Sample records for multiplex analysis development

  1. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    NASA Astrophysics Data System (ADS)

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  2. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection.

    PubMed

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-14

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  3. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    PubMed Central

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-01-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets. PMID:27739510

  4. Development of genomic microsatellite multiplex PCR using dye-labeled universal primer and its validation in pedigree analysis of Pacific oyster ( Crassostrea gigas)

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Li, Qi; Song, Junlin; Yu, Hong

    2017-02-01

    There is an increasing requirement for traceability of aquaculture products, both for consumer protection and for food safety. There are high error rates in the conventional traceability systems depending on physical labels. Genetic traceability technique depending on DNA-based tracking system can overcome this problem. Genealogy information is essential for genetic traceability, and microsatellite DNA marker is a good choice for pedigree analysis. As increasing genotyping throughput of microsatellites, microsatellite multiplex PCR has become a fast and cost-effective technique. As a commercially important cultured aquatic species, Pacific oyster Crassostrea gigas has the highest global production. The objective of this study was to develop microsatellite multiplex PCR panels with dye-labeled universal primer for pedigree analysis in C. gigas, and these multiplex PCRs were validated using 12 full-sib families with known pedigrees. Here we developed six informative multiplex PCRs using 18 genomic microsatellites in C. gigas. Each multiplex panel contained a single universal primer M13(-21) used as a tail on each locus-specific forward primer and a single universal primer M13(-21) labeled with fluorophores. The polymorphisms of the markers were moderate, with an average of 10.3 alleles per locus and average polymorphic information content of 0.740. The observed heterozygosity per locus ranged from 0.492 to 0.822. Cervus simulations revealed that the six panels would still be of great value when massive families were analysed. Pedigree analysis of real offspring demonstrated that 100% of the offspring were unambiguously allocated to their parents when two multiplex PCRs were used. The six sets of multiplex PCRs can be an important tool for tracing cultured individuals, population genetic analysis, and selective breeding program in C. gigas.

  5. Multiplex Quantitative Histologic Analysis of Human Breast Cancer Cell Signaling and Cell Fate

    DTIC Science & Technology

    2010-05-01

    Breast cancer, cell signaling, cell proliferation, histology, image analysis 15. NUMBER OF PAGES - 51 16. PRICE CODE 17. SECURITY CLASSIFICATION...revealed by individual stains in multiplex combinations; and (3) software (FARSIGHT) for automated multispectral image analysis that (i) segments...Task 3. Develop computational algorithms for multispectral immunohistological image analysis FARSIGHT software was developed to quantify intrinsic

  6. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry.

    PubMed

    Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.

  7. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, R P; Langlois, R G; Nasarabadi, S

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flowmore » cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.« less

  8. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry

    PubMed Central

    Ornatsky, Olga I.; Kinach, Robert; Bandura, Dmitry R.; Lou, Xudong; Tanner, Scott D.; Baranov, Vladimir I.; Nitz, Mark; Winnik, Mitchell A.

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping. PMID:19122859

  9. Development of a Time Domain Fluorimeter for Fluorescent Lifetime Multiplexing Analysis

    PubMed Central

    Weissleder, Ralph; Mahmood, Umar

    2009-01-01

    We show that a portable, inexpensive USB-powered time domain fluorimeter (TDF) and analysis scheme were developed for use in evaluating a new class of fluorescent lifetime multiplexed dyes. Fluorescent proteins, organic dyes, and quantum dots allow the labeling of more and more individual features within biological systems, but the wide absorption and emission spectra of these fluorophores limit the number of distinct processes which may be simultaneously imaged using spectral separation alone. By additionally separating reporters in a second dimension, fluorescent lifetime multiplexing provides a means to multiply the number of available imaging channels. PMID:19830273

  10. A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference.

    PubMed

    Gao, Wenyue; Muzyka, Kateryna; Ma, Xiangui; Lou, Baohua; Xu, Guobao

    2018-04-28

    Developing low-cost and simple electrochemical systems is becoming increasingly important but still challenged for multiplex experiments. Here we report a single-electrode electrochemical system (SEES) using only one electrode not only for a single experiment but also for multiplex experiments based on a resistance induced potential difference. SEESs for a single experiment and multiplex experiments are fabricated by attaching a self-adhesive label with a hole and multiple holes onto an ITO electrode, respectively. This enables multiplex electrochemiluminescence analysis with high sensitivity at a very low safe voltage using a smartphone as a detector. For the multiplex analysis, the SEES using a single electrode is much simpler, cheaper and more user-friendly than conventional electrochemical systems and bipolar electrochemical systems using electrode arrays. Moreover, SEESs are free from the electrochemiluminescent background problem from driving electrodes in bipolar electrochemical systems. Since numerous electrodes and cover materials can be used to fabricate SEESs readily and electrochemistry is being extensively used, SEESs are very promising for broad applications, such as drug screening and high throughput analysis.

  11. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells.

    PubMed

    Agasti, Sarit S; Liong, Monty; Peterson, Vanessa M; Lee, Hakho; Weissleder, Ralph

    2012-11-14

    DNA barcoding is an attractive technology, as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative, and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification, and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells.

  12. Development of a low-flow multiplexed interface for capillary electrophoresis/electrospray ion trap mass spectrometry using sequential spray.

    PubMed

    Chen, Chao-Jung; Li, Fu-An; Her, Guor-Rong

    2008-05-01

    A multiplexed CE-MS interface using four low-flow sheath liquid ESI sprayers has been developed. Because of the limited space between the low-flow sprayers and the entrance aperture of the ESI source, multichannel analysis is difficult using conventional rotating plate approaches. Instead, a multiplexed low-flow system was achieved by applying an ESI potential sequentially to the four low-flow sprayers, resulting in only one sprayer being sprayed at any given time. The synchronization of the scan event and the voltage relays was accomplished by using the data acquisition signal from the IT mass spectrometer. This synchronization resulted in the ESI voltage being sequentially applied to each of the four sprayers according to the corresponding scan event. With this design, a four-fold increase in analytical throughput was achieved. Because of the use of low-flow interfaces, this multiplexed system has superior sensitivity than a rotating plate design using conventional sheath liquid interfaces. The multiplexed design presented has the potential to be applied to other low-flow multiplexed systems, such as multiplexed capillary LC and multiplexed CEC.

  13. Multiplexed and Microparticle-based Analyses: Quantitative Tools for the Large-Scale Analysis of Biological Systems

    PubMed Central

    Nolan, John P.; Mandy, Francis

    2008-01-01

    While the term flow cytometry refers to the measurement of cells, the approach of making sensitive multiparameter optical measurements in a flowing sample stream is a very general analytical approach. The past few years have seen an explosion in the application of flow cytometry technology for molecular analysis and measurements using micro-particles as solid supports. While microsphere-based molecular analyses using flow cytometry date back three decades, the need for highly parallel quantitative molecular measurements that has arisen from various genomic and proteomic advances has driven the development in particle encoding technology to enable highly multiplexed assays. Multiplexed particle-based immunoassays are now common place, and new assays to study genes, protein function, and molecular assembly. Numerous efforts are underway to extend the multiplexing capabilities of microparticle-based assays through new approaches to particle encoding and analyte reporting. The impact of these developments will be seen in the basic research and clinical laboratories, as well as in drug development. PMID:16604537

  14. Simultaneous detection of antibodies to five Actinobacillus pleuropneumoniae serovars using bead-based multiplex analysis.

    PubMed

    Berger, Sanne Schou; Lauritsen, Klara Tølbøll; Boas, Ulrik; Lind, Peter; Andresen, Lars Ole

    2017-11-01

    We developed and made a preliminary validation of a bead-based multiplexed immunoassay for simultaneous detection of porcine serum antibodies to Actinobacillus pleuropneumoniae serovars 1, 2, 6, 7, and 12. Magnetic fluorescent beads were coupled with A. pleuropneumoniae antigens and tested with a panel of serum samples from experimentally infected pigs and with serum samples from uninfected and naturally infected pigs. The multiplex assay was compared to in-house ELISAs and complement fixation (CF) tests, which have been used for decades as tools for herd classification in the Danish Specific Pathogen Free system. Assay specificities and sensitivities as well as the corresponding cutoff values were determined using receiver operating characteristic (ROC) curve analysis, and the A. pleuropneumoniae multiplex assay showed good correlation with the in-house ELISAs and CF tests with areas under ROC curves ≥ 0.988. Benefits of multiplexed assays compared to ELISAs and CF tests include reduced serum sample volumes needed for analysis, less labor, and shorter assay time.

  15. Modified midi- and mini-multiplex PCR systems for mitochondrial DNA control region sequence analysis in degraded samples.

    PubMed

    Kim, Na Young; Lee, Hwan Young; Park, Sun Joo; Yang, Woo Ick; Shin, Kyoung-Jin

    2013-05-01

    Two multiplex polymerase chain reaction (PCR) systems (Midiplex and Miniplex) were developed for the amplification of the mitochondrial DNA (mtDNA) control region, and the efficiencies of the multiplexes for amplifying degraded DNA were validated using old skeletal remains. The Midiplex system consisted of two multiplex PCRs to amplify six overlapping amplicons ranging in length from 227 to 267 bp. The Miniplex system consisted of three multiplex PCRs to amplify 10 overlapping short amplicons ranging in length from 142 to 185 bp. Most mtDNA control region sequences of several 60-year-old and 400-500-year-old skeletal remains were successfully obtained using both PCR systems and consistent with those previously obtained by monoplex amplification. The multiplex system consisting of smaller amplicons is effective for mtDNA sequence analyses of ancient and forensic degraded samples, saving time, cost, and the amount of DNA sample consumed during analysis. © 2013 American Academy of Forensic Sciences.

  16. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCRmore » amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.« less

  17. Developing a Multiplexed Quantitative Cross-Linking Mass Spectrometry Platform for Comparative Structural Analysis of Protein Complexes.

    PubMed

    Yu, Clinton; Huszagh, Alexander; Viner, Rosa; Novitsky, Eric J; Rychnovsky, Scott D; Huang, Lan

    2016-10-18

    Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.

  18. Development of multiplex microsatellite PCR panels for the seagrass Thalassia hemprichii (Hydrocharitaceae).

    PubMed

    van Dijk, Kor-Jent; Mellors, Jane; Waycott, Michelle

    2014-11-01

    New microsatellites were developed for the seagrass Thalassia hemprichii (Hydrocharitaceae), a long-lived seagrass species that is found throughout the shallow waters of tropical and subtropical Indo-West Pacific. Three multiplex PCR panels were designed utilizing new and previously developed markers, resulting in a toolkit for generating a 16-locus genotype. • Through the use of microsatellite enrichment and next-generation sequencing, 16 new, validated, polymorphic microsatellite markers were isolated. Diversity was between two and four alleles per locus totaling 36 alleles. These markers, plus previously developed microsatellite markers for T. hemprichii and T. testudinum, were tested for suitability in multiplex PCR panels. • The generation of an easily replicated suite of multiplex panels of codominant molecular markers will allow for high-resolution and detailed genetic structure analysis and clonality assessment with minimal genotyping costs. We suggest the establishment of a T. hemprichii primer convention for the unification of future data sets.

  19. Immunization of Epidemics in Multiplex Networks

    PubMed Central

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks. PMID:25401755

  20. Immunization of epidemics in multiplex networks.

    PubMed

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks.

  1. Rapid and inexpensive analysis of genetic variability in Arapaima gigas by PCR multiplex panel of eight microsatellites.

    PubMed

    Hamoy, I G; Santos, E J M; Santos, S E B

    2008-01-22

    The aim of the present study was the development of a multiplex genotyping panel of eight microsatellite markers of Arapaima gigas, previously described. Specific primer pairs were developed, each one of them marked with either FAM-6, HEX or NED. The amplification conditions using the new primers were standardized for a single reaction. The results obtained demonstrate high heterozygosity (average of 0.69) in a Lower Amazon population. The multiplex system described can thus be considered a fast, efficient and inexpensive method for the investigation of genetic variability in Arapaima populations.

  2. Multiplexed operation of a micromachined ultrasonic droplet ejector array.

    PubMed

    Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G

    2007-10-01

    A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk between the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of approximately 5 microm diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.

  3. Multiplexed operation of a micromachined ultrasonic droplet ejector array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2007-10-15

    A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk betweenmore » the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of {approx}5 {mu}m diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.« less

  4. Helicase dependent OnChip-amplification and its use in multiplex pathogen detection.

    PubMed

    Andresen, Dennie; von Nickisch-Rosenegk, Markus; Bier, Frank F

    2009-05-01

    The need for fast, specific and sensitive multiparametric detection methods is an ever growing demand in molecular diagnostics. Here we report on a newly developed method, the helicase dependent OnChip amplification (OnChip-HDA). This approach integrates the analysis and detection in one single reaction thus leading to time and cost savings in multiparametric analysis. HDA is an isothermal amplification method that is not depending on thermocycling as known from PCR due to the helicases' ability to unwind DNA double-strands. We have combined the HDA with microarray based detection, making it suitable for multiplex detection. As an example we used the OnChip HDA in single and multiplex amplifications for the detection of the two pathogens N. gonorrhoeae and S. aureus directly on surface bound primers. We have successfully shown the OnChip-HDA and applied it for single- and duplex-detection of the pathogens N. gonorrhoeae and S. aureus. We have developed a new method, the OnChip-HDA for the multiplex detection of pathogens. Its simplicity in reaction setup and potential for miniaturization and multiparametric analysis is advantageous for the integration in miniaturized Lab on Chip systems, e.g. needed in point of care diagnostics.

  5. Development of multiplex microsatellite PCR panels for the seagrass Thalassia hemprichii (Hydrocharitaceae)1

    PubMed Central

    van Dijk, Kor-jent; Mellors, Jane; Waycott, Michelle

    2014-01-01

    • Premise of the study: New microsatellites were developed for the seagrass Thalassia hemprichii (Hydrocharitaceae), a long-lived seagrass species that is found throughout the shallow waters of tropical and subtropical Indo-West Pacific. Three multiplex PCR panels were designed utilizing new and previously developed markers, resulting in a toolkit for generating a 16-locus genotype. • Methods and Results: Through the use of microsatellite enrichment and next-generation sequencing, 16 new, validated, polymorphic microsatellite markers were isolated. Diversity was between two and four alleles per locus totaling 36 alleles. These markers, plus previously developed microsatellite markers for T. hemprichii and T. testudinum, were tested for suitability in multiplex PCR panels. • Conclusions: The generation of an easily replicated suite of multiplex panels of codominant molecular markers will allow for high-resolution and detailed genetic structure analysis and clonality assessment with minimal genotyping costs. We suggest the establishment of a T. hemprichii primer convention for the unification of future data sets. PMID:25383269

  6. Comparison of three multiplex cytokine analysis systems: Luminex, SearchLight and FAST Quant.

    PubMed

    Lash, Gendie E; Scaife, Paula J; Innes, Barbara A; Otun, Harry A; Robson, Steven C; Searle, Roger F; Bulmer, Judith N

    2006-02-20

    Multiplex cytokine analysis technologies have become readily available in the last five years. Two main formats exist: multiplex sandwich ELISA and bead based assays. While these have each been compared to individual ELISAs, there has been no direct comparison between the two formats. We report here the comparison of two multiplex sandwich ELISA procedures (FAST Quant and SearchLight) and a bead based assay (UpState Luminex). All three kits differed from each other for different analytes and there was no clear pattern of one system giving systematically different results than another for any analyte studied. We suggest that each system has merits and several factors including range of analytes available, prospect of development of new analytes, dynamic range of the assay, sensitivity of the assay, cost of equipment, cost of consumables, ease of use and ease of data analysis need to be considered when choosing a system for use. We also suggest that results obtained from different systems cannot be combined.

  7. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  8. A Novel Universal Primer-Multiplex-PCR Method with Sequencing Gel Electrophoresis Analysis

    PubMed Central

    Huang, Kunlun; Zhang, Nan; Yuan, Yanfang; Shang, Ying; Luo, Yunbo

    2012-01-01

    In this study, a novel universal primer-multiplex-PCR (UP-M-PCR) method adding a universal primer (UP) in the multiplex PCR reaction system was described. A universal adapter was designed in the 5′-end of each specific primer pairs which matched with the specific DNA sequences for each template and also used as the universal primer (UP). PCR products were analyzed on sequencing gel electrophoresis (SGE) which had the advantage of exhibiting extraordinary resolution. This method overcame the disadvantages rooted deeply in conventional multiplex PCR such as complex manipulation, lower sensitivity, self-inhibition and amplification disparity resulting from different primers, and it got a high specificity and had a low detection limit of 0.1 ng for single kind of crops when screening the presence of genetically modified (GM) crops in mixture samples. The novel developed multiplex PCR assay with sequencing gel electrophoresis analysis will be useful in many fields, such as verifying the GM status of a sample irrespective of the crop and GM trait and so on. PMID:22272223

  9. Mass cytometry: a highly multiplexed single-cell technology for advancing drug development.

    PubMed

    Atkuri, Kondala R; Stevens, Jeffrey C; Neubert, Hendrik

    2015-02-01

    Advanced single-cell analysis technologies (e.g., mass cytometry) that help in multiplexing cellular measurements in limited-volume primary samples are critical in bridging discovery efforts to successful drug approval. Mass cytometry is the state-of-the-art technology in multiparametric single-cell analysis. Mass cytometers (also known as cytometry by time-of-flight or CyTOF) combine the cellular analysis principles of traditional fluorescence-based flow cytometry with the selectivity and quantitative power of inductively coupled plasma-mass spectrometry. Standard flow cytometry is limited in the number of parameters that can be measured owing to the overlap in signal when detecting fluorescently labeled antibodies. Mass cytometry uses antibodies tagged to stable isotopes of rare earth metals, which requires minimal signal compensation between the different metal tags. This unique feature enables researchers to seamlessly multiplex up to 40 independent measurements on single cells. In this overview we first present an overview of mass cytometry and compare it with traditional flow cytometry. We then discuss the emerging and potential applications of CyTOF technology in the pharmaceutical industry, including quantitative and qualitative deep profiling of immune cells and their applications in assessing drug immunogenicity, extensive mapping of signaling networks in single cells, cell surface receptor quantification and multiplexed internalization kinetics, multiplexing sample analysis by barcoding, and establishing cell ontologies on the basis of phenotype and/or function. We end with a discussion of the anticipated impact of this technology on drug development lifecycle with special emphasis on the utility of mass cytometry in deciphering a drug's pharmacokinetics and pharmacodynamics relationship. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing Aspergillus niger and A. awamori strains

    USDA-ARS?s Scientific Manuscript database

    In order to determine the genetic basis for loss of fumonisin B¬2 (FB2) biosynthesis in FB2 non-producing A. niger strains, we developed multiplex PCR primer sets to amplify fragments of eight fumonisin biosynthetic pathway (fum) genes. Fragments of all eight fum genes were amplified in FB2-produci...

  11. Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oetting, W.S.; Lee, H.K.; Flanders, D.J.

    The use of short tandem repeat polymorphisms (STRPs) as marker loci for linkage analysis is becoming increasingly important due to their large numbers in the human genome and their high degree of polymorphism. Fluorescence-based detection of the STRP pattern with an automated DNA sequencer has improved the efficiency of this technique by eliminating the need for radioactivity and producing a digitized autoradiogram-like image that can be used for computer analysis. In an effort to simplify the procedure and to reduce the cost of fluorescence STRP analysis, we have developed a technique known as multiplexing STRPs with tailed primers (MSTP) usingmore » primers that have a 19-bp extension, identical to the sequence of an M13 sequencing primer, on the 5{prime} end of the forward primer in conjunction with multiplexing several primer pairs in a single polymerase chain reaction (PCR) amplification. The banding pattern is detected with the addition of the M13 primer-dye conjugate as the sole primer conjugated to the fluorescent dye, eliminating the need for direct conjugation of the infrared fluorescent dye to the STRP primers. The use of MSTP for linkage analysis greatly reduces the number of PCR reactions. Up to five primer pairs can be multiplexed together in the same reaction. At present, a set of 148 STRP markers spaced at an average genetic distance of 28 cM throughout the autosomal genome can be analyzed in 37 sets of multiplexed amplification reactions. We have automated the analysis of these patterns for linkage using software that both detects the STRP banding pattern and determines their sizes. This information can then be exported in a user-defined format from a database manager for linkage analysis. 15 refs., 2 figs., 4 tabs.« less

  12. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species

    PubMed Central

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun

    2017-01-01

    ABSTRACT The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis (M. tuberculosis) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680, and (iv) simultaneously detect five clinically important NTM (M. avium, M. intracellulare, M. abscessus, M. massiliense, and M. kansasii) by targeting IS1311, DT1, mass_3210, and mkan_rs12360. An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 103 and 104 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis, M. tuberculosis Beijing genotype, and major NTM species. PMID:28659320

  13. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species.

    PubMed

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae

    2017-09-01

    The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis ( M. tuberculosis ) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680 , and (iv) simultaneously detect five clinically important NTM ( M. avium , M. intracellulare , M. abscessus , M. massiliense , and M. kansasii ) by targeting IS 1311 , DT1, mass_3210 , and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10 3 and 10 4 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis , M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.

  14. A Multiplex Snapback Primer System for the Enrichment and Detection of JAK2 V617F and MPL W515L/K Mutations in Philadelphia-Negative Myeloproliferative Neoplasms

    PubMed Central

    Zhang, Yunqing; Zhang, Xinju; Xu, Xiao; Kang, Zhihua; Li, Shibao; Zhang, Chen; Su, Bing

    2014-01-01

    A multiplex snapback primer system was developed for the simultaneous detection of JAK2 V617F and MPL W515L/K mutations in Philadelphia chromosome- (Ph-) negative myeloproliferative neoplasms (MPNs). The multiplex system comprises two snapback versus limiting primer sets for JAK2 and MPL mutation enrichment and detection, respectively. Linear-After exponential (LATE) PCR strategy was employed for the primer design to maximize the amplification efficiency of the system. Low ionic strength buffer and rapid PCR protocol allowed for selective amplification of the mutant alleles. Amplification products were analyzed by melting curve analysis for mutation identification. The multiplex system archived 0.1% mutation load sensitivity and <5% coefficient of variation inter-/intra-assay reproducibility. 120 clinical samples were tested by the multiplex snapback primer assay, and verified with amplification refractory system (ARMS), quantitative PCR (qPCR) and Sanger sequencing method. The multiplex system, with a favored versatility, provided the molecular diagnosis of Ph-negative MPNs with a suitable implement and simplified the genetic test process. PMID:24729973

  15. Development of a Multiplex Single Base Extension Assay for Mitochondrial DNA Haplogroup Typing

    PubMed Central

    Nelson, Tahnee M.; Just, Rebecca S.; Loreille, Odile; Schanfield, Moses S.; Podini, Daniele

    2007-01-01

    Aim To provide a screening tool to reduce time and sample consumption when attempting mtDNA haplogroup typing. Methods A single base primer extension assay was developed to enable typing, in a single reaction, of twelve mtDNA haplogroup specific polymorphisms. For validation purposes a total of 147 samples were tested including 73 samples successfully haplogroup typed using mtDNA control region (CR) sequence data, 21 samples inconclusively haplogroup typed by CR data, 20 samples previously haplogroup typed using restriction fragment length polymorphism (RFLP) analysis, and 31 samples of known ancestral origin without previous haplogroup typing. Additionally, two highly degraded human bones embalmed and buried in the early 1950s were analyzed using the single nucleotide polymorphisms (SNP) multiplex. Results When the SNP multiplex was used to type the 96 previously CR sequenced specimens, an increase in haplogroup or macrohaplogroup assignment relative to conventional CR sequence analysis was observed. The single base extension assay was also successfully used to assign a haplogroup to decades-old, embalmed skeletal remains dating to World War II. Conclusion The SNP multiplex was successfully used to obtain haplogroup status of highly degraded human bones, and demonstrated the ability to eliminate possible contributors. The SNP multiplex provides a low-cost, high throughput method for typing of mtDNA haplogroups A, B, C, D, E, F, G, H, L1/L2, L3, M, and N that could be useful for screening purposes for human identification efforts and anthropological studies. PMID:17696300

  16. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.

    PubMed

    Geißler, Daniel; Hildebrandt, Niko

    2016-07-01

    The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics. Graphical Abstract Quantum dots (QDs) can be applied as donors and/or acceptors for Förster resonance energy transfer- (FRET-) based biosensing for multiplexed and sensitive diagnostics in various assay formats.

  17. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection.

    PubMed

    Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria

    2003-12-15

    Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.

  18. Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons.

    PubMed

    Kim, Eun Hye; Lee, Hwan Young; Yang, In Seok; Jung, Sang-Eun; Yang, Woo Ick; Shin, Kyoung-Jin

    2016-05-01

    The next-generation sequencing (NGS) method has been utilized to analyze short tandem repeat (STR) markers, which are routinely used for human identification purposes in the forensic field. Some researchers have demonstrated the successful application of the NGS system to STR typing, suggesting that NGS technology may be an alternative or additional method to overcome limitations of capillary electrophoresis (CE)-based STR profiling. However, there has been no available multiplex PCR system that is optimized for NGS analysis of forensic STR markers. Thus, we constructed a multiplex PCR system for the NGS analysis of 18 markers (13CODIS STRs, D2S1338, D19S433, Penta D, Penta E and amelogenin) by designing amplicons in the size range of 77-210 base pairs. Then, PCR products were generated from two single-sources, mixed samples and artificially degraded DNA samples using a multiplex PCR system, and were prepared for sequencing on the MiSeq system through construction of a subsequent barcoded library. By performing NGS and analyzing the data, we confirmed that the resultant STR genotypes were consistent with those of CE-based typing. Moreover, sequence variations were detected in targeted STR regions. Through the use of small-sized amplicons, the developed multiplex PCR system enables researchers to obtain successful STR profiles even from artificially degraded DNA as well as STR loci which are analyzed with large-sized amplicons in the CE-based commercial kits. In addition, successful profiles can be obtained from mixtures up to a 1:19 ratio. Consequently, the developed multiplex PCR system, which produces small size amplicons, can be successfully applied to STR NGS analysis of forensic casework samples such as mixtures and degraded DNA samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Biosensors in Health Care: The Milestones Achieved in Their Development towards Lab-on-Chip-Analysis

    PubMed Central

    Patel, Suprava; Nanda, Rachita; Sahoo, Sibasish; Mohapatra, Eli

    2016-01-01

    Immense potentiality of biosensors in medical diagnostics has driven scientists in evolution of biosensor technologies and innovating newer tools in time. The cornerstone of the popularity of biosensors in sensing wide range of biomolecules in medical diagnostics is due to their simplicity in operation, higher sensitivity, ability to perform multiplex analysis, and capability to be integrated with different function by the same chip. There remains a huge challenge to meet the demands of performance and yield to its simplicity and affordability. Ultimate goal stands for providing point-of-care testing facility to the remote areas worldwide, particularly the developing countries. It entails continuous development in technology towards multiplexing ability, fabrication, and miniaturization of biosensor devices so that they can provide lab-on-chip-analysis systems to the community. PMID:27042353

  20. Using Next Generation Sequencing for Multiplexed Trait-Linked Markers in Wheat

    PubMed Central

    Bernardo, Amy; Wang, Shan; St. Amand, Paul; Bai, Guihua

    2015-01-01

    With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat ( Triticum aestivum L.) that can be effectively used in marker-assisted selection (MAS) is still limited and SNP assays for MAS are usually uniplex. A shift from uniplex to multiplex assays will allow the simultaneous analysis of multiple markers and increase MAS efficiency. We designed 33 locus-specific markers from SNP or indel-based marker sequences that linked to 20 different quantitative trait loci (QTL) or genes of agronomic importance in wheat and analyzed the amplicon sequences using an Ion Torrent Proton Sequencer and a custom allele detection pipeline to determine the genotypes of 24 selected germplasm accessions. Among the 33 markers, 27 were successfully multiplexed and 23 had 100% SNP call rates. Results from analysis of "kompetitive allele-specific PCR" (KASP) and sequence tagged site (STS) markers developed from the same loci fully verified the genotype calls of 23 markers. The NGS-based multiplexed assay developed in this study is suitable for rapid and high-throughput screening of SNPs and some indel-based markers in wheat. PMID:26625271

  1. Development of the first standardised panel of two new microsatellite multiplex PCRs for gilthead seabream (Sparus aurata L.).

    PubMed

    Lee-Montero, I; Navarro, A; Borrell, Y; García-Celdrán, M; Martín, N; Negrín-Báez, D; Blanco, G; Armero, E; Berbel, C; Zamorano, M J; Sánchez, J J; Estévez, A; Ramis, G; Manchado, M; Afonso, J M

    2013-08-01

    The high number of multiplex PCRs developed for gilthead seabream (Sparus aurata L.) from many different microsatellite markers does not allow comparison among populations. This highlights the need for developing a reproducible panel of markers, which can be used with safety and reliability by all users. In this study, the first standardised panel of two new microsatellite multiplex PCRs was developed for this species. Primers of 138 specific microsatellites from the genetic linkage map were redesigned and evaluated according to their genetic variability, allele size range and genotyping reliability. A protocol to identify and classify genotyping errors or potential errors was proposed to assess the reliability of each marker. Two new multiplex PCRs from the best assessed markers were designed with 11 markers in each, named SMsa1 and SMsa2 (SuperMultiplex Sparus aurata). Three broodstocks (59, 47 and 98 breeders) from different Spanish companies, and a sample of 80 offspring from each one, were analysed to validate the usefulness of these multiplexes in the parental assignation. It was possible to assign each offspring to a single parent pair (100% success) using the exclusion method with SMsa1 and/or SMsa2. In each genotyped a reference sample (Ref-sa) was used, and its DNA is available on request similar to the kits of bin set to genotype by genemapper (v.3.7) software (kit-SMsa1 and kit-SMsa2). This will be a robust and effective tool for pedigree analysis or characterisation of populations and will be proposed as an international panel for this species. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  2. On-chip wavelength multiplexed detection of cancer DNA biomarkers in blood

    PubMed Central

    Cai, H.; Stott, M. A.; Ozcelik, D.; Parks, J. W.; Hawkins, A. R.; Schmidt, H.

    2016-01-01

    We have developed an optofluidic analysis system that processes biomolecular samples starting from whole blood and then analyzes and identifies multiple targets on a silicon-based molecular detection platform. We demonstrate blood filtration, sample extraction, target enrichment, and fluorescent labeling using programmable microfluidic circuits. We detect and identify multiple targets using a spectral multiplexing technique based on wavelength-dependent multi-spot excitation on an antiresonant reflecting optical waveguide chip. Specifically, we extract two types of melanoma biomarkers, mutated cell-free nucleic acids —BRAFV600E and NRAS, from whole blood. We detect and identify these two targets simultaneously using the spectral multiplexing approach with up to a 96% success rate. These results point the way toward a full front-to-back chip-based optofluidic compact system for high-performance analysis of complex biological samples. PMID:28058082

  3. Comprehensive protein profiling by multiplexed capillary zone electrophoresis using cross-linked polyacrylamide coated capillaries.

    PubMed

    Liu, Shaorong; Gao, Lin; Pu, Qiaosheng; Lu, Joann J; Wang, Xingjia

    2006-02-01

    We have recently developed a new process to create cross-linked polyacrylamide (CPA) coatings on capillary walls to suppress protein-wall interactions. Here, we demonstrate CPA-coated capillaries for high-efficiency (>2 x 10(6) plates per meter) protein separations by capillary zone electrophoresis (CZE). Because CPA virtually eliminates electroosmotic flow, positive and negative proteins cannot be analyzed in a single run. A "one-sample-two-separation" approach is developed to achieve a comprehensive protein analysis. High throughput is achieved through a multiplexed CZE system.

  4. Multiplex method for initial complex testing of antibodies to blood transmitted diseases agents.

    PubMed

    Poltavchenko, Alexander G; Nechitaylo, Oleg V; Filatov, Pavel V; Ersh, Anna V; Gureyev, Vadim N

    2016-10-01

    Initial screening of donors and population at high risk of infection with blood transmitted diseases involves a number of analyses using monospesific diagnostic systems, and therefore is expensive labor- and time-consuming process. The goal of this work is to construct a multiplex test enabling to carry out rapid initial complex testing at a low price. The paper describes a kit making it possible to detect simultaneously antibodies to six agents of the most significant blood transmitted diseases: HIV virus, hepatitis B and C viruses, cytomegalovirus, T. pallidum and T. gondii in blood products. The kit comprises multiplex dot-immunoassay based on plane protein arrays (immune chips) using colloidal gold conjugates and silver development. It provides an opportunity to carry out complex analysis within 70min at room temperature, and there is no need of well-qualified personnel. We compared laboratory findings of the kit with monospecific kits for ELISA produced by two Russian commercial companies. Dot-assay results correlate well with data obtained using commercial kits for ELISA. Furthermore, multiplex analysis is quicker and cheaper in comparison with ELISA and can be carried out in non-laboratory conditions. The kit for multiplex dot-immunoassay of antibodies to blood transmitted agents can significantly simplify initial complex testing. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Detection of inflammatory cytokines using a fiber optic microsphere immunoassay array

    NASA Astrophysics Data System (ADS)

    Blicharz, Timothy M.; Walt, David R.

    2006-10-01

    A multiplexed fiber optic microsphere-based immunoassay array capable of simultaneously measuring five inflammatory cytokines has been developed. Five groups of amine-functionalized 3.1 micron microspheres were internally encoded with five distinct concentrations of a europium dye and converted to cytokine probes by covalently coupling monoclonal capture antibodies specific for human VEGF, IFN-gamma, RANTES, IP-10, and Eotaxin-3 to the microspheres via glutaraldehyde chemistry. The microspheres were pooled and loaded into a 1 mm diameter fiber optic bundle containing ~50,000 individual etched microwells, producing the multiplexed cytokine immunoassay array. Multiple arrays can be created from a single microsphere pool for high throughput sample analysis. Sandwich fluoroimmunoassays were performed by incubating the probe array in a sample, followed by incubation in a mixture of biotin-labeled detection antibodies that are complementary to the five cytokines. Finally, universal detection of each protein was performed using a fluorescence imaging system after briefly immersing the array in a solution of fluorophore-labeled streptavidin. The multiplexed cytokine array has been shown to respond selectively to VEGF, IFNgamma, RANTES, IP-10, and Eotaxin-3, permitting multiplexed quantitative analysis. Ultimately, the multiplexed cytokine array will be utilized to evaluate the potential of using saliva as a noninvasive diagnostic fluid for pulmonary inflammatory diseases such as asthma.

  6. A portable multi-channel recording system for analysis of acceleration and angular velocity in six dimension.

    PubMed

    Yamashita, M; Yamashita, A; Ishii, T; Naruo, Y; Nagatomo, M

    1998-11-01

    A portable recording system was developed for analysis of more than three analog signals collected in field works. Stereo audio recorder, available as consumer products, was made use for a core cornponent of the system. For the two tracks of recording, a multiplexed analog signal is stored on one track, and reference code on the other track. The reference code indicates the start of one cycle for multiplexing and swiching point of each channel. Multiplexed signal is playbacked and decoded with a reference of the code to reconstruct original profiles of the signal. Since commercial stereo recorders have cut DC component off, a fixed reference voltage is inserted in the sequence of multiplexing. Change of voltage at switching from the reference to the data channel is measured from playbacked signal to get the original data with its DC component. Movement of vehicles and human head were analyzed by the system. It was verified to be capable to record and analyze multi-channel signal at a sampling rate more than 10Hz.

  7. PrimerSuite: A High-Throughput Web-Based Primer Design Program for Multiplex Bisulfite PCR.

    PubMed

    Lu, Jennifer; Johnston, Andrew; Berichon, Philippe; Ru, Ke-Lin; Korbie, Darren; Trau, Matt

    2017-01-24

    The analysis of DNA methylation at CpG dinucleotides has become a major research focus due to its regulatory role in numerous biological processes, but the requisite need for assays which amplify bisulfite-converted DNA represents a major bottleneck due to the unique design constraints imposed on bisulfite-PCR primers. Moreover, a review of the literature indicated no available software solutions which accommodated both high-throughput primer design, support for multiplex amplification assays, and primer-dimer prediction. In response, the tri-modular software package PrimerSuite was developed to support bisulfite multiplex PCR applications. This software was constructed to (i) design bisulfite primers against multiple regions simultaneously (PrimerSuite), (ii) screen for primer-primer dimerizing artefacts (PrimerDimer), and (iii) support multiplex PCR assays (PrimerPlex). Moreover, a major focus in the development of this software package was the emphasis on extensive empirical validation, and over 1300 unique primer pairs have been successfully designed and screened, with over 94% of them producing amplicons of the expected size, and an average mapping efficiency of 93% when screened using bisulfite multiplex resequencing. The potential use of the software in other bisulfite-based applications such as methylation-specific PCR is under consideration for future updates. This resource is freely available for use at PrimerSuite website (www.primer-suite.com).

  8. Multiplex pyrosequencing assay using AdvISER-MH-PYRO algorithm: a case for rapid and cost-effective genotyping analysis of prostate cancer risk-associated SNPs.

    PubMed

    Ambroise, Jérôme; Butoescu, Valentina; Robert, Annie; Tombal, Bertrand; Gala, Jean-Luc

    2015-06-25

    Single Nucleotide Polymorphisms (SNPs) identified in Genome Wide Association Studies (GWAS) have generally moderate association with related complex diseases. Accordingly, Multilocus Genetic Risk Scores (MGRSs) have been computed in previous studies in order to assess the cumulative association of multiple SNPs. When several SNPs have to be genotyped for each patient, using successive uniplex pyrosequencing reactions increases analytical reagent expenses and Turnaround Time (TAT). While a set of several pyrosequencing primers could theoretically be used to analyze multiplex amplicons, this would generate overlapping primer-specific pyro-signals that are visually uninterpretable. In the current study, two multiplex assays were developed consisting of a quadruplex (n=4) and a quintuplex (n=5) polymerase chain reaction (PCR) each followed by multiplex pyrosequencing analysis. The aim was to reliably but rapidly genotype a set of prostate cancer-related SNPs (n=9). The nucleotide dispensation order was selected using SENATOR software. Multiplex pyro-signals were analyzed using the new AdvISER-MH-PYRO software based on a sparse representation of the signal. Using uniplex assays as gold standard, the concordance between multiplex and uniplex assays was assessed on DNA extracted from patient blood samples (n = 10). All genotypes (n=90) generated with the quadruplex and the quintuplex pyroquencing assays were perfectly (100 %) concordant with uniplex pyrosequencing. Using multiplex genotyping approach for analyzing a set of 90 patients allowed reducing TAT by approximately 75 % (i.e., from 2025 to 470 min) while reducing reagent consumption and cost by approximately 70 % (i.e., from ~229 US$ /patient to ~64 US$ /patient). This combination of quadruplex and quintuplex pyrosequencing and PCR assays enabled to reduce the amount of DNA required for multi-SNP analysis, and to lower the global TAT and costs of SNP genotyping while providing results as reliable as uniplex analysis. Using this combined multiplex approach also substantially reduced the production of waste material. These genotyping assays appear therefore to be biologically, economically and ecologically highly relevant, being worth to be integrated in genetic-based predictive strategies for better selecting patients at risk for prostate cancer. In addition, the same approach could now equally be transposed to other clinical/research applications relying on the computation of MGRS based on multi-SNP genotyping.

  9. Highly Multiplexed, Single Cell Transcriptomic Analysis of T-Cells by Microfluidic PCR.

    PubMed

    Dominguez, Maria; Roederer, Mario; Chattopadhyay, Pratip K

    2017-01-01

    Recently, technologies have been developed to measure expression of 96 (or more) mRNA transcripts at once from a single cell. Here we describe methods and important considerations for use of Fluidigm's BioMark platform for multiplexed single cell gene expression. We describe how to qualify primer/probes, select genes to examine in 96-parameter panels, perform the reverse transcription/cDNA synthesis step, and operate the instrument. In addition, we describe data analysis considerations. This technology has enormous value for characterizing the heterogeneity of T-cells, thereby providing a useful tool for immune monitoring.

  10. Social contagions on correlated multiplex networks

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cai, Meng; Zheng, Muhua

    2018-06-01

    The existence of interlayer degree correlations has been disclosed by abundant multiplex network analysis. However, how they impose on the dynamics of social contagions are remain largely unknown. In this paper, we propose a non-Markovian social contagion model in multiplex networks with inter-layer degree correlations to delineate the behavior spreading, and develop an edge-based compartmental (EBC) theory to describe the model. We find that multiplex networks promote the final behavior adoption size. Remarkably, it can be observed that the growth pattern of the final behavior adoption size, versus the behavioral information transmission probability, changes from discontinuous to continuous once decreasing the behavior adoption threshold in one layer. We finally unravel that the inter-layer degree correlations play a role on the final behavior adoption size but have no effects on the growth pattern, which is coincidence with our prediction by using the suggested theory.

  11. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR.

    PubMed

    Kannika, K; Pisuttharachai, D; Srisapoome, P; Wongtavatchai, J; Kondo, H; Hirono, I; Unajak, S; Areechon, N

    2017-06-01

    This study aimed to biotype Streptococcus agalactiae isolated from tilapia farms in Thailand based on molecular biotyping methods and to determine the correlation between the serotype and virulence of bacteria. In addition to a biotyping (serotyping) technique based on multiplex PCR of cps genes, in this study, we developed multiplex PCR typing of Group B streptococcus (GBS) virulence genes to examine three clusters of virulence genes and their correlation with the pathogenicity of S. agalactiae. The epidemiology of S. agalactiae in Thailand was analysed to provide bacterial genetic information towards a future rational vaccine strategy for tilapia culture systems. Streptococcus agalactiae were isolated from diseased tilapia from different areas of Thailand. A total of 124 S. agalactiae isolates were identified by phenotypic analysis and confirmed by 16S rRNA PCR. Bacterial genotyping was conducted based on (i) molecular serotyping of the capsular polysaccharide (cps) gene cluster and (ii) virulence gene profiling using multiplex PCR analysis of 14 virulence genes (lmb, scpB, pavA, cspA, spb1, cyl, bca, rib, fbsA, fbsB, cfb, hylB, bac and pbp1A/ponA). Only serotypes Ia and III were found in this study; serotype Ia lacks the lmb, scpB and spb1 genes, whereas serotype III lacks only the bac gene. Virulence tests in juvenile Nile tilapia demonstrated a correlation between the pathogenicity of the bacteria and their virulence gene profile, with serotype III showing higher virulence than serotype Ia. Epidemiological analysis showed an almost equal distribution in all regions of Thailand, except serotype III was found predominantly in the southern areas. Only two serotypes of S. agalactiae were isolated from diseased tilapia in Thailand. Serotype Ia showed fewer virulence genes and lower virulence than serotype III. Both serotypes showed a similar distribution throughout Thailand. We identified two major serotypes of S. agalactiae isolates associated with the outbreak in tilapia culture in Thailand. We developed multiplex PCR assays for 14 virulence genes, which may be used to predict the pathogenicity of the isolates and track future infections. Multiplex PCR typing of the GBS virulence genes was developed and might be further used to predict the pathogenicity of S. agalactiae. © 2017 The Society for Applied Microbiology.

  12. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines.

    PubMed

    Košir, Alexandra Bogožalec; Spilsberg, Bjørn; Holst-Jensen, Arne; Žel, Jana; Dobnik, David

    2017-08-17

    Quantification of genetically modified organisms (GMOs) in food and feed products is often required for their labelling or for tolerance thresholds. Standard-curve-based simplex quantitative polymerase chain reaction (qPCR) is the prevailing technology, which is often combined with screening analysis. With the rapidly growing number of GMOs on the world market, qPCR analysis becomes laborious and expensive. Innovative cost-effective approaches are therefore urgently needed. Here, we report the development and inter-laboratory assessment of multiplex assays to quantify GMO soybean using droplet digital PCR (ddPCR). The assays were developed to facilitate testing of foods and feed for compliance with current GMO regulations in the European Union (EU). Within the EU, the threshold for labelling is 0.9% for authorised GMOs per ingredient. Furthermore, the EU has set a technical zero tolerance limit of 0.1% for certain unauthorised GMOs. The novel multiplex ddPCR assays developed target 11 GMO soybean lines that are currently authorised, and four that are tolerated, pending authorisation in the EU. Potential significant improvements in cost efficiency are demonstrated. Performance was assessed for the critical parameters, including limits of detection and quantification, and trueness, repeatability, and robustness. Inter-laboratory performance was also determined on a number of proficiency programme and real-life samples.

  13. Multiplexing a high-throughput liability assay to leverage efficiencies.

    PubMed

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  14. Development and evaluation of a Hadamard transform imaging spectrometer and a Hadamard transform thermal imager

    NASA Technical Reports Server (NTRS)

    Harwit, M.; Swift, R.; Wattson, R.; Decker, J.; Paganetti, R.

    1976-01-01

    A spectrometric imager and a thermal imager, which achieve multiplexing by the use of binary optical encoding masks, were developed. The masks are based on orthogonal, pseudorandom digital codes derived from Hadamard matrices. Spatial and/or spectral data is obtained in the form of a Hadamard transform of the spatial and/or spectral scene; computer algorithms are then used to decode the data and reconstruct images of the original scene. The hardware, algorithms and processing/display facility are described. A number of spatial and spatial/spectral images are presented. The achievement of a signal-to-noise improvement due to the signal multiplexing was also demonstrated. An analysis of the results indicates both the situations for which the multiplex advantage may be gained, and the limitations of the technique. A number of potential applications of the spectrometric imager are discussed.

  15. The Microwave SQUID Multiplexer

    NASA Astrophysics Data System (ADS)

    Mates, John Arthur Benson

    2011-12-01

    This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis, and nuclear non-proliferation. The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of superconducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10-20 W / Hz1/2 and energy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications, like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity waves from inflation use arrays of these detectors to increase collection area or tile a focal plane. We developed three generations of SQUID multiplexers, optimizing the first for flux noise 0.17 muPhi0 / Hz1/2, the second for input current noise 19 pA / Hz1/2, and the last for practical multiplexing of large arrays of cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we demonstrated multiplexed readout of prototype polarimeters with the performance required for the future development of a large-scale astronomical instrument.

  16. Detection of diarrheagenic Escherichia coli by use of melting-curve analysis and real-time multiplex PCR.

    PubMed

    Guion, Chase E; Ochoa, Theresa J; Walker, Christopher M; Barletta, Francesca; Cleary, Thomas G

    2008-05-01

    Diarrheagenic Escherichia coli strains are important causes of diarrhea in children from the developing world and are now being recognized as emerging enteropathogens in the developed world. Current methods of detection are too expensive and labor-intensive for routine detection of these organisms to be practical. We developed a real-time fluorescence-based multiplex PCR for the detection of all six of the currently recognized classes of diarrheagenic E. coli. The primers were designed to specifically amplify eight different virulence genes in the same reaction: aggR for enteroaggregative E. coli, stIa/stIb and lt for enterotoxigenic E. coli, eaeA for enteropathogenic E. coli and Shiga toxin-producing E. coli (STEC), stx(1) and stx(2) for STEC, ipaH for enteroinvasive E. coli, and daaD for diffusely adherent E. coli (DAEC). Eighty-nine of ninety diarrheagenic E. coli and 36/36 nonpathogenic E. coli strains were correctly identified using this approach (specificity, 1.00; sensitivity, 0.99). The single false negative was a DAEC strain. The total time between preparation of DNA from E. coli colonies on agar plates and completion of PCR and melting-curve analysis was less than 90 min. The cost of materials was low. Melting-point analysis of real-time multiplex PCR is a rapid, sensitive, specific, and inexpensive method for detection of diarrheagenic E. coli.

  17. Characterization and multiplexing of EST-SSR primers in Cynodon (Poaceae) species1.

    PubMed

    Jewell, Margaret C; Frere, Celine H; Prentis, Peter J; Lambrides, Christopher J; Godwin, Ian D

    2010-10-01

    Cynodon species are multiple-use grasses that display varying levels of adaptation to biotic and abiotic stress. Previously identified EST-SSR primers were characterized and multiplexed to assess the level of genetic diversity present within a collection of almost 1200 Cynodon accessions from across Australia. • Two multiplex reactions were developed comprising a total of 16 EST-SSR markers. All SSR markers amplified across different Cynodon species and different levels of ploidy. The number of alleles ranged from one to eight per locus and the total number of alleles for the germplasm collection was 79. • The 16 markers show sufficient variation for the characterization of Cynodon core collections and analysis of population genetic diversity in Cynodon grasses.

  18. Influence of enrichment broths on multiplex PCR detection of total coliform bacteria, Escherichia coli and Clostridium perfringens, in spiked water samples.

    PubMed

    Worakhunpiset, S; Tharnpoophasiam, P

    2009-07-01

    Although multiplex PCR amplification condition for simultaneous detection of total coliform bacteria, Escherichia coli and Clostridium perfringens in water sample has been developed, results with high sensitivity are obtained when amplifying purified DNA, but the sensitivity is low when applied to spiked water samples. An enrichment broth culture prior PCR analysis increases sensitivity of the test but the specific nature of enrichment broth can affect the PCR results. Three enrichment broths, lactose broth, reinforced clostridial medium and fluid thioglycollate broth, were compared for their influence on sensitivity and on time required with multiplex PCR assay. Fluid thioglycollate broth was the most effective with shortest enrichment time and lowest detection limit.

  19. Multiplex Immunoassay Profiling of Hormones Involved in Metabolic Regulation.

    PubMed

    Stephen, Laurie; Guest, Paul C

    2018-01-01

    Multiplex immunoassays are used for rapid profiling of biomarker proteins and small molecules in biological fluids. The advantages over single immunoassays include lower sample consumption, cost, and labor. This chapter details a protocol to develop a 5-plex assay for glucagon-like peptide 1, growth hormone, insulin, leptin, and thyroid-stimulating hormone on the Luminex ® platform. The results of the analysis of insulin in normal control subjects are given due to the important role of this hormone in nutritional programming diseases.

  20. Screening DNA chip and event-specific multiplex PCR detection methods for biotech crops.

    PubMed

    Lee, Seong-Hun

    2014-11-01

    There are about 80 biotech crop events that have been approved by safety assessment in Korea. They have been controlled by genetically modified organism (GMO) and living modified organism (LMO) labeling systems. The DNA-based detection method has been used as an efficient scientific management tool. Recently, the multiplex polymerase chain reaction (PCR) and DNA chip have been developed as simultaneous detection methods for several biotech crops' events. The event-specific multiplex PCR method was developed to detect five biotech maize events: MIR604, Event 3272, LY 038, MON 88017 and DAS-59122-7. The specificity was confirmed and the sensitivity was 0.5%. The screening DNA chip was developed from four endogenous genes of soybean, maize, cotton and canola respectively along with two regulatory elements and seven genes: P35S, tNOS, pat, bar, epsps1, epsps2, pmi, cry1Ac and cry3B. The specificity was confirmed and the sensitivity was 0.5% for four crops' 12 events: one soybean, six maize, three cotton and two canola events. The multiplex PCR and DNA chip can be available for screening, gene-specific and event-specific analysis of biotech crops as efficient detection methods by saving on workload and time. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  1. Preliminary Assessment of Microwave Readout Multiplexing Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croce, Mark Philip; Koehler, Katrina Elizabeth; Rabin, Michael W.

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must bemore » operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.« less

  2. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    PubMed Central

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products. PMID:26257724

  3. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    PubMed

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  4. Comparison of Multiplex Suspension Array Large-Panel Kits for Profiling Cytokines and Chemokines in Rheumatoid Arthritis Patients

    PubMed Central

    Khan, Imran H.; Krishnan, V.V.; Ziman, Melanie; Janatpour, Kim; Wun, Ted; Luciw, Paul A.; Tuscano, Joseph

    2015-01-01

    Background Multiplex analysis allows measurements of a large number of analytes simultaneously in each sample. Based on the Luminex multiplex technology (xMAP), kits for measuring multiple cytokines and chemokines (immunomodulators) are commercially available and are useful in investigations on inflammatory diseases. This study evaluated four multiplex kits (Bio-Plex, LINCOplex, Fluorokine, and Beadlyte) that contained 27, 29, 20 and 22 analytes each, respectively, for the analysis of immunomodulators in plasma of rheumatoid arthritis (RA) patients who underwent treatment with antibody against CD20 (rituximab), a B-cell reductive therapy. Methods Multiplex kits were tested on serial plasma samples obtained from six RA patients at baseline and multiple time points (3, 6, and 9 months) post-treatment with rituximab. The RA patients included in this study had previously failed therapy with disease modifying anti-arthritis drugs (DMARD) and treatment with anti-TNFα antibody (infliximab). Results Computer modeling and hierarchical cluster analysis of the multiplex data allowed a comparison of the performance of multiplex assay kits and revealed profiles of immunomodulators in the RA patients. Conclusions In plasma of RA patients who appeared to have benefited from rituximab treatment the profile of significantly elevated immunomodulators by at least two of the three kits (BioPlex, LINCOplex, Beadlyte), is as follows: IL-12p70, Eotaxin, IL-4, TNFα, Il-9, IL-1β, IFNγ, IL-10, IL-6, and IL-13. Immunomodulator profiling by multiplex analysis may provide useful plasma biomarkers for monitoring response to B-cell reductive therapy in RA patients. PMID:18823005

  5. Image Decoding of Photonic Crystal Beads Array in the Microfluidic Chip for Multiplex Assays

    PubMed Central

    Yuan, Junjie; Zhao, Xiangwei; Wang, Xiaoxia; Gu, Zhongze

    2014-01-01

    Along with the miniaturization and intellectualization of biomedical instruments, the increasing demand of health monitoring at anywhere and anytime elevates the need for the development of point of care testing (POCT). Photonic crystal beads (PCBs) as one kind of good encoded microcarriers can be integrated with microfluidic chips in order to realize cost-effective and high sensitive multiplex bioassays. However, there are difficulties in analyzing them towards automated analysis due to the characters of the PCBs and the unique detection manner. In this paper, we propose a strategy to take advantage of automated image processing for the color decoding of the PCBs array in the microfluidic chip for multiplex assays. By processing and alignment of two modal images of epi-fluorescence and epi-white light, every intact bead in the image is accurately extracted and decoded by PC colors, which stand for the target species. This method, which shows high robustness and accuracy under various configurations, eliminates the high hardware requirement of spectroscopy analysis and user-interaction software, and provides adequate supports for the general automated analysis of POCT based on PCBs array. PMID:25341876

  6. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    PubMed

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources. Published by Elsevier Inc.

  7. Multiplex Immunoassay Profiling of Serum in Psychiatric Disorders.

    PubMed

    Stephen, Laurie; Schwarz, Emanuel; Guest, Paul C

    2017-01-01

    Multiplex immunoassays allow for the rapid profiling of biomarker proteins in biological fluids, using less sample and labour than in single immunoassays. This chapter details the methods to develop and manufacture a 5-plex immunoassay for the Luminex® platform. Although assay development is not included here, the same methods can be used to covalently couple antibodies to the Luminex beads and to label antibodies for the screening of sandwich pairs, if needed. An example will be given for the analysis of five hormones (glucagon-like peptide 1, growth hormone, insulin, leptin and thyroid-stimulating hormone) in serum samples from schizophrenia patients and controls.

  8. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species.

    PubMed

    Gopaul, Krishna K; Sells, Jessica; Lee, Robin; Beckstrom-Sternberg, Stephen M; Foster, Jeffrey T; Whatmore, Adrian M

    2014-12-11

    The zoonosis brucellosis causes economically significant reproductive problems in livestock and potentially debilitating disease of humans. Although the causative agent, organisms from the genus Brucella, can be differentiated into a number of species based on phenotypic characteristics, there are also significant differences in genotype that are concordant with individual species. This paper describes the development of a five target multiplex assay to identify five terrestrial Brucella species using real-time polymerase chain reaction (PCR) and subsequent high resolution melt curve analysis. This technology offers a robust and cost effective alternative to previously described hydrolysis-probe Single Nucleotide Polymorphism (SNP)-based species defining assays. Through the use of Brucella whole genome sequencing five species defining SNPs were identified. Individual HRM assays were developed to these target these changes and, following optimisation of primer concentrations, it was possible to multiplex all five assays in a single tube. In a validation exercise using a panel of 135 Brucella strains of terrestrial and marine origin, it was possible to distinguish the five target species from the other species within this panel. The HRM multiplex offers a number of diagnostic advantages over previously described SNP-based typing approaches. Further, and uniquely for HRM, the successful multiplexing of five assays in a single tube allowing differentiation of five Brucella species in the diagnostic laboratory in a cost-effective and timely manner is described. However there are possible limitations to using this platform on DNA extractions direct from clinical material.

  9. Available number of multiplexed holograms based on signal-to-noise ratio analysis in reflection-type holographic memory using three-dimensional speckle-shift multiplexing.

    PubMed

    Nishizaki, Tatsuya; Matoba, Osamu; Nitta, Kouichi

    2014-09-01

    The recording properties of three-dimensional speckle-shift multiplexing in reflection-type holographic memory are analyzed numerically. Three-dimensional recording can increase the number of multiplexed holograms by suppressing the cross-talk noise from adjacent holograms by using depth-direction multiplexing rather than in-plane multiplexing. Numerical results indicate that the number of multiplexed holograms in three-layer recording can be increased by 1.44 times as large as that of a single-layer recording when an acceptable signal-to-noise ratio is set to be 2 when NA=0.43 and the thickness of the recording medium is 0.5 mm.

  10. Enhanced capillary electrophoretic screening of Alzheimer based on direct apolipoprotein E genotyping and one-step multiplex PCR.

    PubMed

    Woo, Nain; Kim, Su-Kang; Sun, Yucheng; Kang, Seong Ho

    2018-01-01

    Human apolipoprotein E (ApoE) is associated with high cholesterol levels, coronary artery disease, and especially Alzheimer's disease. In this study, we developed an ApoE genotyping and one-step multiplex polymerase chain reaction (PCR) based-capillary electrophoresis (CE) method for the enhanced diagnosis of Alzheimer's. The primer mixture of ApoE genes enabled the performance of direct one-step multiplex PCR from whole blood without DNA purification. The combination of direct ApoE genotyping and one-step multiplex PCR minimized the risk of DNA loss or contamination due to the process of DNA purification. All amplified PCR products with different DNA lengths (112-, 253-, 308-, 444-, and 514-bp DNA) of the ApoE genes were analyzed within 2min by an extended voltage programming (VP)-based CE under the optimal conditions. The extended VP-based CE method was at least 120-180 times faster than conventional slab gel electrophoresis methods In particular, all amplified DNA fragments were detected in less than 10 PCR cycles using a laser-induced fluorescence detector. The detection limits of the ApoE genes were 6.4-62.0pM, which were approximately 100-100,000 times more sensitive than previous Alzheimer's diagnosis methods In addition, the combined one-step multiplex PCR and extended VP-based CE method was also successfully applied to the analysis of ApoE genotypes in Alzheimer's patients and normal samples and confirmed the distribution probability of allele frequencies. This combination of direct one-step multiplex PCR and an extended VP-based CE method should increase the diagnostic reliability of Alzheimer's with high sensitivity and short analysis time even with direct use of whole blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A new design approach to MMI-based (de)multiplexers

    NASA Astrophysics Data System (ADS)

    Yueyu, Xiao; Sailing, He

    2004-09-01

    A novel design method of the wavelength (de)multiplexer is presented. The output spectral response of a (de)multiplexer is designed from the view of FIR filters. Avoiding laborious mathematic analysis, the (de)multiplexer is analyzed and designed in this explicit and simple method. A four channel (de)multiplexer based on multimode interference (MMI) is designed as an example. The result obtained agrees with that of the commonly used method, and is verified by a finite difference beam propagation method (FDBPM) simulation.

  12. Development of allele-specific multiplex PCR to determine the length of poly-T in intron 8 of CFTR

    PubMed Central

    Prada, Anne E.

    2014-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation analysis has been implemented for Cystic Fibrosis (CF) carrier screening, and molecular diagnosis of CF and congenital bilateral absence of the vas deferens (CBAVD). Although poly-T allele analysis in intron 8 of CFTR is required when a patient is positive for R117H, it is not recommended for routine carrier screening. Therefore, commercial kits for CFTR mutation analysis were designed either to mask the poly-T allele results, unless a patient is R117H positive, or to have the poly-T analysis as a standalone reflex test using the same commercial platform. There are other standalone assays developed to detect poly-T alleles, such as heteroduplex analysis, High Resolution Melting (HRM) curve analysis, allele-specific PCR (AS-PCR) and Sanger sequencing. In this report, we developed a simple and easy-to-implement multiplex AS-PCR assay using unlabeled standard length primers, which can be used as a reflex or standalone test for CFTR poly-T track analysis. Out of 115 human gDNA samples tested, results from our new AS-PCR matched to the previous known poly-T results or results from Sanger sequencing. PMID:25071991

  13. Multiplexer and time duration measuring circuit

    DOEpatents

    Gray, Jr., James

    1980-01-01

    A multiplexer device is provided for multiplexing data in the form of randomly developed, variable width pulses from a plurality of pulse sources to a master storage. The device includes a first multiplexer unit which includes a plurality of input circuits each coupled to one of the pulse sources, with all input circuits being disabled when one input circuit receives an input pulse so that only one input pulse is multiplexed by the multiplexer unit at any one time.

  14. Multiplex gas chromatography for use in space craft

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.

    1985-01-01

    Gas chromatography is a powerful technique for the analysis of gaseous mixtures. Some limitations in this technique still exist which can be alleviated with multiplex gas chromatography (MGC). In MGC, rapid multiple sample injections are made into the column without having to wait for one determination to be finished before taking a new sample. The resulting data must then be reduced using computational methods such as cross correlation. In order to efficiently perform multiplexgas chromatography, experiments in the laboratory and on board future space craft, skills, equipment, and computer software were developed. Three new techniques for modulating, i.e., changing, sample concentrations were demonstrated by using desorption, decomposition, and catalytic modulators. In all of them, the need for a separate gas stream as the carrier was avoided by placing the modulator at the head of the column to directly modulate a sample stream. Finally, the analysis of an environmental sample by multiplex chromatography was accomplished by employing silver oxide to catalytically modulate methane in ambient air.

  15. Multiplex cDNA quantification method that facilitates the standardization of gene expression data

    PubMed Central

    Gotoh, Osamu; Murakami, Yasufumi; Suyama, Akira

    2011-01-01

    Microarray-based gene expression measurement is one of the major methods for transcriptome analysis. However, current microarray data are substantially affected by microarray platforms and RNA references because of the microarray method can provide merely the relative amounts of gene expression levels. Therefore, valid comparisons of the microarray data require standardized platforms, internal and/or external controls and complicated normalizations. These requirements impose limitations on the extensive comparison of gene expression data. Here, we report an effective approach to removing the unfavorable limitations by measuring the absolute amounts of gene expression levels on common DNA microarrays. We have developed a multiplex cDNA quantification method called GEP-DEAN (Gene expression profiling by DCN-encoding-based analysis). The method was validated by using chemically synthesized DNA strands of known quantities and cDNA samples prepared from mouse liver, demonstrating that the absolute amounts of cDNA strands were successfully measured with a sensitivity of 18 zmol in a highly multiplexed manner in 7 h. PMID:21415008

  16. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis.

    PubMed

    Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C

    2017-06-01

    For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4  CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert

    2018-01-01

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology. PMID:29425124

  18. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens.

    PubMed

    Higgins, Owen; Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert; Smith, Terry J

    2018-02-09

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae , Neisseria meningitidis and Haemophilus influenzae . Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae , N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.

  19. Multiplexed Analysis of Serum Breast and Ovarian Cancer Markers by Means of Suspension Bead-quantum Dot Microarrays

    NASA Astrophysics Data System (ADS)

    Brazhnik, Kristina; Sokolova, Zinaida; Baryshnikova, Maria; Bilan, Regina; Nabiev, Igor; Sukhanova, Alyona

    Multiplexed analysis of cancer markers is crucial for early tumor diagnosis and screening. We have designed lab-on-a-bead microarray for quantitative detection of three breast cancer markers in human serum. Quantum dots were used as bead-bound fluorescent tags for identifying each marker by means of flow cytometry. Antigen-specific beads reliably detected CA 15-3, CEA, and CA 125 in serum samples, providing clear discrimination between the samples with respect to the antigen levels. The novel microarray is advantageous over the routine single-analyte ones due to the simultaneous detection of various markers. Therefore the developed microarray is a promising tool for serum tumor marker profiling.

  20. Frequency-Modulated Continuous Flow Analysis Electrospray Ionization Mass Spectrometry (FM-CFA-ESI-MS) for Sample Multiplexing.

    PubMed

    Filla, Robert T; Schrell, Adrian M; Coulton, John B; Edwards, James L; Roper, Michael G

    2018-02-20

    A method for multiplexed sample analysis by mass spectrometry without the need for chemical tagging is presented. In this new method, each sample is pulsed at unique frequencies, mixed, and delivered to the mass spectrometer while maintaining a constant total flow rate. Reconstructed ion currents are then a time-dependent signal consisting of the sum of the ion currents from the various samples. Spectral deconvolution of each reconstructed ion current reveals the identity of each sample, encoded by its unique frequency, and its concentration encoded by the peak height in the frequency domain. This technique is different from other approaches that have been described, which have used modulation techniques to increase the signal-to-noise ratio of a single sample. As proof of concept of this new method, two samples containing up to 9 analytes were multiplexed. The linear dynamic range of the calibration curve was increased with extended acquisition times of the experiment and longer oscillation periods of the samples. Because of the combination of the samples, salt had little effect on the ability of this method to achieve relative quantitation. Continued development of this method is expected to allow for increased numbers of samples that can be multiplexed.

  1. Detection and Typing of Human Papilloma Viruses by Nested Multiplex Polymerase Chain Reaction Assay in Cervical Cancer

    PubMed Central

    Jalal Kiani, Seyed; Shatizadeh Malekshahi, Somayeh; Yousefi Ghalejoogh, Zohreh; Ghavvami, Nastaran; Shafiei Jandaghi, Nazanin Zahra; Shahsiah, Reza; Jahanzad, Isa; Yavarian, Jila

    2015-01-01

    Background: Cervical cancer is the leading cause of death from cancer in under-developed countries. Human papilloma virus (HPV) 16 and 18 are the most prevalent types associated with carcinogenesis in the cervix. Conventional Polymerase Chain Reaction (PCR), type-specific and consensus primer-based PCR followed by sequencing, Restriction Fragment Length Polymorphism (RFLP) or hybridization by specific probes are common methods for HPV detection and typing. In addition, some researchers have developed a multiplex PCR for simultaneous detection and typing of different HPVs. Objectives: The aim of the present study was to investigate the prevalence of HPV infection and its types in cervical Squamous Cell Carcinoma (SCC) using the Nested Multiplex PCR (NMPCR) assay. Patients and Methods: Sixty-six samples with histologically confirmed SCC were evaluated. Total DNA was isolated by phenol–chloroform extraction and ethanol precipitation. Nested multiplex PCR was performed with first-round PCR by GP-E6/E7 consensus primers for amplification of the genomic DNA of all known mucosal HPV genotypes and second-round PCR by type-specific multiplex PCR primer cocktails. Results: Human papilloma virus infection was detected in 78.8% of samples, with the highest prevalence of HPV 16 (60.6%) while concurrent infections with two types was detected in 10.6%. Conclusions: The NMPCR assay is more convenient and easy for analysis of results, which is important for fast diagnosis and patient management, in a type-specific manner. PMID:26865940

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Yehia M.; Garimella, Sandilya V. B.; Prost, Spencer A.

    Complex samples benefit from multidimensional measurements where higher resolution enables more complete characterization of biological and environmental systems. To address this challenge, we developed a drift tube-based ion mobility spectrometry-Orbitrap mass spectrometer (IMS-Orbitrap MS) platform. To circumvent the time scale disparity between the fast IMS separation and the much slower Orbitrap MS acquisition, we utilized a dual gate and pseudorandom sequences to multiplexed injection of ions and allowing operation in signal averaging (SA), single multiplexing (SM) and double multiplexing (DM) IMS modes to optimize the signal-to-noise ratio of the measurements. For the SM measurements, a previously developed algorithm was usedmore » to reconstruct the IMS data. A new algorithm was developed for the DM analyses involving a two-step process that first recovers the SM data and then decodes the SM data. The algorithm also performs multiple refining procedures in order to minimize demultiplexing artifacts. The new IMS-Orbitrap MS platform was demonstrated by the analysis of proteomic and petroleum samples, where the integration of IMS and high mass resolution proved essential for accurate assignment of molecular formulae.« less

  3. A Spread-Spectrum SQUID Multiplexer

    NASA Astrophysics Data System (ADS)

    Irwin, K. D.; Chaudhuri, S.; Cho, H.-M.; Dawson, C.; Kuenstner, S.; Li, D.; Titus, C. J.; Young, B. A.

    2018-06-01

    The transition-edge sensor (TES) is a mature, high-resolution x-ray spectrometer technology that provides a much higher efficiency than dispersive spectrometers such as gratings and crystal spectrometers. As larger arrays are developed, time-division multiplexing schemes operating at MHz frequencies are being replaced by microwave SQUID multiplexers using frequency-division multiplexing at GHz frequencies. However, the multiplexing factor achievable with microwave SQUIDs is limited by the high slew rate on the leading edge of x-ray pulses. In this paper, we propose a new multiplexing scheme for high-slew-rate TES x-ray calorimeters: the spread-spectrum SQUID multiplexer, which has the potential to enable higher multiplexing factors, especially in applications with lower photon-arrival rates.

  4. Improved assessment of accuracy and performance using a rotational paper-based device for multiplexed detection of heavy metals.

    PubMed

    Sun, Xiange; Li, Bowei; Qi, Anjin; Tian, Chongguo; Han, Jinglong; Shi, Yajun; Lin, Bingcheng; Chen, Lingxin

    2018-02-01

    In this work, a novel rotational microfluidic paper-based device was developed to improve the accuracy and performance of the multiplexed colorimetric detection by effectively avoiding the diffusion of colorimetric reagent on the detection zone. The integrated paper-based rotational valves were used to control the connection or disconnection between detection zones and fluid channels. Based on the manipulation of the rotational valves, this rotational paper-based device could prevent the random diffusion of colorimetric reagent and reduce the error of quantitative analysis considerably. The multiplexed colorimetric detection of heavy metals Ni(II), Cu(II) and Cr(VI) were implemented on the rotational device and the detection limits could be found to be 4.8, 1.6, and 0.18mg/L, respectively. The developed rotational device showed the great advantage in improving the detection accuracy and was expected to be a low-cost, portable analytical platform for the on-site detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Digital Transplantation Pathology: Combining Whole Slide Imaging, Multiplex Staining, and Automated Image Analysis

    PubMed Central

    Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Roysam, Badrinath; Minervini, Martha I.; Demetris, Anthony J

    2013-01-01

    Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. “-Omics” analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: a) spatial-temporal relationships; b) rare events/cells; c) complex structural context; and d) integration into a “systems” model. Nevertheless, except for immunostaining, no transformative advancements have “modernized” routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology - global “–omic” analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes. PMID:22053785

  6. Multiplexed microsatellite recovery using massively parallel sequencing

    Treesearch

    T.N. Jennings; B.J. Knaus; T.D. Mullins; S.M. Haig; R.C. Cronn

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of...

  7. Multiplex pyrosequencing of InDel markers for forensic DNA analysis.

    PubMed

    Bus, Magdalena M; Karas, Ognjen; Allen, Marie

    2016-12-01

    The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator ® DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator ® DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof-of-principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost-effective alternative for some applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High-performance single cell genetic analysis using microfluidic emulsion generator arrays.

    PubMed

    Zeng, Yong; Novak, Richard; Shuga, Joe; Smith, Martyn T; Mathies, Richard A

    2010-04-15

    High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Microfabricated emulsion generator array (MEGA) devices containing 4, 32, and 96 channels are developed to confer a flexible capability of generating up to 3.4 x 10(6) nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed and the beads are pooled and rapidly analyzed by multicolor flow cytometry. Using Escherichia coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1/10(5). This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations.

  9. High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays

    PubMed Central

    Zeng, Yong; Novak, Richard; Shuga, Joe; Smith, Martyn T.; Mathies, Richard A.

    2010-01-01

    High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex PCR. Microfabricated emulsion generator array (MEGA) devices containing 4, 32 and 96 channels are developed to confer a flexible capability of generating up to 3.4 × 106 nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed, the beads are pooled and rapidly analyzed by multi-color flow cytometry. Using E. coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1:105. This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations. PMID:20192178

  10. Advanced Code-Division Multiplexers for Superconducting Detector Arrays

    NASA Astrophysics Data System (ADS)

    Irwin, K. D.; Cho, H. M.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Niemack, M. D.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.

    2012-06-01

    Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.

  11. Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV.

    PubMed

    Mohammadi-Yeganeh, S; Paryan, M; Mirab Samiee, S; Kia, V; Rezvan, H

    2012-06-01

    Developed in 1991, nucleic acid sequence-based amplification (NASBA) has been introduced as a rapid molecular diagnostic technique, where it has been shown to give quicker results than PCR, and it can also be more sensitive. This paper describes the development of a molecular beacon-based multiplex NASBA assay for simultaneous detection of HIV-1 and HCV in plasma samples. A well-conserved region in the HIV-1 pol gene and 5'-NCR of HCV genome were used for primers and molecular beacon design. The performance features of HCV/HIV-1 multiplex NASBA assay including analytical sensitivity and specificity, clinical sensitivity and clinical specificity were evaluated. The analysis of scalar concentrations of the samples indicated that the limit of quantification of the assay was <1000 copies/ml for HIV-1 and <500 copies/ml for HCV with 95% confidence interval. Multiplex NASBA assay showed a 98% sensitivity and 100% specificity. The analytical specificity study with BLAST software demonstrated that the primers do not attach to any other sequences except for that of HIV-1 or HCV. The primers and molecular beacon probes detected all HCV genotypes and all major variants of HIV-1. This method may represent a relatively inexpensive isothermal method for detection of HIV-1/HCV co-infection in monitoring of patients.

  12. Analysis of LDLR mutations in familial hypercholesterolemia patients in Greece by use of the NanoChip microelectronic array technology.

    PubMed

    Laios, Eleftheria; Drogari, Euridiki

    2006-12-01

    Three mutations in the low density lipoprotein receptor (LDLR) gene account for 49% of familial hypercholesterolemia (FH) cases in Greece. We used the microelectronic array technology of the NanoChip Molecular Biology Workstation to develop a multiplex method to analyze these single-nucleotide polymorphisms (SNPs). Primer pairs amplified the region encompassing each SNP. The biotinylated PCR amplicon was electronically addressed to streptavidin-coated microarray sites. Allele-specific fluorescently labeled oligonucleotide reporters were designed and used for detection of wild-type and SNP sequences. Genotypes were compared to PCR-restriction fragment length polymorphism (PCR-RFLP). We developed three monoplex assays (1 SNP/site) and an optimized multiplex assay (3SNPs/site). We performed 92 Greece II, 100 Genoa, and 98 Afrikaner-2 NanoChip monoplex assays (addressed to duplicate sites and analyzed separately). Of the 580 monoplex genotypings (290 samples), 579 agreed with RFLP. Duplicate sites of one sample were not in agreement with each other. Of the 580 multiplex genotypings, 576 agreed with the monoplex results. Duplicate sites of three samples were not in agreement with each other, indicating requirement for repetition upon which discrepancies were resolved. The multiplex assay detects common LDLR mutations in Greek FH patients and can be extended to accommodate additional mutations.

  13. Observability of Boolean multiplex control networks

    NASA Astrophysics Data System (ADS)

    Wu, Yuhu; Xu, Jingxue; Sun, Xi-Ming; Wang, Wei

    2017-04-01

    Boolean multiplex (multilevel) networks (BMNs) are currently receiving considerable attention as theoretical arguments for modeling of biological systems and system level analysis. Studying control-related problems in BMNs may not only provide new views into the intrinsic control in complex biological systems, but also enable us to develop a method for manipulating biological systems using exogenous inputs. In this article, the observability of the Boolean multiplex control networks (BMCNs) are studied. First, the dynamical model and structure of BMCNs with control inputs and outputs are constructed. By using of Semi-Tensor Product (STP) approach, the logical dynamics of BMCNs is converted into an equivalent algebraic representation. Then, the observability of the BMCNs with two different kinds of control inputs is investigated by giving necessary and sufficient conditions. Finally, examples are given to illustrate the efficiency of the obtained theoretical results.

  14. Charging YOYO-1 on Capillary Wall for Online DNA Intercalation and Integrating This Approach with Multiplex PCR and Bare Narrow Capillary–Hydrodynamic Chromatography for Online DNA Analysis

    PubMed Central

    2016-01-01

    Multiplex polymerase chain reaction (PCR) has been widely utilized for high-throughput pathogen identification. Often, a dye is used to intercalate the amplified DNA fragments, and identifications of the pathogens are carried out by DNA melting curve analysis or gel electrophoresis. Integrating DNA amplification and identification is a logic path toward maximizing the benefit of multiplex PCR. Although PCR and gel electrophoresis have been integrated, replenishing the gels after each run is tedious and time-consuming. In this technical note, we develop an approach to address this issue. We perform multiplex PCR inside a capillary, transfer the amplified fragments to a bare narrow capillary, and measure their lengths online using bare narrow capillary–hydrodynamic chromatography (BaNC-HDC), a new technique recently developed in our laboratory for free-solution DNA separation. To intercalate the DNA with YOYO-1 (a fluorescent dye) for BaNC-HDC, we flush the capillary column with a YOYO-1 solution; positively charged YOYO-1 is adsorbed (or charged) onto the negatively charged capillary wall. As DNA molecules are driven down the column for separation, they react with the YOYO-1 stored on the capillary wall and are online-intercalated with the dye. With a single YOYO-1 charging, the column can be used for more than 40 runs, although the fluorescence signal intensities of the DNA peaks decrease gradually. Although the dye-DNA intercalation occurs during the separation, it does not affect the retention times, separation efficiencies, or resolutions. PMID:25555111

  15. Species-Specific Serological Detection for Schistosomiasis by Serine Protease Inhibitor (SERPIN) in Multiplex Assay.

    PubMed

    Tanigawa, Chihiro; Fujii, Yoshito; Miura, Masashi; Nzou, Samson Muuo; Mwangi, Anne Wanjiru; Nagi, Sachiyo; Hamano, Shinjiro; Njenga, Sammy M; Mbanefo, Evaristus Chibunna; Hirayama, Kenji; Mwau, Matilu; Kaneko, Satoshi

    2015-01-01

    Both Schistosoma mansoni and Schistosoma haematobium cause schistosomiasis in sub-Saharan Africa. We assessed the diagnostic value of selected Schistosoma antigens for the development of a multiplex serological immunoassay for sero-epidemiological surveillance. Diagnostic ability of recombinant antigens from S. mansoni and S. haematobium was assessed by Luminex multiplex immunoassay using plasma from school children in two areas of Kenya, endemic for different species of schistosomiasis. S. mansoni serine protease inhibitor (SERPIN) and Sm-RP26 showed significantly higher reactivity to patient plasma as compared to the control group. Sm-Filamin, Sm-GAPDH, Sm-GST, Sm-LAP1, Sm-LAP2, Sm-Sm31, Sm-Sm32 and Sm-Tropomyosin did not show difference in reactivity between S. mansoni infected and uninfected pupils. Sm-RP26 was cross-reactive to plasma from S. haematobium patients, whereas Sm-SERPIN was species-specific. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. ROC analysis for Sm-RP26, Sm-SERPIN and Sh-SERPIN showed AUC values of 0.833, 0.888 and 0.947, respectively. Using Spearman's rank correlation coefficient analysis, we also found significant positive correlation between the number of excreted eggs and median fluorescence intensity (MFI) from the multiplex immunoassays for Sm-SERPIN (ρ = 0.430, p-value = 0.003) and Sh-SERPIN (ρ = 0.433, p-value = 0.006). Sm-SERPIN is a promising species-specific diagnostic antigen. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. SERPINs showed correlation with the number of excreted eggs. These indicate prospects for inclusion of SERPINs in the multiplex serological immunoassay system.

  16. Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay

    PubMed Central

    Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt

    2003-01-01

    We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378

  17. A valveless rotary microfluidic device for multiplex point mutation identification based on ligation-rolling circle amplification.

    PubMed

    Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok

    2016-04-15

    Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Orbital angular momentum in four channel spatial domain multiplexing system for multi-terabit per second communication architectures

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Muralikrishnan, Hari P.; Kozaitis, Samuel P.

    2012-06-01

    Bandwidth increase has always been an important area of research in communications. A novel multiplexing technique known as Spatial Domain Multiplexing (SDM) has been developed at the Optronics Laboratory of Florida Institute of Technology to increase the bandwidth to T-bits/s range. In this technique, space inside the fiber is used effectively to transmit up to four channels of same wavelength at the same time. Experimental and theoretical analysis shows that these channels follow independent helical paths inside the fiber without interfering with each other. Multiple pigtail laser sources of exactly the same wavelength are used to launch light into a single carrier fiber in a fashion that resulting channels follow independent helical trajectories. These helically propagating light beams form optical vortices inside the fiber and carry their own Orbital Angular Momentum (OAM). The outputs of these beams appear as concentric donut shaped rings when projected on a screen. This endeavor presents the experimental outputs and simulated results for a four channel spatially multiplexed system effectively increasing the system bandwidth by a factor of four.

  19. Self-calibrating multiplexer circuit

    DOEpatents

    Wahl, Chris P.

    1997-01-01

    A time domain multiplexer system with automatic determination of acceptable multiplexer output limits, error determination, or correction is comprised of a time domain multiplexer, a computer, a constant current source capable of at least three distinct current levels, and two series resistances employed for calibration and testing. A two point linear calibration curve defining acceptable multiplexer voltage limits may be defined by the computer by determining the voltage output of the multiplexer to very accurately known input signals developed from predetermined current levels across the series resistances. Drift in the multiplexer may be detected by the computer when the output voltage limits, expected during normal operation, are exceeded, or the relationship defined by the calibration curve is invalidated.

  20. Simultaneous frequency stabilization and high-power dense wavelength division multiplexing (HP-DWDM) using an external cavity based on volume Bragg gratings (VBGs)

    NASA Astrophysics Data System (ADS)

    Hengesbach, Stefan; Klein, Sarah; Holly, Carlo; Witte, Ulrich; Traub, Martin; Hoffmann, Dieter

    2016-03-01

    Multiplexing technologies enable the development of high-brightness diode lasers for direct industrial applications. We present a High-Power Dense Wavelength Division Multiplexer (HP-DWDM) with an average channel spacing of 1.7 (1.5) nm and a subsequent external cavity mirror to provide feedback for frequency stabilization and multiplexing in one step. The "self-optimizing" multiplexing unit consists of four reflective Volume Bragg Gratings (VBGs) with 99% diffraction efficiency and seven dielectric mirrors to overlay the radiation of five input channels with an adjustable channel spacing of 1-2 nm. In detail, we focus on the analysis of the overall optical efficiency, the change of the beam parameter product and the spectral width. The performance is demonstrated using five 90 μm multimode 9xx single emitters with M2<=17. Because of the feedback the lateral (multimodal) spatial and angular intensity distribution changes strongly and the beam parameter product decreases by a factor of 1.2 to 1.9. Thereby the angular intensity distribution is more affected than the width of the beam waist. The spectral width per emitter decreases to 3-200 pm (FWHM) depending on the injection current and the reflectance of the feedback mirror (0.75%, 1.5%, 4%, 6% or 8%). The overall optical multiplexing efficiency ranges between 77% and 86%. With some modifications (e.g. enhanced AR-coatings) we expect 90-95%.

  1. Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR.

    PubMed

    Watanabe, Masaru; Kawaguchi, Tomoya; Isa, Shun-Ichi; Ando, Masahiko; Tamiya, Akihiro; Kubo, Akihito; Saka, Hideo; Takeo, Sadanori; Adachi, Hirofumi; Tagawa, Tsutomu; Kawashima, Osamu; Yamashita, Motohiro; Kataoka, Kazuhiko; Ichinose, Yukito; Takeuchi, Yukiyasu; Watanabe, Katsuya; Matsumura, Akihide; Koh, Yasuhiro

    2017-07-01

    Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy. Here, we developed a multiplex picodroplet digital PCR (ddPCR) assay to detect 3 common EGFR mutations in 1 reaction. Serial-dilution experiments with genomic DNA harboring EGFR mutations revealed linear performance, with analytical sensitivity ~0.01% for each mutation. All 33 EGFR-activating mutations detected in formalin-fixed paraffin-embedded (FFPE) tissue samples by the conventional method were also detected by this multiplex assay. Owing to the higher sensitivity, an additional mutation (T790M; including an ultra-low-level mutation, <0.1%) was detected in the same reaction. Regression analysis of the duplex assay and multiplex assay showed a correlation coefficient (R 2 ) of 0.9986 for L858R, 0.9844 for an exon 19 deletion, and 0.9959 for T790M. Using ddPCR, we designed a multiplex ultrasensitive genotyping platform for 3 common EGFR mutations. Results of this proof-of-principle study on clinical samples indicate clinical utility of multiplex ddPCR for screening for multiple EGFR mutations concurrently with an ultra-rare pretreatment mutation (T790M). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    PubMed

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Molecular typing of Salmonella enterica serovar typhi isolates from various countries in Asia by a multiplex PCR assay on variable-number tandem repeats.

    PubMed

    Liu, Yichun; Lee, May-Ann; Ooi, Eng-Eong; Mavis, Yeo; Tan, Ai-Ling; Quek, Hung-Hiang

    2003-09-01

    A multiplex PCR method incorporating primers flanking three variable-number tandem repeat (VNTR) loci (arbitrarily labeled TR1, TR2, and TR3) in the CT18 strain of Salmonella enterica serovar Typhi has been developed for molecular typing of S. enterica serovar Typhi clinical isolates from several Asian countries, including Singapore, Indonesia, India, Bangladesh, Malaysia, and Nepal. We have demonstrated that the multiplex PCR could be performed on crude cell lysates and that the VNTR banding profiles produced could be easily analyzed by visual inspection after conventional agarose gel electrophoresis. The assay was highly discriminative in identifying 49 distinct VNTR profiles among 59 individual isolates. A high level of VNTR profile heterogeneity was observed in isolates from within the same country and among countries. These VNTR profiles remained stable after the strains were passaged extensively under routine laboratory culture conditions. In contrast to the S. enterica serovar Typhi isolates, an absence of TR3 amplicons and a lack of length polymorphisms in TR1 and TR2 amplicons were observed for other S. enterica serovars, such as Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Enteritidis, and Salmonella enterica serovar Paratyphi A, B, and C. DNA sequencing of the amplified VNTR regions substantiated these results, suggesting the high stability of the multiplex PCR assay. The multiplex-PCR-based VNTR profiling developed in this study provides a simple, rapid, reproducible, and high-resolution molecular tool for the epidemiological analysis of S. enterica serovar Typhi strains.

  4. Molecular allergy diagnostics using multiplex assays: methodological and practical considerations for use in research and clinical routine: Part 21 of the Series Molecular Allergology.

    PubMed

    Jakob, Thilo; Forstenlechner, Peter; Matricardi, Paolo; Kleine-Tebbe, Jörg

    The availability of single allergens and their use in microarray technology enables the simultaneous determination of specific IgE (sIgE) to a multitude of different allergens (> 100) in a multiplex procedure requiring only minute amounts of serum. This allows extensive individual sensitization profiles to be determined from a single analysis. Combined with a patient's medical history, these profiles simplify identification of cross-reactivity; permit a more accurate estimation of the risk of severe reactions; and enable the indication for specific immunotherapy to be more precisely established, particularly in cases of polysensitization. Strictly speaking, a multiplex assay is not a single test, but instead more than 100 simultaneous tests. This places considerable demands on the production, quality assurance, and interpretation of data. The following chapter describes the multiplex test systems currently available and discusses their characteristics. Performance data are presented and the sIgE values obtained from multiplex and singleplex assays are compared. Finally, the advantages and limitations of molecular allergy diagnostics using multiplex assays in clinical routine are discussed, and innovative possibilities for clinical research are described. The multiplex diagnostic tests available for clinical routine have now become well established. The interpretation of test results is demanding, particularly since all individual results need to be checked for their plausibility and clinical relevance on the basis of previous history (patient history, clinical symptoms, challenge test results). There is still room for improvement in certain areas, for example with respect to the overall test sensitivity of the method, as well as the availability and quality of particular allergens. The current test systems are just the beginning of a continuous development that will influence and most likely change clinical allergology in the coming years.

  5. Development of a Laboratory Project to Determine Human ABO Genotypes--Limitations Lead to Further Student Explorations

    ERIC Educational Resources Information Center

    Salerno, Theresa A.

    2009-01-01

    A multiplex allele-specific PCR analysis was developed to identify six "common" genotypes: AA, AO, BB, BO, OO, and AB. This project included a pre-laboratory exercise that provided active learning experiences and developed critical thinking skills. This laboratory resulted in many successful analyses, which were verified by student knowledge of…

  6. Digital transplantation pathology: combining whole slide imaging, multiplex staining and automated image analysis.

    PubMed

    Isse, K; Lesniak, A; Grama, K; Roysam, B; Minervini, M I; Demetris, A J

    2012-01-01

    Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. "-Omics" analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: (a) spatial-temporal relationships; (b) rare events/cells; (c) complex structural context; and (d) integration into a "systems" model. Nevertheless, except for immunostaining, no transformative advancements have "modernized" routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology-global "-omic" analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes. ©Copyright 2011 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis.

    PubMed

    Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand

    2009-07-01

    In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.

  8. Mitochondrial DNA diagnosis for taeniasis and cysticercosis.

    PubMed

    Yamasaki, Hiroshi; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Sato, Marcello Otake; Ito, Akira

    2006-01-01

    Molecular diagnosis for taeniasis and cysticercosis in humans on the basis of mitochondrial DNA analysis was reviewed. Development and application of three different methods, including restriction fragment length polymorphism analysis, base excision sequence scanning thymine-base analysis and multiplex PCR, were described. Moreover, molecular diagnosis of cysticerci found in specimens submitted for histopathology and the molecular detection of taeniasis using copro-DNA were discussed.

  9. Photocleavage-based affinity purification of biomarkers from serum: Application to multiplex allergy testing.

    PubMed

    Wan, Zhi; Ostendorff, Heather P; Liu, Ziying; Schneider, Lynda C; Rothschild, Kenneth J; Lim, Mark J

    2018-01-01

    Multiplex serological immunoassays, such as implemented on microarray or microsphere-based platforms, provide greater information content and higher throughput, while lowering the cost and blood volume required. These features are particularly attractive in pediatric food allergy testing to facilitate high throughput multi-allergen analysis from finger- or heel-stick collected blood. However, the miniaturization and microfluidics necessary for creating multiplex assays make them highly susceptible to the "matrix effect" caused by interference from non-target agents in serum and other biofluids. Such interference can result in lower sensitivity, specificity, reproducibility and quantitative accuracy. These problems have in large part prevented wide-spread implementation of multiplex immunoassays in clinical laboratories. We report the development of a novel method to eliminate the matrix effect by utilizing photocleavable capture antibodies to purify and concentrate blood-based biomarkers (a process termed PC-PURE) prior to detection in a multiplex immunoassay. To evaluate this approach, it was applied to blood-based allergy testing. Patient total IgE was purified and enriched using PC-PURE followed by multiplex microsphere-based detection of allergen-specific IgEs (termed the AllerBead assay). AllerBead was formatted to detect the eight most common pediatric food allergens: milk, soy, wheat, egg, peanuts, tree nuts, fin fish and shellfish, which account for >90% of all pediatric food allergies. 205 serum samples obtained from Boston Children's Hospital were evaluated. When PC-PURE was employed with AllerBead, excellent agreement was obtained with the standard, non-multiplex, ImmunoCAP® assay (average sensitivity above published negative predictive cutoffs = 96% and average Pearson r = 0.90; average specificity = 97%). In contrast, poor ImmunoCAP®-correlation was observed when PC-PURE was not utilized (average sensitivity above published negative predictive cutoffs = 59% and average Pearson r = 0.61; average specificity = 97%). This approach should be adaptable to improve a wide range of multiplex immunoassays such as in cancer, infectious disease and autoimmune disease.

  10. Photocleavage-based affinity purification of biomarkers from serum: Application to multiplex allergy testing

    PubMed Central

    Wan, Zhi; Ostendorff, Heather P.; Liu, Ziying; Schneider, Lynda C.; Rothschild, Kenneth J.

    2018-01-01

    Multiplex serological immunoassays, such as implemented on microarray or microsphere-based platforms, provide greater information content and higher throughput, while lowering the cost and blood volume required. These features are particularly attractive in pediatric food allergy testing to facilitate high throughput multi-allergen analysis from finger- or heel-stick collected blood. However, the miniaturization and microfluidics necessary for creating multiplex assays make them highly susceptible to the “matrix effect” caused by interference from non-target agents in serum and other biofluids. Such interference can result in lower sensitivity, specificity, reproducibility and quantitative accuracy. These problems have in large part prevented wide-spread implementation of multiplex immunoassays in clinical laboratories. We report the development of a novel method to eliminate the matrix effect by utilizing photocleavable capture antibodies to purify and concentrate blood-based biomarkers (a process termed PC-PURE) prior to detection in a multiplex immunoassay. To evaluate this approach, it was applied to blood-based allergy testing. Patient total IgE was purified and enriched using PC-PURE followed by multiplex microsphere-based detection of allergen-specific IgEs (termed the AllerBead assay). AllerBead was formatted to detect the eight most common pediatric food allergens: milk, soy, wheat, egg, peanuts, tree nuts, fin fish and shellfish, which account for >90% of all pediatric food allergies. 205 serum samples obtained from Boston Children’s Hospital were evaluated. When PC-PURE was employed with AllerBead, excellent agreement was obtained with the standard, non-multiplex, ImmunoCAP® assay (average sensitivity above published negative predictive cutoffs = 96% and average Pearson r = 0.90; average specificity = 97%). In contrast, poor ImmunoCAP®-correlation was observed when PC-PURE was not utilized (average sensitivity above published negative predictive cutoffs = 59% and average Pearson r = 0.61; average specificity = 97%). This approach should be adaptable to improve a wide range of multiplex immunoassays such as in cancer, infectious disease and autoimmune disease. PMID:29389948

  11. Microfluidic platform for multiplexed detection in single cells and methods thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meiye; Singh, Anup K.

    The present invention relates to a microfluidic device and platform configured to conduct multiplexed analysis within the device. In particular, the device allows multiple targets to be detected on a single-cell level. Also provided are methods of performing multiplexed analyses to detect one or more target nucleic acids, proteins, and post-translational modifications.

  12. Multiplexing 200 spatial modes with a single hologram

    NASA Astrophysics Data System (ADS)

    Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew

    2017-11-01

    The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.

  13. Rapid detection of Wuchereria bancrofti and Brugia malayi in mosquito vectors (Diptera: Culicidae) using a real-time fluorescence resonance energy transfer multiplex PCR and melting curve analysis.

    PubMed

    Intapan, Pewpan M; Thanchomnang, Tongjit; Lulitanond, Viraphong; Maleewong, Wanchai

    2009-01-01

    We developed a single-step real-time fluorescence resonance energy transfer (FRET) multiplex polymerase chain reaction (PCR) merged with melting curve analysis for the detection of Wuchereria bancrofti and Brugia malayi DNA in blood-fed mosquitoes. Real-time FRET multiplex PCR is based on fluorescence melting curve analysis of a hybrid of amplicons generated from two families of repeated DNA elements: the 188 bp SspI repeated sequence, specific to W. bancrofti, and the 153-bp HhaI repeated sequence, specific to the genus Brugia and two pairs of specific fluorophore-labeled probes. Both W. bancrofti and B. malayi can be differentially detected in infected vectors by this process through their different fluorescence channel and melting temperatures. The assay could distinguish both human filarial DNAs in infected vectors from the DNAs of Dirofilaria immitis- and Plasmodium falciparum-infected human red blood cells and noninfected mosquitoes and human leukocytes. The technique showed 100% sensitivity and specificity and offers a rapid and reliable procedure for differentially identifying lymphatic filariasis. The introduced real-time FRET multiplex PCR can reduce labor time and reagent costs and is not prone to carry over contamination. The test can be used to screen mosquito vectors in endemic areas and therefore should be a useful diagnostic tool for the evaluation of infection rate of the mosquito populations and for xenomonitoring in the community after eradication programs such as the Global Program to Eliminate Lymphatic Filariasis.

  14. Populational analysis of suspended microtissues for high-throughput, multiplexed 3D tissue engineering

    PubMed Central

    Chen, Alice A.; Underhill, Gregory H.; Bhatia, Sangeeta N.

    2014-01-01

    Three-dimensional (3D) tissue models have significantly improved our understanding of structure/function relationships and promise to lead to new advances in regenerative medicine. However, despite the expanding diversity of 3D tissue fabrication methods, approaches for functional assessment have been relatively limited. Here, we describe the fabrication of microtissue (μ-tissue) suspensions and their quantitative evaluation with techniques capable of analyzing large sample numbers and performing multiplexed parallel analysis. We applied this platform to 3D μ-tissues representing multiple stages of liver development and disease including: embryonic stem cells, bipotential hepatic progenitors, mature hepatocytes, and hepatoma cells photoencapsulated in polyethylene glycol hydrogels. Multiparametric μ-tissue cytometry enabled quantitation of fluorescent reporter expression within populations of intact μ-tissues (n≥102-103) and sorting-based enrichment of subsets for subsequent studies. Further, 3D μ-tissues could be implanted in vivo, respond to systemic stimuli, retrieved and quantitatively assessed. In order to facilitate multiplexed ‘pooled’ experimentation, fluorescent labeling strategies were developed and utilized to investigate the impact of μ-tissue composition and exposure to soluble factors. In particular, examination of drug/gene interactions on collections of 3D hepatoma μ-tissues indicated synergistic influence of doxorubicin and knockdown of the anti-apoptotic gene BCL-XL. Collectively, these studies highlight the broad utility of μ-tissue suspensions as an enabling approach for high n, populational analysis of 3D tissue biology in vitro and in vivo. PMID:20820630

  15. Sensitive and quantitative measurement of gene expression directly from a small amount of whole blood.

    PubMed

    Zheng, Zhi; Luo, Yuling; McMaster, Gary K

    2006-07-01

    Accurate and precise quantification of mRNA in whole blood is made difficult by gene expression changes during blood processing, and by variations and biases introduced by sample preparations. We sought to develop a quantitative whole-blood mRNA assay that eliminates blood purification, RNA isolation, reverse transcription, and target amplification while providing high-quality data in an easy assay format. We performed single- and multiplex gene expression analysis with multiple hybridization probes to capture mRNA directly from blood lysate and used branched DNA to amplify the signal. The 96-well plate singleplex assay uses chemiluminescence detection, and the multiplex assay combines Luminex-encoded beads with fluorescent detection. The single- and multiplex assays could quantitatively measure as few as 6000 and 24,000 mRNA target molecules (0.01 and 0.04 amoles), respectively, in up to 25 microL of whole blood. Both formats had CVs < 10% and dynamic ranges of 3-4 logs. Assay sensitivities allowed quantitative measurement of gene expression in the minority of cells in whole blood. The signals from whole-blood lysate correlated well with signals from purified RNA of the same sample, and absolute mRNA quantification results from the assay were similar to those obtained by quantitative reverse transcription-PCR. Both single- and multiplex assay formats were compatible with common anticoagulants and PAXgene-treated samples; however, PAXgene preparations induced expression of known antiapoptotic genes in whole blood. Both the singleplex and the multiplex branched DNA assays can quantitatively measure mRNA expression directly from small volumes of whole blood. The assay offers an alternative to current technologies that depend on RNA isolation and is amenable to high-throughput gene expression analysis of whole blood.

  16. Simultaneous detection of the three ilarviruses affecting stone fruit trees by nonisotopic molecular hybridization and multiplex reverse-transcription polymerase chain reaction.

    PubMed

    Saade, M; Aparicio, F; Sánchez-Navarro, J A; Herranz, M C; Myrta, A; Di Terlizzi, B; Pallás, V

    2000-12-01

    ABSTRACT The three most economically damaging ilarviruses affecting stone fruit trees on a worldwide scale are the related Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), and Apple mosaic virus (ApMV). Nonisotopic molecular hybridization and multiplex reverse-transcription polymerase chain reaction (RT-PCR) methodologies were developed that could detect all these viruses simultaneously. The latter technique was advantageous because it was discriminatory. For RT-PCR, a degenerate antisense primer was designed which was used in conjunction with three virus-specific sense primers. The amplification efficiencies for the detection of the three viruses in the multiplex RT-PCR reaction were identical to those obtained in the single RT-PCR reactions for individual viruses. This cocktail of primers was able to amplify sequences from all of the PNRSV, ApMV, and PDV isolates tested in five Prunus spp. hosts (almond, apricot, cherry, peach, and plum) occurring naturally in single or multiple infections. For ApMV isolates, differences in the electrophoretic mobilities of the PCR products were observed. The nucleotide sequence of the amplified products of two representative ApMV isolates was determined, and comparative analysis revealed the existence of a 28-nucleotide deletion in the sequence of isolates showing the faster electrophoretic mobility. To our knowledge, this is the first report on the simultaneous detection of three plant viruses by multiplex RT-PCR in woody hosts. This multiplex RT-PCR could be a useful time and cost saving method for indexing these three ilarviruses, which damage stone fruit tree yields, and for the analysis of mother plants in certification programs.

  17. Analysis on the propagation characteristics of two multiplexed groups of coaxial OAM beams in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Zheng, Yongping; Tian, Qinghua; Zhang, Wei; Zhang, Qi; Zhu, Lei; Wang, Yongjun; Liu, Bo; Xin, Xiangjun

    2018-01-01

    Orbital angular momentum (OAM) as a new degree of freedom, greatly improves the spectrum efficiency and channel capacity of optical communication system. It has become the research focus in the field of optical communications. Some scholars have demonstrated that the feasibility of two multiplexed groups of concentric rings of Laguerre-Gaussian (LG) beams with OAM multiplexing transmission in free space. Based on the point, this paper makes the further research on the propagation characteristics of LG beams with this spatial multiplexing structure in atmospheric turbulence. The random phase screen is established by using the modified von Karman power spectrum and the received power and crosstalk power of OAM modes of LG beams are obtained under the Rytov approximation. We investigate the characteristic parameters of LG beams with this spatial multiplexing structure for mitigating turbulence. Simulation results show that the system exists an optimum beam waist related to wavelength in which the received power of OAM modes reaches the maximum. Meanwhile, the BER and aggregate capacity of the system with two multiplexed groups of concentric rings of LG beams with OAM multiplexing are simulated and analyzed under different intensities of atmospheric turbulence. The results reveal that the system with larger mode spacing generally has lower inter-modal crosstalk and larger aggregate capacity than that with the smaller mode spacing. Finally, on the basis of above the analysis and research, some suggestions for efficient OAM multiplexing detection scheme are proposed.

  18. Identification of Malassezia species from pityriasis versicolor lesions with a new multiplex PCR method.

    PubMed

    Vuran, Emre; Karaarslan, Aydın; Karasartova, Djursun; Turegun, Buse; Sahin, Fikret

    2014-02-01

    Despite the fact that a range of molecular methods have been developed as tools for the diagnosis of Malassezia species, there are several drawbacks associated with them, such as inefficiency of differentiating all the species, high cost, and questionable reproducibility. In addition, most of the molecular methods require cultivation to enhance sensitivity. Therefore, alternative methods eliminating cultivation and capable of identifying species with high accuracy and reliability are needed. Herein, a multiplex polymerase chain reaction (PCR)-based method was especially developed for the detection of eleven Malassezia species. The multiplex PCR was standardized by incorporating a consensus forward primer, along with Malassezia species-specific reverse primers considering the sizes of the PCR products. In the method, the multiplex-PCR primer content is divided into three parts to circumvent the problem of increased nonspecific background resulting from the use of a large number of primers. DNA extraction protocol described by Harju and colleagues was modified using liquid nitrogen instead of -80 °C to break down the yeast membrane. By a modified extraction procedure followed by multiplex PCR and electrophoresis, the method enables identification and differentiation of Malassezia species from both of the samples obtained directly from skin and yeast colonies grown in culture. Fifty-five patients who were confirmed with pityriasis versicolor were enrolled in the study. Multiplex PCR detected and differentiated all 55 samples obtained directly from the patients' skin. However, 50 out of 55 samples yielded Malassezia colony in the culture. In addition, eight of 50 colonies were misdiagnosed or not completely differentiated by conventional methods based on the sequence analysis of eight colonies. The method is capable of identifying species with high accuracy and reliability. In addition, it is simple, quick, and cost-effective. More importantly, the method works efficiently for the diagnosis of Malassezia species obtained directly from patient samples.

  19. Surveillance for Emerging Diseases with Multiplexed Point-of-Care Diagnostics

    DOE PAGES

    Deshpande, Alina; McMahon, Benjamin; Daughton, Ashlynn Rae; ...

    2016-06-17

    Here, we present an analysis of the diagnostic technologies that were used to identify historical outbreaks of ebola virus disease and consider systematic surveillance strategies that may greatly reduce the peak size of future epidemics. We observe that clinical signs and symptoms alone are often insufficient to recognize index cases of diseases of global concern against the considerable background infectious disease burden that is present throughout the developing world. We propose a simple sampling strategy to enrich in especially dangerous pathogens with a low background for molecular diagnostics by targeting blood borne pathogens in the healthiest age groups. With existingmore » multiplexed diagnostic technologies, such a system could be combined with existing public health screening and reference laboratory systems for malaria, dengue, and common bacteremia or be used to develop such an infrastructure in less-developed locations. Because the needs for valid samples and accurate recording of patient attributes are aligned with needs for global biosurveillance, local public health needs, and improving patient care, co-development of these capabilities appears to be quite natural, flexible, and extensible as capabilities, technologies, and needs evolve over time. Furthermore, implementation of multiplexed diagnostic technologies to enhance fundamental clinical lab capacity will increase public health monitoring and biosurveillance as a natural extension.« less

  20. Surveillance for Emerging Diseases with Multiplexed Point-of-Care Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Alina; McMahon, Benjamin; Daughton, Ashlynn Rae

    Here, we present an analysis of the diagnostic technologies that were used to identify historical outbreaks of ebola virus disease and consider systematic surveillance strategies that may greatly reduce the peak size of future epidemics. We observe that clinical signs and symptoms alone are often insufficient to recognize index cases of diseases of global concern against the considerable background infectious disease burden that is present throughout the developing world. We propose a simple sampling strategy to enrich in especially dangerous pathogens with a low background for molecular diagnostics by targeting blood borne pathogens in the healthiest age groups. With existingmore » multiplexed diagnostic technologies, such a system could be combined with existing public health screening and reference laboratory systems for malaria, dengue, and common bacteremia or be used to develop such an infrastructure in less-developed locations. Because the needs for valid samples and accurate recording of patient attributes are aligned with needs for global biosurveillance, local public health needs, and improving patient care, co-development of these capabilities appears to be quite natural, flexible, and extensible as capabilities, technologies, and needs evolve over time. Furthermore, implementation of multiplexed diagnostic technologies to enhance fundamental clinical lab capacity will increase public health monitoring and biosurveillance as a natural extension.« less

  1. Design and implementation of software for automated quality control and data analysis for a complex LC/MS/MS assay for urine opiates and metabolites.

    PubMed

    Dickerson, Jane A; Schmeling, Michael; Hoofnagle, Andrew N; Hoffman, Noah G

    2013-01-16

    Mass spectrometry provides a powerful platform for performing quantitative, multiplexed assays in the clinical laboratory, but at the cost of increased complexity of analysis and quality assurance calculations compared to other methodologies. Here we describe the design and implementation of a software application that performs quality control calculations for a complex, multiplexed, mass spectrometric analysis of opioids and opioid metabolites. The development and implementation of this application improved our data analysis and quality assurance processes in several ways. First, use of the software significantly improved the procedural consistency for performing quality control calculations. Second, it reduced the amount of time technologists spent preparing and reviewing the data, saving on average over four hours per run, and in some cases improving turnaround time by a day. Third, it provides a mechanism for coupling procedural and software changes with the results of each analysis. We describe several key details of the implementation including the use of version control software and automated unit tests. These generally useful software engineering principles should be considered for any software development project in the clinical lab. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis

    PubMed Central

    2012-01-01

    Background The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Results Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. Conclusions By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand. PMID:22276739

  3. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis.

    PubMed

    Tu, Jing; Ge, Qinyu; Wang, Shengqin; Wang, Lei; Sun, Beili; Yang, Qi; Bai, Yunfei; Lu, Zuhong

    2012-01-25

    The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand.

  4. Multiplexed resequencing analysis to identify rare variants in pooled DNA with barcode indexing using next-generation sequencer.

    PubMed

    Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji

    2010-07-01

    We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.

  5. A novel multiplex real-time PCR assay for the detection and quantification of HPV16/18 and HSV1/2 in cervical cancer screening.

    PubMed

    Zhao, Youyun; Cao, Xuan; Tang, Jingfeng; Zhou, Li; Gao, Yinglin; Wang, Jiangping; Zheng, Yi; Yin, Shanshan; Wang, Yefu

    2012-04-01

    Infection with human papillomavirus (HPV), particularly HPV16 and HPV18, is the main cause of invasive cervical cancer, although other factors such as herpes simplex virus (HSV) may act in conjunction with HPV in this context. To explore the possibility of developing a system for rapid diagnosis and clinical screening of cervical cancer, we developed a multiplex real-time PCR assay that can simultaneously detect and quantify HPV16/18 and HSV1/2. To evaluate its possibilities and practical uses, 177 samples collected from patients with suspected HPV and HSV infection in exfoliated cervical cells, genital herpes or labial herpes were tested by multiplex real-time PCR and compared with results obtained by DNA sequencing. Each virus was detected over a range from 1.0 × 10(1) to 1.0 × 10(7) copies/reaction. The clinical sensitivity was 100% for HPV16/18 and HSV1/2. The clinical specificity was 97.1% for HPV16, 98.1% for HPV18, 97.0% for HSV1 and 96.0% for HSV2. The kappa value was 0.96 for HPV16, 0.92 for HPV18, 0.94 for HSV1 and 0.93 for HSV2, when DNA sequencing was used as the reference standard. In summary, this novel multiplex real-time PCR allows the rapid and specific detection of HPV16/18 and HSV1/2, as well as coinfection with HPV and HSV, in clinical samples. In the future, this multiplex real-time PCR assay will assist in cervical cancer screening, viral treatment evaluation and epidemiological studies in which high throughput analysis is required. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Two-dimensional simulation of holographic data storage medium for multiplexed recording.

    PubMed

    Toishi, Mitsuru; Takeda, Takahiro; Tanaka, Kenji; Tanaka, Tomiji; Fukumoto, Atsushi; Watanabe, Kenjiro

    2008-02-18

    In this paper, we propose a new analysis model for photopolymer recording processes that calculate the two-dimensional refractive index distribution of multiplexed holograms. For the simulation of the photopolymer medium, time evolution of monomer diffusion and polymerization need to be calculated simultaneously. The distribution of the refractive index inside the medium is induced by these processes. By evaluating the refractive index pattern on each layer, the diffraction beams from the multiplexed hologram can be read out by beam propagation method (BPM). This is the first paper to determine the diffraction beam from a multiplexed hologram in a simulated photopolymer medium process. We analyze the time response of the multiplexed hologram recording processes in the photopolymer, and estimate the degradation of diffraction efficiency with multiplexed recording. This work can greatly contribute to understanding the process of hologram recording.

  7. Optimal percolation on multiplex networks.

    PubMed

    Osat, Saeed; Faqeeh, Ali; Radicchi, Filippo

    2017-11-16

    Optimal percolation is the problem of finding the minimal set of nodes whose removal from a network fragments the system into non-extensive disconnected clusters. The solution to this problem is important for strategies of immunization in disease spreading, and influence maximization in opinion dynamics. Optimal percolation has received considerable attention in the context of isolated networks. However, its generalization to multiplex networks has not yet been considered. Here we show that approximating the solution of the optimal percolation problem on a multiplex network with solutions valid for single-layer networks extracted from the multiplex may have serious consequences in the characterization of the true robustness of the system. We reach this conclusion by extending many of the methods for finding approximate solutions of the optimal percolation problem from single-layer to multiplex networks, and performing a systematic analysis on synthetic and real-world multiplex networks.

  8. High Resolution Imaging with MUSTANG-2 on the GBT

    NASA Astrophysics Data System (ADS)

    Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander

    2018-01-01

    We present early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instruments such as the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID multiplexer-based readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeter wave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2’s first season 7 separate proposals were awarded a total of 230 hours of telescope time.

  9. NASA Communications Division (NASCOM) Tracking and Data Relay Satellite System (TDRSS) shuttle multiplexer-demultiplexer data system (MDM) and supporting items

    NASA Technical Reports Server (NTRS)

    New, S. R.

    1981-01-01

    The multiplexer-demultiplexer (MDM) project included the design, documentation, manufacture, and testing of three MDM Data Systems. The equipment is contained in 59 racks, and includes more than 3,000 circuit boards and 600 microprocessors. Spares, circuit card testers, a master set of programmable integrated circuits, and a program development system were included as deliverables. All three MDM's were installed, and were operationally tested. The systems performed well with no major problems. The progress and problems analysis, addresses schedule conformance, new technology, items awaiting government approval, and project conclusions are summarized. All contract modifications are described.

  10. NASA Communications Division (NASCOM) Tracking and Data Relay Satellite System (TDRSS) shuttle multiplexer-demultiplexer data system (MDM) and supporting items

    NASA Astrophysics Data System (ADS)

    New, S. R.

    1981-06-01

    The multiplexer-demultiplexer (MDM) project included the design, documentation, manufacture, and testing of three MDM Data Systems. The equipment is contained in 59 racks, and includes more than 3,000 circuit boards and 600 microprocessors. Spares, circuit card testers, a master set of programmable integrated circuits, and a program development system were included as deliverables. All three MDM's were installed, and were operationally tested. The systems performed well with no major problems. The progress and problems analysis, addresses schedule conformance, new technology, items awaiting government approval, and project conclusions are summarized. All contract modifications are described.

  11. Deletion detection for diagnosis of Duchenne muscular dystrophy in the Japanese population--comparison between the polymerase chain reaction and the Southern blot analysis.

    PubMed

    Katayama, S; Takeshita, N; Yano, T; Ubagai, T; Qiu, X J; Katagiri, Y; Kubo, H; Hirakawa, S

    1993-06-01

    We compared the efficacy of the multiplex PCR with that of the cDNA analysis for detection of deletions of the DMD gene in the Japanese patients. Thirty males with DMD from 27 Japanese families were studied by the multiplex PCR, and 24 of them were also investigated by Southern blot analysis. We used five dystrophin cDNA probes for deletion analysis. A total of 19 regions were amplified by the PCR to detect deletions, 9 regions by the method of Chamberlain et al. and another 10 regions by the method of Beggs et al. Deletions were detected in 14 (52%) out of 27 DMD families by the PCR. Southern blot analysis detected deletions in 14 (64%) out of 22 families. Thirteen (93%) of the 14 DMD families with deletions detected by Southern blotting were also confirmed by the multiplex PCR. Provided care is taken in cases where the deletion is limited to a single exon, the multiplex PCR appears to be an efficient and useful alternative to conventional Southern blot analysis for detecting deletions during the prenatal and postnatal diagnosis of DMD.

  12. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  13. Development of 640 X 480 LWIR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Shallcross, Frank V.; Meyerhofer, Dietrich; Dolny, Gary M.; Gilmartin, Harvey R.; Tower, John R.; Palfrey, Stephen L.

    1992-08-01

    The 640 X 480 MOS multiplexer developed for PtSi MWIR focal plane arrays has been adapted to LWIR operation. The multiplexer is very flexible and can be used in various operating modes. The MOS approach, with its high saturation capacity and low-temperature operating capability, is ideally suited for long-wavelength operation. In this paper applications of the multiplexer to IrSi Schottky detectors and SiGe heterojunction detectors are discussed.

  14. Multiplexed EFPI sensors with ultra-high resolution

    NASA Astrophysics Data System (ADS)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-05-01

    An investigation of performance of multiplexed displacement sensors based on extrinsic Fabry-Perot interferometers has been carried out. We have considered serial and parallel configurations and analyzed the issues and advantages of the both. We have also extended the previously developed baseline demodulation algorithm for the case of a system of multiplexed sensors. Serial and parallel multiplexing schemes have been experimentally implemented with 3 and 4 sensing elements, respectively. For both configurations the achieved baseline standard deviations were between 30 and 200 pm, which is, to the best of our knowledge, more than an order less than any other multiplexed EFPI resolution ever reported.

  15. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors

    PubMed Central

    Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O.; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W.; Wang, Shan X.

    2018-01-01

    Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object. PMID:29507628

  16. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors.

    PubMed

    Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W; Wang, Shan X

    2018-01-01

    Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.

  17. Multiplex Cytokine Analysis of Aqueous Humor in Juvenile Idiopathic Arthritis-Associated Anterior Uveitis With or Without Secondary Glaucoma.

    PubMed

    Bauer, Dirk; Kasper, Maren; Walscheid, Karoline; Koch, Jörg M; Müther, Philipp S; Kirchhof, Bernd; Heiligenhaus, Arnd; Heinz, Carsten

    2018-01-01

    Patients with juvenile idiopathic arthritis often develop chronic anterior uveitis (JIAU). JIAU patients possess a particularly high risk for developing secondary glaucoma when inflammatory inactivity has been achieved. By using multiplex bead assay analysis, we assessed levels of pro- and anti-inflammatory cytokines, chemokines, or metalloproteinases in the aqueous humor (AH) of patients with clinically inactive JIAU with (JIAUwG) or without secondary glaucoma (JIAUwoG), or from patients with senile cataract as controls. Laser-flare photometry analysis prior to surgery showed no significant differences between JIAUwG or JIAUwoG. Compared with the control group, levels of interleukin-8, matrix metalloproteinase-2, -3, -9, serum amyloid A (SAA), transforming growth factor beta-1, -2, -3 (TGFβ-1, -2, -3), and tumor necrosis factor-alpha in the AH were significantly higher in patients with clinically inactive JIAUwG or JIAUwoG. Samples from JIAwoG patients displayed significantly higher levels of SAA ( P  < 0.0116) than JIAUwG patients. JIAUwG patients showed an increased level of TGFβ-2 in AH samples compared with JIAUwoG ( P  < 0.0009). These molecules may contribute to the clinical development of glaucoma in patients with JIAU.

  18. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India.

    PubMed

    Dinoop, K P; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R P; Narayanan, P

    2016-01-01

    Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated ( P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods.

  19. Multiplex PCR Tests for Detection of Pathogens Associated with Gastroenteritis

    PubMed Central

    Zhang, Hongwei; Morrison, Scott; Tang, Yi-Wei

    2016-01-01

    Synopsis A wide range of enteric pathogens can cause infectious gastroenteritis. Conventional diagnostic algorithms including culture, biochemical identification, immunoassay and microscopic examination are time consuming and often lack sensitivity and specificity. Advances in molecular technology have as allowed its use as clinical diagnostic tools. Multiplex PCR based testing has made its way to gastroenterology diagnostic arena in recent years. In this article we present a review of recent laboratory developed multiplex PCR tests and current commercial multiplex gastrointestinal pathogen tests. We will focus on two FDA cleared commercial syndromic multiplex tests: Luminex xTAG GPP and Biofire FimArray GI test. These multiplex tests can detect and identify multiple enteric pathogens in one test and provide results within hours. Multiplex PCR tests have shown superior sensitivity to conventional methods for detection of most pathogens. The high negative predictive value of these multiplex tests has led to the suggestion that they be used as screening tools especially in outbreaks. Although the clinical utility and benefit of multiplex PCR test are to be further investigated, implementing these multiplex PCR tests in gastroenterology diagnostic algorithm has the potential to improve diagnosis of infectious gastroenteritis. PMID:26004652

  20. Multiple-Locus Variable-Number Tandem-Repeats Analysis of Escherichia coli O157 using PCR multiplexing and multi-colored capillary electrophoresis.

    PubMed

    Lindstedt, Bjørn-Arne; Vardund, Traute; Kapperud, Georg

    2004-08-01

    The Multiple-Locus Variable-Number Tandem-Repeats Analysis (MLVA) method is currently being used as the primary typing tool for Shiga-toxin-producing Escherichia coli (STEC) O157 isolates in our laboratory. The initial assay was performed using a single fluorescent dye and the different patterns were assigned using a gel image. Here, we present a significantly improved assay using multiple dye colors and enhanced PCR multiplexing to increase speed, and ease the interpretation of the results. The different MLVA patterns are now based on allele sizes entered as character values, thus removing the uncertainties introduced when analyzing band patterns from the gel image. We additionally propose an easy numbering scheme for the identification of separate isolates that will facilitate exchange of typing data. Seventy-two human and animal strains of Shiga-toxin-producing E. coli O157 were used for the development of the improved MLVA assay. The method is based on capillary separation of multiplexed PCR products of VNTR loci in the E. coli O157 genome labeled with multiple fluorescent dyes. The different alleles at each locus were then assigned to allele numbers, which were used for strain comparison.

  1. Viking Orbiter 1975 articulation control subsystem design analysis

    NASA Technical Reports Server (NTRS)

    Horiuchi, H. H.; Vallas, L. J.

    1973-01-01

    The articulation control subsystem, developed for the Viking Orbiter 1975 spacecraft, is a digital, multiplexed, closed-loop servo system used to control the pointing and positioning of the science scan platform and the high-gain communication antenna, and to position the solar-energy controller louver blades for the thermal control of the propellant tanks. The development, design, and anlaysis of the subsystem is preliminary. The subsystem consists of a block-redundant control electronics multiplexed among eight control actuators. Each electronics block is capable of operating either individually or simultaneously with the second block. This provides the subsystem the capability of simultaneous two-actuator control or a single actuator control with the second block in a stand-by redundant mode. The result of the preliminary design and analysis indicates that the subsystem will perform satisfactorily in the Viking Orbiter 1975 mission. Some of the parameter values used, particularly those in the subsystem dynamics and the error estimates, are preliminary and the results will be updated as more accurate parameter values become available.

  2. Multiplex network analysis of employee performance and employee social relationships

    NASA Astrophysics Data System (ADS)

    Cai, Meng; Wang, Wei; Cui, Ying; Stanley, H. Eugene

    2018-01-01

    In human resource management, employee performance is strongly affected by both formal and informal employee networks. Most previous research on employee performance has focused on monolayer networks that can represent only single categories of employee social relationships. We study employee performance by taking into account the entire multiplex structure of underlying employee social networks. We collect three datasets consisting of five different employee relationship categories in three firms, and predict employee performance using degree centrality and eigenvector centrality in a superimposed multiplex network (SMN) and an unfolded multiplex network (UMN). We use a quadratic assignment procedure (QAP) analysis and a regression analysis to demonstrate that the different categories of relationship are mutually embedded and that the strength of their impact on employee performance differs. We also use weighted/unweighted SMN/UMN to measure the predictive accuracy of this approach and find that employees with high centrality in a weighted UMN are more likely to perform well. Our results shed new light on how social structures affect employee performance.

  3. Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method

    NASA Astrophysics Data System (ADS)

    Nikitin, M. P.; Orlov, A. V.; Znoyko, S. L.; Bragina, V. A.; Gorshkov, B. G.; Ksenevich, T. I.; Cherkasov, V. R.; Nikitin, P. I.

    2018-08-01

    Unique properties of magnetic nanoparticles (MNP) have provided many breakthrough solutions for life science. The immense potential of MNP as labels in advanced immunoassays stems from the fact that they, unlike optical labels, can be easily detected inside 3D opaque porous biosensing structures or in colored mediums, manipulated by an external magnetic field, exhibit high stability and negligible background signal in biological samples, etc. In this research, the magnetic nanolabels and an original technique of their quantification by non-linear magnetization have permitted development of novel methods of multiplex biosensing. Several types of highly sensitive multi-channel readers that offer an extremely wide linear dynamic range are developed to count MNP in different recognition zones for quantitative concentration measurements of various analytes. Four approaches to multiplex biosensing based on MNP have been demonstrated in one-run tests based on several 3D porous structures; flat and micropillar microfluidic sensor chips; multi-line lateral flow strips and modular architecture of the strips, which is the first 3D multiplexing method that goes beyond the traditional planar techniques. Detection of cardio- and cancer markers, small molecules and oligonucleotides were used in the experiments. The analytical characteristics of the developed multiplex methods are on the level of the modern time-consuming laboratory techniques. The developed multiplex biosensing platforms are promising for medical and veterinary diagnostics, food inspection, environmental and security monitoring, etc.

  4. Translating pharmacodynamic biomarkers from bench to bedside: analytical validation and fit-for-purpose studies to qualify multiplex immunofluorescent assays for use on clinical core biopsy specimens.

    PubMed

    Marrero, Allison; Lawrence, Scott; Wilsker, Deborah; Voth, Andrea Regier; Kinders, Robert J

    2016-08-01

    Multiplex pharmacodynamic (PD) assays have the potential to increase sensitivity of biomarker-based reporting for new targeted agents, as well as revealing significantly more information about target and pathway activation than single-biomarker PD assays. Stringent methodology is required to ensure reliable and reproducible results. Common to all PD assays is the importance of reagent validation, assay and instrument calibration, and the determination of suitable response calibrators; however, multiplex assays, particularly those performed on paraffin specimens from tissue blocks, bring format-specific challenges adding a layer of complexity to assay development. We discuss existing multiplex approaches and the development of a multiplex immunofluorescence assay measuring DNA damage and DNA repair enzymes in response to anti-cancer therapeutics and describe how our novel method addresses known issues. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Development of multiplex polymerase chain reaction for detection of Ehrlichia canis, Babesia spp and Hepatozoon canis in canine blood.

    PubMed

    Kledmanee, Kan; Suwanpakdee, Sarin; Krajangwong, Sakranmanee; Chatsiriwech, Jarin; Suksai, Parut; Suwannachat, Pongpun; Sariya, Ladawan; Buddhirongawatr, Ruangrat; Charoonrut, Phingphol; Chaichoun, Kridsada

    2009-01-01

    A multiplex polymerase chain reaction (PCR) has been developed for simultaneous detection of canine blood parasites, Ehrlichia canis, Babesia spp and Hepatozoon canis, from blood samples in a single reaction. The multiplex PCR primers were specific to E. canis VirB9, Babesia spp 16S rRNA and H. canis 16S rRNA genes. Specificity of the amplicons was confirmed by DNA sequencing. The assay was evaluated using normal canine and infected blood samples, which were detected by microscopic examination. This multiplex PCR offers scope for simultaneous detection of three important canine blood parasites and should be valuable in monitoring parasite infections in dogs and ticks.

  6. Microfluidics enables multiplex evaluation of the same cells for further studies.

    PubMed

    Mojica, W D; Oh, K W; Lee, H; Furlani, E P; Sykes, D; Sands, A M

    2016-08-01

    The continuous discovery of biomarkers and their evolving use for the diagnosis and guidance of therapy for patients with cancer has increased awareness of the need to triage biospecimens properly. On occasion, cytology samples are the only type of biospecimen available for analysis. Often, the current approach for these latter specimens is cytopathology-centric, with cells limited to examination by bright field microscopy. When specimens are paucicellular, there is often insufficient material for ancillary testing. Therefore, a need exists to develop an alternative approach that allows for the multiplexed analysis of cells when they are limited in number. In recent previous publications, we demonstrated that clinically derived cells from tissue are suitable for evaluation in a microfluidic device. In our current endeavour, we seek to expand upon those findings and determine if those same cells can be recovered for further analysis. A microfluidic channel was designed, fabricated and tested using cytology specimens generated from tissue specimens. The cytological features of the cells tested were examined prior to entering the channel; they were then compared to similar cells while in the channel, and upon recovery from the channel. Recovery of DNA and proteins were also tested. The morphology of the tested cells was not compromised in either the channel or upon recovery. More importantly, the integrity of the cells remained intact, with the recovery of proteins and high molecular weight DNA possible. We developed and tested an alternative approach to the processing of cytopathology specimens that enables multiplexed evaluation. Using microfluidics, cytological examination of biopecimens can be performed, but in contrast to existing approaches, the same cells examined can be recovered for downstream analysis. © 2015 John Wiley & Sons Ltd.

  7. Developing a new nonbinary SNP fluorescent multiplex detection system for forensic application in China.

    PubMed

    Liu, Yanfang; Liao, Huidan; Liu, Ying; Guo, Juanjuan; Sun, Yi; Fu, Xiaoliang; Xiao, Ding; Cai, Jifeng; Lan, Lingmei; Xie, Pingli; Zha, Lagabaiyila

    2017-04-01

    Nonbinary single-nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent-labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of a new ion mobility time-of-flight mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Yehia M.; Baker, Erin S.; Danielson, William F.

    2015-02-01

    Complex samples require multidimensional measurements with high resolution for full characterization of biological and environmental systems. To address this challenge, we developed a drift tube-based ion mobility spectrometry-Orbitrap mass spectrometry (IMS-Orbitrap MS) platform. To circumvent the timing difference between the fast IMS separation and the slow Orbitrap MS acquisition, we utilized a dual gate and pseudorandom sequence to multiplex ions into the drift tube and Orbitrap. The instrument was designed to operate in signal averaging (SA), single multiplexing (SM) and double multiplexing (DM) IMS modes to fully optimize the signal-to-ratio of the measurements. For the SM measurements, a previously developedmore » algorithm was used to reconstruct the IMS data, while a new algorithm was developed for the DM analyses. The new algorithm is a two-step process that first recovers the SM data from the encoded DM data and then decoded the SM data. The algorithm also performs multiple refining procedures in order to minimize the demultiplexing artifacts traditionally observed in such scheme. The new IMS-Orbitrap MS platform was demonstrated for the analysis of proteomic and petroleum samples, where the integration of IMS and high mass resolution proved essential for accurate assignment of molecular formulae.« less

  9. Reflection holograms using peristrophic multiplexing

    NASA Astrophysics Data System (ADS)

    Sayeh, Mohammed R.; Jeong, Y.

    2000-07-01

    In this paper, we consider a peristrophic multiplexing for reflection holograms. This type of multiplexing the rotation of either the material or the reference beam causes the grating vector to be off the plane of the reference and image beams. In the case of reflection hologram, we developed a relationship for the angular selectivity which is verified experimentally.

  10. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes

    USDA-ARS?s Scientific Manuscript database

    TaqMan primer-probe sets were developed for the detection and identification of potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis using two-tube, multiplex real-time PCR. One tube contained a primer-probe set specific for G. pallida (pale cyst nematode) multiplexed with another prim...

  11. Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes.

    PubMed

    Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid

    2012-11-01

    Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.

  12. Multiplex fluorescent PCR for noninvasive prenatal detection of fetal-derived paternally inherited diseases using circulatory fetal DNA in maternal plasma.

    PubMed

    Tang, Dong-ling; Li, Yan; Zhou, Xin; Li, Xia; Zheng, Fang

    2009-05-01

    To develop a fluorescent polymerase chain reaction (PCR) assay for the detection of circulating fetal DNA in maternal plasma and use the established multiplex in noninvasive prenatal genetic diagnosis and its further applications in forensic casework. The DNA template was extracted from 47 pregnant women and the whole blood samples from the stated biological fathers were used to detect genotype. Using multiplex fluorescent PCR at 16 different polymorphic short tandem repeat (STR) loci, maternal DNA extracted from plasma samples at early pregnancy, medium pregnancy and late pregnancy were used to detect genotype. Their husbands' DNA was also used for fetal genotype ascertainment. Multiplex fluorescent PCR with 16 polymorphic short tandem repeats revealed the presence of fetal DNA in all cases. Every pregnant women/husband pair was informative in at least 3 of 16 loci. The chances of detecting paternally inherited fetal alleles ranged from 66.67 to 94.12%. They are 66.67% in early pregnancy, 85.71% in medium pregnancy and 94.12% in late pregnancy. The accuracy of Multiplex PCR assay to detect fetal DNA was 100%. Circulating fetal DNA analysis can be used as a possible alternative tool in routine laboratory prenatal diagnosis in the near future; this highly polymorphic STR multiplex has greatly improved the chances of detecting paternally inherited fetal alleles compared with other fetal DNA detection systems that use fetus-derived Y sequences to detect only male fetal DNA in maternal plasma. Our proposed technique can be applied to both female and male fetuses, which provides a sensitive, accurate and efficient method for noninvasive prenatal genetic diagnosis and forensic casework.

  13. Development of a tiered and binned genetic counseling model for informed consent in the era of multiplex testing for cancer susceptibility.

    PubMed

    Bradbury, Angela R; Patrick-Miller, Linda; Long, Jessica; Powers, Jacquelyn; Stopfer, Jill; Forman, Andrea; Rybak, Christina; Mattie, Kristin; Brandt, Amanda; Chambers, Rachelle; Chung, Wendy K; Churpek, Jane; Daly, Mary B; Digiovanni, Laura; Farengo-Clark, Dana; Fetzer, Dominique; Ganschow, Pamela; Grana, Generosa; Gulden, Cassandra; Hall, Michael; Kohler, Lynne; Maxwell, Kara; Merrill, Shana; Montgomery, Susan; Mueller, Rebecca; Nielsen, Sarah; Olopade, Olufunmilayo; Rainey, Kimberly; Seelaus, Christina; Nathanson, Katherine L; Domchek, Susan M

    2015-06-01

    Multiplex genetic testing, including both moderate- and high-penetrance genes for cancer susceptibility, is associated with greater uncertainty than traditional testing, presenting challenges to informed consent and genetic counseling. We sought to develop a new model for informed consent and genetic counseling for four ongoing studies. Drawing from professional guidelines, literature, conceptual frameworks, and clinical experience, a multidisciplinary group developed a tiered-binned genetic counseling approach proposed to facilitate informed consent and improve outcomes of cancer susceptibility multiplex testing. In this model, tier 1 "indispensable" information is presented to all patients. More specific tier 2 information is provided to support variable informational needs among diverse patient populations. Clinically relevant information is "binned" into groups to minimize information overload, support informed decision making, and facilitate adaptive responses to testing. Seven essential elements of informed consent are provided to address the unique limitations, risks, and uncertainties of multiplex testing. A tiered-binned model for informed consent and genetic counseling has the potential to address the challenges of multiplex testing for cancer susceptibility and to support informed decision making and adaptive responses to testing. Future prospective studies including patient-reported outcomes are needed to inform how to best incorporate multiplex testing for cancer susceptibility into clinical practice.Genet Med 17 6, 485-492.

  14. The robustness of multiplex networks under layer node-based attack

    PubMed Central

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-01-01

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology. PMID:27075870

  15. The robustness of multiplex networks under layer node-based attack.

    PubMed

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-04-14

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology.

  16. Novel Multiplex MethyLight Protocol for Detection of DNA Methylation in Patient Tissues and Bodily Fluids

    PubMed Central

    Olkhov-Mitsel, Ekaterina; Zdravic, Darko; Kron, Ken; van der Kwast, Theodorus; Fleshner, Neil; Bapat, Bharati

    2014-01-01

    Aberrant DNA methylation is a hallmark of cancer and is an important potential biomarker. Particularly, combined analysis of a panel of hypermethylated genes shows the most promising clinical performance. Herein, we developed, optimized and standardized a multiplex MethyLight assay to simultaneously detect hypermethylation of APC, HOXD3 and TGFB2 in DNA extracted from prostate cancer (PCa) cell lines, archival tissue specimens, and urine samples. We established that the assay is capable of discriminating between fully methylated and unmethylated alleles with 100% specificity and demonstrated the assay as highly accurate and reproducible as the singleplex approach. For proof of principle, we analyzed the methylation status of these genes in tissue and urine samples of PCa patients as well as PCa-free controls. These data show that the multiplex MethyLight assay offers a significant advantage when working with limited quantities of DNA and has potential applications in research and clinical settings. PMID:24651255

  17. Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector

    NASA Astrophysics Data System (ADS)

    Choe, Hyeok-Jun; Choi, Yong; Hu, Wei; Yan, Jianhua; Jung, Jin Ho

    2017-04-01

    There has been great interest in developing a time-of-flight (TOF) PET to improve the signal-to-noise ratio of PET image relative to that of non-TOF PET. Silicon photomultiplier (SiPM) arrays have attracted attention for use as a fast TOF PET photosensor. Since numerous SiPM arrays are needed to construct a modern human PET, a multiplexing method providing both good timing performance and high channel reduction capability is required to develop a SiPM-based TOF PET. The purpose of this study was to develop a capacitive multiplexing circuit for the SiPM-based TOF PET. The proposed multiplexing circuit was evaluated by measuring the coincidence resolving time (CRT) and the energy resolution as a function of the overvoltage using three different capacitor values of 15, 30, and 51 pF. A flood histogram was also obtained and quantitatively assessed. Experiments were performed using a 4× 4 array of 3× 3 mm2 SiPMs. Regarding the capacitor values, the multiplexing circuit using a smaller capacitor value showed the best timing performance. On the other hand, the energy resolution and flood histogram quality of the multiplexing circuit deteriorated as the capacitor value became smaller. The proposed circuit was able to achieve a CRT of 260+/- 4 ps FWHM and an energy resolution of 17.1 % with a pair of 2× 2× 20 mm3 LYSO crystals using a capacitor value of 30 pF at an overvoltage of 3.0 V. It was also possible to clearly resolve a 6× 6 array of LYSO crystals in the flood histogram using the multiplexing circuit. The experiment results indicate that the proposed capacitive multiplexing circuit is useful to obtain an excellent timing performance and a crystal-resolving capability in the flood histogram with a minimal degradation of the energy resolution, as well as to reduce the number of the readout channels of the SiPM-based TOF PET detector.

  18. Rapid screening of pyogenic Staphylococcus aureus for confirmation of genus and species, methicillin resistance and virulence factors by using two novel multiplex PCR.

    PubMed

    Haque, Abdul; Haque, Asma; Saeed, Muhammad; Azhar, Aysha; Rasool, Samreen; Shan, Sidra; Ehsan, Beenish; Nisar, Zohaib

    2017-01-01

    Emergence of methicillin resistant Staphylococcus aureus (MRSA) is a major medical problem of current era. These bacteria are resistant to most drugs and rapid diagnosis can provide a clear guideline to clinicians. They possess specific virulence factors and relevant information can be very useful. We designed this study to develop multiplex PCRs to provide rapid information. We studied 60 Staphylococcus aureus isolates and detected methicillin resistance by cefoxitin sensitivity and targeting of mecA gene. After initial studies with uniplex PCRs we optimized two multiplex PCRs with highly reproducible results. The first multiplex PCR was developed to confirm genus, species and methicillin resistance simultaneously, and the second multiplex PCR was for screening of virulence factors. We found 38.33% isolates as methicillin resistant. α -toxin, the major cytotoxic factor, was detected in 40% whereas β-hemolysin was found in 25% cases. Panton Valentine leucocidin was detected in 8.33% and toxic shock syndrome toxin in5% cases. The results of uniplex and multiplex PCRs were highly compatible. These two multiplex PCRs when run simultaneously can provide vital information about methicillin resistance and virulence status of the isolate within a few hours as compared to several days needed by routine procedures.

  19. Multiplex Immunoassay Profiling.

    PubMed

    Stephen, Laurie

    2017-01-01

    Multiplex immunoassays allow for the rapid profiling of biomarker proteins in biological fluids, using less sample and labor than single immunoassays. This chapter details the methods to develop and manufacture multiplex assays for the Luminex ® platform. Although assay development is not included here, the same methods can be used to covalently couple antibodies to the Luminex beads and to label antibodies for the screening of sandwich pairs, if needed. The assay optimization, detection of cross-reactivity, and minimizing antibody interactions and matrix interferences will be addressed.

  20. Superconducting Digital Multiplexers for Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Kadin, Alan M.; Brock, Darren K.; Gupta, Deepnarayan

    2004-01-01

    Arrays of cryogenic microbolometers and other cryogenic detectors are being developed for infrared imaging. If the signal from each sensor is amplified, multiplexed, and digitized using superconducting electronics, then this data can be efficiently read out to ambient temperature with a minimum of noise and thermal load. HYPRES is developing an integrated system based on SQUID amplifiers, a high-resolution analog-to-digital converter (ADC) based on RSFQ (rapid single flux quantum) logic, and a clocked RSFQ multiplexer. The ADC and SQUIDs have already been demonstrated for other projects, so this paper will focus on new results of a digital multiplexer. Several test circuits have been fabricated using Nb Josephson technology and are about to be tested at T = 4.2 K, with a more complete prototype in preparation.

  1. Multiplexed data independent acquisition (MSX-DIA) applied by high resolution mass spectrometry improves quantification quality for the analysis of histone peptides

    PubMed Central

    Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A.

    2016-01-01

    We present the mass spectrometry (MS) based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone post-translational modifications (PTMs). Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has thus gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform 2-fold more MS/MS events than traditional DIA, it acquired on average ~5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. PMID:27193262

  2. Multiplexed data independent acquisition (MSX-DIA) applied by high resolution mass spectrometry improves quantification quality for the analysis of histone peptides.

    PubMed

    Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A

    2016-08-01

    We present the MS-based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone PTMs. Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has, thus, gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform two-fold more MS/MS events than traditional DIA, it acquired on average ∼5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Analysis of Multiplexed Nanosensor Arrays Based on Near-Infrared Fluorescent Single-Walled Carbon Nanotubes.

    PubMed

    Dong, Juyao; Salem, Daniel P; Sun, Jessica H; Strano, Michael S

    2018-04-24

    The high-throughput, label-free detection of biomolecules remains an important challenge in analytical chemistry with the potential of nanosensors to significantly increase the ability to multiplex such assays. In this work, we develop an optical sensor array, printable from a single-walled carbon nanotube/chitosan ink and functionalized to enable a divalent ion-based proximity quenching mechanism for transducing binding between a capture protein or an antibody with the target analyte. Arrays of 5 × 6, 200 μm near-infrared (nIR) spots at a density of ≈300 spots/cm 2 are conjugated with immunoglobulin-binding proteins (proteins A, G, and L) for the detection of human IgG, mouse IgM, rat IgG2a, and human IgD. Binding kinetics are measured in a parallel, multiplexed fashion from each sensor spot using a custom laser scanning imaging configuration with an nIR photomultiplier tube detector. These arrays are used to examine cross-reactivity, competitive and nonspecific binding of analyte mixtures. We find that protein G and protein L functionalized sensors report selective responses to mouse IgM on the latter, as anticipated. Optically addressable platforms such as the one examined in this work have potential to significantly advance the real-time, multiplexed biomolecular detection of complex mixtures.

  4. Multiplexing detection of IgG against Plasmodium falciparum pregnancy-specific antigens

    PubMed Central

    Fonseca, Ana Maria; Quinto, Llorenç; Jiménez, Alfons; González, Raquel; Bardají, Azucena; Maculuve, Sonia; Dobaño, Carlota; Rupérez, Maria; Vala, Anifa; Aponte, John J.; Sevene, Esperanza; Macete, Eusebio; Menéndez, Clara

    2017-01-01

    Background Pregnant women exposed to Plasmodium falciparum generate antibodies against VAR2CSA, the parasite protein that mediates adhesion of infected erythrocytes to the placenta. There is a need of high-throughput tools to determine the fine specificity of these antibodies that can be used to identify immune correlates of protection and exposure. Here we aimed at developing a multiplex-immunoassay to detect antibodies against VAR2CSA antigens. Methods and findings We constructed two multiplex-bead arrays, one composed of 3 VAR2CSA recombinant-domains (DBL3X, DBL5Ɛ and DBL6Ɛ) and another composed of 46 new peptides covering VAR2CSA conserved and semi-conserved regions. IgG reactivity was similar in multiplexed and singleplexed determinations (Pearson correlation, protein array: R2 = 0.99 and peptide array: R2 = 0.87). IgG recognition of 25 out of 46 peptides and all recombinant-domains was higher in pregnant Mozambican women (n = 106) than in Mozambican men (n = 102) and Spanish individuals (n = 101; p<0.05). Agreement of IgG levels detected in cryopreserved plasma and in elutions from dried blood spots was good after exclusion of inappropriate filter papers. Under heterogeneous levels of exposure to malaria, similar seropositivity cutoffs were obtained using finite mixture models applied to antibodies measured on pregnant Mozambican women and average of antibodies measured on pregnant Spanish women never exposed to malaria. The application of the multiplex-bead array developed here, allowed the assessment of higher IgG levels and seroprevalences against VAR2CSA-derived antigens in women pregnant during 2003–2005 than during 2010–2012, in accordance with the levels of malaria transmission reported for these years in Mozambique. Conclusions The multiplex bead-based immunoassay to detect antibodies against selected 25 VAR2CSA new-peptides and recombinant-domains was successfully implemented. Analysis of field samples showed that responses were specific among pregnant women and dependent on the level of exposure to malaria. This platform provides a high-throughput approach to investigating correlates of protection and identifying serological markers of exposure for malaria in pregnancy. PMID:28715465

  5. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs

    PubMed Central

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10−13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  6. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs.

    PubMed

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs.

  7. Development of a multiplexing fingerprint and high wavenumber Raman spectroscopy technique for real-time in vivo tissue Raman measurements at endoscopy

    NASA Astrophysics Data System (ADS)

    Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei

    2013-03-01

    We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm-1 1750 to 3600 cm-1) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm-1 within 1.0 s with a spectral resolution of 3 to 6 cm-1 during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.

  8. Design and Performance of the Multiplexed SQUID/TES Array at Ninety Gigahertz

    NASA Astrophysics Data System (ADS)

    Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander

    2018-01-01

    We present the array performance and astronomical images from early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). MUSTANG-2 was installed on the GBT on December 2, 2016 and immediately began commissioning efforts, followed by science observations, which are expected to conclude June 2017. The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instrument including the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeterwave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the UC Berkeley Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2's first season 7 separate proposals were awarded a total of 230 hours of telescope time.

  9. Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platform (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Tremblay, Julien

    2018-01-22

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  10. Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platform (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremblay, Julien

    2012-06-01

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  11. EFFECT OF DIFFERENT REGIONS OF AMPLIFIED 16S RDNA ON A PERFORMANCE OF A MULTIPLEXED, BEAD-BASED METHOD FOR ANALYSIS OF DNA SEQUENCES IN ENVIRONMENTAL SAMPLES.

    EPA Science Inventory

    Using a bead-based method for multiplexed analysis of community DNA, the dynamics of aquatic microbial communities can be assessed. Capture probes, specific for a genus or species of bacteria, are attached to the surface of uniquely labeled, microscopic polystyrene beads. Primers...

  12. NIST mixed stain study 3: signal intensity balance in commercial short tandem repeat multiplexes.

    PubMed

    Duewer, David L; Kline, Margaret C; Redman, Janette W; Butler, John M

    2004-12-01

    Short-tandem repeat (STR) allelic intensities were collected from more than 60 forensic laboratories for a suite of seven samples as part of the National Institute of Standards and Technology-coordinated 2001 Mixed Stain Study 3 (MSS3). These interlaboratory challenge data illuminate the relative importance of intrinsic and user-determined factors affecting the locus-to-locus balance of signal intensities for currently used STR multiplexes. To varying degrees, seven of the eight commercially produced multiplexes used by MSS3 participants displayed very similar patterns of intensity differences among the different loci probed by the multiplexes for all samples, in the hands of multiple analysts, with a variety of supplies and instruments. These systematic differences reflect intrinsic properties of the individual multiplexes, not user-controllable measurement practices. To the extent that quality systems specify minimum and maximum absolute intensities for data acceptability and data interpretation schema require among-locus balance, these intrinsic intensity differences may decrease the utility of multiplex results and surely increase the cost of analysis.

  13. Interferometric space-mode multiplexing based on binary phase plates and refractive phase shifters.

    PubMed

    Liñares, Jesús; Prieto-Blanco, Xesús; Moreno, Vicente; Montero-Orille, Carlos; Mouriz, Dolores; Nistal, María C; Barral, David

    2017-05-15

    A Mach-Zehnder interferometer (MZI) that includes in an arm either a reflective image inverter or a Gouy phase shifter (RGPS) can (de)multiplex many types of modes of a few mode fiber without fundamental loss. The use of RGPSs in combination with binary phase plates for multiplexing purposes is studied for the first time, showing that the particular RGPS that shifts π the odd modes only multiplexes accurately low order modes. To overcome such a restriction, we present a new exact refractive image inverter, more compact and flexible than its reflective counterpart. Moreover, we show that these interferometers remove or reduce the crosstalk that the binary phase plates could introduce between the multiplexed modes. Finally, an experimental analysis of a MZI with both an approximated and an exact refractive image inverter is presented for the case of a bimodal multiplexing. Likewise, it is proven experimentally that a RGPS that shifts π/2 demultiplexes two odd modes which can not be achieved by any image inverter.

  14. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India

    PubMed Central

    Dinoop, K.P.; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R.P.; Narayanan, P.

    2016-01-01

    Background & objectives: Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Methods: Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. Results: In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated (P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Interpretation & conclusions: Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods. PMID:26997014

  15. Shape-coded silica nanotubes for multiplexed bioassay: rapid and reliable magnetic decoding protocols

    PubMed Central

    He, Bo; Kim, Sung Kyoung; Son, Sang Jun; Lee, Sang Bok

    2010-01-01

    Aims The recent development of 1D barcode arrays has proved their capabilities to be applicable to highly multiplexed bioassays. This article introduces two magnetic decoding protocols for suspension arrays of shape-coded silica nanotubes to process multiplexed assays rapidly and easily, which will benefit the minimization and automation of the arrays. Methods In the first protocol, the magnetic nanocrystals are incorporated into the inner voids of barcoded silica nanotubes in order to give the nanotubes magnetic properties. The second protocol is performed by trapping the barcoded silica nanotubes onto streptavidin-modified magnetic beads. Results The rapid and easy decoding process was demonstrated by applying the above two protocols to multiplexed assays, resulting in high selectivity. Furthermore, the magnetic bead-trapped barcode nanotubes provided a great opportunity to exclude the use of dye molecules in multiplexed assays by using barcode nanotubes as signals. Conclusion The rapid and easy manipulation of encoded carriers using magnetic properties could be used to develop promising suspension arrays for portable bioassays. PMID:20025466

  16. Multiplex lexical networks reveal patterns in early word acquisition in children

    NASA Astrophysics Data System (ADS)

    Stella, Massimo; Beckage, Nicole M.; Brede, Markus

    2017-04-01

    Network models of language have provided a way of linking cognitive processes to language structure. However, current approaches focus only on one linguistic relationship at a time, missing the complex multi-relational nature of language. In this work, we overcome this limitation by modelling the mental lexicon of English-speaking toddlers as a multiplex lexical network, i.e. a multi-layered network where N = 529 words/nodes are connected according to four relationship: (i) free association, (ii) feature sharing, (iii) co-occurrence, and (iv) phonological similarity. We investigate the topology of the resulting multiplex and then proceed to evaluate single layers and the full multiplex structure on their ability to predict empirically observed age of acquisition data of English speaking toddlers. We find that the multiplex topology is an important proxy of the cognitive processes of acquisition, capable of capturing emergent lexicon structure. In fact, we show that the multiplex structure is fundamentally more powerful than individual layers in predicting the ordering with which words are acquired. Furthermore, multiplex analysis allows for a quantification of distinct phases of lexical acquisition in early learners: while initially all the multiplex layers contribute to word learning, after about month 23 free associations take the lead in driving word acquisition.

  17. Fiber-Optic Propagation Effects in Long-Haul HF/VHF/UHF Analog Photonic Links

    DTIC Science & Technology

    2014-04-17

    theoretical analysis of crosstalk in fiber optic wavelength division multiplexed systems is presented for the HF/VHF/UHF (1 MHz to 3 GHz) frequency...Street, Suite 1425 Arlington, VA 22203-1995 EW-271-003 6582 ONR Wavelength division multiplexing Crosstalk 05-03-2013 – 20-08-2014 TABLE OF CONTENTS...in optical fiber that can alter the phase relationship between signals in separate fibers or between signals that are multiplexed onto the same

  18. Phase sensitive spectral domain interferometry for label free biomolecular interaction analysis and biosensing applications

    NASA Astrophysics Data System (ADS)

    Chirvi, Sajal

    Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi-channel label-free biosensing applications is introduced. Simultaneous interrogation of multiple biosensors is achievable with a single spectral domain phase sensitive interferometer by coding the individual sensograms in coherence-multiplexed channels. Experimental results demonstrating multiplexed quantitative biomolecular interaction analysis of antibodies binding to antigen coated functionalized biosensor chip surfaces on different platforms are presented.

  19. Protein Multiplexed Immunoassay Analysis with R.

    PubMed

    Breen, Edmond J

    2017-01-01

    Plasma samples from 177 control and type 2 diabetes patients collected at three Australian hospitals are screened for 14 analytes using six custom-made multiplex kits across 60 96-well plates. In total 354 samples were collected from the patients, representing one baseline and one end point sample from each patient. R methods and source code for analyzing the analyte fluorescence response obtained from these samples by Luminex Bio-Plex ® xMap multiplexed immunoassay technology are disclosed. Techniques and R procedures for reading Bio-Plex ® result files for statistical analysis and data visualization are also presented. The need for technical replicates and the number of technical replicates are addressed as well as plate layout design strategies. Multinomial regression is used to determine plate to sample covariate balance. Methods for matching clinical covariate information to Bio-Plex ® results and vice versa are given. As well as methods for measuring and inspecting the quality of the fluorescence responses are presented. Both fixed and mixed-effect approaches for immunoassay statistical differential analysis are presented and discussed. A random effect approach to outlier analysis and detection is also shown. The bioinformatics R methodology present here provides a foundation for rigorous and reproducible analysis of the fluorescence response obtained from multiplexed immunoassays.

  20. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment.

    PubMed

    Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong

    2017-01-01

    This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus ( S. aureus ), Listeria monocytogenes ( L. monocytogenes ) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 10 2 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes , and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes , and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples.

  1. Development of multiplex PCR assay for simultaneous detection of Salmonella genus, Salmonella subspecies I, Salm. Enteritidis, Salm. Heidelberg and Salm. Typhimurium.

    PubMed

    Park, S H; Ricke, S C

    2015-01-01

    The aim of this research was to develop multiplex PCR assay that could simultaneously detect Salmonella genus, Salmonella subsp. I, Salm. Enteritidis, Heidelberg and Typhimurium because these Salmonella serovars are the most common isolates associated with poultry products. Five primers were utilized to establish multiplex PCR and applied to Salmonella isolates from chickens and farm environments. These isolates were identified as Salmonella subsp. I and 16 of 66 isolates were classified as Salm. Enteritidis, while Heidelberg or Typhimurium was not detected. We also spiked three Salmonella strains on chicken breast meat to evaluate the specificity and sensitivity of multiplex PCR as well as qPCR to optimize quantification of Salmonella in these samples. The optimized multiplex PCR and qPCR could detect approx. 2·2 CFU of Salmonella per gram after 18 h enrichment. The multiplex PCR and qPCR would provide rapid and consistent results. Also, these techniques would be useful for the detection and quantification of Salmonella in contaminated poultry, foods and environmental samples. The strategy for the rapid detection of Salmonella serovars in poultry is needed to further reduce the incidence of salmonellosis in humans. The optimized multiplex PCR will be useful to detect prevalent Salmonella serovars in poultry products. © 2014 The Society for Applied Microbiology.

  2. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment

    PubMed Central

    Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong

    2017-01-01

    This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 102 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes, and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes, and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples. PMID:28620364

  3. Real-time RT-PCR high-resolution melting curve analysis and multiplex RT-PCR to detect and differentiate grapevine leafroll-associated virus 3 variant groups I, II, III and VI.

    PubMed

    Bester, Rachelle; Jooste, Anna E C; Maree, Hans J; Burger, Johan T

    2012-09-27

    Grapevine leafroll-associated virus 3 (GLRaV-3) is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3. In this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM) curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay. A universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h) gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM. The real-time RT-PCR HRM provides a sensitive, automated and rapid tool to detect and differentiate different variant groups in order to study the epidemiology of leafroll disease.

  4. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction.

    PubMed

    Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana

    2015-08-18

    Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.

  5. Development and Validation of Sandwich ELISA Microarrays with Minimal Assay Interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Rachel M.; Servoss, Shannon; Crowley, Sheila A.

    Sandwich enzyme-linked immunosorbent assay (ELISA) microarrays are emerging as a strong candidate platform for multiplex biomarker analysis because of the ELISA’s ability to quantitatively measure rare proteins in complex biological fluids. Advantages of this platform are high-throughput potential, assay sensitivity and stringency, and the similarity to the standard ELISA test, which facilitates assay transfer from a research setting to a clinical laboratory. However, a major concern with the multiplexing of ELISAs is maintaining high assay specificity. In this study, we systematically determine the amount of assay interference and noise contributed by individual components of the multiplexed 24-assay system. We findmore » that non-specific reagent cross-reactivity problems are relatively rare. We did identify the presence of contaminant antigens in a “purified antigen”. We tested the validated ELISA microarray chip using paired serum samples that had been collected from four women at a 6-month interval. This analysis demonstrated that protein levels typically vary much more between individuals then within an individual over time, a result which suggests that longitudinal studies may be useful in controlling for biomarker variability across a population. Overall, this research demonstrates the importance of a stringent screening protocol and the value of optimizing the antibody and antigen concentrations when designing chips for ELISA microarrays.« less

  6. Multiplexed microsatellite recovery using massively parallel sequencing

    USGS Publications Warehouse

    Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C.

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5M (USD).

  7. TES X-ray microcalorimeters for X-ray astronomy and material analysis

    NASA Astrophysics Data System (ADS)

    Mitsuda, Kazuhisa

    2016-11-01

    TES X-ray microcalorimeter arrays provide not only high-energy resolution (FWHM < 10eV) in X-ray spectroscopy but also imaging and high-counting-rate capabilities. They are very promising spectrometer for X-ray astronomy and material analysis. In this paper, we report our recent progress. For material analysis, we have fabricated 8 × 8 format array with a fast signal response ( 40 μs) and proved the energy resolution of 5.8 eV FWHM at 5.9 keV. We developed common biasing scheme to reduce number of wirings from room temperature to the cryogenic stage. From measurements using the newly-designed common-bias SQUID array amplifier chips, and from numerical simulations, we demonstrated that signal cross talks due to the common bias is enough small. For space applications, we are developing frequency-division signal multiplexing system. We have fabricated a baseband feedback system and demonstrated that the noise added by the feedback system is about 4 eV FWHM equivalent for 16 ch multiplexing system. The digital to analog converter (DAC) dominates the noise, and needs be reduced by a factor of four for future astronomy missions.

  8. Growing multiplex networks with arbitrary number of layers

    NASA Astrophysics Data System (ADS)

    Momeni, Naghmeh; Fotouhi, Babak

    2015-12-01

    This paper focuses on the problem of growing multiplex networks. Currently, the results on the joint degree distribution of growing multiplex networks present in the literature pertain to the case of two layers and are confined to the special case of homogeneous growth and are limited to the state state (that is, the limit of infinite size). In the present paper, we first obtain closed-form solutions for the joint degree distribution of heterogeneously growing multiplex networks with arbitrary number of layers in the steady state. Heterogeneous growth means that each incoming node establishes different numbers of links in different layers. We consider both uniform and preferential growth. We then extend the analysis of the uniform growth mechanism to arbitrary times. We obtain a closed-form solution for the time-dependent joint degree distribution of a growing multiplex network with arbitrary initial conditions. Throughout, theoretical findings are corroborated with Monte Carlo simulations. The results shed light on the effects of the initial network on the transient dynamics of growing multiplex networks and takes a step towards characterizing the temporal variations of the connectivity of growing multiplex networks, as well as predicting their future structural properties.

  9. Multiplex polymerase chain reaction on FTA cards vs. flow cytometry for B-lymphocyte clonality.

    PubMed

    Dictor, Michael; Skogvall, Ingela; Warenholt, Janina; Rambech, Eva

    2007-01-01

    Two-colour flow cytometry was compared with multiplex PCR with capillary electrophoresis for clonality determination in specific categories of B-cell lymphoma. FTA cards were evaluated for preserving DNA from node imprints and expediting molecular analysis. A single-tube multiplex PCR targeted IGH and lymphoma-specific translocations in DNA extracted from 180 frozen lymphoid tissues and DNA bound to FTA cards from 192 fresh tissues and 137 aspirates. PCR results were compared with flow cytometry in the extracted and aspirated samples. Overall, single-tube multiplex PCR sensitivity was equivalent in the sample groups (intergroup range 79%-91%). False negatives were associated with tumour origin in the follicle centre. Multiplex PCR and flow cytometry were equally sensitive and together detected 98% of B-cell lymphomas. Additional two-tube targeting of IGK suggested an overall molecular sensitivity >90%. False positive (pseudoclonal) single-tube multiplex PCR was associated with necrosis and sparse lymphocytes. Multiplex PCR using template DNA bound to an FTA card effectively detects B-lymphocyte clonality, obviates DNA extraction and refrigeration, and can be used without diminished sensitivity in fine needle aspirates or node imprints as a replacement for or complement to flow cytometry at any point in the diagnostic work-up.

  10. Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations.

    PubMed

    Zonta, Eleonora; Garlan, Fanny; Pécuchet, Nicolas; Perez-Toralla, Karla; Caen, Ouriel; Milbury, Coren; Didelot, Audrey; Fabre, Elizabeth; Blons, Hélène; Laurent-Puig, Pierre; Taly, Valérie

    2016-01-01

    In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients.

  11. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    PubMed

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  12. Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array

    NASA Astrophysics Data System (ADS)

    Wang, Zhonghai; Sun, Xishan; Lou, Kai; Meier, Joseph; Zhou, Rong; Yang, Chaowen; Zhu, Xiaorong; Shao, Yiping

    2016-04-01

    One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm3 size) with 22Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.

  13. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients.

    PubMed

    Taly, Valerie; Pekin, Deniz; Benhaim, Leonor; Kotsopoulos, Steve K; Le Corre, Delphine; Li, Xinyu; Atochin, Ivan; Link, Darren R; Griffiths, Andrew D; Pallier, Karine; Blons, Hélène; Bouché, Olivier; Landi, Bruno; Hutchison, J Brian; Laurent-Puig, Pierre

    2013-12-01

    Multiplex digital PCR (dPCR) enables noninvasive and sensitive detection of circulating tumor DNA with performance unachievable by current molecular-detection approaches. Furthermore, picodroplet dPCR facilitates simultaneous screening for multiple mutations from the same sample. We investigated the utility of multiplex dPCR to screen for the 7 most common mutations in codons 12 and 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) oncogene from plasma samples of patients with metastatic colorectal cancer. Fifty plasma samples were tested from patients for whom the primary tumor biopsy tissue DNA had been characterized by quantitative PCR. Tumor characterization revealed that 19 patient tumors had KRAS mutations. Multiplex dPCR analysis of the plasma DNA prepared from these samples identified 14 samples that matched the mutation identified in the tumor, 1 sample contained a different KRAS mutation, and 4 samples had no detectable mutation. Among the tumor samples that were wild type for KRAS, 2 KRAS mutations were identified in the corresponding plasma samples. Duplex dPCR (i.e., wild-type and single-mutation assay) was also used to analyze plasma samples from patients with KRAS-mutated tumors and 5 samples expected to contain the BRAF (v-raf murine sarcoma viral oncogene homolog B) V600E mutation. The results for the duplex analysis matched those for the multiplex analysis for KRAS-mutated samples and, owing to its higher sensitivity, enabled detection of 2 additional samples with low levels of KRAS-mutated DNA. All 5 samples with BRAF mutations were detected. This work demonstrates the clinical utility of multiplex dPCR to screen for multiple mutations simultaneously with a sensitivity sufficient to detect mutations in circulating DNA obtained by noninvasive blood collection.

  14. Analysis of genetic and aflatoxin diversity among Aspergillus flavus isolates collected from sorghum seeds

    USDA-ARS?s Scientific Manuscript database

    A total of 34 A. flavus isolates were recovered from sorghum seeds sampled across five states in India. Our study included (1) species confirmation through PCR assay, (2) an aflatoxin cluster genotype assay using developed multiplex PCR, (3) quantification of total aflatoxin concentrations by the iC...

  15. Development and validation of a multiplex reaction analyzing eight miniSTRs of the X chromosome for identity and kinship testing with degraded DNA.

    PubMed

    Castañeda, María; Odriozola, Adrián; Gómez, Javier; Zarrabeitia, María T

    2013-07-01

    We report the development of an effective system for analyzing X chromosome-linked mini short tandem repeat loci with reduced-size amplicons (less than 220 bp), useful for analyzing highly degraded DNA samples. To generate smaller amplicons, we redesigned primers for eight X-linked microsatellites (DXS7132, DXS10079, DXS10074, DXS10075, DXS6801, DXS6809, DXS6789, and DXS6799) and established efficient conditions for a multiplex PCR system (miniX). The validation tests confirmed that it has good sensitivity, requiring as little as 20 pg of DNA, and performs well with DNA from paraffin-embedded tissues, thus showing potential for improved analysis and identification of highly degraded and/or very limited DNA samples. Consequently, this system may help to solve complex forensic cases, particularly when autosomal markers convey insufficient information.

  16. Development of a novel hexa-plex PCR method for identification and serotyping of Salmonella species.

    PubMed

    Li, Ruichao; Wang, Yang; Shen, Jianzhong; Wu, Congming

    2014-01-01

    Salmonella is one of the most important foodborne pathogens, which causes a huge economic burden worldwide. To detect Salmonella rapidly is very meaningful in preventing salmonellosis and decreasing economic losses. Currently, isolation of Salmonella is confirmed by biochemical and serobased serotyping methods, which are time consuming, labor intensive, and complicated. To solve this problem, a hexa-plex polymerase chain reaction (PCR) method was developed using comparative genomics analysis and multiplex PCR technology to detect Salmonella and Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Agona, Salmonella Choleraesuis, and Salmonella Pullorum simultaneously. The accuracy of this method was tested by a collection of 142 Salmonella. Furthermore, the strategy described in this article to mine serovar-specific fragments for Salmonella could be used to find specific fragments for other Salmonella serotypes and bacteria. The combination of this strategy and multiplex PCR is promising in the rapid identification of foodborne pathogens.

  17. Molecular analysis and test of linkage between the FMR-I gene and infantile autism in multiplex families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallmayer, J.; Pintado, E.; Lotspeich, L.

    Approximately 2%-5% of autistic children show cytogenetic evidence of the fragile X syndrome. This report tests whether infantile autism in multiplex autism families arises from an unusual manifestion of the fragile X syndrome. This could arise either by expansion of the (CGG)n trinucleotide repeat in FMR-1 or from a mutation elsewhere in the gene. We studied 35 families that met stringent criteria for multiplex autism. Amplification of the trinucleotide repeat and analysis of methylation status were performed in 79 autistic children and in 31 of their unaffected siblings by Southern blot analysis. No examples of amplified repeats were seen inmore » the autistic or control children or in their parents or grandparents. We next examined the hypothesis that there was a mutation elsewhere in the FMR-1 gene, by linkage analysis in 32 of these families. We tested four different dominant models and a recessive model. Linkage to FMR-1 could be excluded (lod score between -24 and -62) in all models by using probes DXS548, FRAXAC1, and FRAXAC2 and the CGG repeat itself. Tests for heterogeneity in this sample were negative, and the occurrence of positive lod scores in this data set could be attributed to chance. Analysis of the data by the affected-sib method also did not show evidence for linkage of any marker to autism. These results enable us to reject the hypothesis that multiplex autism arises from expansion of the (CGG)n trinucleotide repeat in FMR-1. Further, because the overall lod scores for all probes in all models tested were highly negative, linkage to FMR-1 can also be ruled out in multiplex autistic families. 35 refs., 2 figs., 5 tabs.« less

  18. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    PubMed

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.

  19. MiniX-STR multiplex system population study in Japan and application to degraded DNA analysis.

    PubMed

    Asamura, H; Sakai, H; Kobayashi, K; Ota, M; Fukushima, H

    2006-05-01

    We sought to evaluate a more effective system for analyzing X-chromosomal short tandem repeats (X-STRs) in highly degraded DNA. To generate smaller amplicon lengths, we designed new polymerase chain reaction (PCR) primers for DXS7423, DXS6789, DXS101, GATA31E08, DXS8378, DXS7133, DXS7424, and GATA165B12 at X-linked short tandem repeat (STR) loci, devising two miniX-multiplex PCR systems. Among 333 Japanese individuals, these X-linked loci were detected in amplification products ranging in length from 76 to 169 bp, and statistical analyses of the eight loci indicated a high usefulness for the Japanese forensic practice. Results of tests on highly degraded DNA indicated the miniX-STR multiplex strategies to be an effective system for analyzing degraded DNA. We conclude that analysis by the current miniX-STR multiplex systems offers high effectiveness for personal identification from degraded DNA samples.

  20. Mapping Multiplex Hubs in Human Functional Brain Networks

    PubMed Central

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  1. Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-01

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  2. Dynamical interplay between awareness and epidemic spreading in multiplex networks.

    PubMed

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-20

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  3. RaPToRS Sample Delivery System

    NASA Astrophysics Data System (ADS)

    Henchen, Robert; Shibata, Kye; Krieger, Michael; Pogozelski, Edward; Padalino, Stephen; Glebov, Vladimir; Sangster, Craig

    2010-11-01

    At various labs (NIF, LLE, NRL), activated material samples are used to measure reaction properties. The Rapid Pneumatic Transport of Radioactive Samples (RaPToRS) system quickly and safely moves these radioactive samples through a closed PVC tube via airflow. The carrier travels from the reaction chamber to the control and analysis station, pneumatically braking at the outlet. A reversible multiplexer routes samples from various locations near the shot chamber to the analysis station. Also, the multiplexer allows users to remotely load unactivated samples without manually approaching the reaction chamber. All elements of the system (pneumatic drivers, flow control valves, optical position sensors, multiplexers, Geiger counters, and release gates at the analysis station) can be controlled manually or automatically using a custom LabVIEW interface. A prototype is currently operating at NRL in Washington DC. Prospective facilities for Raptors systems include LLE and NIF.

  4. Genotyping and interpretation of STR-DNA: Low-template, mixtures and database matches-Twenty years of research and development.

    PubMed

    Gill, Peter; Haned, Hinda; Bleka, Oyvind; Hansson, Oskar; Dørum, Guro; Egeland, Thore

    2015-09-01

    The introduction of Short Tandem Repeat (STR) DNA was a revolution within a revolution that transformed forensic DNA profiling into a tool that could be used, for the first time, to create National DNA databases. This transformation would not have been possible without the concurrent development of fluorescent automated sequencers, combined with the ability to multiplex several loci together. Use of the polymerase chain reaction (PCR) increased the sensitivity of the method to enable the analysis of a handful of cells. The first multiplexes were simple: 'the quad', introduced by the defunct UK Forensic Science Service (FSS) in 1994, rapidly followed by a more discriminating 'six-plex' (Second Generation Multiplex) in 1995 that was used to create the world's first national DNA database. The success of the database rapidly outgrew the functionality of the original system - by the year 2000 a new multiplex of ten-loci was introduced to reduce the chance of adventitious matches. The technology was adopted world-wide, albeit with different loci. The political requirement to introduce pan-European databases encouraged standardisation - the development of European Standard Set (ESS) of markers comprising twelve-loci is the latest iteration. Although development has been impressive, the methods used to interpret evidence have lagged behind. For example, the theory to interpret complex DNA profiles (low-level mixtures), had been developed fifteen years ago, but only in the past year or so, are the concepts starting to be widely adopted. A plethora of different models (some commercial and others non-commercial) have appeared. This has led to a confusing 'debate' about the 'best' to use. The different models available are described along with their advantages and disadvantages. A section discusses the development of national DNA databases, along with details of an associated controversy to estimate the strength of evidence of matches. Current methodology is limited to searches of complete profiles - another example where the interpretation of matches has not kept pace with development of theory. STRs have also transformed the area of Disaster Victim Identification (DVI) which frequently requires kinship analysis. However, genotyping efficiency is complicated by complex, degraded DNA profiles. Finally, there is now a detailed understanding of the causes of stochastic effects that cause DNA profiles to exhibit the phenomena of drop-out and drop-in, along with artefacts such as stutters. The phenomena discussed include: heterozygote balance; stutter; degradation; the effect of decreasing quantities of DNA; the dilution effect. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Binary encoding of multiplexed images in mixed noise.

    PubMed

    Lalush, David S

    2008-09-01

    Binary coding of multiplexed signals and images has been studied in the context of spectroscopy with models of either purely constant or purely proportional noise, and has been shown to result in improved noise performance under certain conditions. We consider the case of mixed noise in an imaging system consisting of multiple individually-controllable sources (X-ray or near-infrared, for example) shining on a single detector. We develop a mathematical model for the noise in such a system and show that the noise is dependent on the properties of the binary coding matrix and on the average number of sources used for each code. Each binary matrix has a characteristic linear relationship between the ratio of proportional-to-constant noise and the noise level in the decoded image. We introduce a criterion for noise level, which is minimized via a genetic algorithm search. The search procedure results in the discovery of matrices that outperform the Hadamard S-matrices at certain levels of mixed noise. Simulation of a seven-source radiography system demonstrates that the noise model predicts trends and rank order of performance in regions of nonuniform images and in a simple tomosynthesis reconstruction. We conclude that the model developed provides a simple framework for analysis, discovery, and optimization of binary coding patterns used in multiplexed imaging systems.

  6. Multiplexed Lateral Flow Test for Detection and Differentiation of Cronobacter sakazakii Serotypes O1 and O2

    PubMed Central

    Scharinger, Eva J.; Dietrich, Richard; Wittwer, Tobias; Märtlbauer, Erwin; Schauer, Kristina

    2017-01-01

    The ubiquitous and opportunistic pathogen Cronobacter sakazakii is responsible for severe meningitis, sepsis, and necrotizing enterocolitis in neonates and infants associated with ingestion of contaminated powdered infant formula (PIF). The current ISO method for isolation and detection of Cronobacter spp. is laborious, time-consuming and expensive. In this study, a multiplexed lateral flow test strip was developed to rapidly detect and simultaneously serotype O1 and O2 C. sakazakii serotypes. The assay is based on two monoclonal antibodies (MAb) that specifically bind to the lipopolysaccharides (LPS) of these pathogens. The test strip provides results very quickly; C. sakazakii could be detected in pure culture within 15 min with a sensitivity of 107 CFU/ml. After non-selective enrichment for 18 h as low as one Cronobacter cell per g PIF could be detected. Moreover, the established lateral flow assay (LFA) offers excellent specificity showing no cross-reactivity with other C. sakazakii serotypes, Cronobacter species or Enterobacteriaceae tested. These characteristics, together with several advantages such as speed, simplicity in performance, low analysis cost, and no requirement of specialized skills or sophisticated equipment make the developed multiplexed LFA suitable for reliable detection and serotyping of C. sakazakii serotypes O1 and O2. PMID:28979257

  7. Multiplexed Lateral Flow Test for Detection and Differentiation of Cronobacter sakazakii Serotypes O1 and O2.

    PubMed

    Scharinger, Eva J; Dietrich, Richard; Wittwer, Tobias; Märtlbauer, Erwin; Schauer, Kristina

    2017-01-01

    The ubiquitous and opportunistic pathogen Cronobacter sakazakii is responsible for severe meningitis, sepsis, and necrotizing enterocolitis in neonates and infants associated with ingestion of contaminated powdered infant formula (PIF). The current ISO method for isolation and detection of Cronobacter spp. is laborious, time-consuming and expensive. In this study, a multiplexed lateral flow test strip was developed to rapidly detect and simultaneously serotype O1 and O2 C. sakazakii serotypes. The assay is based on two monoclonal antibodies (MAb) that specifically bind to the lipopolysaccharides (LPS) of these pathogens. The test strip provides results very quickly; C. sakazakii could be detected in pure culture within 15 min with a sensitivity of 10 7 CFU/ml. After non-selective enrichment for 18 h as low as one Cronobacter cell per g PIF could be detected. Moreover, the established lateral flow assay (LFA) offers excellent specificity showing no cross-reactivity with other C. sakazakii serotypes, Cronobacter species or Enterobacteriaceae tested. These characteristics, together with several advantages such as speed, simplicity in performance, low analysis cost, and no requirement of specialized skills or sophisticated equipment make the developed multiplexed LFA suitable for reliable detection and serotyping of C. sakazakii serotypes O1 and O2.

  8. Multiplexed protein detection using antibody-conjugated microbead arrays in a microfabricated electrophoretic device

    PubMed Central

    Barbee, Kristopher D.; Hsiao, Alexander P.; Roller, Eric E.; Huang, Xiaohua

    2011-01-01

    We report the development of a microfabricated electrophoretic device for assembling high-density arrays of antibody-conjugated microbeads for chip-based protein detection. The device consists of a flow cell formed between a gold-coated silicon chip with an array of microwells etched in a silicon dioxide film and a glass coverslip with a series of thin gold counter electrode lines. We have demonstrated that 0.4 and 1 μm beads conjugated with antibodies can be rapidly assembled into the microwells by applying a pulsed electric field across the chamber. By assembling step-wise a mixture of fluorescently labeled antibody-conjugated microbeads, we incorporated both spatial and fluorescence encoding strategies to demonstrate significant multiplexing capabilities. We have shown that these antibody-conjugated microbead arrays can be used to perform on-chip sandwich immunoassays to detect test antigens at concentrations as low as 40 pM (6 ng/mL). A finite element model was also developed to examine the electric field distribution within the device for different counter electrode configurations over a range of line pitches and chamber heights. This device will be useful for assembling high-density, encoded antibody arrays for multiplexed detection of proteins and other types of protein-conjugated microbeads for applications such as the analysis of protein-protein interactions. PMID:20820631

  9. Optimizing diffusion in multiplexes by maximizing layer dissimilarity

    NASA Astrophysics Data System (ADS)

    Serrano, Alfredo B.; Gómez-Gardeñes, Jesús; Andrade, Roberto F. S.

    2017-05-01

    Diffusion in a multiplex depends on the specific link distribution between the nodes in each layer, but also on the set of the intralayer and interlayer diffusion coefficients. In this work we investigate, in a quantitative way, the efficiency of multiplex diffusion as a function of the topological similarity among multiplex layers. This similarity is measured by the distance between layers, taken among the pairs of layers. Results are presented for a simple two-layer multiplex, where one of the layers is held fixed, while the other one can be rewired in a controlled way in order to increase or decrease the interlayer distance. The results indicate that, for fixed values of all intra- and interlayer diffusion coefficients, a large interlayer distance generally enhances the global multiplex diffusion, providing a topological mechanism to control the global diffusive process. For some sets of networks, we develop an algorithm to identify the most sensitive nodes in the rewirable layer, so that changes in a small set of connections produce a drastic enhancement of the global diffusion of the whole multiplex system.

  10. Development of a novel forensic STR multiplex for ancestry analysis and extended identity testing.

    PubMed

    Phillips, Chris; Fernandez-Formoso, Luis; Gelabert-Besada, Miguel; Garcia-Magariños, Manuel; Santos, Carla; Fondevila, Manuel; Carracedo, Angel; Lareu, Maria Victoria

    2013-04-01

    There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population-divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12-STR multiplex composed of ancestry informative marker STRs (AIM-STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM-SNPs: Snipper, to handle multiallele STR data using frequency-based training sets. We assessed the ability of the 12-plex AIM-STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM-SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparison of Conventional PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Arcobacter Species

    PubMed Central

    Wang, Xiaoyu; Seo, Dong Joo; Lee, Min Hwa

    2014-01-01

    This study aimed to develop a loop-mediated isothermal amplification (LAMP) method for the rapid detection of Arcobacter species. Specific primers targeting the 23S ribosomal RNA gene were used to detect Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. The specificity of the LAMP primer set was assessed using DNA samples from a panel of Arcobacter and Campylobacter species, and the sensitivity was determined using serial dilutions of Arcobacter species cultures. LAMP showed a 10- to 1,000-fold-higher sensitivity than multiplex PCR, with a detection limit of 2 to 20 CFU per reaction in vitro. Whereas multiplex PCR showed cross-reactivity with Campylobacter species, the LAMP method developed in this study was more sensitive and reliable than conventional PCR or multiplex PCR for the detection of Arcobacter species. PMID:24478488

  12. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    Treesearch

    G. J. Bilodeau; F. N. Martin; M. D. Coffey; C. L. Blomquist

    2014-01-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed...

  13. Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review.

    PubMed

    Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad

    2016-05-28

    The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process.

  14. Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review

    PubMed Central

    Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad

    2016-01-01

    The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process. PMID:27239109

  15. Development of a Multiplexed Bead-Based Suspension Array for the Detection and Discrimination of Pospiviroid Plant Pathogens

    PubMed Central

    van Brunschot, Sharon L.; Bergervoet, Jan H. W.; Pagendam, Daniel E.; de Weerdt, Marjanne; Geering, Andrew D. W.; Drenth, André; van der Vlugt, René A. A.

    2014-01-01

    Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies. PMID:24404188

  16. Accelerated Genome Engineering through Multiplexing

    PubMed Central

    Zhao, Huimin

    2015-01-01

    Throughout the biological sciences, the past fifteen years have seen a push towards the analysis and engineering of biological systems at the organism level. Given the complexity of even the simplest organisms, though, to elicit a phenotype of interest often requires genotypic manipulation of several loci. By traditional means, sequential editing of genomic targets requires a significant investment of time and labor, as the desired editing event typically occurs at a very low frequency against an overwhelming unedited background. In recent years, the development of a suite of new techniques has greatly increased editing efficiency, opening up the possibility for multiple editing events to occur in parallel. Termed as multiplexed genome engineering, this approach to genome editing has greatly expanded the scope of possible genome manipulations in diverse hosts, ranging from bacteria to human cells. The enabling technologies for multiplexed genome engineering include oligonucleotide-based and nuclease-based methodologies, and their application has led to the great breadth of successful examples described in this review. While many technical challenges remain, there also exists a multiplicity of opportunities in this rapidly expanding field. PMID:26394307

  17. Multiplexed BioCD for prostate specific antigen detection

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Zhao, Ming; Nolte, David D.

    2008-02-01

    Specific protein concentrations in human body fluid can serve as diagnostic markers for some diseases, and a quantitative and high-throughput technique for multiplexed protein detection would speed up diagnosis and facilitate medical research. For this purpose, our group developed the BioCD, a spinning-disc interferometric biosensor on which antibody is immobilized. The detection system adopts a common-path scheme making it ultra stable. The scaling mass sensitivity is below 10 pg/mm for protein surface density. A 25000-spot antibody BioCD was fabricated to measure the concentration of prostate specific antigen (PSA), a protein indicating prostate cancer if its level is high. Statistical analysis of our immunoassay results projects that the detection limit of PSA would reach 20 pg/ml in a 2 mg/ml background solution. For future prospects, a multiplexed BioCD can be produced for simultaneous diagnosis of diverse diseases. For instance, 100 markers above 200 pg/ml could be measured on a single disc given that the detection limit is inversely proportional to square root of the number of spots.

  18. The new challenges of multiplex networks: Measures and models

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2017-02-01

    What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.

  19. Rapid and sensitive PCR-dipstick DNA chromatography for multiplex analysis of the oral microbiota.

    PubMed

    Tian, Lingyang; Sato, Takuichi; Niwa, Kousuke; Kawase, Mitsuo; Tanner, Anne C R; Takahashi, Nobuhiro

    2014-01-01

    A complex of species has been associated with dental caries under the ecological hypothesis. This study aimed to develop a rapid, sensitive PCR-dipstick DNA chromatography assay that could be read by eye for multiplex and semiquantitative analysis of plaque bacteria. Parallel oligonucleotides were immobilized on a dipstick strip for multiplex analysis of target DNA sequences of the caries-associated bacteria, Streptococcus mutans, Streptococcus sobrinus, Scardovia wiggsiae, Actinomyces species, and Veillonella parvula. Streptavidin-coated blue-colored latex microspheres were to generate signal. Target DNA amplicons with an oligonucleotide-tagged terminus and a biotinylated terminus were coupled with latex beads through a streptavidin-biotin interaction and then hybridized with complementary oligonucleotides on the strip. The accumulation of captured latex beads on the test and control lines produced blue bands, enabling visual detection with the naked eye. The PCR-dipstick DNA chromatography detected quantities as low as 100 pg of DNA amplicons and demonstrated 10- to 1000-fold higher sensitivity than PCR-agarose gel electrophoresis, depending on the target bacterial species. Semiquantification of bacteria was performed by obtaining a series of chromatograms using serial 10-fold dilution of PCR-amplified DNA extracted from dental plaque samples. The assay time was less than 3 h. The semiquantification procedure revealed the relative amounts of each test species in dental plaque samples, indicating that this disposable device has great potential in analysis of microbial composition in the oral cavity and intestinal tract, as well as in point-of-care diagnosis of microbiota-associated diseases.

  20. Rapid and Sensitive PCR-Dipstick DNA Chromatography for Multiplex Analysis of the Oral Microbiota

    PubMed Central

    Niwa, Kousuke; Kawase, Mitsuo; Tanner, Anne C. R.; Takahashi, Nobuhiro

    2014-01-01

    A complex of species has been associated with dental caries under the ecological hypothesis. This study aimed to develop a rapid, sensitive PCR-dipstick DNA chromatography assay that could be read by eye for multiplex and semiquantitative analysis of plaque bacteria. Parallel oligonucleotides were immobilized on a dipstick strip for multiplex analysis of target DNA sequences of the caries-associated bacteria, Streptococcus mutans, Streptococcus sobrinus, Scardovia wiggsiae, Actinomyces species, and Veillonella parvula. Streptavidin-coated blue-colored latex microspheres were to generate signal. Target DNA amplicons with an oligonucleotide-tagged terminus and a biotinylated terminus were coupled with latex beads through a streptavidin-biotin interaction and then hybridized with complementary oligonucleotides on the strip. The accumulation of captured latex beads on the test and control lines produced blue bands, enabling visual detection with the naked eye. The PCR-dipstick DNA chromatography detected quantities as low as 100 pg of DNA amplicons and demonstrated 10- to 1000-fold higher sensitivity than PCR-agarose gel electrophoresis, depending on the target bacterial species. Semiquantification of bacteria was performed by obtaining a series of chromatograms using serial 10-fold dilution of PCR-amplified DNA extracted from dental plaque samples. The assay time was less than 3 h. The semiquantification procedure revealed the relative amounts of each test species in dental plaque samples, indicating that this disposable device has great potential in analysis of microbial composition in the oral cavity and intestinal tract, as well as in point-of-care diagnosis of microbiota-associated diseases. PMID:25485279

  1. Development of a multiplexing fingerprint and high wavenumber Raman spectroscopy technique for real-time in vivo tissue Raman measurements at endoscopy.

    PubMed

    Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei

    2013-03-01

    We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950  cm⁻¹; 1750 to 3600  cm⁻¹) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600  cm⁻¹ within 1.0 s with a spectral resolution of 3 to 6  cm⁻¹ during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.

  2. Hydrogel droplet microarrays with trapped antibody-functionalized beads for multiplexed protein analysis.

    PubMed

    Li, Huiyan; Leulmi, Rym Feriel; Juncker, David

    2011-02-07

    Antibody microarrays are a powerful tool for rapid, multiplexed profiling of proteins. 3D microarray substrates have been developed to improve binding capacity, assay sensitivity, and mass transport, however, they often rely on photopolymers which are difficult to manufacture and have a small pore size that limits mass transport and demands long incubation time. Here, we present a novel 3D antibody microarray format based on the entrapment of antibody-coated microbeads within alginate droplets that were spotted onto a glass slide using an inkjet. Owing to the low concentration of alginate used, the gels were highly porous to proteins, and together with the 3D architecture helped enhance mass transport during the assays. The spotting parameters were optimized for the attachment of the alginate to the substrate. Beads with 0.2 µm, 0.5 µm and 1 µm diameter were tested and 1 µm beads were selected based on their superior retention within the hydrogel. The beads were found to be distributed within the entire volume of the gel droplet using confocal microscopy. The assay time and the concentration of beads in the gels were investigated for maximal binding signal using one-step immunoassays. As a proof of concept, six proteins including cytokines (TNFα, IL-8 and MIP/CCL4), breast cancer biomarkers (CEA and HER2) and one cancer-related protein (ENG) were profiled in multiplex using sandwich assays down to pg mL(-1) concentrations with 1 h incubation without agitation in both buffer solutions and 10% serum. These results illustrate the potential of beads-in-gel microarrays for highly sensitive and multiplexed protein analysis.

  3. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria.

    PubMed

    Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-06-21

    In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.

  4. Warfarin genotyping in a single PCR reaction for microchip electrophoresis.

    PubMed

    Poe, Brian L; Haverstick, Doris M; Landers, James P

    2012-04-01

    Warfarin is the most commonly prescribed oral anticoagulant medication but also is the second leading cause of emergency room visits for adverse drug reactions. Genetic testing for warfarin sensitivity may reduce hospitalization rates, but prospective genotyping is impeded in part by the turnaround time and costs of genotyping. Microfluidics-based assays can reduce reagent consumption and analysis time; however, no current assay has integrated multiplexed allele-specific PCR for warfarin genotyping with electrophoretic microfluidics hardware. Ideally, such an assay would use a single PCR reaction and, without further processing, a single microchip electrophoresis (ME) run to determine the 3 single-nucleotide polymorphisms (SNPs) affecting warfarin sensitivity [i.e., CYP2C9 (cytochrome P450, family 2, subfamily C, polypeptide 9) *2, CYP2C9 *3, and the VKORC1 (vitamin K epoxide reductase complex 1) A/B haplotype]. We designed and optimized primers for a fully multiplexed assay to examine 3 biallelic SNPs with the tetraprimer amplification refractory mutation system (T-ARMS). The assay was developed with conventional PCR equipment and demonstrated for microfluidic infrared-mediated PCR. Genotypes were determined by ME on the basis of the pattern of PCR products. Thirty-five samples of human genomic DNA were analyzed with this multiplex T-ARMS assay, and 100% of the genotype determinations agreed with the results obtained by other validated methods. The sample population included several genotypes conferring warfarin sensitivity, with both homozygous and heterozygous genotypes for each SNP. Total analysis times for the PCR and ME were approximately 75 min (1-sample run) and 90 min (12-sample run). This multiplexed T-ARMS assay coupled with microfluidics hardware constitutes a promising avenue for an inexpensive and rapid platform for warfarin genotyping.

  5. Species-specific multiplex PCR for the diagnosis of Brucella ovis, Actinobacillus seminis, and Histophilus somni infection in rams.

    PubMed

    Moustacas, Valéria S; Silva, Teane M A; Costa, Luciana F; Xavier, Mariana N; Carvalho, Custódio A; Costa, Érica A; Paixão, Tatiane A; Santos, Renato L

    2013-03-21

    Infectious ovine epididymitis results in substantial economic losses worldwide due to reproductive failure and culling of breeders. The most common causative agents of these infections are Brucella ovis, Actinobacillus seminis, and Histophilus somni. The aim of this study was to develop a multiplex PCR assay for simultaneous detection of Brucella ovis, Actinobacillus seminis, and Histophilus somni with species-specific primers applied to biological samples for molecular diagnosis of these infections. The multiplex assay was capable of detecting B. ovis, A. seminis, and H. somni DNA simultaneously from genomic bacterial DNA samples and pool of semen samples from experimentally infected rams. The method was highly specific since it did not amplify DNA from other bacterial species that can potentially cause epididymitis in rams as well as species phylogenetically related to B. ovis. All negative control samples were negative in PCR multiplex assay. Urine can be used as an alternative to semen samples. The species-specific multiplex PCR assay developed in this study can be successfully used for the detection of three of the most common bacterial causes of ovine epididymitis.

  6. Prototype data terminal-multiplexer/demultiplexer

    NASA Technical Reports Server (NTRS)

    Leck, D. E.; Goodwin, J. E.

    1972-01-01

    The design and operation of a quad redundant data terminal and a multiplexer/demultiplexer (MDU) is described. The most unique feature is the design of the quad redundant data terminal. This is one of the few designs where the unit is fail/op, fail/op, fail/safe. Laboratory tests confirm that the unit will operate satisfactorily with the failure of three out of four channels. Although the design utilizes state-of-the-art technology, the waveform error checks, the voting techniques, and the parity bit checks are believed to be used in unique configurations. Correct word selection routines are also novel. The MDU design, while not redundant, utilizes, the latest state-of-the-art advantages of light coupler and interested amplifiers. Much of the technology employed was an evolution of prior NASA contracts related to the Addressable Time Division Data System. A good example of the earlier technology development was the development of a low level analog multiplexer, a high level analog multiplexer, and a digital multiplexer. A list of all drawings is included for reference and all schematic, block and timing diagrams are incorporated.

  7. Development of a multiplex microsphere immunoassay for the quantitation of salivary antibody responses to selected waterborne pathogens

    EPA Science Inventory

    Saliva has an important advantage over serum as a medium for antibody detection due to non-invasive sampling, which is critical for community-based epidemiological surveys. The development of a Luminex multiplex immunoassay for measurement of salivary IgG and IgA responses to pot...

  8. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold-chitosan.

    PubMed

    Li, Weiping; Li, Long; Li, Meng; Yu, Jinghua; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2013-10-25

    A simple and sensitive 3D microfluidic origami multiplex electrochemical immunodevice was developed for the first time using a novel nanoporous silver modified paper working electrode as a sensor platform and different metal ion functionalized nanoporous gold-chitosan as a tracer.

  9. East Asian mtDNA haplogroup determination in Koreans: haplogroup-level coding region SNP analysis and subhaplogroup-level control region sequence analysis.

    PubMed

    Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Kim, Chong-Youl; Shin, Kyoung-Jin

    2006-11-01

    The present study analyzed 21 coding region SNP markers and one deletion motif for the determination of East Asian mitochondrial DNA (mtDNA) haplogroups by designing three multiplex systems which apply single base extension methods. Using two multiplex systems, all 593 Korean mtDNAs were allocated into 15 haplogroups: M, D, D4, D5, G, M7, M8, M9, M10, M11, R, R9, B, A, and N9. As the D4 haplotypes occurred most frequently in Koreans, the third multiplex system was used to further define D4 subhaplogroups: D4a, D4b, D4e, D4g, D4h, and D4j. This method allowed the complementation of coding region information with control region mutation motifs and the resultant findings also suggest reliable control region mutation motifs for the assignment of East Asian mtDNA haplogroups. These three multiplex systems produce good results in degraded samples as they contain small PCR products (101-154 bp) for single base extension reactions. SNP scoring was performed in 101 old skeletal remains using these three systems to prove their utility in degraded samples. The sequence analysis of mtDNA control region with high incidence of haplogroup-specific mutations and the selective scoring of highly informative coding region SNPs using the three multiplex systems are useful tools for most applications involving East Asian mtDNA haplogroup determination and haplogroup-directed stringent quality control.

  10. Preliminary multiplex microarray IgG immunoassay for the diagnosis of toxoplasmosis and rubella.

    PubMed

    Baschirotto, Priscila T; Krieger, Marco A; Foti, Leonardo

    2017-06-01

    During pregnancy, toxoplasmosis and rubella can cause serious damage to the mother and the foetus through vertical transmission. Early diagnosis enables implementation of health measures aimed at preventing vertical transmission and minimising damage caused by these diseases. Here, we report the development of a multiplex assay for simultaneous detection of IgG antibodies produced during toxoplasmosis and rubella infection. This assay is based on xMap technology. Initially, by singleplex assays, we evaluated the following antigens: one Toxoplasma gondii lysate; two antigenic extracts of T. gondii (TOX8131 and TOX8122); fragments of T. gondii antigens [SAG-1 (amino acids 45-198), GRA-7 (24-100), GRA-1 (57-149), ROP-4, and MIC-3 (234-306)]; two chimeric antigens composed of fragments of SAG-1, GRA-7, and P35 (CTOX and CTOXH); and fragments of Rubella virus antigens [E-1 (157-176, 213-239, 374-390), E-2 (31-105), and C (1-123)]. A multiplex assay to simultaneously diagnose toxoplasmosis and rubella was designed with the best-performing antigens in singleplex and multiplex assays, which included CTOXH, T. gondii lysate, TOX8131, E-1, and E-2. The multiplex assay showed 100% sensitivity and specificity for anti-T. gondii IgG detection and 95.6% sensitivity and 100% specificity for anti-R. virus IgG detection. We found that, despite the difficulties related to developing multiplex systems, different types of antigens (extracts and recombinant proteins) can be used to develop high-performance diagnostic tests. The assay developed is suitable to screen for prior T. gondii and R. virus infections, because it is a rapid, high-throughput, low-cost alternative to the current standard diagnostic tools, which require multiple individual tests.

  11. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis.

    PubMed

    Stack, Edward C; Wang, Chichung; Roman, Kristin A; Hoyt, Clifford C

    2014-11-01

    Tissue sections offer the opportunity to understand a patient's condition, to make better prognostic evaluations and to select optimum treatments, as evidenced by the place pathology holds today in clinical practice. Yet, there is a wealth of information locked up in a tissue section that is only partially accessed, due mainly to the limitations of tools and methods. Often tissues are assessed primarily based on visual analysis of one or two proteins, or 2-3 DNA or RNA molecules. Even while analysis is still based on visual perception, image analysis is starting to address the variability of human perception. This is in contrast to measuring characteristics that are substantially out of reach of human perception, such as parameters revealed through co-expression, spatial relationships, heterogeneity, and low abundance molecules. What is not routinely accessed is the information revealed through simultaneous detection of multiple markers, the spatial relationships among cells and tissue in disease, and the heterogeneity now understood to be critical to developing effective therapeutic strategies. Our purpose here is to review and assess methods for multiplexed, quantitative, image analysis based approaches, using new multicolor immunohistochemistry methods, automated multispectral slide imaging, and advanced trainable pattern recognition software. A key aspect of our approach is presenting imagery in a workflow that engages the pathologist to utilize the strengths of human perception and judgment, while significantly expanding the range of metrics collectable from tissue sections and also provide a level of consistency and precision needed to support the complexities of personalized medicine. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. AST Critical Propulsion and Noise Reduction Technologies for Future Commercial Subsonic Engines Area of Interest 1.0: Reliable and Affordable Control Systems

    NASA Technical Reports Server (NTRS)

    Myers, William; Winter, Steve

    2006-01-01

    The General Electric Reliable and Affordable Controls effort under the NASA Advanced Subsonic Technology (AST) Program has designed, fabricated, and tested advanced controls hardware and software to reduce emissions and improve engine safety and reliability. The original effort consisted of four elements: 1) a Hydraulic Multiplexer; 2) Active Combustor Control; 3) a Variable Displacement Vane Pump (VDVP); and 4) Intelligent Engine Control. The VDVP and Intelligent Engine Control elements were cancelled due to funding constraints and are reported here only to the state they progressed. The Hydraulic Multiplexing element developed and tested a prototype which improves reliability by combining the functionality of up to 16 solenoids and servo-valves into one component with a single electrically powered force motor. The Active Combustor Control element developed intelligent staging and control strategies for low emission combustors. This included development and tests of a Controlled Pressure Fuel Nozzle for fuel sequencing, a Fuel Multiplexer for individual fuel cup metering, and model-based control logic. Both the Hydraulic Multiplexer and Controlled Pressure Fuel Nozzle system were cleared for engine test. The Fuel Multiplexer was cleared for combustor rig test which must be followed by an engine test to achieve full maturation.

  13. Development of a multiplex PCR assay for detection and discrimination of Theileria annulata and Theileria sergenti in cattle.

    PubMed

    Junlong, Liu; Li, Youquan; Liu, Aihong; Guan, Guiquan; Xie, Junren; Yin, Hong; Luo, Jianxun

    2015-07-01

    Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.

  14. Analysis of the Effects of Phase Noise and Frequency Offset in Orthogonal Frequency Division Multiplexing (OFDM) Systems

    DTIC Science & Technology

    2004-03-01

    Data Communication , http://www.iec.org/, last accessed December 2003. 13. Klaus Witrisal, “Orthogonal Frequency Division Multiplexing (OFDM) for...http://ieeexplore.ieee.org, last accessed 26 February 2003. 12. The International Engineering Consortium, Web Forum Tutorials, OFDM for Mobile

  15. Multiplexing and Filtering of Optical Signals.

    DTIC Science & Technology

    1977-06-01

    A0-A017 22« SPERRY RESEARCH CENTER SUOBURY MASS MULTIPLEXING ANO FILTERING OF OPTICAL SIGNALS.(U) JUN 77 A R NELSON UNCLASSIFIED SCRC-CR-77...0 F/G 20/6 Nil <r Research and Development Technical Report ECOM -76-1343-F MULTIPLEXING AND FILTERING OF OPTICAL SIGNALS A. R...Nelson SPERRY RESEARCH CENTER 100 North Road Sudbury, MA 01776 June 1977 Final Report for Period 29 April 1976 - 29 April 1977 DISTRIBUTION

  16. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  17. Forensic SNP Genotyping with SNaPshot: Development of a Novel In-house SBE Multiplex SNP Assay.

    PubMed

    Zar, Mian Sahib; Shahid, Ahmad Ali; Shahzad, Muhammad Saqib; Shin, Kyoung-Jin; Lee, Hwan Young; Lee, Sang-Seob; Israr, Muhammad; Wiegand, Peter; Kulstein, Galina

    2018-04-10

    This study introduces a newly developed in-house SNaPshot single-base extension (SBE) multiplex assay for forensic single nucleotide polymorphism (SNP) genotyping of fresh and degraded samples. The assay was validated with fresh blood samples from four different populations. In addition, altogether 24 samples from skeletal remains were analyzed with the multiplex. Full SNP profiles could be obtained from 14 specimens, while ten remains showed partial SNP profiles. Minor allele frequencies (MAF) of bone samples and different populations were compared and used for association of skeletal remains with a certain population. The results reveal that the SNPs of the bone samples are genetically close to the Pathan population. The findings show that the new multiplex system can be utilized for SNP genotyping of degraded and forensic relevant skeletal material, enabling to provide additional investigative leads in criminal cases. © 2018 American Academy of Forensic Sciences.

  18. A multiplex competitive ELISA for the detection and characterization of gluten in fermented-hydrolyzed foods.

    PubMed

    Panda, Rakhi; Boyer, Marc; Garber, Eric A E

    2017-12-01

    A novel competitive ELISA was developed utilizing the G12, R5, 2D4, MIoBS, and Skerritt antibody-HRP conjugates employed in nine commercial ELISA test kits that are routinely used for gluten detection. This novel multiplex competitive ELISA simultaneously measures gliadin-, deamidated gliadin-, and glutenin-specific epitopes. The assay was used to evaluate 20 wheat beers, 20 barley beers, 6 barley beers processed to reduce gluten, 15 soy sauces, 6 teriyaki sauces, 6 Worcestershire sauces, 6 vinegars, and 8 sourdough breads. For wheat beers, the apparent gluten concentration values obtained by the G12 and Skerritt antibodies were typically higher than those obtained using the R5 antibodies. The sourdough bread samples resulted in higher apparent gluten concentration values with the Skerritt antibody, while the values generated by the G12 and R5 antibodies were comparable. Although the soy-based sauces showed non-specific inhibition with the multiple R5 and G12 antibodies, their overall profile was distinguishable from the other categories of fermented foods. Cluster analysis of the apparent gluten concentration values obtained by the multiplex competitive ELISA, as well as the relative response of the nine gluten-specific antibodies used in the assay to different gluten proteins/peptides, distinguishes among the different categories of fermented-hydrolyzed foods by recognizing the differences in the protein/peptide profiles characteristic of each product. This novel gluten-based multiplex competitive ELISA provides insight into the extent of proteolysis resulting from various fermentation processes, which is essential for accurate gluten quantification in fermented-hydrolyzed foods. Graphical abstract A novel multiplex competitive ELISA for the detection and characterization of gluten in fermented-hydrolyzed foods.

  19. Ultrasensitive Single Fluorescence-Labeled Probe-Mediated Single Universal Primer-Multiplex-Droplet Digital Polymerase Chain Reaction for High-Throughput Genetically Modified Organism Screening.

    PubMed

    Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2018-05-01

    As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.

  20. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location determination. The multiplexer also identifies which channels are acquired by encoding TTL logic pulses onto the latter portion of the signals. This prototype system was demonstrated using pencil lead break (Hsu-Neilsen) sources on an aluminum plate. It performed as designed providing rapid low noise trigger based switching with encoded channel identification. this multiplexing approach is not limited to linear arrays, but can be easily extended to monitor sensors in planar ot three dimensional arrays. A 32 channel multiplexing system is under development that will allow arbitrary sensor placement. Another benefit of this multiplexing system is the reduction in the expense of data acquisition hardware. In addition, the reduced weight and power requirements are of extreme importance for proposed AE systems on aerospace vehicles.

  1. Development of a multiplex assay for genus and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    USDA-ARS?s Scientific Manuscript database

    The availability of a molecular diagnostic assay for Phytophthora that is specific, sensitive, has both genus and species specific detection capabilities multiplexed and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory ef...

  2. Photonic Doppler Velocimetry Multiplexing Techniques: Evaluation of Photonic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Daykin

    This poster reports progress related to photonic technologies. Specifically, the authors developed diagnostic system architecture for a Multiplexed Photonic Doppler Velocimetry (MPDV) that incorporates frequency and time-division multiplexing into existing PDV methodology to provide increased channel count. Current MPDV design increases number of data records per digitizer channel 8x, and also operates as a laser-safe (Class 3a) system. Further, they applied heterodyne interferometry to allow for direction-of-travel determination and enable high-velocity measurements (>10 km/s) via optical downshifting. They also leveraged commercially available, inexpensive and robust components originally developed for telecom applications. Proposed MPDV architectures employ only commercially available, fiber-coupled hardware.

  3. One-step multiplex RT-qPCR detects three citrus viroids from different genera in a wide range of hosts.

    PubMed

    Osman, Fatima; Dang, Tyler; Bodaghi, Sohrab; Vidalakis, Georgios

    2017-07-01

    A one-step multiplex reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) based on species-specific minor groove binding (MGB) probes, was developed for the simultaneous detection, identification, and quantification of three citrus viroids belonging to different genera. Citrus exocortis viroid (Pospiviroid), Hop stunt viroid (Hostuviroid), and Citrus bark cracking viroid (Cocadviroid) cause a variety of maladies in agriculturally significant crops. Therefore, reliable assays for their detection are essential tools for various government and industry organizations implementing disease management programs. Singleplex qPCR primers and MGB probes were designed individually for the detection of the three targeted viroids, and subsequently combined in a one-step multiplex RT-qPCR reaction. A wide host range of woody plants, including citrus, grapevines, apricots, plums and herbaceous plants such as tomato, cucumber, eggplant and chrysanthemum different world regions were used to validate the assay. Single, double and triple viroid infections were identified in the tested samples. The developed multiplex RT-qPCR assay was compared with a previously reported SYBR Green I RT-qPCR for the universal detection of citrus viroids. Both assays accurately identified all citrus viroid infected samples. The multiplex assay complemented the SYBR Green I universal detection assay by differentiating among citrus viroid species in the positive samples. The developed multiplex RT-qPCR assay has the potential to simultaneously detect each targeted viroid and could be used in high throughput screenings for citrus viroids in field surveys, germplasm banks, nurseries and other viroid disease management programs. Copyright © 2017. Published by Elsevier B.V.

  4. A novel transmitter IQ imbalance and phase noise suppression method utilizing pilots in PDM CO-OFDM system

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyuan; Ma, Xiurong; Li, Pengru

    2018-04-01

    In this paper, we develop a novel pilot structure to suppress transmitter in-phase and quadrature (Tx IQ) imbalance, phase noise and channel distortion for polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. Compared with the conventional approach, our method not only significantly improves the system tolerance of IQ imbalance as well as phase noise, but also provides higher transmission speed. Numerical simulations of PDM CO-OFDM system is used to validate the theoretical analysis under the simulation conditions: the amplitude mismatch 3 dB, the phase mismatch 15°, the transmission bit rate 100 Gb/s and 560 km standard signal-mode fiber transmission. Moreover, the proposed method is 63% less complex than the compared method.

  5. A screening method for the detection of the 35S promoter and the nopaline synthase terminator in genetically modified organisms in a real-time multiplex polymerase chain reaction using high-resolution melting-curve analysis.

    PubMed

    Akiyama, Hiroshi; Nakamura, Fumi; Yamada, Chihiro; Nakamura, Kosuke; Nakajima, Osamu; Kawakami, Hiroshi; Harikai, Naoki; Furui, Satoshi; Kitta, Kazumi; Teshima, Reiko

    2009-11-01

    To screen for unauthorized genetically modified organisms (GMO) in the various crops, we developed a multiplex real-time polymerase chain reaction high-resolution melting-curve analysis method for the simultaneous qualitative detection of 35S promoter sequence of cauliflower mosaic virus (35SP) and the nopaline synthase terminator (NOST) in several crops. We selected suitable primer sets for the simultaneous detection of 35SP and NOST and designed the primer set for the detection of spiked ColE1 plasmid to evaluate the validity of the polymerase chain reaction (PCR) analyses. In addition, we optimized the multiplex PCR conditions using the designed primer sets and EvaGreen as an intercalating dye. The contamination of unauthorized GMO with single copy similar to NK603 maize can be detected as low as 0.1% in a maize sample. Furthermore, we showed that the present method would be applicable in identifying GMO in various crops and foods like authorized GM soybean, authorized GM potato, the biscuit which is contaminated with GM soybeans and the rice which is contaminated with unauthorized GM rice. We consider this method to be a simple and reliable assay for screening for unauthorized GMO in crops and the processing food products.

  6. Genetic barcoding with fluorescent proteins for multiplexed applications.

    PubMed

    Smurthwaite, Cameron A; Williams, Wesley; Fetsko, Alexandra; Abbadessa, Darin; Stolp, Zachary D; Reed, Connor W; Dharmawan, Andre; Wolkowicz, Roland

    2015-04-14

    Fluorescent proteins, fluorescent dyes and fluorophores in general have revolutionized the field of molecular cell biology. In particular, the discovery of fluorescent proteins and their genes have enabled the engineering of protein fusions for localization, the analysis of transcriptional activation and translation of proteins of interest, or the general tracking of individual cells and cell populations. The use of fluorescent protein genes in combination with retroviral technology has further allowed the expression of these proteins in mammalian cells in a stable and reliable manner. Shown here is how one can utilize these genes to give cells within a population of cells their own biosignature. As the biosignature is achieved with retroviral technology, cells are barcoded 'indefinitely'. As such, they can be individually tracked within a mixture of barcoded cells and utilized in more complex biological applications. The tracking of distinct populations in a mixture of cells is ideal for multiplexed applications such as discovery of drugs against a multitude of targets or the activation profile of different promoters. The protocol describes how to elegantly develop and amplify barcoded mammalian cells with distinct genetic fluorescent markers, and how to use several markers at once or one marker at different intensities. Finally, the protocol describes how the cells can be further utilized in combination with cell-based assays to increase the power of analysis through multiplexing.

  7. Distinguishing body lice from head lice by multiplex real-time PCR analysis of the Phum_PHUM540560 gene.

    PubMed

    Drali, Rezak; Boutellis, Amina; Raoult, Didier; Rolain, Jean Marc; Brouqui, Philippe

    2013-01-01

    Body louse or head louse? Once removed from their environment, body and head lice are indistinguishable. Neither the morphological criteria used since the mid-18th century nor the various genetic studies conducted since the advent of molecular biology tools have allowed body lice and head lice to be differentiated. In this work, using a portion of the Phum_PHUM540560 gene from the body louse, we aimed to develop a multiplex real-time polymerase chain reaction (PCR) assay to differentiate between body and head lice in a single reaction. A total of 142 human lice were collected from mono-infested hosts from 13 countries on five continents. We first identified the louse clade using a cytochrome b (CYTB) PCR sequence alignment. We then aligned a fragment of the Phum_PHUM540560 gene amplified from head and body lice to design-specific TaqMan(©) FAM- and VIC-labeled probes. All the analyzed lice were Clade A lice. A total of 22 polymorphisms between the body and head lice were characterized. The multiplex real-time PCR analysis enabled the body and head lice to be distinguished in two hours. This method is simple, with 100% specificity and sensitivity. We confirmed that the Phum_PHUM540560 gene is a useful genetic marker for the study of lice.

  8. GCF Mark IV development

    NASA Technical Reports Server (NTRS)

    Mortensen, L. O.

    1982-01-01

    The Mark IV ground communication facility (GCF) as it is implemented to support the network consolidation program is reviewed. Changes in the GCF are made in the area of increased capacity. Common carrier circuits are the medium for data transfer. The message multiplexing in the Mark IV era differs from the Mark III era, in that all multiplexing is done in a GCF computer under GCF software control, which is similar to the multiplexing currently done in the high speed data subsystem.

  9. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food.

    PubMed

    Lee, Nari; Kwon, Kyung Yoon; Oh, Su Kyung; Chang, Hyun-Joo; Chun, Hyang Sook; Choi, Sung-Wook

    2014-07-01

    A multiplex polymerase chain reaction (PCR) assay was developed for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in various Korean ready-to-eat foods. The six specific primer pairs for multiplex PCR were selected based on the O157 antigen (rfbE) gene of E. coli O157:H7, the DNA gyrase subunit B (gyrB) gene of B. cereus, the toxin regulatory protein (toxR) gene of V. parahaemolyticus, the invasion protein A (invA) gene of Salmonella spp., the hemolysin (hly) gene of L. monocytogenes, and the thermonuclease (nuc) gene of S. aureus. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity assays for multiplex primer pairs were investigated by testing different strains. When this multiplex PCR assay was applied to evaluate the validity of detecting six foodborne pathogens in artificially inoculated several ready-to-eat food samples, the assay was able to specifically simultaneously detect as few as 1 colony-forming unit/mL of each pathogen after enrichment for 12 h. Their presence in naturally contaminated samples also indicates that the developed multiplex PCR assay is an effective and informative supplement for practical use.

  10. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion.

    PubMed

    Baggio, Jacopo A; BurnSilver, Shauna B; Arenas, Alex; Magdanz, James S; Kofinas, Gary P; De Domenico, Manlio

    2016-11-29

    Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social-ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources.

  11. Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations

    PubMed Central

    Zonta, Eleonora; Garlan, Fanny; Pécuchet, Nicolas; Perez-Toralla, Karla; Caen, Ouriel; Milbury, Coren; Didelot, Audrey; Fabre, Elizabeth; Blons, Hélène; Laurent-Puig, Pierre; Taly, Valérie

    2016-01-01

    In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients. PMID:27416070

  12. Precoded spatial multiplexing MIMO system with spatial component interleaver.

    PubMed

    Gao, Xiang; Wu, Zhanji

    In this paper, the performance of precoded bit-interleaved coded modulation (BICM) spatial multiplexing multiple-input multiple-output (MIMO) system with spatial component interleaver is investigated. For the ideal precoded spatial multiplexing MIMO system with spatial component interleaver based on singular value decomposition (SVD) of the MIMO channel, the average pairwise error probability (PEP) of coded bits is derived. Based on the PEP analysis, the optimum spatial Q-component interleaver design criterion is provided to achieve the minimum error probability. For the limited feedback precoded proposed scheme with linear zero forcing (ZF) receiver, in order to minimize a bound on the average probability of a symbol vector error, a novel effective signal-to-noise ratio (SNR)-based precoding matrix selection criterion and a simplified criterion are proposed. Based on the average mutual information (AMI)-maximization criterion, the optimal constellation rotation angles are investigated. Simulation results indicate that the optimized spatial multiplexing MIMO system with spatial component interleaver can achieve significant performance advantages compared to the conventional spatial multiplexing MIMO system.

  13. Data acquisition and analysis in the DOE/NASA Wind Energy Program

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.

    1980-01-01

    Four categories of data systems, each responding to a distinct information need are presented. The categories are: control, technology, engineering and performance. The focus is on the technology data system which consists of the following elements: sensors which measure critical parameters such as wind speed and direction, output power, blade loads and strains, and tower vibrations; remote multiplexing units (RMU) mounted on each wind turbine which frequency modulate, multiplex and transmit sensor outputs; the instrumentation available to record, process and display these signals; and centralized computer analysis of data. The RMU characteristics and multiplexing techniques are presented. Data processing is illustrated by following a typical signal through instruments such as the analog tape recorder, analog to digital converter, data compressor, digital tape recorder, video (CRT) display, and strip chart recorder.

  14. A Liquid Array Platform For the Multiplexed Analysis of Synthetic Molecule-Protein Interactions

    PubMed Central

    Doran, Todd M.; Kodadek, Thomas

    2014-01-01

    Synthetic molecule microarrays, consisting of many different compounds spotted onto a planar surface such as modified glass or cellulose, have proven to be useful tools for the multiplexed analysis of small molecule- and peptide-protein interactions. However, these arrays are technically difficult to manufacture and use with high reproducibility and require specialized equipment. Here we report a more convenient alternative comprised of color-encoded beads that display a small molecule protein ligand on the surface. Quantitative, multiplexed assay of protein binding to up to 24 different ligands can be achieved using a common flow cytometer for the readout. This technology should be useful for evaluating hits from library screening efforts, the determination of structure activity relationships and for certain types of serological analyses. PMID:24245981

  15. Dynamic multiplexed analysis method using ion mobility spectrometer

    DOEpatents

    Belov, Mikhail E [Richland, WA

    2010-05-18

    A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.

  16. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.

    2015-01-01

    Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241

  17. Two alternative multiplex PCRs for the identification of the seven species of anglerfish (Lophius spp.) using an end-point or a melting curve analysis real-time protocol.

    PubMed

    Castigliego, Lorenzo; Armani, Andrea; Tinacci, Lara; Gianfaldoni, Daniela; Guidi, Alessandra

    2015-01-01

    Anglerfish (Lophius spp.) is consumed worldwide and is an important economic resource though its seven species are often fraudulently interchanged due to their different commercial value, especially when sold in the form of fillets or pieces. Molecular analysis is the only possible mean to verify traceability and counteract fraud. We developed two multiplex PCRs, one end-point and one real-time with melting curve post-amplification analysis, which can even be run with the simplest two-channel thermocyclers. The two methods were tested on seventy-five reference samples. Their specificity was checked in twenty more species of those most commonly available on the market and in other species of the Lophiidae family. Both methods, the choice of which depends on the equipment and budget of the lab, provide a rapid and easy-to-read response, improving both the simplicity and cost-effectiveness of existing methods for identifying Lophius species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Multiplex cytokine profiling with highly pathogenic material: use of formalin solution in luminex analysis.

    PubMed

    Dowall, Stuart D; Graham, Victoria A; Tipton, Thomas R W; Hewson, Roger

    2009-08-31

    Work with highly pathogenic material mandates the use of biological containment facilities, involving microbiological safety cabinets and specialist laboratory engineering structures typified by containment level 3 (CL3) and CL4 laboratories. Consequences of working in high containment are the practical difficulties associated with containing specialist assays and equipment often essential for experimental analyses. In an era of increased interest in biodefence pathogens and emerging diseases, immunological analysis has developed rapidly alongside traditional techniques in virology and molecular biology. For example, in order to maximise the use of small sample volumes, multiplexing has become a more popular and widespread approach to quantify multiple analytes simultaneously, such as cytokines and chemokines. The luminex microsphere system allows for the detection of many cytokines and chemokines in a single sample, but the detection method of using aligned lasers and fluidics means that samples often have to be analysed in low containment facilities. In order to perform cytokine analysis in materials from high containment (CL3 and CL4 laboratories), we have developed an appropriate inactivation methodology after staining steps, which although results in a reduction of median fluorescent intensity, produces statistically comparable outcomes when judged against non-inactivated samples. This methodology thus extends the use of luminex technology for material that contains highly pathogenic biological agents.

  19. Direct measurement of beta-agonists in swine hair extract in multiplexed mode by surface-enhanced Raman spectroscopy and microfluidic paper.

    PubMed

    Dou, Bin; Luo, Yong; Chen, Xu; Shi, Bo; Du, Yuguang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng

    2015-02-01

    Bare gold nanoparticles selectively enhance the Raman signal of beta-agnonists in swine hair extract at 780 nm, which enables analysis of beta-agonists in swine hair extract without chemical labeling, purification, or separation. The analysis is multiplexable and the LOD of beta-agonists is around ng/mL in the assistance of microfluidic paper. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved.

  1. Nanoscale Test Strips for Multiplexed Blood Analysis

    NASA Technical Reports Server (NTRS)

    Chan, Eugene

    2015-01-01

    A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth.

  2. Multiple-locus variable-number tandem repeat analysis of Salmonella Enteritidis isolates from human and non-human sources using a single multiplex PCR

    PubMed Central

    Cho, Seongbeom; Boxrud, David J; Bartkus, Joanne M; Whittam, Thomas S; Saeed, Mahdi

    2007-01-01

    Simplified multiple-locus variable-number tandem repeat analysis (MLVA) was developed using one-shot multiplex PCR for seven variable-number tandem repeats (VNTR) markers with high diversity capacity. MLVA, phage typing, and PFGE methods were applied on 34 diverse Salmonella Enteritidis isolates from human and non-human sources. MLVA detected allelic variations that helped to classify the S. Enteritidis isolates into more evenly distributed subtypes than other methods. MLVA-based S. Enteritidis clonal groups were largely associated with sources of the isolates. Nei's diversity indices for polymorphism ranged from 0.25 to 0.70 for seven VNTR loci markers. Based on Simpson's and Shannon's diversity indices, MLVA had a higher discriminatory power than pulsed field gel electrophoresis (PFGE), phage typing, or multilocus enzyme electrophoresis. Therefore, MLVA may be used along with PFGE to enhance the effectiveness of the molecular epidemiologic investigation of S. Enteritidis infections. PMID:17692097

  3. Orbital Angular Momentum Multiplexing over Visible Light Communication Systems

    NASA Astrophysics Data System (ADS)

    Tripathi, Hardik Rameshchandra

    This thesis proposes and explores the possibility of using Orbital Angular Momentum multiplexing in Visible Light Communication system. Orbital Angular Momentum is mainly applied for laser and optical fiber transmissions, while Visible Light Communication is a technology using the light as a carrier for wireless communication. In this research, the study of the state of art and experiments showing some results on multiplexing based on Orbital Angular Momentum over Visible Light Communication system were done. After completion of the initial stage; research work and simulations were performed on spatial multiplexing over Li-Fi channel modeling. Simulation scenarios which allowed to evaluate the Signal-to-Noise Ratio, Received Power Distribution, Intensity and Illuminance were defined and developed.

  4. Clinical Validation of Multiplex Real-Time PCR Assays for Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Theodore, M. Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L.; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J. Matthew; Messonnier, Nancy E.; Mayer, Leonard W.

    2012-01-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays. PMID:22170919

  5. Clinical validation of multiplex real-time PCR assays for detection of bacterial meningitis pathogens.

    PubMed

    Wang, Xin; Theodore, M Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J Matthew; Messonnier, Nancy E; Mayer, Leonard W

    2012-03-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays.

  6. Evaluation of Multiplexed Foot-and-Mouth Disease Nonstructural Protein Antibody Assay Against Standardized Bovine Serum Panel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, J; Parida, S; Clavijo, A

    2007-05-14

    Liquid array technology has previously been used to show proof-of-principle of a multiplexed non structural protein serological assay to differentiate foot-and-mouth infected and vaccinated animals. The current multiplexed assay consists of synthetically produced peptide signatures 3A, 3B and 3D and recombinant protein signature 3ABC in combination with four controls. To determine diagnostic specificity of each signature in the multiplex, the assay was evaluated against a naive population (n = 104) and a vaccinated population (n = 94). Subsequently, the multiplexed assay was assessed using a panel of bovine sera generated by the World Reference Laboratory for foot-and-mouth disease in Pirbright,more » UK. This sera panel has been used to assess the performance of other singleplex ELISA-based non-structural protein antibody assays. The 3ABC signature in the multiplexed assay showed comparative performance to a commercially available non-structural protein 3ABC ELISA (Cedi test{reg_sign}) and additional information pertaining to the relative diagnostic sensitivity of each signature in the multiplex is acquired in one experiment. The encouraging results of the evaluation of the multiplexed assay against a panel of diagnostically relevant samples promotes further assay development and optimization to generate an assay for routine use in foot-and-mouth disease surveillance.« less

  7. Chemiluminescence microarrays in analytical chemistry: a critical review.

    PubMed

    Seidel, Michael; Niessner, Reinhard

    2014-09-01

    Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.

  8. Species-specific multiplex PCR for the diagnosis of Brucella ovis, Actinobacillus seminis, and Histophilus somni infection in rams

    PubMed Central

    2013-01-01

    Background Infectious ovine epididymitis results in substantial economic losses worldwide due to reproductive failure and culling of breeders. The most common causative agents of these infections are Brucella ovis, Actinobacillus seminis, and Histophilus somni. The aim of this study was to develop a multiplex PCR assay for simultaneous detection of Brucella ovis, Actinobacillus seminis, and Histophilus somni with species-specific primers applied to biological samples for molecular diagnosis of these infections. Results The multiplex assay was capable of detecting B. ovis, A. seminis, and H. somni DNA simultaneously from genomic bacterial DNA samples and pool of semen samples from experimentally infected rams. The method was highly specific since it did not amplify DNA from other bacterial species that can potentially cause epididymitis in rams as well as species phylogenetically related to B. ovis. All negative control samples were negative in PCR multiplex assay. Urine can be used as an alternative to semen samples. Conclusions The species-specific multiplex PCR assay developed in this study can be successfully used for the detection of three of the most common bacterial causes of ovine epididymitis. PMID:23514236

  9. Development of a multiplex PCR-based rapid typing method for enterohemorrhagic Escherichia coli O157 strains.

    PubMed

    Ooka, Tadasuke; Terajima, Jun; Kusumoto, Masahiro; Iguchi, Atsushi; Kurokawa, Ken; Ogura, Yoshitoshi; Asadulghani, Md; Nakayama, Keisuke; Murase, Kazunori; Ohnishi, Makoto; Iyoda, Sunao; Watanabe, Haruo; Hayashi, Tetsuya

    2009-09-01

    Enterohemorrhagic Escherichia coli O157 (EHEC O157) is a food-borne pathogen that has raised worldwide public health concern. The development of simple and rapid strain-typing methods is crucial for the rapid detection and surveillance of EHEC O157 outbreaks. In the present study, we developed a multiplex PCR-based strain-typing method for EHEC O157, which is based on the variability in genomic location of IS629 among EHEC O157 strains. This method is very simple, in that the procedures are completed within 2 h, the analysis can be performed without the need for special equipment or techniques (requiring only conventional PCR and agarose gel electrophoresis systems), the results can easily be transformed into digital data, and the genes for the major virulence markers of EHEC O157 (the stx(1), stx(2), and eae genes) can be detected simultaneously. Using this method, 201 EHEC O157 strains showing different XbaI digestion patterns in pulsed-field gel electrophoresis (PFGE) analysis were classified into 127 types, and outbreak-related strains showed identical or highly similar banding patterns. Although this method is less discriminatory than PFGE, it may be useful as a primary screening tool for EHEC O157 outbreaks.

  10. Analysis of Serum Total and Free PSA Using Immunoaffinity Depletion Coupled to SRM: Correlation with Clinical Immunoassay Tests

    PubMed Central

    Liu, Tao; Hossain, Mahmud; Schepmoes, Athena A.; Fillmore, Thomas L.; Sokoll, Lori J.; Kronewitter, Scott R.; Izmirlian, Grant; Shi, Tujin; Qian, Wei-Jun; Leach, Robin J.; Thompson, Ian M.; Chan, Daniel W.; Smith, Richard D.; Kagan, Jacob; Srivastava, Sudhir; Rodland, Karin D.; Camp, David G.

    2012-01-01

    Recently, selected reaction monitoring mass spectrometry (SRM-MS) has been more frequently applied to measure low abundance biomarker candidates in tissues and biofluids, owing to its high sensitivity and specificity, simplicity of assay configuration, and exceptional multiplexing capability. In this study, we report for the first time the development of immunoaffinity depletion-based workflows and SRM-MS assays that enable sensitive and accurate quantification of total and free prostate-specific antigen (PSA) in serum without the requirement for specific PSA antibodies. Low ng/mL level detection of both total and free PSA was consistently achieved in both PSA-spiked female serum samples and actual patient serum samples. Moreover, comparison of the results obtained when SRM PSA assays and conventional immunoassays were applied to the same samples showed good correlation in several independent clinical serum sample sets. These results demonstrate that the workflows and SRM assays developed here provide an attractive alternative for reliably measuring candidate biomarkers in human blood, without the need to develop affinity reagents. Furthermore, the simultaneous measurement of multiple biomarkers, including the free and bound forms of PSA, can be performed in a single multiplexed analysis using high-resolution liquid chromatographic separation coupled with SRM-MS. PMID:22846433

  11. Diversity of Salmonella isolates from central Florida surface waters.

    PubMed

    McEgan, Rachel; Chandler, Jeffrey C; Goodridge, Lawrence D; Danyluk, Michelle D

    2014-11-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608-3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Diversity of Salmonella Isolates from Central Florida Surface Waters

    PubMed Central

    McEgan, Rachel; Chandler, Jeffrey C.; Goodridge, Lawrence D.

    2014-01-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608–3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:−. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. PMID:25172861

  13. Cooperative spreading processes in multiplex networks.

    PubMed

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  14. Multiplexed Imaging of Protein Phosphorylation on Membranes Based on Ti(IV) Functionalized Nanopolymers.

    PubMed

    Iliuk, Anton; Li, Li; Melesse, Michael; Hall, Mark C; Tao, W Andy

    2016-05-17

    Accurate protein phosphorylation analysis reveals dynamic cellular signaling events not evident from protein expression levels. The most dominant biochemical assay, western blotting, suffers from the inadequate availability and poor quality of phospho-specific antibodies for phosphorylated proteins. Furthermore, multiplexed assays based on antibodies are limited by steric interference between the antibodies. Here we introduce a multifunctionalized nanopolymer for the universal detection of phosphoproteins that, in combination with regular antibodies, allows multiplexed imaging and accurate determination of protein phosphorylation on membranes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A high density integrated genetic linkage map of soybean and the development of a 1,536 Universal Soy Linkage Panel for QTL mapping

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphisms (SNPs) are the marker of choice for many researchers due to their abundance and the high-throughput methods available for their multiplex analysis. Only recently have SNP markers been available to researchers in soybean [Glycine max (L.) Merr.] with the release of th...

  16. Microarray-based screening of heat shock protein inhibitors.

    PubMed

    Schax, Emilia; Walter, Johanna-Gabriela; Märzhäuser, Helene; Stahl, Frank; Scheper, Thomas; Agard, David A; Eichner, Simone; Kirschning, Andreas; Zeilinger, Carsten

    2014-06-20

    Based on the importance of heat shock proteins (HSPs) in diseases such as cancer, Alzheimer's disease or malaria, inhibitors of these chaperons are needed. Today's state-of-the-art techniques to identify HSP inhibitors are performed in microplate format, requiring large amounts of proteins and potential inhibitors. In contrast, we have developed a miniaturized protein microarray-based assay to identify novel inhibitors, allowing analysis with 300 pmol of protein. The assay is based on competitive binding of fluorescence-labeled ATP and potential inhibitors to the ATP-binding site of HSP. Therefore, the developed microarray enables the parallel analysis of different ATP-binding proteins on a single microarray. We have demonstrated the possibility of multiplexing by immobilizing full-length human HSP90α and HtpG of Helicobacter pylori on microarrays. Fluorescence-labeled ATP was competed by novel geldanamycin/reblastatin derivatives with IC50 values in the range of 0.5 nM to 4 μM and Z(*)-factors between 0.60 and 0.96. Our results demonstrate the potential of a target-oriented multiplexed protein microarray to identify novel inhibitors for different members of the HSP90 family. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Multiplex quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry.

    PubMed

    Dupré, Mathieu; Gilquin, Benoit; Fenaille, François; Feraudet-Tarisse, Cécile; Dano, Julie; Ferro, Myriam; Simon, Stéphanie; Junot, Christophe; Brun, Virginie; Becher, François

    2015-08-18

    The development of rapid methods for unambiguous identification and precise quantification of protein toxins in various matrices is essential for public health surveillance. Nowadays, analytical strategies classically rely on sensitive immunological assays, but mass spectrometry constitutes an attractive complementary approach thanks to direct measurement and protein characterization ability. We developed here an innovative multiplex immuno-LC-MS/MS method for the simultaneous and specific quantification of the three potential biological warfare agents, ricin, staphylococcal enterotoxin B, and epsilon toxin, in complex human biofluids and food matrices. At least 7 peptides were targeted for each toxin (43 peptides in total) with a quadrupole-Orbitrap high-resolution instrument for exquisite detection specificity. Quantification was performed using stable isotope-labeled toxin standards spiked early in the sample. Lower limits of quantification were determined at or close to 1 ng·mL(-1). The whole process was successfully applied to the quantitative analysis of toxins in complex samples such as milk, human urine, and plasma. Finally, we report new data on toxin stability with no evidence of toxin degradation in milk in a 48 h time frame, allowing relevant quantitative toxin analysis for samples collected in this time range.

  18. A microsphere-based assay for mutation analysis of the biotinidase gene using dried blood spots

    PubMed Central

    Lindau-Shepard, Barbara; Janik, David K.; Pass, Kenneth A.

    2012-01-01

    Biotinidase deficiency is an autosomal recessive syndrome caused by defects in the biotinidase gene, the product of which affects biotin metabolism. Newborn screening (NBS) for biotinidase deficiency can identify affected infants prior to onset of symptoms; biotin supplementation can resolve or prevent the clinical features. In NBS, dry blood spots (DBS) are usually tested for biotinidase enzyme activity by colorimetric analysis. By taking advantage of the multiplexing capabilities of the Luminex platform, we have developed a microsphere-based array genotyping method for the simultaneous detection of six disease causing mutations in the biotinidase gene, thereby permitting a second tier of molecular analysis. Genomic DNA was extracted from 3.2 mm DBS. Biotinidase gene sequences, containing the mutations of interest, were amplified by multiplexed polymerase chain reaction, followed by multiplexed allele-specific primer extension using universally tagged genotyping primers. The products were then hybridized to anti-tag carrying xTAG microspheres and detected on the Luminex platform. Genotypes were verified by sequencing. Genotyping results of 22 known biotinidase deficient samples by our xTAG biotinidase assay was in concordance with the results obtained from DNA sequencing, for all 6 mutations used in our panel. These results indicate that genotyping by an xTAG microsphere-based array is accurate, flexible, and can be adapted for high-throughput. Since NBS for biotinidase deficiency is by enzymatic assay, less than optimal quality of the DBS itself can compromise enzyme activity, while the DNA from these samples mostly remains unaffected. This assay warrants evaluation as a viable complement to the biotinidase semi-quantitative colorimetric assay. PMID:27625817

  19. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry.

    PubMed

    Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland

    2014-01-01

    The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.

  20. Evaluation of a multiplex PCR to identify and serotype Actinobacillus pleuropneumoniae serovars 1, 5, 7, 12 and 15.

    PubMed

    Turni, C; Singh, R; Schembri, M A; Blackall, P J

    2014-10-01

    The aim of this study was to validate a multiplex PCR for the species identification and serotyping of Actinobacillus pleuropneumoniae serovars 1, 5, 7, 12 and 15. All 15 reference strains and 411 field isolates (394 from Australia, 11 from Indonesia, five from Mexico and one from New Zealand) of A. pleuropneumoniae were tested with the multiplex PCR. The specificity of this multiplex PCR was validated on 26 non-A. pleuropneumoniae species. The multiplex PCR gave the expected results with all 15 serovar reference strains and agreed with conventional serotyping for all field isolates from serovars 1 (n = 46), 5 (n = 81), 7 (n = 80), 12 (n = 16) and serovar 15 (n = 117). In addition, a species-specific product was amplified in the multiplex PCR with all 411 A. pleuropneumoniae field isolates. Of 25 nontypeable field isolates only two did not yield a serovar-specific band in the multiplex PCR. This multiplex PCR for serovars 1, 5, 7, 12 and 15 is species specific and capable of serotyping isolates from diverse locations. Significance and impact of the study: A multiplex PCR that can recognize serovars 1, 5, 7, 12 and 15 of A. pleuropneumoniae was developed and validated. This novel diagnostic tool will enable frontline laboratories to provide key information (the serovar) to guide targeted prevention and control programmes for porcine pleuropneumonia, a serious economic disease of pigs. The previous technology, traditional serotyping, is typically provided by specialized reference laboratories, limiting the capacity to respond to this key disease. © 2014 The Society for Applied Microbiology.

  1. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  2. Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices

    DOE PAGES

    Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.; ...

    2016-09-23

    Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less

  3. Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.

    Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less

  4. Methods for Multiplex Template Sampling in Digital PCR Assays

    PubMed Central

    Petriv, Oleh I.; Heyries, Kevin A.; VanInsberghe, Michael; Walker, David; Hansen, Carl L.

    2014-01-01

    The efficient use of digital PCR (dPCR) for precision copy number analysis requires high concentrations of target molecules that may be difficult or impossible to obtain from clinical samples. To solve this problem we present a strategy, called Multiplex Template Sampling (MTS), that effectively increases template concentrations by detecting multiple regions of fragmented target molecules. Three alternative assay approaches are presented for implementing MTS analysis of chromosome 21, providing a 10-fold concentration enhancement while preserving assay precision. PMID:24854517

  5. Methods for multiplex template sampling in digital PCR assays.

    PubMed

    Petriv, Oleh I; Heyries, Kevin A; VanInsberghe, Michael; Walker, David; Hansen, Carl L

    2014-01-01

    The efficient use of digital PCR (dPCR) for precision copy number analysis requires high concentrations of target molecules that may be difficult or impossible to obtain from clinical samples. To solve this problem we present a strategy, called Multiplex Template Sampling (MTS), that effectively increases template concentrations by detecting multiple regions of fragmented target molecules. Three alternative assay approaches are presented for implementing MTS analysis of chromosome 21, providing a 10-fold concentration enhancement while preserving assay precision.

  6. Hydrogel microstructure live-cell array for multiplexed analyses of cancer stem cells, tumor heterogeneity and differential drug response at single-element resolution.

    PubMed

    Afrimzon, E; Botchkina, G; Zurgil, N; Shafran, Y; Sobolev, M; Moshkov, S; Ravid-Hermesh, O; Ojima, I; Deutsch, M

    2016-03-21

    Specific phenotypic subpopulations of cancer stem cells (CSCs) are responsible for tumor development, production of heterogeneous differentiated tumor mass, metastasis, and resistance to therapies. The development of therapeutic approaches based on targeting rare CSCs has been limited partially due to the lack of appropriate experimental models and measurement approaches. The current study presents new tools and methodologies based on a hydrogel microstructure array (HMA) for identification and multiplex analyses of CSCs. Low-melt agarose integrated with type I collagen, a major component of the extracellular matrix (ECM), was used to form a solid hydrogel array with natural non-adhesive characteristics and high optical quality. The array contained thousands of individual pyramidal shaped, nanoliter-volume micro-chambers (MCs), allowing concomitant generation and measurement of large populations of free-floating CSC spheroids from single cells, each in an individual micro-chamber (MC). The optical live cell platform, based on an imaging plate patterned with HMA, was validated using CSC-enriched prostate and colon cancer cell lines. The HMA methodology and quantitative image analysis at single-element resolution clearly demonstrates several levels of tumor cell heterogeneity, including morphological and phenotypic variability, differences in proliferation capacity and in drug response. Moreover, the system facilitates real-time examination of single stem cell (SC) fate, as well as drug-induced alteration in expression of stemness markers. The technology may be applicable in personalized cancer treatment, including multiplex ex vivo analysis of heterogeneous patient-derived tumor specimens, precise detection and characterization of potentially dangerous cell phenotypes, and for representative evaluation of drug sensitivity of CSCs and other types of tumor cells.

  7. High-Resolution Melting Analysis as a Powerful Tool to Discriminate and Genotype Pseudomonas savastanoi Pathovars and Strains

    PubMed Central

    Gori, Andrea; Cerboneschi, Matteo; Tegli, Stefania

    2012-01-01

    Pseudomonas savastanoi is a serious pathogen of Olive, Oleander, Ash, and several other Oleaceae. Its epiphytic or endophytic presence in asymptomatic plants is crucial for the spread of Olive and Oleander knot disease, as already ascertained for P. savastanoi pv. savastanoi (Psv) on Olive and for pv. nerii (Psn) on Oleander, while no information is available for pv. fraxini (Psf) on Ash. Nothing is known yet about the distribution on the different host plants and the real host range of these pathovars in nature, although cross-infections were observed following artificial inoculations. A multiplex Real-Time PCR assay was recently developed to simultaneously and quantitatively discriminate in vitro and in planta these P. savastanoi pathovars, for routine culture confirmation and for epidemiological and diagnostical studies. Here an innovative High-Resolution Melting Analysis (HRMA)-based assay was set up to unequivocally discriminate Psv, Psn and Psf, according to several single nucleotide polymorphisms found in their Type Three Secretion System clusters. The genetic distances among 56 P. savastanoi strains belonging to these pathovars were also evaluated, confirming and refining data previously obtained by fAFLP. To our knowledge, this is the first time that HRMA is applied to a bacterial plant pathogen, and one of the few multiplex HRMA-based assays developed so far. This protocol provides a rapid, sensitive, specific tool to differentiate and detect Psv, Psn and Psf strains, also in vivo and against other related bacteria, with lower costs than conventional multiplex Real-Time PCR. Its application is particularly suitable for sanitary certification programs for P. savastanoi, aimed at avoiding the spreading of this phytopathogen through asymptomatic plants. PMID:22295075

  8. Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.

    PubMed

    Capmany, José

    2009-04-13

    We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.

  9. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers

    PubMed Central

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C.; Chorianopoulos, Nikos

    2015-01-01

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry. PMID:26506345

  10. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers.

    PubMed

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C; Chorianopoulos, Nikos

    2015-10-22

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry.

  11. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    PubMed

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  12. Development and validation of a multiplex real-time PCR method to simultaneously detect 47 targets for the identification of genetically modified organisms.

    PubMed

    Cottenet, Geoffrey; Blancpain, Carine; Sonnard, Véronique; Chuah, Poh Fong

    2013-08-01

    Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers' perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.

  13. Approaches to genotyping individual miracidia of Schistosoma japonicum.

    PubMed

    Xiao, Ning; Remais, Justin V; Brindley, Paul J; Qiu, Dong-Chuan; Carlton, Elizabeth J; Li, Rong-Zhi; Lei, Yang; Blair, David

    2013-12-01

    Molecular genetic tools are needed to address questions as to the source and dynamics of transmission of the human blood fluke Schistosoma japonicum in regions where human infections have reemerged, and to characterize infrapopulations in individual hosts. The life stage that interests us as a target for collecting genotypic data is the miracidium, a very small larval stage that consequently yields very little DNA for analysis. Here, we report the successful development of a multiplex format permitting genotyping of 17 microsatellite loci in four sequential multiplex reactions using a single miracidium held on a Whatman Classic FTA indicating card. This approach was successful after short storage periods, but after long storage (>4 years), considerable difficulty was encountered in multiplex genotyping, necessitating the use of whole genome amplification (WGA) methods. WGA applied to cards stored for long periods of time resulted in sufficient DNA for accurate and repeatable genotyping. Trials and tests of these methods, as well as application to some field-collected samples, are reported, along with the discussion of the potential insights to be gained from such techniques. These include recognition of sibships among miracidia from a single host, and inference of the minimum number of worm pairs that might be present in a host.

  14. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs

    PubMed Central

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina

    2008-01-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  15. Statistical approaches to developing a multiplex immunoassay for determining human exposure to environmental pathogens.

    EPA Science Inventory

    This paper describes the application and method performance parameters of a Luminex xMAP™ bead-based, multiplex immunoassay for measuring specific antibody responses in saliva samples (n=5438) to antigens of six common waterborne pathogens (Campylobacter jejuni, Helicobacter pylo...

  16. Microwave SQUID Multiplexing of Metallic Magnetic Calorimeters: Status of Multiplexer Performance and Room-Temperature Readout Electronics Development

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Karcher, N.; Krömer, O.; Richter, D.; Ahrens, F.; Sander, O.; Kempf, S.; Weber, M.; Enss, C.

    2018-02-01

    To our present best knowledge, microwave SQUID multiplexing (μ MUXing) is the most suitable technique for reading out large-scale low-temperature microcalorimeter arrays that consist of hundreds or thousands of individual pixels which require a large readout bandwidth per pixel. For this reason, the present readout strategy for metallic magnetic calorimeter (MMC) arrays combining an intrinsic fast signal rise time, an excellent energy resolution, a large energy dynamic range, a quantum efficiency close to 100% as well as a highly linear detector response is based on μ MUXing. Within this paper, we summarize the state of the art in MMC μ MUXing and discuss the most recent results. This particularly includes the discussion of the performance of a 64-pixel detector array with integrated, on-chip microwave SQUID multiplexer, the progress in flux ramp modulation of MMCs as well as the status of the development of a software-defined radio-based room-temperature electronics which is specifically optimized for MMC readout.

  17. Simultaneous Detection of Four Foodborne Viruses in Food Samples Using a One-Step Multiplex Reverse Transcription PCR.

    PubMed

    Lee, Shin-Young; Kim, Mi-Ju; Kim, Hyun-Joong; Jeong, KwangCheol Casey; Kim, Hae-Yeong

    2018-02-28

    A one-step multiplex reverse transcription PCR (RT-PCR) method comprising six primer sets (for the detection of norovirus GI and GII, hepatitis A virus, rotavirus, and astrovirus) was developed to simultaneously detect four kinds of pathogenic viruses. The size of the PCR products for norovirus GI and GII, hepatitis A virus (VP3/VP1 and P2A regions), rotavirus, and astrovirus were 330, 164, 244, 198, 629, and 449 bp, respectively. The RT-PCR with the six primer sets showed specificity for the pathogenic viruses. The detection limit of the developed multiplex RT-PCR, as evaluated using serially diluted viral RNAs, was comparable to that of one-step single RT-PCR. Moreover, this multiplex RT-PCR was evaluated using food samples such as water, oysters, lettuce, and vegetable product. These food samples were artificially spiked with the four kinds of viruses in diverse combinations, and the spiked viruses in all food samples were detected successfully.

  18. Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.

    PubMed

    Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt

    2016-08-16

    Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.

  19. Multiplexed Molecular Diagnostics for Respiratory, Gastrointestinal, and Central Nervous System Infections.

    PubMed

    Hanson, Kimberly E; Couturier, Marc Roger

    2016-11-15

    The development and implementation of highly multiplexed molecular diagnostic tests have allowed clinical microbiology laboratories to more rapidly and sensitively detect a variety of pathogens directly in clinical specimens. Current US Food and Drug Administration-approved multiplex panels target multiple different organisms simultaneously and can identify the most common pathogens implicated in respiratory viral, gastrointestinal, or central nervous system infections. This review summarizes the test characteristics of available assays, highlights the advantages and limitations of multiplex technology for infectious diseases, and discusses potential utilization of these new tests in clinical practice. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  20. Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.

    PubMed

    Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2014-08-01

    The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.

  1. Multi-Channel Hyperspectral Fluorescence Detection Excited by Coupled Plasmon-Waveguide Resonance

    PubMed Central

    Du, Chan; Liu, Le; Zhang, Lin; Guo, Jun; Guo, Jihua; Ma, Hui; He, Yonghong

    2013-01-01

    We propose in this paper a biosensor scheme based on coupled plasmon-waveguide resonance (CPWR) excited fluorescence spectroscopy. A symmetrical structure that offers higher surface electric field strengths, longer surface propagation lengths and depths is developed to support guided waveguide modes for the efficient excitation of fluorescence. The optimal parameters for the sensor films are theoretically and experimentally investigated, leading to a detection limit of 0.1 nM (for a Cy5 solution). Multiplex analysis possible with the fluorescence detection is further advanced by employing the hyperspectral fluorescence technique to record the full spectra for every pixel on the sample plane. We demonstrate experimentally that highly overlapping fluorescence (Cy5 and Dylight680) can be distinguished and ratios of different emission sources can be determined accurately. This biosensor shows great potential for multiplex detections of fluorescence analytes. PMID:24129023

  2. Development of Internal Controls for the Luminex Instrument as Part of a Multiplex Seven-Analyte Viral Respiratory Antibody Profile

    PubMed Central

    Martins, Thomas B.

    2002-01-01

    The ability of the Luminex system to simultaneously quantitate multiple analytes from a single sample source has proven to be a feasible and cost-effective technology for assay development. In previous studies, my colleagues and I introduced two multiplex profiles consisting of 20 individual assays into the clinical laboratory. With the Luminex instrument’s ability to classify up to 100 distinct microspheres, however, we have only begun to realize the enormous potential of this technology. By utilizing additional microspheres, it is now possible to add true internal controls to each individual sample. During the development of a seven-analyte serologic viral respiratory antibody profile, internal controls for detecting sample addition and interfering rheumatoid factor (RF) were investigated. To determine if the correct sample was added, distinct microspheres were developed for measuring the presence of sufficient quantities of immunoglobulin G (IgG) or IgM in the diluted patient sample. In a multiplex assay of 82 samples, the IgM verification control correctly identified 23 out of 23 samples with low levels (<20 mg/dl) of this antibody isotype. An internal control microsphere for RF detected 30 out of 30 samples with significant levels (>10 IU/ml) of IgM RF. Additionally, RF-positive samples causing false-positive adenovirus and influenza A virus IgM results were correctly identified. By exploiting the Luminex instrument’s multiplexing capabilities, I have developed true internal controls to ensure correct sample addition and identify interfering RF as part of a respiratory viral serologic profile that includes influenza A and B viruses, adenovirus, parainfluenza viruses 1, 2, and 3, and respiratory syncytial virus. Since these controls are not assay specific, they can be incorporated into any serologic multiplex assay. PMID:11777827

  3. Development of internal controls for the Luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile.

    PubMed

    Martins, Thomas B

    2002-01-01

    The ability of the Luminex system to simultaneously quantitate multiple analytes from a single sample source has proven to be a feasible and cost-effective technology for assay development. In previous studies, my colleagues and I introduced two multiplex profiles consisting of 20 individual assays into the clinical laboratory. With the Luminex instrument's ability to classify up to 100 distinct microspheres, however, we have only begun to realize the enormous potential of this technology. By utilizing additional microspheres, it is now possible to add true internal controls to each individual sample. During the development of a seven-analyte serologic viral respiratory antibody profile, internal controls for detecting sample addition and interfering rheumatoid factor (RF) were investigated. To determine if the correct sample was added, distinct microspheres were developed for measuring the presence of sufficient quantities of immunoglobulin G (IgG) or IgM in the diluted patient sample. In a multiplex assay of 82 samples, the IgM verification control correctly identified 23 out of 23 samples with low levels (<20 mg/dl) of this antibody isotype. An internal control microsphere for RF detected 30 out of 30 samples with significant levels (>10 IU/ml) of IgM RF. Additionally, RF-positive samples causing false-positive adenovirus and influenza A virus IgM results were correctly identified. By exploiting the Luminex instrument's multiplexing capabilities, I have developed true internal controls to ensure correct sample addition and identify interfering RF as part of a respiratory viral serologic profile that includes influenza A and B viruses, adenovirus, parainfluenza viruses 1, 2, and 3, and respiratory syncytial virus. Since these controls are not assay specific, they can be incorporated into any serologic multiplex assay.

  4. Prevalence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using multiplex polymerase chain reaction

    PubMed Central

    Latha, C.; Anu, C. J.; Ajaykumar, V. J.; Sunil, B.

    2017-01-01

    Aim: The objective of the study was to investigate the occurrence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using the multiplex polymerase chain reaction (PCR) method. Materials and Methods: The assay combined an enrichment step in tryptic soy broth with yeast extract formulated for the simultaneous growth of target pathogens, DNA isolation and multiplex PCR. A total of 1134 samples including beef (n=349), chicken (n=325), pork (n=310), chevon (n=50), and meat products (n=100) were collected from different parts of Kerala, India. All the samples were subjected to multiplex PCR analysis and culture-based detection for the four pathogens in parallel. Results: Overall occurrence of L. monocytogenes was 0.08 % by cultural method. However, no L. monocytogenes was obtained by multiplex PCR method. Yersinia enterocolitica was obtained from beef and pork samples. A high prevalence of S. aureus (46.7%) was found in all types of meat samples tested. None of the samples was positive for S. Typhimurium. Conclusion: Multiplex PCR assay used in this study can detect more than one pathogen simultaneously by amplifying more than one target gene in a single reaction, which can save time and labor cost. PMID:28919685

  5. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K.; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629

  6. Genotyping of Toxoplasma gondii isolates with 15 microsatellite markers in a single multiplex PCR assay.

    PubMed

    Ajzenberg, Daniel; Collinet, Frédéric; Mercier, Aurélien; Vignoles, Philippe; Dardé, Marie-Laure

    2010-12-01

    We developed an easy-to-use method for genotyping Toxoplasma gondii isolates in a single multiplex PCR assay with 15 microsatellite markers. This method was validated by testing 26 reference isolates that had been characterized with other sets of markers.

  7. Multiplex PCR for the detection and differentiation of Vibrio parahaemolyticus strains using the groEL, tdh and trh genes.

    PubMed

    Hossain, Muhammad Tofazzal; Kim, Young-Ok; Kong, In-Soo

    2013-01-01

    Vibrio parahaemolyticus is a significant cause of human gastrointestinal disorders worldwide, transmitted primarily by ingestion of raw or undercooked contaminated seafood. In this study, a multiplex PCR assay for the detection and differentiation of V. parahaemolyticus strains was developed using primer sets for a species-specific marker, groEL, and two virulence markers, tdh and trh. Multiplex PCR conditions were standardised, and extracted genomic DNA of 70 V. parahaemolyticus strains was used for identification. The sensitivity and efficacy of this method were validated using artificially inoculated shellfish and seawater. The expected sizes of amplicons were 510 bp, 382 bp, and 171 bp for groEL, tdh and trh, respectively. PCR products were sufficiently different in size, and the detection limits of the multiplex PCR for groEL, tdh and trh were each 200 pg DNA. Specific detection and differentiation of virulent from non-virulent strains in shellfish homogenates and seawater was also possible after artificial inoculation with various V. parahaemolyticus strains. This newly developed multiplex PCR is a rapid assay for detection and differentiation of pathogenic V. parahaemolyticus strains, and could be used to prevent disease outbreaks and protect public health by helping the seafood industry maintain a safe shellfish supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Characterization of highly multiplexed monolithic PET / gamma camera detector modules.

    PubMed

    Pierce, L A; Pedemonte, S; DeWitt, D; MacDonald, L; Hunter, W C J; Van Leemput, K; Miyaoka, R

    2018-03-29

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A [Formula: see text] mm 3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with [Formula: see text] position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer-Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  9. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

    PubMed Central

    Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.

    2015-01-01

    Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438

  10. State-of-the-art survey of multimode fiber optic wavelength division multiplexing

    NASA Astrophysics Data System (ADS)

    Spencer, J. L.

    1983-05-01

    Optical wavelength division multiplexing (WDM) systems, with signals transmitted on different wavelengths through a single fiber, can have increased information capacity and fault isolation properties over single wavelength optical systems. This paper describes a typical WDM system. Also, a state-of-the-art survey of optical multimode components which could be used to implement the system is made. The components to be surveyed are sources, multiplexers, and detectors. Emphasis is given to the demultiplexer techniques which are the major development components in the WDM system.

  11. Multiplex polymerase chain reaction assay for the detection of minute virus of mice and mouse parvovirus infections in laboratory mice.

    PubMed

    Wang, K W; Chueh, L L; Wang, M H; Huang, Y T; Fang, B H; Chang, C Y; Fang, M C; Chou, J Y; Hsieh, S C; Wan, C H

    2013-04-01

    Mouse parvoviruses are among the most prevalent infectious pathogens in contemporary mouse colonies. To improve the efficiency of routine screening for mouse parvovirus infections, a multiplex polymerase chain reaction (PCR) assay targeting the VP gene was developed. The assay detected minute virus of mice (MVM), mouse parvovirus (MPV) and a mouse housekeeping gene (α-actin) and was able to specifically detect MVM and MPV at levels as low as 50 copies. Co-infection with the two viruses with up to 200-fold differences in viral concentrations can easily be detected. The multiplex PCR assay developed here could be a useful tool for monitoring mouse health and the viral contamination of biological materials.

  12. Security analysis of orthogonal-frequency-division-multiplexing-based continuous-variable quantum key distribution with imperfect modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Mao, Yu; Huang, Duan; Li, Jiawei; Zhang, Ling; Guo, Ying

    2018-05-01

    We introduce a reliable scheme for continuous-variable quantum key distribution (CV-QKD) by using orthogonal frequency division multiplexing (OFDM). As a spectrally efficient multiplexing technique, OFDM allows a large number of closely spaced orthogonal subcarrier signals used to carry data on several parallel data streams or channels. We place emphasis on modulator impairments which would inevitably arise in the OFDM system and analyze how these impairments affect the OFDM-based CV-QKD system. Moreover, we also evaluate the security in the asymptotic limit and the Pirandola-Laurenza-Ottaviani-Banchi upper bound. Results indicate that although the emergence of imperfect modulation would bring about a slight decrease in the secret key bit rate of each subcarrier, the multiplexing technique combined with CV-QKD results in a desirable improvement on the total secret key bit rate which can raise the numerical value about an order of magnitude.

  13. Fluorescent microarray for multiplexed quantification of environmental contaminants in seawater samples

    USDA-ARS?s Scientific Manuscript database

    The development of a fluorescent multiplexed microarray platform able to detect and quantify a wide variety of pollutants in seawater is reported. The microarray platform has been manufactured by spotting 6 different bioconjugate competitors and it uses a cocktail of 6 monoclonal and polyclonal anti...

  14. A multiplex PCR for detection of Listeria monocytogenes and its lineages.

    PubMed

    Rawool, Deepak B; Doijad, Swapnil P; Poharkar, Krupali V; Negi, Mamta; Kale, Satyajit B; Malik, S V S; Kurkure, Nitin V; Chakraborty, Trinad; Barbuddhe, Sukhadeo B

    2016-11-01

    A novel multiplex PCR assay was developed to identify genus Listeria, and discriminate Listeria monocytogenes and its major lineages (LI, LII, LIII). This assay is a rapid and inexpensive subtyping method for screening and characterization of L. monocytogenes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Kneallhazia (=Thelohania) Solenopsae infection rate of Pseudacteon Curvatus flies determined by multiplex PCR

    USDA-ARS?s Scientific Manuscript database

    A multiplex PCR method was developed and utilized to determine the Kneallhazia solenopsae infection rate of individual Pseudacteon curvatus flies in north-central Florida. Among P. curvatus flies infected with K. solenopsae, two amplicons were produced, one of 800 nucleotides from the P. curvatus 1...

  16. Multi-Wavelength Mode-Locked Laser Arrays for WDM Applications

    NASA Technical Reports Server (NTRS)

    Davis, L.; Young, M.; Dougherty, D.; Keo, S.; Muller, R.; Maker, P.

    1998-01-01

    Multi-wavelength arrays of colliding pulse mode-locked (CPM) lasers have been demonstrated for wavelength division multiplexing (WDM) applications. The need for increased bandwidth is driving the development of both increased speed in time division multiplexing (TDM) and more channels in WDM for fiber optic communication systems.

  17. Genotyping of Toxoplasma gondii Isolates with 15 Microsatellite Markers in a Single Multiplex PCR Assay ▿

    PubMed Central

    Ajzenberg, Daniel; Collinet, Frédéric; Mercier, Aurélien; Vignoles, Philippe; Dardé, Marie-Laure

    2010-01-01

    We developed an easy-to-use method for genotyping Toxoplasma gondii isolates in a single multiplex PCR assay with 15 microsatellite markers. This method was validated by testing 26 reference isolates that had been characterized with other sets of markers. PMID:20881166

  18. Multiplex immunoassay for persistent organic pollutants in tilapia: Comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres

    USDA-ARS?s Scientific Manuscript database

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays required a flow cytometer with sophisticated fluidics and optics. The new imaging superparamagnetic SEMs-based platform transports SEMs with considerably ...

  19. Simultaneous Measurements of Auto-Immune and Infectious Disease Specific Antibodies Using a High Throughput Multiplexing Tool

    PubMed Central

    Asati, Atul; Kachurina, Olga; Kachurin, Anatoly

    2012-01-01

    Considering importance of ganglioside antibodies as biomarkers in various immune-mediated neuropathies and neurological disorders, we developed a high throughput multiplexing tool for the assessment of gangliosides-specific antibodies based on Biolpex/Luminex platform. In this report, we demonstrate that the ganglioside high throughput multiplexing tool is robust, highly specific and demonstrating ∼100-fold higher concentration sensitivity for IgG detection than ELISA. In addition to the ganglioside-coated array, the high throughput multiplexing tool contains beads coated with influenza hemagglutinins derived from H1N1 A/Brisbane/59/07 and H1N1 A/California/07/09 strains. Influenza beads provided an added advantage of simultaneous detection of ganglioside- and influenza-specific antibodies, a capacity important for the assay of both infectious antigen-specific and autoimmune antibodies following vaccination or disease. Taken together, these results support the potential adoption of the ganglioside high throughput multiplexing tool for measuring ganglioside antibodies in various neuropathic and neurological disorders. PMID:22952605

  20. ddPCRclust - An R package and Shiny app for automated analysis of multiplexed ddPCR data.

    PubMed

    Brink, Benedikt G; Meskas, Justin; Brinkman, Ryan R

    2018-03-09

    Droplet digital PCR (ddPCR) is an emerging technology for quantifying DNA. By partitioning the target DNA into ∼20000 droplets, each serving as its own PCR reaction compartment, a very high sensitivity of DNA quantification can be achieved. However, manual analysis of the data is time consuming and algorithms for automated analysis of non-orthogonal, multiplexed ddPCR data are unavailable, presenting a major bottleneck for the advancement of ddPCR transitioning from low-throughput to high- throughput. ddPCRclust is an R package for automated analysis of data from Bio-Rad's droplet digital PCR systems (QX100 and QX200). It can automatically analyse and visualise multiplexed ddPCR experiments with up to four targets per reaction. Results are on par with manual analysis, but only take minutes to compute instead of hours. The accompanying Shiny app ddPCRvis provides easy access to the functionalities of ddPCRclust through a web-browser based GUI. R package: https://github.com/bgbrink/ddPCRclust; Interface: https://github.com/bgbrink/ddPCRvis/; Web: https://bibiserv.cebitec.uni-bielefeld.de/ddPCRvis/. bbrink@cebitec.uni-bielefeld.de.

  1. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  2. An integrated passive micromixer-magnetic separation-capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level.

    PubMed

    Jung, Jae Hwan; Kim, Gha-Young; Seo, Tae Seok

    2011-10-21

    Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (∼10(4)) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  3. [Application of multiplex rt-PCR assay for screening rare or cryptic chromosome translocations in de novo patients with acute myeloid leukemia].

    PubMed

    Chen, Hai-Min; Yuan, Hai-Yang; Fan, Xing; He, Hai-Yan; Chen, Bing; Shi, Jing-Yi; Zhu, Yong-Mei

    2010-10-01

    This study was aimed to investigate the clinical feasibility of using multiplex PT-PCR assay for screening rare/cryptic chromosome translocations in patients with de novo acute myeloid leukemia. For 126 patients with de novo AML-M4/M5 without common chromosome translocations including t(15;17), t(8;21) and t(16;16), 3 parallel multiplex RT-PCR assays were set up to detect 6 mll-related gene rearrangements (mll/af10, mll/af17, mll/ell, mll/af9, mll/af6 and mll/enl) with low detection rate and 4 rare fusion genes (dek/can, tls/erg, aml1/mds (evi1) and npm/mlf1). The results showed that 11 patients with positive result from 126 patients were detected which involved in 5 molecular abnormalities. Among them, 10 cases were AML-M5 (16.67%), 1 cases AML-M4 (1.51%). The marker chromosomes were observed in 2 cases out of 11 cases through conventional karyotyping analysis, the karyotyping analysis in 1 case was not performed because this case had 1 mitotic figure only, no any cytogenetic aberrations were found in other 8 cases through R-band karyotyping analysis. It is concluded that multiplex RT-PCR designed in this study can quickly, effectively and accurately identify the rare/cryptic chromosome translocations and can be used in clinical detection.

  4. Accurate Quantification of Cardiovascular Biomarkers in Serum Using Protein Standard Absolute Quantification (PSAQ™) and Selected Reaction Monitoring*

    PubMed Central

    Huillet, Céline; Adrait, Annie; Lebert, Dorothée; Picard, Guillaume; Trauchessec, Mathieu; Louwagie, Mathilde; Dupuis, Alain; Hittinger, Luc; Ghaleh, Bijan; Le Corvoisier, Philippe; Jaquinod, Michel; Garin, Jérôme; Bruley, Christophe; Brun, Virginie

    2012-01-01

    Development of new biomarkers needs to be significantly accelerated to improve diagnostic, prognostic, and toxicity monitoring as well as therapeutic follow-up. Biomarker evaluation is the main bottleneck in this development process. Selected Reaction Monitoring (SRM) combined with stable isotope dilution has emerged as a promising option to speed this step, particularly because of its multiplexing capacities. However, analytical variabilities because of upstream sample handling or incomplete trypsin digestion still need to be resolved. In 2007, we developed the PSAQ™ method (Protein Standard Absolute Quantification), which uses full-length isotope-labeled protein standards to quantify target proteins. In the present study we used clinically validated cardiovascular biomarkers (LDH-B, CKMB, myoglobin, and troponin I) to demonstrate that the combination of PSAQ and SRM (PSAQ-SRM) allows highly accurate biomarker quantification in serum samples. A multiplex PSAQ-SRM assay was used to quantify these biomarkers in clinical samples from myocardial infarction patients. Good correlation between PSAQ-SRM and ELISA assay results was found and demonstrated the consistency between these analytical approaches. Thus, PSAQ-SRM has the capacity to improve both accuracy and reproducibility in protein analysis. This will be a major contribution to efficient biomarker development strategies. PMID:22080464

  5. Developments of Highly Multiplexed, Multi-chroic Pixels for Balloon-Borne Platforms

    NASA Astrophysics Data System (ADS)

    Aubin, F.; Hanany, S.; Johnson, B. R.; Lee, A.; Suzuki, A.; Westbrook, B.; Young, K.

    2018-02-01

    We present our work to develop and characterize low thermal conductance bolometers that are part of sinuous antenna multi-chroic pixels (SAMP). We use longer, thinner and meandered bolometer legs to achieve 9 pW/K thermal conductance bolometers. We also discuss the development of inductor-capacitor chips operated at 4 K to extend the multiplexing factor of the frequency domain multiplexing to 105, an increase of 60% compared to the factor currently demonstrated for this readout system. This technology development is motivated by EBEX-IDS, a balloon-borne polarimeter designed to characterize the polarization of foregrounds and to detect the primordial gravity waves through their B-mode signature on the polarization of the cosmic microwave background. EBEX-IDS will operate 20,562 transition edge sensor bolometers spread over 7 frequency bands between 150 and 360 GHz. Balloon and satellite platforms enable observations at frequencies inaccessible from the ground and with higher instantaneous sensitivity. This development improves the readiness of the SAMP and frequency domain readout technologies for future satellite applications.

  6. Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses

    PubMed Central

    Chan, Jasper Fuk-Woo; Choi, Garnet Kwan-Yue; Tsang, Alan Ka-Lun; Tee, Kah-Meng; Lam, Ho-Yin; Yip, Cyril Chik-Yan; To, Kelvin Kai-Wang; Cheng, Vincent Chi-Chung; Yeung, Man-Lung; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Chan, Kwok-Hung; Tang, Bone Siu-Fai

    2015-01-01

    Based on findings in small RNA-sequencing (Seq) data analysis, we developed highly sensitive and specific real-time reverse transcription (RT)-PCR assays with locked nucleic acid probes targeting the abundantly expressed leader sequences of Middle East respiratory syndrome coronavirus (MERS-CoV) and other human coronaviruses. Analytical and clinical evaluations showed their noninferiority to a commercial multiplex PCR test for the detection of these coronaviruses. PMID:26019210

  7. Multiplex transcriptional analysis of paraffin-embedded liver needle biopsy from patients with liver fibrosis

    PubMed Central

    2012-01-01

    Background The possibility of extracting RNA and measuring RNA expression from paraffin sections can allow extensive investigations on stored paraffin samples obtained from diseased livers and could help with studies of the natural history of liver fibrosis and inflammation, and in particular, correlate basic mechanisms to clinical outcomes. Results To address this issue, a pilot study of multiplex gene expression using branched-chain DNA technology was conducted to directly measure mRNA expression in formalin-fixed paraffin-embedded needle biopsy samples of human liver. Twenty-five genes were selected for evaluation based on evidence obtained from human fibrotic liver, a rat BDL model and in vitro cultures of immortalized human hepatic stellate cells. The expression levels of these 25 genes were then correlated with liver fibrosis and inflammation activity scores. Statistical analysis revealed that three genes (COL3A1, KRT18, and TUBB) could separate fibrotic from non-fibrotic samples and that the expression of ten genes (ANXA2, TIMP1, CTGF, COL4A1, KRT18, COL1A1, COL3A1, ACTA2, TGFB1, LOXL2) were positively correlated with the level of liver inflammation activity. Conclusion This is the first report describing this multiplex technique for liver fibrosis and has provided the proof of concept of the suitability of RNA extracted from paraffin sections for investigating the modulation of a panel of proinflammatory and profibrogenic genes. This pilot study suggests that this technique will allow extensive investigations on paraffin samples from diseased livers and possibly from any other tissue. Using identical or other genes, this multiplex expression technique could be applied to samples obtained from extensive patient cohorts with stored paraffin samples in order to correlate gene expression with valuable clinically relevant information. This method could be used to provide a better understanding of the mechanisms of liver fibrosis and inflammation, its progression, and help development of new therapeutic approaches for this indication. PMID:23270325

  8. Highly efficient volume hologram multiplexing in thick dye-doped jelly-like gelatin.

    PubMed

    Katarkevich, Vasili M; Rubinov, Anatoli N; Efendiev, Terlan Sh

    2014-08-01

    Dye-doped jelly-like gelatin is a thick-layer self-developing photosensitive medium that allows single and multiplexed volume phase holograms to be successfully recorded using pulsed laser radiation. In this Letter, we present a method for multiplexed recording of volume holograms in a dye-doped jelly-like gelatin, which provides significant increase in their diffraction efficiency. The method is based on the recovery of the photobleached dye molecule concentration in the hologram recording zone of gel, thanks to molecule diffusion from other unexposed gel areas. As an example, an optical recording of a multiplexed hologram consisting of three superimposed Bragg gratings with mean values of the diffraction efficiency and angular selectivity of ∼75% and ∼21', respectively, is demonstrated by using the proposed method.

  9. Simultaneous detection of eight avian influenza A virus subtypes by multiplex reverse transcription-PCR using a GeXP analyser.

    PubMed

    Li, Meng; Xie, Zhixun; Xie, Zhiqin; Liu, Jiabo; Xie, Liji; Deng, Xianwen; Luo, Sisi; Fan, Qing; Huang, Li; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Wang, Sheng

    2018-04-18

    Recent studies have demonstrated that at least eight subtypes of avian influenza virus (AIV) can infect humans, including H1, H2, H3, H5, H6, H7, H9 and H10. A GeXP analyser-based multiplex reverse transcription (RT)-PCR (GeXP-multiplex RT-PCR) assay was developed in our recent studies to simultaneously detect these eight AIV subtypes using the haemagglutinin (HA) gene. The assay consists of chimeric primer-based PCR amplification with fluorescent labelling and capillary electrophoresis separation. RNA was extracted from chick embryo allantoic fluid or liquid cultures of viral isolates. In addition, RNA synthesised via in vitro transcription was used to determine the specificity and sensitivity of the assay. After selecting the primer pairs, their concentrations and GeXP-multiplex RT-PCR conditions were optimised. The established GeXP-multiplex RT-PCR assay can detect as few as 100 copies of premixed RNA templates. In the present study, 120 clinical specimens collected from domestic poultry at live bird markets and from wild birds were used to evaluate the performance of the assay. The GeXP-multiplex RT-PCR assay specificity was the same as that of conventional RT-PCR. Thus, the GeXP-multiplex RT-PCR assay is a rapid and relatively high-throughput method for detecting and identifying eight AIV subtypes that may infect humans.

  10. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system.

    PubMed

    Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong

    2011-01-01

    Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Photocleavable DNA Barcoding Antibodies for Multiplexed Protein Analysis in Single Cells.

    PubMed

    Ullal, Adeeti V; Weissleder, Ralph

    2015-01-01

    We describe a DNA-barcoded antibody sensing technique for single cell protein analysis in which the barcodes are photocleaved and digitally detected without amplification steps (Ullal et al., Sci Transl Med 6:219, 2014). After photocleaving the unique ~70 mer DNA barcodes we use a fluorescent hybridization technology for detection, similar to what is commonly done for nucleic acid readouts. This protocol offers a simple method for multiplexed protein detection using 100+ antibodies and can be performed on clinical samples as well as single cells.

  12. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-01-01

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya. PMID:25337891

  13. Development of Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Detection of Influenza A, B and Adenoviruses

    PubMed Central

    Nakhaie, Mohsen; Soleimanjahi, Hoorieh; Mollaie, Hamid Reza; Arabzadeh, Seyed Mohamad Ali

    2018-01-01

    Background and objective: Millions of people in developing countries lose their lives due to acute respiratory infections, such as Influenza A & B and Adeno viruses. Given the importance of rapid identification of the virus, in this study the researchers attempted to design a method that enables detection of influenza A, B, and adenoviruses, quickly and simultaneously. The Multiplex RT PCR method was the preferred method for the detection of influenza A, B, and adenoviruses in clinical specimens because it is rapid, sensitive, specific, and more cost-effective than alternative methods Methods: After collecting samples from patients with respiratory disease, virus genome was extracted, then Monoplex PCR was used on positive samples and Multiplex RT-PCR on clinical specimens. Finally, by comparing the bands of these samples, the type of virus in the clinical samples was determined. Results: Performing Multiplex RT-PCR on 50 samples of respiratory tract led to following results; flu A: 12.5%, fluB: 50%, adeno: 27.5%, negative: 7.5%, and 2.5% contamination. Conclusion: Reverse transcription-multiplex Polymerase Chain Reaction (PCR) technique, a rapid diagnostic tool, has potential for high-throughput testing. This method has a significant advantage, which provides simultaneous amplification of numerous viruses in a single reaction. This study concentrates on multiplex molecular technologies and their clinical application for the detection and quantification of respiratory pathogens. The improvement in diagnostic testing for viral respiratory pathogens effects patient management, and leads to more cost-effective delivery of care. It limits unnecessary antibiotic use and improves clinical management by use of suitable treatment. PMID:29731796

  14. The SNPforID Assay as a Supplementary Method in Kinship and Trace Analysis

    PubMed Central

    Schwark, Thorsten; Meyer, Patrick; Harder, Melanie; Modrow, Jan-Hendrick; von Wurmb-Schwark, Nicole

    2012-01-01

    Objective Short tandem repeat (STR) analysis using commercial multiplex PCR kits is the method of choice for kinship testing and trace analysis. However, under certain circumstances (deficiency testing, mutations, minute DNA amounts), STRs alone may not suffice. Methods We present a 50-plex single nucleotide polymorphism (SNP) assay based on the SNPs chosen by the SNPforID consortium as an additional method for paternity and for trace analysis. The new assay was applied to selected routine paternity and trace cases from our laboratory. Results and Conclusions Our investigation shows that the new SNP multiplex assay is a valuable method to supplement STR analysis, and is a powerful means to solve complicated genetic analyses. PMID:22851934

  15. Single cell analysis using surface enhanced Raman scattering (SERS) tags

    PubMed Central

    Nolan, John P.; Duggan, Erika; Liu, Er; Condello, Danilo; Dave, Isha; Stoner, Samuel A.

    2013-01-01

    Fluorescence is a mainstay of bioanalytical methods, offering sensitive and quantitative reporting, often in multiplexed or multiparameter assays. Perhaps the best example of the latter is flow cytometry, where instruments equipped with multiple lasers and detectors allow measurement of 15 or more different fluorophores simultaneously, but increases beyond this number are limited by the relatively broad emission spectra. Surface enhanced Raman scattering (SERS) from metal nanoparticles can produce signal intensities that rival fluorescence, but with narrower spectral features that allow a greater degree of multiplexing. We are developing nanoparticle SERS tags as well as Raman flow cytometers for multiparameter single cell analysis of suspension or adherent cells. SERS tags are based on plasmonically active nanoparticles (gold nanorods) whose plasmon resonance can be tuned to give optimal SERS signals at a desired excitation wavelength. Raman resonant compounds are adsorbed on the nanoparticles to confer a unique spectral fingerprint on each SERS tag, which are then encapsulated in a polymer coating for conjugation to antibodies or other targeting molecules. Raman flow cytometry employs a high resolution spectral flow cytometer capable of measuring the complete SERS spectra, as well as conventional flow cytometry measurements, from thousands of individual cells per minute. Automated spectral unmixing algorithms extract the contributions of each SERS tag from each cell to generate high content, multiparameter single cell population data. SERS-based cytometry is a powerful complement to conventional fluorescence-based cytometry. The narrow spectral features of the SERS signal enables more distinct probes to be measured in a smaller region of the optical spectrum with a single laser and detector, allowing for higher levels of multiplexing and multiparameter analysis. PMID:22498143

  16. Evaluation of a 13-loci STR multiplex system for Cannabis sativa genetic identification.

    PubMed

    Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David

    2016-05-01

    Marijuana (Cannabis sativa) is the most commonly used illicit substance in the USA. The development of a validated method using Cannabis short tandem repeats (STRs) could aid in the individualization of samples as well as serve as an intelligence tool to link multiple cases. For this purpose, a modified 13-loci STR multiplex method was optimized and evaluated according to ISFG and SWGDAM guidelines. A real-time PCR quantification method for C. sativa was developed and validated, and a sequenced allelic ladder was also designed to accurately genotype 199 C. sativa samples from 11 U.S. Customs and Border Protection seizures. Distinguishable DNA profiles were generated from 127 samples that yielded full STR profiles. Four duplicate genotypes within seizures were found. The combined power of discrimination of this multilocus system is 1 in 70 million. The sensitivity of the multiplex STR system is 0.25 ng of template DNA. None of the 13 STR markers cross-reacted with any of the studied species, except for Humulus lupulus (hops) which generated unspecific peaks. Phylogenetic analysis and case-to-case pairwise comparison of 11 cases using F st as genetic distance revealed the genetic association of four groups of cases. Moreover, due to their genetic similarity, a subset of samples (N = 97) was found to form a homogeneous population in Hardy-Weinberg and linkage equilibrium. The results of this research demonstrate the applicability of this 13-loci STR system in associating Cannabis cases for intelligence purposes.

  17. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes

    PubMed Central

    Rebelo, Ana Rita; Bortolaia, Valeria; Kjeldgaard, Jette S; Pedersen, Susanne K; Leekitcharoenphon, Pimlapas; Hansen, Inge M; Guerra, Beatriz; Malorny, Burkhard; Borowiak, Maria; Hammerl, Jens Andre; Battisti, Antonio; Franco, Alessia; Alba, Patricia; Perrin-Guyomard, Agnes; Granier, Sophie A; De Frutos Escobar, Cristina; Malhotra-Kumar, Surbhi; Villa, Laura; Carattoli, Alessandra; Hendriksen, Rene S

    2018-01-01

    Background and aim Plasmid-mediated colistin resistance mechanisms have been identified worldwide in the past years. A multiplex polymerase chain reaction (PCR) protocol for detection of all currently known transferable colistin resistance genes (mcr-1 to mcr-5, and variants) in Enterobacteriaceae was developed for surveillance or research purposes. Methods: We designed four new primer pairs to amplify mcr-1, mcr-2, mcr-3 and mcr-4 gene products and used the originally described primers for mcr-5 to obtain a stepwise separation of ca 200 bp between amplicons. The primer pairs and amplification conditions allow for single or multiple detection of all currently described mcr genes and their variants present in Enterobacteriaceae. The protocol was validated testing 49 European Escherichia coli and Salmonella isolates of animal origin. Results: Multiplex PCR results in bovine and porcine isolates from Spain, Germany, France and Italy showed full concordance with whole genome sequence data. The method was able to detect mcr-1, mcr-3 and mcr-4 as singletons or in different combinations as they were present in the test isolates. One new mcr-4 variant, mcr-4.3, was also identified. Conclusions: This method allows rapid identification of mcr-positive bacteria and overcomes the challenges of phenotypic detection of colistin resistance. The multiplex PCR should be particularly interesting in settings or laboratories with limited resources for performing genetic analysis as it provides information on the mechanism of colistin resistance without requiring genome sequencing. PMID:29439754

  18. Resonant nanopillars as label-free optical biosensors

    NASA Astrophysics Data System (ADS)

    López-Hernandez, Ana; Casquel, Rafael; Holgado, Miguel; Cornago, Iñaki; Fernández, Fátima; Ciaurriz, Paula; Sanza, Francisco J.; Santamaría, Beatriz; Maigler, Maria V.; Laguna, María. Fe

    2018-02-01

    In recent works it has been demonstrated the suitability of using resonant nanopillars (R-NPs) as biochemical. In this work it has been shown the capability of the R-NPs to behave as label-free multiplexed biological sensors. Each R-NP is formed by silicon oxide (SiO2) and silicon nitride (Si3N4) Bragg reflectors and a central cavity of SiO2, and they are grouped into eight arrays called BICELLs, which are distributed on a single chip of quartz substrate for multiplexing measurements. For the biological sensing assessment it was developed an immunoassay on the eight single BICELLs. The biofunctionalization process was performed by a silanization protocol based on 3-aminopropyltrymethoxysilane (APTMS) and glutaradheyde (GA) as a linker between APTMS and the IgG which acted as biorreceptor for the anti-IgG recognition. In this work, there were compared two forms of immobilization: on one hand by incubating the R-NPs under static drop of 50 μg/mL and on the second hand by introducing the sensing chip in a flow cell with a continuous flow of the same concentration of IgG. The eight arrays of R-NPs or BICELLs were independently optically interrogated by a bundle of fiber connected to a spectrometer. The multiplexing analysis showed reproducibility among the BICELLs, suggesting the potentially of using R-NPs for multiplexed biosensors. Performance in the immobilization process apparently does not have a signification effect. However the election of one method or another should be a commitment between time and resources.

  19. THESEUS: A wavelength division multiplexed/microwave subcarrier multiplexed optical network, its ATM switch applications and device requirements

    NASA Astrophysics Data System (ADS)

    Xin, Wei

    1997-10-01

    A Terabit Hybrid Electro-optical /underline[Se]lf- routing Ultrafast Switch (THESEUS) has been proposed. It is a self-routing wavelength division multiplexed (WDM) / microwave subcarrier multiplexed (SCM) asynchronous transfer mode (ATM) switch for the multirate ATM networks. It has potential to be extended to a large ATM switch as 1000 x 1000 without internal blocking. Among the advantages of the hybrid implementation are flexibility in service upgrade, relaxed tolerances on optical filtering, protocol simplification and less processing overhead. For a small ATM switch, the subcarrier can be used as output buffers to solve output contention. A mathematical analysis was conducted to evaluate different buffer configurations. A testbed has been successfully constructed. Multirate binary data streams have been switched through the testbed and error free reception ([<]10-9 bit error rate) has been achieved. A simple, intuitive theoretical model has been developed to describe the heterodyne optical beat interference. A new concept of interference time and interference length has been introduced. An experimental confirmation has been conducted. The experimental results match the model very well. It shows that a large portion of optical bandwidth is wasted due to the beat interference. Based on the model, several improvement approaches have been proposed. The photo-generated carrier lifetime of silicon germanium has been measured using time-resolved reflectivity measurement. Via oxygen ion implantation, the carrier lifetime has been reduced to as short as 1 ps, corresponding to 1 THz of photodetector bandwidth. It has also been shown that copper dopants act as recombination centers in the silicon germanium.

  20. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S E; .Ortiz, J I; Tammero, L

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. Thismore » article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.« less

  1. Psycho-physiological effects of visual artifacts by stereoscopic display systems

    NASA Astrophysics Data System (ADS)

    Kim, Sanghyun; Yoshitake, Junki; Morikawa, Hiroyuki; Kawai, Takashi; Yamada, Osamu; Iguchi, Akihiko

    2011-03-01

    The methods available for delivering stereoscopic (3D) display using glasses can be classified as time-multiplexing and spatial-multiplexing. With both methods, intrinsic visual artifacts result from the generation of the 3D image pair on a flat panel display device. In the case of the time-multiplexing method, an observer perceives three artifacts: flicker, the Mach-Dvorak effect, and a phantom array. These only occur under certain conditions, with flicker appearing in any conditions, the Mach-Dvorak effect during smooth pursuit eye movements (SPM), and a phantom array during saccadic eye movements (saccade). With spatial-multiplexing, the artifacts are temporal-parallax (due to the interlaced video signal), binocular rivalry, and reduced spatial resolution. These artifacts are considered one of the major impediments to the safety and comfort of 3D display users. In this study, the implications of the artifacts for the safety and comfort are evaluated by examining the psychological changes they cause through subjective symptoms of fatigue and the depth sensation. Physiological changes are also measured as objective responses based on analysis of heart and brain activation by visual artifacts. Further, to understand the characteristics of each artifact and the combined effects of the artifacts, four experimental conditions are developed and tested. The results show that perception of artifacts differs according to the visual environment and the display method. Furthermore visual fatigue and the depth sensation are influenced by the individual characteristics of each artifact. Similarly, heart rate variability and regional cerebral oxygenation changes by perception of artifacts in conditions.

  2. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  3. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  4. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  5. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  6. Detecting Nonvolatile Life- and Nonlife-Derived Organics in a Carbonaceous Chondrite Analogue with a New Multiplex Immunoassay and Its Relevance for Planetary Exploration.

    PubMed

    Moreno-Paz, Mercedes; Gómez-Cifuentes, Ana; Ruiz-Bermejo, Marta; Hofstetter, Oliver; Maquieira, Ángel; Manchado, Juan M; Morais, Sergi; Sephton, Mark A; Niessner, Reinhard; Knopp, Dietmar; Parro, Victor

    2018-04-11

    Potential martian molecular targets include those supplied by meteoritic carbonaceous chondrites such as amino acids and polycyclic aromatic hydrocarbons and true biomarkers stemming from any hypothetical martian biota (organic architectures that can be directly related to once living organisms). Heat extraction and pyrolysis-based methods currently used in planetary exploration are highly aggressive and very often modify the target molecules making their identification a cumbersome task. We have developed and validated a mild, nondestructive, multiplex inhibitory microarray immunoassay and demonstrated its implementation in the SOLID (Signs of Life Detector) instrument for simultaneous detection of several nonvolatile life- and nonlife-derived organic molecules relevant in planetary exploration and environmental monitoring. By utilizing a set of highly specific antibodies that recognize D- or L- aromatic amino acids (Phe, Tyr, Trp), benzo[a]pyrene (B[a]P), pentachlorophenol, and sulfone-containing aromatic compounds, respectively, the assay was validated in the SOLID instrument for the analysis of carbon-rich samples used as analogues of the organic material in carbonaceous chondrites or even Mars samples. Most of the antibodies enabled sensitivities at the 1-10 ppb level and some even at the ppt level. The multiplex immunoassay allowed the detection of B[a]P as well as aromatic sulfones in a water/methanol extract of an Early Cretaceous lignite sample (c.a., 140 Ma) representing type IV kerogen. No L- or D-aromatic amino acids were detected, reflecting the advanced diagenetic stage and the fossil nature of the sample. The results demonstrate the ability of the liquid extraction by ultrasonication and the versatility of the multiplex inhibitory immunoassays in the SOLID instrument to discriminate between organic matter derived from life and nonlife processes, an essential step toward life detection outside Earth. Key Words: Planetary exploration-Molecular biomarkers-D- and L- aromatic amino acids-Life detection-Multiplex inhibitory/competitive immunoassay-Kerogen type IV. Astrobiology 18, xxx-xxx.

  7. A single-step polymerase chain reaction for simultaneous detection and differentiation of nontypeable and serotypeable Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae.

    PubMed

    Kunthalert, Duangkamol; Henghiranyawong, Kritsada; Sistayanarain, Anchalee; Khoothiam, Krissana

    2013-02-01

    The critically high prevalence of bacterial otitis media worldwide has prompted a proper disease management. While vaccine development for otitis media is promising, the reliable and effective methods for diagnosis of such etiologic agents are of importance. We developed a multiplex polymerase chain reaction assay for simultaneous detection and differentiation of nontypeable and serotypeable Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae. Five primer pairs targeting genes fumarate reductase (H. influenzae), outer membrane protein B (M. catarrhalis), major autolysin (S. pneumoniae), capsulation-associated BexA protein (all encapsulated H. influenzae) and 16S rRNA were incorporated in this single-step PCR. Validation of the multiplex PCR was also performed on clinical isolates. The developed multiplex PCR was highly specific, enabling the detection of the target pathogens in a specific manner, either individually or as a mixture of all target organisms. The assay was also found to be sensitive with the lowest detection limit of 1 ng of bacterial DNA. When applied to clinical isolates from diverse specimen sources, the multiplex PCR developed in this study correctly identified each microorganism individually or in a combination of two or more target organisms. All results matched with conventional culture identification. In addition, the ability of such assay to differentiate H. influenzae encapsulation from the study clinical isolates was 100%. Our multiplex PCR provides a rapid and accurate diagnostic tool for detection of the 4 target organisms. Such assay would serve as a useful tool for clinicians and epidemiologists in their efforts to the proper treatment and disease management caused by these organisms. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Pressure sensitivity analysis of fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih; Sridharan, Vasant; Kazemi, Alex

    2014-09-01

    Recent development in fiber optic sensing technology has mainly focused on discrete sensing, particularly, sensing systems with potential multiplexing and multi-parameter capabilities. Bragg grating fiber optic sensors have emerged as the non-disputed champion for multiplexing and simultaneous multi-parameter sensing for emerging high value structural components, advanced processing and manufacturing capabilities and increased critical infrastructure resilience applications. Although the number of potential applications for this sensing technology is large and spans the domains of medicine, manufacturing, aerospace, and public safety; critical issues such as fatigue life, sensitivity, accuracy, embeddability, material/sensor interface integrity, and universal demodulation systems still need to be addressed. The purpose of this paper is to primarily evaluate Commercial-Of-The-Shelf (COTS) Fiber Bragg Grating (FBG) sensors' sensitivity to pressure, often neglected in several applications. The COTS fiber sensitivity to pressure is further evaluated for two types of coatings (Polyimide and Acrylate), and different arrangements (arrayed and single).

  9. Dual quantum cascade laser-based sensor for simultaneous NO and NO2 detection using a wavelength modulation-division multiplexing technique

    NASA Astrophysics Data System (ADS)

    Yu, Yajun; Sanchez, Nancy P.; Yi, Fan; Zheng, Chuantao; Ye, Weilin; Wu, Hongpeng; Griffin, Robert J.; Tittel, Frank K.

    2017-05-01

    A sensor system capable of simultaneous measurements of NO and NO2 was developed using a wavelength modulation-division multiplexing (WMDM) scheme and multi-pass absorption spectroscopy. A continuous wave (CW), distributed-feedback (DFB) quantum cascade laser (QCL) and a CW external-cavity (EC) QCL were employed for targeting a NO absorption doublet at 1900.075 cm-1 and a NO2 absorption line at 1630.33 cm-1, respectively. Simultaneous detection was realized by modulating both QCLs independently at different frequencies and demodulating the detector signals with LabView-programmed lock-in amplifiers. The sensor operated at a reduced pressure of 40 Torr and a data sampling rate of 1 Hz. An Allan-Werle deviation analysis indicated that the minimum detection limits of NO and NO2 can reach sub-ppbv concentration levels with averaging times of 100 and 200 s, respectively.

  10. Gold nanoparticle-enhanced multiplexed imaging surface plasmon resonance (iSPR) detection of Fusarium mycotoxins in wheat

    USDA-ARS?s Scientific Manuscript database

    A rapid, sensitive and multiplexed imaging surface plasmon resonance (iSPR) biosensor assay was developed and validated for three Fusarium toxins, deoxynivalenol (DON), zearalenone (ZEA) and T-2 toxin. The iSPR assay was based on a competitive inhibition format with secondary antibodies (Ab2) conjug...

  11. Multiplex PCR for Diagnosis of Enteric Infections Associated with Diarrheagenic Escherichia coli

    PubMed Central

    Vidal, Roberto; Vidal, Maricel; Lagos, Rossana; Levine, Myron; Prado, Valeria

    2004-01-01

    A multiplex PCR for detection of three categories of diarrheagenic Escherichia coli was developed. With this method, enterohemorrhagic E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli were identified in fecal samples from patients with hemorrhagic colitis, watery diarrhea, or hemolytic-uremic syndrome and from food-borne outbreaks. PMID:15071051

  12. Detection of common diarrhea-causing pathogens in Northern Taiwan by multiplex polymerase chain reaction.

    PubMed

    Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng

    2018-06-01

    Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians' orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs.

  13. Detection of common diarrhea-causing pathogens in Northern Taiwan by multiplex polymerase chain reaction

    PubMed Central

    Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng

    2018-01-01

    Abstract Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians’ orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs. PMID:29879060

  14. Quantitation of Marek's disease and chicken anemia viruses in organs of experimentally infected chickens and commercial chickens by multiplex real-time PCR.

    PubMed

    Davidson, Irit; Raibshtein, I; Al-Touri, A

    2013-06-01

    The worldwide distribution of chicken anemia virus (CAV) and Marek's disease virus (MDV) is well documented. In addition to their economic significance in single- or dual-virus infections, the two viruses can often accompany various other pathogens and affect poultry health either directly, by causing tumors, anemia, and delayed growth, or indirectly, by aggravating other diseases, as a result of their immunosuppressive effects. After a decade of employing the molecular diagnosis of those viruses, which replaced conventional virus isolation, we present the development of a real-time multiplex PCR for the simultaneous detection of both viruses. The real-time PCRs for MDV and for CAV alone are more sensitive than the respective end-point PCRs. In addition, the multiplex real-time shows a similar sensitivity when compared to the single real-time PCR for each virus. The newly developed real-time multiplex PCR is of importance in terms of the diagnosis and detection of low copies of each virus, MDV and CAV in single- and in multiple-virus infections, and its applicability will be further evaluated.

  15. Fiber-optic microsphere-based antibody array for the analysis of inflammatory cytokines in saliva.

    PubMed

    Blicharz, Timothy M; Siqueira, Walter L; Helmerhorst, Eva J; Oppenheim, Frank G; Wexler, Philip J; Little, Frédéric F; Walt, David R

    2009-03-15

    Antibody microarrays have emerged as useful tools for high-throughput protein analysis and candidate biomarker screening. We describe here the development of a multiplexed microsphere-based antibody array capable of simultaneously measuring 10 inflammatory protein mediators. Cytokine-capture microspheres were fabricated by covalently coupling monoclonal antibodies specific for cytokines of interest to fluorescently encoded 3.1 microm polymer microspheres. An optical fiber bundle containing approximately 50,000 individual 3.1 microm diameter fibers was chemically etched to create microwells in which cytokine-capture microspheres could be deposited. Microspheres were randomly distributed in the wells to produce an antibody array for performing a multiplexed sandwich immunoassay. The array responded specifically to recombinant cytokine solutions in a concentration-dependent fashion. The array was also used to examine endogenous mediator patterns in saliva supernatants from patients with pulmonary inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). This array technology may prove useful as a laboratory-based platform for inflammatory disease research and diagnostics, and its small footprint could also enable integration into a microfluidic cassette for use in point-of-care testing.

  16. Using newly developed multiplex polymerase chain reaction and melting curve analysis for detection and discrimination of β-lactamases in Escherichia coli isolates from intensive care patients.

    PubMed

    Chromá, Magdaléna; Hricová, Kristýna; Kolář, Milan; Sauer, Pavel; Koukalová, Dagmar

    2011-11-01

    A total of 78 bacterial strains with known β-lactamases were used to optimize a rapid detection system consisting of multiplex polymerase chain reaction and melting curve analysis to amplify and identify blaTEM, blaSHV, and blaCTX-M genes in a single reaction. Additionally, to evaluate the applicability of this method, 32 clinical isolates of Escherichia coli displaying an extended-spectrum β-lactamase phenotype from patients hospitalized at intensive care units were tested. Results were analyzed by the Rotor-Gene operating software and Rotor-Gene ScreenClust HRM Software. The individual melting curves differed by a temperature shift or curve shape, according to the presence of β-lactamase genes. With the use of this method and direct sequencing, blaCTX-M-15-like was identified as the most prevalent β-lactamase gene. In conclusion, this novel detection system seems to be a suitable tool for rapid detection of present β-lactamase genes and their characterization. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. A multiplex PCR system for 13 RM Y-STRs with separate amplification of two different repeat motif structures in DYF403S1a.

    PubMed

    Lee, Eun Young; Lee, Hwan Young; Kwon, So Yeun; Oh, Yu Na; Yang, Woo Ick; Shin, Kyoung-Jin

    2017-01-01

    In forensic science and human genetics, Y-chromosomal short tandem repeats (Y-STRs) have been used as very useful markers. Recently, more Y-STR markers have been analyzed to enhance the resolution power in haplotype analysis, and 13 rapidly mutating (RM) Y-STRs have been suggested as revolutionary tools that can widen Y-chromosomal application from paternal lineage differentiation to male individualization. We have constructed two multiplex PCR sets for the amplification of 13 RM Y-STRs, which yield small-sized amplicons (<400bp) and a more balanced PCR efficiency with minimum PCR cycling. In particular, with the developed multiplex PCR system, we could separate three copies of DYF403S1a into two copies of DYF403S1a and one of DYF403S1b1. This is because DYF403S1b1 possesses distinguishable sequences from DYF403S1a at both the front and rear flanking regions of the repeat motif; therefore, the locus could be separately amplified using sequence-specific primers. In addition, the other copy, defined as DYF403S1b by Ballantyne et al., was renamed DYF403S1b2 because of its similar flanking region sequence to DYF403S1b1. By redefining DYF403S1 with the developed multiplex system, all genotypes of four copies could be successfully typed and more diverse haplotypes were obtained. We analyzed haplotype distributions in 705 Korean males based on four different Y-STR subsets: Yfiler, PowerPlex Y23, Yfiler Plus, and RM Y-STRs. All haplotypes obtained from RM Y-STRs were the most diverse and showed strong discriminatory power in Korean population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye

    PubMed Central

    Ahberg, Christian D.; Manz, Andreas; Neuzil, Pavel

    2015-01-01

    Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio. PMID:26088868

  19. Detection of α-thalassemia-1 Southeast Asian and Thai Type Deletions and β-thalassemia 3.5-kb Deletion by Single-tube Multiplex Real-time PCR with SYBR Green1 and High-resolution Melting Analysis

    PubMed Central

    Wiengkum, Thanatcha; Srithep, Sarinee; Chainoi, Isarapong; Singboottra, Panthong; Wongwiwatthananukit, Sanchai

    2011-01-01

    Background Prevention and control of thalassemia requires simple, rapid, and accurate screening tests for carrier couples who are at risk of conceiving fetuses with severe thalassemia. Methods Single-tube multiplex real-time PCR with SYBR Green1 and high-resolution melting (HRM) analysis were used for the identification of α-thalassemia-1 Southeast Asian (SEA) and Thai type deletions and β-thalassemia 3.5-kb gene deletion. The results were compared with those obtained using conventional gap-PCR. DNA samples were derived from 28 normal individuals, 11 individuals with α-thalassemia-1 SEA type deletion, 2 with α-thalassemia-1 Thai type deletion, and 2 with heterozygous β-thalassemia 3.5-kb gene deletion. Results HRM analysis indicated that the amplified fragments from α-thalassemia-1 SEA type deletion, α-thalassemia-1 Thai type deletion, β-thalassemia 3.5-kb gene deletion, and the wild-type β-globin gene had specific peak heights at mean melting temperature (Tm) values of 86.89℃, 85.66℃, 77.24℃, and 74.92℃, respectively. The results obtained using single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis showed 100% consistency with those obtained using conventional gap-PCR. Conclusions Single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis is a potential alternative for routine clinical screening of the common types of α- and β-thalassemia large gene deletions, since it is simple, cost-effective, and highly accurate. PMID:21779184

  20. Interlaboratory Evaluation of a Multiplexed High Information Content In Vitro Genotoxicity Assay

    PubMed Central

    Bryce, Steven M.; Bernacki, Derek T.; Bemis, Jeffrey C.; Spellman, Richard A.; Engel, Maria E.; Schuler, Maik; Lorge, Elisabeth; Heikkinen, Pekka T.; Hemmann, Ulrike; Thybaud, Véronique; Wilde, Sabrina; Queisser, Nina; Sutter, Andreas; Zeller, Andreas; Guérard, Melanie; Kirkland, David; Dertinger, Stephen D.

    2017-01-01

    We previously described a multiplexed in vitro genotoxicity assay based on flow cytometric analysis of detergent-liberated nuclei that are simultaneously stained with propidium iodide and labeled with fluorescent antibodies against p53, γH2AX, and phospho-histone H3. Inclusion of a known number of microspheres provides absolute nuclei counts. The work described herein was undertaken to evaluate the interlaboratory transferability of this assay, commercially known as MultiFlow™ DNA Damage Kit— p53, γH2AX, Phospho-histone H3. For these experiments seven laboratories studied reference chemicals from a group of 84 representing clastogens, aneugens, and non-genotoxicants. TK6 cells were exposed to chemicals in 96-well plates over a range of concentrations for 24 hrs. At 4 and 24 hrs cell aliquots were added to the MultiFlow reagent mix and following a brief incubation period flow cytometric analysis occurred, in most cases directly from a 96-well plate via a robotic walk-away data acquisition system. Multiplexed response data were evaluated using two analysis approaches, one based on global evaluation factors (i.e., cutoff values derived from all inter-laboratory data), and a second based on multinomial logistic regression that considers multiple biomarkers simultaneously. Both data analysis strategies were devised to categorize chemicals as predominately exhibiting a clastogenic, aneugenic, or non-genotoxic mode of action (MoA). Based on the aggregate 231 experiments that were performed, assay sensitivity, specificity, and concordance in relation to a priori MoA grouping were ≥ 92%. These results are encouraging as they suggest that two distinct data analysis strategies can rapidly and reliably predict new chemicals’ predominant genotoxic MoA based on data from an efficient and transferable multiplexed in vitro assay. PMID:28370322

  1. Multiplexing of adjacent vortex modes with the forked grating coupler

    NASA Astrophysics Data System (ADS)

    Nadovich, Christopher T.; Kosciolek, Derek J.; Crouse, David T.; Jemison, William D.

    2017-08-01

    For vortex fiber multiplexing to reach practical commercial viability, simple silicon photonic interfaces with vortex fiber will be required. These interfaces must support multiplexing. Toward this goal, an efficient singlefed multimode Forked Grating Coupler (FGC) for coupling two different optical vortex OAM charges to or from the TE0 and TE1 rectangular waveguide modes has been developed. A simple, apodized device implemented with e-beam lithography and a conventional dual-etch processing on SOI wafer exhibits low crosstalk and reasonable mode match. Advanced designs using this concept are expected to further improve performance.

  2. Colloidal crystal beads composed of core-shell particles for multiplex bioassay.

    PubMed

    Xu, Hua; Zhu, Cun; Zhao, Yuanjin; Zhao, Xiangwei; Hu, Jing; Gu, Zhongze

    2009-04-01

    A convenient method was developed to fabricate colloidal crystal beads (CCBs) with tough mechanical strength, which was used as encoded carriers for multiplex bioassay. The latex particles used for the construction of the CCBs were designed with a rigid core PS and a elastomeric shell poly(MMA/EA/MAA), and were prepared via one-step soap-free emulsion polymerization. The as-above-prepared CCBs were thermo-treated to drive the elastomeric shells of adjacent latex particles joining together. It was found that the coalescence of latex particles can greatly improve the mechanical strength of the CCBs for multiplex bioassay.

  3. Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis.

    PubMed

    Estes, Matthew D; Yang, Jianing; Duane, Brett; Smith, Stan; Brooks, Carla; Nordquist, Alan; Zenhausern, Frederic

    2012-12-07

    This study reports the design, prototyping, and assay development of multiplexed polymerase chain reaction (PCR) on a plastic microfluidic device. Amplification of 17 DNA loci is carried out directly on-chip as part of a system for continuous workflow processing from sample preparation (SP) to capillary electrophoresis (CE). For enhanced performance of on-chip PCR amplification, improved control systems have been developed making use of customized Peltier assemblies, valve actuators, software, and amplification chemistry protocols. Multiple enhancements to the microfluidic chip design have been enacted to improve the reliability of sample delivery through the various on-chip modules. This work has been enabled by the encapsulation of PCR reagents into a solid phase material through an optimized Solid Phase Encapsulating Assay Mix (SPEAM) bead-based hydrogel fabrication process. SPEAM bead technology is reliably coupled with precise microfluidic metering and dispensing for efficient amplification and subsequent DNA short tandem repeat (STR) fragment analysis. This provides a means of on-chip reagent storage suitable for microfluidic automation, with the long shelf-life necessary for point-of-care (POC) or field deployable applications. This paper reports the first high quality 17-plex forensic STR amplification from a reference sample in a microfluidic chip with preloaded solid phase reagents, that is designed for integration with up and downstream processing.

  4. FilmArray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection

    PubMed Central

    Poritz, Mark A.; Blaschke, Anne J.; Byington, Carrie L.; Meyers, Lindsay; Nilsson, Kody; Jones, David E.; Thatcher, Stephanie A.; Robbins, Thomas; Lingenfelter, Beth; Amiott, Elizabeth; Herbener, Amy; Daly, Judy; Dobrowolski, Steven F.; Teng, David H. -F.; Ririe, Kirk M.

    2011-01-01

    The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the “FilmArray”, which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon. PMID:22039434

  5. Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR

    PubMed Central

    2012-01-01

    Background Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. Methods A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. Results The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. Conclusions The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa. PMID:22682065

  6. Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR.

    PubMed

    Kuamsab, Napaporn; Putaporntip, Chaturong; Pattanawong, Urassaya; Jongwutiwes, Somchai

    2012-06-10

    Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa.

  7. An Ultra-High Discrimination Y Chromosome Short Tandem Repeat Multiplex DNA Typing System

    PubMed Central

    Hanson, Erin K.; Ballantyne, Jack

    2007-01-01

    In forensic casework, Y chromosome short tandem repeat markers (Y-STRs) are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12–17 loci are currently used in forensic casework (Promega's PowerPlex® Y and Applied Biosystems' AmpFlSTR® Yfiler®). Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used ‘core’ Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD) multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572) indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR® Yfiler® kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary genetics and genetic genealogy. PMID:17668066

  8. [Monitoring AIDS patients for the development of cytomegalovirus (CMV) disease using multiplex PCR].

    PubMed

    Terra, A P; Silva-Vergara, M L; Gomes, R A; Pereira, C L; Simpson, A J; Caballero, O L

    2000-01-01

    The human cytomegalovirus is an important pathogen in patients infected with the human immunodeficiency virus (HIV). The CMV viral load seems to be predictor of the development of the CMV disease in these patients. We used a multiplex PCR protocol that also provides quantitative information in those samples from which a single band is amplified and contains fewer viral genomes than those from which both targets are amplified. Monthly blood samples were collected from 270 AIDS patients. From twenty patients, two CMV targets were amplified three or more consecutive times and these patients developed CMV related disease during the study. In contrast, patients who did not result positive for both viral targets, for three or more consecutive times, or who had alternating positive and negative samples during the follow up did not present CMV related disease. The results suggest that the PCR multiplex can be used for the identification of HIV positive patients with higher risk of development of CMV disease.

  9. Development of a multiplex lateral flow strip test for foot-and-mouth disease virus detection using monoclonal antibodies.

    PubMed

    Yang, Ming; Caterer, Nigel R; Xu, Wanhong; Goolia, Melissa

    2015-09-01

    Foot-and-mouth disease (FMD) is one of the world's most highly contagious animal diseases with tremendous economic consequences. A rapid and specific test for FMD diagnosis at the site of a suspected outbreak is crucial for the implementation of control measures. This project developed a multiplex lateral flow immunochromatographic strip test (multiplex-LFI) for the rapid detection and serotyping of FMD viruses. The monoclonal antibodies (mAbs) against serotypes O, A, and Asia 1 were used as capture mAbs. The mAbs were conjugated with fluorescein, rhodamine or biotin for serotype O, A and Asia 1, respectively. The detection mAbs which consisted of a serotype-independent mAb in combination with one serotype A-specific mAb and one Asia 1-specific mAb, were each colloidal gold-conjugated. The strips used in this study contained one control line and three test lines, which corresponded to one of the three serotypes, O, A or Asia 1. The newly developed multiplex-LFI strip test specifically identified serotype O (n=46), A (n=45) and Asia 1 (n=17) in all tested field isolates. The sensitivity of this strip test was comparable to the double antibody sandwich ELISA for serotypes O and A, but lower than the ELISA for serotype Asia 1. The multiplex-LFI strip test identified all tissue suspensions from animals that were experimentally inoculated with serotypes O, A or Asia 1. FMD viruses were detected in 38% and 50% of the swab samples from the lesion areas of experimentally inoculated sheep for serotypes O and A, respectively. The capability of the multiplex-LFI strip tests to produce rapid results with high specificity for FMD viruses of multiple serotypes makes this test a valuable tool to detect FMD viruses at outbreak sites. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  10. Design, development, fabrication and delivery of register and multiplexer units. [CMOS monolithic chip development

    NASA Technical Reports Server (NTRS)

    Feller, A.; Lombardi, T.

    1978-01-01

    Several approaches for implementing the register and multiplexer unit into two CMOS monolithic chip types were evaluated. The CMOS standard cell array technique was selected and implemented. Using this design automation technology, two LSI CMOS arrays were designed, fabricated, packaged, and tested for proper static, functional, and dynamic operation. One of the chip types, multiplexer register type 1, is fabricated on a 0.143 x 0.123 inch chip. It uses nine standard cell types for a total of 54 standard cells. This involves more than 350 transistors and has the functional equivalent of 111 gates. The second chip, multiplexer register type 2, is housed on a 0.12 x 0.12 inch die. It uses 13 standard cell types, for a total of 42 standard cells. It contains more than 300 transistors, the functional equivalent of 112 gates. All of the hermetically sealed units were initially screened for proper functional operation. The static leakage and the dynamic leakage were measured. Dynamic measurements were made and recorded. At 10 V, 14 megabit shifting rates were measured on multiplexer register type 1. At 5 V these units shifted data at a 6.6 MHz rate. The units were designed to operate over the 3 to 15 V operating range and over a temperature range of -55 to 125 C.

  11. Technical Considerations for Reduced Representation Bisulfite Sequencing with Multiplexed Libraries

    PubMed Central

    Chatterjee, Aniruddha; Rodger, Euan J.; Stockwell, Peter A.; Weeks, Robert J.; Morison, Ian M.

    2012-01-01

    Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background. PMID:23193365

  12. Overlapping MALDI-Mass Spectrometry Imaging for In-Parallel MS and MS/MS Data Acquisition without Sacrificing Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Hansen, Rebecca L.; Lee, Young Jin

    2017-09-01

    Metabolomics experiments require chemical identifications, often through MS/MS analysis. In mass spectrometry imaging (MSI), this necessitates running several serial tissue sections or using a multiplex data acquisition method. We have previously developed a multiplex MSI method to obtain MS and MS/MS data in a single experiment to acquire more chemical information in less data acquisition time. In this method, each raster step is composed of several spiral steps and each spiral step is used for a separate scan event (e.g., MS or MS/MS). One main limitation of this method is the loss of spatial resolution as the number of spiral steps increases, limiting its applicability for high-spatial resolution MSI. In this work, we demonstrate multiplex MS imaging is possible without sacrificing spatial resolution by the use of overlapping spiral steps, instead of spatially separated spiral steps as used in the previous work. Significant amounts of matrix and analytes are still left after multiple spectral acquisitions, especially with nanoparticle matrices, so that high quality MS and MS/MS data can be obtained on virtually the same tissue spot. This method was then applied to visualize metabolites and acquire their MS/MS spectra in maize leaf cross-sections at 10 μm spatial resolution. [Figure not available: see fulltext.

  13. Accurate Sample Assignment in a Multiplexed, Ultrasensitive, High-Throughput Sequencing Assay for Minimal Residual Disease.

    PubMed

    Bartram, Jack; Mountjoy, Edward; Brooks, Tony; Hancock, Jeremy; Williamson, Helen; Wright, Gary; Moppett, John; Goulden, Nick; Hubank, Mike

    2016-07-01

    High-throughput sequencing (HTS) (next-generation sequencing) of the rearranged Ig and T-cell receptor genes promises to be less expensive and more sensitive than current methods of monitoring minimal residual disease (MRD) in patients with acute lymphoblastic leukemia. However, the adoption of new approaches by clinical laboratories requires careful evaluation of all potential sources of error and the development of strategies to ensure the highest accuracy. Timely and efficient clinical use of HTS platforms will depend on combining multiple samples (multiplexing) in each sequencing run. Here we examine the Ig heavy-chain gene HTS on the Illumina MiSeq platform for MRD. We identify errors associated with multiplexing that could potentially impact the accuracy of MRD analysis. We optimize a strategy that combines high-purity, sequence-optimized oligonucleotides, dual indexing, and an error-aware demultiplexing approach to minimize errors and maximize sensitivity. We present a probability-based, demultiplexing pipeline Error-Aware Demultiplexer that is suitable for all MiSeq strategies and accurately assigns samples to the correct identifier without excessive loss of data. Finally, using controls quantified by digital PCR, we show that HTS-MRD can accurately detect as few as 1 in 10(6) copies of specific leukemic MRD. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  14. High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for Quantitative Proteomics

    PubMed Central

    2015-01-01

    Multiplex isobaric tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ)) are a valuable tool for high-throughput mass spectrometry based quantitative proteomics. We have developed our own multiplex isobaric tags, DiLeu, that feature quantitative performance on par with commercial offerings but can be readily synthesized in-house as a cost-effective alternative. In this work, we achieve a 3-fold increase in the multiplexing capacity of the DiLeu reagent without increasing structural complexity by exploiting mass defects that arise from selective incorporation of 13C, 15N, and 2H stable isotopes in the reporter group. The inclusion of eight new reporter isotopologues that differ in mass from the existing four reporters by intervals of 6 mDa yields a 12-plex isobaric set that preserves the synthetic simplicity and quantitative performance of the original implementation. We show that the new reporter variants can be baseline-resolved in high-resolution higher-energy C-trap dissociation (HCD) spectra, and we demonstrate accurate 12-plex quantitation of a DiLeu-labeled Saccharomyces cerevisiae lysate digest via high-resolution nano liquid chromatography–tandem mass spectrometry (nanoLC–MS2) analysis on an Orbitrap Elite mass spectrometer. PMID:25405479

  15. Approaches to genotyping individual miracidia of Schistosoma japonicum

    PubMed Central

    Xiao, Ning; Remais, Justin V.; Brindley, Paul J.; Qiu, Dong-chuan; Carlton, Elizabeth J.; Li, Rong-zhi; Lei, Yang; Blair, David

    2013-01-01

    Molecular genetic tools are needed to address questions as to the source and dynamics of transmission of the human blood fluke Schistosoma japonicum in regions where human infections have re-emerged, and to characterize infrapopulations in individual hosts. The life-stage that interests us as a target for collecting genotypic data is the miracidium, a very small larval stage that consequently yields very little DNA for analysis. Here, we report the successful development of a multiplex format permitting genotyping of 17 microsatellite loci in four sequential multiplex reactions using a single miracidium held on a Whatman Classic FTA indicating card. This approach was successful after short storage periods, but after long storage (>4 years) considerable difficulty was encountered in multiplex genotyping, necessitating the use of whole genome amplification (WGA) methods. WGA applied to cards stored for long periods of time resulted in sufficient DNA for accurate and repeatable genotyping. Trials and tests of these methods, as well as application to some field-collected samples, are reported, along with discussion of the potential insights to be gained from such techniques. These include recognition of sibships among miracidia from a single host, and inference of the minimum number of worm pairs that might be present in a host. PMID:24013341

  16. Use of multiplex polymerase chain reaction-based assay to conduct epidemiological studies on bovine hemoparasites in Mexico.

    PubMed

    Figueroa, J V; Alvarez, J A; Ramos, J A; Vega, C A; Buening, G M

    1993-01-01

    A study was conducted to test the applicability of a Polymerase Chain Reaction (PCR)-based approach for the simultaneous detection of the bovine hemoparasites Babesia bigemina, B. bovis and Anaplasma marginale. Bovine blood samples from cattle ranches of a previously determined enzootic zone in the Yucatan Peninsula of Mexico, were collected from peripheral blood and processed for PCR analysis. Blood samples were subjected to DNA amplification by placing an aliquot in a reaction tube containing oligonucleotide primers specific for DNA of each hemoparasite species. The PCR products were detected by Dot-Blot nucleic acid hybridization utilizing nonradioactive, species-specific, digoxigenin PCR-labeled DNA probes. Four hundred twenty one field samples analyzed by the multiplex PCR-DNA probe assay showed 66.7%, 60.1% and 59.6% prevalence rates for B. bigemina, B. bovis and A. marginale, respectively. The multiplex PCR analysis showed that animals with single, double or triple infection could be detected with the parasite specific DNA probes. The procedure is proposed as a valuable tool for the epidemiological analysis in regions where the hemoparasite species are concurrently infecting cattle.

  17. Development of new microsatellite loci and multiplex reactions for muskellunge (Esox masquinongy)

    USGS Publications Warehouse

    Sloss, Brian L.; Franckowiak, R.P.; Murphy, E.L.

    2008-01-01

    The muskellunge (Esox masquinongy) is a valued fisheries species throughout its native range. Numerous studies have documented performance and phenotypic differences among muskellunge populations, but genetic markers for assessment have been lacking. We characterized 14 microsatellite loci and developed five multiplex polymerase chain reactions. Successful amplification of northern pike (Esox lucius) was observed for seven loci. These microsatellites will be useful for analysing population structure, performance characteristics of propagated strains, and helping to develop and monitor hatchery management guidelines for muskellunge. ?? 2008 Blackwell Publishing Ltd.

  18. A study of multiplex data bus techniques for the space shuttle

    NASA Technical Reports Server (NTRS)

    Kearney, R. J.; Kalange, M. A.

    1972-01-01

    A comprehensive technology base for the design of a multiplexed data bus subsystem is provided. Extensive analyses, both analytical and empirical, were performed. Subjects covered are classified under the following headings: requirements identification and analysis; transmission media studies; signal design and detection studies; synchronization, timing, and control studies; user-subsystem interface studies; operational reliability analyses; design of candidate data bus configurations; and evaluation of candidate data bus designs.

  19. Optimization of ultrahigh-speed multiplex PCR for forensic analysis.

    PubMed

    Gibson-Daw, Georgiana; Crenshaw, Karin; McCord, Bruce

    2018-01-01

    In this paper, we demonstrate the design and optimization of an ultrafast PCR amplification technique, used with a seven-locus multiplex that is compatible with conventional capillary electrophoresis systems as well as newer microfluidic chip devices. The procedure involves the use of a high-speed polymerase and a rapid cycling protocol to permit multiplex PCR amplification of forensic short tandem repeat loci in 6.5 min. We describe the selection and optimization of master mix reagents such as enzyme, buffer, MgCl 2 , and dNTPs, as well as primer ratios, total volume, and cycle conditions, in order to get the best profile in the shortest time possible. Sensitivity and reproducibility studies are also described. The amplification process utilizes a small high-speed thermocycler and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The seven loci of the multiplex were taken from conventional STR genotyping kits and selected for their size and lack of overlap. Analysis was performed using conventional capillary electrophoresis and microfluidics with fluorescent detection. Overall, this technique provides a more rapid method for rapid sample screening of suspects and victims. Graphical abstract Rapid amplification of forensic DNA using high speed thermal cycling followed by capillary or microfluidic electrophoresis.

  20. Qualis-SIS: automated standard curve generation and quality assessment for multiplexed targeted quantitative proteomic experiments with labeled standards.

    PubMed

    Mohammed, Yassene; Percy, Andrew J; Chambers, Andrew G; Borchers, Christoph H

    2015-02-06

    Multiplexed targeted quantitative proteomics typically utilizes multiple reaction monitoring and allows the optimized quantification of a large number of proteins. One challenge, however, is the large amount of data that needs to be reviewed, analyzed, and interpreted. Different vendors provide software for their instruments, which determine the recorded responses of the heavy and endogenous peptides and perform the response-curve integration. Bringing multiplexed data together and generating standard curves is often an off-line step accomplished, for example, with spreadsheet software. This can be laborious, as it requires determining the concentration levels that meet the required accuracy and precision criteria in an iterative process. We present here a computer program, Qualis-SIS, that generates standard curves from multiplexed MRM experiments and determines analyte concentrations in biological samples. Multiple level-removal algorithms and acceptance criteria for concentration levels are implemented. When used to apply the standard curve to new samples, the software flags each measurement according to its quality. From the user's perspective, the data processing is instantaneous due to the reactivity paradigm used, and the user can download the results of the stepwise calculations for further processing, if necessary. This allows for more consistent data analysis and can dramatically accelerate the downstream data analysis.

  1. Development and validation of a multiplex PCR for detection of Scedosporium spp. in respiratory tract specimens from patients with cystic fibrosis.

    PubMed

    Harun, Azian; Blyth, Christopher C; Gilgado, Felix; Middleton, Peter; Chen, Sharon C-A; Meyer, Wieland

    2011-04-01

    The emergence of Scedosporium infections in diverse groups of individuals, which are often treatment refractory, warrants timely and accurate laboratory diagnosis. Species- or group-specific primers based on internal transcribed spacer (ITS) sequence polymorphisms were designed for Scedosporium aurantiacum, Scedosporium dehoogii, Scedosporium prolificans, Pseudallescheria boydii species complex (former clade 5)/Pseudallescheria apiosperma (formerly classified as S. apiospermum sensu lato) and Pseudallescheria minutispora. Primers for S. aurantiacum, S. prolificans, and P. boydii species complex/P. apiosperma were incorporated into a multiplex PCR assay for the detection and identification of the three major clinically important Scedosporium species and validated using sputum specimens collected from patients seen at a major Australian cystic fibrosis clinic. The multiplex PCR assay showed 100% specificity in identifying the three major clinically relevant Scedosporium species from pure culture. When evaluated using DNA extracts from sputa, sensitivity and specificity of the multiplex PCR assay were 62.1% and 97.2%, respectively. This highly species-specific multiplex PCR assay offers a rapid and simple method of detection of the most clinically important Scedosporium species in respiratory tract specimens.

  2. Apolipoprotein E genotyping by multiplex tetra-primer amplification refractory mutation system PCR in single reaction tube.

    PubMed

    Yang, Young Geun; Kim, Jong Yeol; Park, Su Jeong; Kim, Suhng Wook; Jeon, Ok-Hee; Kim, Doo-Sik

    2007-08-31

    Apolipoprotein E (APOE) plays a critical role in lipoprotein metabolism by binding to both low-density lipoprotein and APOE receptors. The APOE gene has three allelic forms, epsilon2, epsilon3, and epsilon4, which encode different isoforms of the APOE protein. In this study, we have developed a new genotyping method for APOE. Our multiplex tetra-primer amplification refractory mutation system (multiplex T-ARMS) polymerase chain reaction (PCR) was performed in a single reaction tube with six primers consisting of two common primers and two specific primers for each of two single nucleotide polymorphism (SNP) sites. We obtained definitive electropherograms that showed three (epsilon2/epsilon2, epsilon3/epsilon3, and epsilon4/epsilon4), four (epsilon2/epsilon3 and epsilon3/epsilon4), and five (epsilon2/epsilon4) amplicons by multiplex T-ARMS PCR in a single reaction tube. Multiplex T-ARMS PCR for APOE genotyping is a simple and accurate method that requires only a single PCR reaction, without any another treatments or expensive instrumentation, to simultaneously identify two sites of single nucleotide polymorphisms.

  3. Multiplex detection of pathogen biomarkers in human blood, serum, and saliva using silicon photonic microring resonators

    NASA Astrophysics Data System (ADS)

    Estrada, I. A.; Burlingame, R. W.; Wang, A. P.; Chawla, K.; Grove, T.; Wang, J.; Southern, S. O.; Iqbal, M.; Gunn, L. C.; Gleeson, M. A.

    2015-05-01

    Genalyte has developed a multiplex silicon photonic chip diagnostics platform (MaverickTM) for rapid detection of up to 32 biological analytes from a drop of sample in just 10 to 20 minutes. The chips are manufactured with waveguides adjacent to ring resonators, and probed with a continuously variable wavelength laser. A shift in the resonant wavelength as mass binds above the ring resonators is measured and is directly proportional to the amount of bound macromolecules. We present here the ability to multiplex the detection of hemorrhagic fever antigens in whole blood, serum, and saliva in a 16 minute assay. Our proof of concept testing of a multiplex antigencapture chip has the ability to detect Zaire Ebola (ZEBOV) recombinant soluble glycoprotein (rsGP), Marburg virus (MARV) Angola recombinant glycoprotein (rGP) and dengue nonstructural protein I (NS1). In parallel, detection of 2 malaria antigens has proven successful, but has yet to be incorporated into multiplex with the others. Each assay performs with sensitivity ranging from 1.6 ng/ml to 39 ng/ml depending on the antigen detected, and with minimal cross-reactivity.

  4. Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients.

    PubMed

    Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei

    2017-08-01

    To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell‑free DNA (cfDNA) extracted from the plasma of advanced non‑small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) ‑sensitive (19DEL, L858R) and TKI‑resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR‑TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra‑sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR‑TKI decision‑making for advanced NSCLC patients.

  5. Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients

    PubMed Central

    Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei

    2017-01-01

    To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell-free DNA (cfDNA) extracted from the plasma of advanced non-small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) -sensitive (19DEL, L858R) and TKI-resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR-TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra-sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR-TKI decision-making for advanced NSCLC patients. PMID:29067441

  6. Quantum-dot-based suspension microarray for multiplex detection of lung cancer markers: preclinical validation and comparison with the Luminex xMAP® system

    NASA Astrophysics Data System (ADS)

    Bilan, Regina; Ametzazurra, Amagoia; Brazhnik, Kristina; Escorza, Sergio; Fernández, David; Uríbarri, María; Nabiev, Igor; Sukhanova, Alyona

    2017-03-01

    A novel suspension multiplex immunoassay for the simultaneous specific detection of lung cancer markers in bronchoalveolar lavage fluid (BALF) clinical samples based on fluorescent microspheres having different size and spectrally encoded with quantum dots (QDEM) was developed. The designed suspension immunoassay was validated for the quantitative detection of three lung cancer markers in BALF samples from 42 lung cancer patients and 10 control subjects. Tumor markers were detected through simultaneous formation of specific immune complexes consisting of a capture molecule, the target antigen, and biotinylated recognition molecule on the surface of the different QDEM in a mixture. The immune complexes were visualized by fluorescently labeled streptavidin and simultaneously analyzed using a flow cytometer. Preclinical validation of the immunoassay was performed and results were compared with those obtained using an alternative 3-plex immunoassay based on Luminex xMAP® technology, developed on classical organic fluorophores. The comparison showed that the QDEM and xMAP® assays yielded almost identical results, with clear discrimination between control and clinical samples. Thus, developed QDEM technology can become a good alternative to xMAP® assays permitting analysis of multiple protein biomarkers using conventional flow cytometers.

  7. Quantum-dot-based suspension microarray for multiplex detection of lung cancer markers: preclinical validation and comparison with the Luminex xMAP® system

    PubMed Central

    Bilan, Regina; Ametzazurra, Amagoia; Brazhnik, Kristina; Escorza, Sergio; Fernández, David; Uríbarri, María; Nabiev, Igor; Sukhanova, Alyona

    2017-01-01

    A novel suspension multiplex immunoassay for the simultaneous specific detection of lung cancer markers in bronchoalveolar lavage fluid (BALF) clinical samples based on fluorescent microspheres having different size and spectrally encoded with quantum dots (QDEM) was developed. The designed suspension immunoassay was validated for the quantitative detection of three lung cancer markers in BALF samples from 42 lung cancer patients and 10 control subjects. Tumor markers were detected through simultaneous formation of specific immune complexes consisting of a capture molecule, the target antigen, and biotinylated recognition molecule on the surface of the different QDEM in a mixture. The immune complexes were visualized by fluorescently labeled streptavidin and simultaneously analyzed using a flow cytometer. Preclinical validation of the immunoassay was performed and results were compared with those obtained using an alternative 3-plex immunoassay based on Luminex xMAP® technology, developed on classical organic fluorophores. The comparison showed that the QDEM and xMAP® assays yielded almost identical results, with clear discrimination between control and clinical samples. Thus, developed QDEM technology can become a good alternative to xMAP® assays permitting analysis of multiple protein biomarkers using conventional flow cytometers. PMID:28300171

  8. Characterization of highly multiplexed monolithic PET / gamma camera detector modules

    NASA Astrophysics Data System (ADS)

    Pierce, L. A.; Pedemonte, S.; DeWitt, D.; MacDonald, L.; Hunter, W. C. J.; Van Leemput, K.; Miyaoka, R.

    2018-04-01

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A 50 × 50 × 10 mm3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer–Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  9. Molecular diagnostics of the honey bee parasites Lotmaria passim and Crithidia spp. (Trypanosomatidae) using multiplex PCR

    USDA-ARS?s Scientific Manuscript database

    Lotmaria passim Schwarz is a recently described trypanosome parasite of honey bees in continental United States, Europe, and Japan. We developed a multiplex PCR technique using a PCR primer specific for L. passim to distinguish this species from C. mellificae. We report the presence of L. passim in ...

  10. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue

    PubMed Central

    Gerdes, Michael J.; Sevinsky, Christopher J.; Sood, Anup; Adak, Sudeshna; Bello, Musodiq O.; Bordwell, Alexander; Can, Ali; Corwin, Alex; Dinn, Sean; Filkins, Robert J.; Hollman, Denise; Kamath, Vidya; Kaanumalle, Sireesha; Kenny, Kevin; Larsen, Melinda; Lazare, Michael; Lowes, Christina; McCulloch, Colin C.; McDonough, Elizabeth; Pang, Zhengyu; Rittscher, Jens; Santamaria-Pang, Alberto; Sarachan, Brion D.; Seel, Maximilian L.; Seppo, Antti; Shaikh, Kashan; Sui, Yunxia; Zhang, Jingyu; Ginty, Fiona

    2013-01-01

    Limitations on the number of unique protein and DNA molecules that can be characterized microscopically in a single tissue specimen impede advances in understanding the biological basis of health and disease. Here we present a multiplexed fluorescence microscopy method (MxIF) for quantitative, single-cell, and subcellular characterization of multiple analytes in formalin-fixed paraffin-embedded tissue. Chemical inactivation of fluorescent dyes after each image acquisition round allows reuse of common dyes in iterative staining and imaging cycles. The mild inactivation chemistry is compatible with total and phosphoprotein detection, as well as DNA FISH. Accurate computational registration of sequential images is achieved by aligning nuclear counterstain-derived fiducial points. Individual cells, plasma membrane, cytoplasm, nucleus, tumor, and stromal regions are segmented to achieve cellular and subcellular quantification of multiplexed targets. In a comparison of pathologist scoring of diaminobenzidine staining of serial sections and automated MxIF scoring of a single section, human epidermal growth factor receptor 2, estrogen receptor, p53, and androgen receptor staining by diaminobenzidine and MxIF methods yielded similar results. Single-cell staining patterns of 61 protein antigens by MxIF in 747 colorectal cancer subjects reveals extensive tumor heterogeneity, and cluster analysis of divergent signaling through ERK1/2, S6 kinase 1, and 4E binding protein 1 provides insights into the spatial organization of mechanistic target of rapamycin and MAPK signal transduction. Our results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics. PMID:23818604

  11. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue.

    PubMed

    Gerdes, Michael J; Sevinsky, Christopher J; Sood, Anup; Adak, Sudeshna; Bello, Musodiq O; Bordwell, Alexander; Can, Ali; Corwin, Alex; Dinn, Sean; Filkins, Robert J; Hollman, Denise; Kamath, Vidya; Kaanumalle, Sireesha; Kenny, Kevin; Larsen, Melinda; Lazare, Michael; Li, Qing; Lowes, Christina; McCulloch, Colin C; McDonough, Elizabeth; Montalto, Michael C; Pang, Zhengyu; Rittscher, Jens; Santamaria-Pang, Alberto; Sarachan, Brion D; Seel, Maximilian L; Seppo, Antti; Shaikh, Kashan; Sui, Yunxia; Zhang, Jingyu; Ginty, Fiona

    2013-07-16

    Limitations on the number of unique protein and DNA molecules that can be characterized microscopically in a single tissue specimen impede advances in understanding the biological basis of health and disease. Here we present a multiplexed fluorescence microscopy method (MxIF) for quantitative, single-cell, and subcellular characterization of multiple analytes in formalin-fixed paraffin-embedded tissue. Chemical inactivation of fluorescent dyes after each image acquisition round allows reuse of common dyes in iterative staining and imaging cycles. The mild inactivation chemistry is compatible with total and phosphoprotein detection, as well as DNA FISH. Accurate computational registration of sequential images is achieved by aligning nuclear counterstain-derived fiducial points. Individual cells, plasma membrane, cytoplasm, nucleus, tumor, and stromal regions are segmented to achieve cellular and subcellular quantification of multiplexed targets. In a comparison of pathologist scoring of diaminobenzidine staining of serial sections and automated MxIF scoring of a single section, human epidermal growth factor receptor 2, estrogen receptor, p53, and androgen receptor staining by diaminobenzidine and MxIF methods yielded similar results. Single-cell staining patterns of 61 protein antigens by MxIF in 747 colorectal cancer subjects reveals extensive tumor heterogeneity, and cluster analysis of divergent signaling through ERK1/2, S6 kinase 1, and 4E binding protein 1 provides insights into the spatial organization of mechanistic target of rapamycin and MAPK signal transduction. Our results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics.

  12. Multiplexed Microsphere Suspension-Array Assay for Urine Mitochondrial DNA Typing by C-Stretch Length in Hypervariable Regions.

    PubMed

    Aoki, Kimiko; Tanaka, Hiroyuki; Kawahara, Takashi

    2018-07-01

    The standard method for personal identification and verification of urine samples in doping control is short tandem repeat (STR) analysis using nuclear DNA (nDNA). The DNA concentration of urine is very low and decreases under most conditions used for sample storage; therefore, the amount of DNA from cryopreserved urine samples may be insufficient for STR analysis. We aimed to establish a multiplexed assay for urine mitochondrial DNA typing containing only trace amounts of DNA, particularly for Japanese populations. A multiplexed suspension-array assay using oligo-tagged microspheres (Luminex MagPlex-TAG) was developed to measure C-stretch length in hypervariable region 1 (HV1) and 2 (HV2), five single nucleotide polymorphisms (SNPs), and one polymorphic indel. Based on these SNPs and the indel, the Japanese population can be classified into five major haplogroups (D4, B, M7a, A, D5). The assay was applied to DNA samples from urine cryopreserved for 1 - 1.5 years (n = 63) and fresh blood (n = 150). The assay with blood DNA enabled Japanese subjects to be categorized into 62 types, exhibiting a discriminatory power of 0.960. The detection limit for cryopreserved urine was 0.005 ng of nDNA. Profiling of blood and urine pairs revealed that 5 of 63 pairs showed different C-stretch patterns in HV1 or HV2. The assay described here yields valuable information in terms of the verification of urine sample sources employing only trace amounts of recovered DNA. However, blood cannot be used as a reference sample.

  13. Locus-specific oligonucleotide probes increase the usefulness of inter-Alu polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarnik, M.; Tang, J.Q.; Korab-Laskowska, M.

    1994-09-01

    Most of the mapping approaches are based on single-locus codominant markers of known location. Their multiplex ratio, defined as the number of loci that can be simultaneously tested, is typically one. An increased multiplex ratio was obtained by typing anonymous polymorphisms using PCR primers anchored in ubiquitous Alu-repeats. These so called alumorphs are revealed by inter-Alu-PCR and seen as the presence or absence of an amplified band of a given length. We decided to map alumorphs and to develop locus-specific oligonucleotide (LSO) probes to facilitate their use and transfer among different laboratories. We studied the segregation of alumorphs in eightmore » CEPH families, using two distinct Alu-primers, both directing PCR between the repeats in a tail-to-tail orientation. The segregating bands were assigned to chromosomal locations by two-point linkage analysis with CEPH markers (V6.0). They were excised from dried gels, reamplified, cloned and sequenced. The resulting LSOs were used as hybridization probes (i) to confirm chromosomal assignments in a human/hamster somatic cell hybrid panel, and (ii) to group certain allelic length variants, originally coded as separate dominant markres, into more informative codominant loci. These codominants were then placed by multipoint analysis on a microsatellite Genethon map. Finally, the LSO probes were used as polymorphic STSs, to identify by hybridization the corresponding markers among products of inter-Alu-PCR. The use of LSOs converts alumorphs into a system of non-anonymous, often multiallelic codominant markes which can be simultaneously typed, thus achieving the goal of high multiplex ratio.« less

  14. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    PubMed

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  15. Multiplex Networks of Cortical and Hippocampal Neurons Revealed at Different Timescales

    PubMed Central

    Timme, Nicholas; Ito, Shinya; Myroshnychenko, Maxym; Yeh, Fang-Chin; Hiolski, Emma; Hottowy, Pawel; Beggs, John M.

    2014-01-01

    Recent studies have emphasized the importance of multiplex networks – interdependent networks with shared nodes and different types of connections – in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance). Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy – an information theoretic quantity that can be used to measure linear and nonlinear interactions – to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons (“hubs”) were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first systematic study of temporally dependent multiplex networks among individual neurons. PMID:25536059

  16. A SIMPLE AND EFFECTIVE MULTIPLEX PCR TECHNIQUE FOR DETECTING HUMAN PATHOGENIC TAENIA EGGS IN HOUSEFLIES.

    PubMed

    Pornruseetriratn, Siritavee; Maipanich, Wanna; Sa-nguankiat, Surapol; Pubampen, Somchit; Poodeepiyasawat, Akkarin; Thaenkham, Urusa

    2017-01-01

    Taenia solium, T. saginata, and T. asiatica are cestode pathogens causing taeniasis in humans. Houseflies can transfer Taenia eggs to food. However, houseflies are thought to carry only small numbers of Taenia eggs, sometimes fewer than 10. Although several PCR-based methods have been developed to detect Taenia DNA, these require more than 10 eggs for adequate detection. We developed a multiplex PCR method with high specificity for the discrimination among the eggs of the three Taenia species, T. solium, T. saginata, and T. asiatica, using 18S ribosomal DNA (rDNA) as a genetic marker. This technique was found to be highly sensitive, capable of identifying the Taenia species from only one egg. This multiplex PCR technique using 18S rDNA specific primers should be suitable to diagnose Taenia eggs.

  17. Multiplexity and multireciprocity in directed multiplexes.

    PubMed

    Gemmetto, Valerio; Squartini, Tiziano; Picciolo, Francesco; Ruzzenenti, Franco; Garlaschelli, Diego

    2016-10-01

    Real-world multilayer networks feature nontrivial dependencies among links of different layers. Here we argue that if links are directed, then dependencies are twofold. Besides the ordinary tendency of links of different layers to align as the result of "multiplexity," there is also a tendency to antialign as a result of what we call "multireciprocity," i.e., the fact that links in one layer can be reciprocated by opposite links in a different layer. Multireciprocity generalizes the scalar definition of single-layer reciprocity to that of a square matrix involving all pairs of layers. We introduce multiplexity and multireciprocity matrices for both binary and weighted multiplexes and validate their statistical significance against maximum-entropy null models that filter out the effects of node heterogeneity. We then perform a detailed empirical analysis of the world trade multiplex (WTM), representing the import-export relationships between world countries in different commodities. We show that the WTM exhibits strong multiplexity and multireciprocity, an effect which is, however, largely encoded into the degree or strength sequences of individual layers. The residual effects are still significant and allow us to classify pairs of commodities according to their tendency to be traded together in the same direction and/or in opposite ones. We also find that the multireciprocity of the WTM is significantly lower than the usual reciprocity measured on the aggregate network. Moreover, layers with low (high) internal reciprocity are embedded within sets of layers with comparably low (high) mutual multireciprocity. This suggests that, in the WTM, reciprocity is inherent to groups of related commodities rather than to individual commodities. We discuss the implications for international trade research focusing on product taxonomies, the product space, and fitness and complexity metrics.

  18. Molecular Analysis-Based Genetic Characterization of a Cohort of Patients with Duchenne and Becker Muscular Dystrophy in Eastern China.

    PubMed

    Zhao, Hui-Hui; Sun, Xue-Ping; Shi, Ming-Chao; Yi, Yong-Xiang; Cheng, Hong; Wang, Xing-Xia; Xu, Qing-Cheng; Ma, Hong-Ming; Wu, Hao-Quan; Jin, Qing-Wen; Niu, Qi

    2018-04-05

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders caused by mutations in dystrophin gene. Multiplex polymerase chain reaction (multiplex PCR) and multiplex ligation-dependent probe amplification (MLPA) are the most common methods for detecting dystrophin gene mutations. This study aimed to contrast the two methods and discern the genetic characterization of patients with DMD/BMD in Eastern China. We collected 121 probands, 64 mothers of probands, and 15 fetuses in our study. The dystrophin gene was detected by multiplex PCR primarily in 28 probands, and MLPA was used in multiplex PCR-negative cases subsequently. The dystrophin gene of the remaining 93 probands and 62 female potential carriers was tested by MLPA directly. In fetuses, multiplex PCR and MLPA were performed on 4 fetuses and 10 fetuses, respectively. In addition, sequencing was also performed in 4 probands with negative MLPA. We found that 61.98% of the subjects had genetic mutations including deletions (50.41%) and duplications (11.57%). There were 43.75% of mothers as carriers of the mutation. In 15 fetuses, 2 out of 7 male fetuses were found to be unhealthy and 2 out of 8 female fetuses were found to be carriers. Exons 3-26 and 45-52 have the maximum frequency in mutation regions. In the frequency of exons individually, exon 47 and exon 50 were the most common in deleted regions and exons 5, 6, and 7 were found most frequently in duplicated regions. MLPA has better productivity and sensitivity than multiplex PCR. Prenatal diagnosis should be applied in DMD high-risk fetuses to reduce the disease incidence. Furthermore, it is the responsibility of physicians to inform female carriers the importance of prenatal diagnosis.

  19. Wavelength-multiplexed fiber optic position encoder for aircraft control systems

    NASA Astrophysics Data System (ADS)

    Beheim, Glenn; Krasowski, Michael J.; Sotomayor, Jorge L.; Fritsch, Klaus; Flatico, Joseph M.; Bathurst, Richard L.; Eustace, John G.; Anthan, Donald J.

    1991-02-01

    NASA Lewis together with John Carroll University has worked for the last several years to develop wavelength-multiplexed digital position transducers for use in aircraft control systems. A prototype rotary encoder is being built for a demonstration program involving the control of a commercial transport''s turbofan engine. This encoder has eight bits of resolution a 90 degree range and is powered by a single LED. A compact electro-optics module is being developed to withstand the extremely hostile gas turbine environment.

  20. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    NASA Astrophysics Data System (ADS)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  1. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  2. Development of touch down-multiplex PCR for the diagnosis of toxoplasmosis.

    PubMed

    Hallur, V; Sehgal, R; Khurana, S

    2015-01-01

    The diagnosis of toxoplasmosis is challenging since conventional methods like culture and immunofluorescence are not universally available. Serology, which is used regularly might be negative during early phase of infection and in immunosuppressed patients or may remain positive for a long time. Several molecular tests have been used for the diagnosis of toxoplasmosis, but none of them have an internal control which would inform us regarding the presence of polymerase chain reaction (PCR) inhibitors thus, undermining the confidence of a laboratory physician. We designed a multiplex PCR containing primers targeting human beta globin gene which would act as internal control and two primers against the B1 gene and 5s gene which aid in sensitive detection of T. gondii. Multiplex PCR had a sensitivity of 83.3% and specificity of 100%. Multiplex PCR may provide a sensitive and specific tool for diagnosis of human toxoplasmosis.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsia, Chu Chieh; Chizhikov, Vladimir E.; Yang, Amy X.

    Hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus type-1 (HIV-1) are transfusion-transmitted human pathogens that have a major impact on blood safety and public health worldwide. We developed a microarray multiplex assay for the simultaneous detection and discrimination of these three viruses. The microarray consists of 16 oligonucleotide probes, immobilized on a silylated glass slide. Amplicons from multiplex PCR were labeled with Cy-5 and hybridized to the microarray. The assay detected 1 International Unit (IU), 10 IU, 20 IU of HBV, HCV, and HIV-1, respectively, in a single multiplex reaction. The assay also detected and discriminatedmore » the presence of two or three of these viruses in a single sample. Our data represent a proof-of-concept for the possible use of highly sensitive multiplex microarray assay to screen and confirm the presence of these viruses in blood donors and patients.« less

  4. Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering.

    PubMed

    Chen, Ji; Li, Tao; Wang, Shuming; Zhu, Shining

    2017-08-09

    Thanks to the superiority in controlling the optical wave fronts, plasmonic nanostructures have led to various striking applications, among which metasurface holograms have been well developed and endowed with strong multiplexing capability. Here, we report a new design of multiplexed plasmonic hologram, which allows for reconstruction of multiple holographic images in free space by scatterings of surface plasmon polariton (SPP) waves in different propagation directions. Besides, the scattered polarization states can be further modulated by arranging the orientations of nanoscatterers. By incorporation of the SPP propagation and polarized scattering, a 4-fold hologram with low crosstalk is successfully demonstrated, which breaks the limitation of only two orthogonal states in conventional polarization multiplexers. Moreover, our design using the near-field SPP as reference wave holds the advantage for compact integration. This holographic approach is expected to inspire new photonic designs with enhanced information capacity and integratability.

  5. The application of airborne imaging radars (L and X-band) to earth resources problems

    NASA Technical Reports Server (NTRS)

    Drake, B.; Shuchman, R. A.; Bryan, M. L.; Larson, R. W.; Liskow, C. L.; Rendleman, R. A.

    1974-01-01

    A multiplexed synthetic aperture Side-Looking Airborne Radar (SLAR) that simultaneously images the terrain with X-band (3.2 cm) and L-band (23.0 cm) radar wavelengths was developed. The Feasibility of using multiplexed SLAR to obtain useful information for earth resources purposes. The SLAR imagery, aerial photographs, and infrared imagery are examined to determine the qualitative tone and texture of many rural land-use features imaged. The results show that: (1) Neither X- nor L-band SLAR at moderate and low depression angles can directly or indirectly detect pools of water under standing vegetation. (2) Many of the urban and rural land-use categories present in the test areas can be identified and mapped on the multiplexed SLAR imagery. (3) Water resources management can be done using multiplexed SLAR. (4) Drainage patterns can be determined on both the X- and L-band imagery.

  6. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  7. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Astrophysics Data System (ADS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-11-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  8. Developmental validation of a Cannabis sativa STR multiplex system for forensic analysis.

    PubMed

    Howard, Christopher; Gilmore, Simon; Robertson, James; Peakall, Rod

    2008-09-01

    A developmental validation study based on recommendations of the Scientific Working Group on DNA Analysis Methods (SWGDAM) was conducted on a multiplex system of 10 Cannabis sativa short tandem repeat loci. Amplification of the loci in four multiplex reactions was tested across DNA from dried root, stem, and leaf sources, and DNA from fresh, frozen, and dried leaf tissue with a template DNA range of 10.0-0.01 ng. The loci were amplified and scored consistently for all DNA sources when DNA template was in the range of 10.0-1.0 ng. Some allelic dropout and PCR failure occurred in reactions with lower template DNA amounts. Overall, amplification was best using 10.0 ng of template DNA from dried leaf tissue indicating that this is the optimal source material. Cross species amplification was observed in Humulus lupulus for three loci but there was no allelic overlap. This is the first study following SWGDAM validation guidelines to validate short tandem repeat markers for forensic use in plants.

  9. 'Mitominis': multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.

    PubMed

    Eichmann, Cordula; Parson, Walther

    2008-09-01

    The traditional protocol for forensic mitochondrial DNA (mtDNA) analyses involves the amplification and sequencing of the two hypervariable segments HVS-I and HVS-II of the mtDNA control region. The primers usually span fragment sizes of 300-400 bp each region, which may result in weak or failed amplification in highly degraded samples. Here we introduce an improved and more stable approach using shortened amplicons in the fragment range between 144 and 237 bp. Ten such amplicons were required to produce overlapping fragments that cover the entire human mtDNA control region. These were co-amplified in two multiplex polymerase chain reactions and sequenced with the individual amplification primers. The primers were carefully selected to minimize binding on homoplasic and haplogroup-specific sites that would otherwise result in loss of amplification due to mis-priming. The multiplexes have successfully been applied to ancient and forensic samples such as bones and teeth that showed a high degree of degradation.

  10. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction.

    PubMed

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2013-04-08

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators

    PubMed Central

    Bodenmiller, Bernd; Zunder, Eli R.; Finck, Rachel; Chen, Tiffany J.; Savig, Erica S.; Bruggner, Robert V.; Simonds, Erin F.; Bendall, Sean C.; Sachs, Karen; Krutzik, Peter O.; Nolan, Garry P.

    2013-01-01

    The ability to comprehensively explore the impact of bio-active molecules on human samples at the single-cell level can provide great insight for biomedical research. Mass cytometry enables quantitative single-cell analysis with deep dimensionality, but currently lacks high-throughput capability. Here we report a method termed mass-tag cellular barcoding (MCB) that increases mass cytometry throughput by sample multiplexing. 96-well format MCB was used to characterize human peripheral blood mononuclear cell (PBMC) signaling dynamics, cell-to-cell communication, the signaling variability between 8 donors, and to define the impact of 27 inhibitors on this system. For each compound, 14 phosphorylation sites were measured in 14 PBMC types, resulting in 18,816 quantified phosphorylation levels from each multiplexed sample. This high-dimensional systems-level inquiry allowed analysis across cell-type and signaling space, reclassified inhibitors, and revealed off-target effects. MCB enables high-content, high-throughput screening, with potential applications for drug discovery, pre-clinical testing, and mechanistic investigation of human disease. PMID:22902532

  12. Scout-MRM: Multiplexed Targeted Mass Spectrometry-Based Assay without Retention Time Scheduling Exemplified by Dickeya dadantii Proteomic Analysis during Plant Infection.

    PubMed

    Rougemont, Blandine; Bontemps Gallo, Sébastien; Ayciriex, Sophie; Carrière, Romain; Hondermarck, Hubert; Lacroix, Jean Marie; Le Blanc, J C Yves; Lemoine, Jérôme

    2017-02-07

    Targeted mass spectrometry of a surrogate peptide panel is a powerful method to study the dynamics of protein networks, but chromatographic time scheduling remains a major limitation for dissemination and implementation of robust and large multiplexed assays. We unveil a Multiple Reaction Monitoring method (Scout-MRM) where the use of spiked scout peptides triggers complex transition lists, regardless of the retention time of targeted surrogate peptides. The interest of Scout-MRM method regarding the retention time independency, multiplexing capability, reproducibility, and putative interest in facilitating method transfer was illustrated by a 782-peptide-plex relative assay targeting 445 proteins of the phytopathogen Dickeya dadantii during plant infection.

  13. Frequency division multiplexed readout of TES detectors with baseband feedback

    NASA Astrophysics Data System (ADS)

    den Hartog, R.; Audley, M. D.; Beyer, J.; Bruijn, M. P.; de Korte, P.; Gottardi, L.; Hijmering, R.; Jackson, B.; Nieuwenhuizen, A.; van der Kuur, J.; van Leeuwen, B.-J.; Van Loon, D.

    2012-09-01

    SRON is developing an electronic system for the multiplexed read-out of an array of transition edge sensors (TES) by combining the techniques of frequency domain multiplexing (FDM) with base-band feedback (BBFB). The astronomical applications are the read-out of soft X-ray microcalorimeters and the far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In this paper we derive the requirements for the read-out system regarding noise and dynamic range in the context of the SAFARI instrument, and demonstrate that the current experimental prototype is capable of simultaneously locking 57 channels and complies with these requirements.

  14. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  15. Multiplex mass spectrometry imaging for latent fingerprints.

    PubMed

    Yagnik, Gargey B; Korte, Andrew R; Lee, Young Jin

    2013-01-01

    We have previously developed in-parallel data acquisition of orbitrap mass spectrometry (MS) and ion trap MS and/or MS/MS scans for matrix-assisted laser desorption/ionization MS imaging (MSI) to obtain rich chemical information in less data acquisition time. In the present study, we demonstrate a novel application of this multiplex MSI methodology for latent fingerprints. In a single imaging experiment, we could obtain chemical images of various endogenous and exogenous compounds, along with simultaneous MS/MS images of a few selected compounds. This work confirms the usefulness of multiplex MSI to explore chemical markers when the sample specimen is very limited. Copyright © 2013 John Wiley & Sons, Ltd.

  16. A multiplex real-time PCR assay for the identification and differentiation of Salmonella enterica serovar Typhimurium and monophasic serovar 4,[5],12:i:-.

    PubMed

    Prendergast, Deirdre M; Hand, Darren; Nί Ghallchóir, Eadaoin; McCabe, Evonne; Fanning, Seamus; Griffin, Margaret; Egan, John; Gutierrez, Montserrat

    2013-08-16

    Salmonella enterica subsp. enterica serovar 4,[5],12:i:- is considered to be a monophasic variant of Salmonella Typhimurium and is increasingly associated with human infections. The use of PCR for the unequivocal identification of strains identified by conventional serotyping as 4,[5],12:i:- has been recommended by the European Food Safety Authority (EFSA), in particular the conventional multiplex PCR developed by Tennant et al. (2010). An alternative protocol for the identification and differentiation of S. Typhimurium and S. Typhimurium-like strains, including its monophasic variants, based on a multiplex real-time PCR assay was developed in our laboratory. A panel of 206 Salmonella strains was used to validate our multiplex real-time PCR against the conventional multiplex PCR recommended by EFSA, i.e. 43 Salmonella strains of serovars other than Typhimurium and 163 routine isolates determined by slide agglutination serotyping to have an incomplete antigenic formula compatible with the S. Typhimurium formula 4,[5],12:i:1,2. Both methods correctly identified the 43 Salmonella strains as non S. Typhimurium. Among the 163 isolates of undetermined serovar by conventional serotyping, both PCR protocols identified 54 isolates as S. Typhimurium, 101 as monophasic S. Typhimurium and 8 as non-S. Typhimurium. Twenty isolates phenotypically lacking the phase-2 H antigen were positive for the fljB.1,2 gene. These strains have been recently described in the literature by other workers and have been referred to as "inconsistent" variants of S. Typhimurium. Antimicrobial resistance and phage typing were also performed on the S. Typhimurium isolates, including monophasic variants, and approximately half of the isolates identified as monophasic S. Typhimurium by our multiplex real-time PCR protocol were DT193 with the resistance pattern ASSuT. There was 100% concordance between the conventional PCR and the multiplex real-time PCR method developed in this study which proved that our protocol is equivalent to the one recommended by EFSA. In comparison to the conventional PCR, this new protocol is faster and is currently being applied routinely in our laboratory to all isolates that could potentially be S. Typhimurium. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. One-Step Multiplex RT-qPCR Assay for the Detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp.) capripneumoniae.

    PubMed

    Settypalli, Tirumala Bharani Kumar; Lamien, Charles Euloge; Spergser, Joachim; Lelenta, Mamadou; Wade, Abel; Gelaye, Esayas; Loitsch, Angelika; Minoungou, Germaine; Thiaucourt, Francois; Diallo, Adama

    2016-01-01

    Respiratory infections, although showing common clinical symptoms like pneumonia, are caused by bacterial, viral or parasitic agents. These are often reported in sheep and goats populations and cause huge economic losses to the animal owners in developing countries. Detection of these diseases is routinely done using ELISA or microbiological methods which are being reinforced or replaced by molecular based detection methods including multiplex assays, where detection of different pathogens is carried out in a single reaction. In the present study, a one-step multiplex RT-qPCR assay was developed for simultaneous detection of Capripoxvirus (CaPV), Peste de petits ruminants virus (PPRV), Pasteurella multocida (PM) and Mycoplasma capricolum ssp. capripneumonia (Mccp) in pathological samples collected from small ruminants with respiratory disease symptoms. The test performed efficiently without any cross-amplification. The multiplex PCR efficiency was 98.31%, 95.48%, 102.77% and 91.46% whereas the singleplex efficiency was 93.43%, 98.82%, 102.55% and 92.0% for CaPV, PPRV, PM and Mccp, respectively. The correlation coefficient was greater than 0.99 for all the targets in both multiplex and singleplex. Based on cycle threshold values, intra and inter assay variability, ranged between the limits of 2%-4%, except for lower concentrations of Mccp. The detection limits at 95% confidence interval (CI) were 12, 163, 13 and 23 copies/reaction for CaPV, PPRV, PM and Mccp, respectively. The multiplex assay was able to detect CaPVs from all genotypes, PPRV from the four lineages, PM and Mccp without amplifying the other subspecies of mycoplasmas. The discriminating power of the assay was proven by accurate detection of the targeted pathogen (s) by screening 58 viral and bacterial isolates representing all four targeted pathogens. Furthermore, by screening 81 pathological samples collected from small ruminants showing respiratory disease symptoms, CaPV was detected in 17 samples, PPRV in 45, and PM in six samples. In addition, three samples showed a co-infection of PPRV and PM. Overall, the one-step multiplex RT-qPCR assay developed will be a valuable tool for rapid detection of individual and co-infections of the targeted pathogens with high specificity and sensitivity.

  18. Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster

    DOE PAGES

    Sonnett, Matthew; Yeung, Eyan; Wuhr, Martin

    2018-03-09

    We present that quantitative analysis of proteomes across multiple time points, organelles, and perturbations is essential for understanding both fundamental biology and disease states. The development of isobaric tags (e.g. TMT) have enabled the simultaneous measurement of peptide abundances across several different conditions. These multiplexed approaches are promising in principle because of advantages in throughput and measurement quality. However, in practice existing multiplexing approaches suffer from key limitations. In its simple implementation (TMT-MS2), measurements are distorted by chemical noise leading to poor measurement accuracy. The current state-of-the-art (TMT-MS3) addresses this, but requires specialized quadrupole-iontrap-Orbitrap instrumentation. The complement reporter ion approachmore » (TMTc) produces high accuracy measurements and is compatible with many more instruments, like quadrupole-Orbitraps. However, the required deconvolution of the TMTc cluster leads to poor measurement precision. Here, we introduce TMTc+, which adds the modeling of the MS2-isolation step into the deconvolution algorithm. The resulting measurements are comparable in precision to TMT-MS3/MS2. The improved duty cycle, and lower filtering requirements make TMTc+ more sensitive than TMT-MS3 and comparable with TMT-MS2. At the same time, unlike TMT-MS2, TMTc+ is exquisitely able to distinguish signal from chemical noise even outperforming TMT-MS3. Lastly, we compare TMTc+ to quantitative label-free proteomics of total HeLa lysate and find that TMTc+ quantifies 7.8k versus 3.9k proteins in a 5-plex sample. At the same time the median coefficient of variation improves from 13% to 4%. Furthermore, TMTc+ advances quantitative proteomics by enabling accurate, sensitive, and precise multiplexed experiments on more commonly used instruments.« less

  19. Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnett, Matthew; Yeung, Eyan; Wuhr, Martin

    We present that quantitative analysis of proteomes across multiple time points, organelles, and perturbations is essential for understanding both fundamental biology and disease states. The development of isobaric tags (e.g. TMT) have enabled the simultaneous measurement of peptide abundances across several different conditions. These multiplexed approaches are promising in principle because of advantages in throughput and measurement quality. However, in practice existing multiplexing approaches suffer from key limitations. In its simple implementation (TMT-MS2), measurements are distorted by chemical noise leading to poor measurement accuracy. The current state-of-the-art (TMT-MS3) addresses this, but requires specialized quadrupole-iontrap-Orbitrap instrumentation. The complement reporter ion approachmore » (TMTc) produces high accuracy measurements and is compatible with many more instruments, like quadrupole-Orbitraps. However, the required deconvolution of the TMTc cluster leads to poor measurement precision. Here, we introduce TMTc+, which adds the modeling of the MS2-isolation step into the deconvolution algorithm. The resulting measurements are comparable in precision to TMT-MS3/MS2. The improved duty cycle, and lower filtering requirements make TMTc+ more sensitive than TMT-MS3 and comparable with TMT-MS2. At the same time, unlike TMT-MS2, TMTc+ is exquisitely able to distinguish signal from chemical noise even outperforming TMT-MS3. Lastly, we compare TMTc+ to quantitative label-free proteomics of total HeLa lysate and find that TMTc+ quantifies 7.8k versus 3.9k proteins in a 5-plex sample. At the same time the median coefficient of variation improves from 13% to 4%. Furthermore, TMTc+ advances quantitative proteomics by enabling accurate, sensitive, and precise multiplexed experiments on more commonly used instruments.« less

  20. Integration of Multiplexed Microfluidic Electrokinetic Concentrators with a Morpholino Microarray via Reversible Surface Bonding for Enhanced DNA Hybridization.

    PubMed

    Martins, Diogo; Wei, Xi; Levicky, Rastislav; Song, Yong-Ak

    2016-04-05

    We describe a microfluidic concentration device to accelerate the surface hybridization reaction between DNA and morpholinos (MOs) for enhanced detection. The microfluidic concentrator comprises a single polydimethylsiloxane (PDMS) microchannel onto which an ion-selective layer of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) was directly printed and then reversibly surface bonded onto a morpholino microarray for hybridization. Using this electrokinetic trapping concentrator, we could achieve a maximum concentration factor of ∼800 for DNA and a limit of detection of 10 nM within 15 min. In terms of the detection speed, it enabled faster hybridization by around 10-fold when compared to conventional diffusion-based hybridization. A significant advantage of our approach is that the fabrication of the microfluidic concentrator is completely decoupled from the microarray; by eliminating the need to deposit an ion-selective layer on the microarray surface prior to device integration, interfacing between both modules, the PDMS chip for electrokinetic concentration and the substrate for DNA sensing are easier and applicable to any microarray platform. Furthermore, this fabrication strategy facilitates a multiplexing of concentrators. We have demonstrated the proof-of-concept for multiplexing by building a device with 5 parallel concentrators connected to a single inlet/outlet and applying it to parallel concentration and hybridization. Such device yielded similar concentration and hybridization efficiency compared to that of a single-channel device without adding any complexity to the fabrication and setup. These results demonstrate that our concentrator concept can be applied to the development of a highly multiplexed concentrator-enhanced microarray detection system for either genetic analysis or other diagnostic assays.

  1. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR.

    PubMed

    Zhong, Qun; Bhattacharya, Smiti; Kotsopoulos, Steven; Olson, Jeff; Taly, Valérie; Griffiths, Andrew D; Link, Darren R; Larson, Jonathan W

    2011-07-07

    Quantitative polymerase chain reactions (qPCR) based on real-time PCR constitute a powerful and sensitive method for the analysis of nucleic acids. However, in qPCR, the ability to multiplex targets using differently colored fluorescent probes is typically limited to 4-fold by the spectral overlap of the fluorophores. Furthermore, multiplexing qPCR assays requires expensive instrumentation and most often lengthy assay development cycles. Digital PCR (dPCR), which is based on the amplification of single target DNA molecules in many separate reactions, is an attractive alternative to qPCR. Here we report a novel and easy method for multiplexing dPCR in picolitre droplets within emulsions-generated and read out in microfluidic devices-that takes advantage of both the very high numbers of reactions possible within emulsions (>10(6)) as well as the high likelihood that the amplification of only a single target DNA molecule will initiate within each droplet. By varying the concentration of different fluorogenic probes of the same color, it is possible to identify the different probes on the basis of fluorescence intensity. Adding multiple colors increases the number of possible reactions geometrically, rather than linearly as with qPCR. Accurate and precise copy numbers of up to sixteen per cell were measured using a model system. A 5-plex assay for spinal muscular atrophy was demonstrated with just two fluorophores to simultaneously measure the copy number of two genes (SMN1 and SMN2) and to genotype a single nucleotide polymorphism (c.815A>G, SMN1). Results of a pilot study with SMA patients are presented. This journal is © The Royal Society of Chemistry 2011

  2. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review

    PubMed Central

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-01-01

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM technologies in optical sensing industry. PMID:27589754

  3. Multiplex detection of quality indicator molecule targets in urine using programmable hairpin probes based on a simple double-T type microchip electrophoresis platform and isothermal polymerase-catalyzed target recycling.

    PubMed

    Zhou, Lingying; Gan, Ning; Wu, Yongxiang; Hu, Futao; Lin, Jianyuan; Cao, Yuting; Wu, Dazhen

    2018-05-29

    Recently, it has been crucial to be able to detect and quantify small molecular targets simultaneously in biological samples. Herein, a simple and conventional double-T type microchip electrophoresis (MCE) based platform for the multiplex detection of quality indicator molecule targets in urine, using ampicillin (AMPI), adenosine triphosphate (ATP) and estradiol (E2) as models, was developed. Several programmable hairpin probes (PHPs) were designed for detecting different targets and triggering isothermal polymerase-catalyzed target recycling (IPCTR) for signal amplification. Based on the target-responsive aptamer structure of PHP (Domain I), target recognition can induce PHP conformational transition and produce extension duplex DNA (dsDNA), assisted by primers & Bst polymerase. Afterwards, the target can be displaced to react with another PHP and initiate the next cycle. After several rounds of reaction, the dsDNA can be produced in large amounts by IPCTR. Three targets can be simultaneously converted to dsDNA fragments with different lengths, which can be separated and detected using MCE. Thus, a simple double-T type MCE based platform was successfully built for the homogeneous detection of multiplex targets in one channel. Under optimal conditions, the assay exhibited high throughput (48 samples per hour at most, not including reaction time) and sensitivity to three targets in urine with a detection limit of 1 nM (ATP), 0.05 nM (AMPI) and 0.1 nM (E2) respectively. The multiplex assay was successfully employed for the above three targets in several urine samples and combined the advantages of the high specificity of programmable hairpin probes, the excellent signal amplification of IPCTR, and the high through-put of MCE which can be employed for screening in biochemical analysis.

  4. Simultaneous Detection of 13 Key Bacterial Respiratory Pathogens by Combination of Multiplex PCR and Capillary Electrophoresis.

    PubMed

    Jiang, Lu Xi; Ren, Hong Yu; Zhou, Hai Jian; Zhao, Si Hong; Hou, Bo Yan; Yan, Jian Ping; Qin, Tian; Chen, Yu

    2017-08-01

    Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebacterium diphtheriae, and Streptococcus pyogenes. Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 152 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. This study revealed that the MPCE assay is a rapid, reliable, and high-throughput method with high specificity and sensitivity. This assay has great potential in the molecular epidemiological survey of respiratory pathogens. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  5. Advanced Spatial-Division Multiplexed Measurement Systems Propositions-From Telecommunication to Sensing Applications: A Review.

    PubMed

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-08-30

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM technologies in optical sensing industry.

  6. Development of a multiplexed readout with high position resolution for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; Choi, Yong; Kang, Jihoon; Jung, Jin Ho

    2017-04-01

    Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm3 LYSO, a 4×4 array of 3×3 mm2 silicon photomultiplier (SiPM) and 13.4×13.4 mm2 light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.

  7. Parallel confocal detection of single biomolecules using diffractive optics and integrated detector units.

    PubMed

    Blom, H; Gösch, M

    2004-04-01

    The past few years we have witnessed a tremendous surge of interest in so-called array-based miniaturised analytical systems due to their value as extremely powerful tools for high-throughput sequence analysis, drug discovery and development, and diagnostic tests in medicine (see articles in Issue 1). Terminologies that have been used to describe these array-based bioscience systems include (but are not limited to): DNA-chip, microarrays, microchip, biochip, DNA-microarrays and genome chip. Potential technological benefits of introducing these miniaturised analytical systems include improved accuracy, multiplexing, lower sample and reagent consumption, disposability, and decreased analysis times, just to mention a few examples. Among the many alternative principles of detection-analysis (e.g.chemiluminescence, electroluminescence and conductivity), fluorescence-based techniques are widely used, examples being fluorescence resonance energy transfer, fluorescence quenching, fluorescence polarisation, time-resolved fluorescence, and fluorescence fluctuation spectroscopy (see articles in Issue 11). Time-dependent fluctuations of fluorescent biomolecules with different molecular properties, like molecular weight, translational and rotational diffusion time, colour and lifetime, potentially provide all the kinetic and thermodynamic information required in analysing complex interactions. In this mini-review article, we present recent extensions aimed to implement parallel laser excitation and parallel fluorescence detection that can lead to even further increase in throughput in miniaturised array-based analytical systems. We also report on developments and characterisations of multiplexing extension that allow multifocal laser excitation together with matched parallel fluorescence detection for parallel confocal dynamical fluorescence fluctuation studies at the single biomolecule level.

  8. Simultaneous detection and differentiation of three Potyviridae viruses by a multiplex TaqMan real time RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay w...

  9. Dataset of proinflammatory cytokine and cytokine receptor gene expression in rainbow trout (Oncorhynchus mykiss) measured using a novel GeXP multiplex, RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A GeXP multiplex, RT-PCR assay was developed and optimized that simultaneously measures expression of a suite of immune-relevant genes in rainbow trout (Oncorhynchus mykiss), concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. The dataset ...

  10. A multiplex PCR assay for determination of mating type in isolates of the honey bee fungal pathogen, Ascosphaera apis

    USDA-ARS?s Scientific Manuscript database

    In this study we developed a multiplex PCR for identification of mating type idiomorphs in the filamentous fungus, Ascosphaera apis, the causative agent of chalkbrood disease in the honey bee (Apis melliffera). A combination of gene-specific primers was designed to amplify Mat1-1 and Mat1-2 gene fra...

  11. Improvement for identification of heterophile antibody interference and AFP hook effect in immunoassays with multiplex suspension bead array system.

    PubMed

    Wang, Yajie; Yu, Jinsheng; Ren, Yuan; Liu, Li; Li, Haowen; Guo, Anchen; Shi, Congning; Fang, Fang; Juehne, Twyla; Yao, Jianer; Yang, Enhuan; Zhou, Xuelei; Kang, Xixiong

    2013-11-15

    A variety of immunoassays including multiplex suspension bead array have been developed for tumor marker detections; however, these assays could be compromised in their sensitivity and specificity by well-known heterophile antibody interference and hook effect. Using Luminex® multiplex suspension bead arrays, we modified protocols with two newly-developed solutions that can identify heterophile antibody interference and AFP hook effect. Effectiveness of the two solutions was assessed in serum samples from patients. Concentrations of 9 tumor markers in heterophile antibody positive samples assayed with Solution A, containing murine monoclonal antibodies and mouse serum, were significantly reduced when compared with those false high signals assayed without Solution A (all p<0.01). With incorporation of Solution H (fluorescent beads linked with AFP antigen), a new strategy for identification of AFP hook effect was established, and with this strategy AFP hook effect was identified effectively in serum samples with very high levels of AFP. Two proprietary solutions improve the identification of heterophile antibody interference and AFP hook effect. With these solutions, multiplex suspension bead arrays provide more reliable testing results in tumor marker detection where complex clinical serum samples are used. © 2013.

  12. TiO2 Nanolayer-Enhanced Fluorescence for Simultaneous Multiplex Mycotoxin Detection by Aptamer Microarrays on a Porous Silicon Surface.

    PubMed

    Liu, Rui; Li, Wei; Cai, Tingting; Deng, Yang; Ding, Zhi; Liu, Yan; Zhu, Xuerui; Wang, Xin; Liu, Jie; Liang, Baowen; Zheng, Tiesong; Li, Jianlin

    2018-05-02

    A new aptamer microarray method on the TiO 2 -porous silicon (PSi) surface was developed to simultaneously screen multiplex mycotoxins. The TiO 2 nanolayer on the surface of PSi can enhance the fluorescence intensity 14 times than that of the thermally oxidized PSi. The aptamer fluorescence signal recovery principle was performed on the TiO 2 -PSi surface by hybridization duplex strand DNA from the mycotoxin aptamer and antiaptamer, respectively, labeled with fluorescence dye and quencher. The aptamer microarray can simultaneously screen for multiplex mycotoxins with a dynamic linear detection range of 0.1-10 ng/mL for ochratoxin A (OTA), 0.01-10 ng/mL for aflatoxins B 1 (AFB 1 ), and 0.001-10 ng/mL for fumonisin B 1 (FB 1 ) and limits of detection of 15.4, 1.48, and 0.21 pg/mL for OTA, AFB 1 , and FB 1 , respectively. The newly developed method shows good specificity and recovery rates. This method can provide a simple, sensitive, and cost-efficient platform for simultaneous screening of multiplex mycotoxins and can be easily expanded to the other aptamer-based protocol.

  13. Development and application of a quantitative multiplexed small GTPase activity assay using targeted proteomics.

    PubMed

    Zhang, Cheng-Cheng; Li, Ru; Jiang, Honghui; Lin, Shujun; Rogalski, Jason C; Liu, Kate; Kast, Juergen

    2015-02-06

    Small GTPases are a family of key signaling molecules that are ubiquitously expressed in various types of cells. Their activity is often analyzed by western blot, which is limited by its multiplexing capability, the quality of isoform-specific antibodies, and the accuracy of quantification. To overcome these issues, a quantitative multiplexed small GTPase activity assay has been developed. Using four different binding domains, this assay allows the binding of up to 12 active small GTPase isoforms simultaneously in a single experiment. To accurately quantify the closely related small GTPase isoforms, a targeted proteomic approach, i.e., selected/multiple reaction monitoring, was developed, and its functionality and reproducibility were validated. This assay was successfully applied to human platelets and revealed time-resolved coactivation of multiple small GTPase isoforms in response to agonists and differential activation of these isoforms in response to inhibitor treatment. This widely applicable approach can be used for signaling pathway studies and inhibitor screening in many cellular systems.

  14. Looking for new biomarkers of skin wound vitality with a cytokine-based multiplex assay: preliminary study.

    PubMed

    Peyron, Pierre-Antoine; Baccino, Éric; Nagot, Nicolas; Lehmann, Sylvain; Delaby, Constance

    2017-02-01

    Determination of skin wound vitality is an important issue in forensic practice. No reliable biomarker currently exists. Quantification of inflammatory cytokines in injured skin with MSD ® technology is an innovative and promising approach. This preliminary study aims to develop a protocol for the preparation and the analysis of skin samples. Samples from ante mortem wounds, post mortem wounds, and intact skin ("control samples") were taken from corpses at the autopsy. After an optimization of the pre-analytical protocol had been performed in terms of skin homogeneisation and proteic extraction, the concentration of TNF-α was measured in each sample with the MSD ® approach. Then five other cytokines of interest (IL-1β, IL-6, IL-10, IL-12p70 and IFN-γ) were simultaneously quantified with a MSD ® multiplex assay. The optimal pre-analytical conditions consist in a proteic extraction from a 6 mm diameter skin sample, in a PBS buffer with triton 0,05%. Our results show the linearity and the reproductibility of the TNF-α quantification with MSD ® , and an inter- and intra-individual variability of the concentrations of proteins. The MSD ® multiplex assay is likely to detect differential skin concentrations for each cytokine of interest. This preliminary study was used to develop and optimize the pre-analytical and analytical conditions of the MSD ® method using injured and healthy skin samples, for the purpose of looking for and identifying the cytokine, or the set of cytokines, that may be biomarkers of skin wound vitality.

  15. A multiplex PCR for detection of six viruses in ducks.

    PubMed

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  16. Development of the multiwavelength monolithic integrated fiber optics terminal

    NASA Technical Reports Server (NTRS)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  17. Development of high damage threshold multilayer thin film beam combiner for laser application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nand, Mangla, E-mail: mnand@rrcat.gov.in; Babita,; Jena, S.

    2016-05-23

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm{sup 2} at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  18. Development of high damage threshold multilayer thin film beam combiner for laser application

    NASA Astrophysics Data System (ADS)

    Nand, Mangla; Babita, Jena, S.; Tokas, R. B.; Rajput, P.; Mukharjee, C.; Thakur, S.; Jha, S. N.; Sahoo, N. K.

    2016-05-01

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm2 at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  19. Toward Precision Medicine: A Cancer Molecular Subtyping Nano-Strategy for RNA Biomarkers in Tumor and Urine.

    PubMed

    Koo, Kevin M; Wee, Eugene J H; Mainwaring, Paul N; Wang, Yuling; Trau, Matt

    2016-12-01

    Cancer is a heterogeneous disease which manifests as different molecular subtypes due to the complex nature of tumor initiation, progression, and metastasis. The concept of precision medicine aims to exploit this cancer heterogeneity by incorporating diagnostic technology to characterize each cancer patient's molecular subtype for tailored treatments. To characterize cancer molecular subtypes accurately, a suite of multiplexed bioassays have currently been developed to detect multiple oncogenic biomarkers. Despite the reliability of current multiplexed detection techniques, novel strategies are still needed to resolve limitations such as long assay time, complex protocols, and difficulty in interpreting broad overlapping spectral peaks of conventional fluorescence readouts. Herein a rapid (80 min) multiplexed platform strategy for subtyping prostate cancer tumor and urine samples based on their RNA biomarker profiles is presented. This is achieved by combining rapid multiplexed isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) of target RNA biomarkers with surface-enhanced Raman spectroscopy (SERS) nanotags for "one-pot" readout. This is the first translational application of a RT-RPA/SERS-based platform for multiplexed cancer biomarker detection to address a clinical need. With excellent sensitivity of 200 zmol (100 copies) and specificity, we believed that this platform methodology could be a useful tool for rapid multiplexed subtyping of cancers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Epidemiology of Epstein-Barr virus, cytomegalovirus, and Kaposi's sarcoma-associated herpesvirus infections in peripheral blood leukocytes revealed by a multiplex PCR assay.

    PubMed

    Nishiwaki, Morie; Fujimuro, Masahiro; Teishikata, Yasuhiro; Inoue, Hisanori; Sasajima, Hitoshi; Nakaso, Kazuhiro; Nakashima, Kenji; Sadanari, Hidetaka; Yamamoto, Tomohiro; Fujiwara, Yoshie; Ogawa, Naoki; Yokosawa, Hideyoshi

    2006-12-01

    A multiplex polymerase chain reaction (PCR) has been developed for the simultaneous detection of Epstein-Barr virus (EBV), cytomegalovirus (CMV), and Kaposi's sarcoma-associated herpesvirus (KSHV) in a clinical sample. Primers of multiplex PCR were designed to amplify specific regions of the EBV EBNA1, CMV IE2, and KSHV LANA genes. This multiplex PCR assay was found to have detection sensitivities of 1-10 copies of purified viral DNA cloned into the plasmid. To assess diagnostic and pre-clinical applications with this method, we utilized KSHV-positive primary effusion lymphoma (PEL) cells, EBV-positive Burkitt's lymphoma cells, CMV-infected fibroblast cells, and clinically prepared peripheral blood leukocytes (PBLs) that had been infected with viruses. We found that this multiplex PCR assay has high sensitivity and specificity for simultaneous detection of EBV, CMV, and KSHV genomes in a single amplification from a clinical material. Using this multiplex PCR assay, we investigated the prevalence of EBV, CMV, and KSHV in PBL samples from normal Japanese randomly selected. KSHV, EBV, and CMV genomes were detected in samples from 2 (0.2%), 377 (39.5%), and 27 (2.8%) of the 953 blood donors, respectively. Interestingly, both EBV and CMV genomes were detected in samples from all KSHV-positive donors. (c) 2006 Wiley-Liss, Inc.

  1. Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for GMO screening--assay for simultaneous detection of five genetically modified cotton events and species.

    PubMed

    Nadal, Anna; Esteve, Teresa; Pla, Maria

    2009-01-01

    A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (<1.7% of false classification rate), with limit of detection values of 0.1% for each event, which were also achieved with simulated mixtures at different relative percentages of targets. The assay was further combined with a second multiplex PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.

  2. A multiplexable, microfluidic platform for the rapid quantitation of a biomarker panel for early ovarian cancer detection at the point-of-care

    PubMed Central

    Shadfan, Basil H.; Simmons, Archana R.; Simmons, Glennon W.; Ho, Andy; Wong, Jorge; Lu, Karen H.; Bast, Robert C.; McDevitt, John T.

    2015-01-01

    Point-of-care (POC) diagnostic platforms have the potential to enable low-cost, large-scale screening. As no single biomarker is shed by all ovarian cancers, multiplexed biomarker panels promise improved sensitivity and specificity to address the unmet need for early detection of ovarian cancer. We have configured the programmable bio-nano-chip (p-BNC) - a multiplexable, microfluidic, modular platform - to quantify a novel multimarker panel comprising CA125, HE4, MMP-7 and CA72-4. The p-BNC is a bead-based immunoanalyzer system with a credit-card-sized footprint that integrates automated sample metering, bubble and debris removal, reagent storage and waste disposal, permitting POC analysis. Multiplexed p-BNC immunoassays demonstrated high specificity, low cross-reactivity, low limits of detection suitable for early detection, and a short analysis time of 43 minutes. Day-to-day variability, a critical factor for longitudinally monitoring biomarkers, ranged between 5.4–10.5%, well below the biological variation for all four markers. Biomarker concentrations for 31 late-stage sera correlated well (R2 = 0.71 to 0.93 for various biomarkers) with values obtained on the Luminex® platform. In a 31 patient cohort encompassing early- and late-stage ovarian cancers along with benign and healthy controls, the multiplexed p-BNC panel was able to distinguish cases from controls with 68.7% sensitivity at 80% specificity. Utility for longitudinal biomarker monitoring was demonstrated with pre-diagnostic sera from 2 cases and 4 controls. Taken together, the p-BNC shows strong promise as a diagnostic tool for large-scale screening that takes advantage of faster results and lower costs while leveraging possible improvement in sensitivity and specificity from biomarker panels. PMID:25388014

  3. Forensic validation of the PowerPlex® ESI 16 STR Multiplex and comparison of performance with AmpFlSTR® SGM Plus®.

    PubMed

    Tucker, Valerie C; Kirkham, Amanda J; Hopwood, Andrew J

    2012-05-01

    We describe the forensic validation of Promega's PowerPlex® European Standard Investigator 16 (ESI 16) multiplex kit and compare results generated with the AmpFlSTR® SGM Plus® (SGM+) multiplex. ESI 16 combines the loci contained within the SGM+ multiplex with five additional loci: D2S441, D10S1248, D22S1045, D1S1656, and D12S391. A relative reduction in amplicon size of the SGM+ loci facilitates an increased robustness and amplification success of these amplicons with degraded DNA samples. Tests performed herein supplement ESI 16 data published previously with sensitivity, profile quality, mock casework, inhibitor and mixture study data collected in our laboratories in alignment with our internal technical and quality guidelines and those issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM), the DNA Advisory Board (DAB) and the DNA working group (DNAWG) of the European Network of Forensic Science Institutes (ENFSI). Full profiles were routinely generated from a fully heterozygous single source DNA template using 62.5 pg for ESI 16 and 500 pg for SGM+. This increase in sensitivity has a consequent effect on mixture analyses and the detection of minor mixture components. The improved PCR chemistry confers enhanced tolerance to high levels of laboratory prepared inhibitors compared with SGM+ results. In summary, our results demonstrate that the ESI 16 multiplex kit is more robust and sensitive compared with SGM+ and will be a suitable replacement system for the analysis of forensic DNA samples providing compliance with the European standard set of STR loci.

  4. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles

    PubMed Central

    Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Johnston, Ian C. D.; Bosio, Andreas; Schauss, Astrid; Wild, Stefan

    2016-01-01

    The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions. PMID:26901056

  5. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    DOE PAGES

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; ...

    2016-01-27

    We report that wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other noninvasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanicallymore » flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Lastly, our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plasticbased sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.« less

  7. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin

    We report that wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other noninvasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanicallymore » flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Lastly, our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plasticbased sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.« less

  8. Temporal Multimode Storage of Entangled Photon Pairs

    NASA Astrophysics Data System (ADS)

    Tiranov, Alexey; Strassmann, Peter C.; Lavoie, Jonathan; Brunner, Nicolas; Huber, Marcus; Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.; Marsili, Francesco; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas

    2016-12-01

    Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.

  9. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6

    PubMed Central

    Gootenberg, Jonathan S.; Abudayyeh, Omar O.; Kellner, Max J.; Joung, Julia; Collins, James J.; Zhang, Feng

    2018-01-01

    Rapid detection of nucleic acids is integral for clinical diagnostics and biotechnological applications. We recently developed a platform termed SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing) that combines isothermal pre-amplification with Cas13 to detect single molecules of RNA or DNA. Through characterization of CRISPR enzymology and application development, we report here four advances integrated into SHERLOCKv2: 1) 4-channel single reaction multiplexing using orthogonal CRISPR enzymes; 2) quantitative measurement of input down to 2 aM; 3) 3.5-fold increase in signal sensitivity by combining Cas13 with Csm6, an auxilary CRISPR-associated enzyme; and 4) lateral flow read-out. SHERLOCKv2 can detect Dengue or Zika virus ssRNA as well as mutations in patient liquid biopsy samples via lateral flow, highlighting its potential as a multiplexable, portable, rapid, and quantitative detection platform of nucleic acids. PMID:29449508

  10. Differentiation of Campylobacter jejuni and Campylobacter coli Using Multiplex-PCR and High Resolution Melt Curve Analysis

    PubMed Central

    Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H.; Chenu, Jeremy; Groves, Peter; Ayton, Michelle; Raidal, Shane; Devi, Aruna; Vanniasinkam, Thiru; Ghorashi, Seyed A.

    2015-01-01

    Campylobacter spp. are important causes of bacterial gastroenteritis in humans in developed countries. Among Campylobacter spp. Campylobacter jejuni (C. jejuni) and C. coli are the most common causes of human infection. In this study, a multiplex PCR (mPCR) and high resolution melt (HRM) curve analysis were optimized for simultaneous detection and differentiation of C. jejuni and C. coli isolates. A segment of the hippuricase gene (hipO) of C. jejuni and putative aspartokinase (asp) gene of C. coli were amplified from 26 Campylobacter isolates and amplicons were subjected to HRM curve analysis. The mPCR-HRM was able to differentiate between C. jejuni and C. coli species. All DNA amplicons generated by mPCR were sequenced. Analysis of the nucleotide sequences from each isolate revealed that the HRM curves were correlated with the nucleotide sequences of the amplicons. Minor variation in melting point temperatures of C. coli or C. jejuni isolates was also observed and enabled some intraspecies differentiation between C. coli and/or C. jejuni isolates. The potential of PCR-HRM curve analysis for the detection and speciation of Campylobacter in additional human clinical specimens and chicken swab samples was also confirmed. The sensitivity and specificity of the test were found to be 100% and 92%, respectively. The results indicated that mPCR followed by HRM curve analysis provides a rapid (8 hours) technique for differentiation between C. jejuni and C. coli isolates. PMID:26394042

  11. Molecular prey identification in Central European piscivores.

    PubMed

    Thalinger, Bettina; Oehm, Johannes; Mayr, Hannes; Obwexer, Armin; Zeisler, Christiane; Traugott, Michael

    2016-01-01

    Diet analysis is an important aspect when investigating the ecology of fish-eating animals and essential for assessing their functional role in food webs across aquatic and terrestrial ecosystems. The identification of fish remains in dietary samples, however, can be time-consuming and unsatisfying using conventional morphological analysis of prey remains. Here, we present a two-step multiplex PCR system, comprised of six assays, allowing for rapid, sensitive and specific detection of fish DNA in dietary samples. This approach encompasses 78 fish and lamprey species native to Central European freshwaters and enables the identification of 31 species, six genera, two families, two orders and two fish family clusters. All targeted taxa were successfully amplified from 25 template molecules, and each assay was specific when tested against a wide range of invertebrates and vertebrates inhabiting aquatic environments. The applicability of the multiplex PCR system was evaluated in a feeding trial, wherein it outperformed morphological prey analysis regarding species-specific prey identification in faeces of Eurasian otters. Additionally, a wide spectrum of fish species was detected in field-collected faecal samples and regurgitated pellets of Common Kingfishers and Great Cormorants, demonstrating the broad applicability of the approach. In conclusion, this multiplex PCR system provides an efficient, easy to use and cost-effective tool for assessing the trophic ecology of piscivores in Central Europe. Furthermore, the multiplex PCRs and the primers described therein will be applicable wherever DNA of the targeted fish species needs to be detected at high sensitivity and specificity. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  12. Multiplexed microimmunoassays on a digital versatile disk.

    PubMed

    Morais, Sergi; Tortajada-Genaro, Luis A; Arnandis-Chover, Tania; Puchades, Rosa; Maquieira, Angel

    2009-07-15

    Multiplexed microimmunoassays for five critical compounds were developed using a digital versatile disk (DVD) as an analytical support and detecting technology. To this end, coating conjugates were adsorbed on the polycarbonate face of the disk; a pool of specific antibodies, gold labeled secondary antibodies, and silver amplification were addressed for developing the assays. The detection principle is based on the capture of attenuated analog signals with the disk drive that were proportional to optical density of the immunoreaction product. The multiplexed assay achieved detection limits (IC10) of 0.06, 0.25, 0.37, 0.16, and 0.10 microg/L, sensitivities of (IC50) 0.54, 1.54, 2.62, 2.02, and 5.9 microg/L, and dynamic ranges of 2 orders of magnitude for atrazine, chlorpyrifos, metolachlor, sulfathiazole, and tetracycline, respectively. The features of the methodology were verified by analyzing natural waters and compared with reference chromatographic methods, showing its potential for high-throughput multiplexed screening applications. Analytes of different chemical nature (pesticides and antibiotics) were directly quantified without sample treatment or preconcentration in a total time of 30 min with similar sensitivity and selectivity to the ELISA plate format using the same immunoreagents. The multianalyte capabilities of immunoassaying methods developed with digital disk and drive demonstrated the competitiveness to quantify targets that require different sample treatment and instrumentation by chromatographic methods.

  13. OzPythonPlex: An optimised forensic STR multiplex assay set for the Australasian carpet python (Morelia spilota).

    PubMed

    Ciavaglia, Sherryn; Linacre, Adrian

    2018-05-01

    Reptile species, and in particular snakes, are protected by national and international agreements yet are commonly handled illegally. To aid in the enforcement of such legislation, we report on the development of three 11-plex assays from the genome of the carpet python to type 24 loci of tetra-nucleotide and penta-nucleotide repeat motifs (pure, compound and complex included). The loci range in size between 70 and 550 bp. Seventeen of the loci are newly characterised with the inclusion of seven previously developed loci to facilitate cross-comparison with previous carpet python genotyping studies. Assays were optimised in accordance with human forensic profiling kits using one nanogram template DNA. Three loci are included in all three of the multiplex reactions as quality assurance markers, to ensure sample identity and genotyping accuracy is maintained across the three profiling assays. Allelic ladders have been developed for the three assays to ensure consistent and precise allele designation. A DNA reference database of allele frequencies is presented based on 249 samples collected from throughout the species native range. A small number of validation tests are conducted to demonstrate the utility of these multiplex assays. We suggest further appropriate validation tests that should be conducted prior to the application of the multiplex assays in criminal investigations involving carpet pythons. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. High-Throughput Multiplexed Quantitation of Protein Aggregation and Cytotoxicity in a Huntington’s Disease Model

    PubMed Central

    Titus, Steven A; Southall, Noel; Marugan, Juan; Austin, Christopher P; Zheng, Wei

    2012-01-01

    A hallmark of Huntington’s disease is the presence of a large polyglutamine expansion in the first exon of the Huntingtin protein and the propensity of protein aggregation by the mutant proteins. Aberrant protein aggregation also occurs in other polyglutamine expansion disorders, as well as in other neurodegenerative diseases including Parkinson’s, Alzheimer’s, and prion diseases. However, the pathophysiological role of these aggregates in the cell death that characterizes the diseases remains unclear. Identification of small molecule probes that modulate protein aggregation and cytotoxicity caused by aggregated proteins may greatly facilitate the studies on pathogenesis of these diseases and potentially lead to development of new therapies. Based on a detergent insoluble property of the Huntingtin protein aggregates, we have developed a homogenous assay to rapidly quantitate the levels of protein aggregates in a cellular model of Huntington’s disease. The protein aggregation assay has also been multiplexed with a protease release assay for the measurement of cytotoxicity resulting from aggregated proteins in the same cells. Through a testing screen of a compound library, we have demonstrated that this multiplexed cytotoxicity and protein aggregation assay has ability to identify active compounds that prevent cell death and/or modulate protein aggregation in cells of the Huntington’s disease model. Therefore, this multiplexed screening approach is also useful for development of high-throughput screening assays for other neurodegenerative diseases involving protein aggregation. PMID:23346268

  15. Development of silicon photonic microring resonator biosensors for multiplexed cytokine assays and in vitro diagnostics

    NASA Astrophysics Data System (ADS)

    Luchansky, Matthew Sam

    In order to guide critical care therapies that are personalized to a patient's unique disease state, a diagnostic or theranostic medical device must quickly provide a detailed biomolecular understanding of disease onset and progression. This detailed molecular understanding of cellular processes and pathways requires the ability to measure multiple analytes in parallel. Though many traditional sensing technologies for biomarker analysis and fundamental biological studies (i.e. enzyme-linked immunosorbent assays, real-time polymerase chain reaction, etc.) rely on single-parameter measurements, it has become increasingly clear that the inherent complexity of many human illnesses and pathways necessitates quantitative and multiparameter analysis of biological samples. Currently used analytical methods are deficient in that they often provide either highly quantitative data for a single biomarker or qualitative data for many targets, but methods that simultaneously provide highly quantitative analysis of many targets have yet to be adequately developed. Fields such as medical diagnostics and cellular biology would benefit greatly from a technology that enables rapid, quantitative and reproducible assays for many targets within a single sample. In an effort to fill this unmet need, this doctoral dissertation describes the development of a clinically translational biosensing technology based on silicon photonics and developed in the chemistry research laboratory of Ryan C. Bailey. Silicon photonic microring resonators, a class of high-Q optical sensors, represent a promising platform for rapid, multiparameter in vitro measurements. The original device design utilizes 32-ring arrays for real-time biomolecular sensing without fluorescent labels, and these optical biosensors display great potential for more highly multiplexed (100s-1000s) measurements based on the impressive scalability of silicon device fabrication. Though this technology can be used to detect a variety of molecules, this dissertation establishes the utility of microring resonator chips for multiparameter analysis of several challenging protein targets in cell cultures, human blood sera, and other clinical samples such as cerebrospinal fluid. Various sandwich immunoassay formats for diverse protein analytes are described herein, but the bulk of this dissertation focuses on applying the technology to cytokine analysis. Cytokines are small signaling proteins that are present in serum and cell secretomes at concentrations in the pg/mL or ng/mL range. Cytokines are very challenging to quantitate due to their low abundance and small size, but play important roles in a variety of immune response and inflammatory pathways; cytokine quantitation is thus important in fundamental biological studies and diagnostics, and complex and overlapping cytokine roles make multiplexed measurements especially vital. In a typical experiment, microfluidics are used to spatially control chip functionalization by directing capture antibodies against a variety of protein targets to groups of microring sensors. In each case, binding of analytes to the rings causes a change in the local refractive index that is transduced into a real-time, quantitative optical signal. This photonic sensing modality is based on the interaction of the propagating evanescent field with molecules near the ring surface. Since each microring sensor in the array is monitored independently, this technology allows multiple proteins to be quantified in parallel from a single sample. This dissertation describes the fabrication, characterization, development, and application of silicon photonic microring resonator technology to multiplexed protein measurements in a variety of biological systems. Chapter 1 introduces the field of high-Q optical sensors and places microring resonator technology within the broader context of related whispering gallery mode devices. The final stages of cleanroom device fabrication, in which 8" silicon wafers that contain hundreds of ring resonator arrays are transformed into individual functional chips, are described in Chapter 2. Chapter 3 characterizes the physical and optical properties of the microring resonator arrays, especially focusing on the evanescent field profile and mass sensitivity metrics. Chapter 4 demonstrates the ability to apply ring resonator technology to cytokine detection and T cell secretion analysis. Chapter 5 builds on the initial cytokine work to demonstrate the simultaneous detection of multiple cytokines with higher throughput to enable studies of T cell differentiation. In preparation for reaching the goal of cytokine analysis in clinical samples, Chapter 6 describes magnetic bead-based signal enhancement of sandwich immunoassays for serum analysis. Additional examples of the utility of nanoparticles and sub-micron beads for signal amplification are described in Chapter 7, also demonstrating the ability to monitor single bead binding events. Chapter 8 describes an alternative cytokine signal enhancement strategy based on enzymatic amplification for human cerebrospinal fluid (CSF) analysis. Chapter 9 adds work with other CSF protein targets that are relevant to the continuing development of a multiparameter Alzheimer's Disease diagnostic chip. Future directions for multiplexed protein analysis as it pertains to important immunological studies and in vitro diagnostic applications are defined in Chapter 10. (Abstract shortened by UMI.).

  16. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.

    PubMed

    Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R

    2015-10-01

    Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.

  17. Applications of the DOE/NASA wind turbine engineering information system

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Spera, D. A.

    1981-01-01

    A statistical analysis of data obtained from the Technology and Engineering Information Systems was made. The systems analyzed consist of the following elements: (1) sensors which measure critical parameters (e.g., wind speed and direction, output power, blade loads and component vibrations); (2) remote multiplexing units (RMUs) on each wind turbine which frequency-modulate, multiplex and transmit sensor outputs; (3) on-site instrumentation to record, process and display the sensor output; and (4) statistical analysis of data. Two examples of the capabilities of these systems are presented. The first illustrates the standardized format for application of statistical analysis to each directly measured parameter. The second shows the use of a model to estimate the variability of the rotor thrust loading, which is a derived parameter.

  18. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis.

    PubMed

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya

    2017-09-18

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.

  19. Development and Validation of a Multiplex PCR for Detection of Scedosporium spp. in Respiratory Tract Specimens from Patients with Cystic Fibrosis▿

    PubMed Central

    Harun, Azian; Blyth, Christopher C.; Gilgado, Felix; Middleton, Peter; Chen, Sharon C.-A.; Meyer, Wieland

    2011-01-01

    The emergence of Scedosporium infections in diverse groups of individuals, which are often treatment refractory, warrants timely and accurate laboratory diagnosis. Species- or group-specific primers based on internal transcribed spacer (ITS) sequence polymorphisms were designed for Scedosporium aurantiacum, Scedosporium dehoogii, Scedosporium prolificans, Pseudallescheria boydii species complex (former clade 5)/Pseudallescheria apiosperma (formerly classified as S. apiospermum sensu lato) and Pseudallescheria minutispora. Primers for S. aurantiacum, S. prolificans, and P. boydii species complex/P. apiosperma were incorporated into a multiplex PCR assay for the detection and identification of the three major clinically important Scedosporium species and validated using sputum specimens collected from patients seen at a major Australian cystic fibrosis clinic. The multiplex PCR assay showed 100% specificity in identifying the three major clinically relevant Scedosporium species from pure culture. When evaluated using DNA extracts from sputa, sensitivity and specificity of the multiplex PCR assay were 62.1% and 97.2%, respectively. This highly species-specific multiplex PCR assay offers a rapid and simple method of detection of the most clinically important Scedosporium species in respiratory tract specimens. PMID:21325557

  20. Challenges in designing a Taqman-based multiplex assay for the simultaneous detection of Herpes simplex virus types 1 and 2 and Varicella-zoster virus.

    PubMed

    Weidmann, Manfred; Armbruster, Katrin; Hufert, Frank T

    2008-08-01

    To optimise molecular detection of herpesviruses an internally controlled multiplex Taqman-PCR for the detection of Herpes simplex virus 1 (HSV1), Herpes simplex virus 2 (HSV2) and Varicella-zoster virus (VZV) was developed. The selection of the dye combination working on the ABI 7700 cycler for this multiplex PCR revealed crosstalk phenomena between several combinations of reference dyes and reporter dyes. A final dye combination with CY5 as reference dye and FAM/JOE/TXR as reporter dyes was selected. The influence of the concentration of the internal positive control (IPC) concentration on the quantitative results of HSV1, HSV2 and VZV positive patient samples was analysed. The results indicate that high IPC concentrations are detrimental for the sensitivity of the multiplex assay and that the presence of the IPC molecule narrows the dynamic range of the duplex PCRs between any of the virus PCRs and the IPC-PCR. The optimised multiplex assay detecting HSV1, HSV2 and VZV using 10(3) IPC molecules showed a performance and sensitivity comparable to that of the individual assays.

  1. Miniaturized, on-head, invasive electrode connector integrated EEG data acquisition system.

    PubMed

    Ives, John R; Mirsattari, Seyed M; Jones, D

    2007-07-01

    Intracranial electroencephalogram (EEG) monitoring involves recording multi-contact electrodes. The current systems require separate wires from each recording contact to the data acquisition unit resulting in many connectors and cables. To overcome limitations of such systems such as noise, restrictions in patient mobility and compliance, we developed a miniaturized EEG monitoring system with the amplifiers and multiplexers integrated into the electrode connectors and mounted on the head. Small, surface-mounted instrumentation amplifiers, coupled with 8:1 analog multiplexers, were assembled into 8-channel modular units to connect to 16:1 analog multiplexer manifold to create a small (55 cm(3)) head-mounted 128-channel system. A 6-conductor, 30 m long cable was used to transmit the EEG signals from the patient to the remote data acquisition system. Miniaturized EEG amplifiers and analog multiplexers were integrated directly into the electrode connectors. Up to 128-channels of EEG were amplified and analog multiplexed directly on the patient's head. The amplified EEG data were obtained over one long wire. A miniaturized system of invasive EEG recording has the potential to reduce artefact, simplify trouble-shooting, lower nursing care and increase patient compliance. Miniaturization technology improves intracranial EEG monitoring and leads to >128-channel capacity.

  2. Mini-midi-mito: adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples.

    PubMed

    Berger, Cordula; Parson, Walther

    2009-06-01

    The degradation state of some biological traces recovered from the crime scene requires the amplification of very short fragments to attain a useful mitochondrial (mt)DNA sequence. We have previously introduced two mini-multiplex assays that amplify 10 overlapping control region (CR) fragments in two separate multiplex PCRs, which brought successful CR consensus sequences from even highly degraded DNA extracts. This procedure requires a total of 20 sequencing reactions per sample, which is laborious and cost intensive. For only moderately degraded samples that we encounter more frequently with typical mtDNA casework material, we developed two new multiplex assays that use a subset of the mini-amplicon primers but embrace larger fragments (midis) and require only 10 sequencing reactions to build a double-stranded CR consensus sequence. We used a preceding mtDNA quantitation step by real-time PCR with two different target fragments (143 and 283 bp) that roughly correspond to the average fragment sizes of the different multiplex approaches to estimate size-dependent mtDNA quantities and to aid the choice of the appropriate PCR multiplexes with respect to quality of the results and required costs.

  3. A method of multiplex PCR for detection of field released Beauveria bassiana, a fungal entomopathogen applied for pest management in jute (Corchorus olitorius).

    PubMed

    Biswas, Chinmay; Dey, Piyali; Gotyal, B S; Satpathy, Subrata

    2015-04-01

    The fungal entomopathogen Beauveria bassiana is a promising biocontrol agent for many pests. Some B. bassiana strains have been found effective against jute pests. To monitor the survival of field released B. bassiana a rapid and efficient detection technique is essential. Conventional methods such as plating method or direct culture method which are based on cultivation on selective media followed by microscopy are time consuming and not so sensitive. PCR based methods are rapid, sensitive and reliable. A single primer PCR may fail to amplify some of the strains. However, multiplex PCR increases the possibility of detection as it uses multiple primers. Therefore, in the present investigation a multiplex PCR protocol was developed by multiplexing three primers SCA 14, SCA 15 and SCB 9 to detect field released B. bassiana strains from soil as well as foliage of jute field. Using our multiplex PCR protocol all the five B. bassiana strains could be detected from soil and three strains viz., ITCC 6063, ITCC 4563 and ITCC 4796 could be detected even from the crop foliage after 45 days of spray.

  4. Enzyme catalysis-electrophoresis titration for multiplex enzymatic assay via moving reaction boundary chip.

    PubMed

    Zhong, Ran; Xie, Haiyang; Kong, Fanzhi; Zhang, Qiang; Jahan, Sharmin; Xiao, Hua; Fan, Liuyin; Cao, Chengxi

    2016-09-21

    In this work, we developed the concept of enzyme catalysis-electrophoresis titration (EC-ET) under ideal conditions, the theory of EC-ET for multiplex enzymatic assay (MEA), and a related method based on a moving reaction boundary (MRB) chip with a collateral channel and cell phone imaging. As a proof of principle, the model enzymes horseradish peroxidase (HRP), laccase and myeloperoxidase (MPO) were chosen for the tests of the EC-ET model. The experiments revealed that the EC-ET model could be achieved via coupling EC with ET within a MRB chip; particularly the MEA analyses of catalysis rate, maximum rate, activity, Km and Kcat could be conducted via a single run of the EC-ET chip, systemically demonstrating the validity of the EC-ET theory. Moreover, the developed method had these merits: (i) two orders of magnitude higher sensitivity than a fluorescence microplate reader, (ii) simplicity and low cost, and (iii) fairly rapid (30 min incubation, 20 s imaging) analysis, fair stability (<5.0% RSD) and accuracy, thus validating the EC-ET method. Finally, the developed EC-ET method was used for the clinical assay of MPO activity in blood samples; the values of MPO activity detected via the EC-ET chip were in agreement with those obtained by a traditional fluorescence microplate reader, indicating the applicability of the EC-ET method. The work opens a window for the development of enzymatic research, enzyme assay, immunoassay, and point-of-care testing as well as titration, one of the oldest methods of analysis, based on a simple chip.

  5. Effective identification of Lactobacillus casei group species: genome-based selection of the gene mutL as the target of a novel multiplex PCR assay.

    PubMed

    Bottari, Benedetta; Felis, Giovanna E; Salvetti, Elisa; Castioni, Anna; Campedelli, Ilenia; Torriani, Sandra; Bernini, Valentina; Gatti, Monica

    2017-07-01

    Lactobacillus casei,Lactobacillus paracasei and Lactobacillusrhamnosus form a closely related taxonomic group (the L. casei group) within the facultatively heterofermentative lactobacilli. Strains of these species have been used for a long time as probiotics in a wide range of products, and they represent the dominant species of nonstarter lactic acid bacteria in ripened cheeses, where they contribute to flavour development. The close genetic relationship among those species, as well as the similarity of biochemical properties of the strains, hinders the development of an adequate selective method to identify these bacteria. Despite this being a hot topic, as demonstrated by the large amount of literature about it, the results of different proposed identification methods are often ambiguous and unsatisfactory. The aim of this study was to develop a more robust species-specific identification assay for differentiating the species of the L. casei group. A taxonomy-driven comparative genomic analysis was carried out to select the potential target genes whose similarity could better reflect genome-wide diversity. The gene mutL appeared to be the most promising one and, therefore, a novel species-specific multiplex PCR assay was developed to rapidly and effectively distinguish L. casei, L. paracasei and L. rhamnosus strains. The analysis of a collection of 76 wild dairy isolates, previously identified as members of the L. casei group combining the results of multiple approaches, revealed that the novel designed primers, especially in combination with already existing ones, were able to improve the discrimination power at the species level and reveal previously undiscovered intraspecific biodiversity.

  6. Novel Multiplex Oligonucleotide-Conjugated Bead Suspension Array for Rapid Identification of Enterovirus 71 Subgenogroups▿ §

    PubMed Central

    Wu, Y.; Tan, E. L.; Yeo, A.; Chan, K. P.; Nishimura, H.; Cardosa, M. J.; Poh, C. L.; Quak, S. H.; Chow, Vincent T.

    2011-01-01

    A high-throughput multiplex bead suspension array was developed for the rapid subgenogrouping of EV71 strains, based on single nucleotide polymorphisms observed within the VP1 region with a high sensitivity as low as 1 PFU. Of 33 viral isolates and 55 clinical samples, all EV71 strains were successfully detected and correctly subgenogrouped. PMID:21084510

  7. Genetic Fingerprinting Using Microsatellite Markers in a Multiplex PCR Reaction: A Compilation of Methodological Approaches from Primer Design to Detection Systems.

    PubMed

    Krüger, Jacqueline; Schleinitz, Dorit

    2017-01-01

    Microsatellites are polymorphic DNA loci comprising repeated sequence motifs of two to five base pairs which are dispersed throughout the genome. Genotyping of microsatellites is a widely accepted tool for diagnostic and research purposes such as forensic investigations and parentage testing, but also in clinics (e.g. monitoring of bone marrow transplantation), as well as for the agriculture and food industries. The co-amplification of several short tandem repeat (STR) systems in a multiplex reaction with simultaneous detection helps to obtain more information from a DNA sample where its availability may be limited. Here, we introduce and describe this commonly used genotyping technique, providing an overview on available resources on STRs, multiplex design, and analysis.

  8. Bridging online and offline social networks: Multiplex analysis

    NASA Astrophysics Data System (ADS)

    Filiposka, Sonja; Gajduk, Andrej; Dimitrova, Tamara; Kocarev, Ljupco

    2017-04-01

    We show that three basic actor characteristics, namely normalized reciprocity, three cycles, and triplets, can be expressed using an unified framework that is based on computing the similarity index between two sets associated with the actor: the set of her/his friends and the set of those considering her/him as a friend. These metrics are extended to multiplex networks and then computed for two friendship networks generated by collecting data from two groups of undergraduate students. We found that in offline communication strong and weak ties are (almost) equally presented, while in online communication weak ties are dominant. Moreover, weak ties are much less reciprocal than strong ties. However, across different layers of the multiplex network reciprocities are preserved, while triads (measured with normalized three cycles and triplets) are not significant.

  9. Paired analysis of TCRα and TCRβ chains at the single-cell level in mice

    PubMed Central

    Dash, Pradyot; McClaren, Jennifer L.; Oguin, Thomas H.; Rothwell, William; Todd, Brandon; Morris, Melissa Y.; Becksfort, Jared; Reynolds, Cory; Brown, Scott A.; Doherty, Peter C.; Thomas, Paul G.

    2010-01-01

    Characterizing the TCRα and TCRβ chains expressed by T cells responding to a given pathogen or underlying autoimmunity helps in the development of vaccines and immunotherapies, respectively. However, our understanding of complementary TCRα and TCRβ chain utilization is very limited for pathogen- and autoantigen-induced immunity. To address this problem, we have developed a multiplex nested RT-PCR method for the simultaneous amplification of transcripts encoding the TCRα and TCRβ chains from single cells. This multiplex method circumvented the lack of antibodies specific for variable regions of mouse TCRα chains and the need for prior knowledge of variable region usage in the TCRβ chain, resulting in a comprehensive, unbiased TCR repertoire analysis with paired coexpression of TCRα and TCRβ chains with single-cell resolution. Using CD8+ CTLs specific for an influenza epitope recovered directly from the pneumonic lungs of mice, this technique determined that 25% of such effectors expressed a dominant, nonproductively rearranged Tcra transcript. T cells with these out-of-frame Tcra mRNAs also expressed an alternate, in-frame Tcra, whereas approximately 10% of T cells had 2 productive Tcra transcripts. The proportion of cells with biallelic transcription increased over the course of a response, a finding that has implications for immune memory and autoimmunity. This technique may have broad applications in mouse models of human disease. PMID:21135507

  10. Constructing STR multiplex assays.

    PubMed

    Butler, John M

    2005-01-01

    Multiplex polymerase chain reaction (PCR) refers to the simultaneous amplification of multiple regions of deoxyribonucleic acid (DNA) using PCR. Commercial short tandem repeat (STR) assays that can coamplify as many as 16 different loci have become widely used in forensic DNA typing. This chapter will focus on some of the aspects of constructing robust STR multiplex assays, including careful design and quality control of PCR primers. Examples from the development of a cat STR 12plex and a human Y chromosome STR 20plex are used to illustrate the importance of various parts of the protocol. Primer design parameters and Internet-accessible resources are discussed, as are solutions to problems with residual dye artifacts that result from impure primers.

  11. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    PubMed

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  12. Evaluation of multiplex assay platforms for detection of influenza hemagglutinin subtype specific antibody responses.

    PubMed

    Li, Zhu-Nan; Weber, Kimberly M; Limmer, Rebecca A; Horne, Bobbi J; Stevens, James; Schwerzmann, Joy; Wrammert, Jens; McCausland, Megan; Phipps, Andrew J; Hancock, Kathy; Jernigan, Daniel B; Levine, Min; Katz, Jacqueline M; Miller, Joseph D

    2017-05-01

    Influenza hemagglutination inhibition (HI) and virus microneutralization assays (MN) are widely used for seroprevalence studies. However, these assays have limited field portability and are difficult to fully automate for high throughput laboratory testing. To address these issues, three multiplex influenza subtype-specific antibody detection assays were developed using recombinant hemagglutinin antigens in combination with Chembio, Luminex ® , and ForteBio ® platforms. Assay sensitivity, specificity, and subtype cross-reactivity were evaluated using a panel of well characterized human sera. Compared to the traditional HI, assay sensitivity ranged from 87% to 92% and assay specificity in sera collected from unexposed persons ranged from 65% to 100% across the platforms. High assay specificity (86-100%) for A(H5N1) rHA was achieved for sera from exposed or unexposed to hetorosubtype influenza HAs. In contrast, assay specificity for A(H1N1)pdm09 rHA using sera collected from A/Vietnam/1204/2004 (H5N1) vaccinees in 2008 was low (22-30%) in all platforms. Although cross-reactivity against rHA subtype proteins was observed in each assay platform, the correct subtype specific responses were identified 78%-94% of the time when paired samples were available for analysis. These results show that high throughput and portable multiplex assays that incorporate rHA can be used to identify influenza subtype specific infections. Published by Elsevier B.V.

  13. Fifteen non-CODIS autosomal short tandem repeat loci multiplex data from nine population groups living in Taiwan.

    PubMed

    Hwa, Hsiao-Lin; Chang, Yih-Yuan; Lee, James Chun-I; Lin, Chun-Yen; Yin, Hsiang-Yi; Tseng, Li-Hui; Su, Yi-Ning; Ko, Tsang-Ming

    2012-07-01

    The analysis of autosomal short tandem repeat (STR) loci is a powerful tool in forensic genetics. We developed a multiplex system in which 15 non-Combined DNA Index System autosomal STRs (D3S1744, D4S2366, D8S1110, D10S2325, D12S1090, D13S765, D14S608, Penta E, D17S1294, D18S536, D18S1270, D20S470, D21S1437, Penta D, and D22S683) could be amplified in one single polymerase chain reaction. DNA samples from 1,098 unrelated subjects of nine population groups living in Taiwan, including Taiwanese Han, indigenous Taiwanese of Taiwan Island, Tao, mainland Chinese, Filipinos, Thais, Vietnamese, Indonesians, and Caucasians, were collected and analyzed using this system. The distributions of the allelic frequencies and the forensic parameters of each population group were presented. The combined discrimination power and the combined power of exclusion were high in all population groups tested in this study. A multidimensional scaling plot of these nine population groups based on the Reynolds' genetic distances calculated from 15 autosomal STRs was constructed, and the genetic substructure in this area was presented. In conclusion, this 15 autosomal STR multiplex system provides highly informative STR data and appears useful in forensic casework and parentage testing in different populations.

  14. A novel approach for copy number variation analysis by combining multiplex PCR with matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Gao, Yonghui; Chen, Xiaoli; Wang, Jianhua; Shangguan, Shaofang; Dai, Yaohua; Zhang, Ting; Liu, Junling

    2013-06-20

    With the increasing interest in copy number variation as it pertains to human genomic variation, common phenotypes, and disease susceptibility, there is a pressing need for methods to accurately identify copy number. In this study, we developed a simple approach that combines multiplex PCR with matrix-assisted laser desorption ionization time-of-flight mass spectrometry for submicroscopic copy number variation detection. Two pairs of primers were used to simultaneously amplify query and endogenous control regions in the same reaction. Using a base extension reaction, the two amplicons were then distinguished and quantified in a mass spectrometry map. The peak ratio between the test region and the endogenous control region was manually calculated. The relative copy number could be determined by comparing the peak ratio between the test and control samples. This method generated a copy number measurement comparable to those produced by two other commonly used methods - multiplex ligation-dependent probe amplification and quantitative real-time PCR. Furthermore, it can discriminate a wide range of copy numbers. With a typical 384-format SpectroCHIP, at least six loci on 384 samples can be analyzed simultaneously in a hexaplex assay, making this assay adaptable for high throughput, and potentially applicable for large-scale association studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Forensic and population genetic characteristics of 62 X chromosome SNPs revealed by multiplex PCR and MALDI-TOF mass spectrometry genotyping in 4 North Eurasian populations.

    PubMed

    Stepanov, Vadim; Vagaitseva, Ksenyia; Kharkov, Vladimir; Cherednichenko, Anastasia; Bocharova, Anna; Berezina, Galina; Svyatova, Gulnara

    2016-01-01

    X chromosome genetic markers are widely used in basic population genetic research as well as in forensic genetics. In this paper we analyze the genetic diversity of 62 X chromosome SNPs in 4 populations using multiplex genotyping based on multi-locus PCR and MALDI-TOF mass spectrometry, and report forensic and population genetic features of the panel of X-linked SNPs (XSNPid). Studied populations represent Siberian (Buryat and Khakas), North Asian (Khanty) and Central Asian (Kazakh) native people. Khanty, Khakas and Kazakh population demonstrate average gene diversity over 0.45. Only East Siberian Buryat population is characterized by lower average heterozygosity (0.436). AMOVA analysis of genetic structure reveals a relatively low but significant level of genetic differentiation in a group of 4 population studied (FST=0.023, p=0.0000). The XSNPid panel provides a very high discriminating power in each population. The combined probability of discrimination in females (PDf) for XSNPid panel ranged between populations from 0.99999999999999999999999982 in Khakas to 0.9999999999999999999999963 in Buryats. The combined discriminating power in males (PDm) varies from 0.999999999999999792 to 0.9999999999999999819. The developed multiplex set of X chromosome SNPs can be a useful tool for population genetic studies and for forensic identity and kinship testing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Implementation of a Multiplex and Quantitative Proteomics Platform for Assessing Protein Lysates Using DNA-Barcoded Antibodies.

    PubMed

    Lee, Jinho; Geiss, Gary K; Demirkan, Gokhan; Vellano, Christopher P; Filanoski, Brian; Lu, Yiling; Ju, Zhenlin; Yu, Shuangxing; Guo, Huifang; Bogatzki, Lisa Y; Carter, Warren; Meredith, Rhonda K; Krishnamurthy, Savitri; Ding, Zhiyong; Beechem, Joseph M; Mills, Gordon B

    2018-06-01

    Molecular analysis of tumors forms the basis for personalized cancer medicine and increasingly guides patient selection for targeted therapy. Future opportunities for personalized medicine are highlighted by the measurement of protein expression levels via immunohistochemistry, protein arrays, and other approaches; however, sample type, sample quantity, batch effects, and "time to result" are limiting factors for clinical application. Here, we present a development pipeline for a novel multiplexed DNA-labeled antibody platform which digitally quantifies protein expression from lysate samples. We implemented a rigorous validation process for each antibody and show that the platform is amenable to multiple protocols covering nitrocellulose and plate-based methods. Results are highly reproducible across technical and biological replicates, and there are no observed "batch effects" which are common for most multiplex molecular assays. Tests from basal and perturbed cancer cell lines indicate that this platform is comparable to orthogonal proteomic assays such as Reverse-Phase Protein Array, and applicable to measuring the pharmacodynamic effects of clinically-relevant cancer therapeutics. Furthermore, we demonstrate the potential clinical utility of the platform with protein profiling from breast cancer patient samples to identify molecular subtypes. Together, these findings highlight the potential of this platform for enhancing our understanding of cancer biology in a clinical translation setting. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine.

    PubMed

    Soler, Maria; Belushkin, Alexander; Cavallini, Andrea; Kebbi-Beghdadi, Carole; Greub, Gilbert; Altug, Hatice

    2017-08-15

    Development of rapid and multiplexed diagnostic tools is a top priority to address the current epidemic problem of sexually transmitted diseases. Here we introduce a novel nanoplasmonic biosensor for simultaneous detection of the two most common bacterial infections: Chlamydia trachomatis and Neisseria gonorrhoeae. Our plasmonic microarray is composed of gold nanohole sensor arrays that exhibit the extraordinary optical transmission (EOT), providing highly sensitive analysis in a label-free configuration. The integration in a microfluidic system and the precise immobilization of specific antibodies on the individual sensor arrays allow for selective detection and quantification of the bacteria in real-time. We achieved outstanding sensitivities for direct immunoassay of urine samples, with a limit of detection of 300 colony forming units (CFU)/mL for C. trachomatis and 1500CFU/mL for N. gonorrhoeae. The multiplexing capability of our biosensor was demonstrated by analyzing different urine samples spiked with either C. trachomatis or N. gonorrhoeae, and also containing both bacteria. We could successfully detect, identify and quantify the levels of the two bacteria in a one-step assay, without the need for DNA extraction or amplification techniques. This work opens up new possibilities for the implementation of point-of-care biosensors that enable fast, simple and efficient diagnosis of sexually transmitted infections. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level.

    PubMed

    Zhu, Zhi; Zhang, Wenhua; Leng, Xuefei; Zhang, Mingxia; Guan, Zhichao; Lu, Jiangquan; Yang, Chaoyong James

    2012-10-21

    Genetic alternations can serve as highly specific biomarkers to distinguish fatal bacteria or cancer cells from their normal counterparts. However, these mutations normally exist in very rare amount in the presence of a large excess of non-mutated analogs. Taking the notorious pathogen E. coli O157:H7 as the target analyte, we have developed an agarose droplet-based microfluidic ePCR method for highly sensitive, specific and quantitative detection of rare pathogens in the high background of normal bacteria. Massively parallel singleplex and multiplex PCR at the single-cell level in agarose droplets have been successfully established. Moreover, we challenged the system with rare pathogen detection and realized the sensitive and quantitative analysis of a single E. coli O157:H7 cell in the high background of 100,000 excess normal K12 cells. For the first time, we demonstrated rare pathogen detection through agarose droplet microfluidic ePCR. Such a multiplex single-cell agarose droplet amplification method enables ultra-high throughput and multi-parameter genetic analysis of large population of cells at the single-cell level to uncover the stochastic variations in biological systems.

  19. Development of a rapid SNP-typing assay to differentiate Bifidobacterium animalis ssp. lactis strains used in probiotic-supplemented dairy products.

    PubMed

    Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F

    2015-02-01

    Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing protocol, resulting in a SNP profile matching the profile for the strain BB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue Specimens for Enhanced Clinical Guidance

    DTIC Science & Technology

    2015-07-01

    SLC7A5, NRDG1, HTF9C, CEACAM5). Gene-expression assays using qRT-PCR, array hybridization, and RNA sequence assays have also been developed. The...and RNA sequence assays have also been developed. The OncotypeDX, for example, uses a panel of 21 genes (16 analytical, 5 controls: Ki67, STK15...Provide a brief list of keywords (limit to 20 words). Breast Cancer Diagnosis Pathology Immunophenotype Multiplex Morphology RNA In Situ

  1. System data communication structures for active-control transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  2. Multiplex Microsphere Immunoassays for the Detection of IgM and IgG to Arboviral Diseases

    PubMed Central

    Basile, Alison J.; Horiuchi, Kalanthe; Panella, Amanda J.; Laven, Janeen; Kosoy, Olga; Lanciotti, Robert S.; Venkateswaran, Neeraja; Biggerstaff, Brad J.

    2013-01-01

    Serodiagnosis of arthropod-borne viruses (arboviruses) at the Division of Vector-Borne Diseases, CDC, employs a combination of individual enzyme-linked immunosorbent assays and microsphere immunoassays (MIAs) to test for IgM and IgG, followed by confirmatory plaque-reduction neutralization tests. Based upon the geographic origin of a sample, it may be tested concurrently for multiple arboviruses, which can be a cumbersome task. The advent of multiplexing represents an opportunity to streamline these types of assays; however, because serologic cross-reactivity of the arboviral antigens often confounds results, it is of interest to employ data analysis methods that address this issue. Here, we constructed 13-virus multiplexed IgM and IgG MIAs that included internal and external controls, based upon the Luminex platform. Results from samples tested using these methods were analyzed using 8 different statistical schemes to identify the best way to classify the data. Geographic batteries were also devised to serve as a more practical diagnostic format, and further samples were tested using the abbreviated multiplexes. Comparative error rates for the classification schemes identified a specific boosting method based on logistic regression “Logitboost” as the classification method of choice. When the data from all samples tested were combined into one set, error rates from the multiplex IgM and IgG MIAs were <5% for all geographic batteries. This work represents both the most comprehensive, validated multiplexing method for arboviruses to date, and also the most systematic attempt to determine the most useful classification method for use with these types of serologic tests. PMID:24086608

  3. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    NASA Astrophysics Data System (ADS)

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-05-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings.

  4. Choice of Illumination System & Fluorophore for Multiplex Immunofluorescence on FFPE Tissue Sections

    PubMed Central

    Kishen, Ria E. B.; Kluth, David C.; Bellamy, Christopher O. C.

    2016-01-01

    The recent availability of novel dyes and alternative light sources to facilitate complex tissue immunofluorescence studies such as multiplex labelling has not been matched by reports critically evaluating the considerations and relative benefits of these new tools, particularly in combination. Product information is often limited to wavelengths used for older fluorophores (FITC, TRITC & corresponding Alexa dyes family). Consequently, novel agents such as Quantum dots are not widely appreciated or used, despite highly favourable properties including extremely bright emission, stability and potentially reduced tissue autofluorescence at the excitation wavelength. Using spectral analysis, we report here a detailed critical appraisal and comparative evaluation of different light sources and fluorophores in multiplex immunofluorescence of clinical biopsy sections. The comparison includes mercury light, metal halide and 3 different LED-based systems, using 7 Qdots (525, 565, 585, 605, 625, 705), Cy3 and Cy5. We discuss the considerations relevant to achieving the best combination of light source and fluorophore for accurate multiplex fluorescence quantitation. We highlight practical limitations and confounders to quantitation with filter-based approaches. PMID:27632367

  5. Simultaneous mutation and copy number variation (CNV) detection by multiplex PCR-based GS-FLX sequencing.

    PubMed

    Goossens, Dirk; Moens, Lotte N; Nelis, Eva; Lenaerts, An-Sofie; Glassee, Wim; Kalbe, Andreas; Frey, Bruno; Kopal, Guido; De Jonghe, Peter; De Rijk, Peter; Del-Favero, Jurgen

    2009-03-01

    We evaluated multiplex PCR amplification as a front-end for high-throughput sequencing, to widen the applicability of massive parallel sequencers for the detailed analysis of complex genomes. Using multiplex PCR reactions, we sequenced the complete coding regions of seven genes implicated in peripheral neuropathies in 40 individuals on a GS-FLX genome sequencer (Roche). The resulting dataset showed highly specific and uniform amplification. Comparison of the GS-FLX sequencing data with the dataset generated by Sanger sequencing confirmed the detection of all variants present and proved the sensitivity of the method for mutation detection. In addition, we showed that we could exploit the multiplexed PCR amplicons to determine individual copy number variation (CNV), increasing the spectrum of detected variations to both genetic and genomic variants. We conclude that our straightforward procedure substantially expands the applicability of the massive parallel sequencers for sequencing projects of a moderate number of amplicons (50-500) with typical applications in resequencing exons in positional or functional candidate regions and molecular genetic diagnostics. 2008 Wiley-Liss, Inc.

  6. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    PubMed Central

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-01-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings. PMID:24786974

  7. The -(α)(5.2) Deletion Detected in a Uruguayan Family: First Case Report in the Americas.

    PubMed

    Soler, Ana María; Schelotto, Magdalena; de Oliveira Mota, Natalia; Dorta Ferreira, Roberta; Sonati, Maria de Fatima; da Luz, Julio Abayubá

    2016-08-01

    In Uruguay, α-thalassemia (α-thal) mutations were introduced predominantly by Mediterranean European immigrant populations and by slave trade of African populations. A patient with anemia with hypochromia and microcytosis, refractory to iron treatment and with normal hemoglobin (Hb) electrophoresis was analyzed for α-thal mutations by multiplex gap-polymerase chain reaction (gap-PCR), automated sequencing and multiplex ligation-dependent probe amplification (MLPA) analyses. Agarose gel electrophoresis of the multiplex gap-PCR showed a band of unexpected size (approximately 700 bp) in the samples from the proband and mother. Automated sequencing of the amplified fragment showed the presence of the -(α)(5.2) deletion (NG_000006.1: g.32867_38062del5196) [an α-thal-1 deletion of 5196 nucleotides (nts)]. The MLPA analysis of the proband's sample also showed the presence of the -(α)(5.2) deletion in heterozygous state. We report here the presence of the -(α)(5.2) deletion, for the first time in the Americas, in a Uruguayan family with Italian ancestry, detected with a previously described multiplex gap-PCR.

  8. Highly multiplexed signal readout for a time-of-flight positron emission tomography detector based on silicon photomultipliers.

    PubMed

    Cates, Joshua W; Bieniosek, Matthew F; Levin, Craig S

    2017-01-01

    Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system's back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a [Formula: see text] array of SensL MicroFC-30035 SiPMs coupled to [Formula: see text] Lu 1.8 Gd 0.2 SiO 5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of [Formula: see text] FWHM between the 16-pixel multiplexed detector array and a [Formula: see text] LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance.

  9. Fluorescent Quantification of DNA Based on Core-Shell Fe3O4@SiO2@Au Nanocomposites and Multiplex Ligation-Dependent Probe Amplification.

    PubMed

    Fan, Jing; Yang, Haowen; Liu, Ming; Wu, Dan; Jiang, Hongrong; Zeng, Xin; Elingarami, Sauli; Ll, Zhiyang; Li, Song; Liu, Hongna; He, Nongyue

    2015-02-01

    In this research, a novel method for relative fluorescent quantification of DNA based on Fe3O4@SiO2@Au gold-coated magnetic nanocomposites (GMNPs) and multiplex ligation- dependent probe amplification (MLPA) has been developed. With the help of self-assembly, seed-mediated growth and chemical reduction method, core-shell Fe3O4@SiO2@Au GMNPs were synthesized. Through modified streptavidin on the GMNPs surface, we obtained a bead chip which can capture the biotinylated probes. Then we designed MLPA probes which were tagged with biotin or Cy3 and target DNA on the basis of human APP gene sequence. The products from the thermostable DNA ligase induced ligation reactions and PCR amplifications were incubated with SA-GMNPs. After washing, magnetic separation, spotting, the fluorescent scanning results showed our method can be used for the relative quantitative analysis of the target DNA in the concentration range of 03004~0.5 µM.

  10. Platform for Quantitative Evaluation of Spatial Intratumoral Heterogeneity in Multiplexed Fluorescence Images.

    PubMed

    Spagnolo, Daniel M; Al-Kofahi, Yousef; Zhu, Peihong; Lezon, Timothy R; Gough, Albert; Stern, Andrew M; Lee, Adrian V; Ginty, Fiona; Sarachan, Brion; Taylor, D Lansing; Chennubhotla, S Chakra

    2017-11-01

    We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environment), an open-source tool developed to assist cancer researchers in interactive hypothesis testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and the interactions between different cell phenotypes and noncellular constituents. Specifically, we foresee applications in phenotyping cells within tumor microenvironments, recognizing tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal separation, and identification of heterotypic signaling networks underlying microdomains. The THRIVE platform provides an integrated workflow for analyzing whole-slide immunofluorescence images and tissue microarrays, including algorithms for segmentation, quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a maintainable code base using open-source libraries, and an extensible framework for customizing algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence images in mind, and, by providing a platform to efficiently analyze high-dimensional immunofluorescence signals, we hope to advance these data toward mainstream adoption in cancer research. Cancer Res; 77(21); e71-74. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Joshua D.; Chen, Qiang; Mason, Hugh S.

    Abstract Key message nta-miR-398 is significantly up-regulated while nta-miR-428d is significantly down-regulated in tobacco after agroinfiltration AbstractMicroRNAs are a class of non-coding regulatory RNAs that can modulate development as well as alter innate antiviral defenses in plants. In this study we explored host changes at the microRNA level within tobacco (Nicotiana benthamiana) after expression of a recombinant anti-Ebola GP1 antibody through Agrobacterium tumefaciens agroinfiltration delivery. A multiplex nanoparticle-based cytometry assay tracked the host expression changes of 53 tobacco microRNAs. Our results revealed that the most abundant microRNAs in actively growing leaves corresponded to nanoparticle probes specific to nta-mir-6149 and nta-miR-168b.more » After agroinfiltration, probes targeting nta-mir-398 and nta-mir-482d were significantly altered in their respective expression levels and were further verified through RT-qPCR analysis. To our knowledge this study is the first to profile microRNA expression in tobacco after agroinfiltration using a multiplex nanoparticle approach.« less

  12. Multiplex PCR for the Detection of Lactobacillus pontis and Two Related Species in a Sourdough Fermentation

    PubMed Central

    Müller, Martin R. A.; Ehrmann, Matthias A.; Vogel, Rudi F.

    2000-01-01

    A specific multiplex PCR assay based on the amplification of parts of the 16S rRNA molecule was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus pontis and Lactobacillus panis. They could be clearly discriminated from the phylogenetically related species Lactobacillus vaginalis, Lactobacillus oris, and Lactobacillus reuteri and from other lactobacilli commonly known to be present in sourdough. Other strains isolated together with L. pontis from an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the sourdough without previous cultivation. PMID:10788389

  13. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform

    PubMed Central

    Suyama, Yoshihisa; Matsuki, Yu

    2015-01-01

    Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing de novo single-nucleotide polymorphism discovery, and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities. PMID:26593239

  14. NAIMA as a solution for future GMO diagnostics challenges.

    PubMed

    Dobnik, David; Morisset, Dany; Gruden, Kristina

    2010-03-01

    In the field of genetically modified organism (GMO) diagnostics, real-time PCR has been the method of choice for target detection and quantification in most laboratories. Despite its numerous advantages, however, the lack of a true multiplexing option may render real-time PCR less practical in the face of future GMO detection challenges such as the multiplicity and increasing complexity of new transgenic events, as well as the repeated occurrence of unauthorized GMOs on the market. In this context, we recently reported the development of a novel multiplex quantitative DNA-based target amplification method, named NASBA implemented microarray analysis (NAIMA), which is suitable for sensitive, specific and quantitative detection of GMOs on a microarray. In this article, the performance of NAIMA is compared with that of real-time PCR, the focus being their performances in view of the upcoming challenge to detect/quantify an increasing number of possible GMOs at a sustainable cost and affordable staff effort. Finally, we present our conclusions concerning the applicability of NAIMA for future use in GMO diagnostics.

  15. Novel multiplexed low coherence interferometry endoscopic probe for analyzing the cervical epithelium in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ho, Derek; Chu, Kengyeh K.; Crose, Michael; Desoto, Michael; Peters, Jennifer J.; Murtha, Amy P.; Wax, Adam

    2017-02-01

    The cervix is primarily composed of two types of epithelium: stratified squamous ectocervix and simple columnar endocervix. In between these two layers lies a metaplastic squamocolumnar junction commonly referred to as the transformation zone (T-zone). During puberty, the cervical epithelium undergoes dynamic changes including cervical ectropion and increased area and rates of metaplasia. Although these metaplastic changes have been linked to higher incidence of cervical cancer among young women, research in this field has been limited to surface analysis using computerized planimetry of colopophotographs. Here, we present a novel multiplexed low coherence interferometry (mLCI) system for interrogating the cervical epithelium. The system is comprised of 6 parallel Mach-Zehnder interferometers in a time-multiplexed configuration that increases throughput by 6-fold to realize a combined 36-channel acquisition. A custom designed endoscopic handheld probe is used to collect sparsely sampled, depth-resolved scattering intensity profiles (A-scans) from a large field of view (25 x 25 mm) on the cervical epithelium in vivo. The instrument incorporates white light imaging through a plastic fiber bundle to co-register the mLCI A-scans to colpophotographs which are analyzed by a clinician to manually segment the cervical epithelium. Our preliminary data shows significant differences in characteristic A-scans from endocervical and ectocervical epithelium. These results demonstrate the feasibility of using mLCI as both a research tool for studying the relationship between cervical ectopy and cancer as well as a clinical instrument for identifying the at-risk T-zone on the cervix in vivo as a means to improve biopsy targeting. Further analysis will be performed to develop an algorithm for distinguishing the mLCI A-scans of endocervical, ectocervical, and metaplastic epithelium in real time.

  16. Multiplex sequence analysis demonstrates the competitive growth advantage of the A-to-G mutants of clarithromycin-resistant Helicobacter pylori.

    PubMed

    Wang, G; Rahman, M S; Humayun, M Z; Taylor, D E

    1999-03-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates.

  17. Multiplex Sequence Analysis Demonstrates the Competitive Growth Advantage of the A-to-G Mutants of Clarithromycin-Resistant Helicobacter pylori

    PubMed Central

    Wang, Ge; Rahman, M. Sayeedur; Humayun, M. Zafri; Taylor, Diane E.

    1999-01-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates. PMID:10049289

  18. Two Multiplex Real-Time PCR Assays to Detect and Differentiate Acinetobacter baumannii and Non- baumannii Acinetobacter spp. Carrying blaNDM, blaOXA-23-Like, blaOXA-40-Like, blaOXA-51-Like, and blaOXA-58-Like Genes

    PubMed Central

    Yang, Qiu; Rui, Yongyu

    2016-01-01

    Nosocomial infections caused by Acinetobacter spp. resistant to carbapenems are increasingly reported worldwide. Carbapenem-resistant Acinetobacter (CRA) is becoming a serious concern with increasing patient morbidity, mortality, and lengths of hospital stay. Therefore, the rapid detection of CRA is essential for epidemiological surveillance. Polymerase chain reaction (PCR) has been extensively used for the rapid identification of most pathogens. In this study, we have developed two multiplex real-time PCR assays to detect and differentiate A. baumannii and non-A. baumannii Acinetobacter spp, and common carbapenemase genes, including blaNDM, blaOXA-23-like, blaOXA-40-like, blaOXA-51-like, and blaOXA-58-like. We demonstrate the potential utility of these assays for the direct detection of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA in clinical specimens. Primers were specifically designed, and two multiplex real-time PCR assays were developed: multiplex real-time PCR assay1 for the detection of Acinetobacter baumannii 16S–23S rRNA internal transcribed spacer sequence, the Acinetobacter recA gene, and class-B-metalloenzyme-encoding gene blaNDM; and multiplex real-time PCR assay2 to detect class-D-oxacillinase-encoding genes (blaOXA-23-like, blaOXA-40-like, blaOXA-51-like,and blaOXA-58-like). The assays were performed on an ABI Prism 7500 FAST Real-Time PCR System. CRA isolates were used to compare the assays with conventional PCR and sequencing. Known amounts of CRA cells were added to sputum and fecal specimens and used to test the multiplex real-time PCR assays. The results for target and nontarget amplification showed that the multiplex real-time PCR assays were specific, the limit of detection for each target was 10 copies per 20 μL reaction volume, the assays were linear over six log dilutions of the target genes (r2 > 0.99), and the Ct values of the coefficients of variation for intra- and interassay reproducibility were less than 5%. The multiplex real-time PCR assays showed 100% concordance with conventional PCR when tested against 400 CRA isolates and their sensitivity for the target DNA in sputum and fecal specimens was 102 CFU/mL. Therefore, these novel multiplex real-time PCR assays allow the sensitive and specific characterization and differentiation of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA, making them potential tools for the direct detection of CRA in clinical specimens and the surveillance of nosocomial infections. PMID:27391234

  19. PLC-based mode multi/demultiplexers for mode division multiplexing

    NASA Astrophysics Data System (ADS)

    Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide

    2017-02-01

    Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.

  20. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    PubMed

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

Top