-quantum coherences over time intervals between the pulses. The resulting two-dimensional electronic spectrum maps the energy correlation between the first excited state and two-photon allowed double-quantum states. The principle of the experiment is that when the energy of the double-quantum state, viewed in simple models as a double HOMO to LUMO excitation, equals twice that of a single excitation, then no signal is radiated. However, electron-electron interactions—a combination of exchange interactions and electron correlation—in real systems generates a signal that reveals precisely how the energy of the double-quantum resonance differs from twice the single-quantum resonance. The energy shift measured in this experiment reveals how the second excitation is perturbed by both the presence of the first excitation and the way that the other electrons in the system have responded to the presence of that first excitation. We compare a series of organic dye molecules and find that the energy offset for adding a second electronic excitation to the system relative to the first excitation is on the order of tens of milli-electronvolts, and it depends quite sensitively on molecular geometry. These results demonstrate the effectiveness of 2D-DQCS for elucidating quantitative information about electron-electron interactions, many-electron wavefunctions, and electron correlation in electronic excited states and excitons. PMID:19552412
Quantum mechanical tunneling in the automerization of cyclobutadiene
NASA Astrophysics Data System (ADS)
Schoonmaker, R.; Lancaster, T.; Clark, S. J.
2018-03-01
Cyclobutadiene has a four-membered carbon ring with two double bonds, but this highly strained molecular configuration is almost square and, via a coordinated motion, the nuclei quantum mechanically tunnels through the high-energy square state to a configuration equivalent to the initial configuration under a 90° rotation. This results in a square ground state, comprising a superposition of two molecular configurations, that is driven by quantum tunneling. Using a quantum mechanical model, and an effective nuclear potential from density functional theory, we calculate the vibrational energy spectrum and the accompanying wavefunctions. We use the wavefunctions to identify the motions of the molecule and detail how different motions can enhance or suppress the tunneling rate. This is relevant for kinematics of tunneling-driven reactions, and we discuss these implications. We are also able to provide a qualitative account of how the molecule will respond to an external perturbation and how this may enhance or suppress infra-red-active vibrational transitions.
Electron capture in collisions of N^+ with H and H^+ with N
NASA Astrophysics Data System (ADS)
Lin, C. Y.; Stancil, P. C.; Gu, J. P.; Buenker, R. J.; Kimura, M.
2004-05-01
Charge transfer processes due to collisions of N^+ with atomic hydrogen and H^+ with atomic nitrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potential curves and nonadiabatic radial and rotational coupling matrix elements obtained with the multireference single- and double-excitation configuration interaction approach. Total and state-selective cross sections for the energy range 0.1-500 eV/u will be presented and compared with existing experimental and theoretical data.
Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klink, W.H., E-mail: william-klink@uiowa.edu; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112
2013-09-15
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle asmore » well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is presented. •The Galilei group is generalized to infinite dimensional Galilean line group. •Loop prolongations of Galilean line group contain central extensions of Galilei group. •Unitary representations of the loops are constructed. •These representations lead to terms in the Hamiltonian corresponding to fictitious forces, including centrifugal and Coriolis forces.« less
Rafalovskaia-Orlovskaia, E P; Gorgidze, L A; Gladkikh, A A; Tauger, S M; Vorob'ev, I A
2012-01-01
The usefulness of quantum dots for the immunofluorescent detection of surface antigens on the lymphoid cells has been studied. To optimize quantum dots detection we have upgraded fluorescent microscope that allows obtaining multiple images from different quantum dots from one section. Specimens stained with quantum dots remained stable over two weeks and practically did not bleach under mercury lamp illumination during tens of minutes. Direct conjugates of primary mouse monoclonal antibodies with quantum dots demonstrated high specificity and sufficient sensitivity in the case of double staining on the frozen sections. Because of the high stability of quantum dots' fluorescence, this method allows to analyze antigen coexpression on the lymphoid tissue sections for diagnostic purposes. The spillover of fluorescent signals from quantum dots into adjacent fluorescent channels, with maxima differing by 40 nm, did not exceed 8%, which makes the spectral compensation is practically unnecessary.
Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory.
Parigi, Valentina; D'Ambrosio, Vincenzo; Arnold, Christophe; Marrucci, Lorenzo; Sciarrino, Fabio; Laurat, Julien
2015-07-13
The full structuration of light in the transverse plane, including intensity, phase and polarization, holds the promise of unprecedented capabilities for applications in classical optics as well as in quantum optics and information sciences. Harnessing special topologies can lead to enhanced focusing, data multiplexing or advanced sensing and metrology. Here we experimentally demonstrate the storage of such spatio-polarization-patterned beams into an optical memory. A set of vectorial vortex modes is generated via liquid crystal cell with topological charge in the optic axis distribution, and preservation of the phase and polarization singularities is demonstrated after retrieval, at the single-photon level. The realized multiple-degree-of-freedom memory can find applications in classical data processing but also in quantum network scenarios where structured states have been shown to provide promising attributes, such as rotational invariance.
Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory
Parigi, Valentina; D'Ambrosio, Vincenzo; Arnold, Christophe; Marrucci, Lorenzo; Sciarrino, Fabio; Laurat, Julien
2015-01-01
The full structuration of light in the transverse plane, including intensity, phase and polarization, holds the promise of unprecedented capabilities for applications in classical optics as well as in quantum optics and information sciences. Harnessing special topologies can lead to enhanced focusing, data multiplexing or advanced sensing and metrology. Here we experimentally demonstrate the storage of such spatio-polarization-patterned beams into an optical memory. A set of vectorial vortex modes is generated via liquid crystal cell with topological charge in the optic axis distribution, and preservation of the phase and polarization singularities is demonstrated after retrieval, at the single-photon level. The realized multiple-degree-of-freedom memory can find applications in classical data processing but also in quantum network scenarios where structured states have been shown to provide promising attributes, such as rotational invariance. PMID:26166257
NASA Astrophysics Data System (ADS)
Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua
2015-08-01
Higher channel capacity and security are difficult to reach in a noisy channel. The loss of photons and the distortion of the qubit state are caused by noise. To solve these problems, in our study, a hyperentangled Bell state is used to design faithful deterministic secure quantum communication and authentication protocol over collective-rotation and collective-dephasing noisy channel, which doubles the channel capacity compared with using an ordinary Bell state as a carrier; a logical hyperentangled Bell state immune to collective-rotation and collective-dephasing noise is constructed. The secret message is divided into several parts to transmit, however the identity strings of Alice and Bob are reused. Unitary operations are not used. Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province, China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province, China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074).
The SLUGGS survey: globular cluster kinematics in a `double sigma' galaxy - NGC 4473
NASA Astrophysics Data System (ADS)
Alabi, Adebusola B.; Foster, Caroline; Forbes, Duncan A.; Romanowsky, Aaron J.; Pastorello, Nicola; Brodie, Jean P.; Spitler, Lee R.; Strader, Jay; Usher, Christopher
2015-09-01
NGC 4473 is a so-called double sigma (2σ) galaxy, i.e. a galaxy with rare, double peaks in its 2D stellar velocity dispersion. Here, we present the globular cluster (GC) kinematics in NGC 4473 out to ˜10Re (effective radii) using data from combined Hubble Space Telescope/Advanced Camera for Surveys and Subaru/Suprime-Cam imaging and Keck/Deep Imaging Multi-Object Spectrograph. We find that the 2σ nature of NGC 4473 persists up to 3Re, though it becomes misaligned to the photometric major axis. We also observe a significant offset between the stellar and GC rotation amplitudes. This offset can be understood as a co-addition of counter-rotating stars producing little net stellar rotation. We identify a sharp radial transition in the GC kinematics at ˜4Re suggesting a well defined kinematically distinct halo. In the inner region (<4Re), the blue GCs rotate along the photometric major axis, but in an opposite direction to the galaxy stars and red GCs. In the outer region (>4Re), the red GCs rotate in an opposite direction compared to the inner region red GCs, along the photometric major axis, while the blue GCs rotate along an axis intermediate between the major and minor photometric axes. We also find a kinematically distinct population of very red GCs in the inner region with elevated rotation amplitude and velocity dispersion. The multiple kinematic components in NGC 4473 highlight the complex formation and evolutionary history of this 2σ galaxy, as well as a distinct transition between the inner and outer components.
Quantum particles in general spacetimes: A tangent bundle formalism
NASA Astrophysics Data System (ADS)
Wohlfarth, Mattias N. R.
2018-06-01
Using tangent bundle geometry we construct an equivalent reformulation of classical field theory on flat spacetimes which simultaneously encodes the perspectives of multiple observers. Its generalization to curved spacetimes realizes a new type of nonminimal coupling of the fields and is shown to admit a canonical quantization procedure. For the resulting quantum theory we demonstrate the emergence of a particle interpretation, fully consistent with general relativistic geometry. The path dependency of parallel transport forces each observer to carry their own quantum state; we find that the communication of the corresponding quantum information may generate extra particles on curved spacetimes. A speculative link between quantum information and spacetime curvature is discussed which might lead to novel explanations for quantum decoherence and vanishing interference in double-slit or interaction-free measurement scenarios, in the mere presence of additional observers.
QED Effects in Molecules: Test on Rotational Quantum States of H2
NASA Astrophysics Data System (ADS)
Salumbides, E. J.; Dickenson, G. D.; Ivanov, T. I.; Ubachs, W.
2011-07-01
Quantum electrodynamic effects have been systematically tested in the progression of rotational quantum states in the XΣg+1, v=0 vibronic ground state of molecular hydrogen. High-precision Doppler-free spectroscopy of the EFΣg+1-XΣg+1 (0,0) band was performed with 0.005cm-1 accuracy on rotationally hot H2 (with rotational quantum states J up to 16). QED and relativistic contributions to rotational level energies as high as 0.13cm-1 are extracted, and are in perfect agreement with recent calculations of QED and high-order relativistic effects for the H2 ground state.
Four-wave mixing in an asymmetric double quantum dot molecule
NASA Astrophysics Data System (ADS)
Kosionis, Spyridon G.
2018-06-01
The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.
Dynamics and Novel Mechanisms of SN2 Reactions on ab Initio Analytical Potential Energy Surfaces.
Szabó, István; Czakó, Gábor
2017-11-30
We describe a novel theoretical approach to the bimolecular nucleophilic substitution (S N 2) reactions that is based on analytical potential energy surfaces (PESs) obtained by fitting a few tens of thousands high-level ab initio energy points. These PESs allow computing millions of quasi-classical trajectories thereby providing unprecedented statistical accuracy for S N 2 reactions, as well as performing high-dimensional quantum dynamics computations. We developed full-dimensional ab initio PESs for the F - + CH 3 Y [Y = F, Cl, I] systems, which describe the direct and indirect, complex-forming Walden-inversion, the frontside attack, and the new double-inversion pathways as well as the proton-transfer channels. Reaction dynamics simulations on the new PESs revealed (a) a novel double-inversion S N 2 mechanism, (b) frontside complex formation, (c) the dynamics of proton transfer, (d) vibrational and rotational mode specificity, (e) mode-specific product vibrational distributions, (f) agreement between classical and quantum dynamics, (g) good agreement with measured scattering angle and product internal energy distributions, and (h) significant leaving group effect in accord with experiments.
Effect of rotation on Jeans instability of magnetized radiative quantum plasma
NASA Astrophysics Data System (ADS)
Joshi, H.; Pensia, R. K.
2017-03-01
The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.
Octupole Correlations in THORIUM-225
NASA Astrophysics Data System (ADS)
Hughes, John Rhys
Available from UMI in association with The British Library. The nuclear structure of ^{225 }Th has been studied using the reaction ^{226}Ra(alpha,5n) ^{225}Th at a beam energy of 50 MeV. In-beam gamma-gamma , e^{-}-n, e ^{-}-e^{-} and e^{-}- gamma coincidences have been measured, using the TESSA3 array at the Daresbury NSF and the Double Orange spectrometer at the University of Bonn Cyclotron. gamma-ray and electron energies and intensities, gamma-ray angular distribution ratios and electron subshell ratios and conversion coefficients have been used to establish a decay scheme up to spin (39/2) hbar and excitation energy E _{z} ~ 2.5 MeV. The decay scheme is found to be characterised by two Delta J = 1 rotational bands, and these are classified in terms of the simplex quantum number, s, which is expected to be conserved for an octupole nucleus. No band crossings are observed up to a rotational frequency of hbaromega ~ 0.21 and 0.18 MeV in the s = -i and +i bands, respectively. Parity doublets have been observed, with enhanced E1 transitions linking states of opposite parity. gamma -branching ratios have been measured and an average value of | Q_1/Q_2| = (0.51 +/- 0.06) times 10^{-3} fm^{-1} has been deduced. The results are compared with various calculations incorporating odd multiple degrees of freedom in the description of the nuclear shape.
Tunneling current spectroscopy of a nanostructure junction involving multiple energy levels.
Kuo, David M-T; Chang, Yia-Chung
2007-08-24
A multilevel Anderson model is employed to simulate the system of a nanostructure tunnel junction with any number of one-particle energy levels. The tunneling current, including both shell-tunneling and shell-filling cases, is theoretically investigated via the nonequilibrium Green's function method. We obtain a closed form for the spectral function, which is used to analyze the complicated tunneling current spectra of a quantum dot or molecule embedded in a double-barrier junction. We also show that negative differential conductance can be observed in a quantum dot tunnel junction when the Coulomb interactions with neighboring quantum dots are taken into account.
Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device.
Shen, Yangchao; Lu, Yao; Zhang, Kuan; Zhang, Junhua; Zhang, Shuaining; Huh, Joonsuk; Kim, Kihwan
2018-01-28
Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO 2 as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.
NASA Astrophysics Data System (ADS)
Shin, Yong Hyeon; Bae, Min Soo; Park, Chuntaek; Park, Joung Won; Park, Hyunwoo; Lee, Yong Ju; Yun, Ilgu
2018-06-01
A universal core model for multiple-gate (MG) field-effect transistors (FETs) with short channel effects (SCEs) and quantum mechanical effects (QMEs) is proposed. By using a Young’s approximation based solution for one-dimensional Poisson’s equations the total inversion charge density (Q inv ) in the channel is modeled for double-gate (DG) and surrounding-gate SG (SG) FETs, following which a universal charge model is derived based on the similarity of the solutions, including for quadruple-gate (QG) FETs. For triple-gate (TG) FETs, the average of DG and QG FETs are used. A SCEs model is also proposed considering the potential difference between the channel’s surface and center. Finally, a QMEs model for MG FETs is developed using the quantum correction compact model. The proposed universal core model is validated on commercially available three-dimensional ATLAS numerical simulations.
Factorization in large-scale many-body calculations
Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.
2013-08-07
One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmetrized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applicable to a broad class of systems with symmetry, in our case rotational invariance, is to exactly factorize both the basis and the interaction using additive/multiplicative quantum numbers; such an algorithm recreates the many-body matrix elementsmore » on the fly and can reduce the storage requirements by an order of magnitude or more. Here, we discuss factorization in general and introduce a novel, generalized factorization method, essentially a ‘double-factorization’ which speeds up basis generation and set-up of required arrays. Although we emphasize techniques, we also place factorization in the context of a specific (unpublished) configuration-interaction code, BIGSTICK, which runs both on serial and parallel machines, and discuss the savings in memory due to factorization.« less
Chierotti, Michele R; Gobetto, Roberto; Nervi, Carlo; Bacchi, Alessia; Pelagatti, Paolo; Colombo, Valentina; Sironi, Angelo
2014-01-06
The hydrogen bond network of three polymorphs (1α, 1β, and 1γ) and one solvate form (1·H2O) arising from the hydration-dehydration process of the Ru(II) complex [(p-cymene)Ru(κN-INA)Cl2] (where INA is isonicotinic acid), has been ascertained by means of one-dimensional (1D) and two-dimensional (2D) double quantum (1)H CRAMPS (Combined Rotation and Multiple Pulses Sequences) and (13)C CPMAS solid-state NMR experiments. The resolution improvement provided by homonuclear decoupling pulse sequences, with respect to fast MAS experiments, has been highlighted. The solid-state structure of 1γ has been fully characterized by combining X-ray powder diffraction (XRPD), solid-state NMR, and periodic plane-wave first-principles calculations. None of the forms show the expected supramolecular cyclic dimerization of the carboxylic functions of INA, because of the presence of Cl atoms as strong hydrogen bond (HB) acceptors. The hydration-dehydration process of the complex has been discussed in terms of structure and HB rearrangements.
NASA Astrophysics Data System (ADS)
Henry, Edward Trowbridge
Semiconductor quantum dots in silicon demonstrate exceptionally long spin lifetimes as qubits and are therefore promising candidates for quantum information processing. However, control and readout techniques for these devices have thus far employed low frequency electrons, in contrast to high speed temperature readout techniques used in other qubit architectures, and coupling between multiple quantum dot qubits has not been satisfactorily addressed. This dissertation presents the design and characterization of a semiconductor charge qubit based on double quantum dot in silicon with an integrated microwave resonator for control and readout. The 6 GHz resonator is designed to achieve strong coupling with the quantum dot qubit, allowing the use of circuit QED control and readout techniques which have not previously been applicable to semiconductor qubits. To achieve this coupling, this document demonstrates successful operation of a novel silicon double quantum dot design with a single active metallic layer and a coplanar stripline resonator with a bias tee for dc excitation. Experiments presented here demonstrate quantum localization and measurement of both electrons on the quantum dot and photons in the resonator. Further, it is shown that the resonator-qubit coupling in these devices is sufficient to reach the strong coupling regime of circuit QED. The details of a measurement setup capable of performing simultaneous low noise measurements of the resonator and quantum dot structure are also presented here. The ultimate aim of this research is to integrate the long coherence times observed in electron spins in silicon with the sophisticated readout architectures available in circuit QED based quantum information systems. This would allow superconducting qubits to be coupled directly to semiconductor qubits to create hybrid quantum systems with separate quantum memory and processing components.
Entangled trajectories Hamiltonian dynamics for treating quantum nuclear effects
NASA Astrophysics Data System (ADS)
Smith, Brendan; Akimov, Alexey V.
2018-04-01
A simple and robust methodology, dubbed Entangled Trajectories Hamiltonian Dynamics (ETHD), is developed to capture quantum nuclear effects such as tunneling and zero-point energy through the coupling of multiple classical trajectories. The approach reformulates the classically mapped second-order Quantized Hamiltonian Dynamics (QHD-2) in terms of coupled classical trajectories. The method partially enforces the uncertainty principle and facilitates tunneling. The applicability of the method is demonstrated by studying the dynamics in symmetric double well and cubic metastable state potentials. The methodology is validated using exact quantum simulations and is compared to QHD-2. We illustrate its relationship to the rigorous Bohmian quantum potential approach, from which ETHD can be derived. Our simulations show a remarkable agreement of the ETHD calculation with the quantum results, suggesting that ETHD may be a simple and inexpensive way of including quantum nuclear effects in molecular dynamics simulations.
Characterization of some useful traits in sweet sorghum for bioenergy production
USDA-ARS?s Scientific Manuscript database
Multiple yearly harvests can increase crop productivity but the crop may encounter different environmental challenges (such as early-spring cold or late-fall frost) depending on cultivation zones. Sweet sorghum as a feedstock may be planted early to get a double harvest or be rotated with sugarcane ...
Deformed quantum double realization of the toric code and beyond
NASA Astrophysics Data System (ADS)
Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo
2016-09-01
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
NASA Astrophysics Data System (ADS)
Zhou, Yan-Hui; Wang, Lei
2012-04-01
The quantum logic network to implement 1 → M symmetric economical phase-covariant telecloning is presented. The scheme includes two parts: the first part is used to create the telecloning channel and the second part to teleport the input state. The telecloning channel which works without ancilla is constructed by two kinds of elementary unitary transformations, single-qubit rotation and multiple-qubit controlled operation. The probability of success is 50%, which is the same with the scheme in [Meng, F.Y.; Zhu, A.D. J. Mod. Opt. 2009, 56, 1255-1259].
Multi-controller quantum teleportation with remote rotation and its applications
NASA Astrophysics Data System (ADS)
Kao, Shih-Hung; Chen, Yu-Ting; Tsai, Chia-Wei; Hwang, Tzonelih
2015-12-01
This work proposes the first multi-controller quantum teleportation with remote rotations, which allows a sender to teleport an arbitrary qubit to a receiver and at the same time, many controllers can remotely perform two kinds of rotation operations with various angles on the teleported qubit. In order to show its usefulness, a controlled quantum teleportation protocol has also been proposed.
Rotational spectra in the ν2 vibrationally excited states of MgNC
NASA Astrophysics Data System (ADS)
Kagi, E.; Kawaguchi, K.; Takano, S.; Hirano, T.
1996-01-01
The pure rotational spectra of MgNC in the ν2 (bending) vibrationally excited states were observed in the 310-380 GHz region to study the linearity of the molecule. The observed 90 spectral lines were assigned to the transitions in the v2=1-5 states and analyzed to determine a set of molecular constants in each state. The bending vibrational frequency was estimated to be 86 cm-1 from the l-type doubling constant of the v2=1 state. The interval of the Φ and Π states in v2=3 was determined to be 29.2280(24) cm-1, giving the anharmonicity constant xll=3.8611(9) cm-1 with one standard deviation in parentheses, which indicates that the molecule has a linear form. However, somewhat peculiar properties were recognized in dependence of the observed l-type resonance and vibration-rotation constants on the v2 vibrational quantum number, suggesting an effect of anharmonicity.
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)
2000-01-01
Chao's numerical and theoretical work on multiple quasi-equilibria of the intertropical convergence zone (ITCZ) and the origin of monsoon onset is extended to solve two additional puzzles. One is the highly nonlinear dependence on latitude of the "force" acting on the ITCZ due to earth's rotation, which makes the multiple quasi-equilibria of the ITCZ and monsoon onset possible. The other is the dramatic difference in such dependence when different cumulus parameterization schemes are used in a model. Such a difference can lead to a switch between a single ITCZ at the equator and a double ITCZ, when a different cumulus parameterization scheme is used. Sometimes one of the double ITCZ can diminish and only the other remain, but still this can mean different latitudinal locations for the single ITCZ. A single idea based on two off-equator attractors for the ITCZ, due to earth's rotation and symmetric with respect to the equator, and the dependence of the strength and size of these attractors on the cumulus parameterization scheme solves both puzzles. The origin of these rotational attractors, explained in Part I, is further discussed. The "force" acting on the ITCZ due to earth's rotation is the sum of the "forces" of the two attractors. Each attractor exerts on the ITCZ a "force" of simple shape in latitude; but the sum gives a shape highly varying in latitude. Also the strength and the domain of influence of each attractor vary, when change is made in the cumulus parameterization. This gives rise to the high sensitivity of the "force" shape to cumulus parameterization. Numerical results, of experiments using Goddard's GEOS general circulation model, supporting this idea are presented. It is also found that the model results are sensitive to changes outside of the cumulus parameterization. The significance of this study to El Nino forecast and to tropical forecast in general is discussed.
Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation
NASA Astrophysics Data System (ADS)
Liu, Shengshuai; Wang, Hailong; Jing, Jietai
2018-04-01
We propose a two-beam pumped cascaded four-wave-mixing (CFWM) scheme with a double-Λ energy-level configuration in 85Rb vapor cell and experimentally observe the emission of up to 10 quantum correlated beams from such CFWM scheme. During this process, the seed beam is amplified; four new signal beams and five idler beams are generated. The 10 beams show strong quantum correlation which is characterized by the intensity-difference squeezing of about -6.7 ±0.3 dB. Then, by altering the angle between the two pump beams, we observe the notable transition of the number of the output beams from 10 to eight, and even to six. We find that both the number of the output quantum correlated beams and their degree of quantum correlation from such two-beam pumped CFWM scheme increase with the decrease of the angle between the two pump beams. Such system may find potential applications in quantum information and quantum metrology.
Zn1-xCdxSe/ZnSe multiple quantum well photomodulators
NASA Astrophysics Data System (ADS)
Tang, Jiuyao; Kawakami, Yoichi; Fujita, Shizuo; Fujita, Shigeo
1996-10-01
ZnCdSe/ZnSe multiple quantum well (MQW) transmission and reflection photomodulators operating at room temperature were fabricated employing quantum-confined Stark effect on the exciton absorption. Samples were grown on p-type GaAs substrates by MBE with an i-Zn0.87Cd0.13Se/ZnSe MQW heterostructure sandwiched by a ZnSe p-n junction. The transmission modulator was constructed with a Zn0.87Cd0.13Se/ZnSe MQW glued onto a piece of ITO film-covered glass with silver paste and epoxy. To avoid absorption in GaAs substrates, a window with a diameter of about 2 mm was opened using a selective etch. For the reflective use an Al mirror was deposited on the glass back surface, the device then operates in reflection with the light to be modulated making a double pass through the active quantum well region, thereby increasing the modulation amplitude. Measurement results are given in this paper for transmission, reflection, differential transmission, differential absorption, and differential reflection as a function of the incident photon wavelength and the applied field.
NASA Astrophysics Data System (ADS)
Seifert, C.; Lobell, D. B.
2014-12-01
In adapting U.S. agriculture to the climate of the 21st century, multiple cropping presents a unique opportunity to help offset projected negative trends in agricultural production while moving critical crop yield formation periods outside of the hottest months of the year. Critical constraints on this practice include moisture availability, and, more importantly, growing season length. We review evidence that this last constraint has decreased in the previous quarter century, allowing for more winter wheat/soybean double cropping in previously phenologically constrained areas. We also carry this pattern forward to 2100, showing a 126% to 211% increase in the area phenologically suitable for double cropping under the RCP45 and RCP85 scenarios respectively. These results suggest that climate change will relieve phenological constraints on wheat-soy double cropping systems over much of the United States, changing production patterns and crop rotations as areas become suitable for the practice.
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
Coherent states for quantum compact groups
NASA Astrophysics Data System (ADS)
Jurĉo, B.; Ŝťovíĉek, P.
1996-12-01
Coherent states are introduced and their properties are discussed for simple quantum compact groups A l, Bl, Cl and D l. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested.
NASA Astrophysics Data System (ADS)
Guinet, M.; Rohart, F.; Buldyreva, J.; Gupta, V.; Eliet, S.; Motiyenko, R. A.; Margulès, L.; Cuisset, A.; Hindle, F.; Mouret, G.
2012-07-01
Room-temperature N2-broadening coefficients of methyl chloride rotational lines are measured over a large interval of quantum numbers (6≤J≤50, 0≤K≤18) by a submillimeter frequency-multiplication chain (J≤31) and a terahertz photomixing continuous-wave spectrometer (J≥31). In order to check the accuracy of both techniques, the measurements of identical lines are compared for J=31. The pressure broadening coefficients are deduced from line fits using mainly a Voigt profile model. The excellent signal-to-noise ratio of the frequency-multiplication scheme highlights some speed dependence effect on the line shape. Theoretical values of these coefficients are calculated by a semi-classical approach with exact trajectories. An intermolecular potential including atom-atom interactions is used for the first time. It is shown that, contrary to the previous theoretical predictions, the contributions of short-range forces are important for all values of the rotational quantum numbers. Additional testing of modifications required in the semi-classical formalism for a correct application of the cumulant expansion is also performed. It is stated that the use of the cumulant average on the rotational states of the perturbing molecule leads, for high J and small K values, to slightly higher line-broadening coefficients, as expected for the relatively strong interacting CH3Cl-N2 system. The excellent agreement between the theoretical and the experimental results ensures the reliability of these data.
Method of making an InAsSb/InAsSbP diode lasers
Razeghi, Manijeh
1997-01-01
InAsSb/InAsSbP/InAs Double Heterostructures (DH) and Separate Confinement Heterostructure Multiple Quantum Well (SCH-MQW) structures are taught wherein the ability to tune to a specific wavelength within 3 .mu.m to 5 .mu.m is possible by varying the ratio of As:Sb in the active layer.
Ospina, D A; Mora-Ramos, M E; Duque, C A
2017-02-01
The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses.
Non-deterministic quantum CNOT gate with double encoding
NASA Astrophysics Data System (ADS)
Gueddana, Amor; Attia, Moez; Chatta, Rihab
2013-09-01
We define an Asymmetric Partially Polarizing Beam Splitter (APPBS) to be a linear optical component having different reflectivity (transmittance) coefficients, on the upper and the lower arms, for horizontally and vertically Polarized incident photons. Our CNOT model is composed by two APPBSs, one Half Wave Plate (HWP), two Polarizing Beam Splitters (PBSs), a Beam Splitter (BS) and a -phase rotator for specific wavelength. Control qubit operates with dual rail encoding while target qubit is based on polarization encoding. To perform CNOT operation in 4/27 of the cases, input and target incoming photons are injected with different wavelengths.
Joint experimental-theoretical investigation of the lower bound states of the NO(X2Pi)-Kr complex.
Wen, Bo; Meyer, Henning; Kłos, Jacek; Alexander, Millard H
2009-07-02
We describe the first measurement of the near IR spectrum of the NO-Kr van der Waals complex. A variant of IR-REMPI double-resonance spectroscopy is employed in which the IR and UV lasers are scanned simultaneously in such a way that throughout the scan the sum of the two photon energies is kept constant, matching a UV resonance of the system. In the region of the first overtone vibration of the NO monomer, we observe several rotationally resolved bands for the NO-Kr complex. In addition to the origin band located at 3723.046 cm(-1), we observe excited as well as hot bands involving the excitation of one or two quanta of z-axis rotation. Another band is assigned to the excitation of one quantum of bending vibration. The experimental spectra are compared with results of bound-state calculations for a new set of potential energy surfaces calculated at the spin-restricted coupled cluster level. For the average vibration-rotation energies, there is excellent agreement between the theoretical results based on the coupled states (CS) approximation and the full close-coupling (CC) treatment. Finer details like the electrostatic splitting and the P-type doubling of the rotational levels are accounted for only within the CC formalism. The comparison of the CC results with the measured spectra confirms the high quality of the PESs. However, the high resolution of the experiments is sufficient to identify some inaccuracies in the difference between the potential energy surfaces of A' and A'' reflection symmetry.
A QM/MM study of the initial excited state dynamics of green-absorbing proteorhodopsin.
Borin, Veniamin A; Wiebeler, Christian; Schapiro, Igor
2018-04-17
The primary photochemical reaction of the green-absorbing proteorhodopsin is studied by means of a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. The simulations are based on a homology model derived from the blue-absorbing proteorhodopsin crystal structure. The geometry of retinal and the surrounding sidechains in the protein binding pocket were optimized using the QM/MM method. Starting from this geometry the isomerization was studied with a relaxed scan along the C13[double bond, length as m-dash]C14 dihedral. It revealed an "aborted bicycle pedal" mechanism of isomerization that was originally proposed by Warshel for bovine rhodopsin and bacteriorhodopsin. However, the isomerization involved the concerted rotation about C13[double bond, length as m-dash]C14 and C15[double bond, length as m-dash]N, with the latter being highly twisted but not isomerized. Further, the simulation showed an increased steric interaction between the hydrogen at the C14 of the isomerizing bond and the hydroxyl group at the neighbouring tyrosine 200. In addition, we have simulated a nonadiabatic trajectory which showed the timing of the isomerization. In the first 20 fs upon excitation the order of the conjugated double and single bonds is inverted, consecutively the C13[double bond, length as m-dash]C14 rotation is activated for 200 fs until the S1-S0 transition is detected. However, the isomerization is reverted due to the specific interaction with the tyrosine as observed along the relaxed scan calculation. Our simulations indicate that the retinal - tyrosine 200 interaction plays an important role in the outcome of the photoisomerization.
Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.
Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M
2018-03-15
Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.
Zou, Z Y; Liu, H Q; Ding, W X; Chen, J; Brower, D L; Lian, H; Wang, S X; Li, W M; Yao, Y; Zeng, L; Jie, Y X
2018-01-01
A double-pass radially view 11 chords polarimeter-interferometer system has been operated on the experimental advanced superconducting tokamak and provides important current profile information for plasma control. Stray light originating from spurious reflections along the optical path (unwanted reflections from various optical components/mounts and transmissive optical elements such as windows, waveplates, and lens as well as the detectors) and also direct feedback from the retro-reflector used to realize the double-pass configuration can both contribute to contamination of the Faraday rotation measurement accuracy. Modulation of the Faraday rotation signal due to the interference from multiple reflections is observable when the interferometer phase (plasma density) varies with time. Direct reflection from the detector itself can be suppressed by employing an optical isolator consisting of a λ/4-waveplate and polarizer positioned in front of the mixer. A Faraday angle oscillation during the density ramping up (or down) can be reduced from 5°-10° to 1°-2° by eliminating reflections from the detector. Residual modulation arising from misalignment and stray light from other sources must be minimized to achieve accurate measurements of Faraday rotation.
Demonstration of quantum superiority in learning parity with noise with superconducting qubits
NASA Astrophysics Data System (ADS)
Ristè, Diego; da Silva, Marcus; Ryan, Colm; Cross, Andrew; Smolin, John; Gambetta, Jay; Chow, Jerry; Johnson, Blake
A problem in machine learning is to identify the function programmed in an unknown device, or oracle, having only access to its output. In particular, a parity function computes the parity of a subset of a bit register. We implement an oracle executing parity functions in a five-qubit superconducting processor and compare the performance of a classical and a quantum learner. The classical learner reads the output of multiple oracle calls and uses the results to infer the hidden function. In addition to querying the oracle, the quantum learner can apply coherent rotations on the output register before the readout. We show that, given a target success probability, the quantum approach outperforms the classical one in the number of queries needed. Moreover, this gap increases with readout noise and with the size of the qubit register. This result shows that quantum advantage can already emerge in current systems with a few, noisy qubits. We acknowledge support from IARPA under Contract W911NF-10-1-0324.
Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate.
Saleh, Mohammed F; Di Giuseppe, Giovanni; Saleh, Bahaa E A; Teich, Malvin Carl
2010-09-13
Lithium niobate photonic circuits have the salutary property of permitting the generation, transmission, and processing of photons to be accommodated on a single chip. Compact photonic circuits such as these, with multiple components integrated on a single chip, are crucial for efficiently implementing quantum information processing schemes.We present a set of basic transformations that are useful for manipulating modal qubits in Ti:LiNbO(3) photonic quantum circuits. These include the mode analyzer, a device that separates the even and odd components of a state into two separate spatial paths; the mode rotator, which rotates the state by an angle in mode space; and modal Pauli spin operators that effect related operations. We also describe the design of a deterministic, two-qubit, single-photon, CNOT gate, a key element in certain sets of universal quantum logic gates. It is implemented as a Ti:LiNbO(3) photonic quantum circuit in which the polarization and mode number of a single photon serve as the control and target qubits, respectively. It is shown that the effects of dispersion in the CNOT circuit can be mitigated by augmenting it with an additional path. The performance of all of these components are confirmed by numerical simulations. The implementation of these transformations relies on selective and controllable power coupling among single- and two-mode waveguides, as well as the polarization sensitivity of the Pockels coefficients in LiNbO(3).
Inelastic electron tunneling mediated by a molecular quantum rotator
NASA Astrophysics Data System (ADS)
Sugimoto, Toshiki; Kunisada, Yuji; Fukutani, Katsuyuki
2017-12-01
Inelastic electron tunneling (IET) accompanying nuclear motion is not only of fundamental physical interest but also has strong impacts on chemical and biological processes in nature. Although excitation of rotational motion plays an important role in enhancing electric conductance at a low bias, the mechanism of rotational excitation remains veiled. Here, we present a basic theoretical framework of IET that explicitly takes into consideration quantum angular momentum, focusing on a molecular H2 rotator trapped in a nanocavity between two metallic electrodes as a model system. It is shown that orientationally anisotropic electrode-rotator coupling is the origin of angular-momentum exchange between the electron and molecule; we found that the anisotropic coupling imposes rigorous selection rules in rotational excitation. In addition, rotational symmetry breaking induced by the anisotropic potential lifts the degeneracy of the energy level of the degenerated rotational state of the quantum rotator and tunes the threshold bias voltage that triggers rotational IET. Our theoretical results provide a paradigm for physical understanding of the rotational IET process and spectroscopy, as well as molecular-level design of electron-rotation coupling in nanoelectronics.
Temperature Dependence of Photoluminescence in InGaAs/InP Strained MQW Heterostructures
NASA Technical Reports Server (NTRS)
Raisky, O. Y.; Wang, W. B.; Alfano, R. R.; Reynolds, C. L., Jr.; Swaminathan, V.
1996-01-01
Multiple quantum well (MQW) InGaAsP/InP heterostructure systems have been drawn considerable research interest in recent years due to its suitability for long wavelength optoelectronic devices. The performance of such devices is strongly affected by peculiarities of recombination processes in the quantum wells (QW). The goal of this study was to investigate the effect of barrier width on the radiative recombination of carriers. In our study, the photoluminescence spectra from InGaAsP/lnP MQW double heterostructures have been measured in the 77-290 K temperature range with different excitation intensities.
Multiple functionalized carbon quantum dots for targeting glioma and tissue imaging
NASA Astrophysics Data System (ADS)
Gao, Lipeng; Zhao, Xiao; Wang, Jing; Wang, Yiting; Yu, Lei; Peng, Hui; Zhu, Jianzhong
2018-01-01
Carbon quantum dots (CQDs) was successfully functionalized with Mal-PEG-NHS linked RGERPPR. They exhibit double functions of both tissue imaging and targeting to brain gliomas. The mean size of the functionalized CQDs about 9.0 ± 2.0 nm. The maximum absorption wavelength of the functionalized CQDs appear at 230 nm. The peak of the fluorescence spectra for the functionalized CQDs is at 460 nm, red shifted by 20 nm comparing with the unmodified CQDs. This may be due to the increased particle size. The functionalized CQDs were successfully applied to imaging and targeting gliomas.
A fault-tolerant addressable spin qubit in a natural silicon quantum dot
Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo
2016-01-01
Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot–based qubits. This result can inspire contributions to quantum computing from industrial communities. PMID:27536725
A fault-tolerant addressable spin qubit in a natural silicon quantum dot.
Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo
2016-08-01
Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot-based qubits. This result can inspire contributions to quantum computing from industrial communities.
Mihata, Teruhisa; Watanabe, Chisato; Fukunishi, Kunimoto; Ohue, Mutsumi; Tsujimura, Tomoyuki; Fujiwara, Kenta; Kinoshita, Mitsuo
2011-10-01
Although previous biomechanical research has demonstrated the superiority of the suture-bridge rotator cuff repair over double-row repair from a mechanical point of view, no articles have described the structural and functional outcomes of this type of procedure. The structural and functional outcomes after arthroscopic rotator cuff repair may be different between the single-row, double-row, and combined double-row and suture-bridge (compression double-row) techniques. Cohort study; Level of evidence, 3. There were 206 shoulders in 201 patients with full-thickness rotator cuff tears that underwent arthroscopic rotator cuff repair. Eleven patients were lost to follow-up. Sixty-five shoulders were repaired using the single-row, 23 shoulders using the double-row, and 107 shoulders using the compression double-row techniques. Clinical outcomes were evaluated at an average of 38.5 months (range, 24-74 months) after rotator cuff repair. Postoperative cuff integrity was determined using Sugaya's classification of magnetic resonance imaging (MRI). The retear rates after arthroscopic rotator cuff repair were 10.8%, 26.1%, and 4.7%, respectively, for the single-row, double-row, and compression double-row techniques. In the subcategory of large and massive rotator cuff tears, the retear rate in the compression double-row group (3 of 40 shoulders, 7.5%) was significantly less than those in the single-row group (5 of 8 shoulders, 62.5%, P < .001) and the double-row group (5 of 12 shoulders, 41.7%, P < .01). Postoperative clinical outcomes in patients with a retear were significantly lower than those in patients without a retear for all 3 techniques. The additional suture bridges decreased the retear rate for large and massive tears. The combination of the double-row and suture-bridge techniques, which had the lowest rate of postoperative retear, is an effective option for arthroscopic repair of the rotator cuff tendons because the postoperative functional outcome in patients with a retear is inferior to that without retear.
NASA Astrophysics Data System (ADS)
Jeknić-Dugić, Jasmina; Petrović, Igor; Arsenijević, Momir; Dugić, Miroljub
2018-05-01
We investigate dynamical stability of a single propeller-like shaped molecular cogwheel modelled as the fixed-axis rigid rotator. In the realistic situations, rotation of the finite-size cogwheel is subject to the environmentally-induced Brownian-motion effect that we describe by utilizing the quantum Caldeira-Leggett master equation. Assuming the initially narrow (classical-like) standard deviations for the angle and the angular momentum of the rotator, we investigate the dynamics of the first and second moments depending on the size, i.e. on the number of blades of both the free rotator as well as of the rotator in the external harmonic field. The larger the standard deviations, the less stable (i.e. less predictable) rotation. We detect the absence of the simple and straightforward rules for utilizing the rotator’s stability. Instead, a number of the size-related criteria appear whose combinations may provide the optimal rules for the rotator dynamical stability and possibly control. In the realistic situations, the quantum-mechanical corrections, albeit individually small, may effectively prove non-negligible, and also revealing subtlety of the transition from the quantum to the classical dynamics of the rotator. As to the latter, we detect a strong size-dependence of the transition to the classical dynamics beyond the quantum decoherence process.
Method of making an InAsSb/InAsSbP diode lasers
Razeghi, M.
1997-08-19
InAsSb/InAsSbP/InAs Double Heterostructures (DH) and Separate Confinement Heterostructure Multiple Quantum Well (SCH-MQW) structures are taught wherein the ability to tune to a specific wavelength within 3 {micro}m to 5 {micro}m is possible by varying the ratio of As:Sb in the active layer. 9 figs.
Thorwirth, Sven; Mück, Leonie Anna; Gauss, Jürgen; Tamassia, Filippo; Lattanzi, Valerio; McCarthy, Michael C
2011-06-02
Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 Å and rSi-S = 1.9133 Å) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected finding is explained by the partial charges calculated for OSiS via a natural population analysis. The results suggest that electrostatic effects rather than multiple bonding are the key factors in determining bonding in this triatomic molecule. The data presented provide the spectroscopic information needed for radio astronomical searches for OSiS.
NASA Technical Reports Server (NTRS)
Kessler, W. J.; Allen, M. G.; Davis, S. J.
1993-01-01
Measurements of the collisional broadening and line shift of the (1,0) band of the A2Sigma(+)-X2Pi system of OH are reported in atmospheric pressure hydrogen-air combustion gases. The measurements were made using a single-mode, narrow linewidth, frequency-doubled ring dye laser operating near 283 nm. The OH was generated in the combustion gases of a flat flame H2-air burner. Collisional broadening parameters for equilibrium mixtures of H2, O2, H2O, and N2 were obtained spanning a range of fuel/air equivalence ratios from 0.6 to 1.6 and temperatures from 1500 to 2050 K. Measurements were obtained spanning rotational quantum numbers from 4.5 to 16.5. The collision induced frequency shift was determined to be 0.1 that of the collisional broadening.
Mananga, Eugene S; Reid, Alicia E; Charpentier, Thibault
2012-02-01
This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λ(n)(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.
Reid, Alicia E.; Charpentier, Thibault
2013-01-01
This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λn(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. PMID:22197191
The Double-Well Potential in Quantum Mechanics: A Simple, Numerically Exact Formulation
ERIC Educational Resources Information Center
Jelic, V.; Marsiglio, F.
2012-01-01
The double-well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of "classical" states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double-well potentials…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donangelo, R.J.
An integral representation for the classical limit of the quantum mechanical S-matrix is developed and applied to heavy-ion Coulomb excitation and Coulomb-nuclear interference. The method combines the quantum principle of superposition with exact classical dynamics to describe the projectile-target system. A detailed consideration of the classical trajectories and of the dimensionless parameters that characterize the system is carried out. The results are compared, where possible, to exact quantum mechanical calculations and to conventional semiclassical calculations. It is found that in the case of backscattering the classical limit S-matrix method is able to almost exactly reproduce the quantum-mechanical S-matrix elements, andmore » therefore the transition probabilities, even for projectiles as light as protons. The results also suggest that this approach should be a better approximation for heavy-ion multiple Coulomb excitation than earlier semiclassical methods, due to a more accurate description of the classical orbits in the electromagnetic field of the target nucleus. Calculations using this method indicate that the rotational excitation probabilities in the Coulomb-nuclear interference region should be very sensitive to the details of the potential at the surface of the nucleus, suggesting that heavy-ion rotational excitation could constitute a sensitive probe of the nuclear potential in this region. The application to other problems as well as the present limits of applicability of the formalism are also discussed.« less
Theoretical study of the vibrational relaxation of the methyl radical in collisions with helium
NASA Astrophysics Data System (ADS)
Ma, Qianli; Dagdigian, Paul J.; Alexander, Millard H.
2013-03-01
We report a theoretical investigation of the relaxation of the umbrella vibrational mode (the ν2 mode) of the CH3 molecule in its ground tilde{X}^2A_2^' ' } electronic state in collisions with helium. We have calculated a four-dimensional potential energy surface (PES) for the interaction between CH3 with different umbrella displacements and a helium atom, using a restricted open-shell coupled-cluster method with inclusion of all single, double, and (perturbatively) triple excitations [RCCSD(T)]. With this PES we carried out full close-coupling scattering calculations including all CH3 umbrella-rotational levels with v2 ⩽ 3. To our knowledge, this work represents the first fully quantum calculations of ro-vibrational relaxation of a polyatomic. In more detail, we investigate propensities in the calculated ro-vibrational cross sections and the dependence on initial rotational excitation, as well as determining thermal rate constants. Overall, ro-vibrational relaxation is nearly two orders of magnitude less efficient than pure-rotational relaxation, with a noticeable dependence on the initial rotational level. We predict the room temperature v2 = 1 vibrational relaxation rate constant to be 5.4 × 10-12 cm3 molecule-1 s-1, compared to the rate constants for pure-rotational relaxation of the lower rotational levels (˜2.0 × 10-10 cm3 molecule-1 s-1).
QCAD simulation and optimization of semiconductor double quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina
2013-12-01
We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltagesmore » in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design comparison and optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Manjit, E-mail: manjit@ipr.res.in; Bose, Sayak; Chattopadhyay, P. K.
2015-09-15
Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of themore » dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.« less
The Effects of Rotation on the Main-sequence Turnoff of Intermediate-age Massive Star Clusters
NASA Astrophysics Data System (ADS)
Yang, Wuming; Bi, Shaolan; Meng, Xiangcun; Liu, Zhie
2013-10-01
The double or extended main-sequence turnoffs (MSTOs) in the color-magnitude diagram (CMD) of intermediate-age massive star clusters in the Large Magellanic Cloud are generally interpreted as age spreads of a few hundred Myr. However, such age spreads do not exist in younger clusters (i.e., 40-300 Myr), which challenges this interpretation. The effects of rotation on the MSTOs of star clusters have been studied in previous works, but the results obtained are conflicting. Compared with previous works, we consider the effects of rotation on the main-sequence lifetime of stars. Our calculations show that rotating models have a fainter and redder MSTO with respect to non-rotating counterparts with ages between about 0.8 and 2.2 Gyr, but have a brighter and bluer MSTO when age is larger than 2.4 Gyr. The spread of the MSTO caused by a typical rotation rate is equivalent to the effect of an age spread of about 200 Myr. Rotation could lead to the double or extended MSTOs in the CMD of the star clusters with ages between about 0.8 and 2.2 Gyr. However, the extension is not significant, and it does not even exist in younger clusters. If the efficiency of the mixing were high enough, the effects of the mixing would counteract the effect of the centrifugal support in the late stage of evolution, and the rotationally induced extension would disappear in the old intermediate-age star clusters, but younger clusters would have an extended MSTO. Moreover, the effects of rotation might aid in understanding the formation of some "multiple populations" in globular clusters.
Explicit expressions of quantum mechanical rotation operators for spins 1 to 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr; Tapramaz, Recep, E-mail: recept@omu.edu.tr
2016-03-25
Quantum mechanical rotation operators are the subject of quantum mechanics, mathematics and pulsed magnetic resonance spectroscopies, namely NMR, EPR and ENDOR. They are also necessary for spin based quantum information systems. The rotation operators of spin 1/2 are well known and can be found in related textbooks. But rotation operators of other spins greater than 1/2 can be found numerically by evaluating the series expansions of exponential operator obtained from Schrödinger equation, or by evaluating Wigner-d formula or by evaluating recently established expressions in polynomial forms discussed in the text. In this work, explicit symbolic expressions of x, y andmore » z components of rotation operators for spins 1 to 2 are worked out by evaluating series expansion of exponential operator for each element of operators and utilizing linear curve fitting process. The procedures gave out exact expressions of each element of the rotation operators. The operators of spins greater than 2 are under study and will be published in a separate paper.« less
Double-image storage optimized by cross-phase modulation in a cold atomic system
NASA Astrophysics Data System (ADS)
Qiu, Tianhui; Xie, Min
2017-09-01
A tripod-type cold atomic system driven by double-probe fields and a coupling field is explored to store double images based on the electromagnetically induced transparency (EIT). During the storage time, an intensity-dependent signal field is applied further to extend the system with the fifth level involved, then the cross-phase modulation is introduced for coherently manipulating the stored images. Both analytical analysis and numerical simulation clearly demonstrate a tunable phase shift with low nonlinear absorption can be imprinted on the stored images, which effectively can improve the visibility of the reconstructed images. The phase shift and the energy retrieving rate of the probe fields are immune to the coupling intensity and the atomic optical density. The proposed scheme can easily be extended to the simultaneous storage of multiple images. This work may be exploited toward the end of EIT-based multiple-image storage devices for all-optical classical and quantum information processings.
Photoelectron angular distributions from rotationally resolved autoionizing states of N 2
Chartrand, A. M.; McCormack, E. F.; Jacovella, U.; ...
2017-12-08
The single-photon, photoelectron-photoion coincidence spectrum of N 2 has been recorded at high (~1.5 cm -1) resolution in the region between the N 2 + X 2Σ g +, v + = 0 and 1 ionization thresholds by using a double imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N 2 + X 2Σ g +more » ground state, and electronically autoionizing states converging to the N 2 + A 2Π and B 2Σ u + states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. Here, a simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment.« less
Dark state with counter-rotating dissipative channels.
Zhou, Zheng-Yang; Chen, Mi; Wu, Lian-Ao; Yu, Ting; You, J Q
2017-07-24
Dark state as a consequence of interference between different quantum states has great importance in the fields of chip-scale atomic clock and quantum information. For the Λ-type three-level system, this dark state is generally regarded as being dissipation-free because it is a superposition of two lowest states without dipole transition between them. However, previous studies are based on the rotating-wave approximation (RWA) by neglecting the counter-rotating terms in the system-environment interaction. In this work, we study non-Markovian quantum dynamics of the dark state in a Λ-type three-level system coupled to two bosonic baths and reveal the effect of counter-rotating terms on the dark state. In contrast to the dark state within the RWA, leakage of the dark state occurs even at zero temperature, as a result of these counter-rotating terms. Also, we present a method to restore the quantum coherence of the dark state by applying a leakage elimination operator to the system.
ERIC Educational Resources Information Center
Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha
2017-01-01
Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in…
Complex quantum enveloping algebras as twisted tensor products
NASA Astrophysics Data System (ADS)
Chryssomalakos, Chryssomalis; Engeldinger, Ralf A.; Jurčo, Branislav; Schlieker, Michael; Zumino, Bruno
1994-12-01
We introduce a *-structure on the quantum double and its dual in order to make contact with various approaches to the enveloping algebras of complex quantum groups. Furthermore, we introduce a canonical basis in the quantum double, its universal R-matrices and give its relation to subgroups in the dual Hopf algebra.
Gapless Andreev bound states in the quantum spin Hall insulator HgTe.
Bocquillon, Erwann; Deacon, Russell S; Wiedenmann, Jonas; Leubner, Philipp; Klapwijk, Teunis M; Brüne, Christoph; Ishibashi, Koji; Buhmann, Hartmut; Molenkamp, Laurens W
2017-02-01
In recent years, Majorana physics has attracted considerable attention because of exotic new phenomena and its prospects for fault-tolerant topological quantum computation. To this end, one needs to engineer the interplay between superconductivity and electronic properties in a topological insulator, but experimental work remains scarce and ambiguous. Here, we report experimental evidence for topological superconductivity induced in a HgTe quantum well, a 2D topological insulator that exhibits the quantum spin Hall (QSH) effect. The a.c. Josephson effect demonstrates that the supercurrent has a 4π periodicity in the superconducting phase difference, as indicated by a doubling of the voltage step for multiple Shapiro steps. In addition, this response like that of a superconducting quantum interference device to a perpendicular magnetic field shows that the 4π-periodic supercurrent originates from states located on the edges of the junction. Both features appear strongest towards the QSH regime, and thus provide evidence for induced topological superconductivity in the QSH edge states.
Complete quantum control of a single quantum dot spin using ultrafast optical pulses.
Press, David; Ladd, Thaddeus D; Zhang, Bingyang; Yamamoto, Yoshihisa
2008-11-13
A basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. For qubits based on electron spin, a universal single-qubit gate is realized by a rotation of the spin by any angle about an arbitrary axis. Driven, coherent Rabi oscillations between two spin states can be used to demonstrate control of the rotation angle. Ramsey interference, produced by two coherent spin rotations separated by a variable time delay, demonstrates control over the axis of rotation. Full quantum control of an electron spin in a quantum dot has previously been demonstrated using resonant radio-frequency pulses that require many spin precession periods. However, optical manipulation of the spin allows quantum control on a picosecond or femtosecond timescale, permitting an arbitrary rotation to be completed within one spin precession period. Recent work in optical single-spin control has demonstrated the initialization of a spin state in a quantum dot, as well as the ultrafast manipulation of coherence in a largely unpolarized single-spin state. Here we demonstrate complete coherent control over an initialized electron spin state in a quantum dot using picosecond optical pulses. First we vary the intensity of a single optical pulse to observe over six Rabi oscillations between the two spin states; then we apply two sequential pulses to observe high-contrast Ramsey interference. Such a two-pulse sequence realizes an arbitrary single-qubit gate completed on a picosecond timescale. Along with the spin initialization and final projective measurement of the spin state, these results demonstrate a complete set of all-optical single-qubit operations.
NASA Astrophysics Data System (ADS)
Kumar, A.; Pensia, R. K.
2018-05-01
This paper deals with the effect of rotation on the gravitational instability of optically thick magnetized quantum plasma in the presence of radiation. By using linearized perturbation equations of the problem, general dispersion relation is obtained which is reduced for longitudinal and transverse modes of propagation. For each mode, the problem is analyzed for two cases, when the direction of axis of rotation is parallel or perpendicular to the direction of magnetic field. Rotation parameter is found to modify the Jeans criterion of instability and expression for Jeans wavelength for transverse mode, when the axis of rotation is along the direction of magnetic field and it has stabilizing effect on the system. Magnetic field, radiation pressure and quantum correction also found to have stabilizing effect.
Nonperturbative interpretation of the Bloch vector's path beyond the rotating-wave approximation
NASA Astrophysics Data System (ADS)
Benenti, Giuliano; Siccardi, Stefano; Strini, Giuliano
2013-09-01
The Bloch vector's path of a two-level system exposed to a monochromatic field exhibits, in the regime of strong coupling, complex corkscrew trajectories. By considering the infinitesimal evolution of the two-level system when the field is treated as a classical object, we show that the Bloch vector's rotation speed oscillates between zero and twice the rotation speed predicted by the rotating wave approximation. Cusps appear when the rotation speed vanishes. We prove analytically that in correspondence to cusps the curvature of the Bloch vector's path diverges. On the other hand, numerical data show that the curvature is very large even for a quantum field in the deep quantum regime with mean number of photons n¯≲1. We finally compute numerically the typical error size in a quantum gate when the terms beyond rotating wave approximation are neglected.
Double quantum coherence ESR spectroscopy and quantum chemical calculations on a BDPA biradical.
Haeri, Haleh Hashemi; Spindler, Philipp; Plackmeyer, Jörn; Prisner, Thomas
2016-10-26
Carbon-centered radicals are interesting alternatives to otherwise commonly used nitroxide spin labels for dipolar spectroscopy techniques because of their narrow ESR linewidth. Herein, we present a novel BDPA biradical, where two BDPA (α,α,γ,γ-bisdiphenylene-β-phenylallyl) radicals are covalently tethered by a saturated biphenyl acetylene linker. The inter-spin distance between the two spin carrier fragments was measured using double quantum coherence (DQC) ESR methodology. The DQC experiment revealed a mean distance of only 1.8 nm between the two unpaired electron spins. This distance is shorter than the predictions based on a simple modelling of the biradical geometry with the electron spins located at the central carbon atoms. Therefore, DFT (density functional theory) calculations were performed to obtain a picture of the spin delocalization, which may give rise to a modified dipolar interaction tensor, and to find those conformations that correspond best to the experimentally observed inter-spin distance. Quantum chemical calculations showed that the attachment of the biphenyl acetylene linker at the second position of the fluorenyl ring of BDPA did not affect the spin population or geometry of the BDPA radical. Therefore, spin delocalization and geometry optimization of each BDPA moiety could be performed on the monomeric unit alone. The allylic dihedral angle θ 1 between the fluorenyl rings in the monomer subunit was determined to be 30° or 150° using quantum chemical calculations. The proton hyperfine coupling constant calculated from both energy minima was in very good agreement with literature values. Based on the optimal monomer geometries and spin density distributions, the dipolar coupling interaction between both BDPA units could be calculated for several dimer geometries. It was shown that the rotation of the BDPA units around the linker axis (θ 2 ) does not significantly influence the dipolar coupling strength when compared to the allylic dihedral angle θ 1 . A good agreement between the experimental and calculated dipolar coupling was found for θ 1 = 30°.
Kalogerakis, Konstantinos S.; Matsiev, Daniel; Cosby, Philip C.; Dodd, James A.; Falcinelli, Stefano; Hedin, Jonas; Kutepov, Alexander A.; Noll, Stefan; Panka, Peter A.; Romanescu, Constantin; Thiebaud, Jérôme E.
2018-01-01
The question of whether mesospheric OH(υ) rotational population distributions are in equilibrium with the local kinetic temperature has been debated over several decades. Despite several indications for the existence of non-equilibrium effects, the general consensus has been that emissions originating from low rotational levels are thermalized. Sky spectra simultaneously observing several vibrational levels demonstrated reproducible trends in the extracted OH(υ) rotational temperatures as a function of vibrational excitation. Laboratory experiments provided information on rotational energy transfer and direct evidence for fast multi-quantum OH(high-υ) vibrational relaxation by O atoms. We examine the relationship of the new relaxation pathways with the behavior exhibited by OH(υ) rotational population distributions. Rapid OH(high-υ) + O multi-quantum vibrational relaxation connects high and low vibrational levels and enhances the hot tail of the OH(low-υ) rotational distributions. The effective rotational temperatures of mesospheric OH(υ) are found to deviate from local thermodynamic equilibrium for all observed vibrational levels. PMID:29503514
Soft pair excitations and double-log divergences due to carrier interactions in graphene
NASA Astrophysics Data System (ADS)
Lewandowski, Cyprian; Levitov, L. S.
2018-03-01
Interactions between charge carriers in graphene lead to logarithmic renormalization of observables mimicking the behavior known in (3+1)-dimensional quantum electrodynamics (QED). Here we analyze soft electron-hole (e -h ) excitations generated as a result of fast charge dynamics, a direct analog of the signature QED effect—multiple soft photons produced by the QED vacuum shakeup. We show that such excitations are generated in photon absorption, when a photogenerated high-energy e -h pair cascades down in energy and gives rise to multiple soft e -h excitations. This fundamental process is manifested in a double-log divergence in the emission rate of soft pairs and a characteristic power-law divergence in their energy spectrum of the form 1/ω ln(ω/Δ ) . Strong carrier-carrier interactions make pair production a prominent pathway in the photoexcitation cascade.
Modeling of anisotropic properties of double quantum rings by the terahertz laser field.
Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David
2018-04-18
The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.
Imaging the dynamics of free-electron Landau states
Schattschneider, P.; Schachinger, Th.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Bliokh, K. Y.; Nori, Franco
2014-01-01
Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions. PMID:25105563
The cost-effectiveness of single-row compared with double-row arthroscopic rotator cuff repair.
Genuario, James W; Donegan, Ryan P; Hamman, Daniel; Bell, John-Erik; Boublik, Martin; Schlegel, Theodore; Tosteson, Anna N A
2012-08-01
Interest in double-row techniques for arthroscopic rotator cuff repair has increased over the last several years, presumably because of a combination of literature demonstrating superior biomechanical characteristics and recent improvements in instrumentation and technique. As a result of the increasing focus on value-based health-care delivery, orthopaedic surgeons must understand the cost implications of this practice. The purpose of this study was to examine the cost-effectiveness of double-row arthroscopic rotator cuff repair compared with traditional single-row repair. A decision-analytic model was constructed to assess the cost-effectiveness of double-row arthroscopic rotator cuff repair compared with single-row repair on the basis of the cost per quality-adjusted life year gained. Two cohorts of patients (one with a tear of <3 cm and the other with a tear of ≥3 cm) were evaluated. Probabilities for retear and persistent symptoms, health utilities for the particular health states, and the direct costs for rotator cuff repair were derived from the orthopaedic literature and institutional data. The incremental cost-effectiveness ratio for double-row compared with single-row arthroscopic rotator cuff repair was $571,500 for rotator cuff tears of <3 cm and $460,200 for rotator cuff tears of ≥3 cm. The rate of radiographic or symptomatic retear alone did not influence cost-effectiveness results. If the increase in the cost of double-row repair was less than $287 for small or moderate tears and less than $352 for large or massive tears compared with the cost of single-row repair, then double-row repair would represent a cost-effective surgical alternative. On the basis of currently available data, double-row rotator cuff repair is not cost-effective for any size rotator cuff tears. However, variability in the values for costs and probability of retear can have a profound effect on the results of the model and may create an environment in which double-row repair becomes the more cost-effective surgical option. The identification of the threshold values in this study may help surgeons to determine the most cost-effective treatment.
Many-body Quantum Control of a Spin-1 BEC
NASA Astrophysics Data System (ADS)
Hoang, Thai; Anquez, Martin; Robbins, Bryce; Yang, Xiaoyun; Land, Benjamin; Hamley, Christopher; Chapman, Michael
2014-05-01
Spin-1 condensates provide a useful platform for investigations of atom squeezing, generation of non-Gaussian states, and dynamical control. We demonstrate dynamic control of a quantum many-body spin-1 system that is enabled by strong collisional interactions. In contrast to the usual single-particle quantum control techniques, the method demonstrated here is intrinsically many-body, exploiting the strong collisional interactions. The experiment uses a spin-1 87Rb condensate initialized in the | F = 1 , mF = 0 > polar state at a high magnetic field above the quantum phase transition, and then prepared in a coherent state using a rf rotation. The many-body control is implemented by time-varying the relative strength of the Zeeman and spin interaction energies of the condensate at multiples of the natural coherent oscillation frequency of the system. This is a parametric excitation method relying on time varying changes to the Hamiltonian. We will present our experimental results, which compare well to theory, and will discuss future directions and applications.
Analog quantum simulation of generalized Dicke models in trapped ions
NASA Astrophysics Data System (ADS)
Aedo, Ibai; Lamata, Lucas
2018-04-01
We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.
Double Tunneling Injection Quantum Dot Lasers for High Speed Operation
2017-10-23
Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution
Lew, Matthew D.; Thompson, Michael A.; Badieirostami, Majid; Moerner, W. E.
2010-01-01
The point spread function (PSF) of a widefield fluorescence microscope is not suitable for three-dimensional super-resolution imaging. We characterize the localization precision of a unique method for 3D superresolution imaging featuring a double-helix point spread function (DH-PSF). The DH-PSF is designed to have two lobes that rotate about their midpoint in any transverse plane as a function of the axial position of the emitter. In effect, the PSF appears as a double helix in three dimensions. By comparing the Cramer-Rao bound of the DH-PSF with the standard PSF as a function of the axial position, we show that the DH-PSF has a higher and more uniform localization precision than the standard PSF throughout a 2 μm depth of field. Comparisons between the DH-PSF and other methods for 3D super-resolution are briefly discussed. We also illustrate the applicability of the DH-PSF for imaging weak emitters in biological systems by tracking the movement of quantum dots in glycerol and in live cells. PMID:20563317
Mook, William R; Greenspoon, Joshua A; Millett, Peter J
2016-01-01
Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construct. The described technique includes the advantages of a double-row construct while also offering self reinforcement, decreased risk of suture cut through, decreased risk of medial row overtensioning and tissue strangulation, improved vascularity, the efficiency of a knotless system, and no increased risk for subacromial impingement from the burden of suture knots. Arthroscopic knotless double row rotator cuff repair is a safe and effective method to repair rotator cuff tears.
Mook, William R.; Greenspoon, Joshua A.; Millett, Peter J.
2016-01-01
Background: Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. Methods: The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construct. Results: The described technique includes the advantages of a double-row construct while also offering self reinforcement, decreased risk of suture cut through, decreased risk of medial row overtensioning and tissue strangulation, improved vascularity, the efficiency of a knotless system, and no increased risk for subacromial impingement from the burden of suture knots. Conclusion: Arthroscopic knotless double row rotator cuff repair is a safe and effective method to repair rotator cuff tears. PMID:27733881
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, K.; Hasegawa, T.
2010-03-15
Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. Themore » analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state (''ground'' state) is the highest energy state.« less
NASA Astrophysics Data System (ADS)
Schiller, S.; Kortunov, I.; Hernández Vera, M.; Gianturco, F.; da Silva, H.
2017-04-01
Precision vibrational spectroscopy of the molecular hydrogen ions is of significant interest for determining fundamental constants, for searching for new forces, and for testing quantum electrodynamics calculations. Future experiments can profit from the ability of preparing molecular hydrogen ions at ultralow kinetic energy and in preselected internal states, with respect to vibration, rotation, and spin degrees of freedom. For the homonuclear ions (H2+ , D2+ ), direct laser cooling of the rotational degree of freedom is not feasible. We show by quantum calculations that rotational cooling by cold He buffer gas is an effective approach. For this purpose we have computed the energy-dependent cross sections for rotationally elastic and inelastic collisions, h2+ (v =0 ,N ) +He → h2+ (v =0 ,N') +He (where h =H ,D ) , using ab initio coupled-channel calculations. We find that rotational cooling to the lowest rotational state is possible within tens of seconds under experimentally realistic conditions. We furthermore describe possible protocols for the preparation of a single quantum state, where also the spin state is well defined.
NASA Astrophysics Data System (ADS)
Kulakhmetov, Marat; Gallis, Michael; Alexeenko, Alina
2016-05-01
Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O2 + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociation exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500-20 000 K temperature range. The VRT model captures 80 × 106 state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000-15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, G. Barratt, E-mail: barratt@mit.edu, E-mail: barratt.park@gmail.com; Womack, Caroline C.; Jiang, Jun
2015-04-14
Millimeter-wave detected, millimeter-wave optical double resonance (mmODR) spectroscopy is a powerful tool for the analysis of dense, complicated regions in the optical spectra of small molecules. The availability of cavity-free microwave and millimeter wave spectrometers with frequency-agile generation and detection of radiation (required for chirped-pulse Fourier-transform spectroscopy) opens up new schemes for double resonance experiments. We demonstrate a multiplexed population labeling scheme for rapid acquisition of double resonance spectra, probing multiple rotational transitions simultaneously. We also demonstrate a millimeter-wave implementation of the coherence-converted population transfer scheme for background-free mmODR, which provides a ∼10-fold sensitivity improvement over the population labeling scheme.more » We analyze perturbations in the C{sup ~} state of SO{sub 2}, and we rotationally assign a b{sub 2} vibrational level at 45 328 cm{sup −1} that borrows intensity via a c-axis Coriolis interaction. We also demonstrate the effectiveness of our multiplexed mmODR scheme for rapid acquisition and assignment of three predissociated vibrational levels of the C{sup ~} state of SO{sub 2} between 46 800 and 47 650 cm{sup −1}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertsch, G.F.; Janssens, R.V.
1997-07-01
An analysis of the gamma-ray spectra produced using the quantum mechanical rotational energy formula is presented for nuclei with large angular momentum. This analysis is suitable for quantum mechanics, modern physics, or nuclear physics courses. (AIP) {copyright}{ital 1997 American Institute of Physics}
Mihata, Teruhisa; Fukuhara, Tetsutaro; Jun, Bong Jae; Watanabe, Chisato; Kinoshita, Mitsuo
2011-03-01
After rotator cuff repair, the shoulder is immobilized in various abduction positions. However, there is no consensus on the proper abduction angle. To assess the effect of shoulder abduction angle on the biomechanical properties of the repaired rotator cuff tendons among 3 types of double-row techniques. Controlled laboratory study. Thirty-two fresh-frozen porcine shoulders were used. A simulated rotator cuff tear was repaired by 1 of 3 double-row techniques: conventional double-row repair, transosseous-equivalent repair, and a combination of conventional double-row and bridging sutures (compression double-row repair). Each specimen underwent cyclic testing followed by tensile testing to failure at a simulated shoulder abduction angle of 0° or 40° on a material testing machine. Gap formation and failure loads were measured. Gap formation in conventional double-row repair at 0° (1.2 ± 0.5 mm) was significantly greater than that at 40° (0.5 ± 0.3mm, P = .01). The yield and ultimate failure loads for conventional double-row repair at 40° were significantly larger than those at 0° (P < .01), whereas those for transosseous-equivalent repair (P < .01) and compression double-row repair (P < .0001) at 0° were significantly larger than those at 40°. The failure load for compression double-row repair was the greatest among the 3 double-row techniques at both 0° and 40° of abduction. Bridging sutures have a greater effect on the biomechanical properties of the repaired rotator cuff tendon at a low abduction angle, and the conventional double-row technique has a greater effect at a high abduction angle. Proper abduction position after rotator cuff repair differs between conventional double-row repair and transosseous-equivalent repair. The authors recommend the use of the combined technique of conventional double-row and bridging sutures to obtain better biomechanical properties at both low and high abduction angles.
Quantum noise in bright soliton matterwave interferometry
NASA Astrophysics Data System (ADS)
Haine, Simon A.
2018-03-01
There has been considerable recent interest in matterwave interferometry with bright solitons in quantum gases with attractive interactions, for applications such as rotation sensing. We model the quantum dynamics of these systems and find that the attractive interactions required for the presence of bright solitons causes quantum phase-diffusion, which severely impairs the sensitivity. We propose a scheme that partially restores the sensitivity, but find that in the case of rotation sensing, it is still better to work in a regime with minimal interactions if possible.
Jeans instability of rotating magnetized quantum plasma: Influence of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, H., E-mail: hjoshi8525@yahoo.com; Pensia, R. K.
2015-07-31
The effect of radiative heat-loss function and rotation on the Jeans instability of quantum plasma is investigated. The basic set of equations for this problem is constructed by considering quantum magnetohydrodynamic (QMHD) model. Using normal mode analysis, the general dispersion relation is obtained. This dispersion relation is studied in both, longitudinal and transverse direction of propagations. In both case of longitudinal and transverse direction of propagation, the Jeans instability criterion is modified due to presence of radiative heat-loss function and quantum correction.
Quantum-rotor-induced polarization.
Meier, Benno
2018-07-01
Quantum-rotor-induced polarization is closely related to para-hydrogen-induced polarization. In both cases, the hyperpolarized spin order derives from rotational interaction and the Pauli principle by which the symmetry of the rotational ground state dictates the symmetry of the associated nuclear spin state. In quantum-rotor-induced polarization, there may be several spin states associated with the rotational ground state, and the hyperpolarization is typically generated by hetero-nuclear cross-relaxation. This review discusses preconditions for quantum-rotor-induced polarization for both the 1-dimensional methyl rotor and the asymmetric rotor H 2 17 O@C 60 , that is, a single water molecule encapsulated in fullerene C 60 . Experimental results are presented for both rotors. Copyright © 2018 John Wiley & Sons, Ltd.
Mineo, Hirobumi; Yamaki, Masahiro; Teranishi, Yoshiaki; Hayashi, Michitoshi; Lin, Sheng Hsien; Fujimura, Yuichi
2012-09-05
Nonplanar chiral aromatic molecules are candidates for use as building blocks of multidimensional switching devices because the π electrons can generate ring currents with a variety of directions. We employed (P)-2,2'-biphenol because four patterns of π-electron rotations along the two phenol rings are possible and theoretically determine how quantum switching of the π-electron rotations can be realized. We found that each rotational pattern can be driven by a coherent excitation of two electronic states under two conditions: one is the symmetry of the electronic states and the other is their relative phase. On the basis of the results of quantum dynamics simulations, we propose a quantum control method for sequential switching among the four rotational patterns that can be performed by using ultrashort overlapped pump and dump pulses with properly selected relative phases and photon polarization directions. The results serve as a theoretical basis for the design of confined ultrafast switching of ring currents of nonplanar molecules and further current-induced magnetic fluxes of more sophisticated systems.
Haag duality for Kitaev’s quantum double model for abelian groups
NASA Astrophysics Data System (ADS)
Fiedler, Leander; Naaijkens, Pieter
2015-11-01
We prove Haag duality for cone-like regions in the ground state representation corresponding to the translational invariant ground state of Kitaev’s quantum double model for finite abelian groups. This property says that if an observable commutes with all observables localized outside the cone region, it actually is an element of the von Neumann algebra generated by the local observables inside the cone. This strengthens locality, which says that observables localized in disjoint regions commute. As an application, we consider the superselection structure of the quantum double model for abelian groups on an infinite lattice in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum field theory. We find that, as is the case for the toric code model on an infinite lattice, the superselection structure is given by the category of irreducible representations of the quantum double.
Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.
2017-12-01
A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.
Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.
2018-06-01
A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2 D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.
Dilisio, Matthew F.; Miller, Lindsay R.; Higgins, Laurence D.
2014-01-01
Arthroscopic transtendinous techniques for the arthroscopic repair of partial-thickness, articular-surface rotator cuff tears offer the advantage of minimizing the disruption of the patient's remaining rotator cuff tendon fibers. In addition, double-row fixation of full-thickness rotator cuff tears has shown biomechanical advantages. We present a novel method combining these 2 techniques for transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears. Direct visualization of the reduction of the retracted articular tendon layer to its insertion on the greater tuberosity is the key to the procedure. Linking the medial-row anchors and using a double-row construct provide a stable repair that allows early shoulder motion to minimize the risk of postoperative stiffness. PMID:25473606
Dilisio, Matthew F; Miller, Lindsay R; Higgins, Laurence D
2014-10-01
Arthroscopic transtendinous techniques for the arthroscopic repair of partial-thickness, articular-surface rotator cuff tears offer the advantage of minimizing the disruption of the patient's remaining rotator cuff tendon fibers. In addition, double-row fixation of full-thickness rotator cuff tears has shown biomechanical advantages. We present a novel method combining these 2 techniques for transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears. Direct visualization of the reduction of the retracted articular tendon layer to its insertion on the greater tuberosity is the key to the procedure. Linking the medial-row anchors and using a double-row construct provide a stable repair that allows early shoulder motion to minimize the risk of postoperative stiffness.
NASA Astrophysics Data System (ADS)
Moradi, Majid; Annabestani, Mostafa
2017-12-01
By adding an extra Hilbert space to the Hadamard quantum walk on cycle (QWC), we present a new type of QWC, the Möbius quantum walk (MQW). The new space configuration enables the particle to rotate around the axis of movement. We define the factor α as the Möbius factor, which is the number of rotations per cycle. So, by α=0 we have a normal QWC, while α \
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yao; Liang, Meng; Fu, Jiajia
2015-03-15
In this work, novel double Electron Blocking Layers for InGaN/GaN multiple quantum wells light-emitting diodes were proposed to mitigate the efficiency droop at high current density. The band diagram and carriers distributions were investigated numerically. The results indicate that due to a newly formed holes stack in the p-GaN near the active region, the hole injection has been improved and an uniform carriers distribution can be achieved. As a result, in our new structure with double Electron Blocking Layers, the efficiency droop has been reduced to 15.5 % in comparison with 57.3 % for the LED with AlGaN EBL atmore » the current density of 100 A/cm{sup 2}.« less
New sesquiterpenes from Euonymus europaeus (Celastraceae).
Descoins, Charles; Bazzocchi, Isabel López; Ravelo, Angel Gutiérrez
2002-02-01
A new sesquiterpene evoninate alkaloid (1), and two sesquiterpenes (2, 3) with a dihydro-beta-agarofuran skeleton, along with three known sesquiterpenes (4-6), were isolated from the seeds of Euonymus europaeus. Their structures were elucidated by high resolution mass analysis, and one- and two-dimensional (1D and 2D) NMR spectroscopy, including homonuclear and heteronuclear correlation [correlation spectroscopy (COSY), rotating frame Overhauser enhancement spectroscopy (ROESY), heteronuclear single quantum coherence (HSQC), and heteronuclear multiple bond correlation (HMBC)] experiments.
Double layers and double wells in arbitrary degenerate plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η{sub 0}, ranging from dilutemore » classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η{sub 0} < 0 and quantum with η{sub 0} > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.« less
Lu, T. M.; Gamble, J. K.; Muller, R. P.; ...
2016-08-01
Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si 0.8Ge 0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratiomore » used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. Furthermore, the device uses only a single metal-gate layer, greatly simplifying device design and fabrication.« less
Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications
NASA Astrophysics Data System (ADS)
Singh, Mahi R.; Guo, Jiaohan; J. Cid, José M.; De Hoyos Martinez, Jesús E.
2017-03-01
We study the light emission from a quantum emitter and double metallic nanoshell hybrid systems. Quantum emitters act as local sources which transmit their light efficiently due to a double nanoshell near field. The double nanoshell consists of a dielectric core and two outer nanoshells. The first nanoshell is made of a metal, and the second spacer nanoshell is made of a dielectric material or human serum albumin. We have calculated the fluorescence emission for a quantum emitter-double nanoshell hybrid when it is injected in an animal or a human body. Surface plasmon polariton resonances in the double nanoshell are calculated using Maxwell's equations in the quasi-static approximation, and the fluorescence emission is evaluated using the density matrix method in the presence of dipole-dipole interactions. We have compared our theory with two fluorescence experiments in hybrid systems in which the quantum emitter is Indocyanine Green or infrared fluorescent molecules. The outer spacer nanoshell of double metallic nanoshells consists of silica and human serum albumin with variable thicknesses. Our theory explains the enhancement of fluorescence spectra in both experiments. We find that the thickness of the spacer nanoshell layer increases the enhancement when the fluorescence decreases. The enhancement of the fluorescence depends on the type of quantum emitter, spacer layer, and double nanoshell. We also found that the peak of the fluorescence spectrum can be shifted by changing the shape and the size of the nanoshell. The fluorescence spectra can be switched from one peak to two peaks by removing the degeneracy of excitonic states in the quantum emitter. Hence, using these properties, one can use these hybrids as sensing and switching devices for applications in medicine.
Perser, Karen; Godfrey, David; Bisson, Leslie
2011-01-01
Context: Double-row rotator cuff repair methods have improved biomechanical performance when compared with single-row repairs. Objective: To review clinical outcomes of single-row versus double-row rotator cuff repair with the hypothesis that double-row rotator cuff repair will result in better clinical and radiographic outcomes. Data Sources: Published literature from January 1980 to April 2010. Key terms included rotator cuff, prospective studies, outcomes, and suture techniques. Study Selection: The literature was systematically searched, and 5 level I and II studies were found comparing clinical outcomes of single-row and double-row rotator cuff repair. Coleman methodology scores were calculated for each article. Data Extraction: Meta-analysis was performed, with treatment effect between single row and double row for clinical outcomes and with odds ratios for radiographic results. The sample size necessary to detect a given difference in clinical outcome between the 2 methods was calculated. Results: Three level I studies had Coleman scores of 80, 74, and 81, and two level II studies had scores of 78 and 73. There were 156 patients with single-row repairs and 147 patients with double-row repairs, both with an average follow-up of 23 months (range, 12-40 months). Double-row repairs resulted in a greater treatment effect for each validated outcome measure in 4 studies, but the differences were not clinically or statistically significant (range, 0.4-2.2 points; 95% confidence interval, –0.19, 4.68 points). Double-row repairs had better radiographic results, but the differences were also not statistically significant (P = 0.13). Two studies had adequate power to detect a 10-point difference between repair methods using the Constant score, and 1 study had power to detect a 5-point difference using the UCLA (University of California, Los Angeles) score. Conclusions: Double-row rotator cuff repair does not show a statistically significant improvement in clinical outcome or radiographic healing with short-term follow-up. PMID:23016017
Perser, Karen; Godfrey, David; Bisson, Leslie
2011-05-01
Double-row rotator cuff repair methods have improved biomechanical performance when compared with single-row repairs. To review clinical outcomes of single-row versus double-row rotator cuff repair with the hypothesis that double-row rotator cuff repair will result in better clinical and radiographic outcomes. Published literature from January 1980 to April 2010. Key terms included rotator cuff, prospective studies, outcomes, and suture techniques. The literature was systematically searched, and 5 level I and II studies were found comparing clinical outcomes of single-row and double-row rotator cuff repair. Coleman methodology scores were calculated for each article. Meta-analysis was performed, with treatment effect between single row and double row for clinical outcomes and with odds ratios for radiographic results. The sample size necessary to detect a given difference in clinical outcome between the 2 methods was calculated. Three level I studies had Coleman scores of 80, 74, and 81, and two level II studies had scores of 78 and 73. There were 156 patients with single-row repairs and 147 patients with double-row repairs, both with an average follow-up of 23 months (range, 12-40 months). Double-row repairs resulted in a greater treatment effect for each validated outcome measure in 4 studies, but the differences were not clinically or statistically significant (range, 0.4-2.2 points; 95% confidence interval, -0.19, 4.68 points). Double-row repairs had better radiographic results, but the differences were also not statistically significant (P = 0.13). Two studies had adequate power to detect a 10-point difference between repair methods using the Constant score, and 1 study had power to detect a 5-point difference using the UCLA (University of California, Los Angeles) score. Double-row rotator cuff repair does not show a statistically significant improvement in clinical outcome or radiographic healing with short-term follow-up.
Multi-photon Rabi oscillations in high spin paramagnetic impurity
NASA Astrophysics Data System (ADS)
Bertaina, S.; Groll, N.; Chen, L.; Chiorescu, I.
2011-10-01
We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dancer, K. A.; Isac, P. S.; Links, J.
2006-10-15
Quantum doubles of finite group algebras form a class of quasitriangular Hopf algebras that algebraically solve the Yang-Baxter equation. Each representation of the quantum double then gives a matrix solution of the Yang-Baxter equation. Such solutions do not depend on a spectral parameter, and to date there has been little investigation into extending these solutions such that they do depend on a spectral parameter. Here we first explicitly construct the matrix elements of the generators for all irreducible representations of quantum doubles of the dihedral groups D{sub n}. These results may be used to determine constant solutions of the Yang-Baxtermore » equation. We then discuss Baxterization ansaetze to obtain solutions of the Yang-Baxter equation with a spectral parameter and give several examples, including a new 21-vertex model. We also describe this approach in terms of minimal-dimensional representations of the quantum doubles of the alternating group A{sub 4} and the symmetric group S{sub 4}.« less
Ang, Benjamin Fu Hong; Chen, Jerry Yongqiang; Yeo, William; Lie, Denny Tijauw Tjoen; Chang, Paul Chee Cheng
2018-01-01
The aim of our study is to compare the improvement in clinical outcomes after conventional arthroscopic double-row rotator cuff repair and arthroscopic undersurface rotator cuff repair. A consecutive series of 120 patients who underwent arthroscopic rotator cuff repair was analysed. Sixty-one patients underwent conventional double-row rotator cuff repair and 59 patients underwent undersurface rotator cuff repair. Several clinical outcomes, including numerical pain rating scale (NPRS), constant shoulder score (CSS), Oxford shoulder score (OSS) and University of California Los Angeles shoulder score (UCLASS), were prospectively recorded by a trained healthcare professional preoperatively and at 3, 6, 12 and 24 months after surgery. Comparing both groups, there were no differences in age, gender and preoperative NPRS, CSS, OSS and UCLASS. However, the tear size was 0.7 ± 0.2 (95% confidence interval (CI) 0.3-1.1) cm larger in the conventional group ( p = 0.002). There was no difference in the improvement of NPRS, CSS, OSS and UCLASS at all time points of follow-up, that is, at 3, 6, 12 and 24 months after surgery. The duration of operation was shorter by 35 ± 3 (95% CI 28-42) min in the undersurface group ( p < 0.001). Both arthroscopic undersurface rotator cuff repair and conventional arthroscopic double-row rotator cuff repair showed marked improvements in clinical scores when compared preoperatively, and there was no difference in improvements between both groups. Arthroscopic undersurface rotator cuff repair is a faster technique compared to the conventional arthroscopic double-row rotator cuff repair.
Andreev molecules in semiconductor nanowire double quantum dots.
Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M
2017-09-19
Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.
Gas-Phase Structures of Linalool and Coumarin Studied by Microwave Spectroscopy
NASA Astrophysics Data System (ADS)
Nguyen, H. V. L.; Stahl, W.; Grabow, J.-U.
2013-06-01
The microwave spectra of two natural substances, linalool and coumarin, were recorded in the microwave range from 9 to 16 GHz and 8.5 to 10.5 GHz, respectively.Linalool is an acyclic monoterpene and the main component of lavender oil. It has a structure with many possible conformations. The geometry of the lowest energy conformer has been determined by a combination of microwave spectroscopy and quantum chemical calculations. Surprisingly, a globular rather than a prolate shape was found. This structure is probably stabilized by a π interaction between two double bonds which are arranged in two stacked layers of atoms within the molecule. A-E splittings due to the internal rotation of one methyl group could be resolved and the barrier to internal rotation was determined to be 400.20(64) cm^{-1}. The standard deviation of the fit was close to experimental accuracy. For an identification of the observed conformer not only the rotational constants but also the internal rotation parameters of one of the methyl groups were needed. Coumarin is a widely used flavor in perfumery as sweet woodruff scent. The aromatic structure allows solely for one planar conformer, which was found under molecular beam conditions and compared to other molecules with similar structures. Here, the rotational spectrum could be described by a set of parameters including the rotational constants and the centrifugal distortion constants using a semi-rigid molecule Hamiltonian. Furthermore, the rotational transitions of all nine ^{13}C isotopologues were measured in natural abundance. As a consequence, the microwave structure of coumarin could be almost completely determined.
Controlling neutron orbital angular momentum
NASA Astrophysics Data System (ADS)
Clark, Charles W.; Barankov, Roman; Huber, Michael G.; Arif, Muhammad; Cory, David G.; Pushin, Dmitry A.
2015-09-01
The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a `twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies.
Matrix quantum mechanics on S1 /Z2
NASA Astrophysics Data System (ADS)
Betzios, P.; Gürsoy, U.; Papadoulaki, O.
2018-03-01
We study Matrix Quantum Mechanics on the Euclidean time orbifold S1 /Z2. Upon Wick rotation to Lorentzian time and taking the double-scaling limit this theory provides a toy model for a big-bang/big crunch universe in two dimensional non-critical string theory where the orbifold fixed points become cosmological singularities. We derive the MQM partition function both in the canonical and grand canonical ensemble in two different formulations and demonstrate agreement between them. We pinpoint the contribution of twisted states in both of these formulations either in terms of bi-local operators acting at the end-points of time or branch-cuts on the complex plane. We calculate, in the matrix model, the contribution of the twisted states to the torus level partition function explicitly and show that it precisely matches the world-sheet result, providing a non-trivial test of the proposed duality. Finally we discuss some interesting features of the partition function and the possibility of realising it as a τ-function of an integrable hierarchy.
Quantum Entanglement in Double Quantum Systems and Jaynes-Cummings Model.
Jakubczyk, Paweł; Majchrowski, Klaudiusz; Tralle, Igor
2017-12-01
In the paper, we proposed a new approach to producing the qubits in electron transport in low-dimensional structures such as double quantum wells or double quantum wires (DQW). The qubit could arise as a result of quantum entanglement of two specific states of electrons in DQW structure. These two specific states are the symmetric and antisymmetric (with respect to inversion symmetry) states arising due to tunneling across the structure, while entanglement could be produced and controlled by means of the source of nonclassical light. We examined the possibility to produce quantum entanglement in the framework of Jaynes-Cummings model and have shown that at least in principle, the entanglement can be achieved due to series of "revivals" and "collapses" in the population inversion due to the interaction of a quantized single-mode EM field with a two-level system.
Gueroult, Renaud; Rax, Jean -Marcel; Fisch, Nathaniel J.
2014-02-03
Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. Lastly, the radial separation of the masses is the result of a “double-well” in effective radial potential in rotating plasma with a sheared rotation profile.
NASA Astrophysics Data System (ADS)
Solookinejad, Gh.; Jabbari, M.; Sangachin, E. Ahmadi; Asadpour, S. H.
2018-01-01
In this paper, we discuss the transmission properties of weak probe laser field propagate through slab cavity with defect layer of carbon-nanotube quantum dot (CNT-QD) nanostructure. We show that due to spin-orbit coupling, the double electromagnetically induced transparency (EIT) windows appear and the giant Kerr nonlinearity of the intracavity medium can lead to manipulating of transmission coefficient of weak probe light. The thickness effect of defect layer medium has also been analyzed on transmission properties of probe laser field. Our proposed model may be useful for integrated photonics devices based on CNT-QD for applications in all-optical systems which require multiple EIT effect.
Quenching of Excited Na due to He Collisions
NASA Technical Reports Server (NTRS)
Lin, C. Y.; Stancil, P. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.
2006-01-01
The quenching and elastic scattering of excited Sodium by collisions with Helium have been investigated for energies between 10(exp -13) eV and 10 eV. With the ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained from multireference single- and double-excitation configuration interaction approach, we carried out scattering calculations by the quantum-mechanical molecular-orbital close-coupling method. Cross sections for quenching reactions and elastic collisions are presented. Quenching and elastic collisional rate coefficients as a function of temperature between 1 micro-K and 10,000 K are also obtained. The results are relevant to modeling non-LTE effects on Na D absorption lines in extrasolar planets and brown dwarfs.
Multiple forearm robotic elbow configuration
Fisher, John J.
1990-01-01
A dual forearmed robotic elbow configuration comprises a main arm having a double elbow from which two coplanar forearms depend, two actuators carried in the double elbow for moving the forearms, and separate, independent end effectors, operated by a cable carried from the main arm through the elbow, is attached to the distal end of each forearm. Coiling the cables around the actuators prevents bending or kinking when the forearms are rotated 360 degrees. The end effectors can have similar or different capabilities. Actuator cannisters within the dual elbow are modular for rapid replacement or maintenance. Coarse and fine resolver transducers within the actuators provide accurate position referencing information.
Double-quantum homonuclear correlations of spin I=5/2 nuclei.
Iuga, Dinu
2011-02-01
The challenges associated with acquiring double-quantum homonuclear Nuclear Magnetic Resonance correlation spectra of half-integer quadrupolar nuclei are described. In these experiments the radio-frequency irradiation amplitude is necessarily weak in order to selectively excite the central transition. In this limit only one out of the 25 double-quantum coherences possible for two coupled spin I=5/2 nuclei is excited. An investigation of all the 25 two spins double quantum transitions reveals interesting effects such as a compensation of the first-order quadrupolar interaction between the two single quantum transitions involved in the double quantum coherence. In this paper a full numerical study of a hypothetical two spin I=5/2 system is used to show what happens when the RF amplitude during recoupling is increased. In principle this is advantageous, since the required double quantum coherence should build up faster, but in practice it also induces adiabatic passage transfer of population and coherence which impedes any build up. Finally an optimized rotary resonance recoupling (oR(3)) sequence is introduced in order to decrease these transfers. This sequence consists of a spin locking irradiation whose amplitude is reduced four times during one rotor period, and allows higher RF powers to be used during recoupling. The sequence is used to measure (27)Al DQ dipolar correlation spectra of Y(3)Al(5)O(12) (YAG) and gamma alumina (γAl(2)O(3)). The results prove that aluminium vacancies in gamma alumina mainly occur in the tetrahedral sites. Copyright © 2010 Elsevier Inc. All rights reserved.
Quantum gravity effects on scalar particle tunneling from rotating BTZ black hole
NASA Astrophysics Data System (ADS)
Meitei, I. Ablu; Singh, T. Ibungochouba; Devi, S. Gayatri; Devi, N. Premeshwari; Singh, K. Yugindro
2018-04-01
Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein-Hawking entropy (SBH), the inverse term of SBH and terms with inverse powers of SBH, in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space-time.
Jeffery, A.; Elmquist, R. E.; Cage, M. E.
1995-01-01
Precision tests verify the dc equivalent circuit used by Ricketts and Kemeny to describe a quantum Hall effect device in terms of electrical circuit elements. The tests employ the use of cryogenic current comparators and the double-series and triple-series connection techniques of Delahaye. Verification of the dc equivalent circuit in double-series and triple-series connections is a necessary step in developing the ac quantum Hall effect as an intrinsic standard of resistance. PMID:29151768
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lei; Department of Medical Physics, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017; Li, Yu-Xian
2014-01-14
The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structuresmore » as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.« less
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.
2014-12-01
It is shown in analytical form that the carrier capture from the matrix as well as carrier dynamics in quantum dots plays an important role in double-state lasing phenomenon. In particular, the de-synchronization of hole and electron captures allows one to describe recently observed quenching of ground-state lasing, which takes place in quantum dot lasers operating in double-state lasing regime at high injection. From the other side, the detailed analysis of charge carrier dynamics in the single quantum dot enables one to describe the observed light-current characteristics and key temperature dependences.
NASA Astrophysics Data System (ADS)
Yang, Dongzheng; Huang, Jing; Zuo, Junxiang; Hu, Xixi; Xie, Daiqian
2018-05-01
A full-dimensional ab initio potential energy surface for the H2-HF van der Waals complex was constructed by employing the coupled-cluster singles and doubles with noniterative inclusion of connected triples with augmented correlation-consistent polarised valence quadruple-zeta basis set plus bond functions. Using the improved coupled-states approximation including the nearest neighbor Coriolis couplings, we calculated the state-to-state scattering dynamics for pure rotational and ro-vibrational energy transfer processes. For pure rotational energy transfer, our results showed a different dynamical behavior for para-H2 and ortho-H2 in collision with hydrogen fluoride (HF), which is consistent with the previous study. Interestingly, some strong resonant peaks were presented in the cross sections for ro-vibrational energy transfer. In addition, the calculated vibrational-resolved rate constant is in agreement with the experimental results reported by Bott et al. These dynamics data can be further applied to the numerical simulation of HF chemical lasers.
The gas phase structure of α -pinene, a main biogenic volatile organic compound
NASA Astrophysics Data System (ADS)
Neeman, Elias M.; Avilés Moreno, Juan Ramón; Huet, Thérèse R.
2017-12-01
The gas phase structure of the bicyclic atmospheric aerosol precursor α-pinene was investigated employing a combination of quantum chemical calculation and Fourier transform microwave spectroscopy coupled to a supersonic jet expansion. The very weak rotational spectra of the parent species and all singly substituted 13C in natural abundance have been identified, from 2 to 20 GHz, and fitted to Watson's Hamiltonian model. The rotational constants were used together with geometrical parameters from density functional theory and ab initio calculations to determine the rs, r0, and rm(1 ) structures of the skeleton, without any structural assumption in the fit concerning the heavy atoms. The double C=C bond was found to belong to a quasiplanar skeleton structure containing 6 carbon atoms. Comparison with solid phase structure is reported. The significant differences of α-pinene in gas phase and other gas phase bicyclic monoterpene structures (β-pinene, nopinone, myrtenal, and bicyclo[3.1.1]heptane) are discussed.
Bloch-Siegert shift in Dirac-Weyl fermionic systems
NASA Astrophysics Data System (ADS)
Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.
2018-04-01
The Bloch-Siegert shift is a phenomenon in quantum optics, typically seen in two-level systems, when the driving field is sufficiently strong. The inclusion of frequency doubling effect (counter rotating term) in the conventional rotating wave approximation (RWA) changes the resonance condition thereby producing a rather small shift in the resonance condition, which is known as the Bloch-Siegert shift (BSS). Rabi oscillations in Dirac-Weyl fermionic systems exhibit anomalous behavior far from resonance, called anomalous Rabi oscillations. Therefore, in the present work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal and topological insulator (TI) far from resonance, called anomalous Bloch-Siegert shift (ABSS). It is seen that the change in the resonance condition of anomalous Rabi oscillations is drastic in Weyl semimetal and TI. The ABSS in Weyl semimetals is highly anisotropic, whereas it is isotropic in TI. In case of TI, it is the Chern number which plays a crucial role to produce substantial change in the ABSS.
Lithographically defined few-electron silicon quantum dots based on a silicon-on-insulator substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp
2015-02-23
Silicon quantum dot (QD) devices with a proximal single-electron transistor (SET) charge sensor have been fabricated in a metal-oxide-semiconductor structure based on a silicon-on-insulator substrate. The charge state of the QDs was clearly read out using the charge sensor via the SET current. The lithographically defined small QDs enabled clear observation of the few-electron regime of a single QD and a double QD by charge sensing. Tunnel coupling on tunnel barriers of the QDs can be controlled by tuning the top-gate voltages, which can be used for manipulation of the spin quantum bit via exchange interaction between tunnel-coupled QDs. Themore » lithographically defined silicon QD device reported here is technologically simple and does not require electrical gates to create QD confinement potentials, which is advantageous for the integration of complicated constructs such as multiple QD structures with SET charge sensors for the purpose of spin-based quantum computing.« less
Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces
NASA Astrophysics Data System (ADS)
Zutz, Amelia Marie
Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.
Lorbach, Olaf; Kieb, Matthias; Raber, Florian; Busch, Lüder C; Kohn, Dieter M; Pape, Dietrich
2013-01-01
The double-row suture bridge repair was recently introduced and has demonstrated superior biomechanical results and higher yield load compared with the traditional double-row technique. It therefore seemed reasonable to compare this second generation of double-row constructs to the modified single-row double mattress reconstruction. The repair technique, initial tear size, and tendon subregion will have a significant effect on 3-dimensional (3D) cyclic displacement under additional static external rotation of a modified single-row compared with a double-row rotator cuff repair. Controlled laboratory study. Rotator cuff tears (small to medium: 25 mm; medium to large: 35 mm) were created in 24 human cadaveric shoulders. Rotator cuff repairs were performed as modified single-row or double-row repairs, and cyclic loading (10-60 N, 10-100 N) was applied under 20° of external rotation. Radiostereometric analysis was used to calculate cyclic displacement in the anteroposterior (x), craniocaudal (y), and mediolateral (z) planes with a focus on the repair constructs and the initial tear size. Moreover, differences in cyclic displacement of the anterior compared with the posterior tendon subregions were calculated. Significantly lower cyclic displacement was seen in small to medium tears for the single-row compared with double-row repair at 60 and 100 N in the x plane (P = .001) and y plane (P = .001). The results were similar in medium to large tears at 100 N in the x plane (P = .004). Comparison of 25-mm versus 35-mm tears did not show any statistically significant differences for the single-row repairs. In the double-row repairs, lower gap formation was found for the 35-mm tears (P ≤ .05). Comparison of the anterior versus posterior tendon subregions revealed a trend toward higher anterior gap formation, although this was statistically not significant. The tested single-row reconstruction achieved superior results in 3D cyclic displacement to the tested double-row repair. Extension of the initial rupture size did not have a negative effect on the biomechanical results of the tested constructs. Single-row repairs with modified suture configurations provide comparable biomechanical strength to double-row repairs. Furthermore, as increased gap formation in the early postoperative period might lead to failure of the construct, a strong anterior fixation and restricted external rotation protocol might be considered in rotator cuff repairs to avoid this problem.
Period doubling in period-one steady states
NASA Astrophysics Data System (ADS)
Wang, Reuben R. W.; Xing, Bo; Carlo, Gabriel G.; Poletti, Dario
2018-02-01
Nonlinear classical dissipative systems present a rich phenomenology in their "route to chaos," including period doubling, i.e., the system evolves with a period which is twice that of the driving. However, typically the attractor of a periodically driven quantum open system evolves with a period which exactly matches that of the driving. Here, we analyze a periodically driven many-body open quantum system whose classical correspondent presents period doubling. We show that by studying the dynamical correlations, it is possible to show the occurrence of period doubling in the quantum (period-one) steady state. We also discuss that such systems are natural candidates for clean and intrinsically robust Floquet time crystals.
NASA Astrophysics Data System (ADS)
Bhakta, S.; Prajapati, R. P.
2018-02-01
The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.
Einstein–Bose condensation of Onsager vortices
NASA Astrophysics Data System (ADS)
Valani, Rahil N.; Groszek, Andrew J.; Simula, Tapio P.
2018-05-01
We have studied statistical mechanics of a gas of vortices in two dimensions. We introduce a new observable—a condensate fraction of Onsager vortices—to quantify the emergence of the vortex condensate. The condensation of Onsager vortices is most transparently observed in a single vortex species system and occurs due to a competition between solid body rotation (see vortex lattice) and potential flow (see multiple quantum vortex state). We propose an experiment to observe the condensation transition of the vortices in such a single vortex species system.
Schmiedt, Hanno; Schlemmer, Stephan; Yurchenko, Sergey N.; Yachmenev, Andrey
2017-01-01
We report a new semi-classical method to compute highly excited rotational energy levels of an asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green's function approach to describe the rotational motion, while retaining a quantum mechanical description of the vibrations. Similar approaches have existed for some time, but the method proposed here has two novel features. First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is employed for the first time to describe the molecular vibrations. In addition, we present a new robust approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to calculating the energies of very highly excited rotational states and it reduces dramatically the computing time as well as the storage and memory requirements when compared to the fullly quantum-mechanical variational approach. Test calculations for excited states of SO2 yield semi-classical energies in very good agreement with the available experimental data and the results of fully quantum-mechanical calculations. PMID:28000807
NASA Astrophysics Data System (ADS)
Paul, Jaydeep; Nag, Apratim; Devi, Karabi; Das, Himadri Sekhar
2018-03-01
The evolution and the characteristic features of double layers in a plasma under slow rotation and contaminated with dust grains with varying charges under the effect of an external magnetic field are studied. The Coriolis force resulting from the slow rotation is responsible for the generation of an equivalent magnetic field. A comparatively new pseudopotential approach has been used to derive the small amplitude double layers. The effect of the relative electron-ion concentration, as well as the temperature ratio, on the formation of the double layers has also been investigated. The study reveals that compressive, as well as rarefactive, double layers can be made to co-exist in plasma by controlling the dust charge fluctuation effect supplemented by variations of the plasma constituents. The effectiveness of slow rotation in causing double layers to exist has also emanated from the study. The results obtained could be of interest because of their possible applications in both laboratories and space.
Roucou, Anthony; Kleiner, Isabelle; Goubet, Manuel; Bteich, Sabath; Mouret, Gael; Bocquet, Robin; Hindle, Francis; Meerts, W Leo; Cuisset, Arnaud
2018-05-07
The monitoring of gas-phase mononitrotoluenes is crucial for defence, civil security and environmental interests because they are used as taggant for TNT detection and in the manufacturing of industrial compounds such as dyestuffs. In this study, we have succeeded to measure and analyse at high-resolution a room temperature rotationally resolved millimetre-wave spectrum of meta-nitrotoluene (3-NT). Experimental and theoretical difficulties have been overcome, in particular, those related to the low vapour pressure of 3-NT and to the presence of a CH 3 internal rotation in an almost free rotation regime (V 3 =6.7659(24) cm -1 ). Rotational spectra have been recorded in the microwave and millimetre-wave ranges using a supersonic jet Fourier Transform microwave spectrometer (T rot <10 K) and a millimetre-wave frequency multiplication chain (T=293 K), respectively. Spectral analysis of pure rotation lines in the vibrational ground state and in the first torsional excited state supported by quantum chemistry calculations permits the rotational energy of the molecule, the hyperfine structure due to the 14 N nucleus, and the internal rotation of the methyl group to be characterised. A line list is provided for future in situ detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Takahata, Masahiko; Sudo, Hideki; Hojo, Yoshihiro; Minami, Akio
2010-03-01
The authors present a new posterior correction technique consisting of simultaneous double-rod rotation using 2 contoured rods and polyaxial pedicle screws with or without Nesplon tapes. The purpose of this study is to introduce the basic principles and surgical procedures of this new posterior surgery for correction of adolescent idiopathic scoliosis. Through gradual rotation of the concave-side rod by 2 rod holders, the convex-side rod simultaneously rotates with the the concave-side rod. This procedure does not involve any force pushing down the spinal column around the apex. Since this procedure consists of upward pushing and lateral translation of the spinal column with simultaneous double-rod rotation maneuvers, it is simple and can obtain thoracic kyphosis as well as favorable scoliosis correction. This technique is applicable not only to a thoracic single curve but also to double major curves in cases of adolescent idiopathic scoliosis.
Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther
2017-07-01
We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20 dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7 nm (full width at -20 dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100 Hz 2 /Hz and of at most 170 Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.
Horsewill, A J; Panesar, K S; Rols, S; Johnson, M R; Murata, Y; Komatsu, K; Mamone, S; Danquigny, A; Cuda, F; Maltsev, S; Grossel, M C; Carravetta, M; Levitt, M H
2009-01-09
We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.
Fast REDOR with CPMG multiple-echo acquisition
NASA Astrophysics Data System (ADS)
Hung, Ivan; Gan, Zhehong
2014-01-01
Rotational-Echo Double Resonance (REDOR) is a widely used experiment for distance measurements in solids. The conventional REDOR experiment measures the signal dephasing from hetero-nuclear recoupling under magic-angle spinning (MAS) in a point by point manner. A modified Carr-Purcell Meiboom-Gill (CPMG) multiple-echo scheme is introduced for fast REDOR measurement. REDOR curves are measured from the CPMG echo amplitude modulation under dipolar recoupling. The real time CPMG-REDOR experiment can speed up the measurement by an order of magnitude. The effects from hetero-nuclear recoupling, the Bloch-Siegert shift and echo truncation to the signal acquisition are discussed and demonstrated.
NASA Astrophysics Data System (ADS)
Gupta, Manish K.; Navarro, Erik J.; Moulder, Todd A.; Mueller, Jason D.; Balouchi, Ashkan; Brown, Katherine L.; Lee, Hwang; Dowling, Jonathan P.
2015-05-01
The storage of quantum states and its distribution over long distances is essential for emerging quantum technologies such as quantum networks and long distance quantum cryptography. The implementation of polarization-based quantum communication is limited by signal loss and decoherence caused by the birefringence of a single-mode fiber. We investigate the Knill dynamical decoupling scheme, implemented using half-wave plates in a single mode fiber, to minimize decoherence of polarization qubit and show that a fidelity greater than 99 % can be achieved in absence of rotation error and fidelity greater than 96 % can be achieved in presence of rotation error. Such a scheme can be used to preserve any quantum state with high fidelity and has potential application for constructing all optical quantum memory, quantum delay line, and quantum repeater. The authors would like to acknowledge the support from the Air Force office of Scientific Research, the Army Research office, and the National Science Foundation.
NASA Astrophysics Data System (ADS)
Rabinovich, B. I.
2006-03-01
Based on a mathematical model described in [1], some new aspects of the dynamics of a thin planar plasma ring rotating in the magnetic field of a central body are considered. The dipole field is considered assuming that the dipole has a small eccentricity, and the dipole axis is inclined at a small angle to the central body’s axis of rotation. Emphasis is placed on the problem of stability of the ring’s stationary rotation. Unlike [1], the disturbed motion is considered which has a character of eddy magneto-gyroscopic waves. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. It is demonstrated that some “elite” rings characterized by integral quantum numbers are long-living, while “lethal” or unstable rings (antirings) are associated with half-integer quantum numbers. As a result, an evolutionally rife rotating ring of magnetized plasma turns out to be stratified into a large number of narrow elite rings separated by gaps whose positions correspond to antirings. The regions of possible existence of elite rings in near-central body space are considered. Quantum numbers determining elite eigenvalues of the mean sector velocity (normalized in a certain manner) of a ring coincide with the quantum numbers appearing in the solution to the Schrödinger equation for a hydrogen atom. Perturbations of elite orbits corresponding to these quantum numbers satisfy the de Brogli quantum-mechanical condition. This is one more illustration of the isomorphism of quantization in microcosm and macrocosm.
A Portable Double-Slit Quantum Eraser with Individual Photons
ERIC Educational Resources Information Center
Dimitrova, T. L.; Weis, A.
2011-01-01
The double-slit experiment has played an important role in physics, from supporting the wave theory of light, via the discussions of the wave-particle duality of light (and matter) to the foundations of modern quantum optics. Today it keeps playing an active role in the context of quantum optics experiments involving single photons. In this paper,…
Iriarte, Ana G; Cutin, Edgardo H; Argüello, Gustavo A
2014-01-01
The synthesis of [chloro(difluor)acetyl]phosphorimidic trichloride (ClF2CC(O)NPCl3), together with a tentative assignment of the vibrational, NMR and mass spectra, are reported. Quantum chemical calculations (MP2 and B3LYP methods with 6-311+G(d) and 6-311+G(2df,p) basis sets) predict three stable conformers in the gas phase (syn, gauche and anti, defined according to the rotation around both the ClCCN and the CCNP dihedral angles). However, only a single C1 symmetry conformer is observed in the liquid phase, possessing the CO double bond in synperiplanar orientation with respect to the PN double bond, and the ClC bond distorted from the plane defined by the CC(O)NP entity. A Natural Bond Orbital (NBO) analysis was carried out for the title compound and related molecules in order to provide an explanation about the electronic properties. Copyright © 2013 Elsevier B.V. All rights reserved.
Vibration-rotation-tunneling dynamics in small water clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugliano, N.
The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics inmore » the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.« less
Unified double- and single-sided homogeneous Green’s function representations
van der Neut, Joost; Slob, Evert
2016-01-01
In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green’s function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green’s function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green’s function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green’s function retrieval. PMID:27436983
Unified double- and single-sided homogeneous Green's function representations
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Slob, Evert
2016-06-01
In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.
Use of the Wigner representation in scattering problems
NASA Technical Reports Server (NTRS)
Bemler, E. A.
1975-01-01
The basic equations of quantum scattering were translated into the Wigner representation, putting quantum mechanics in the form of a stochastic process in phase space, with real valued probability distributions and source functions. The interpretative picture associated with this representation is developed and stressed and results used in applications published elsewhere are derived. The form of the integral equation for scattering as well as its multiple scattering expansion in this representation are derived. Quantum corrections to classical propagators are briefly discussed. The basic approximation used in the Monte-Carlo method is derived in a fashion which allows for future refinement and which includes bound state production. Finally, as a simple illustration of some of the formalism, scattering is treated by a bound two body problem. Simple expressions for single and double scattering contributions to total and differential cross-sections as well as for all necessary shadow corrections are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulakhmetov, Marat, E-mail: mkulakhm@purdue.edu; Alexeenko, Alina, E-mail: alexeenk@purdue.edu; Gallis, Michael, E-mail: magalli@sandia.gov
Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O{sub 2} + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociationmore » exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500–20 000 K temperature range. The VRT model captures 80 × 10{sup 6} state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000–15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.« less
Renormalized vacuum polarization of rotating black holes
NASA Astrophysics Data System (ADS)
Ferreira, Hugo R. C.
2015-04-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Biao; Wang, Lin-Xue; Chen, Guang-Ping
We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose–Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with ourmore » numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses. - Highlights: • A binary quantum gases with unequal atomic masses is considered. • Effects of the ratio of atomic masses and rotation frequency are discussed in full parameter space. • The detailed information about both the cloud and vortices are also discussed.« less
Single-Versus Double-Row Arthroscopic Rotator Cuff Repair in Massive Tears
Wang, EnZhi; Wang, Liang; Gao, Peng; Li, ZhongJi; Zhou, Xiao; Wang, SongGang
2015-01-01
Background It is a challenge for orthopaedic surgeons to treat massive rotator cuff tears. The optimal management of massive rotator cuff tears remains controversial. Therefore, the goal of this study was to compare arthroscopic single- versus double-row rotator cuff repair with a larger sample size. Material/Methods Of the subjects with massive rotator cuff tears, 146 were treated using single-row repair, and 102 were treated using double-row repair. Pre- and postoperative functional outcomes and radiographic images were collected. The clinical outcomes were evaluated for a minimum of 2 years. Results No significant differences were shown between the groups in terms of functional outcomes. Regarding the integrity of the tendon, a lower rate of post-treatment retear was observed in patients who underwent double-row repair compared with single-row repair. Conclusions The results suggest that double-row repair is relatively superior in shoulder ROM and the strength of tendon compared with single-row repair. Future studies involving more patients in better-designed randomized controlled trials will be required. PMID:26017641
Webber, Amy L; Elena, Bénédicte; Griffin, John M; Yates, Jonathan R; Pham, Tran N; Mauri, Francesco; Pickard, Chris J; Gil, Ana M; Stein, Robin; Lesage, Anne; Emsley, Lyndon; Brown, Steven P
2010-07-14
A disaccharide is a challenging case for high-resolution (1)H solid-state NMR because of the 24 distinct protons (14 aliphatic and 10 OH) having (1)H chemical shifts that all fall within a narrow range of approximately 3 to 7 ppm. High-resolution (1)H (500 MHz) double-quantum (DQ) combined rotation and multiple pulse sequence (CRAMPS) solid-state NMR spectra of beta-maltose monohydrate are presented. (1)H-(1)H DQ-SQ CRAMPS spectra are presented together with (1)H (DQ)-(13)C correlation spectra obtained with a new pulse sequence that correlates a high-resolution (1)H DQ dimension with a (13)C single quantum (SQ) dimension using the refocused INEPT pulse-sequence element to transfer magnetization via one-bond (13)C-(1)H J couplings. Compared to the observation of only a single broad peak in a (1)H DQ spectrum recorded at 30 kHz magic-angle spinning (MAS), the use of DUMBO (1)H homonuclear decoupling in the (1)H DQ CRAMPS experiment allows the resolution of distinct DQ correlation peaks which, in combination with first-principles chemical shift calculations based on the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach, enables the assignment of the (1)H resonances to the 24 distinct protons. We believe this to be the first experimental solid-state NMR determination of the hydroxyl OH (1)H chemical shifts for a simple sugar. Variable-temperature (1)H-(1)H DQ CRAMPS spectra reveal small increases in the (1)H chemical shifts of the OH resonances upon decreasing the temperature from 348 K to 248 K.
Probing Long-Range Configurations of Molecular Hydrogen
NASA Astrophysics Data System (ADS)
McCormack, Elizabeth
2011-05-01
Very long-range molecular configurations are of interest in a variety of contexts, for example, in the astro-chemistry of cold molecular clouds and in planetary atmospheres, including our own. Such states can be more than 10 times the size of the ground state and often possess energies above multiple ionization potentials and dissociation limits resulting in diverse and complex decay dynamics. Many of these configurations possess a double-well character arising from the interaction of molecular Rydberg states, repulsive doubly-excited states, and ionic states. The ion pair in hydrogen, an unusual molecular configuration consisting of one proton shrouded in a cloud of two electrons separated very far from the other proton, is notoriously difficult to create and study. We report results from on our investigation of such states using resonantly enhanced multi-photon ionization via the E,F v = 6, J = 0, 1, and 2 states to probe the H(n = 1) + H(n = 3) dissociation threshold energy region. Both molecular and atomic ion production were detected as a function of wavelength by using a time-of-flight mass spectrometer. Below threshold a series of highly excited vibrational levels of several long range states are observed. Above threshold broad resonances are observed with energies that agree well with the predictions of a mass-scaled Rydberg formula for bound states of the H+ H- ion pair. Measured linewidths, quantum defects, and rotational dependences are reported for ion pair principal quantum numbers in the range of n = 130 to 206. Our new results can be compared to recent experimental work using a different excitation scheme, which was the first spectroscopic observation of heavy Rydberg states in hydrogen, and new ab initio theoretical work. Supported by the National Science Foundation.
Quantum versus classical dynamics in the optical centrifuge
NASA Astrophysics Data System (ADS)
Armon, Tsafrir; Friedland, Lazar
2017-09-01
The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.
Nonexponential Decoherence and Momentum Subdiffusion in a Quantum Lévy Kicked Rotator
NASA Astrophysics Data System (ADS)
Schomerus, Henning; Lutz, Eric
2007-06-01
We investigate decoherence in the quantum kicked rotator (modeling cold atoms in a pulsed optical field) subjected to noise with power-law tail waiting-time distributions of variable exponent (Lévy noise). We demonstrate the existence of a regime of nonexponential decoherence where the notion of a decoherence rate is ill defined. In this regime, dynamical localization is never fully destroyed, indicating that the dynamics of the quantum system never reaches the classical limit. We show that this leads to quantum subdiffusion of the momentum, which should be observable in an experiment.
Patil, Vaishali M; Das, Sukanya; Balasubramanian, Krishnan
2016-05-26
We combine quantum chemical and molecular docking techniques to provide new insights into how piperine molecule in various forms of pepper enhances bioavailability of a number of drugs including curcumin in turmeric for which it increases its bioavailability by a 20-fold. We have carried out docking studies of quantum chemically optimized piperine structure binding to curcumin, CYP3A4 in cytochrome P450, p-Glycoprotein and UDP-glucuronosyltransferase (UGT), the enzyme responsible for glucuronosylation, which increases the solubility of curcumin. All of these studies establish that piperine binds to multiple sites on the enzymes and also intercalates with curcumin forming a hydrogen bonded complex with curcumin. The conjugated network of double bonds and the presence of multiple charge centers of piperine offer optimal binding sites for piperine to bind to enzymes such as UDP-GDH, UGT, and CYP3A4. Piperine competes for curcumin's intermolecular hydrogen bonding and its stacking propensity by hydrogen bonding with enolic proton of curcumin. This facilitates its metabolic transport, thereby increasing its bioavailability both through intercalation into curcumin layers through intermolecular hydrogen bonding, and by inhibiting enzymes that cause glucuronosylation of curcumin.
DeHaan, Alexander M; Axelrad, Thomas W; Kaye, Elizabeth; Silvestri, Lorenzo; Puskas, Brian; Foster, Timothy E
2012-05-01
The advantage of single-row versus double-row arthroscopic rotator cuff repair techniques has been a controversial issue in sports medicine and shoulder surgery. There is biomechanical evidence that double-row techniques are superior to single-row techniques; however, there is no clinical evidence that the double-row technique provides an improved functional outcome. When compared with single-row rotator cuff repair, double-row fixation, although biomechanically superior, has no clinical benefit with respect to retear rate or improved functional outcome. Systematic review. The authors reviewed prospective studies of level I or II clinical evidence that compared the efficacy of single- and double-row rotator cuff repairs. Functional outcome scores included the American Shoulder and Elbow Surgeons (ASES) shoulder scale, the Constant shoulder score, and the University of California, Los Angeles (UCLA) shoulder rating scale. Radiographic failures and complications were also analyzed. A test of heterogeneity for patient demographics was also performed to determine if there were differences in the patient profiles across the included studies. Seven studies fulfilled our inclusion criteria. The test of heterogeneity across these studies showed no differences. The functional ASES, Constant, and UCLA outcome scores revealed no difference between single- and double-row rotator cuff repairs. The total retear rate, which included both complete and partial retears, was 43.1% for the single-row repair and 27.2% for the double-row repair (P = .057), representing a trend toward higher failures in the single-row group. Through a comprehensive literature search and meta-analysis of current arthroscopic rotator cuff repairs, we found that the single-row repairs did not differ from the double-row repairs in functional outcome scores. The double-row repairs revealed a trend toward a lower radiographic proven retear rate, although the data did not reach statistical significance. There may be a concerning trend toward higher retear rates in patients undergoing a single-row repair, but further studies are required.
Gonzalez, Megan E; Eckert, Juergen; Aquino, Adelia J A; Poirier, Bill
2018-04-21
Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H) 2 (H 2 )(PEtPh 2 ) 3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm -1 -in excellent agreement with the experimental value of 6.4 cm -1 . This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.
NASA Astrophysics Data System (ADS)
Gonzalez, Megan E.; Eckert, Juergen; Aquino, Adelia J. A.; Poirier, Bill
2018-04-01
Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm-1—in excellent agreement with the experimental value of 6.4 cm-1. This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.
NASA Technical Reports Server (NTRS)
Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.
1992-01-01
State-to-state reaction probabilities are found to be highly final-state specific at state-selected threshold energies for the reactions O + H2 yield OH + H and H + H2 yield H2 + H. The study includes initial rotational states with quantum numbers 0-15, and the specificity is especially dramatic for the more highly rotationally excited reactants. The analysis is based on accurate quantum mechanical reactive scattering calculations. Final-state specificity is shown in general to increase with the rotational quantum number of the reactant diatom, and the trends are confirmed for both zero and nonzero values of the total angular momentum.
Tsarouhas, Alexander; Iosifidis, Michael; Spyropoulos, Giannis; Kotzamitelos, Dimitrios; Tsatalas, Themistoklis; Giakas, Giannis
2011-12-01
To evaluate in vivo the differences in tibial rotation between single- and double-bundle anterior cruciate ligament (ACL)-reconstructed knees under combined loading conditions. An 8-camera optoelectronic system and a force plate were used to collect kinematic and kinetic data from 14 patients with double-bundle ACL reconstruction, 14 patients with single-bundle reconstruction, 12 ACL-deficient subjects, and 12 healthy control individuals while performing 2 tasks. The first included walking, 60° pivoting, and stair ascending, and the second included stair descending, 60° pivoting, and walking. The 2 variables evaluated were the maximum range of internal-external tibial rotation and the maximum knee rotational moment. Tibial rotation angles were not significantly different across the 4 groups (P = .331 and P = .851, respectively) or when side-to-side differences were compared within groups (P = .216 and P = .371, respectively) for the ascending and descending maneuvers, nor were rotational moments among the 4 groups (P = .418 and P = .290, respectively). Similarly, for the descending maneuver, the rotational moments were not significantly different between sides (P = .192). However, for the ascending maneuver, rotational moments of the affected sides were significantly lower by 20.5% and 18.7% compared with their intact counterparts in the single-bundle (P = .015) and double-bundle (P = .05) groups, respectively. High-intensity activities combining stair ascending or descending with pivoting produce similar tibial rotation in single- and double-bundle ACL-reconstructed patients. During such maneuvers, the reconstructed knee may be subjected to significantly lower rotational loads compared with the intact knee. Level III, retrospective comparative study. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
A reconfigurable gate architecture for Si/SiGe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zajac, D. M.; Hazard, T. M.; Mi, X.
2015-06-01
We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots, and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35–70 μeV. By energizing two additional gates, we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.
[Rotator cuff repair: single- vs double-row. Clinical and biomechanical results].
Baums, M H; Kostuj, T; Klinger, H-M; Papalia, R
2016-02-01
The goal of rotator cuff repair is a high initial mechanical stability as a requirement for adequate biological recovery of the tendon-to-bone complex. Notwithstanding the significant increase in publications concerning the topic of rotator cuff repair, there are still controversies regarding surgical technique. The aim of this work is to present an overview of the recently published results of biomechanical and clinical studies on rotator cuff repair using single- and double-row techniques. The review is based on a selective literature research of PubMed, Embase, and the Cochrane Database on the subject of the clinical and biomechanical results of single- and double-row repair. In general, neither the biomechanical nor the clinical evidence can recommend the use of a double-row concept for the treatment for every rotator cuff tear. Only tears of more than 3 cm seem to benefit from better results on both imaging and in clinical outcome studies compared with the use of single-row techniques. Despite a significant increase in publications on the surgical treatment of rotator cuff tears in recent years, the clinical results were not significantly improved in the literature so far. Unique information and algorithms, from which the optimal treatment of this entity can be derived, are still inadequate. Because of the cost-effectiveness and the currently vague evidence, the double-row techniques cannot be generally recommended for the repair of all rotator cuff tears.
NASA Astrophysics Data System (ADS)
Mineo, Hirobumi; Fujimura, Yuichi
2015-06-01
We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.
Levy, Tal J; Rabani, Eran
2013-04-28
We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.
Quantum ratchet effect in a time non-uniform double-kicked model
NASA Astrophysics Data System (ADS)
Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang
2017-07-01
The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.
Addressable single-spin control in multiple quantum dots coupled in series
NASA Astrophysics Data System (ADS)
Nakajima, Takashi
2015-03-01
Electron spin in semiconductor quantum dots (QDs) is promising building block of quantum computers for its controllability and potential scalability. Recent experiments on GaAs QDs have demonstrated necessary ingredients of universal quantum gate operations: single-spin rotations by electron spin resonance (ESR) which is virtually free from the effect of nuclear spin fluctuation, and pulsed control of two-spin entanglement. The scalability of this architecture, however, has remained to be demonstrated in the real world. In this talk, we will present our recent results on implementing single-spin-based qubits in triple, quadruple, and quintuple QDs based on a series coupled architecture defined by gate electrodes. Deterministic initialization of individual spin states and spin-state readout were performed by the pulse operation of detuning between two neighboring QDs. The spin state was coherently manipulated by ESR, where each spin in different QDs is addressed by the shift of the resonance frequency due to the inhomogeneous magnetic field induced by the micro magnet deposited on top of the QDs. Control of two-spin entanglement was also demonstrated. We will discuss key issues for implementing quantum algorithms based on three or more qubits, including the effect of a nuclear spin bath, single-shot readout fidelity, and tuning of multiple qubit devices. Our approaches to these issues will be also presented. This research is supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) from JSPS, IARPA project ``Multi-Qubit Coherent Operations'' through Copenhagen University, and Grant-in-Aid for Scientific Research from JSPS.
Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy
NASA Astrophysics Data System (ADS)
Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks
2016-06-01
Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.
Quantum dynamics of light-driven chiral molecular motors.
Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi
2009-03-21
The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.
NASA Astrophysics Data System (ADS)
Gu, Jun; Lin, Po-hua; Hwang, Tzonelih
2018-07-01
Recently, Zou and Qiu (Sci China Phys Mech Astron 57:1696-1702, 2014) proposed a three-step semi-quantum secure direct communication protocol allowing a classical participant who does not have a quantum register to securely send his/her secret message to a quantum participant. However, this study points out that an eavesdropper can use the double C-NOT attack to obtain the secret message. To solve this problem, a modification is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felker, Peter M., E-mail: felker@chem.ucla.edu; Bačić, Zlatko, E-mail: zlatko.bacic@nyu.edu; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062
2016-05-28
We report rigorous quantum calculations of the translation-rotation (TR) eigenstates of para- and ortho-H{sub 2}O@C{sub 60}. They provide a comprehensive description of the dynamical behavior of H{sub 2}O inside the fullerene having icosahedral (I{sub h}) symmetry. The TR eigenstates are assigned in terms of the irreducible representations of the proper symmetry group of H{sub 2}O@C{sub 60}, as well as the appropriate translational and rotational quantum numbers. The coupling between the orbital and the rotational angular momenta of the caged H{sub 2}O gives rise to the total angular momentum λ, which additionally labels each TR level. The calculated TR levels allowmore » tentative assignments of a number of transitions in the recent experimental INS spectra of H{sub 2}O@C{sub 60} that have not been assigned previously.« less
Bridging suture makes consistent and secure fixation in double-row rotator cuff repair.
Fukuhara, Tetsutaro; Mihata, Teruhisa; Jun, Bong Jae; Neo, Masashi
2017-09-01
Inconsistent tension distribution may decrease the biomechanical properties of the rotator cuff tendon after double-row repair, resulting in repair failure. The purpose of this study was to compare the tension distribution along the repaired rotator cuff tendon among three double-row repair techniques. In each of 42 fresh-frozen porcine shoulders, a simulated infraspinatus tendon tear was repaired by using 1 of 3 double-row techniques: (1) conventional double-row repair (no bridging suture); (2) transosseous-equivalent repair (bridging suture alone); and (3) compression double-row repair (which combined conventional double-row and bridging sutures). Each specimen underwent cyclic testing at a simulated shoulder abduction angle of 0° or 40° on a material-testing machine. Gap formation and tendon strain were measured during the 1st and 30th cycles. To evaluate tension distribution after cuff repair, difference in gap and tendon strain between the superior and inferior fixations was compared among three double-row techniques. At an abduction angle of 0°, gap formation after either transosseous-equivalent or compression double-row repair was significantly less than that after conventional double-row repair (p < 0.01). During the 30th cycle, both transosseous-equivalent repair (p = 0.02) and compression double-row repair (p = 0.01) at 0° abduction had significantly less difference in gap formation between the superior and inferior fixations than did conventional double-row repair. After the 30th cycle, the difference in longitudinal strain between the superior and inferior fixations at 0° abduction was significantly less with compression double-row repair (2.7% ± 2.4%) than with conventional double-row repair (8.6% ± 5.5%, p = 0.03). Bridging sutures facilitate consistent and secure fixation in double-row rotator cuff repairs, suggesting that bridging sutures may be beneficial for distributing tension equally among all sutures during double-row repair of rotator cuff tears. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Gang; Du, Jian-ming; Zhang, Wen-Hai
2018-05-01
Based on the two-mode squeezing-rotating entangled vacuum state (Fan and Fan in Commun Theor Phys 33:701-704, 2000), we obtained a new quantum state by using partial tracing method. This new state can be considered as a real chaotic field. We also studied its squeezing properties and quantum statistical properties by giving the analytic results and exact numerical results. It was established that the rotation angle's parameter plays an important role in this new optical field.
Double-time correlation functions of two quantum operations in open systems
NASA Astrophysics Data System (ADS)
Ban, Masashi
2017-10-01
A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear response function, and a weak value of an observable. Time evolution of the correlation function can be derived by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit formulas for calculating a double-time correlation function in the second-order approximation with respect to a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time. Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results are compared with those obtained by exact calculation to examine whether the formula is a good approximation.
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.
Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas
2015-07-01
In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.
1993-05-14
Lent 6 I We have studied transmission in quantum waveguides in the presence of resonant cavities. This work was inspired by our previous modeling of the...conductance of resonantly- coupled quantum wire systems. We expected to find qualitatively the same phenomena as in the much studied case of double...transmission peaks does not give the location of the quasi-bound3 states, like for double-barrier resonant tunneling. In current work, we study
Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang
2013-01-01
Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943
Cui, Yiqian; Shi, Junyou; Wang, Zili
2015-11-01
Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oudelaar, Bart W; Ooms, Edwin M; Huis In 't Veld, Rianne M H A; Schepers-Bok, Relinde; Vochteloo, Anne J
2015-11-01
Although NACD has proven to be an effective minimal invasive treatment for calcific tendinitis of the rotator cuff, little is known about the factors associated with treatment failure or the need for multiple procedures. Patients with symptomatic calcific tendinitis who were treated by NACD were evaluated in a retrospective cohort study. Demographic details, medical history, sonographic and radiographic findings were collected from patient files. Failure of NACD was defined as the persistence of symptoms after a follow-up of at least six months. NACD procedures performed within six months after a previous NACD procedure were considered repeated procedures. Multivariate logistic regression analysis was used to determine factors associated with treatment failure and multiple procedures. 431 patients (277 female; mean age 51.4±9.9 years) were included. Smoking (adjusted odds ratio (AOR): 1.7, 95% CI 1.0-2.7, p=0.04) was significantly associated with failure of NACD. Patients with Gärtner and Heyer (GH) type I calcific deposits were more likely to need multiple NACD procedures (AOR: 3.4, 95% CI 1.6-7.5, p<0.01) compared to patients with type III calcific deposits. Partial thickness rotator cuff tears were of no influence on the outcome of NACD or the number of treatments necessary. Smoking almost doubled the chance of failure of NACD and the presence of GH type I calcific deposits significantly increased the chance of multiple procedures. Partial thickness rotator cuff tears did not seem to affect the outcome of NACD. Based on the findings in this study, the importance of quitting smoking should be emphasized prior to NACD and partial thickness rotator cuff tears should not be a reason to withhold patients NACD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Double-row vs single-row rotator cuff repair: a review of the biomechanical evidence.
Wall, Lindley B; Keener, Jay D; Brophy, Robert H
2009-01-01
A review of the current literature will show a difference between the biomechanical properties of double-row and single-row rotator cuff repairs. Rotator cuff tears commonly necessitate surgical repair; however, the optimal technique for repair continues to be investigated. Recently, double-row repairs have been considered an alternative to single-row repair, allowing a greater coverage area for healing and a possibly stronger repair. We reviewed the literature of all biomechanical studies comparing double-row vs single-row repair techniques. Inclusion criteria included studies using cadaveric, animal, or human models that directly compared double-row vs single-row repair techniques, written in the English language, and published in peer reviewed journals. Identified articles were reviewed to provide a comprehensive conclusion of the biomechanical strength and integrity of the repair techniques. Fifteen studies were identified and reviewed. Nine studies showed a statistically significant advantage to a double-row repair with regards to biomechanical strength, failure, and gap formation. Three studies produced results that did not show any statistical advantage. Five studies that directly compared footprint reconstruction all demonstrated that the double-row repair was superior to a single-row repair in restoring anatomy. The current literature reveals that the biomechanical properties of a double-row rotator cuff repair are superior to a single-row repair. Basic Science Study, SRH = Single vs. Double Row RCR.
Single Molecule Study of Force-Induced Rotation of Carbon-Carbon Double Bonds in Polymers.
Huang, Wenmao; Zhu, Zhenshu; Wen, Jing; Wang, Xin; Qin, Meng; Cao, Yi; Ma, Haibo; Wang, Wei
2017-01-24
Carbon-carbon double bonds (C═C) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing C═C bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of C═C bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis C═C bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼10 9 times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to C═C double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis C═C bonds. This explains the apparently low transition force for such thermally "forbidden" reactions and offers an additional explanation of the "lever-arm effect" of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.
2016-07-01
The application of quantum cascade lasers (QCLs) in atmospheric science for trace detection of gases has been demonstrated using sensors in point or remote sensing configurations. Many of these systems utilize single narrowly-tunable (~10 cm-1) distributed feedback (DFB-) QCLs that limit simultaneous detection to a restricted number of small chemical species like H2O or N2O. The narrow wavelength range of DFB-QCLs precludes accurate quantification of large chemical species with broad rotationally-unresolved vibrational spectra, such as volatile organic compounds, that play an important role in the chemistry of the atmosphere. External-cavity (EC-) QCL systems are available that offer tuning ranges >100more » cm-1, making them excellent IR sources for measuring multiple small and large chemical species in the atmosphere. While the broad wavelength coverage afforded by an EC system enables measurements of large chemical species, most commercial systems can only be swept over their entire wavelength range at less than 10 Hz. This prohibits broadband simultaneous measurements of multiple chemicals in plumes from natural or industrial sources where turbulence and/or chemical reactivity are resulting in rapid changes in chemical composition on sub-1s timescales. At Pacific Northwest National Laboratory we have developed rapidly-swept EC-QCL technology that acquires broadband absorption spectra (~100 cm-1) on ms timescales. The spectral resolution of this system has enabled simultaneous measurement of narrow rotationally-resolved atmospherically-broadened lines from small chemical species, while offering the broad tuning range needed to measure broadband spectral features from multiple large chemical species. In this talk the application of this technology for open-path atmospheric measurements will be discussed based on results from laboratory measurements with simulated plumes of chemicals. The performance offered by the system for simultaneous detection of multiple chemical species will be presented.« less
NASA Astrophysics Data System (ADS)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.; Suter, Jonathan D.
2016-06-01
The application of quantum cascade lasers (QCLs) in atmospheric science for trace detection of gases has been demonstrated using sensors in point or remote sensing configurations. Many of these systems utilize single narrowly-tunable (˜10 wn) distributed feedback (DFB-) QCLs that limit simultaneous detection to a restricted number of small chemical species like H2O or N2O. The narrow wavelength range of DFB-QCLs precludes accurate quantification of large chemical species with broad rotationally-unresolved vibrational spectra, such as volatile organic compounds, that play an important role in the chemistry of the atmosphere. External-cavity (EC-) QCL systems are available that offer tuning ranges greater than 100 wn, making them excellent IR sources for measuring multiple small and large chemical species in the atmosphere. While the broad wavelength coverage afforded by an EC system enables measurements of large chemical species, most commercial systems can only be swept over their entire wavelength range at less than 10 Hz. This prohibits broadband simultaneous measurements of multiple chemicals in plumes from natural or industrial sources where turbulence and/or chemical reactivity are resulting in rapid changes in chemical composition on sub-1s timescales. At Pacific Northwest National Laboratory we have developed rapidly-swept EC-QCL technology that acquires broadband absorption spectra (˜100 wn) on ms timescales. The spectral resolution of this system has enabled simultaneous measurement of narrow rotationally-resolved atmospherically-broadened lines from small chemical species, while offering the broad tuning range needed to measure broadband spectral features from multiple large chemical species. In this talk the application of this technology for open-path atmospheric measurements will be discussed based on results from laboratory measurements with simulated plumes of chemicals. The performance offered by the system for simultaneous detection of multiple chemical species will be presented. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy (DOE) by the Battelle Memorial Institute under Contract No. DE-AC05-76RL01830.
Schematic construction of flanged nanobearings from double-walled carbon nanotubes.
Shenai, Prathamesh Mahesh; Zhao, Yang
2010-08-01
The performance of nanobearings constructed from double walled carbon nanotubes is considered to be crucially dependent on the initial rotational speed. Wearless rotation ceases for a nanobearing operating beyond a certain angular velocity. We propose a new design of nanobearings by manipulation of double walled carbon nanotubes leading to a flanged structure which possesses a built-in hindrance to the intertube oscillation without obstructing rotational motion. Through blocking the possible leakage path for rotational kinetic energy to the intertube oscillatory motion, the flanged bearing lowers its dissipative tendency when set into motion. Using molecular dynamics, it is shown that on account of its distinctive structure, the flanged bearing has superior operating characteristics and a broader working domain.
Kim, Yang-Soo; Lee, Hyo-Jin; Jin, Hong-Ki; Kim, Sung-Eun; Lee, Jin-Woo
2016-05-01
The rotator cuff tendon is known to exert a shear force between the superficial and deep layers. Owing to this characteristic, separate repair of delaminated rotator cuff tears has been introduced for the restoration of the physiological biomechanics of the rotator cuff. However, whether conventional en masse repair or separate repair is superior is controversial in terms of outcomes. To compare clinical outcomes between conventional en masse repair and separate double-layer double-row repair for the treatment of delaminated rotator cuff tears. Randomized controlled study; Level of evidence, 2. Between August 2007 and March 2014, a total of 82 patients who underwent arthroscopic rotator cuff repair of a delaminated tear were enrolled and randomized into 2 groups. In group 1 (n = 48), arthroscopic conventional en masse repair was performed. In group 2 (n = 34), separate double-layer double-row repair was performed. The American Shoulder and Elbow Surgeons score, Constant score, Simple Shoulder Test score, and visual analog scale (VAS) score for pain and range of motion (ROM) were assessed before surgery; at 3, 6, and 12 months after surgery; and at the last follow-up visit. Magnetic resonance imaging (MRI) was performed at 12 months postoperatively to examine the retear rate and pattern. There was no significant difference between groups in the preoperative demographic data, including patient age, sex, symptom duration, tear size, and functional scores (P > .05). The mean follow-up period was 25.9 ± 1.2 months. Significant improvements in functional and pain scores were observed in both groups at the last follow-up visit. However, no significant differences in functional scores and ROM were found between the 2 groups at each time point, except that group 2 had significantly lower VAS pain scores (P < .05) at 3, 6, and 12 months postoperatively. Eight (17%) of 48 patients in group 1 and 6 (18%) of 34 patients in group 2 showed retears on MRI at 12-month follow-up (P > .05). Both conventional en masse repair and separate double-layer double-row repair were effective in improving clinical outcomes in the treatment of delaminated rotator cuff tears. Lower pain scores were seen in patients who underwent separate double-layer double-row repair. © 2016 The Author(s).
One-Shot Multiple Borylation toward BN-Doped Nanographenes.
Matsui, Kohei; Oda, Susumu; Yoshiura, Kazuki; Nakajima, Kiichi; Yasuda, Nobuhiro; Hatakeyama, Takuji
2018-01-31
One-shot double, triple, and quadruple borylation reactions of triarylamines were developed through a judicious choice of boron source and Brønsted base. With the aid of borylation reactions, a variety of BN-doped nanographenes were synthesized in two steps from commercially available starting materials. An organic light-emitting diode device employing BN-doped nanographene as an emitter exhibited deep pure-blue emission at 460 nm, with CIE coordinates of (0.13, 0.11), and an external quantum efficiency of 18.3%.
Doubled full shot noise in quantum coherent superconductor-semiconductor junctions.
Lefloch, F; Hoffmann, C; Sanquer, M; Quirion, D
2003-02-14
We performed low temperature shot noise measurements in superconductor (TiN) strongly disordered normal metal (heavily doped Si) weakly transparent junctions. We show that the conductance has a maximum due to coherent multiple Andreev reflections at low energy and that the shot noise is then twice the Poisson noise (S = 4eI). When the subgap conductance reaches its minimum at finite voltage the shot noise changes to the normal value (S = 2eI) due to a large quasiparticle contribution.
Hepp, Pierre; Osterhoff, Georg; Engel, Thomas; Marquass, Bastian; Klink, Thomas; Josten, Christoph
2009-07-01
The layered configuration of the rotator cuff tendon is not taken into account in classic rotator cuff tendon repair techniques. The mechanical properties of (1) the classic double-row technique, (2) a double-layer double-row (DLDR) technique in simple suture configuration, and (3) a DLDR technique in mattress suture configuration are significantly different. Controlled laboratory study. Twenty-four sheep shoulders were assigned to 3 repair groups of full-thickness infraspinatus tears: group 1, traditional double-row repair; group 2, DLDR anchor repair with simple suture configuration; and group 3, DLDR knotless repair with mattress suture configuration. After ultrasound evaluation of the repair, each specimen was cyclically loaded with 10 to 100 N for 50 cycles. Each specimen was then loaded to failure at a rate of 1 mm/s. There were no statistically significant differences among the 3 testing groups for the mean footprint area. The cyclic loading test revealed no significant difference among the 3 groups with regard to elongation. For the load-to-failure test, groups 2 and 3 showed no differences in ultimate tensile load when compared with group 1. However, when compared to group 2, group 3 was found to have significantly higher values regarding ultimate load, ultimate elongation, and energy absorbed. The DLDR fixation techniques may provide strength of initial repair comparable with that of commonly used double-row techniques. When compared with the knotless technique with mattress sutures, simple suture configuration of DLDR repair may be too weak. Knotless DLDR rotator cuff repair may (1) restore the footprint by the use of double-row principles and (2) enable restoration of the shape and profile. Double-layer double-row fixation in mattress suture configuration has initial fixation strength comparable with that of the classic double-row fixation and so may potentially improve functional results of rotator cuff repair.
Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, Jeffry Todd
Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics.more » The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding module for the recently developed NMR remote detection experiment. The feasibility of using hyperpolarized xenon-129 gas as a sensor is discussed. This work also reports the use of an optical atomic magnetometer to detect the nuclear magnetization of Xe-129 gas, which has potential applicability as a detection module for NMR remote detection experiments.« less
Single-row versus double-row rotator cuff repair: techniques and outcomes.
Dines, Joshua S; Bedi, Asheesh; ElAttrache, Neal S; Dines, David M
2010-02-01
Double-row rotator cuff repair techniques incorporate a medial and lateral row of suture anchors in the repair configuration. Biomechanical studies of double-row repair have shown increased load to failure, improved contact areas and pressures, and decreased gap formation at the healing enthesis, findings that have provided impetus for clinical studies comparing single-row with double-row repair. Clinical studies, however, have not yet demonstrated a substantial improvement over single-row repair with regard to either the degree of structural healing or functional outcomes. Although double-row repair may provide an improved mechanical environment for the healing enthesis, several confounding variables have complicated attempts to establish a definitive relationship with improved rates of healing. Appropriately powered rigorous level I studies that directly compare single-row with double-row techniques in matched tear patterns are necessary to further address these questions. These studies are needed to justify the potentially increased implant costs and surgical times associated with double-row rotator cuff repair.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Shweta, E-mail: jshweta09@gmail.com; Sharma, Prerana; Chhajlani, R. K.
2015-07-31
The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability.
Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution.
Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla
2017-04-14
The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.
Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution
NASA Astrophysics Data System (ADS)
Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M. Eugenia; Molteni, Carla
2017-04-01
The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.
Quantum oscillations in the anomalous spin density wave state of FeAs
Campbell, Daniel J.; Eckberg, Chris; Wang, Kefeng; ...
2017-08-10
Quantum oscillations in the binary antiferromagnetic metal FeAs are presented and compared to theoretical predictions for the electronic band structure in the anomalous spin density wave state of this material. Demonstrating a method for growing single crystals out of Bi flux, we utilize the highest quality FeAs to perform torque magnetometry experiments up to 35 T, using rotations of field angle in two planes to provide evidence for one electron and one hole band in the magnetically ordered state. Finally, the resulting picture agrees with previous experimental evidence for multiple carriers at low temperatures, but the exact Fermi surface shapemore » differs from predictions, suggesting that correlations play a role in deviation from ab initio theory and cause up to a fourfold enhancement in the effective carrier mass.« less
Electron spin control and spin-libration coupling of a levitated nanodiamond
NASA Astrophysics Data System (ADS)
Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang
2017-04-01
Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.
NASA Astrophysics Data System (ADS)
Afalla, Jessica; Ohta, Kaoru; Tokonami, Shunrou; Prieto, Elizabeth Ann; Catindig, Gerald Angelo; Cedric Gonzales, Karl; Jaculbia, Rafael; Vasquez, John Daniel; Somintac, Armando; Salvador, Arnel; Estacio, Elmer; Tani, Masahiko; Tominaga, Keisuke
2017-11-01
Two asymmetric double quantum wells of different coupling strengths (barrier widths) were grown via molecular beam epitaxy, both samples allowing tunneling. Photoluminescence was measured at 10 and 300 K to provide evidence of tunneling, barrier dependence, and structural uniformity. Carrier dynamics at room temperature was investigated by optical pump terahertz probe (OPTP) spectroscopy. Carrier population decay rates were obtained and photoconductivity spectra were analyzed using the Drude model. This work demonstrates that carrier, and possibly tunneling dynamics in asymmetric double quantum well structures may be studied at room temperature through OPTP spectroscopy.
NASA Astrophysics Data System (ADS)
Kuroda, Roger Tokuichi
1992-01-01
The development of advanced epitaxical growth techniques such as molecular beam epitaxy has led to growth of high quality III-V layers with monolayer control in thickness. This permits design of new and novel heterointerface based electronic, optical and opto-electronic devices which exploit the new and tailorable electronic states in quantum wells. One such property is the Quantum Confined Stark Effect (QCSE) which, in uncoupled multiple quantum wells (MQW), has been used for the self-electro-optic effect device(SEED). Guided by a phenomenological model of the complex dielectric function for the Coupled Double Quantum Well (CDQW), we show results for the QCSE in CDQW show underlying physics differs from the uncoupled MQW in that symmetry forbidden transitions under flat band conditions become allowed under non-flat band conditions. The transfer of oscillator strength from symmetry allowed to the symmetry forbidden transitions offers potential for application as spatial light modulator (SLM). We show the CDQW lowest exciton peak Stark shifts twice as fast as the SQW with equivalent well width, which offers the SLM device a lower operating voltage than SQW. In addition we show the CDQW absorption band edge can blue shift with increasing electric field, which offers other potential for SLM. From transmission measurements, we verify these predictions and compare them with the phenomenological model. The optical device figure of merit Deltaalpha/alpha of the CDQW is comparable with the "best" SQW, but at lower electric field. From photocurrent measurements, we find that the calculated and measured Stark shifts agree. In addition, we extract a Deltaalpha/ alpha from photocurrent which agree with transmission measurements. From electroreflectance measurements, we calculated the aluminum concentration, and the built in electric field from the Franz-Keldysh oscillations due to the Al_{0.3}Ga _{0.7}As barrier regions in the CDQW. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089 -0182.).
Outcomes of single-row and double-row arthroscopic rotator cuff repair: a systematic review.
Saridakis, Paul; Jones, Grant
2010-03-01
Arthroscopic rotator cuff repair is a common procedure that is gaining wide acceptance among orthopaedic surgeons because it is less invasive than open repair techniques. However, there is little consensus on whether to employ single-row or double-row fixation. The purpose of the present study was to systematically review the English-language literature to see if there is a difference between single-row and double-row fixation techniques in terms of clinical outcomes and radiographic healing. PubMed, the Cochrane Central Register of Controlled Trials, and EMBASE were reviewed with the terms "arthroscopic rotator cuff," "single row repair," and "double row repair." The inclusion criteria were a level of evidence of III (or better), an in vivo human clinical study on arthroscopic rotator cuff repair, and direct comparison of single-row and double-row fixation. Excluded were technique reports, review articles, biomechanical studies, and studies with no direct comparison of arthroscopic rotator cuff repair techniques. On the basis of these criteria, ten articles were found, and a review of the full-text articles identified six articles for final review. Data regarding demographic characteristics, rotator cuff pathology, surgical techniques, biases, sample sizes, postoperative rehabilitation regimens, American Shoulder and Elbow Surgeons scores, University of California at Los Angeles scores, Constant scores, and the prevalence of recurrent defects noted on radiographic studies were extracted. Confidence intervals were then calculated for the American Shoulder and Elbow Surgeons, University of California at Los Angeles, and Constant scores. Quality appraisal was performed by the two authors to identify biases. There was no significant difference between the single-row and double-row groups within each study in terms of postoperative clinical outcomes. However, one study divided each of the groups into patients with small-to-medium tears (< 3 cm in length) and those with large-to-massive tears (> or = 3 cm in length), and the authors noted that patients with large to massive tears who had double-row fixation performed better in terms of the American Shoulder and Elbow Surgeons scores and Constant scores in comparison with those who had single-row fixation. Two studies demonstrated a significant difference in terms of structural healing of the rotator cuff tendons after surgery, with the double-row method having superior results. There was an overlap in the confidence intervals between the single-row and double-row groups for all of the studies and the American Shoulder and Elbow Surgeons, Constant, and University of California at Los Angeles scoring systems utilized in the studies, indicating that there was no difference in these scores between single-row and double-row fixation. Potential biases included selection, performance, detection, and attrition biases; each study had at least one bias. Two studies had potentially inadequate power to detect differences between the two techniques. There appears to be a benefit of structural healing when an arthroscopic rotator cuff repair is performed with double-row fixation as opposed to single-row fixation. However, there is little evidence to support any functional differences between the two techniques, except, possibly, for patients with large or massive rotator cuff tears (> or = 3 cm). A risk-reward analysis of a patient's age, functional demands, and other quality-of-life issues should be considered before deciding which surgical method to employ. Double-row fixation may result in improved structural healing at the site of rotator cuff repair in some patients, depending on the size of the tear.
NASA Astrophysics Data System (ADS)
Ermilov, A. S.; Zobov, V. E.
2007-12-01
To experimentally realize quantum computations on d-level basic elements (qudits) at d > 2, it is necessary to develop schemes for the technical realization of elementary logical operators. We have found sequences of selective rotation operators that represent the operators of the quantum Fourier transform (Walsh-Hadamard matrices) for d = 3-10. For the prime numbers 3, 5, and 7, the well-known method of linear algebra is applied, whereas, for the factorable numbers 6, 9, and 10, the representation of virtual spins is used (which we previously applied for d = 4, 8). Selective rotations can be realized, for example, by means of pulses of an RF magnetic field for systems of quadrupole nuclei or laser pulses for atoms and ions in traps.
Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, T., E-mail: t.kobayashi@unsw.edu.au; Heijden, J. van der; House, M. G.
We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO{sub 2} interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartrand, A. M.; McCormack, E. F.; Jacovella, U.
The single-photon, photoelectron-photoion coincidence spectrum of N 2 has been recorded at high (~1.5 cm -1) resolution in the region between the N 2 + X 2Σ g +, v + = 0 and 1 ionization thresholds by using a double imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N 2 + X 2Σ g +more » ground state, and electronically autoionizing states converging to the N 2 + A 2Π and B 2Σ u + states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. Here, a simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment.« less
Quantum Backreaction on Three-Dimensional Black Holes and Naked Singularities.
Casals, Marc; Fabbri, Alessandro; Martínez, Cristián; Zanelli, Jorge
2017-03-31
We analytically investigate backreaction by a quantum scalar field on two rotating Bañados-Teitelboim-Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the case of a naked singularity, we find that quantum effects lead to the formation of a horizon that shields it, thus supporting evidence for the rôle of quantum mechanics as a cosmic censor in nature.
Exact CNOT gates with a single nonlocal rotation for quantum-dot qubits
NASA Astrophysics Data System (ADS)
Pal, Arijeet; Rashba, Emmanuel I.; Halperin, Bertrand I.
2015-09-01
We investigate capacitively-coupled exchange-only two-qubit quantum gates based on quantum dots. For exchange-only coded qubits electron spin S and its projection Sz are exact quantum numbers. Capacitive coupling between qubits, as distinct from interqubit exchange, preserves these quantum numbers. We prove, both analytically and numerically, that conservation of the spins of individual qubits has a dramatic effect on the performance of two-qubit gates. By varying the level splittings of individual qubits, Ja and Jb, and the interqubit coupling time, t , we can find an infinite number of triples (Ja,Jb,t ) for which the two-qubit entanglement, in combination with appropriate single-qubit rotations, can produce an exact cnot gate. This statement is true for practically arbitrary magnitude and form of capacitive interqubit coupling. Our findings promise a large decrease in the number of nonlocal (two-qubit) operations in quantum circuits.
Organic doping of rotated double layer graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Lijin; Jaiswal, Manu, E-mail: manu.jaiswal@iitm.ac.in
2016-05-06
Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with differentmore » rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.« less
Theory of multiple quantum dot formation in strained-layer heteroepitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu
2016-07-11
We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial filmmore » surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of “QD pairs” or “double QDs” and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.« less
Self-gravitational instability of dense degenerate viscous anisotropic plasma with rotation
NASA Astrophysics Data System (ADS)
Sharma, Prerana; Patidar, Archana
2017-12-01
The influence of finite Larmor radius correction, tensor viscosity and uniform rotation on self-gravitational and firehose instabilities is discussed in the framework of the quantum magnetohydrodynamic and Chew-Goldberger-Low (CGL) fluid models. The general dispersion relation is obtained for transverse and longitudinal modes of propagation. In both the modes of propagation the dispersion relation is further analysed with respect to the direction of the rotational axis. In the analytical discussion the axis of rotation is considered in parallel and in the perpendicular direction to the magnetic field. (i) In the transverse mode of propagation, when rotation is parallel to the direction of the magnetic field, the Jeans instability criterion is affected by the rotation, finite Larmor radius (FLR) and quantum parameter but remains unaffected due to the presence of tensor viscosity. The calculated critical Jeans masses for rotating and non-rotating dense degenerate plasma systems are \\odot $ and \\odot $ respectively. It is clear that the presence of rotation enhances the threshold mass of the considered system. (ii) In the case of longitudinal mode of propagation when rotation is parallel to the direction of the magnetic field, Alfvén and viscous self-gravitating modes are obtained. The Alfvén mode is modified by FLR corrections and rotation. The analytical as well as graphical results show that the presence of FLR and rotation play significant roles in stabilizing the growth rate of the firehose instability by suppressing the parallel anisotropic pressure. The viscous self-gravitating mode is significantly affected by tensor viscosity, anisotropic pressure and the quantum parameter while it remains free from rotation and FLR corrections. When the direction of rotation is perpendicular to the magnetic field, the rotation of the considered system coupled the Alfvén and viscous self-gravitating modes to each other. The finding of the present work is applicable to strongly magnetized dense degenerate plasma.
Incidence of retear with double-row versus single-row rotator cuff repair.
Shen, Chong; Tang, Zhi-Hong; Hu, Jun-Zu; Zou, Guo-Yao; Xiao, Rong-Chi
2014-11-01
Rotator cuff tears have a high recurrence rate, even after arthroscopic rotator cuff repair. Although some biomechanical evidence suggests the superiority of the double-row vs the single-row technique, clinical findings regarding these methods have been controversial. The purpose of this study was to determine whether the double-row repair method results in a lower incidence of recurrent tearing compared with the single-row method. Electronic databases were systematically searched to identify reports of randomized, controlled trials (RCTs) comparing single-row with double-row rotator cuff repair. The primary outcome assessed was retear of the repaired cuff. Secondary outcome measures were the American Shoulder and Elbow Surgeons (ASES) shoulder score, the Constant shoulder score, and the University of California, Los Angeles (UCLA) score. Heterogeneity between the included studies was assessed. Six studies involving 428 patients were included in the review. Compared with single-row repair, double-row repair demonstrated a lower retear incidence (risk ratio [RR]=1.71 [95% confidence interval (CI), 1.18-2.49]; P=.005; I(2)=0%) and a reduced incidence of partial-thickness retears (RR=2.16 [95% CI, 1.26-3.71]; P=.005; I(2)=26%). Functional ASES, Constant, and UCLA scores showed no difference between single- and double-row cuff repairs. Use of the double-row technique decreased the incidence of retears, especially partial-thickness retears, compared with the single-row technique. The functional outcome was not significantly different between the 2 techniques. To improve the structural outcome of the repaired rotator cuff, surgeons should use the double-row technique. However, further long-term RCTs on this topic are needed. Copyright 2014, SLACK Incorporated.
Ivanov, Sergei D; Grant, Ian M; Marx, Dominik
2015-09-28
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.
A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
NASA Astrophysics Data System (ADS)
Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo
2018-02-01
The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.
Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel
2010-03-17
Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.
Spectral relationships between kicked Harper and on-resonance double kicked rotor operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, Wayne; Mouritzen, Anders S.; Wang Jiao
2009-03-15
Kicked Harper operators and on-resonance double kicked rotor operators model quantum systems whose semiclassical limits exhibit chaotic dynamics. Recent computational studies indicate a striking resemblance between the spectra of these operators. In this paper we apply C*-algebra methods to explain this resemblance. We show that each pair of corresponding operators belongs to a common rotation C*-algebra B{sub {alpha}}, prove that their spectra are equal if {alpha} is irrational, and prove that the Hausdorff distance between their spectra converges to zero as q increases if {alpha}=p/q with p and q coprime integers. Moreover, we show that corresponding operators in B{sub {alpha}}more » are homomorphic images of mother operators in the universal rotation C*-algebra A{sub {alpha}} that are unitarily equivalent and hence have identical spectra. These results extend analogous results for almost Mathieu operators. We also utilize the C*-algebraic framework to develop efficient algorithms to compute the spectra of these mother operators for rational {alpha} and present preliminary numerical results that support the conjecture that their spectra are Cantor sets if {alpha} is irrational. This conjecture for almost Mathieu operators, called the ten Martini problem, was recently proven after intensive efforts over several decades. This proof for the almost Mathieu operators utilized transfer matrix methods, which do not exist for the kicked operators. We outline a strategy, based on a special property of loop groups of semisimple Lie groups, to prove this conjecture for the kicked operators.« less
Some Properties and Uses of Torsional Overlap Integrals
NASA Astrophysics Data System (ADS)
Mekhtiev, Mirza A.; Hougen, Jon T.
1998-01-01
The first diagonalization step in a rho-axis-method treatment of methyl-top internal rotation problems involves finding eigenvalues and eigenvectors of a torsional Hamiltonian, which depends on the rotational projection quantum numberKas a parameter. Traditionally the torsional quantum numbervt= 0, 1, 2···is assigned to eigenfunctions of givenKin order of increasing energy. In this paper we propose an alternative labeling scheme, using the torsional quantum numbervT, which is based on properties of theK-dependent torsional overlap integrals
Two-time quantum transport and quantum diffusion.
Kleinert, P
2009-05-01
Based on the nonequilibrium Green's function technique, a unified theory is developed that covers quantum transport and quantum diffusion in bulk semiconductors on the same footing. This approach, which is applicable to transport via extended and localized states, extends previous semiphenomenological studies and puts them on a firm microscopic basis. The approach is sufficiently general and applies not only to well-studied quantum-transport problems, but also to models, in which the Hamiltonian does not commute with the dipole operator. It is shown that even for the unified treatment of quantum transport and quantum diffusion in homogeneous systems, all quasimomenta of the carrier distribution function are present and fulfill their specific function. Particular emphasis is put on the double-time nature of quantum kinetics. To demonstrate the existence of robust macroscopic transport effects that have a true double-time character, a phononless steady-state current is identified that appears only beyond the generalized Kadanoff-Baym ansatz.
User's manual for the two-dimensional transputer graphics toolkit
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1988-01-01
The user manual for the 2-D graphics toolkit for a transputer based parallel processor is presented. The toolkit consists of a package of 2-D display routines that can be used for the simulation visualizations. It supports multiple windows, double buffered screens for animations, and simple graphics transformations such as translation, rotation, and scaling. The display routines are written in occam to take advantage of the multiprocessing features available on transputers. The package is designed to run on a transputer separate from the graphics board.
A controlled ac Stark echo for quantum memories.
Ham, Byoung S
2017-08-09
A quantum memory protocol of controlled ac Stark echoes (CASE) based on a double rephasing photon echo scheme via controlled Rabi flopping is proposed. The double rephasing scheme of photon echoes inherently satisfies the no-population inversion requirement for quantum memories, but the resultant absorptive echo remains a fundamental problem. Herein, it is reported that the first echo in the double rephasing scheme can be dynamically controlled so that it does not affect the second echo, which is accomplished by using unbalanced ac Stark shifts. Then, the second echo is coherently controlled to be emissive via controlled coherence conversion. Finally a near perfect ultralong CASE is presented using a backward echo scheme. Compared with other methods such as dc Stark echoes, the present protocol is all-optical with advantages of wavelength-selective dynamic control of quantum processing for erasing, buffering, and channel multiplexing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn
2014-09-15
We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less
Harmonic oscillator in quantum rotational spectra: Molecules and nuclei
NASA Technical Reports Server (NTRS)
Pavlichenkov, Igor M.
1995-01-01
The mapping of a rotational dynamics on a harmonic oscillator is considered. The method used for studying the stabilization of the rigid top rotation around the intermediate moment of inertial axix by orbiting particle is described.
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-01
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-18
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
Current rectification in a double quantum dot through fermionic reservoir engineering
NASA Astrophysics Data System (ADS)
Malz, Daniel; Nunnenkamp, Andreas
2018-04-01
Reservoir engineering is a powerful tool for the robust generation of quantum states or transport properties. Using both a weak-coupling quantum master equation and the exact solution, we show that directional transport of electrons through a double quantum dot can be achieved through an appropriately designed electronic environment. Directionality is attained through the interference of coherent and dissipative coupling. The relative phase is tuned with an external magnetic field, such that directionality can be reversed, as well as turned on and off dynamically. Our work introduces fermionic-reservoir engineering, paving the way to a new class of nanoelectronic devices.
2007-01-01
The idea of quantum entanglement is borrowed from physics and developed into an algebraic argument to explain how double-blinding randomized controlled trials could lead to failure to provide unequivocal evidence for the efficacy of homeopathy, and inability to distinguish proving and placebo groups in homeopathic pathogenic trials. By analogy with the famous double-slit experiment of quantum physics, and more modern notions of quantum information processing, these failings are understood as blinding causing information loss resulting from a kind of quantum superposition between the remedy and placebo. PMID:17342236
Lorbach, Olaf; Bachelier, Felix; Vees, Jochen; Kohn, Dieter; Pape, Dietrich
2008-08-01
Double-row repair is suggested to have superior biomechanical properties in rotator cuff reconstruction compared with single-row repair. However, double-row rotator cuff repair is frequently compared with simple suture repair and not with modified suture configurations. Single-row rotator cuff repairs with modified suture configurations have similar failure loads and gap formations as double-row reconstructions. Controlled laboratory study. We created 1 x 2-cm defects in 48 porcine infraspinatus tendons. Reconstructions were then performed with 4 single-row repairs and 2 double-row repairs. The single-row repairs included transosseous simple sutures; double-loaded corkscrew anchors in either a double mattress or modified Mason-Allen suture repair; and the Magnum Knotless Fixation Implant with an inclined mattress. Double-row repairs were either with Bio-Corkscrew FT using modified Mason-Allen stitches or a combination of Bio-Corkscrew FT and PushLock anchors using the SutureBridge Technique. During cyclic load (10 N to 60-200 N), gap formation was measured, and finally, ultimate load to failure and type of failure were recorded. Double-row double-corkscrew anchor fixation had the highest ultimate tensile strength (398 +/- 98 N) compared to simple sutures (105 +/- 21 N; P < .0001), single-row corkscrews using a modified Mason-Allen stitch (256 +/- 73 N; P = .003) or double mattress repair (290 +/- 56 N; P = .043), the Magnum Implant (163 +/- 13 N; P < .0001), and double-row repair with PushLock and Bio-Corkscrew FT anchors (163 +/- 59 N; P < .0001). Single-row double mattress repair was superior to transosseous sutures (P < .0001), the Magnum Implant (P = .009), and double-row repair with PushLock and Bio-Corkscrew FT anchors (P = .009). Lowest gap formation was found for double-row double-corkscrew repair (3.1 +/- 0.1 mm) compared to simple sutures (8.7 +/- 0.2 mm; P < .0001), the Magnum Implant (6.2 +/- 2.2 mm; P = .002), double-row repair with PushLock and Bio-Corkscrew FT anchors (5.9 +/- 0.9 mm; P = .008), and corkscrews with modified Mason-Allen sutures (6.4 +/- 1.3 mm; P = .001). Double-row double-corkscrew anchor rotator cuff repair offered the highest failure load and smallest gap formation and provided the most secure fixation of all tested configurations. Double-loaded suture anchors using modified suture configurations achieved superior results in failure load and gap formation compared to simple suture repair and showed similar loads and gap formation with double-row repair using PushLock and Bio-Corkscrew FT anchors. Single-row repair with modified suture configurations may lead to results comparable to several double-row fixations. If double-row repair is used, modified stitches might further minimize gap formation and increase failure load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirone, Markus A.; Rzazewski, Kazimierz; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, and College of Science, Al. Lotnikow 32/46, 02-668 Warsaw
1999-03-11
We discuss two striking features of quantum mechanics: The concepts of vacuum and of entanglement. We first study the radiation field inside a double cavity (a cavity which contains a reflecting mirror). If the mirror is rapidly removed, peculiar quantum phenomena, such as photon creation from vacuum and squeezing, occur. We discuss then a gedanken experiment which employs the double cavity to create entanglement between two atoms. The atoms cross the double cavity and interact with its two independent radiation fields. After the atoms leave the cavity, the mirror is suddenly removed. Measurement of the radiation field inside the cavitymore » can give rise to entanglement between the atoms. The method can be extended to an arbitrary number of atoms, providing thus an N-particle GHZ state.« less
NASA Astrophysics Data System (ADS)
Yuan, Hao; Zhang, Qin; Hong, Liang; Yin, Wen-jie; Xu, Dong
2014-08-01
We present a novel scheme for deterministic secure quantum communication (DSQC) over collective rotating noisy channel. Four special two-qubit states are found can constitute a noise-free subspaces, and so are utilized as quantum information carriers. In this scheme, the information carriers transmite over the quantum channel only one time, which can effectively reduce the influence of other noise existing in quantum channel. The information receiver need only perform two single-photon collective measurements to decode the secret messages, which can make the present scheme more convenient in practical application. It will be showed that our scheme has a relatively high information capacity and intrisic efficiency. Foremostly, the decoy photon pair checking technique and the order rearrangement of photon pairs technique guarantee that the present scheme is unconditionally secure.
Steady state quantum discord for circularly accelerated atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081
2015-12-15
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptoticmore » value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.« less
NASA Astrophysics Data System (ADS)
Leonard, Edward, Jr.; Beck, Matthew; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert
We describe the characterization of a single flux quantum (SFQ) pulse generator cofabricated with a superconducting quantum circuit on a single chip. Resonant trains of SFQ pulses are used to induce coherent qubit rotations on the Bloch sphere. We describe the SFQ drive characteristics of the qubit at the fundamental transition frequency and at subharmonics (ω01 / n , n = 2 , 3 , 4 , ⋯). We address the issue of quasiparticle poisoning due to the proximal SFQ pulse generator, and we characterize the fidelity of SFQ-based rotations using randomized benchmarking. Present address: IBM T.J. Watson Research Center.
Wei, Hai-Rui; Deng, Fu-Guo
2013-07-29
We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.
Comparison of split double and triple twists in pair figure skating.
King, Deborah L; Smith, Sarah L; Brown, Michele R; McCrory, Jean L; Munkasy, Barry A; Scheirman, Gary I
2008-05-01
In this study, we compared the kinematic variables of the split triple twist with those of the split double twist to help coaches and scientists understand these landmark pair skating skills. High-speed video was taken during the pair short and free programmes at the 2002 Salt Lake City Winter Olympics and the 2003 International Skating Union Grand Prix Finals. Three-dimensional analyses of 14 split double twists and 15 split triple twists from eleven pairs were completed. In spite of considerable variability in the performance variables among the pairs, the main difference between the split double twists and split triple twists was an increase in rotational rate. While eight of the eleven pairs relied primarily on an increased rotational rate to complete the split triple twist, three pairs employed a combined strategy of increased rotational rate and increased flight time due predominantly to delayed or lower catches. These results were similar to observations of jumps in singles skating for which the extra rotation is typically due to an increase in rotational velocity; increases in flight time come primarily from delayed landings as opposed to additional height during flight. Combining an increase in flight time and rotational rate may be a good strategy for completing the split triple twist in pair skating.
NASA Astrophysics Data System (ADS)
Lomsadze, Bachana; Cundiff, Steven T.
2018-06-01
Frequency-comb based multidimensional coherent spectroscopy is a novel optical method that enables high-resolution measurement in a short acquisition time. The method's resolution makes multidimensional coherent spectroscopy relevant for atomic systems that have narrow resonances. We use double-quantum multidimensional coherent spectroscopy to reveal collective hyperfine resonances in rubidium vapor at 100 °C induced by dipole-dipole interactions. We observe tilted and elongated line shapes in the double-quantum 2D spectra, which have never been reported for Doppler-broadened systems. The elongated line shapes suggest that the signal is predominately from the interacting atoms that have a near zero relative velocity.
Time-resolved double-slit interference pattern measurement with entangled photons
Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas
2014-01-01
The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorder, Robert A., E-mail: rav@knights.ucf.edu
2014-11-15
In R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014) I discussed properties of generalized vortex filaments exhibiting purely rotational motion under the low-temperature Svistunov model of the local induction approximation. Such solutions are stationary in terms of translational motion. In the Comment [N. Hietala, “Comment on ‘General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation’ [Phys. Fluids 26, 065105 (2014)],” Phys. Fluids 26, 119101 (2014)], the author criticizes my paper for not including translational motion (although it wasmore » clearly stated that the filament motion was assumed rotational). As it turns out, if one is interested in studying the geometric structure of solutions (which was the point of my paper), one obtains the needed qualitative results on the structure of such solutions by studying the purely rotational case. Nevertheless, in this Response I shall discuss the vortex filaments that have both rotational and translational motions. I then briefly discuss why one might want to study such generalized rotating filament solutions, in contrast to simple the standard helical or planar examples (which are really special cases). I also discuss how one can study the time evolution of filaments which exhibit more complicated dynamics than pure translation and rotation. Doing this, one can study non-stationary solutions which initially appear purely rotational and gradually display other dynamics as the filaments evolve.« less
Local gate control in carbon nanotube quantum devices
NASA Astrophysics Data System (ADS)
Biercuk, Michael Jordan
This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single (non-degenerate) mode. Plateau structure is investigated as a function of bias voltage, temperature, and magnetic field. We speculate on the origin of this surprising quantization, which appears to lack band and spin degeneracy.
Strange and non-strange particle production in antiproton-nucleus collisions in the UrQMD model
NASA Astrophysics Data System (ADS)
Limphirat, Ayut; Kobdaj, Chinorat; Bleicher, Marcus; Yan, Yupeng; Stöcker, Horst
2009-06-01
The capabilities of the ultra-relativistic quantum molecular dynamics (UrQMD) model in describing antiproton-nucleus collisions are presented. The model provides a good description of the experimental data on multiplicities, transverse momentum distributions and rapidity distributions in antiproton-nucleus collisions. Special emphasis is put on the comparison of strange particles in reactions with nuclear targets ranging from 7Li, 12C, 32S, 64Cu to 131Xe because of the important role of strangeness for the exploration of hypernuclei at PANDA-FAIR. The productions of the double strange baryons Ξ- and \\bar{\\Xi}^+ , which may be used to produce double Λ hypernuclei, are predicted in this work for the reactions \\skew2\\bar{p} + 24Mg, 64Cu and 197Au.
NASA Astrophysics Data System (ADS)
Sviridov, D. E.; Kozlovsky, V. I.; Rong, X.; Chen, G.; Wang, X.; Jmerik, V. N.; Kirilenko, D. A.; Ivanov, S. V.
2017-01-01
Cross-sectional spreading resistance microscopy has been used to investigate nanoscale variations in electronic properties of an undoped Al0.75Ga0.25N/Al0.95Ga0.05N multiple quantum well (MQW) heterostructure grown by plasma-assisted molecular beam epitaxy on an AlN/c-sapphire template, prepared by metalorganic vapor phase epitaxy. It is found that a current signal from the MQWs can be detected only at a negative sample bias. Moreover, its value changes periodically from one quantum well (QW) to another. Analysis of the current-voltage characteristics of the contacts of a tip with the structure layers showed that periodic contrast of MQWs is the result of fluctuations of the chemical composition of the QWs and the concentration of electrons accumulated in them. Mathematical simulations indicate that this modulation is associated with the periodic fluctuations of an Al-mole fraction in the barrier layers of the structure due to counter gradients of the intensity of Al and Ga molecular fluxes across the surface of a substrate rotating slowly during growth. The nanoscale fluctuations of the current contrast observed along the QW layers are caused, most likely, by the presence of the areas of lateral carrier localization, which originate during the formation of QWs by sub-monolayer digital alloying technique.
Goschka, Andrew M; Hafer, Jason S; Reynolds, Kirk A; Aberle, Nicholas S; Baldini, Todd H; Hawkins, Monica J; McCarty, Eric C
2015-10-01
To further reduce the invasiveness of arthroscopic rotator cuff repair surgery the all-suture anchor has been developed. The all-suture anchor requires less bone removal and reduces the potential of loose body complications. The all-suture anchor must also have adequate biomechanical strength for the repair to heal. The hypothesis is there is no significant difference in the biomechanical performance of supraspinatus repairs using an all-suture anchor when compared to traditional solid-body suture anchors. Using nine shoulders per group, the supraspinatus tendon was dissected from the greater tuberosity. The four different double row repairs tested were (medial row/lateral row): A: ICONIX2/ICONIX2; B: ICONIX2/Stryker ReelX 3.9mm; C: ICONIX2/Stryker ReelX 4.5mm; D: Arthrex BioComposite CorkScrew FT 4.5mm/Arthrex BioComposite SwiveLock 4.75mm. The ICONIX2 was the only all-suture anchor tested. Tendons underwent cyclic loading from 10 to 100N for 500 cycles, followed by load-to-failure. Data was collected at cycles 5, 100, 200, 300, 400, and 500. One-way ANOVA analysis was used to assess significance (P≤0.05). The anchor combinations tested did not differ significantly in anterior (P>0.4) or posterior (P>0.3) gap formation, construct stiffness (P>0.7), ultimate load (P=0.06), or load to 5mm gap formation (P=0.84). The all-suture anchor demonstrated comparable biomechanical performance in multiple double-row anchor combinations to a combination of traditional solid-body anchors. Thus it may be an attractive option to further reduce the invasiveness of rotator cuff repairs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator.
Li, Keren; Wan, Yidun; Hung, Ling-Yan; Lan, Tian; Long, Guilu; Lu, Dawei; Zeng, Bei; Laflamme, Raymond
2017-02-24
Topological orders can be used as media for topological quantum computing-a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their modular S and T matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the properties of three topologically ordered matter phases described by the string-net model with two string types, including the Z_{2} toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian Fibonacci order is notably expected to be the simplest candidate for universal topological quantum computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-Abelian anyons and ultimately, topological quantum computation via the braiding, and thus provides a new approach of investigating topological orders using quantum computers.
NASA Astrophysics Data System (ADS)
Rheinländer, B.; Anton, A.; Heilmann, R.; Oelgart, G.; Gottschalch, V.
1988-11-01
A method was developed for determination of the suitability of epitaxial InGaAsP/InP double heterostructures in fabrication of ridge-waveguide lasers. The method is based on determination of the quantum efficiency of electroluminescence.
NASA Technical Reports Server (NTRS)
Zhang, Kuanshou; Xie, Changde; Peng, Kunchi
1996-01-01
The dependence of the quantum fluctuation of the output fundamental and second-harmonic waves upon cavity configuration has been numerically calculated for the intracavity frequency-doubled laser. The results might provide a direct reference for the design of squeezing system through the second-harmonic-generation.
Development of a Si/ SiO 2-based double quantum dot charge qubit with dispersive microwave readout
NASA Astrophysics Data System (ADS)
House, M. G.; Henry, E.; Schmidt, A.; Naaman, O.; Siddiqi, I.; Pan, H.; Xiao, M.; Jiang, H. W.
2011-03-01
Coupling of a high-Q microwave resonator to superconducting qubits has been successfully used to prepare, manipulate, and read out the state of a single qubit, and to mediate interactions between qubits. Our work is geared toward implementing this architecture in a semiconductor qubit. We present the design and development of a lateral quantum dot in which a superconducting microwave resonator is capacitively coupled to a double dot charge qubit. The device is a silicon MOSFET structure with a global gate which is used to accumulate electrons at a Si/ Si O2 interface. A set of smaller gates are used to deplete these electrons to define a double quantum dot and adjacent conduction channels. Two of these depletion gates connect directly to the conductors of a 6 GHz co-planar stripline resonator. We present measurements of transport and conventional charge sensing used to characterize the double quantum dot, and demonstrate that it is possible to reach the few-electron regime in this system. This work is supported by the DARPA-QuEST program.
The Effect of Rotation on Oscillatory Double-diffusive Convection (Semiconvection)
NASA Astrophysics Data System (ADS)
Moll, Ryan; Garaud, Pascale
2017-01-01
Oscillatory double-diffusive convection (ODDC, more traditionally called semiconvection) is a form of linear double-diffusive instability that occurs in fluids that are unstably stratified in temperature (Schwarzschild unstable), but stably stratified in chemical composition (Ledoux stable). This scenario is thought to be quite common in the interiors of stars and giant planets, and understanding the transport of heat and chemical species by ODDC is of great importance to stellar and planetary evolution models. Fluids unstable to ODDC have a tendency to form convective thermocompositional layers that significantly enhance the fluxes of temperature and chemical composition compared with microscopic diffusion. Although a number of recent studies have focused on studying properties of both layered and nonlayered ODDC, few have addressed how additional physical processes such as global rotation affect its dynamics. In this work, we study first how rotation affects the linear stability properties of rotating ODDC. Using direct numerical simulations, we then analyze the effect of rotation on properties of layered and nonlayered ODDC, and we study how the angle of the rotation axis with respect to the direction of gravity affects layering. We find that rotating systems can be broadly grouped into two categories based on the strength of rotation. The qualitative behavior in the more weakly rotating group is similar to nonrotating ODDC, but strongly rotating systems become dominated by vortices that are invariant in the direction of the rotation vector and strongly influence transport. We find that whenever layers form, rotation always acts to reduce thermal and compositional transport.
Deterministic entanglement distillation for secure double-server blind quantum computation.
Sheng, Yu-Bo; Zhou, Lan
2015-01-15
Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol. This protocol can get the pure maximally entangled Bell state. The success probability can reach 100% in principle. The distilled maximally entangled states can be remaind to perform the BQC protocol subsequently. The parties who perform the distillation protocol do not need to exchange the classical information and they learn nothing from the client. It makes this protocol unconditionally secure and suitable for the future BQC protocol.
Deterministic entanglement distillation for secure double-server blind quantum computation
Sheng, Yu-Bo; Zhou, Lan
2015-01-01
Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol. This protocol can get the pure maximally entangled Bell state. The success probability can reach 100% in principle. The distilled maximally entangled states can be remaind to perform the BQC protocol subsequently. The parties who perform the distillation protocol do not need to exchange the classical information and they learn nothing from the client. It makes this protocol unconditionally secure and suitable for the future BQC protocol. PMID:25588565
Baums, M H; Schminke, B; Posmyk, A; Miosge, N; Klinger, H-M; Lakemeier, S
2015-01-01
The clinical superiority of the double-row technique is still a subject of controversial debate in rotator cuff repair. We hypothesised that the expression of different collagen types will differ between double-row and single-row rotator cuff repair indicating a faster healing response by the double-row technique. Twenty-four mature female sheep were randomly assembled to two different groups in which a surgically created acute infraspinatus tendon tear was fixed using either a modified single- or double-row repair technique. Shoulder joints from female sheep cadavers of identical age, bone maturity, and weight served as untreated control cluster. Expression of type I, II, and III collagen was observed in the tendon-to-bone junction along with recovering changes in the fibrocartilage zone after immunohistological tissue staining at 1, 2, 3, 6, 12, and 26 weeks postoperatively. Expression of type III collagen remained positive until 6 weeks after surgery in the double-row group, whereas it was detectable for 12 weeks in the single-row group. In both groups, type I collagen expression increased after 12 weeks. Type II collagen expression was increased after 12 weeks in the double-row versus single-row group. Clusters of chondrocytes were only visible between week 6 and 12 in the double-row group. The study demonstrates differences regarding the expression of type I and type III collagen in the tendon-to-bone junction following double-row rotator cuff repair compared to single-row repair. The healing response in this acute repair model is faster in the double-row group during the investigated healing period.
Double row equivalent for rotator cuff repair: A biomechanical analysis of a new technique.
Robinson, Sean; Krigbaum, Henry; Kramer, Jon; Purviance, Connor; Parrish, Robin; Donahue, Joseph
2018-06-01
There are numerous configurations of double row fixation for rotator cuff tears however, there remains to be a consensus on the best method. In this study, we evaluated three different double-row configurations, including a new method. Our primary question is whether the new anchor and technique compares in biomechanical strength to standard double row techniques. Eighteen prepared fresh frozen bovine infraspinatus tendons were randomized to one of three groups including the New Double Row Equivalent, Arthrex Speedbridge and a transosseous equivalent using standard Stabilynx anchors. Biomechanical testing was performed on humeri sawbones and ultimate load, strain, yield strength, contact area, contact pressure, and a survival plots were evaluated. The new double row equivalent method demonstrated increased survival as well as ultimate strength at 415N compared to the remainder testing groups as well as equivalent contact area and pressure to standard double row techniques. This new anchor system and technique demonstrated higher survival rates and loads to failure than standard double row techniques. This data provides us with a new method of rotator cuff fixation which should be further evaluated in the clinical setting. Basic science biomechanical study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotopemore » effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.« less
Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.
Quantum Dynamics of H2 Trapped within Organic Clathrate Cages
NASA Astrophysics Data System (ADS)
Strobel, Timothy A.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.; Bhadram, Venkata S.; Jenkins, Timothy A.; Brown, Craig M.; Cheng, Yongqiang
2018-03-01
The rotational and translational dynamics of molecular hydrogen trapped within β -hydroquinone clathrate (H2 @β -HQ)—a practical example of a quantum particle trapped within an anisotropic confining potential—were investigated using inelastic neutron scattering and Raman spectroscopy. High-resolution vibrational spectra, including those collected from the VISION spectrometer at Oak Ridge National Laboratory, indicate relatively strong attractive interaction between guest and host with a strikingly large splitting of rotational energy levels compared with similar guest-host systems. Unlike related molecular systems in which confined H2 exhibits nearly free rotation, the behavior of H2 @β -HQ is explained using a two-dimensional (2D) hindered rotor model with barrier height more than 2 times the rotational constant (-16.2 meV ).
NASA Astrophysics Data System (ADS)
Tito, M. A.; Pusep, Yu A.
2018-01-01
Time-resolved magneto-photoluminescence was employed to study the magnetic field induced quantum phase transition separating two phases with different distributions of electrons over quantum wells in an aperiodic multiple quantum well, embedded in a wide AlGaAs parabolic quantum well. Intensities, broadenings and recombination times attributed to the photoluminescence lines emitted from individual quantum wells of the multiple quantum well structure were measured as a function of the magnetic field near the transition. The presented data manifest themselves to the magnetic field driven migration of the free electrons between the quantum wells of the studied multiple quantum well structure. The observed charge transfer was found to influence the screening of the multiple quantum well and disorder potentials. Evidence of the localization of the electrons in the peripheral quantum wells in strong magnetic field is presented.
Medial-row failure after arthroscopic double-row rotator cuff repair.
Yamakado, Kotaro; Katsuo, Shin-ichi; Mizuno, Katsunori; Arakawa, Hitoshi; Hayashi, Seigaku
2010-03-01
We report 4 cases of medial-row failure after double-row arthroscopic rotator cuff repair (ARCR) without arthroscopic subacromial decompression (ASAD), in which there was pullout of mattress sutures of the medial row and knots were caught between the cuff and the greater tuberosity. Between October 2006 and January 2008, 49 patients underwent double-row ARCR. During this period, ASAD was not performed with ARCR. Revision arthroscopy was performed in 8 patients because of ongoing symptoms after the index operation. In 4 of 8 patients the medial rotator cuff failed; the tendon appeared to be avulsed at the medial row, and there were exposed knots on the bony surface of the rotator cuff footprint. It appeared that the knots were caught between the cuff and the greater tuberosity. Three retear cuffs were revised with the arthroscopic transtendon technique, and one was revised with a single-row technique after completing the tear. ASAD was performed in all patients. Three of the four patients showed improvement of symptoms and returned to their preinjury occupation. Impingement of pullout knots may be a source of pain after double-row rotator cuff repair. Copyright 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Multiple feature fusion via covariance matrix for visual tracking
NASA Astrophysics Data System (ADS)
Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui
2018-04-01
Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.
Entanglement entropy at infinite-randomness fixed points in higher dimensions.
Lin, Yu-Cheng; Iglói, Ferenc; Rieger, Heiko
2007-10-05
The entanglement entropy of the two-dimensional random transverse Ising model is studied with a numerical implementation of the strong-disorder renormalization group. The asymptotic behavior of the entropy per surface area diverges at, and only at, the quantum phase transition that is governed by an infinite-randomness fixed point. Here we identify a double-logarithmic multiplicative correction to the area law for the entanglement entropy. This contrasts with the pure area law valid at the infinite-randomness fixed point in the diluted transverse Ising model in higher dimensions.
Asymptotics of quantum weighted Hurwitz numbers
NASA Astrophysics Data System (ADS)
Harnad, J.; Ortmann, Janosch
2018-06-01
This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.
Ostrander, Roger V; McKinney, Bart I
2012-10-01
Studies suggest that arthroscopic repair techniques may have high recurrence rates for larger rotator cuff tears. A more anatomic repair may improve the success rate when performing arthroscopic rotator cuff repair. We hypothesized that a triple-row modification of the suture-bridge technique for rotator cuff repair would result in significantly more footprint contact area and pressure between the rotator cuff and the humeral tuberosity. Eighteen ovine infraspinatus tendons were repaired using 1 of 3 simulated arthroscopic techniques: a double-row repair, the suture-bridge technique, and a triple-row repair. The triple-row repair technique is a modification of the suture-bridge technique that uses an additional reducing anchor between the medial and lateral rows. Six samples were tested per group. Pressure-indicating film was used to measure the footprint contact area and pressure after each repair. The triple-row repair resulted in significantly more rotator cuff footprint contact area and contact pressure compared with the double-row technique and the standard suture-bridge technique. No statistical difference in contact area or contact pressure was found between the double-row technique and the suture-bridge technique. The triple-row technique for rotator cuff repair results in significantly more footprint contact area and contact pressure compared with the double-row and standard suture-bridge techniques. This more anatomic repair may improve the healing rate when performing arthroscopic rotator cuff repair. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Burgess, Kevin M N; Bryce, David L
2015-02-01
The vaterite polymorph of CaCO3 has puzzled crystallographers for decades in part due to difficulties in obtaining single crystals. The multiple proposed structures for the vaterite polymorph of CaCO3 are assessed using a combined (43)Ca solid-state nuclear magnetic resonance (SSNMR) spectroscopic and computational approach. A combination of improved experimental and computational methods, along with a calibrated chemical shift scale and (43)Ca nuclear quadrupole moment, allow for improved insights relative to our earlier work (Bryce et al., J. Am. Chem. Soc. 2008, 130, 9282). Here, we synthesize a (43)Ca isotopically-enriched sample of vaterite and perform high-resolution quadrupolar SSNMR experiments including magic-angle spinning (MAS), double-rotation (DOR), and multiple-quantum (MQ) MAS experiments at magnetic field strengths of 9.4 and 21.1T. We identify one crystallographically unique Ca(2+) site in vaterite with a slight distribution in both chemical shifts and quadrupolar parameters. Both the experimental (43)Ca electric field gradient tensor and the isotropic chemical shift for vaterite are compared to those calculated with the gauge-including projector-augmented-wave (GIPAW) DFT method in an attempt to identify the model that best represents the crystal structure of vaterite. Simulations of (43)Ca DOR and MAS NMR spectra based on the NMR parameters computed for a total of 18 structural models for vaterite allow us to distinguish between these models. Among these 18, the P3221 and C2 structures provide simulated spectra and diffractograms in best agreement with all experimental data. Copyright © 2014 Elsevier Inc. All rights reserved.
Dual gauge field theory of quantum liquid crystals in three dimensions
NASA Astrophysics Data System (ADS)
Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Zaanen, Jan
2017-10-01
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emerge whenever translational symmetry is restored. We also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.
Wavelength-doubling optical parametric oscillator
Armstrong, Darrell J [Albuquerque, NM; Smith, Arlee V [Albuquerque, NM
2007-07-24
A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.
Pang, Shengshi; Jordan, Andrew N
2017-03-09
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T 2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T 4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
Pang, Shengshi; Jordan, Andrew N.
2017-01-01
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428
NASA Astrophysics Data System (ADS)
Parani, Sundararajan; Bupesh, Giridharan; Manikandan, Elayaperumal; Pandian, Kannaiyan; Oluwafemi, Oluwatobi Samuel
2016-11-01
Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ˜3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.
Physical Properties of the Double Kerr Solution
NASA Astrophysics Data System (ADS)
Herdeiro, Carlos A. R.; Rebelo, Carmen
We consider two special cases, dubbed counter-rotating and co-rotating of the double-Kerr solution, in four spacetime dimensions. We discuss how various physical properties of the black holes vary as the distance between them varies, namely: the horizon angular velocity and extremality condition, the horizon and ergo-surface geometry.
Chaos in the classical mechanics of bound and quasi-bound HX-4He complexes with X = F, Cl, Br, CN.
Gamboa, Antonio; Hernández, Henar; Ramilowski, Jordan A; Losada, J C; Benito, R M; Borondo, F; Farrelly, David
2009-10-01
The classical dynamics of weakly bound floppy van der Waals complexes have been extensively studied in the past except for the weakest of all, i.e., those involving He atoms. These complexes are of considerable current interest in light of recent experimental work focussed on the study of molecules trapped in small droplets of the quantum solvent (4)He. Despite a number of quantum investigations, details on the dynamics of how quantum solvation occurs remain unclear. In this paper, the classical rotational dynamics of a series of van der Waals complexes, HX-(4)He with X = F, Cl, Br, CN, are studied. In all cases, the ground state dynamics are found to be almost entirely chaotic, in sharp contrast to other floppy complexes, such as HCl-Ar, for which chaos sets in only at relatively high energies. The consequences of this result for quantum solvation are discussed. We also investigate rotationally excited states with J = 1 which, except for HCN-(4)He, are actually resonances that decay by rotational pre-dissociation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balagula, R. M.; Vinnichenko, M. Ya.; Makhov, I. S.
2017-03-15
The modulation of polarized radiation by GaAs/AlGaAs structures with tunnel-coupled double quantum wells in a strong lateral electric field is studied. The spectra of the variation in the refractive index under a lateral electric field in the vicinity of the intersubband resonance are experimentally investigated.
NASA Technical Reports Server (NTRS)
Rubinstein, Robert
1999-01-01
In rotating turbulence, stably stratified turbulence, and in rotating stratified turbulence, heuristic arguments concerning the turbulent time scale suggest that the inertial range energy spectrum scales as k(exp -2). From the viewpoint of weak turbulence theory, there are three possibilities which might invalidate these arguments: four-wave interactions could dominate three-wave interactions leading to a modified inertial range energy balance, double resonances could alter the time scale, and the energy flux integral might not converge. It is shown that although double resonances exist in all of these problems, they do not influence overall energy transfer. However, the resonance conditions cause the flux integral for rotating turbulence to diverge logarithmically when evaluated for a k(exp -2) energy spectrum; therefore, this spectrum requires logarithmic corrections. Finally, the role of four-wave interactions is briefly discussed.
Measurement-induced decoherence and information in double-slit interference.
Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael
2016-07-01
The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which "path" the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels.
From rotating atomic rings to quantum Hall states.
Roncaglia, M; Rizzi, M; Dalibard, J
2011-01-01
Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial angular frequencies, the giant-vortex state is adiabatically connected to the bosonic ν = 1/2 Laughlin state.
Controlled decoherence in a quantum Lévy kicked rotator
NASA Astrophysics Data System (ADS)
Schomerus, Henning; Lutz, Eric
2008-06-01
We develop a theory describing the dynamics of quantum kicked rotators (modeling cold atoms in a pulsed optical field) which are subjected to combined amplitude and timing noise generated by a renewal process (acting as an engineered reservoir). For waiting-time distributions of variable exponent (Lévy noise), we demonstrate the existence of a regime of nonexponential loss of phase coherence. In this regime, the momentum dynamics is subdiffusive, which also manifests itself in a non-Gaussian limiting distribution and a fractional power-law decay of the inverse participation ratio. The purity initially decays with a stretched exponential which is followed by two regimes of power-law decay with different exponents. The averaged logarithm of the fidelity probes the sprinkling distribution of the renewal process. These analytical results are confirmed by numerical computations on quantum kicked rotators subjected to noise events generated by a Yule-Simon distribution.
Optimal technique for maximal forward rotating vaults in men's gymnastics.
Hiley, Michael J; Jackson, Monique I; Yeadon, Maurice R
2015-08-01
In vaulting a gymnast must generate sufficient linear and angular momentum during the approach and table contact to complete the rotational requirements in the post-flight phase. This study investigated the optimization of table touchdown conditions and table contact technique for the maximization of rotation potential for forwards rotating vaults. A planar seven-segment torque-driven computer simulation model of the contact phase in vaulting was evaluated by varying joint torque activation time histories to match three performances of a handspring double somersault vault by an elite gymnast. The closest matching simulation was used as a starting point to maximize post-flight rotation potential (the product of angular momentum and flight time) for a forwards rotating vault. It was found that the maximized rotation potential was sufficient to produce a handspring double piked somersault vault. The corresponding optimal touchdown configuration exhibited hip flexion in contrast to the hyperextended configuration required for maximal height. Increasing touchdown velocity and angular momentum lead to additional post-flight rotation potential. By increasing the horizontal velocity at table touchdown, within limits obtained from recorded performances, the handspring double somersault tucked with one and a half twists, and the handspring triple somersault tucked became theoretically possible. Copyright © 2015 Elsevier B.V. All rights reserved.
Hidden Quantum Processes, Quantum Ion Channels, and 1/ fθ-Type Noise.
Paris, Alan; Vosoughi, Azadeh; Berman, Stephen A; Atia, George
2018-07-01
In this letter, we perform a complete and in-depth analysis of Lorentzian noises, such as those arising from [Formula: see text] and [Formula: see text] channel kinetics, in order to identify the source of [Formula: see text]-type noise in neurological membranes. We prove that the autocovariance of Lorentzian noise depends solely on the eigenvalues (time constants) of the kinetic matrix but that the Lorentzian weighting coefficients depend entirely on the eigenvectors of this matrix. We then show that there are rotations of the kinetic eigenvectors that send any initial weights to any target weights without altering the time constants. In particular, we show there are target weights for which the resulting Lorenztian noise has an approximately [Formula: see text]-type spectrum. We justify these kinetic rotations by introducing a quantum mechanical formulation of membrane stochastics, called hidden quantum activated-measurement models, and prove that these quantum models are probabilistically indistinguishable from the classical hidden Markov models typically used for ion channel stochastics. The quantum dividend obtained by replacing classical with quantum membranes is that rotations of the Lorentzian weights become simple readjustments of the quantum state without any change to the laboratory-determined kinetic and conductance parameters. Moreover, the quantum formalism allows us to model the activation energy of a membrane, and we show that maximizing entropy under constrained activation energy yields the previous [Formula: see text]-type Lorentzian weights, in which the spectral exponent [Formula: see text] is a Lagrange multiplier for the energy constraint. Thus, we provide a plausible neurophysical mechanism by which channel and membrane kinetics can give rise to [Formula: see text]-type noise (something that has been occasionally denied in the literature), as well as a realistic and experimentally testable explanation for the numerical values of the spectral exponents. We also discuss applications of quantum membranes beyond [Formula: see text]-type -noise, including applications to animal models and possible impact on quantum foundations.
Our (Represented) World: A Quantum-Like Object
NASA Astrophysics Data System (ADS)
Lambert-Mogiliansky, Ariane; Dubois, François
It has been suggested that observed cognitive limitations may be an expression of the quantum-like structure of the mind. In this chapter we explore some implications of this hypothesis for learning i.e., for the construction of a representation of the world. For a quantum-like individual, there exists a multiplicity of mentally incompatible (Bohr complementary) but equally valid and complete representations (mental pictures) of the world. The process of learning i.e., of constructing a representation, involves two kinds of operations on the mental picture. The acquisition of new data which is modelled as a preparation procedure and the processing of data which is modelled as an introspective measurement operation. This process is shown not to converge to a single mental picture. Rather, it can evolve forever. We define a concept of entropy to capture relative intrinsic uncertainty. The analysis suggests a new perspective on learning. First, it implies that we must turn to double objectification as in Quantum Mechanics: the cognitive process is the primary object of learning. Second, it suggests that a representation of the world arises as the result of creative interplay between the mind and the environment.
Experimental Demonstration of Coherent Control in Quantum Chaotic Systems
NASA Astrophysics Data System (ADS)
Bitter, M.; Milner, V.
2017-01-01
We experimentally demonstrate coherent control of a quantum system, whose dynamics is chaotic in the classical limit. Interaction of diatomic molecules with a periodic sequence of ultrashort laser pulses leads to the dynamical localization of the molecular angular momentum, a characteristic feature of the chaotic quantum kicked rotor. By changing the phases of the rotational states in the initially prepared coherent wave packet, we control the rotational distribution of the final localized state and its total energy. We demonstrate the anticipated sensitivity of control to the exact parameters of the kicking field, as well as its disappearance in the classical regime of excitation.
The treatment of idiopathic scoliosis in adolescents: rotation or in situ bending?
Gennari, J M; Tallet, J M; Hornung, H; Bergoin, M
1997-12-01
Rotation alone is not fully efficient in order to correct all types of scoliotic curvatures. We report a series of 30 cases instrumented with the EUROS spine system and analyse reductions obtained with in situ rotation or bending alone or with combined maneuvres. The average age of surgery is 17 years for this series composed of 24 female and 6 male patients. The average follow-up is 2.3 years. The curve patterns are displayed with 6 major thoracic, 5 genuine double major, 4 double major thoracic predominant, 6 double major lumbar predominant and 9 double thoracic curves. Combination of both reduction techniques is advisable and is to be made according to the type of curvature and its reducibility in situ bending is made easier with this system without lockers and by reduced diameter of the rod.
Charge noise in quantum dot qubits: beyond the Markovian approximation.
NASA Astrophysics Data System (ADS)
Yang, Yuan-Chi; Friesen, Mark; Coppersmith, S. N.
Charge noise is a limiting factor in the performance of semiconductor quantum dot qubits, including both spin and charge qubits. In this work, we develop an analytical formalism for treating semiclassical noise beyond the Markovian approximation, which allows us to investigate noise models relevant for quantum dots, such as 1 / f noise. We apply our methods to both charge qubits and quantum dot hybrid qubits, and study the effects of charge noise on single-qubit rotations in these systems. The formalism is also directly applicable to the case of strong microwave driving, for which the rotating wave approximation breaks down. This work was supported in part by ARO (W911NF-12-0607) and ONR (N00014-15-1-0029), and the University of Wisconsin-Madison.
Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Huang, Jia-Qi; Wei, Fei
2012-05-22
Inorganic materials with double-helix structure have attracted intensive attention due to not only their elegant morphology but also their amazing morphology-related potential applications. The investigation on the formation mechanism of the inorganic double-helix nanostructure is the first step for the fundamental studies of their materials or physical properties. Herein, we demonstrated the space confinement and rotation stress induced self-organization mechanism of the carbon nanotube (CNT)-array double helices under scanning electron microscopy by directly observing their formation process from individual layered double hydroxide flakes, which is a kind of hydrotalcite-like material composed of positively charged layers and charge-balancing interlayer anions. Space confinement is considered to be the most important extrinsic factor for the formation of CNT-array double helices. Synchronous growth of the CNT arrays oppositely from LDH flakes with space confinement on both sides at the same time is essential for the growth of CNT-array double helices. Coiling of the as-grown CNT arrays into double helices will proceed by self-organization, tending to the most stable morphology in order to release their internal rotation stress. Based on the demonstrated mechanism, effective routes were carried out to improve the selectivity for CNT-array double helices. The work provides a promising method for the fabrication of double-helix nanostructures with their two helices connected at the end by self-assembly.
Stahl, Andreas D.; Hospes, Marijke; Singhal, Kushagra; van Stokkum, Ivo; van Grondelle, Rienk; Groot, Marie Louise; Hellingwerf, Klaas J.
2011-01-01
Prior experimental observations, as well as theoretical considerations, have led to the proposal that C4-C7 single-bond rotation may play an important role in the primary photochemistry of photoactive yellow protein (PYP). We therefore synthesized an analog of this protein's 4-hydroxy-cinnamic acid chromophore, (5-hydroxy indan-(1E)-ylidene)acetic acid, in which rotation across the C4-C7 single bond has been locked with an ethane bridge, and we reconstituted the apo form of the wild-type protein and its R52A derivative with this chromophore analog. In PYP reconstituted with the rotation-locked chromophore, 1), absorption spectra of ground and intermediate states are slightly blue-shifted; 2), the quantum yield of photochemistry is ∼60% reduced; 3), the excited-state dynamics of the chromophore are accelerated; and 4), dynamics of the thermal recovery reaction of the protein are accelerated. A significant finding was that the yield of the transient ground-state intermediate in the early phase of the photocycle was considerably higher in the rotation-locked samples than in the corresponding samples reconstituted with p-coumaric acid. In contrast to theoretical predictions, the initial photocycle dynamics of PYP were observed to be not affected by the charge of the amino acid residue at position 52, which was varied by 1), varying the pH of the sample between 5 and 10; and 2), site-directed mutagenesis to construct R52A. These results imply that C4-C7 single-bond rotation in PYP is not an alternative to C7=C8 double-bond rotation, in case the nearby positive charge of R52 is absent, but rather facilitates, presumably with a compensatory movement, the physiological Z/E isomerization of the blue-light-absorbing chromophore. PMID:21889456
The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite
NASA Astrophysics Data System (ADS)
Habib, K. M. Masum; Sylvia, Somaia S.; Ge, Supeng; Neupane, Mahesh; Lake, Roger K.
2013-12-01
The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm2. For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described.
Castillo, J F; Aoiz, F J; Bañares, L
2006-09-28
An ab initio interpolated potential energy surface (PES) for the Cl+CH(4) reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl+CH(4) and Cl+CD(4) reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl+CH(4) and Cl+CD(4) reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH(4) molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH(3) and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from backward peaked to sideways peaked as collision energy increases, as seen in the experiments and other theoretical calculations.
NASA Astrophysics Data System (ADS)
Castillo, J. F.; Aoiz, F. J.; Bañares, L.
2006-09-01
An ab initio interpolated potential energy surface (PES) for the Cl +CH4 reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl +CH4 and Cl +CD4 reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl +CH4 and Cl +CD4 reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH4 molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH3 and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from backward peaked to sideways peaked as collision energy increases, as seen in the experiments and other theoretical calculations.
NASA Astrophysics Data System (ADS)
Ahia, Chinedu Christian; Tile, Ngcali; Botha, Johannes R.; Olivier, E. J.
2018-04-01
The structural and photoluminescence (PL) characterization of InGaSb quantum well (QW) structures grown on GaSb substrate (100) using atmospheric pressure Metalorganic Vapor Phase Epitaxy (MOVPE) is presented. Both structures (single and double-InGaSb QWs) were inadvertently formed during an attempt to grow capped InSb/GaSb quantum dots (QDs). In this work, 10 K PL peak energies at 735 meV and 740 meV are suggested to be emissions from the single and double QWs, respectively. These lines exhibit red shifts, accompanied by a reduction in their full-widths at half-maximum (FWHM) as the excitation power decreases. The presence of a GaSb spacer in the double QW was found to increase the strength of the PL emission, which consequently gives rise to a reduced blue-shift and broadening of the PL emission line observed for the double QW with an increase in laser power, while the low thermal activation energy for the quenching of the PL from the double QW is attributed to the existence of threading dislocations, as seen in the bright field TEM image for this sample.
Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, V.P.; Thorne, K.S.
1989-04-15
The renormalized expectation value of the stress-energy tensor /sup ren/ of a quantum field in an arbitrary quantum state near the future horizon of a rotating (Kerr) black hole is derived in two very different ways: One derivation (restricted for simplicity to a massless scalar field) makes use of traditional techniques of quantum field theory in curved spacetime, augmented by a variant of the ''eta formalism'' for handling superradiant modes. The other derivation (valid for any quantum field) uses the equivalence principle to infer, from /sup ren/ in flat spacetime, what must be /sup ren/ near the hole's horizon. Themore » two derivations give the same result: a result in accord with a previous conjecture by Zurek and Thorne: /sup ren/, in any quantum state, is equal to that, /sup ZAMO/, which zero-angular-momentum observers (ZAMO's) would compute from their own physical measurements near the horizon, plus a vacuum-polarization contribution T/sub ..mu..//sub ..nu..//sup vac pol/, which is the negative of the stress-energy of a rigidly rotating thermal reservoir with angular velocity equal to that of the horizon ..cap omega../sub H/, and (red-shifted) temperature equal to that of the Hawking temperature T/sub H/.« less
Non-Markovian quantum Brownian motion in one dimension in electric fields
NASA Astrophysics Data System (ADS)
Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.
2018-04-01
Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.
Single-row versus double-row arthroscopic rotator cuff repair in small- to medium-sized tears.
Aydin, Nuri; Kocaoglu, Baris; Guven, Osman
2010-07-01
Double-row rotator cuff repair leads to superior cuff integrity and clinical results compared with single-row repair. The study enrolled 68 patients with a full-thickness rotator cuff tear who were divided into 2 groups of 34 patients according to repair technique. The patients were followed-up for at least 2 years. The results were evaluated by Constant score. Despite the biomechanical studies and cadaver studies that proved the superiority of double-row fixation over single-row fixation, our clinical results show no difference in functional outcome between the two methods. It is evident that double-row repair is more technically demanding, expensive, and time-consuming than single-row repair, without providing a significant improvement in clinical results. Comparison between groups did not show significant differences. At the final follow-up, the Constant score was 82.2 in the single-row group and 78.8 in the double-row group. Functional outcome was improved in both groups after surgery, but the difference between the 2 groups was not significant. At long-term follow-up, arthroscopic rotator cuff repair with the double-row technique showed no significant difference in clinical outcome compared with single-row repair in small to medium tears. 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balagula, R. M., E-mail: rmbal@spbstu.ru; Vinnichenko, M. Ya., E-mail: mvin@spbstu.ru; Makhov, I. S.
The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.
NASA Astrophysics Data System (ADS)
Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha
2017-06-01
Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.
NASA Astrophysics Data System (ADS)
Torchynska, T. V.; Casas Espinola, J. L.; Jaramillo Gómez, J. A.; Douda, J.; Gazarian, K.
2013-06-01
Double core CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) have been studied by photoluminescence (PL) and Raman scattering methods in the non-conjugated state and after the conjugation to the Pseudo rabies virus (PRV) antibodies. The transformation of PL spectra, stimulated by the electric charge of antibodies, has been detected for the bioconjugated QDs. Raman scattering spectra are investigated with the aim to reveal the CdSeTe core compositions. The double core QD energy diagrams were designed that help to analyze the PL spectra and their transformation at the bioconjugation. It is revealed that the interface in double core QDs has the type II quantum well character that permits to explain the near IR optical transition (1.60 eV) in the double core QDs. It is shown that the essential transformation of PL spectra is useful for the study of QD bioconjugation with specific antibodies and can be a powerful technique in early medical diagnostics.
NASA Astrophysics Data System (ADS)
Wenderoth, S.; Bätge, J.; Härtle, R.
2016-09-01
We study sharp peaks in the conductance-voltage characteristics of a double quantum dot and a quantum dot spin valve that are located around zero bias. The peaks share similarities with a Kondo peak but can be clearly distinguished, in particular as they occur at high temperatures. The underlying physical mechanism is a strong current suppression that is quenched in bias-voltage dependent ways by exchange interactions. Our theoretical results are based on the quantum master equation methodology, including the Born-Markov approximation and a numerically exact, hierarchical scheme, which we extend here to the spin-valve case. The comparison of exact and approximate results allows us to reveal the underlying physical mechanisms, the role of first-, second- and beyond-second-order processes and the robustness of the effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu, E-mail: iyun@yonsei.ac.kr
2014-11-07
A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulationmore » results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.« less
Negative exchange interactions in coupled few-electron quantum dots
NASA Astrophysics Data System (ADS)
Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin
2018-06-01
It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.
Yan, Dongpeng; Lu, Jun; Ma, Jing; Wei, Min; Wang, Xinrui; Evans, David G; Duan, Xue
2010-05-18
The sulfonated phenylenevinylene polyanion derivate (APPV) and exfoliated Mg-Al-layered double hydroxide (LDH) monolayers were alternatively assembled into ordered ultrathin films (UTFs) employing a layer-by-layer method, which shows uniform yellow luminescence. UV-vis absorption and fluorescence spectroscopy present a stepwise and regular growth of the UTFs upon increasing deposited cycles. X-ray diffraction, atomic force microscopy, and scanning electron microscopy demonstrate that the UTFs are orderly periodical layered structure with a thickness of 3.3-3.5 nm per bilayer. The APPV/LDH UTFs exhibit well-defined polarized photoemission characteristic with the maximum luminescence anisotropy of approximately 0.3. Moreover, the UTF exhibit longer fluorescence lifetime (3-3.85-fold) and higher photostability than the drop-casting APPV film under UV irradiation, suggesting that the existence of a LDH monolayer enhances the optical performance of the APPV polyanion. A combination study of electrochemistry and periodic density functional theory was used to investigate the electronic structure of the APPV/LDH system, illustrating that the APPV/LDH UTF is a kind of organic-inorganic hybrid multiple quantum well (MQW) structure with a low band energy of 1.7-1.8 eV, where the valence electrons of APPV can be confined into the energy wells formed by the LDH monolayers effectively. Therefore, this work not only gives a feasible method for fabricating a luminescence ultrathin film but also provides a detailed understanding of the geometric and electronic structures of photoactive polyanions confined between the LDH monolayers.
Quasi-Solid-State Single-Atom Transistors.
Xie, Fangqing; Peukert, Andreas; Bender, Thorsten; Obermair, Christian; Wertz, Florian; Schmieder, Philipp; Schimmel, Thomas
2018-06-21
The single-atom transistor represents a quantum electronic device at room temperature, allowing the switching of an electric current by the controlled and reversible relocation of one single atom within a metallic quantum point contact. So far, the device operates by applying a small voltage to a control electrode or "gate" within the aqueous electrolyte. Here, the operation of the atomic device in the quasi-solid state is demonstrated. Gelation of pyrogenic silica transforms the electrolyte into the quasi-solid state, exhibiting the cohesive properties of a solid and the diffusive properties of a liquid, preventing the leakage problem and avoiding the handling of a liquid system. The electrolyte is characterized by cyclic voltammetry, conductivity measurements, and rotation viscometry. Thus, a first demonstration of the single-atom transistor operating in the quasi-solid-state is given. The silver single-atom and atomic-scale transistors in the quasi-solid-state allow bistable switching between zero and quantized conductance levels, which are integer multiples of the conductance quantum G 0 = 2e 2 /h. Source-drain currents ranging from 1 to 8 µA are applied in these experiments. Any obvious influence of the gelation of the aqueous electrolyte on the electron transport within the quantum point contact is not observed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Double-Slit Interference Pattern for a Macroscopic Quantum System
NASA Astrophysics Data System (ADS)
Naeij, Hamid Reza; Shafiee, Afshin
2016-12-01
In this study, we solve analytically the Schrödinger equation for a macroscopic quantum oscillator as a central system coupled to two environmental micro-oscillating particles. Then, the double-slit interference patterns are investigated in two limiting cases, considering the limits of uncertainty in the position probability distribution. Moreover, we analyze the interference patterns based on a recent proposal called stochastic electrodynamics with spin. Our results show that when the quantum character of the macro-system is decreased, the diffraction pattern becomes more similar to a classical one. We also show that, depending on the size of the slits, the predictions of quantum approach could be apparently different with those of the aforementioned stochastic description.
Electron capture in collisions of N+ with H and H+ with N
NASA Astrophysics Data System (ADS)
Lin, C. Y.; Stancil, P. C.; Gu, J. P.; Buenker, R. J.; Kimura, M.
2005-06-01
Charge-transfer processes due to collisions of N+ with atomic hydrogen and H+ with atomic nitrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained with the multireference single- and double-excitation configuration interaction approach. Total and state-selective cross sections for the energy range 0.1meV/u-1keV/u are presented and compared with existing experimental and theoretical data. A large number of low-energy resonances are obtained for exoergic channels and near thresholds of endoergic channels. Rate coefficients are also obtained and comparison to previous calculations suggests nonadiabatic effects dominate for temperatures greater than 20 000 K, but that the spin-orbit interaction plays a major role for lower temperatures.
Wiberg, Kenneth B
2017-11-02
To allow a comparison with the specific rotations of R-(+)-5-methylenenorbornene (1) and R-(+)-norbornenone (2) we performed calculations at the LC-wPBE/aug-cc-pVTZ level for the imines (5a and 5b) derived from norbornenone and also for their protonated derivative (6). In accord with our results for simpler systems, the specific rotations increase in the order of 1 < 5 < 2 ≈ 6. In addition, the specific rotation of the protonated ketone was calculated and found to be considerably larger than that for 2 or 6. These rotations were found to be linearly dependent on the Hirshfeld charges at the carbon of the exocyclic double bond. This leads to the conclusion that charge transfer from the endocyclic double bond to the π* MO of the exocyclic double bond is an important component of the process that leads to the optical activity of these compounds.
NASA Astrophysics Data System (ADS)
Jabri, Atef; Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Van, Vinh; Stahl, Wolfgang
2016-06-01
The Fourier transform microwave spectra of the E and the Z isomer of butadienyl acetate have been measured in the frequency range from 2 to 26.5 GHz under molecular beam conditions. The most stable conformer of each isomer, in which all heavy atoms are located in a symmetry plane, was identified after analyzing the spectrum by comparison with results from quantum chemical calculations. The barrier to internal rotation of the acetyl methyl group was found to be 149.1822(20) cm-1 and 150.2128(48) cm-1 for the E and the Z isomer, respectively, which are similar to that of vinyl acetate. A comparison between two theoretical approaches treating internal rotations, the rho axis method (using the program BELGI-Cs) and combined axis method (using the program XIAM), is also performed. Since several years we study the barriers to internal rotation of the acetyl methyl group in acetates, CH3-COOR. Currently, we assume that all acetates can be divided into three classes. Class I contains α,β saturated acetates, where the torsional barrier is always close to 100 cm-1. Examples are a series of alkyl acetates such as methyl acetate and ethyl acetate. Class II contains α,β-unsaturated acetates where the C=C double bond is located in the COO plane. This is the case of vinyl acetate and butadienyl acetate. Finally, in class III with isopropenyl acetate and phenyl acetate as two representatives, α,β-unsaturated acetates, in which the double bond is not located in the COO plane, are collected. There, we observed a barrier height around 135 cm-1. This observation will be discussed in details. B. Velino, A. Maris, S. Melandri, W. Caminati, J. Mol. Spectrosc. 2009, 256, 228 H. V. L. Nguyen, A. Jabri, V. Van, and W. Stahl, J. Phys. Chem. A, 2014, 118, 12130.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liancheng, E-mail: wanglc@semi.ac.cn, E-mail: lzq@semi.ac.cn, E-mail: zh.zhang@hebut.edu.cn; Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083; Mind Star
The effects of graphene on the optical properties of active system, e.g., the InGaN/GaN multiple quantum wells, are thoroughly investigated and clarified. Here, we have investigated the mechanisms accounting for the photoluminescence reduction for the graphene covered GaN/InGaN multiple quantum wells hybrid structure. Compared to the bare multiple quantum wells, the photoluminescence intensity of graphene covered multiple quantum wells showed a 39% decrease after excluding the graphene absorption losses. The responsible mechanisms have been identified with the following factors: (1) the graphene two dimensional hole gas intensifies the polarization field in multiple quantum wells, thus steepening the quantum well bandmore » profile and causing hole-electron pairs to further separate; (2) a lower affinity of graphene compared to air leading to a weaker capability to confine the excited hot electrons in multiple quantum wells; and (3) exciton transfer through non-radiative energy transfer process. These factors are theoretically analysed based on advanced physical models of semiconductor devices calculations and experimentally verified by varying structural parameters, such as the indium fraction in multiple quantum wells and the thickness of the last GaN quantum barrier spacer layer.« less
Measurement-induced decoherence and information in double-slit interference
Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael
2016-01-01
The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which “path” the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels. PMID:27807373
Smith, Geoffrey C S; Bouwmeester, Theresia M; Lam, Patrick H
2017-12-01
In double-row SutureBridge (Arthrex, Naples, FL, USA) rotator cuff repairs, increasing tendon load may generate progressively greater compression forces at the repair footprint (self-reinforcement). SutureBridge rotator cuff repairs using tied horizontal mattress sutures medially may limit this effect compared with a knotless construct. Rotator cuff repairs were performed in 9 pairs of ovine shoulders. One group underwent repair with a double-row SutureBridge construct with tied horizontal medial-row mattress sutures. The other group underwent repair in an identical fashion except that medial-row knots were not tied. Footprint contact pressure was measured at 0° and 20° of abduction under loads of 0 to 60 N. Pull-to-failure tests were then performed. In both repair constructs, each 10-N increase in rotator cuff tensile load led to a significant increase in footprint contact pressure (P < .0001). The rate of increase in footprint contact pressure was greater in the knotless construct (P < .00022; ratio, 1.69). The yield point approached the ultimate load to failure more closely in the knotless model than in the knotted construct (P = .00094). There was no difference in stiffness, ultimate failure load, or total energy to failure between the knotless and knotted techniques. In rotator cuff repair with a double-row SutureBridge configuration, self-reinforcement is seen in repairs with and without medial-row knots. Self-reinforcement is greater with the knotless technique. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hagar, Amit
Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the 'apparent' collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard.
Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.
Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V
2017-10-03
The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.
Lee, Kwang Won; Yang, Dae Suk; Lee, Gyu Sang; Ma, Chang Hyun; Choy, Won Sik
2018-05-23
This retrospective study compared the clinical and radiologic outcomes of patients who underwent arthroscopic rotator cuff repairs by the suture-bridge and double-row modified Mason-Allen techniques. From January 2012 to May 2013, 76 consecutive cases of full-thickness rotator cuff tear, 1 to 4 cm in the sagittal plane, for which arthroscopic rotator cuff repair was performed, were included. The suture-bridge technique was used in 37 consecutive shoulders; and the double-row modified Mason-Allen technique, in 39 consecutive shoulders. Clinical outcomes at a minimum of 2 years (mean, 35.7 months) were evaluated postoperatively using the visual analog scale; University of California, Los Angeles Shoulder Scale; American Shoulder and Elbow Surgeons Subjective Shoulder Scale; and Constant score. Postoperative cuff integrity was evaluated at a mean of 17.7 months by magnetic resonance imaging. At the final follow-up, the clinical outcomes improved in both groups (all P < .001) but with no significant differences between the 2 groups (all P > .05). The retear rate was 18.9% in the shoulders subjected to suture-bridge repair and 12.8% in the double-row modified Mason-Allen group; the difference was not significant (P = .361). Despite the presence of fewer suture anchors, the patients who underwent double-row modified Mason-Allen repair had comparable shoulder functional outcomes and a comparable retear rate with those who underwent suture-bridge repair. Therefore, the double-row modified Mason-Allen repair technique can be considered an effective treatment for patients with medium- to large-sized full-thickness rotator cuff tears. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ospina-Londoño, D. A.; Fulla, M. R.; Marín, J. H.
2013-03-01
In this work it is considered a versatile model to study two different ionization processes starting from a D20 homonuclear hydrogenic molecule confined in double concentric quantum donuts. Very narrow quantum donut circular cross sections are considered to separate the radial and angular variables in the D20 Hamiltonian by using the well-known adiabatic approximation D20 total energy as a function of the inter donor spacing and the outer donut center line radius is calculated. The salient features of an artificial D20 hydrogenic molecule such as the dissociation energy and the equilibrium length are strongly dependent on the quantum donut geometrical parameters. By increasing systematically the quantum donut outer center line radius, it is possible to understand a first ionization process: D20→D2++e-. A second ionization process D20→D-+D+ can be carried out by fixing the first donor position and gradually moving away the second one. The results obtained in this study are in good agreement with those previously obtained in the limiting cases of very large inter donor separation. The model proposed here is computationally economical and provides a realistic description of both ionization processes and the few-particle system confined in double concentric quantum donuts.
Methods for constraining fine structure constant evolution with OH microwave transitions.
Darling, Jeremy
2003-07-04
We investigate the constraints that OH microwave transitions in megamasers and molecular absorbers at cosmological distances may place on the evolution of the fine structure constant alpha=e(2)/ variant Planck's over 2pi c. The centimeter OH transitions are a combination of hyperfine splitting and lambda doubling that can constrain the cosmic evolution of alpha from a single species, avoiding systematic errors in alpha measurements from multiple species which may have relative velocity offsets. The most promising method compares the 18 and 6 cm OH lines, includes a calibration of systematic errors, and offers multiple determinations of alpha in a single object. Comparisons of OH lines to the HI 21 cm line and CO rotational transitions also show promise.
Jespersen, Sune Nørhøj; Lundell, Henrik; Sønderby, Casper Kaae; Dyrby, Tim B
2013-12-01
Pulsed field gradient diffusion sequences (PFG) with multiple diffusion encoding blocks have been indicated to offer new microstructural tissue information, such as the ability to detect nonspherical compartment shapes in macroscopically isotropic samples, i.e. samples with negligible directional signal dependence on diffusion gradients in standard diffusion experiments. However, current acquisition schemes are not rotationally invariant in the sense that the derived metrics depend on the orientation of the sample, and are affected by the interplay of sampling directions and compartment orientation dispersion when applied to macroscopically anisotropic systems. Here we propose a new framework, the d-PFG 5-design, to enable rotationally invariant estimation of double wave vector diffusion metrics (d-PFG). The method is based on the idea that an appropriate orientational average of the signal emulates the signal from a powder preparation of the same sample, where macroscopic anisotropy is absent by construction. Our approach exploits the theory of exact numerical integration (quadrature) of polynomials on the rotation group, and we exemplify the general procedure with a set consisting of 60 pairs of diffusion wave vectors (the d-PFG 5-design) facilitating a theoretically exact determination of the fourth order Taylor or cumulant expansion of the orientationally averaged signal. The d-PFG 5-design is evaluated with numerical simulations and ex vivo high field diffusion MRI experiments in a nonhuman primate brain. Specifically, we demonstrate rotational invariance when estimating compartment eccentricity, which we show offers new microstructural information, complementary to that of fractional anisotropy (FA) from diffusion tensor imaging (DTI). The imaging observations are supported by a new theoretical result, directly relating compartment eccentricity to FA of individual pores. Copyright © 2013 John Wiley & Sons, Ltd.
Quantum delayed-choice experiment with a single neutral atom.
Li, Gang; Zhang, Pengfei; Zhang, Tiancai
2017-10-01
We present a proposal to implement a quantum delayed-choice (QDC) experiment with a single neutral atom, such as a rubidium or cesium atom. In our proposal, a Ramsey interferometer is adopted to observe the wave-like or particle-like behaviors of a single atom depending on the existence or absence of the second π/2-rotation. A quantum-controlled π/2-rotation on target atom is realized through a Rydberg-Rydberg interaction by another ancilla atom. It shows that a heavy neutral atom can also have a morphing behavior between the particle and the wave. The realization of the QDC experiment with such heavy neutral atoms not only is significant to understand the Bohr's complementarity principle in matter-wave and matter-particle domains but also has great potential on the quantum information process with neutral atoms.
Quantum Theory of Three-Dimensional Superresolution Using Rotating-PSF Imagery
NASA Astrophysics Data System (ADS)
Prasad, S.; Yu, Z.
The inverse of the quantum Fisher information (QFI) matrix (and extensions thereof) provides the ultimate lower bound on the variance of any unbiased estimation of a parameter from statistical data, whether of intrinsically quantum mechanical or classical character. We calculate the QFI for Poisson-shot-noise-limited imagery using the rotating PSF that can localize and resolve point sources fully in all three dimensions. We also propose an experimental approach based on the use of computer generated hologram and projective measurements to realize the QFI-limited variance for the problem of super-resolving a closely spaced pair of point sources at a highly reduced photon cost. The paper presents a preliminary analysis of quantum-limited three-dimensional (3D) pair optical super-resolution (OSR) problem with potential applications to astronomical imaging and 3D space-debris localization.
Horizon Quantum Mechanics: Spherically Symmetric and Rotating Sources
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Giugno, Andrea; Giusti, Andrea; Micu, Octavian
2018-04-01
The Horizon Quantum Mechanics is an approach that allows one to analyse the gravitational radius of spherically symmetric systems and compute the probability that a given quantum state is a black hole. We first review the (global) formalism and show how it reproduces a gravitationally inspired GUP relation. This results leads to unacceptably large fluctuations in the horizon size of astrophysical black holes if one insists in describing them as (smeared) central singularities. On the other hand, if they are extended systems, like in the corpuscular models, no such issue arises and one can in fact extend the formalism to include asymptotic mass and angular momentum with the harmonic model of rotating corpuscular black holes. The Horizon Quantum Mechanics then shows that, in simple configurations, the appearance of the inner horizon is suppressed and extremal (macroscopic) geometries seem disfavoured.
Rotating Space Elevators: Classical and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Knudsen, Steven
We investigate a novel and unique dynamical system, the Rotating Space Elevator (RSE). The RSE is a multiply rotating system of strings reaching beyond the Earth geo-synchronous satellite orbit. Objects sliding along the RSE string ("climbers") do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in the space elevator technology which is how to supply the energy to the climbers moving along the string. The RSE is a double rotating floppy string. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in the double rotating frame. The RSE exhibits a variety of interesting dynamical phenomena studied in this thesis.
NASA Astrophysics Data System (ADS)
Naquin, Clint Alan
Introducing explicit quantum transport into silicon (Si) transistors in a manner compatible with industrial fabrication has proven challenging, yet has the potential to transform the performance horizons of large scale integrated Si devices and circuits. Explicit quantum transport as evidenced by negative differential transconductances (NDTCs) has been observed in a set of quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors fabricated using industrial silicon complementary MOS processing. The QW potential was formed via lateral ion implantation doping on a commercial 45 nm technology node process line, and measurements of the transfer characteristics show NDTCs up to room temperature. Detailed gate length and temperature dependence characteristics of the NDTCs in these devices have been measured. Gate length dependence of NDTCs shows a correlation of the interface channel length with the number of NDTCs formed as well as with the gate voltage (VG) spacing between NDTCs. The VG spacing between multiple NDTCs suggests a quasi-parabolic QW potential profile. The temperature dependence is consistent with partial freeze-out of carrier concentration against a degenerately doped background. A folding amplifier frequency multiplier circuit using a single QW NMOS transistor to generate a folded current-voltage transfer function via a NDTC was demonstrated. Time domain data shows frequency doubling in the kHz range at room temperature, and Fourier analysis confirms that the output is dominated by the second harmonic of the input. De-embedding the circuit response characteristics from parasitic cable and contact impedances suggests that in the absence of parasitics the doubling bandwidth could be as high as 10 GHz in a monolithic integrated circuit, limited by the transresistance magnitude of the QW NMOS. This is the first example of a QW device fabricated by mainstream Si CMOS technology being used in a circuit application and establishes the feasibility of scalable CMOS circuits that exploit explicit quantum transport. Ongoing quantum transport simulations based off of the spatial dopant distribution suggests a quasi-parabolic potential profile. Energy spacings between resonant transmission states are not consistent with experimental data, suggesting that either the assumed transport model is incomplete, or scattering mechanisms significantly mix the quasi-bound states and broaden the energy spacings.
A method to track rotational motion for use in single-molecule biophysics.
Lipfert, Jan; Kerssemakers, Jacob J W; Rojer, Maylon; Dekker, Nynke H
2011-10-01
The double helical nature of DNA links many cellular processes such as DNA replication, transcription, and repair to rotational motion and the accumulation of torsional strain. Magnetic tweezers (MTs) are a single-molecule technique that enables the application of precisely calibrated stretching forces to nucleic acid tethers and to control their rotational motion. However, conventional magnetic tweezers do not directly monitor rotation or measure torque. Here, we describe a method to directly measure rotational motion of particles in MT. The method relies on attaching small, non-magnetic beads to the magnetic beads to act as fiducial markers for rotational tracking. CCD images of the beads are analyzed with a tracking algorithm specifically designed to minimize crosstalk between translational and rotational motion: first, the in-plane center position of the magnetic bead is determined with a kernel-based tracker, while subsequently the height and rotation angle of the bead are determined via correlation-based algorithms. Evaluation of the tracking algorithm using both simulated images and recorded images of surface-immobilized beads demonstrates a rotational resolution of 0.1°, while maintaining a translational resolution of 1-2 nm. Example traces of the rotational fluctuations exhibited by DNA-tethered beads confined in magnetic potentials of varying stiffness demonstrate the robustness of the method and the potential for simultaneous tracking of multiple beads. Our rotation tracking algorithm enables the extension of MTs to magnetic torque tweezers (MTT) to directly measure the torque in single molecules. In addition, we envision uses of the algorithm in a range of biophysical measurements, including further extensions of MT, tethered particle motion, and optical trapping measurements.
NASA Technical Reports Server (NTRS)
Bernacca, P. L.
1971-01-01
The correlation between the equatorial velocities of the components of double stars is studied from a statistical standpoint. A theory of rotational correlation is developed and discussed with regard to its applicability to existing observations. The theory is then applied to a sample of visual binaries which are the least studied for rotational coupling. Consideration of eclipsing systems and spectroscopic binaries is limited to show how the degrees of freedom in the spin parallelism problem can be reduced. The analysis lends support to the existence of synchronism in closely spaced binaries.
An autonomous single-piston engine with a quantum rotor
NASA Astrophysics Data System (ADS)
Roulet, Alexandre; Nimmrichter, Stefan; Taylor, Jacob M.
2018-07-01
Pistons are elementary components of a wide variety of thermal engines, allowing to convert input fuel into rotational motion. Here, we propose a single-piston engine where the rotational degree of freedom is effectively realized by the flux of a Josephson loop—a quantum rotor—while the working volume corresponds to the effective length of a superconducting resonator. Our autonomous design implements a Carnot cycle, relies solely on standard thermal baths and can be implemented with circuit quantum electrodynamics. We demonstrate how the engine is able to extract a net positive work via its built-in synchronicity using a filter cavity as an effective valve, eliminating the need for external control.
Mechanisms of SN2 reactions: insights from a nearside/farside analysis.
Hennig, Carsten; Schmatz, Stefan
2015-10-28
A nearside/farside analysis of differential cross sections has been performed for the complex-forming SN2 reaction Cl(-) + CH3Br → ClCH3 + Br(-). It is shown that for low rotational quantum numbers a direct "nearside" reaction mechanism plays an important role and leads to anisotropic differential cross sections. For high rotational quantum numbers, indirect mechanisms via a long-lived intermediate complex are prevalent (independent of a nearside/farside configuration), leading to isotropic cross sections. Quantum mechanical interference can be significant at specific energies or angles. Averaging over energies and angles reveals that the nearside/farside decomposition in a semiclassical interpretation can reasonably account for the analysis of the reaction mechanism.
Perfect quantum multiple-unicast network coding protocol
NASA Astrophysics Data System (ADS)
Li, Dan-Dan; Gao, Fei; Qin, Su-Juan; Wen, Qiao-Yan
2018-01-01
In order to realize long-distance and large-scale quantum communication, it is natural to utilize quantum repeater. For a general quantum multiple-unicast network, it is still puzzling how to complete communication tasks perfectly with less resources such as registers. In this paper, we solve this problem. By applying quantum repeaters to multiple-unicast communication problem, we give encoding-decoding schemes for source nodes, internal ones and target ones, respectively. Source-target nodes share EPR pairs by using our encoding-decoding schemes over quantum multiple-unicast network. Furthermore, quantum communication can be accomplished perfectly via teleportation. Compared with existed schemes, our schemes can reduce resource consumption and realize long-distance transmission of quantum information.
Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing
Harrer, Andreas; Szedlak, Rolf; Schwarz, Benedikt; Moser, Harald; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Lendl, Bernhard; Strasser, Gottfried
2016-01-01
We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor. The surface operation mode combined with the low divergence emission of the ring quantum cascade laser enables for long analyte interaction regions spatially separated from the sample surface. The device enables for sensing of gaseous analytes which requires a relatively long interaction region. Our design is suitable for 2D array integration with multiple emission and detection frequencies. Proof of principle measurements with isobutane (2-methylpropane) and propane as gaseous analytes were conducted. Detectable concentration values of 0–70% for propane and 0–90% for isobutane were reached at a laser operation wavelength of 6.5 μm utilizing a 10 cm gas cell in double pass configuration. PMID:26887891
Canadian Semiconductor Technology Conference, 6th, Ottawa, Canada, Aug. 11-13, 1992, Proceedings
NASA Astrophysics Data System (ADS)
Baribeau, Jean-Marc
1992-11-01
This volume contains papers on the growth efficiency and distribution coefficient of GaInP-InP epilayers and heterostructures, X-ray photoelectron spectroscopy studies of Ge epilayers on Si(100), and mechanical properties of silicon carbide films for X-ray lithography application. Attention is also given to fine structure in Raman spectroscopy and X-ray reflectometry and its uses for the characterization of superlattices, phase formation in Fe-Si thin-film diffusion couples, process optimization for a micromachined silicon nonreverse valve, and a numerical study of heat transport in thermally isolated flow-rate microsensors. Particular consideration is given to a versatile 2D model for InGaAsP quantum-well semiconductor lasers, gallium arsenide electronics in the marketplace, and optical channel grading in p-type Si/SiGe MOSFETs. Other papers are on ultrafast electron tunneling in a reverse-biased high-efficiency quantum well laser structure, excess currents as a result of trap-assisted tunneling in double-barrier resonant tunneling diodes, and carrier lifetimes in strained InGaAsP multiple quantum-well laser structures.
Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities
Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D.; Malpuech, G.; Novoselov, K. S.; Smith, J. M.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I.
2015-01-01
Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light–matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light–part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized. PMID:26446783
Gate tunable parallel double quantum dots in InAs double-nanowire devices
NASA Astrophysics Data System (ADS)
Baba, S.; Matsuo, S.; Kamata, H.; Deacon, R. S.; Oiwa, A.; Li, K.; Jeppesen, S.; Samuelson, L.; Xu, H. Q.; Tarucha, S.
2017-12-01
We report fabrication and characterization of InAs nanowire devices with two closely placed parallel nanowires. The fabrication process we develop includes selective deposition of the nanowires with micron scale alignment onto predefined finger bottom gates using a polymer transfer technique. By tuning the double nanowire with the finger bottom gates, we observed the formation of parallel double quantum dots with one quantum dot in each nanowire bound by the normal metal contact edges. We report the gate tunability of the charge states in individual dots as well as the inter-dot electrostatic coupling. In addition, we fabricate a device with separate normal metal contacts and a common superconducting contact to the two parallel wires and confirm the dot formation in each wire from comparison of the transport properties and a superconducting proximity gap feature for the respective wires. With the fabrication techniques established in this study, devices can be realized for more advanced experiments on Cooper-pair splitting, generation of Parafermions, and so on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kano, Shinya; Maeda, Kosuke; Majima, Yutaka, E-mail: majima@msl.titech.ac.jp
2015-10-07
We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge),more » respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, H.; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585; Yamaguchi, T., E-mail: tyamag@riken.jp
We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots withmore » serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.« less
NASA Astrophysics Data System (ADS)
Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing
2018-04-01
We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.
Optical model with multiple band couplings using soft rotator structure
NASA Astrophysics Data System (ADS)
Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi
2017-09-01
A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.
Optimal Synthesis of the Joint Unitary Evolutions
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun
2018-07-01
Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.
Optimal Synthesis of the Joint Unitary Evolutions
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun
2018-03-01
Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.
Pumped shot noise in adiabatically modulated graphene-based double-barrier structures.
Zhu, Rui; Lai, Maoli
2011-11-16
Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.
Pumped shot noise in adiabatically modulated graphene-based double-barrier structures
NASA Astrophysics Data System (ADS)
Zhu, Rui; Lai, Maoli
2011-11-01
Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.
NASA Astrophysics Data System (ADS)
Suaza, Y. A.; Laroze, D.; Fulla, M. R.; Marín, J. H.
2018-05-01
The D2+ molecular complex fundamental properties in a uniform and multi-hilled semiconductor quantum ribbon under orthogonal electric and magnetic fields are theoretically studied. The energy structure is calculated by using adiabatic approximation combined with diagonalization procedure. The D2+ energy structure is more strongly controlled by the geometrical structural hills than the Coulomb interaction. The formation of vibrational and rotational states is discussed. Aharanov-Bohm oscillation patterns linked to rotational states as well as the D2+ molecular complex stability are highly sensitive to the number of hills while electric field breaks the electron rotational symmetry and removes the energy degeneration between low-lying states.
Optimal ancilla-free Pauli+V circuits for axial rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blass, Andreas; Bocharov, Alex; Gurevich, Yuri
We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL{sub 2}(ℤ) geometrymore » is almost elementary.« less
High mobility back-gated InAs/GaSb double quantum well grown on GaSb substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Binh-Minh, E-mail: mbnguyen@hrl.com, E-mail: MSokolich@hrl.com; Yi, Wei; Noah, Ramsey
2015-01-19
We report a backgated InAs/GaSb double quantum well device grown on GaSb substrate. The use of the native substrate allows for high materials quality with electron mobility in excess of 500 000 cm{sup 2}/Vs at sheet charge density of 8 × 10{sup 11} cm{sup −2} and approaching 100 000 cm{sup 2}/Vs near the charge neutrality point. Lattice matching between the quantum well structure and the substrate eliminates the need for a thick buffer, enabling large back gate capacitance and efficient coupling with the conduction channels in the quantum wells. As a result, quantum Hall effects are observed in both electron and hole regimes across the hybridizationmore » gap.« less
Young's double-slit interference with two-color biphotons.
Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige
2017-12-12
In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.
NASA Technical Reports Server (NTRS)
1976-01-01
The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.
Dual gauge field theory of quantum liquid crystals in three dimensions
Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; ...
2017-10-09
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emergemore » whenever translational symmetry is restored. Lastly, we also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.« less
Dual gauge field theory of quantum liquid crystals in three dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emergemore » whenever translational symmetry is restored. Lastly, we also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.« less
NASA Technical Reports Server (NTRS)
Hess, Wayne P.; Leone, Stephen R.
1987-01-01
Absolute I(asterisk) quantum yields have been measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The yields are obtained by the technique of time-resolved diode laser gain-vs-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 + or - 2 percent and it falls off to 53.4 + or - 2 percent and 44.0 + or - 4 percent at 284 and 248 nm, respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I(asterisk) quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I(asterisk) yields reported here. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I(asterisk) quantum yield results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryzhkov, D. I., E-mail: krizh@ipmras.ru; Yablonsky, A. N.; Morozov, S. V.
2014-11-28
In this work, a study of the photoluminescence (PL) temperature dependence in quantum well GaAs/GaAsSb and double quantum well InGaAs/GaAsSb/GaAs heterostructures grown by metalorganic chemical vapor deposition with different parameters of GaAsSb and InGaAs layers has been performed. It has been demonstrated that in double quantum well InGaAs/GaAsSb/GaAs heterostructures, a significant shift of the PL peak to a longer-wavelength region (up to 1.2 μm) and a considerable reduction in the PL thermal quenching in comparison with GaAs/GaAsSb structures can be obtained due to better localization of charge carriers in the double quantum well. For InGaAs/GaAsSb/GaAs heterostructures, an additional channel of radiativemore » recombination with participation of the excited energy states in the quantum well, competing with the main ground-state radiative transition, has been revealed.« less
Giant gain from spontaneously generated coherence in Y-type double quantum dot structure
NASA Astrophysics Data System (ADS)
Al-Nashy, B.; Razzaghi, Sonia; Al-Musawi, Muwaffaq Abdullah; Rasooli Saghai, H.; Al-Khursan, Amin H.
A theoretical model was presented for linear susceptibility using density matrix theory for Y-configuration of double quantum dots (QDs) system including spontaneously generated coherence (SGC). Two SGC components are included for this system: V, and Λ subsystems. It is shown that at high V-component, the system have a giga gain. At low Λ-system component; it is possible to controls the light speed between superluminal and subluminal using one parameter by increasing SGC component of the V-system. This have applications in quantum information storage and spatially-varying temporal clock.
Semenov, Alexander; Babikov, Dmitri
2015-12-17
The mixed quantum classical theory, MQCT, for inelastic scattering of two molecules is developed, in which the internal (rotational, vibrational) motion of both collision partners is treated with quantum mechanics, and the molecule-molecule scattering (translational motion) is described by classical trajectories. The resultant MQCT formalism includes a system of coupled differential equations for quantum probability amplitudes, and the classical equations of motion in the mean-field potential. Numerical tests of this theory are carried out for several most important rotational state-to-state transitions in the N2 + H2 system, in a broad range of collision energies. Besides scattering resonances (at low collision energies) excellent agreement with full-quantum results is obtained, including the excitation thresholds, the maxima of cross sections, and even some smaller features, such as slight oscillations of energy dependencies. Most importantly, at higher energies the results of MQCT are nearly identical to the full quantum results, which makes this approach a good alternative to the full-quantum calculations that become computationally expensive at higher collision energies and for heavier collision partners. Extensions of this theory to include vibrational transitions or general asymmetric-top rotor (polyatomic) molecules are relatively straightforward.
NASA Astrophysics Data System (ADS)
Ahn, Junyeong; Yang, Bohm-Jung
2017-04-01
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.
Double Super-Exchange in Silicon Quantum Dots Connected by Short-Bridged Networks
NASA Astrophysics Data System (ADS)
Li, Huashan; Wu, Zhigang; Lusk, Mark
2013-03-01
Silicon quantum dots (QDs) with diameters in the range of 1-2 nm are attractive for photovoltaic applications. They absorb photons more readily, transport excitons with greater efficiency, and show greater promise in multiple-exciton generation and hot carrier collection paradigms. However, their high excitonic binding energy makes it difficult to dissociate excitons into separate charge carriers. One possible remedy is to create dot assemblies in which a second material creates a Type-II heterojunction with the dot so that exciton dissociation occurs locally. This talk will focus on such a Type-II heterojunction paradigm in which QDs are connected via covalently bonded, short-bridge molecules. For such interpenetrating networks of dots and molecules, our first principles computational investigation shows that it is possible to rapidly and efficiently separate electrons to QDs and holes to bridge units. The bridge network serves as an efficient mediator of electron superexchange between QDs while the dots themselves play the complimentary role of efficient hole superexchange mediators. Dissociation, photoluminescence and carrier transport rates will be presented for bridge networks of silicon QDs that exhibit such double superexchange. This material is based upon work supported by the Renewable Energy Materials Research Science and Engineering Center (REMRSEC) under Grant No. DMR-0820518 and Golden Energy Computing Organization (GECO).
Matrix decompositions of two-dimensional nuclear magnetic resonance spectra.
Havel, T F; Najfeld, I; Yang, J X
1994-08-16
Two-dimensional NMR spectra are rectangular arrays of real numbers, which are commonly regarded as digitized images to be analyzed visually. If one treats them instead as mathematical matrices, linear algebra techniques can also be used to extract valuable information from them. This matrix approach is greatly facilitated by means of a physically significant decomposition of these spectra into a product of matrices--namely, S = PAPT. Here, P denotes a matrix whose columns contain the digitized contours of each individual peak or multiple in the one-dimensional spectrum, PT is its transpose, and A is an interaction matrix specific to the experiment in question. The practical applications of this decomposition are considered in detail for two important types of two-dimensional NMR spectra, double quantum-filtered correlated spectroscopy and nuclear Overhauser effect spectroscopy, both in the weak-coupling approximation. The elements of A are the signed intensities of the cross-peaks in a double quantum-filtered correlated spectrum, or the integrated cross-peak intensities in the case of a nuclear Overhauser effect spectrum. This decomposition not only permits these spectra to be efficiently simulated but also permits the corresponding inverse problems to be given an elegant mathematical formulation to which standard numerical methods are applicable. Finally, the extension of this decomposition to the case of strong coupling is given.
Matrix decompositions of two-dimensional nuclear magnetic resonance spectra.
Havel, T F; Najfeld, I; Yang, J X
1994-01-01
Two-dimensional NMR spectra are rectangular arrays of real numbers, which are commonly regarded as digitized images to be analyzed visually. If one treats them instead as mathematical matrices, linear algebra techniques can also be used to extract valuable information from them. This matrix approach is greatly facilitated by means of a physically significant decomposition of these spectra into a product of matrices--namely, S = PAPT. Here, P denotes a matrix whose columns contain the digitized contours of each individual peak or multiple in the one-dimensional spectrum, PT is its transpose, and A is an interaction matrix specific to the experiment in question. The practical applications of this decomposition are considered in detail for two important types of two-dimensional NMR spectra, double quantum-filtered correlated spectroscopy and nuclear Overhauser effect spectroscopy, both in the weak-coupling approximation. The elements of A are the signed intensities of the cross-peaks in a double quantum-filtered correlated spectrum, or the integrated cross-peak intensities in the case of a nuclear Overhauser effect spectrum. This decomposition not only permits these spectra to be efficiently simulated but also permits the corresponding inverse problems to be given an elegant mathematical formulation to which standard numerical methods are applicable. Finally, the extension of this decomposition to the case of strong coupling is given. PMID:8058742
NASA Astrophysics Data System (ADS)
Liu, Zhaoxiang; Yao, Jinping; Chen, Jinming; Xu, Bo; Chu, Wei; Cheng, Ya
2018-02-01
The generation of laserlike narrow bandwidth emissions from nitrogen molecular ions (N2+ ) generated in intense near- and mid infrared femtosecond laser fields has aroused much interest because of the mysterious physics underlying such a phenomenon. Here, we perform a pump-probe measurement on the nonlinear interaction of rotational quantum wave packets of N2+ generated in midinfrared (e.g., at a wavelength centered at 1580 nm) femtosecond laser fields with an ultrashort probe pulse whose broad spectrum overlaps both P - and R -branch rotational transition lines between the electronic states N2+(B2Σu+,v'=0 ) and N2+(X2Σg+,v =0 ) . The results indicate the occurrence of highly efficient near-resonant stimulated Raman scattering in the quantum wave packets of N2+ ions generated in strong laser fields in the midinfrared region, of which the underlying mechanism is different from that of the air lasers generated in atmospheric environment when pumping with 800 nm intense pulses.
Precision Spectroscopy in Cold Molecules: The Lowest Rotational Interval of He2 + and Metastable He2
NASA Astrophysics Data System (ADS)
Jansen, Paul; Semeria, Luca; Hofer, Laura Esteban; Scheidegger, Simon; Agner, Josef A.; Schmutz, Hansjürg; Merkt, Frédéric
2015-09-01
Multistage Zeeman deceleration was used to generate a slow, dense beam of translationally cold He2 molecules in the metastable a 3Σu+ state. Precision measurements of the Rydberg spectrum of these molecules at high values of the principal quantum number n have been carried out. The spin-rotational state selectivity of the Zeeman-deceleration process was exploited to reduce the spectral congestion, minimize residual Doppler shifts, resolve the Rydberg series around n =200 and assign their fine structure. The ionization energy of metastable He2 and the lowest rotational interval of the X+ 2Σu+ (ν+=0 ) ground state of 4He2+ have been determined with unprecedented precision and accuracy by Rydberg-series extrapolation. Comparison with ab initio predictions of the rotational energy level structure of 4He2+ [W.-C. Tung, M. Pavanello, and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012)] enabled us to quantify the magnitude of relativistic and quantum-electrodynamics contributions to the fundamental rotational interval of He2+ .
Controlling the Transport of an Ion: Classical and Quantum Mechanical Solutions
2014-07-09
quantum systems: tools, achievements, and limitations Christiane P Koch Shortcuts to adiabaticity for an ion in a rotating radially- tight trap M Palmero...Keywords: coherent control, ion traps, quantum information, optimal control theory 1. Introduction Control methods are key enabling techniques in many...figure 6. 3.4. Feasibility analysis of quantum optimal control Numerical optimization of the wavepacket motion is expected to become necessary once
Free-space quantum key distribution by rotation-invariant twisted photons.
Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo
2014-08-08
"Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.
Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons
NASA Astrophysics Data System (ADS)
Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo
2014-08-01
"Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.
NASA Astrophysics Data System (ADS)
Dickenson, G. D.; Salumbides, E. J.; Niu, M.; Jungen, Ch.; Ross, S. C.; Ubachs, W.
2012-09-01
Recently a high precision spectroscopic investigation of the EF1Σg+-X1Σg+ system of molecular hydrogen was reported yielding information on QED and relativistic effects in a sequence of rotational quantum states in the X1Σg+ ground state of the H2 molecule [Salumbides , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.043005 107, 043005 (2011)]. The present paper presents a more detailed description of the methods and results. Furthermore, the paper serves as a stepping stone towards a continuation of the previous study by extending the known level structure of the EF1Σg+ state to highly excited rovibrational levels through Doppler-free two-photon spectroscopy. Based on combination differences between vibrational levels in the ground state, and between three rotational branches (O, Q, and S branches) assignments of excited EF1Σg+ levels, involving high vibrational and rotational quantum numbers, can be unambiguously made. For the higher EF1Σg+ levels, where no combination differences are available, calculations were performed using the multichannel quantum defect method, for a broad class of vibrational and rotational levels up to J=19. These predictions were used for assigning high-J EF levels and are found to be accurate within 5 cm-1.
Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy
NASA Technical Reports Server (NTRS)
Hess, Wayne P.; Leone, Stephen R.
1987-01-01
Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results.
Electrically driven spin qubit based on valley mixing
NASA Astrophysics Data System (ADS)
Huang, Wister; Veldhorst, Menno; Zimmerman, Neil M.; Dzurak, Andrew S.; Culcer, Dimitrie
2017-02-01
The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.
Quantum logic gates based on coherent electron transport in quantum wires.
Bertoni, A; Bordone, P; Brunetti, R; Jacoboni, C; Reggiani, S
2000-06-19
It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.
Hanni, Matti; Lantto, Perttu; Runeberg, Nino; Jokisaari, Jukka; Vaara, Juha
2004-09-22
Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order Møller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidaux, Y., E-mail: yves.bidaux@alpeslasers.ch; Alpes Lasers SA, 1-3 Maximilien-de-Meuron, CH-2000 Neuchatel; Terazzi, R.
2015-09-07
We report spectrally resolved gain measurements and simulations for quantum cascade lasers (QCLs) composed of multiple heterogeneous stacks designed for broadband emission in the mid-infrared. The measurement method is first demonstrated on a reference single active region QCL based on a double-phonon resonance design emitting at 7.8 μm. It is then extended to a three-stack active region based on bound-to-continuum designs with a broadband emission range from 7.5 to 10.5 μm. A tight agreement is found with simulations based on a density matrix model. The latter implements exhaustive microscopic scattering and dephasing sources with virtually no fitting parameters. The quantitative agreement ismore » furthermore assessed by measuring gain coefficients obtained by studying the threshold current dependence with the cavity length. These results are particularly relevant to understand fundamental gain mechanisms in complex semiconductor heterostructure QCLs and to move towards efficient gain engineering. Finally, the method is extended to the measurement of the modal reflectivity of an anti-reflection coating deposited on the front facet of the broadband QCL.« less
Deconfined Quantum Critical Points: Symmetries and Dualities
Wang, Chong; Nahum, Adam; Metlitski, Max A.; ...
2017-09-22
The deconfined quantum critical point (QCP), separating the Néel and valence bond solid phases in a 2D antiferromagnet, was proposed as an example of (2+1)D criticality fundamentally different from standard Landau-Ginzburg-Wilson-Fisher criticality. In this work, we present multiple equivalent descriptions of deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low-energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to N f=2 fermionic quantum electrodynamics, which has its own self-duality and hence may have an O(4)×ZT2 symmetry. We propose several dualities for the deconfined QCP with SU(2) spin symmetry whichmore » together make natural the emergence of a previously suggested SO(5) symmetry rotating the Néel and valence bond solid orders. These emergent symmetries are implemented anomalously. The associated infrared theories can also be viewed as surface descriptions of (3+1) D topological paramagnets, giving further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss the possibility of “pseudocritical” behavior for deconfined critical points, and the meaning of the dualities and emergent symmetries in such a scenario.« less
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong
2015-01-01
Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.
Redler, Lauren H.; Byram, Ian R.; Luchetti, Timothy J.; Tsui, Ying Lai; Moen, Todd C.; Gardner, Thomas R.; Ahmad, Christopher S.
2014-01-01
Background: Redundancies in the rotator cuff tissue, commonly referred to as “dog ear” deformities, are frequently encountered during rotator cuff repair. Knowledge of how these deformities are created and their impact on rotator cuff footprint restoration is limited. Purpose: The goals of this study were to assess the impact of tear size and repair method on the creation and management of dog ear deformities in a human cadaveric model. Study Design: Controlled laboratory study. Methods: Crescent-shaped tears were systematically created in the supraspinatus tendon of 7 cadaveric shoulders with increasing medial to lateral widths (0.5, 1.0, and 1.5 cm). Repair of the 1.5-cm tear was performed on each shoulder with 3 methods in a randomized order: suture bridge, double-row repair with 2-mm fiber tape, and fiber tape with peripheral No. 2 nonabsorbable looped sutures. Resulting dog ear deformities were injected with an acrylic resin mixture, digitized 3-dimensionally (3D), and photographed perpendicular to the footprint with calibration. The volume, height, and width of the rotator cuff tissue not in contact with the greater tuberosity footprint were calculated using the volume injected, 3D reconstructions, and calibrated photographs. Comparisons were made between tear size, dog ear measurement technique, and repair method utilizing 2-way analysis of variance and Student-Newman-Keuls multiple-comparison tests. Results: Utilizing 3D digitized and injection-derived volumes and dimensions, anterior dog ear volume, height, and width were significantly smaller for rotator cuff repair with peripheral looped sutures compared with a suture bridge (P < .05) or double-row repair with 2-mm fiber tape alone (P < .05). Similarly, posterior height and width were significantly smaller for repair with looped peripheral sutures compared with a suture bridge (P < .05). Dog ear volumes and heights trended larger for the 1.5-cm tear, but this was not statistically significant. Conclusion: When combined with a standard transosseous-equivalent repair technique, peripheral No. 2 nonabsorbable looped sutures significantly decreased the volume, height, and width of dog ear deformities, better restoring the anatomic footprint of the rotator cuff. Clinical Relevance: Dog ear deformities are commonly encountered during rotator cuff repair. Knowledge of a repair technique that reliably decreases their size, and thus increases contact at the anatomic footprint of the rotator cuff, will aid sports medicine surgeons in the management of these deformities. PMID:26535317
More on quantum groups from the quantization point of view
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1994-12-01
Star products on the classical double group of a simple Lie group and on corresponding symplectic groupoids are given so that the quantum double and the “quantized tangent bundle” are obtained in the deformation description. “Complex” quantum groups and bicovariant quantum Lie algebras are discussed from this point of view. Further we discuss the quantization of the Poisson structure on the symmetric algebra S(g) leading to the quantized enveloping algebra U h (g) as an example of biquantization in the sense of Turaev. Description of U h (g) in terms of the generators of the bicovariant differential calculus on F(G q ) is very convenient for this purpose. Finaly we interpret in the deformation framework some well known properties of compact quantum groups as simple consequences of corresponding properties of classical compact Lie groups. An analogue of the classical Kirillov's universal character formula is given for the unitary irreducble representation in the compact case.
RKKY interaction in a chirally coupled double quantum dot system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heine, A. W.; Tutuc, D.; Haug, R. J.
2013-12-04
The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtainedmore » Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.« less
Heo, Jino; Hong, Chang-Ho; Kang, Min-Sung; Yang, Hyeon; Yang, Hyung-Jin; Hong, Jong-Phil; Choi, Seong-Gon
2017-11-02
We propose a controlled quantum teleportation scheme to teleport an unknown state based on the interactions between flying photons and quantum dots (QDs) confined within single- and double-sided cavities. In our scheme, users (Alice and Bob) can teleport the unknown state through a secure entanglement channel under the control and distribution of an arbitrator (Trent). For construction of the entanglement channel, Trent utilizes the interactions between two photons and the QD-cavity system, which consists of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, Alice can teleport the unknown state of the electron spin in a QD inside a double-sided cavity to Bob's electron spin in a QD inside a single-sided cavity assisted by the channel information from Trent. Furthermore, our scheme using QD-cavity systems is feasible with high fidelity, and can be experimentally realized with current technologies.
Quantum transport under ac drive from the leads: A Redfield quantum master equation approach
NASA Astrophysics Data System (ADS)
Purkayastha, Archak; Dubi, Yonatan
2017-08-01
Evaluating the time-dependent dynamics of driven open quantum systems is relevant for a theoretical description of many systems, including molecular junctions, quantum dots, cavity-QED experiments, cold atoms experiments, and more. Here, we formulate a rigorous microscopic theory of an out-of-equilibrium open quantum system of noninteracting particles on a lattice weakly coupled bilinearly to multiple baths and driven by periodically varying thermodynamic parameters like temperature and chemical potential of the bath. The particles can be either bosonic or fermionic and the lattice can be of any dimension and geometry. Based on the Redfield quantum master equation under Born-Markov approximation, we derive a linear differential equation for an equal time two point correlation matrix, sometimes also called a single-particle density matrix, from which various physical observables, for example, current, can be calculated. Various interesting physical effects, such as resonance, can be directly read off from the equations. Thus, our theory is quite general and gives quite transparent and easy-to-calculate results. We validate our theory by comparing with exact numerical simulations. We apply our method to a generic open quantum system, namely, a double quantum dot coupled to leads with modulating chemical potentials. The two most important experimentally relevant insights from this are as follows: (i) Time-dependent measurements of current for symmetric oscillating voltages (with zero instantaneous voltage bias) can point to the degree of asymmetry in the system-bath coupling and (ii) under certain conditions time-dependent currents can exceed time-averaged currents by several orders of magnitude, and can therefore be detected even when the average current is below the measurement threshold.
NASA Astrophysics Data System (ADS)
Germann, Geoffrey James
1990-01-01
The rotational and vibrational quantum state population distributions of the H_2/HD products of the H + HR/DR to H_2 /HD + R reactions (HD/DR = CD_4, C_2H_6, C _3H_8) have been measured using CARS spectroscopy. Very little of the available energy is partitioned to the H_2 /HD products of these reactions, although more rotational energy is found in the hydrogen product molecule as the size of the R radical increases, f_{ rm int}/f_{rm v}/f_{rm r} is 0.15/0.06/0.09, 0.18/0.06/0.12 and 0.20/0.06/0.14 for the H + CD_4, C_2 H_6, and C_3 H_8 reactions, respectively. Some anomalous behavior is exhibited in the rotational distributions of the reactions. The quantum state distributions show that more rotational energy is partitioned to those molecules formed in v^' = 1, the vibrationally excited state, than is partitioned to the product molecules formed in v^' = 0, the vibrational ground state. Of the energy that is available to produce product rotation 8(15), 11(22) and 12(27)% is partitioned to rotationally excite the H _2/HD product molecules formed in the v^' = 0(v ^' = 1) quantum states in the H + CD_4, C_2H _6, and C_3H _8 reactions, respectively. Finally, the H_2 product quantum state population distributions of the H + C_2H _6 and H + C_3H _8 reactions are observed to become less energetic, both vibrationally and rotationally, more rapidly than the HD product of the H + CD_4 reaction as the H atom reactant is allowed to undergo a greater number of collisions. This final observation could be the result of the differences in structure of the C _2H_6, and C_3H_8 and the CD_4 molecules and/or the differences in the barriers to reaction in each of the reactions.
NASA Astrophysics Data System (ADS)
Groenenboom, G. C.; Wormer, P. E. S.; van der Avoird, A.; Mas, E. M.; Bukowski, R.; Szalewicz, K.
2000-10-01
Nearly exact six-dimensional quantum calculations of the vibration-rotation-tunneling (VRT) levels of the water dimer for values of the rotational quantum numbers J and K ⩽2 show that the SAPT-5s water pair potential presented in the preceding paper (paper I) gives a good representation of the experimental high-resolution far-infrared spectrum of the water dimer. After analyzing the sensitivity of the transition frequencies with respect to the linear parameters in the potential we could further improve this potential by using only one of the experimentally determined tunneling splittings of the ground state in (H2O)2. The accuracy of the resulting water pair potential, SAPT-5st, is established by comparison with the spectroscopic data of both (H2O)2 and (D2O)2: ground and excited state tunneling splittings and rotational constants, as well as the frequencies of the intermolecular vibrations.
Multiple quantum criticality in a two-dimensional superconductor
NASA Astrophysics Data System (ADS)
Biscaras, J.; Bergeal, N.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Grilli, M.; Caprara, S.; Lesueur, J.
2013-06-01
The diverse phenomena associated with the two-dimensional electron gas (2DEG) that occurs at oxide interfaces include, among others, exceptional carrier mobilities, magnetism and superconductivity. Although these have mostly been the focus of interest for potential future applications, they also offer an opportunity for studying more fundamental quantum many-body effects. Here, we examine the magnetic-field-driven quantum phase transition that occurs in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through a finite-size scaling analysis, we show that it belongs to the (2+1)D XY model universality class. The system can be described as a disordered array of superconducting puddles coupled by a 2DEG and, depending on its conductance, the observed critical behaviour is single (corresponding to the long-range phase coherence in the whole array) or double (one related to local phase coherence, the other one to the array). A phase diagram illustrating the dependence of the critical field on the 2DEG conductance is constructed, and shown to agree with theoretical proposals. Moreover, by retrieving the coherence-length critical exponent ν, we show that the quantum critical behaviour can be clean or dirty according to the Harris criterion, depending on whether the phase-coherence length is smaller or larger than the size of the puddles.
Multiple quantum criticality in a two-dimensional superconductor.
Biscaras, J; Bergeal, N; Hurand, S; Feuillet-Palma, C; Rastogi, A; Budhani, R C; Grilli, M; Caprara, S; Lesueur, J
2013-06-01
The diverse phenomena associated with the two-dimensional electron gas (2DEG) that occurs at oxide interfaces include, among others, exceptional carrier mobilities, magnetism and superconductivity. Although these have mostly been the focus of interest for potential future applications, they also offer an opportunity for studying more fundamental quantum many-body effects. Here, we examine the magnetic-field-driven quantum phase transition that occurs in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through a finite-size scaling analysis, we show that it belongs to the (2+1)D XY model universality class. The system can be described as a disordered array of superconducting puddles coupled by a 2DEG and, depending on its conductance, the observed critical behaviour is single (corresponding to the long-range phase coherence in the whole array) or double (one related to local phase coherence, the other one to the array). A phase diagram illustrating the dependence of the critical field on the 2DEG conductance is constructed, and shown to agree with theoretical proposals. Moreover, by retrieving the coherence-length critical exponent ν, we show that the quantum critical behaviour can be clean or dirty according to the Harris criterion, depending on whether the phase-coherence length is smaller or larger than the size of the puddles.
NASA Astrophysics Data System (ADS)
Martinetti, Pierre; Tomassini, Luca
2013-10-01
We study the metric aspect of the Moyal plane from Connes' noncommutative geometry point of view. First, we compute Connes' spectral distance associated with the natural isometric action of on the algebra of the Moyal plane . We show that the distance between any state of and any of its translated states is precisely the amplitude of the translation. As a consequence, we obtain the spectral distance between coherent states of the quantum harmonic oscillator as the Euclidean distance on the plane. We investigate the classical limit, showing that the set of coherent states equipped with Connes' spectral distance tends towards the Euclidean plane as the parameter of deformation goes to zero. The extension of these results to the action of the symplectic group is also discussed, with particular emphasis on the orbits of coherent states under rotations. Second, we compute the spectral distance in the double Moyal plane, intended as the product of (the minimal unitization of) by . We show that on the set of states obtained by translation of an arbitrary state of , this distance is given by the Pythagoras theorem. On the way, we prove some Pythagoras inequalities for the product of arbitrary unital and non-degenerate spectral triples. Applied to the Doplicher- Fredenhagen-Roberts model of quantum spacetime [DFR], these two theorems show that Connes' spectral distance and the DFR quantum length coincide on the set of states of optimal localization.
[Open double-row rotator cuff repair using the LASA-DR screw].
Schoch, C; Geyer, S; Geyer, M
2016-02-01
Safe and cost-effective rotator-cuff repair. All types of rotator cuff lesions. Frozen shoulder, rotator cuff mass defect, defect arthropathy. Extensive four-point fixation on the bony footprint is performed using the double-row lateral augmentation screw anchor (LASA-DR) with high biomechanical stability. Following mobilization of the tendons, these are refixed in the desired configuration first medially and then laterally. To this end, two drilling channels (footprint and lateral tubercle) are created for each screw. Using the shuttle technique, a suture anchor screw is reinforced with up to four pairs of threads. The medial row is then pierced and tied, and the sutures that have been left long are tied laterally around the screw heads (double row). 4 Weeks abduction pillow, resulting in passive physiotherapy, followed by initiation of active assisted physiotherapy. Full weight-bearing after 4-6 months. Prospective analysis of 35 consecutive Bateman-III lesions with excellent results and low rerupture rate (6%).
Study of Quantum Chaos in the Framework of Triaxial Rotator Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proskurins, J.; Bavrins, K.; Andrejevs, A.
2009-01-28
Dynamical quantum chaos criteria--a perturbed wave function entropy W({psi}{sub i}) and a fragmentation width {kappa}({phi}{sub k}) of basis states were studied in two cases of nuclear rigid triaxial rotator models. The first model is characterized by deformation angle {gamma} only, while the second model depends on both quadrupole deformation parameters ({beta},{gamma}). The degree of chaoticity has been determined in the studies of the dependence of criteria W({psi}{sub i}) and {kappa}({phi}{sub k}) from nuclear spin values up to I{<=}101 for model parameters {gamma} and ({beta},{gamma}) correspondingly. The transition from librational to rotational type energy spectra has been considered for both modelsmore » as well.« less
Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.
Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori
2016-07-20
Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.
Experimental Preparation and Measurement of Quantum States of Motion of a Trapped Atom
1997-01-01
trapped atom are quantum harmonic oscillators, their couplings to internal atomic levels (described by the Jaynes - Cummings model (JCM) [ l , 21) are... wave approximation in a frame rotating with WO, where hwo is the energy difference of the two internal levels, the interaction of the classical laser... Jaynes - Cummings model , the system is suited to realizing many proposals originally introduced in the realm of quantum optics and cavity quantum
Heisenberg scaling with weak measurement: a quantum state discrimination point of view
2015-03-18
a quantum state discrimination point of view. The Heisenberg scaling of the photon number for the precision of the interaction parameter between...coherent light and a spin one-half particle (or pseudo-spin) has a simple interpretation in terms of the interaction rotating the quantum state to an...release; distribution is unlimited. Heisenberg scaling with weak measurement: a quantum state discrimination point of view The views, opinions and/or
Entanglement loss in molecular quantum-dot qubits due to interaction with the environment.
Blair, Enrique P; Tóth, Géza; Lent, Craig S
2018-05-16
We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser-Horne-Shimony-Holt (CHSH) and Brukner-Paunković-Rudolph-Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.
NASA Astrophysics Data System (ADS)
Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira
2016-07-01
We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.
NASA Astrophysics Data System (ADS)
Lagoudakis, K. G.; Fischer, K. A.; Sarmiento, T.; McMahon, P. L.; Radulaski, M.; Zhang, J. L.; Kelaita, Y.; Dory, C.; Müller, K.; Vučković, J.
2017-01-01
Although individual spins in quantum dots have been studied extensively as qubits, their investigation under strong resonant driving in the scope of accessing Mollow physics is still an open question. Here, we have grown high quality positively charged quantum dots embedded in a planar microcavity that enable enhanced light-matter interactions. Under a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above-band and resonant excitation, we observe the formation of Mollow triplets on all optical transitions. We find that when the strong resonant drive power is used to tune the Mollow-triplet lines through each other, we observe anticrossings. We also demonstrate that the interaction that gives rise to the anticrossings can be controlled in strength by tuning the polarization of the resonant laser drive. Quantum-optical modeling of our system fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of the double lambda system.
Entanglement loss in molecular quantum-dot qubits due to interaction with the environment
NASA Astrophysics Data System (ADS)
Blair, Enrique P.; Tóth, Géza; Lent, Craig S.
2018-05-01
We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser–Horne–Shimony–Holt (CHSH) and Brukner–Paunković–Rudolph–Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.
Luo, Xiao-Qing; Li, Zeng-Zhao; Jing, Jun; Xiong, Wei; Li, Tie-Fu; Yu, Ting
2018-02-15
We theoretically investigate the spectral features of tunneling-induced transparency (TIT) and Autler-Townes (AT) doublet and triplet in a triple-quantum-dot system. By analyzing the eigenenergy spectrum of the system Hamiltonian, we can discriminate TIT and double TIT from AT doublet and triplet, respectively. For the resonant case, the presence of the TIT does not exhibit distinguishable anticrossing in the eigenenergy spectrum in the weak-tunneling regime, while the occurrence of double anticrossings in the strong-tunneling regime shows that the TIT evolves to the AT doublet. For the off-resonance case, the appearance of a new detuning-dependent dip in the absorption spectrum leads to double TIT behavior in the weak-tunneling regime due to no distinguished anticrossing occurring in the eigenenergy spectrum. However, in the strong-tunneling regime, a new detuning-dependent dip in the absorption spectrum results in AT triplet owing to the presence of triple anticrossings in the eigenenergy spectrum. Our results can be applied to quantum measurement and quantum-optics devices in solid systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basset, J.; Stockklauser, A.; Jarausch, D.-D.
2014-08-11
We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase (I) and the quadrature (Q) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of 8.5×10{sup −5} e/√(Hz). A low frequency 1/f type noise spectrum combined with a white noise level of 6.6×10{sup −6} e{sup 2}/Hz above 1 Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope ofmore » the 1/f noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.« less
Double-bundle ACL reconstruction can improve rotational stability.
Yagi, Masayoshi; Kuroda, Ryosuke; Nagamune, Kouki; Yoshiya, Shinichi; Kurosaka, Masahiro
2007-01-01
Double-bundle anterior cruciate ligament (ACL) reconstruction reproduces anteromedial and posterolateral bundles, and thus has theoretical advantages over conventional single-bundle reconstruction in controlling rotational torque in vitro. However, its superiority in clinical practice has not been proven. We analyzed rotational stability with three reconstruction techniques in 60 consecutive patients who were randomly divided into three groups (double-bundle, anteromedial single-bundle, posterolateral single-bundle). In the reconstructive procedure, the hamstring tendon was harvested and used as a free tendon graft. Followup examinations were performed 1 year after surgery. Anteroposterior laxity of the knee was examined with a KT-1000 arthrometer, whereas rotatory instability, as elicited by the pivot shift test, was assessed using a new measurement system incorporating three-dimensional electromagnetic sensors. Routine clinical evaluations, including KT examination, demonstrated no differences among the three groups. However, using the new measurement system, patients with double-bundle ACL reconstruction showed better pivot shift control of complex instability than patients with anteromedial and posterolateral single-bundle reconstruction.
NASA Astrophysics Data System (ADS)
Muguet, Francis F.; Robinson, G. Wilse; Bassez-Muguet, M. Palmyre
1995-03-01
With the help of a new scheme to correct for the basis set superposition error (BSSE), we find that an eclipsed nonlinear geometry becomes energetically favored over the eclipsed linear hydrogen-bonded geometry. From a normal mode analysis of the potential energy surface (PES) in the vicinity of the nonlinear geometry, we suggest that several dynamical interchange pathways must be taken into account. The minimal molecular symmetry group to be considered should be the double group of G36, but still larger multiple groups may be required. An interpretation of experimental vibration-rotation-tunneling (VRT) data in terms of the G144 group, which implies monomer inversions, may not be the only alternative. It appears that group theoretical considerations alone are insufficient for understanding the complex VRT dynamics of the ammonia dimer.
Control of molecular rotation with an optical centrifuge
NASA Astrophysics Data System (ADS)
Korobenko, Aleksey
2017-04-01
The main purpose of this work is the experimental study of the applicability of an optical centrifuge - a novel tool, utilizing non-resonant broadband laser radiation to excite molecular rotation - to produce and control molecules in extremely high rotational states, so called molecular ``super rotors'', and to study their optical, magnetic, acoustic, hydrodynamic and quantum mechanical properties.
External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.
Rao, Gottipaty N; Karpf, Andreas
2011-02-01
Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.
Simple way to calculate a UV-finite one-loop quantum energy in the Randall-Sundrum model
NASA Astrophysics Data System (ADS)
Altshuler, Boris L.
2017-04-01
The surprising simplicity of Barvinsky-Nesterov or equivalently Gelfand-Yaglom methods of calculation of quantum determinants permits us to obtain compact expressions for a UV-finite difference of one-loop quantum energies for two arbitrary values of the parameter of the double-trace asymptotic boundary conditions. This result generalizes the Gubser and Mitra calculation for the particular case of difference of "regular" and "irregular" one-loop energies in the one-brane Randall-Sundrum model. The approach developed in the paper also allows us to get "in one line" the one-loop quantum energies in the two-brane Randall-Sundrum model. The relationship between "one-loop" expressions corresponding to the mixed Robin and to double-trace asymptotic boundary conditions is traced.
Strong spin-photon coupling in silicon
NASA Astrophysics Data System (ADS)
Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.
2018-03-01
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
Coherent inflation for large quantum superpositions of levitated microspheres
NASA Astrophysics Data System (ADS)
Romero-Isart, Oriol
2017-12-01
We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.
Quantum Control of a Spin Qubit Coupled to a Photonic Crystal Cavity
2013-01-01
response for V polarization is 70 times greater than for H. The DR for X0 shows anisotropic exchange splitting23, but the polarization anisotropy in the...rotation pulse power and is indicative of damped Rabi oscillations of the electron spin. The peaks at 3 mW and 11 mW correspond to rotation pulses with...system in a p-i-n junction. Opt. Express 17, 18651–18658 (2009). 9. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic
Chiral Majorana interference as a source of quantum entanglement
NASA Astrophysics Data System (ADS)
Chirolli, Luca; Baltanás, José Pablo; Frustaglia, Diego
2018-04-01
Two-particle Hanbury Brown-Twiss interferometry with chiral Majorana modes produces maximally entangled electron-hole pairs. We promote the electron-hole quantum number to an interferometric degree of freedom and complete the set of linear tools for single- and two-particle interferometry by introducing a key phase gate that, combined with a Mach-Zehnder, allows full electron-hole rotations. By considering entanglement witnesses built on current cross-correlation measurements, we find that the possibility of independent local-channel rotations in the electron-hole subspace leads to a significant boost of the entanglement detection power.
NASA Astrophysics Data System (ADS)
Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.
2016-04-01
In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vignesh, G.; Nithiananthi, P., E-mail: nithyauniq@gmail.com
2015-06-24
Diamagnetic susceptibility of a randomly distributed donor in a GaAs/Al{sub 0.3}Ga{sub 0.7}As Double Quantum Well has been calculated in its ground state as a function of barrier and well width. It is shown that the modification in the barrier and well dimension significantly influences the dimensional character of the donor through modulating the subband distribution and in turn the localization of the donor. The effect of barrier and well thickness on the interparticle distance has also been observed. Interestingly it opens up the possibility of tuning the susceptibility and monitoring the tunnel coupling among the wells.
NASA Astrophysics Data System (ADS)
Vignesh, G.; Nithiananthi, P.
2015-06-01
Diamagnetic susceptibility of a randomly distributed donor in a GaAs/Al0.3Ga0.7As Double Quantum Well has been calculated in its ground state as a function of barrier and well width. It is shown that the modification in the barrier and well dimension significantly influences the dimensional character of the donor through modulating the subband distribution and in turn the localization of the donor. The effect of barrier and well thickness on the interparticle distance has also been observed. Interestingly it opens up the possibility of tuning the susceptibility and monitoring the tunnel coupling among the wells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arapov, Yu. G.; Gudina, S. V.; Klepikova, A. S., E-mail: klepikova@imp.uran.ru
2017-02-15
The dependences of the longitudinal and Hall resistances on a magnetic field in n-InGaAs/GaAs heterostructures with a single and double quantum wells after infrared illumination are measured in the range of magnetic fields Ð’ = 0–16 T and temperatures T = 0.05–4.2 K. Analysis of the experimental results was carried out on a base of two-parameter scaling hypothesis for the integer quantum Hall effect. The value of the second (irrelevant) critical exponent of the theory of two-parameter scaling was estimated.
Closed form solution for a double quantum well using Gröbner basis
NASA Astrophysics Data System (ADS)
Acus, A.; Dargys, A.
2011-07-01
Analytical expressions for the spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and the effective masses are different. This was achieved by using a Gröbner basis algorithm that allowed us to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.
Undoped Si/SiGe Depletion-Mode Few-Electron Double Quantum Dots
NASA Astrophysics Data System (ADS)
Borselli, Matthew; Huang, Biqin; Ross, Richard; Croke, Edward; Holabird, Kevin; Hazard, Thomas; Watson, Christopher; Kiselev, Andrey; Deelman, Peter; Alvarado-Rodriguez, Ivan; Schmitz, Adele; Sokolich, Marko; Gyure, Mark; Hunter, Andrew
2011-03-01
We have successfully formed a double quantum dot in the sSi/SiGe material system without need for intentional dopants. In our design, a two-dimensional electron gas is formed in a strained silicon well by forward biasing a global gate. Lateral definition of quantum dots is established with reverse-biased gates with ~ 40 nm critical dimensions. Low-temperature capacitance and Hall measurements confirm electrons are confined in the Si-well with mobilities > 10 4 cm 2 / V - s . Further characterization identifies practical gate bias limits for this design and will be compared to simulation. Several double dot devices have been brought into the few-electron Coulomb blockade regime as measured by through-dot transport. Honeycomb diagrams and nonlinear through-dot transport measurements are used to quantify dot capacitances and addition energies of several meV. Sponsored by United States Department of Defense. Approved for Public Release, Distribution Unlimited.
A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques
NASA Astrophysics Data System (ADS)
Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.
1998-05-01
A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.
Guo, Qiang; Qi, Liangang
2017-04-10
In the coexistence of multiple types of interfering signals, the performance of interference suppression methods based on time and frequency domains is degraded seriously, and the technique using an antenna array requires a large enough size and huge hardware costs. To combat multi-type interferences better for GNSS receivers, this paper proposes a cascaded multi-type interferences mitigation method combining improved double chain quantum genetic matching pursuit (DCQGMP)-based sparse decomposition and an MPDR beamformer. The key idea behind the proposed method is that the multiple types of interfering signals can be excised by taking advantage of their sparse features in different domains. In the first stage, the single-tone (multi-tone) and linear chirp interfering signals are canceled by sparse decomposition according to their sparsity in the over-complete dictionary. In order to improve the timeliness of matching pursuit (MP)-based sparse decomposition, a DCQGMP is introduced by combining an improved double chain quantum genetic algorithm (DCQGA) and the MP algorithm, and the DCQGMP algorithm is extended to handle the multi-channel signals according to the correlation among the signals in different channels. In the second stage, the minimum power distortionless response (MPDR) beamformer is utilized to nullify the residuary interferences (e.g., wideband Gaussian noise interferences). Several simulation results show that the proposed method can not only improve the interference mitigation degree of freedom (DoF) of the array antenna, but also effectively deal with the interference arriving from the same direction with the GNSS signal, which can be sparse represented in the over-complete dictionary. Moreover, it does not bring serious distortions into the navigation signal.
Guo, Qiang; Qi, Liangang
2017-01-01
In the coexistence of multiple types of interfering signals, the performance of interference suppression methods based on time and frequency domains is degraded seriously, and the technique using an antenna array requires a large enough size and huge hardware costs. To combat multi-type interferences better for GNSS receivers, this paper proposes a cascaded multi-type interferences mitigation method combining improved double chain quantum genetic matching pursuit (DCQGMP)-based sparse decomposition and an MPDR beamformer. The key idea behind the proposed method is that the multiple types of interfering signals can be excised by taking advantage of their sparse features in different domains. In the first stage, the single-tone (multi-tone) and linear chirp interfering signals are canceled by sparse decomposition according to their sparsity in the over-complete dictionary. In order to improve the timeliness of matching pursuit (MP)-based sparse decomposition, a DCQGMP is introduced by combining an improved double chain quantum genetic algorithm (DCQGA) and the MP algorithm, and the DCQGMP algorithm is extended to handle the multi-channel signals according to the correlation among the signals in different channels. In the second stage, the minimum power distortionless response (MPDR) beamformer is utilized to nullify the residuary interferences (e.g., wideband Gaussian noise interferences). Several simulation results show that the proposed method can not only improve the interference mitigation degree of freedom (DoF) of the array antenna, but also effectively deal with the interference arriving from the same direction with the GNSS signal, which can be sparse represented in the over-complete dictionary. Moreover, it does not bring serious distortions into the navigation signal. PMID:28394290
Units of rotational information
NASA Astrophysics Data System (ADS)
Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping
2017-12-01
Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.
Sebastianelli, Francesco; Xu, Minzhong; Bacić, Zlatko; Lawler, Ronald; Turro, Nicholas J
2010-07-21
Recent synthesis of the endohedral complexes of C(70) and its open-cage derivative with one and two H(2) molecules has opened the path for experimental and theoretical investigations of the unique dynamic, spectroscopic, and other properties of systems with multiple hydrogen molecules confined inside a nanoscale cavity. Here we report a rigorous theoretical study of the dynamics of the coupled translational and rotational motions of H(2) molecules in C(70) and C(60), which are highly quantum mechanical. Diffusion Monte Carlo (DMC) calculations were performed for up to three para-H(2) (p-H(2)) molecules encapsulated in C(70) and for one and two p-H(2) molecules inside C(60). These calculations provide a quantitative description of the ground-state properties, energetics, and the translation-rotation (T-R) zero-point energies (ZPEs) of the nanoconfined p-H(2) molecules and of the spatial distribution of two p-H(2) molecules in the cavity of C(70). The energy of the global minimum on the intermolecular potential energy surface (PES) is negative for one and two H(2) molecules in C(70) but has a high positive value when the third H(2) is added, implying that at most two H(2) molecules can be stabilized inside C(70). By the same criterion, in the case of C(60), only the endohedral complex with one H(2) molecule is energetically stable. Our results are consistent with the fact that recently both (H(2))(n)@C(70) (n = 1, 2) and H(2)@C(60) were prepared, but not (H(2))(3)@C(70) or (H(2))(2)@C(60). The ZPE of the coupled T-R motions, from the DMC calculations, grows rapidly with the number of caged p-H(2) molecules and is a significant fraction of the well depth of the intermolecular PES, 11% in the case of p-H(2)@C(70) and 52% for (p-H(2))(2)@C(70). Consequently, the T-R ZPE represents a major component of the energetics of the encapsulated H(2) molecules. The inclusion of the ZPE nearly doubles the energy by which (p-H(2))(3)@C(70) is destabilized and increases by 66% the energetic destabilization of (p-H(2))(2)@C(60). For these reasons, the T-R ZPE has to be calculated accurately and taken into account for reliable theoretical predictions regarding the stability of the endohedral fullerene complexes with hydrogen molecules and their maximum H(2) content.
Evolution and Survival of Quantum Entanglement
2015-05-06
Research Triangle Park, NC 27709-2211 quantum entanglement, decoherence, qubit, revival, survival, Jaynes-Cummings, Rabi , rotating wave approximation...measurements, PHYSICAL REVIEW A , (06 2013): 62331. doi: S Agarwal, , S M Hashemi Rafsanjani , J H Eberly. Dissipation of the Rabi Model Beyond the
Quantum and quasi-classical calculations for the S+ + H2(v, j) →SH+(v′, j′)+H reactive collisions
Zanchet, Alexandre; Roncero, Octavio; Bulut, Niyazi
2016-01-01
State-to-state cross sections for the S+ + H2(v, j) → SH+ (v′, j′) + H endothermic reaction are obtained with quantum wave packet(WP) and quasi-classical (QCT) methods for different initial rovibrational H2(v, j) over a wide range of translation energies. Final state distribution as a function of the initial quantum number is obtained and discussed. Additionally, the effect of the internal excitation of H2 on the reactivity is carefully studied. It appears that energy transfer among modes is very inefficient, that vibrational energy is the most favorable for reaction and rotational excitation significantly enhance reactivity when vibrational energy is sufficient to reach the product. Special attention is also paid on an unusual discrepancy between classical and quantum dynamics for low rotational levels while agreement improves with rotational excitation of H2, An interesting resonant behaviour found in WP calculations is also discussed and is associated to the existence of roaming classical trajectories that enhance the reactivity of the title reaction. Finally, a comparison with the experimental results of Stowe et al.[1] for S+ + HD and S+ +D2 reactions, finding a reasonably good agreement with those results. PMID:27055725
Quantum and quasi-classical calculations for the S⁺ + H₂(v,j) → SH⁺(v',j') + H reactive collisions.
Zanchet, Alexandre; Roncero, Octavio; Bulut, Niyazi
2016-04-28
State-to-state cross-sections for the S(+) + H2(v,j) → SH(+)(v',j') + H endothermic reaction are obtained using quantum wave packet (WP) and quasi-classical (QCT) methods for different initial ro-vibrational H2(v,j) over a wide range of translation energies. The final state distribution as a function of the initial quantum number is obtained and discussed. Additionally, the effect of the internal excitation of H2 on the reactivity is carefully studied. It appears that energy transfer among modes is very inefficient that vibrational energy is the most favorable for the reaction, and rotational excitation significantly enhances the reactivity when vibrational energy is sufficient to reach the product. Special attention is also paid to an unusual discrepancy between classical and quantum dynamics for low rotational levels while agreement improves with rotational excitation of H2. An interesting resonant behaviour found in WP calculations is also discussed and associated with the existence of roaming classical trajectories that enhance the reactivity of the title reaction. Finally, a comparison with the experimental results of Stowe et al. for S(+) + HD and S(+) + D2 reactions exhibits a reasonably good agreement with those results.
NASA Technical Reports Server (NTRS)
Green, S.; Truhlar, D. G.
1979-01-01
Rate constants for rotational excitation of hydrogen molecules by collisions with hydrogen atoms have been obtained from quantum-mechanical calculations for kinetic temperatures between 100 and 5000 K. These calculations involve the rigid-rotator approximation, but other possible sources of error should be small. The calculations indicate that the early values of Nishimura are larger than accurate rigid-rotator values by about a factor of 20 or more.
Kim, David H; Elattrache, Neal S; Tibone, James E; Jun, Bong-Jae; DeLaMora, Sergai N; Kvitne, Ronald S; Lee, Thay Q
2006-03-01
Reestablishment of the native footprint during rotator cuff repair has been suggested as an important criterion for optimizing healing potential and fixation strength. A double-row rotator cuff footprint repair will demonstrate superior biomechanical properties compared with a single-row repair. Controlled laboratory study. In 9 matched pairs of fresh-frozen cadaveric shoulders, the supraspinatus tendon from 1 shoulder was repaired with a double-row suture anchor technique: 2 medial anchors with horizontal mattress sutures and 2 lateral anchors with simple sutures. The tendon from the contralateral shoulder was repaired using a single lateral row of 2 anchors with simple sutures. Each specimen underwent cyclic loading from 10 to 180 N for 200 cycles, followed by tensile testing to failure. Gap formation and strain over the footprint area were measured using a video digitizing system; stiffness and failure load were determined from testing machine data. Gap formation for the double-row repair was significantly smaller (P < .05) when compared with the single-row repair for the first cycle (1.67 +/- 0.75 mm vs 3.10 +/- 1.67 mm, respectively) and the last cycle (3.58 +/- 2.59 mm vs 7.64 +/- 3.74 mm, respectively). The initial strain over the footprint area for the double-row repair was nearly one third (P < .05) the strain of the single-row repair. Adding a medial row of anchors increased the stiffness of the repair by 46% and the ultimate failure load by 48% (P < .05). Footprint reconstruction of the rotator cuff using a double-row repair improved initial strength and stiffness and decreased gap formation and strain over the footprint when compared with a single-row repair. To achieve maximal initial fixation strength and minimal gap formation for rotator cuff repair, reconstructing the footprint attachment with 2 rows of suture anchors should be considered.
Factors affecting healing rates after arthroscopic double-row rotator cuff repair.
Tashjian, Robert Z; Hollins, Anthony M; Kim, Hyun-Min; Teefey, Sharlene A; Middleton, William D; Steger-May, Karen; Galatz, Leesa M; Yamaguchi, Ken
2010-12-01
Double-row arthroscopic rotator cuff repairs were developed to improve initial biomechanical strength of repairs to improve healing rates. Despite biomechanical improvements, failure of healing remains a clinical problem. To evaluate the anatomical results after double-row arthroscopic rotator cuff repair with ultrasound to determine postoperative repair integrity and the effect of various factors on tendon healing. Case series; Level of evidence, 4. Forty-eight patients (49 shoulders) who had a complete arthroscopic rotator cuff repair (double-row technique) were evaluated with ultrasound at a minimum of 6 months after surgery. Outcome was evaluated at a minimum of 1-year follow-up with standardized history and physical examination, visual analog scale for pain, active forward elevation, and preoperative and postoperative shoulder scores according to the system of the American Shoulder and Elbow Surgeons and the Simple Shoulder Test. Quantitative strength was measured postoperatively. Ultrasound and physical examinations were performed at a minimum of 6 months after surgery (mean, 16 months; range, 6 to 36 months) and outcome questionnaire evaluations at a minimum of 12 months after surgery (mean, 29 months; range, 12 to 55 months). Of 49 repairs, 25 (51%) were healed. Healing rates were 67% in single-tendon tears (16 of 24 shoulders) and 36% in multitendon tears (9 of 25 shoulders). Older age and longer duration of follow-up were correlated with poorer tendon healing (P < .03). Visual analog scale for pain, active forward elevation, American Shoulder and Elbow Surgeons scores, and Simple Shoulder Test scores all had significant improvement from baseline after repair (P < .0001). Increased age and longer duration of follow-up were associated with lower healing rates after double-row rotator cuff repair. The biological limitation at the repair site, as reflected by the effects of age on healing, appears to be the most important factor influencing tendon healing, even after maximizing repair biomechanical strength with a double-row construct.
NASA Astrophysics Data System (ADS)
Zhao, YueYue; Mouhib, Halima; Li, Guohua; Stahl, Wolfgang; Kleiner, Isabelle
2014-06-01
The tert-Butyl acetate molecule was studied using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy in the 9 to 14 GHz range. Due to its rather rigid frame, the molecule possesses only two different conformers: one of Cs and one of C1 symmetry. According to ab initio calculations, the Cs conformer is 46 kJ/mol lower in energy and is the one observed in the supersonic jet. We report on the structure and dynamics of the most abundant conformer of tert-butyl acetate, with accurate rotational and centrifugal distortion constants. Additionally, the barrier to internal rotation of the acetyl methyl group was determined. Splittings due to the internal rotation of the methyl group of up to 1.3 GHz were observed in the spectrum. Using the programs XIAM and BELGI-Cs, we determine the barrier height to be about 113 cm-1 and compare the molecular parameters obtained from these two codes. Additionally, the experimental rotational constants were used to validate numerous quantum chemical calculations. This study is part of a larger project which aims at determining the lowest energy conformers of organic esters and ketones which are of interest for flavor or perfume synthetic applications Project partly supported by the PHC PROCOPE 25059YB.
Barber, F Alan
2016-05-01
To compare the structural healing and clinical outcomes of triple-loaded single-row with suture-bridging double-row repairs of full-thickness rotator cuff tendons when both repair constructs are augmented with platelet-rich plasma fibrin membrane. A prospective, randomized, consecutive series of patients diagnosed with full-thickness rotator cuff tears no greater than 3 cm in anteroposterior length were treated with a triple-loaded single-row (20) or suture-bridging double-row (20) repair augmented with platelet-rich plasma fibrin membrane. The primary outcome measure was cuff integrity by magnetic resonance imaging (MRI) at 12 months postoperatively. Secondary clinical outcome measures were American Shoulder and Elbow Surgeons, Rowe, Simple Shoulder Test, Constant, and Single Assessment Numeric Evaluation scores. The mean MRI interval was 12.6 months (range, 12-17 months). A total of 3 of 20 single-row repairs and 3 of 20 double-row repairs (15%) had tears at follow-up MRI. The single-row group had re-tears in 1 single tendon repair and 2 double tendon repairs. All 3 tears failed at the original attachment site (Cho type 1). In the double-row group, re-tears were found in 3 double tendon repairs. All 3 tears failed medial to the medial row near the musculotendinous junction (Cho type 2). All clinical outcome measures were significantly improved from the preoperative level (P < .0001), but there was no statistical difference between groups postoperatively. There is no MRI difference in rotator cuff tendon re-tear rate at 12 months postsurgery between a triple-loaded single-row repair or a suture-bridging double-row repair when both are augmented with platelet-rich plasma fibrin membrane. No difference could be demonstrated between these repairs on clinical outcome scores. I, Prospective randomized study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.
A Unitary ESPRIT Scheme of Joint Angle Estimation for MOTS MIMO Radar
Wen, Chao; Shi, Guangming
2014-01-01
The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme. PMID:25106023
A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.
Wen, Chao; Shi, Guangming
2014-08-07
The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme.
Quasi-one-dimensional density of states in a single quantum ring.
Kim, Heedae; Lee, Woojin; Park, Seongho; Kyhm, Kwangseuk; Je, Koochul; Taylor, Robert A; Nogues, Gilles; Dang, Le Si; Song, Jin Dong
2017-01-05
Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width.
Mode locking of electron spin coherences in singly charged quantum dots.
Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M
2006-07-21
The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.
Multi-server blind quantum computation over collective-noise channels
NASA Astrophysics Data System (ADS)
Xiao, Min; Liu, Lin; Song, Xiuli
2018-03-01
Blind quantum computation (BQC) enables ordinary clients to securely outsource their computation task to costly quantum servers. Besides two essential properties, namely correctness and blindness, practical BQC protocols also should make clients as classical as possible and tolerate faults from nonideal quantum channel. In this paper, using logical Bell states as quantum resource, we propose multi-server BQC protocols over collective-dephasing noise channel and collective-rotation noise channel, respectively. The proposed protocols permit completely or almost classical client, meet the correctness and blindness requirements of BQC protocol, and are typically practical BQC protocols.
NASA Astrophysics Data System (ADS)
Pederzoli, Marek; Pittner, Jiří; Barbatti, Mario; Lischka, Hans
2012-10-01
The cis-trans isomerization of azobenzene upon S1(n,π*) excitation is studied both in gas phase and in solution. Our study is based on ab initio non-adiabatic dynamics simulations with the non-adiabatic effects included via the fewest-switches surface hopping method with potential-energy surfaces and couplings determined on the fly. The non-adiabatic couplings have been computed based on overlaps of CASSCF wave functions. The solvent is described using classical molecular dynamics employing the quantum mechanics/molecular mechanics (QM/MM) approach. Azobenzene photoisomerization upon S1(n,π*) excitation occurs purely as a rotational motion of the central CNNC moiety. Two non-equivalent rotational pathways, corresponding to clockwise or counterclockwise rotation, are available. The course of the rotational motion is strongly dependent on the initial conditions. The internal conversion occurs via a S0/S1 crossing seam located near the midpoint of both of these rotational pathways. Based on statistical analysis it is shown that the occurrence of one or other pathways can be completely controlled by selecting adequate initial conditions. The effect of the solvent on the reaction mechanism is small. The lifetime of the S1 state is marginally lowered; the effect does not depend on the polarity, but rather on the viscosity of the solvent. The quantum yield is solvent dependent; the simulations in water give smaller quantum yield than those obtained in n-hexane and in gas phase.
Colored Flag by Double Refraction.
ERIC Educational Resources Information Center
Reid, Bill
1994-01-01
Describes various demonstrations that illustrate double refraction and rotation of the plane of polarization in stressed, transparent plastics, with the consequent production of colored designs. (ZWH)
NASA Astrophysics Data System (ADS)
Park, Seoung-Hwan; Ahn, Doyeol
2018-05-01
Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.
Ground state spectrum of methylcyanide
NASA Astrophysics Data System (ADS)
Šimečková, Marie; Urban, Štěpán; Fuchs, Ulrike; Lewen, Frank; Winnewisser, Gisbert; Morino, Isamu; Yamada, Koichi M. T.
2004-08-01
The rotational spectrum of methylcyanide (acetonitrile) in the ground vibrational state was measured in the spectral region from 91 to 810 GHz using the Cologne and Tsukuba spectrometers operated in the Doppler-limited and sub-Doppler saturation layouts. The resolution of the saturation Lamb-dip measurements is estimated to be about 1 kHz at the best of circumstances and the measuring accuracy of 10-60 kHz depending very sensitively on the quality of the spectrum. In the cases of rotational transitions with the low quantum number J ( J<18) and with a low difference of the rotational quantum numbers J- K, the resolved or partly resolved hyperfine structures of the rotational transitions were observed. Together with the most accurate data from the literature, the newly measured experimental data were analyzed using the traditional polynomial energy formula as well as the Padè approximant for the effective rotational Hamiltonian. The resulting rotational, centrifugal distortion, and hyperfine structure spectroscopic constants were obtained with a significantly higher accuracy than the ones listed in the literature. In addition, an anomalous accidental resonance was detected between the K=14 ground state levels and the K=12, + l levels in the excited v8=1 vibrational state.
Zhang, Zhenxiang; Wang, Yong; Sun, Junying
2016-01-01
The aim of the study was to assess the effect of platelet-rich plasma on arthroscopic double-row rotator cuff repair. The study included 60 patients with arthroscopic rotator cuff repair. Thirthy patients (mean age: 57.2±7.4; 16 males and 14 females) underwent arthroscopic double-row repair alone (Group 1), another 30 (mean age: 56.9±6.0; 15 males and 15 females) had an injection of platelet-rich plasma (PRP) (Group 2). The groups were compared with DASH as a primary outcome score and Constant-Murley score, visual analog scale, measurement of active forward flexion, and external and internal rotation as secondary outcome measures. Magnetic resonance imaging was used to assess the integrity of the repair at 12 months postoperatively. Primary and secondary outcome measures statistically improved in both groups postoperatively (p<0.05). Overall mean primary and secondary postoperative outcome measures were not significantly different between the 2 groups. A retear was seen in 9 subjects (30%) in Group 1 and 4 subjects (14%) in Group 2 (p<0.05). The local injection of PRP into a primary arthroscopic double-row cuff repair resulted in lower recurrence rates than repairs without the novel biological augmentation material.
One-way quantum computing in superconducting circuits
NASA Astrophysics Data System (ADS)
Albarrán-Arriagada, F.; Alvarado Barrios, G.; Sanz, M.; Romero, G.; Lamata, L.; Retamal, J. C.; Solano, E.
2018-03-01
We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster state provides the quantum resource, while the iteration of sequential measurements and local rotations encodes the quantum algorithm. Up to now, technical constraints have limited a scalable approach to this quantum computing alternative. The initial cluster state can be generated with available controlled-phase gates, while the quantum algorithm makes use of high-fidelity readout and coherent feedforward. With current technology, we estimate that quantum algorithms with above 20 qubits may be implemented in the path toward quantum supremacy. Moreover, we propose an alternative initial state with properties of maximal persistence and maximal connectedness, reducing the required resources of one-way quantum computing protocols.
Gigahertz dynamics of a strongly driven single quantum spin.
Fuchs, G D; Dobrovitski, V V; Toyli, D M; Heremans, F J; Awschalom, D D
2009-12-11
Two-level systems are at the core of numerous real-world technologies such as magnetic resonance imaging and atomic clocks. Coherent control of the state is achieved with an oscillating field that drives dynamics at a rate determined by its amplitude. As the strength of the field is increased, a different regime emerges where linear scaling of the manipulation rate breaks down and complex dynamics are expected. By calibrating the spin rotation with an adiabatic passage, we have measured the room-temperature "strong-driving" dynamics of a single nitrogen vacancy center in diamond. With an adiabatic passage to calibrate the spin rotation, we observed dynamics on sub-nanosecond time scales. Contrary to conventional thinking, this breakdown of the rotating wave approximation provides opportunities for time-optimal quantum control of a single spin.
Thermal and Quantum Mechanical Noise of a Superfluid Gyroscope
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin
2004-01-01
A potential application of a superfluid gyroscope is for real-time measurements of the small variations in the rotational speed of the Earth, the Moon, and Mars. Such rotational jitter, if not measured and corrected for, will be a limiting factor on the resolution potential of a GPS system. This limitation will prevent many automation concepts in navigation, construction, and biomedical examination from being realized. We present the calculation of thermal and quantum-mechanical phase noise across the Josephson junction of a superfluid gyroscope. This allows us to derive the fundamental limits on the performance of a superfluid gyroscope. We show that the fundamental limit on real-time GPS due to rotational jitter can be reduced to well below 1 millimeter/day. Other limitations and their potential mitigation will also be discussed.
Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state
Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori
2016-01-01
Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710
NASA Astrophysics Data System (ADS)
Perreault, William E.; Mukherjee, Nandini; Zare, Richard N.
2018-05-01
Molecular interactions are best probed by scattering experiments. Interpretation of these studies has been limited by lack of control over the quantum states of the incoming collision partners. We report here the rotationally inelastic collisions of quantum-state prepared deuterium hydride (HD) with H2 and D2 using a method that provides an improved control over the input states. HD was coexpanded with its partner in a single supersonic beam, which reduced the collision temperature to 0-5 K, and thereby restricted the involved incoming partial waves to s and p. By preparing HD with its bond axis preferentially aligned parallel and perpendicular to the relative velocity of the colliding partners, we observed that the rotational relaxation of HD depends strongly on the initial bond-axis orientation. We developed a partial-wave analysis that conclusively demonstrates that the scattering mechanism involves the exchange of internal angular momentum between the colliding partners. The striking differences between H2/HD and D2/HD scattering suggest the presence of anisotropically sensitive resonances.
Atomistic theory of excitonic fine structure in InAs/InP nanowire quantum dot molecules
NASA Astrophysics Data System (ADS)
Świderski, M.; Zieliński, M.
2017-03-01
Nanowire quantum dots have peculiar electronic and optical properties. In this work we use atomistic tight binding to study excitonic spectra of artificial molecules formed by a double nanowire quantum dot. We demonstrate a key role of atomistic symmetry and nanowire substrate orientation rather than cylindrical shape symmetry of a nanowire and a molecule. In particular for [001 ] nanowire orientation we observe a nonvanishing bright exciton splitting for a quasimolecule formed by two cylindrical quantum dots of different heights. This effect is due to interdot coupling that effectively reduces the overall symmetry, whereas single uncoupled [001 ] quantum dots have zero fine structure splitting. We found that the same double quantum dot system grown on [111 ] nanowire reveals no excitonic fine structure for all considered quantum dot distances and individual quantum dot heights. Further we demonstrate a pronounced, by several orders of magnitude, increase of the dark exciton optical activity in a quantum dot molecule as compared to a single quantum dot. For [111 ] systems we also show spontaneous localization of single particle states in one of nominally identical quantum dots forming a molecule, which is mediated by strain and origins from the lack of the vertical inversion symmetry in [111 ] nanostructures of overall C3 v symmetry. Finally, we study lowering of symmetry due to alloy randomness that triggers nonzero excitonic fine structure and the dark exciton optical activity in realistic nanowire quantum dot molecules of intermixed composition.
Quantum state transfer in double-quantum-well devices
NASA Technical Reports Server (NTRS)
Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris
1994-01-01
A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.
Double-Paddle Oscillators as Probes of Quantum Turbulence in the Zero Temperature Limit
NASA Astrophysics Data System (ADS)
Schmoranzer, David; Jackson, Martin; Zemma, Elisa; Luzuriaga, Javier
2017-06-01
We present a technical report on our tests of a double-paddle oscillator as a detector of quantum turbulence in superfluid 4He at low temperatures ranging from 20 to 1100 mK. The device, known to operate well in the two-fluid regime (Zemma and Luzuriaga in J Low Temp Phys 166:171-181, 2012), is also capable of detecting quantum turbulence in the zero temperature limit. The oscillator demonstrated Lorentzian responses with quality factors of order 10^5 in vacuum, and displayed negative-Duffing resonances in liquid, even at moderate drives. In superfluid He-II at low temperatures, its sensitivity was adversely affected by acoustic damping at higher harmonics. While it successfully created and detected the quantum turbulence, its overall performance does not compare favourably with other oscillators such as tuning forks.
NASA Astrophysics Data System (ADS)
Derro, Erika L.; Sechler, Timothy D.; Murray, Craig; Lester, Marsha I.
2008-06-01
Hydrogen trioxy (HOOO) and its deuterated analog (DOOO) have been generated in a supersonic free-jet expansion through association of photolytically generated OH or OD and molecular oxygen. The radicals were detected using infrared action spectroscopy, a highly sensitive double resonance technique. Rotationally resolved spectra of combination bands of HOOO and DOOO comprising one quantum of OH or OD stretch (ν1) and one quantum of a lower frequency mode (ν1+νn where n=3-6), including H/DOO bend (ν3), OOO bend (ν4), central OO stretch (ν5), and H/DOOO torsion (ν6), have been observed and assigned to the trans conformer. All but one of these bands are accompanied by unstructured features which are tentatively assigned to the corresponding vibration of the cis conformer. In total, five additional bands of HOOO and four of DOOO have been recorded and assigned. These data represent the first gas-phase observation of the low-frequency modes of HOOO and DOOO and they are found to differ significantly from previous matrix studies and theoretical predictions. Accurate knowledge of the vibrational frequencies is crucial in assessing thermochemical properties of HOOO and present possible means of detection in the atmosphere.
NASA Astrophysics Data System (ADS)
Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.
2016-12-01
Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.
Triple-server blind quantum computation using entanglement swapping
NASA Astrophysics Data System (ADS)
Li, Qin; Chan, Wai Hong; Wu, Chunhui; Wen, Zhonghua
2014-04-01
Blind quantum computation allows a client who does not have enough quantum resources or technologies to achieve quantum computation on a remote quantum server such that the client's input, output, and algorithm remain unknown to the server. Up to now, single- and double-server blind quantum computation have been considered. In this work, we propose a triple-server blind computation protocol where the client can delegate quantum computation to three quantum servers by the use of entanglement swapping. Furthermore, the three quantum servers can communicate with each other and the client is almost classical since one does not require any quantum computational power, quantum memory, and the ability to prepare any quantum states and only needs to be capable of getting access to quantum channels.
NASA Astrophysics Data System (ADS)
Cho, Gookbin; Kim, Jungho
2017-09-01
We theoretically investigate the effect of conduction band non-parabolicity (NPB) on the optical gain spectrum of quantum cascade lasers (QCLs) using the effective two-band finite difference method. Based on the effective two-band model to consider the NPB effect in the multiple quantum wells (QWs), the wave functions and confined energies of electron states are calculated in two different active-region structures, which correspond to three-QW single-phonon and four-QW double-phonon resonance designs. In addition, intersubband optical dipole moments and polar-optical-phonon scattering times are calculated and compared without and with the conduction band NPB effect. Finally, the calculation results of optical gain spectra are compared in the two QCL structures having the same peak gain wavelength of 8.55 μm. The gain peaks are greatly shifted to longer wavelengths and the overall gain magnitudes are slightly reduced when the NPB effect is considered. Compared with the three-QW active-region design, the redshift of the peak gain is more prominent in the four-QW active-region design, which makes use of higher electronic states for the lasing transition.
ERIC Educational Resources Information Center
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
CNOT sequences for heterogeneous spin qubit architectures in a noisy environment
NASA Astrophysics Data System (ADS)
Ferraro, Elena; Fanciulli, Marco; de Michielis, Marco
Explicit CNOT gate sequences for two-qubits mixed architectures are presented in view of applications for large-scale quantum computation. Different kinds of coded spin qubits are combined allowing indeed the favorable physical properties of each to be employed. The building blocks for such composite systems are qubit architectures based on the electronic spin in electrostatically defined semiconductor quantum dots. They are the single quantum dot spin qubit, the double quantum dot singlet-triplet qubit and the double quantum dot hybrid qubit. The effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and unwanted charge coupling. Second affiliation: Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Via R. Cozzi, 55, 20126 Milano, Italy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently andmore » thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.« less
NASA Astrophysics Data System (ADS)
Shibata, K.; Yoshida, K.; Daiguji, K.; Sato, H.; , T., Ii; Hirakawa, K.
2017-10-01
An electric-field control of quantized conductance in metal (gold) quantum point contacts (QPCs) is demonstrated by adopting a liquid-gated electric-double-layer (EDL) transistor geometry. Atomic-scale gold QPCs were fabricated by applying the feedback-controlled electrical break junction method to the gold nanojunction. The electric conductance in gold QPCs shows quantized conductance plateaus and step-wise increase/decrease by the conductance quantum, G0 = 2e2/h, as EDL-gate voltage is swept, demonstrating a modulation of the conductance of gold QPCs by EDL gating. The electric-field control of conductance in metal QPCs may open a way for their application to local charge sensing at room temperature.
State-dependent rotations of spins by weak measurements
NASA Astrophysics Data System (ADS)
Miller, D. J.
2011-03-01
It is shown that a weak measurement of a quantum system produces a new state of the quantum system which depends on the prior state, as well as the (uncontrollable) measured position of the pointer variable of the weak-measurement apparatus. The result imposes a constraint on hidden-variable theories which assign a different state to a quantum system than standard quantum mechanics. The constraint means that a crypto-nonlocal hidden-variable theory can be ruled out in a more direct way than previously done.
Cuff, Derek J; O'Brien, Kathleen C; Pupello, Derek R; Santoni, Brandon G
2016-07-01
To evaluate multiple preoperative and operative factors that may be predictive of and correlate with acute postoperative pain levels after arthroscopic rotator cuff repair. One hundred eighty-one patients underwent arthroscopic rotator cuff surgery along with subacromial decompression and met the inclusion criteria for this study. Postoperative visual analog scale (VAS) scores were obtained on postoperative days 1, 7, and 90. Multivariate linear regression analysis was used to correlate postoperative VAS scores with multiple independent factors, including preoperative subjective pain tolerance, preoperative VAS score, preoperative narcotic use, sex, smoking status, number of suture anchors used, tear size, single- or double-row repair, and patient age. Preoperative subjective pain tolerance, notably those patients rating themselves as having an extremely high pain tolerance, was the most significant predictor of high VAS pain scores on both postoperative day 1 (P = .0001) and postoperative day 7 (P < .0001). Preoperative narcotic use was also significantly predictive (P = .010) of high pain scores on postoperative day 1 and day 7 (P = .019), along with nonsmokers (P = .008) and younger patients (P = .006) being predictive on day 7. There were no patient factors that were predictive of VAS scores 3 months postoperatively (P = .567). Preoperative subjective pain tolerance, notably those patients rating themselves as having an extremely high pain tolerance, was the strongest factor predicting high acute pain levels after arthroscopic rotator cuff surgery. Preoperative narcotic use, smokers, and younger patients were also predictive of higher pain levels during the first postoperative week. Level IV, prognostic case series. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Quantum geometry of resurgent perturbative/nonperturbative relations
NASA Astrophysics Data System (ADS)
Basar, Gökçe; Dunne, Gerald V.; Ünsal, Mithat
2017-05-01
For a wide variety of quantum potentials, including the textbook `instanton' examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential. These are related to the Chebyshev potentials, which are in turn related to certain \\mathcal{N} = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and `special geometry'. These systems inherit a natural modular structure corresponding to Ramanujan's theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Our approach is very elementary, using basic classical geometry combined with all-orders WKB.