NASA Astrophysics Data System (ADS)
Welakuh, Davis D. M.; Dikandé, Alain M.
2017-11-01
The storage and subsequent retrieval of coherent pulse trains in the quantum memory (i.e. cavity-dark state) of three-level Λ atoms, are considered for an optical medium in which adiabatic photon transfer occurs under the condition of quantum impedance matching. The underlying mechanism is based on intracavity Electromagnetically-Induced Transparency, by which properties of a cavity filled with three-level Λ-type atoms are manipulated by an external control field. Under the impedance matching condition, we derive analytic expressions that suggest a complete transfer of an input field into the cavity-dark state by varying the mixing angle in a specific way, and its subsequent retrieval at a desired time. We illustrate the scheme by demonstrating the complete transfer and retrieval of a Gaussian, a single hyperbolic-secant and a periodic train of time-entangled hyperbolic-secant input photon pulses in the atom-cavity system. For the time-entangled hyperbolic-secant input field, a total controllability of the periodic evolution of the dark state population is made possible by changing the Rabi frequency of the classical driving field, thus allowing to alternately store and retrieve high-intensity photons from the optically dense Electromagnetically-Induced transparent medium. Such multiplexed photon states, which are expected to allow sharing quantum information among many users, are currently of very high demand for applications in long-distance and multiplexed quantum communication.
Purpose-Driven Communities in Multiplex Networks: Thresholding User-Engaged Layer Aggregation
2016-06-01
dark networks is a non-trivial yet useful task. Because terrorists work hard to hide their relationships/network, analysts have an incomplete picture...them identify meaningful terrorist communities. This thesis introduces a general-purpose algorithm for community detection in multiplex dark networks...aggregation, dark networks, conductance, cluster adequacy, mod- ularity, Louvain method, shortest path interdiction 15. NUMBER OF PAGES 155 16. PRICE CODE
Radio for hidden-photon dark matter detection
Chaudhuri, Saptarshi; Graham, Peter W.; Irwin, Kent; ...
2015-10-08
We propose a resonant electromagnetic detector to search for hidden-photon dark matter over an extensive range of masses. Hidden-photon dark matter can be described as a weakly coupled “hidden electric field,” oscillating at a frequency fixed by the mass, and able to penetrate any shielding. At low frequencies (compared to the inverse size of the shielding), we find that the observable effect of the hidden photon inside any shielding is a real, oscillating magnetic field. We outline experimental setups designed to search for hidden-photon dark matter, using a tunable, resonant LC circuit designed to couple to this magnetic field. Ourmore » “straw man” setups take into consideration resonator design, readout architecture and noise estimates. At high frequencies, there is an upper limit to the useful size of a single resonator set by 1/ν. However, many resonators may be multiplexed within a hidden-photon coherence length to increase the sensitivity in this regime. Hidden-photon dark matter has an enormous range of possible frequencies, but current experiments search only over a few narrow pieces of that range. As a result, we find the potential sensitivity of our proposal is many orders of magnitude beyond current limits over an extensive range of frequencies, from 100 Hz up to 700 GHz and potentially higher.« less
NASA Astrophysics Data System (ADS)
Ezeribe, A. C.; Robinson, M.; Robinson, N.; Scarff, A.; Spooner, N. J. C.; Yuriev, L.
2018-02-01
More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.
Scott, Laura Jane; Gunson, Rory N; Carman, William F; Winter, Andrew J
2010-12-01
To develop, evaluate and implement a new multiplex real-time PCR test for the detection of herpes simplex virus (HSV)1, HSV2 and syphilis in a single sample using a single test. A multiplex real-time PCR test detecting HSV1, HSV2 and Treponema pallidum was designed, validated and evaluated for a period of 6 months on patients attending the Sandyford Initiative (a series of genitourinary medicine clinics in and around Glasgow). A total of 692 samples were tested, and T pallidum PCR positives were confirmed by a second PCR at the Scottish Reference Laboratory (SBSTIRL). All PCR results were aligned with dark ground microscopy findings and serological results where available and compared. The laboratory validation of the multiplex assay showed the test to be sensitive, specific and robust. Of the 692 samples, 139 were positive for HSV1, 136 for HSV2, 15 for syphilis, one for both syphilis and HSV1, and 401 were negative; the reference laboratory confirmed all T pallidum PCR-positive samples. The PCR test was more sensitive than both dark ground microscopy and serological testing for the diagnosis of primary syphilis. The introduction of this new test has led to a better turnaround time for the diagnosis of genital ulcer disease, better detection of primary syphilis infection, and the detection of unexpected cases of syphilis where the aetiological agent suspected was HSV.
NASA Astrophysics Data System (ADS)
TAMURA, NAOYUKI
2015-08-01
PFS (Prime Focus Spectrograph), a next generation facility instrument on Subaru, is a very wide-field, massively-multiplexed, and optical & near-infrared spectrograph. Exploiting the Subaru prime focus, 2400 reconfigurable fibers will be distributed in the 1.3 degree field. The spectrograph will have 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm at one exposure. The development of this instrument has been undertaken by the international collaboration at the initiative of Kavli IPMU. The project is now going into the construction phase aiming at system integration and on-sky commissioning in 2017-2018, and science operation in 2019. In parallel, the survey design has also been developed envisioning a Subaru Strategic Program (SSP) that spans roughly speaking 300 nights over 5 years. The major science areas are three-folds: Cosmology, galaxy/AGN evolution, and Galactic archaeology (GA). The cosmology program will be to constrain the nature of dark energy via a survey of emission line galaxies over a comoving volume of ~10 Gpc^3 in the redshift range of 0.8 < z < 2.4. In the GA program, radial velocities and chemical abundances of stars in the Milky Way, dwarf spheroidal galaxies, and M31 will be used to understand the past assembly histories of those galaxies and the structures of their dark matter halos. Spectra will be taken for ~1 million stars as faint as V = 22 therefore out to large distances from the Sun. For the extragalactic program, our simulations suggest the wide wavelength coverage of PFS will be particularly powerful in probing the galaxy populations and its clustering properties over a wide redshift range. We will conduct a survey of color-selected 1 < z < 2 galaxies and AGN over 20 square degrees down to J = 23.4, yielding a fair sample of galaxies with stellar masses above ˜10^10 solar masses. Further, PFS will also provide unique spectroscopic opportunities even in the era of Euclid, LSST, WFIRST and TMT. In this presentation, an overview of the instrument, current project status and path forward will be given.
Enterprise virtual private network (VPN) with dense wavelength division multiplexing (DWDM) design
NASA Astrophysics Data System (ADS)
Carranza, Aparicio
An innovative computer simulation and modeling tool for metropolitan area optical data communication networks is presented. These models address the unique requirements of Virtual Private Networks for enterprise data centers, which may comprise a mixture of protocols including ESCON, FICON, Fibre Channel, Sysplex protocols (ETR, CLO, ISC); and other links interconnected over dark fiber using Dense Wavelength Division Multiplexing (DWDM). Our models have the capability of designing a network with minimal inputs; to compute optical link budgets; suggest alternative configurations; and also optimize the design based on user-defined performance metrics. The models make use of Time Division Multiplexing (TDM) wherever possible for lower data rate traffics. Simulation results for several configurations are presented and they have been validated by means of experiments conducted on the IBM enterprise network testbed in Poughkeepsie, N.Y.
Turni, C; Singh, R; Schembri, M A; Blackall, P J
2014-10-01
The aim of this study was to validate a multiplex PCR for the species identification and serotyping of Actinobacillus pleuropneumoniae serovars 1, 5, 7, 12 and 15. All 15 reference strains and 411 field isolates (394 from Australia, 11 from Indonesia, five from Mexico and one from New Zealand) of A. pleuropneumoniae were tested with the multiplex PCR. The specificity of this multiplex PCR was validated on 26 non-A. pleuropneumoniae species. The multiplex PCR gave the expected results with all 15 serovar reference strains and agreed with conventional serotyping for all field isolates from serovars 1 (n = 46), 5 (n = 81), 7 (n = 80), 12 (n = 16) and serovar 15 (n = 117). In addition, a species-specific product was amplified in the multiplex PCR with all 411 A. pleuropneumoniae field isolates. Of 25 nontypeable field isolates only two did not yield a serovar-specific band in the multiplex PCR. This multiplex PCR for serovars 1, 5, 7, 12 and 15 is species specific and capable of serotyping isolates from diverse locations. Significance and impact of the study: A multiplex PCR that can recognize serovars 1, 5, 7, 12 and 15 of A. pleuropneumoniae was developed and validated. This novel diagnostic tool will enable frontline laboratories to provide key information (the serovar) to guide targeted prevention and control programmes for porcine pleuropneumonia, a serious economic disease of pigs. The previous technology, traditional serotyping, is typically provided by specialized reference laboratories, limiting the capacity to respond to this key disease. © 2014 The Society for Applied Microbiology.
NASA Technical Reports Server (NTRS)
Lowitz, Amy E.; Brown, Ari David; Stevenson, Thomas R.; Timbie, Peter T.; Wollack, Edward J.
2014-01-01
Kinetic inductance detectors (KIDs) are a promising technology for low-noise, highly-multiplexible mm- and submm-wave detection. KIDs have a number of advantages over other detector technologies, which make them an appealing option in the cosmic microwave background B-mode anisotropy search, including passive frequency domain multiplexing and relatively simple fabrication, but have suffered from challenges associated with noise control. Here we describe design and fabrication of a 20-pixel prototype array of lumped element molybdenum KIDs. We show Q, frequency and temperature measurements from the array under dark conditions. We also present evidence for a double superconducting gap in molybdenum.
NASA Technical Reports Server (NTRS)
Vural, Kadri; Blessinger, Michael; Chen, Jenkon; Kleinhans, William
1989-01-01
Researchers developed a HgCdTe 256x256 focal plane array (FPA) which operates in the 1 to 5 micron band. This is presently the largest demonstrated HgCdTe FPA. The detector material is HgCdTe on sapphire (PACE-1 technology) which has a low thermal expansion mismatch with silicon. The multiplexer is a CMOS FET-switch device processed through a commercial silicon foundry. The multiplexer input is direct injection and the charge capacity is about 2 times 10 to the 7th power electrons. The kTC limited read noise is 400 electrons. Researchers demonstrated high background imaging using the device. The broadband quantum efficiency is measured to be 59 percent. Dark currents less than 0.1 pA were measured at 77 K for detectors processed on PACE-1 material with 4.9 microns cutoff. The dark currents decrease as the temperature is lowered, and researchers are presently studying the T less than 77 K characteristics. The interconnect yield is greater than 95 percent. The devices are available for astronomical applications.
NASA Astrophysics Data System (ADS)
Tamura, Naoyuki
This short article is about Prime Focus Spectrograph (PFS), a very wide-field, massively-multiplexed, and optical & near-infrared (NIR) spectrograph as a next generation facility instrument on Subaru Telescope. More details and updates are available on the PFS official website (http://pfs.ipmu.jp), blog (http://pfs.ipmu.jp/blog/), and references therein. The project, instrument, & timeline PFS will position 2400 fibers to science targets or blank sky in the 1.3 degree field on the Subaru prime focus. These fibers will be quickly (~60sec) reconfigurable and feed the photons during exposures to the Spectrograph System (SpS). SpS consists of 4 modules each of which accommodate ~600 fibers and deliver spectral images ranging from 380nm to 1260nm simultaneously at one exposure via the 3 arms of blue, red, and NIR cameras. The instrument development has been undertaken by the international collaboration at the initiative of Kavli IPMU. The project is now going into the construction phase aiming at system integration and on-sky engineering observations in 2017-2018, and science operation in 2019. The survey design has also been under development envisioning a survey spanning ~300 nights over ~5 years in the framework of Subaru Strategic Program (SSP). The key science areas are: Cosmology, galaxy/AGN evolution, and Galactic Archaeology (GA) (Takada et al. 2014). The cosmology program will be to constrain the nature of dark energy via a survey of emission line galaxies over a comoving volume of 10 Gpc3 at z=0.8-2.4. In the galaxy/AGN program, the wide wavelength coverage of PFS as well as the large field of view will be exploited to characterize the galaxy populations and its clustering properties over a wide redshift range. A survey of color-selected galaxies/AGN at z = 1-2 will be conducted over 20 square degrees yielding a fair sample of galaxies with stellar masses down to ~1010 M ⊙. In the GA program, radial velocities and chemical abundances of stars in the Milky Way, dwarf spheroids, and M31 will be used to understand the past assembly histories of those galaxies and the structures of their dark matter halos. Spectra will be taken for 1 million stars as faint as V = 22 mag therefore out to large distances from the Sun. PFS will provide powerful spectroscopic capabilities even in the era of Euclid, LSST, WFIRST and TMT, and the effective synergies are expected for further unique science outputs.
Cates, Joshua W; Bieniosek, Matthew F; Levin, Craig S
2017-01-01
Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system's back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a [Formula: see text] array of SensL MicroFC-30035 SiPMs coupled to [Formula: see text] Lu 1.8 Gd 0.2 SiO 5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of [Formula: see text] FWHM between the 16-pixel multiplexed detector array and a [Formula: see text] LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance.
Biswas, Chinmay; Dey, Piyali; Gotyal, B S; Satpathy, Subrata
2015-04-01
The fungal entomopathogen Beauveria bassiana is a promising biocontrol agent for many pests. Some B. bassiana strains have been found effective against jute pests. To monitor the survival of field released B. bassiana a rapid and efficient detection technique is essential. Conventional methods such as plating method or direct culture method which are based on cultivation on selective media followed by microscopy are time consuming and not so sensitive. PCR based methods are rapid, sensitive and reliable. A single primer PCR may fail to amplify some of the strains. However, multiplex PCR increases the possibility of detection as it uses multiple primers. Therefore, in the present investigation a multiplex PCR protocol was developed by multiplexing three primers SCA 14, SCA 15 and SCB 9 to detect field released B. bassiana strains from soil as well as foliage of jute field. Using our multiplex PCR protocol all the five B. bassiana strains could be detected from soil and three strains viz., ITCC 6063, ITCC 4563 and ITCC 4796 could be detected even from the crop foliage after 45 days of spray.
Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging.
Wang, Xiaolei; Cui, Yi; Irudayaraj, Joseph
2015-12-22
Epigenetic modifications on DNA, especially on cytosine, play a critical role in regulating gene expression and genome stability. It is known that the levels of different cytosine derivatives are highly dynamic and are regulated by a variety of factors that act on the chromatin. Here we report an optical methodology based on hyperspectral dark-field imaging (HSDFI) using plasmonic nanoprobes to quantify the recently identified cytosine modifications on DNA in single cells. Gold (Au) and silver (Ag) nanoparticles (NPs) functionalized with specific antibodies were used as contrast-generating agents due to their strong local surface plasmon resonance (LSPR) properties. With this powerful platform we have revealed the spatial distribution and quantity of 5-carboxylcytosine (5caC) at the different stages in cell cycle and demonstrated that 5caC was a stably inherited epigenetic mark. We have also shown that the regional density of 5caC on a single chromosome can be mapped due to the spectral sensitivity of the nanoprobes in relation to the interparticle distance. Notably, HSDFI enables an efficient removal of the scattering noises from nonspecifically aggregated nanoprobes, to improve accuracy in the quantification of different cytosine modifications in single cells. Further, by separating the LSPR fingerprints of AuNPs and AgNPs, multiplex detection of two cytosine modifications was also performed. Our results demonstrate HSDFI as a versatile platform for spatial and spectroscopic characterization of plasmonic nanoprobe-labeled nuclear targets at the single-cell level for quantitative epigenetic screening.
[A review of mixed gas detection system based on infrared spectroscopic technique].
Dang, Jing-Min; Fu, Li; Yan, Zi-Hui; Zheng, Chuan-Tao; Chang, Yu-Chun; Chen, Chen; Wang, Yi-Din
2014-10-01
In order to provide the experiences and references to the researchers who are working on infrared (IR) mixed gas detection field. The proposed manuscript reviews two sections of the aforementioned field, including optical multiplexing structure and detection method. At present, the coherent light sources whose representative are quantum cascade laser (QCL) and inter-band cascade laser(ICL) become the mainstream light source in IR mixed gas detection, which replace the traditional non-coherent light source, such as IR radiation source and IR light emitting diode. In addition, the photon detector which has a super high detectivity and very short response time is gradually beyond thermal infrared detector, dominant in the field of infrared detector. The optical multiplexing structure is the key factor of IR mixed gas detection system, which consists of single light source multi-plexing detection structure and multi light source multiplexing detection structure. Particularly, single light source multiplexing detection structure is advantages of small volume and high integration, which make it a plausible candidate for the portable mixed gas detection system; Meanwhile, multi light source multiplexing detection structure is embodiment of time division multiplex, frequency division multiplexing and wavelength division multiplexing, and become the leading structure of the mixed gas detection system because of its wider spectral range, higher spectral resolution, etc. The detection method applied to IR mixed gas detection includes non-dispersive infrared (NDIR) spectroscopy, wavelength and frequency-modulation spectroscopy, cavity-enhanced spectroscopy and photoacoustic spectroscopy, etc. The IR mixed gas detection system designed by researchers after recognizing the whole sections of the proposed system, which play a significant role in industrial and agricultural production, environmental monitoring, and life science, etc.
Cross-talk free selective reconstruction of individual objects from multiplexed optical field data
NASA Astrophysics Data System (ADS)
Zea, Alejandro Velez; Barrera, John Fredy; Torroba, Roberto
2018-01-01
In this paper we present a data multiplexing method for simultaneous storage in a single package composed by several optical fields of tridimensional (3D) objects, and their individual cross-talk free retrieval. Optical field data are extracted from off axis Fourier holograms, and then sampled by multiplying them with random binary masks. The resulting sampled optical fields can be used to reconstruct the original objects. Sampling causes a loss of quality that can be controlled by the number of white pixels in the binary masks and by applying a padding procedure on the optical field data. This process can be performed using a different binary mask for each optical field, and then added to form a multiplexed package. With the adequate choice of sampling and padding, we can achieve a volume reduction in the multiplexed package over the addition of all individual optical fields. Moreover, the package can be multiplied by a binary mask to select a specific optical field, and after the reconstruction procedure, the corresponding 3D object is recovered without any cross-talk. We demonstrate the effectiveness of our proposal for data compression with a comparison with discrete cosine transform filtering. Experimental results confirm the validity of our proposal.
First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz
2017-03-01
Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.
Gravitational collapse of dark energy field configurations and supermassive black hole formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-timemore » and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.« less
ATLAS Probe: Exploring Frontiers in Galaxy Evolution, Cosmology, and Milky Way Science
NASA Astrophysics Data System (ADS)
Wang, Yun; Robberto, Massimo; Dickinson, Mark; Ferguson, Henry C.; Hillenbrand, Lynne; Hirata, Christopher M.; Cimatti, Andrea; Bartlett, James; Barkhouser, Robert; Benjamin, Robert A.; Brinchmann, Jarle; Chary, Ranga-Ram; Conroy, Charlie; Daddi, Emanuele; Donahue, Megan; Dore, Olivier; Eisenhardt, Peter; Fraser, Wesley C.; Helou, George; Kirkpatrick, J. Davy; Malhotra, Sangeeta; Moscardini, Lauro; Ninkov, Zoran; Ressler, Michael; Rhoads, James; Rhodes, Jason; Shapley, Alice; Smee, Stephen; ATLAS Probe Team
2018-01-01
ATLAS (Astrophysics Telescope for Large Area Spectroscopy) Probe is a concept for a NASA probe-class space mission that leverages WFIRST imaging for targeted spectroscopy. ATLAS Probe will obtain spectra of 90% of all galaxies imaged by the WFIRST High Latitude Survey at z > 0.5, with slit spectra of 300 million galaxies to z = 7. ATLAS Probe and WFIRST together will produce a 3D map of the Universe with Mpc resolution over 2200 sq deg, the definitive data sets for studying galaxy evolution, probing dark matter, dark energy and modification of general relativity, and quantifying the 3D structure and stellar content of the Milky Way.ATLAS Probe science spans four broad categories: (1) Revolutionize galaxy evolution studies by tracing the relation between galaxies and dark matter from the local group to cosmic voids and filaments, from the epoch of reionization through the peak era of galaxy assembly. (2) Open a new window into the Universe by mapping the dark matter filaments using 3D weak lensing with spectroscopic redshifts to unveil the nature of the dark Universe, and obtaining definitive measurements of dark energy and possible modification of general relativity using cosmic large-scale structure. (3) Probe the Milky Way's dust-shrouded regions, reaching the far side of our Galaxy. (4) Characterize asteroids and comets in the outer Solar System.ATLAS Probe is a 1.5m telescope with a field of view (FoV) of 0.4 sq deg, and uses Digital Micromirror Devices (DMDs) as slit selectors. It has a spectroscopic resolution of R = 600, and a wavelength range of 1-4μm. The lack of slit spectroscopy from space over a wide FoV is the obvious gap in current and planned future space missions; ATLAS fills this big gap with an unprecedented spectroscopic capability (with an estimated spectroscopic multiplex factor of 5000-10000). It has an estimated cost under $1B, with a single instrument, a telescope aperture that allows for a lighter launch vehicle, and mature technology (DMDs can reach Technology Readiness Level 6 within two years). ATLAS Probe will lead to transformative science over the entire range of astrophysics: from galaxy evolution to the dark Universe, from Solar System objects to the dusty regions of the Galaxy.
Cates, Joshua W.; Bieniosek, Matthew F.; Levin, Craig S.
2017-01-01
Abstract. Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system’s back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a 4×4 array of SensL MicroFC-30035 SiPMs coupled to 2.9×2.9×20 mm3 Lu1.8Gd0.2SiO5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of 198±2 ps FWHM between the 16-pixel multiplexed detector array and a 2.9×2.9×20 mm3 LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance. PMID:28382312
Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.
Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt
2016-08-16
Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.
A beam hardening and dispersion correction for x-ray dark-field radiography.
Pelzer, Georg; Anton, Gisela; Horn, Florian; Rieger, Jens; Ritter, André; Wandner, Johannes; Weber, Thomas; Michel, Thilo
2016-06-01
X-ray dark-field imaging promises information on the small angle scattering properties even of large samples. However, the dark-field image is correlated with the object's attenuation and phase-shift if a polychromatic x-ray spectrum is used. A method to remove part of these correlations is proposed. The experimental setup for image acquisition was modeled in a wave-field simulation to quantify the dark-field signals originating solely from a material's attenuation and phase-shift. A calibration matrix was simulated for ICRU46 breast tissue. Using the simulated data, a dark-field image of a human mastectomy sample was corrected for the finger print of attenuation- and phase-image. Comparing the simulated, attenuation-based dark-field values to a phantom measurement, a good agreement was found. Applying the proposed method to mammographic dark-field data, a reduction of the dark-field background and anatomical noise was achieved. The contrast between microcalcifications and their surrounding background was increased. The authors show that the influence of and dispersion can be quantified by simulation and, thus, measured image data can be corrected. The simulation allows to determine the corresponding dark-field artifacts for a wide range of setup parameters, like tube-voltage and filtration. The application of the proposed method to mammographic dark-field data shows an increase in contrast compared to the original image, which might simplify a further image-based diagnosis.
A 128 x 128 InGaAs detector array for 1.0 - 1.7 microns
NASA Technical Reports Server (NTRS)
Olsen, G.; Joshi, A.; Lange, M.; Woodruff, K.; Mykietyn, E.; Gay, D.; Ackley, D.; Erickson, G.; Ban, V.; Staller, C.
1990-01-01
A two-dimensional 128 x 128 detector array for the 1.0 - 1.7 micron spectral region has been demonstrated with indium gallium arsenide. The 30 micron square pixels had 60 micron spacing in both directions and were designed to be compatible with a 2D Reticon multiplexer. Dark currents below 100 pA, capacitance near 0.1 pF, and quantum efficiencies above 80 percent were measured. Probe maps of dark current and quantum efficiency are presented along with pixel dropout data and wafer yield which was as high as 99.89 percent (7 dropouts) in an area of 6528 pixels and 99.37 percent (103 dropouts) over an entire 128 x 128 pixel region.
Dark sector impact on gravitational collapse of an electrically charged scalar field
NASA Astrophysics Data System (ADS)
Nakonieczna, Anna; Rogatko, Marek; Nakonieczny, Łukasz
2015-11-01
Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.
Dynamical system analysis for DBI dark energy interacting with dark matter
NASA Astrophysics Data System (ADS)
Mahata, Nilanjana; Chakraborty, Subenoy
2015-01-01
A dynamical system analysis related to Dirac-Born-Infeld (DBI) cosmological model has been investigated in this present work. For spatially flat FRW spacetime, the Einstein field equation for DBI scenario has been used to study the dynamics of DBI dark energy interacting with dark matter. The DBI dark energy model is considered as a scalar field with a nonstandard kinetic energy term. An interaction between the DBI dark energy and dark matter is considered through a phenomenological interaction between DBI scalar field and the dark matter fluid. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables. The potential of the DBI scalar field is assumed to be exponential. Finally, critical points are determined, their nature have been analyzed and corresponding cosmological scenario has been discussed.
Dark-field imaging in coronary atherosclerosis.
Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Auweter, Sigrid; Schüller, Ulrich; Bamberg, Fabian; Notohamiprodjo, Susan; Bartsch, Harald; Wolf, Johannes; Marschner, Mathias; Pfeiffer, Franz; Reiser, Maximilian; Saam, Tobias
2017-09-01
Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability. Copyright © 2017 Elsevier B.V. All rights reserved.
Multiplexing 200 spatial modes with a single hologram
NASA Astrophysics Data System (ADS)
Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew
2017-11-01
The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.
Su, Dongdong; Teoh, Chai Lean; Kang, Nam-Young; Yu, Xiaotong; Sahu, Srikanta; Chang, Young-Tae
2015-03-01
In this paper, we report a new strategy for constructing a dye library with large Stokes shifts. By coupling a dark donor with BODIPY acceptors of tunable high quantum yield, a novel dark resonance energy transfer (DRET)-based library, named BNM, has been synthesized. Upon excitation of the dark donor (BDN) at 490 nm, the absorbed energy is transferred to the acceptor (BDM) with high efficiency, which was tunable in a broad range from 557 nm to 716 nm, with a high quantum yield of up to 0.8. It is noteworthy to mention that the majority of the non-radiative energy loss of the donor was converted into the acceptor's fluorescence output with a minimum leak of donor emission. Fluorescence imaging tested in live cells showed that the BNM compounds are cell-permeable and can also be employed for live-cell imaging. This is a new library which can be excited through a dark donor allowing for strong fluorescence emission in a wide range of wavelengths. Thus, the BNM library is well suited for high-throughput screening or multiplex experiments in biological applications by using a single laser excitation source. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Aoki, Katsuki; Mukohyama, Shinji
2017-11-01
We propose a scenario that can naturally explain the observed dark matter-baryon ratio in the context of bimetric theory with a chameleon field. We introduce two additional gravitational degrees of freedom, the massive graviton and the chameleon field, corresponding to dark matter and dark energy, respectively. The chameleon field is assumed to be nonminimally coupled to dark matter, i.e., the massive graviton, through the graviton mass terms. We find that the dark matter-baryon ratio is dynamically adjusted to the observed value due to the energy transfer by the chameleon field. As a result, the model can explain the observed dark matter-baryon ratio independently from the initial abundance of them.
Electrophoretic and field-effect graphene for all-electrical DNA array technology.
Xu, Guangyu; Abbott, Jeffrey; Qin, Ling; Yeung, Kitty Y M; Song, Yi; Yoon, Hosang; Kong, Jing; Ham, Donhee
2014-09-05
Field-effect transistor biomolecular sensors based on low-dimensional nanomaterials boast sensitivity, label-free operation and chip-scale construction. Chemical vapour deposition graphene is especially well suited for multiplexed electronic DNA array applications, since its large two-dimensional morphology readily lends itself to top-down fabrication of transistor arrays. Nonetheless, graphene field-effect transistor DNA sensors have been studied mainly at single-device level. Here we create, from chemical vapour deposition graphene, field-effect transistor arrays with two features representing steps towards multiplexed DNA arrays. First, a robust array yield--seven out of eight transistors--is achieved with a 100-fM sensitivity, on par with optical DNA microarrays and at least 10 times higher than prior chemical vapour deposition graphene transistor DNA sensors. Second, each graphene acts as an electrophoretic electrode for site-specific probe DNA immobilization, and performs subsequent site-specific detection of target DNA as a field-effect transistor. The use of graphene as both electrode and transistor suggests a path towards all-electrical multiplexed graphene DNA arrays.
Time-varying q-deformed dark energy interacts with dark matter
NASA Astrophysics Data System (ADS)
Dil, Emre; Kolay, Erdinç
We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a q-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume that the number of particles in each mode of the q-deformed scalar field varies in time by the particle creation and annihilation. We first describe the q-deformed scalar field dark energy quantum-field theoretically, then construct the action and the dynamical structure of these interacting dark sectors, in order to study the dynamics of the model. We perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation-of-state parameter of the dark matter evolve from the present day values into a particular value, the dark energy turns out to be a q-deformed scalar field.
X-ray dark-field radiography facilitates the diagnosis of pulmonary fibrosis in a mouse model.
Hellbach, Katharina; Yaroshenko, Andre; Willer, Konstantin; Conlon, Thomas M; Braunagel, Margarita B; Auweter, Sigrid; Yildirim, Ali Ö; Eickelberg, Oliver; Pfeiffer, Franz; Reiser, Maximilian F; Meinel, Felix G
2017-03-23
The aim of this study was to evaluate whether diagnosing pulmonary fibrosis with projection radiography can be improved by using X-ray dark-field radiograms. Pulmonary X-ray transmission and dark-field images of C57Bl/6N mice, either treated with bleomycin to induce pulmonary fibrosis or PBS to serve as controls, were acquired with a prototype grating-based small-animal scanner. Two blinded readers, both experienced radiologists and familiar with dark-field imaging, had to assess dark-field and transmission images for the absence or presence of fibrosis. Furthermore readers were asked to grade their stage of diagnostic confidence. Histological evaluation of the lungs served as the standard of reference in this study. Both readers showed a notably higher diagnostic confidence when analyzing the dark-field radiographs (p < 0.001). Diagnostic accuracy improved significantly when evaluating the lungs in dark-field images alone (p = 0.02) or in combination with transmission images (p = 0.01) compared to sole analysis of absorption images. Interreader agreement improved from good when assessing only transmission images to excellent when analyzing dark-field images alone or in combination with transmission images. Adding dark-field images to conventional transmission images in a murine model of pulmonary fibrosis leads to an improved diagnosis of this disease on chest radiographs.
A Note on Equivalence Among Various Scalar Field Models of Dark Energies
NASA Astrophysics Data System (ADS)
Mandal, Jyotirmay Das; Debnath, Ujjal
2017-08-01
In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.
Ivanov, P L; Leonov, S N; Zemskova, E Iu
2012-01-01
The present study was designed to estimate the possibilities of application of the laser capture microdissection (LCM) technology for the molecular-genetic expert analysis (genotyping) of human chromosomal DNA. The experimental method employed for the purpose was the multiplex multilocus analysis of autosomal DNA polymorphism in the preparations of buccal epitheliocytes obtained by LCM. The key principles of the study were the application of physical methods for contrast enhancement of the micropreparations (such as phase-contrast microscopy and dark-field microscopy) and PCR-compatible cell lysis. Genotyping was carried out with the use of AmpFISTR Minifiler TM PCR Amplification Kits ("Applied Biosynthesis", USA). It was shown that the technique employed in the present study ensures reliable genotyping of human chromosomal DNA in the pooled preparations containing 10-20 dissected diploid cells each. This result fairly well agrees with the calculated sensitivity of the method. A few practical recommendations are offered.
NASA Technical Reports Server (NTRS)
Bailey, Gary C.
1987-01-01
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument uses four separate focal plane assemblies consisting of line array detectors that are multiplexed to a common J-FET preamp using a FET switch multiplexing (MUX) technique. A 32-element silicon line array covers the spectral range from 0.41 to 0.70 microns. Three additional 64-element indium antimonide (InSb) line arrays cover the spectral range from 0.68 to 2.45 microns. The spectral sampling interval per detector element is nominally 9.8 nm, giving a total of 224 spectral channels. All focal planes operate at liquid nitrogen temperature and are housed in separate dewars. Electrical performance characteristics include a read noise of less than 1000 e(-) in all channels, response and dark nonuniformity of 5 percent peak to peak, and quantum efficiency of greater than 60 percent.
A color-corrected strategy for information multiplexed Fourier ptychographic imaging
NASA Astrophysics Data System (ADS)
Wang, Mingqun; Zhang, Yuzhen; Chen, Qian; Sun, Jiasong; Fan, Yao; Zuo, Chao
2017-12-01
Fourier ptychography (FP) is a novel computational imaging technique that provides both wide field of view (FoV) and high-resolution (HR) imaging capacity for biomedical imaging. Combined with information multiplexing technology, wavelength multiplexed (or color multiplexed) FP imaging can be implemented by lighting up R/G/B LED units simultaneously. Furthermore, a HR image can be recovered at each wavelength from the multiplexed dataset. This enhances the efficiency of data acquisition. However, since the same dataset of intensity measurement is used to recover the HR image at each wavelength, the mean value in each channel would converge to the same value. In this paper, a color correction strategy embedded in the multiplexing FP scheme is demonstrated, which is termed as color corrected wavelength multiplexed Fourier ptychography (CWMFP). Three images captured by turning on a LED array in R/G/B are required as priori knowledge to improve the accuracy of reconstruction in the recovery process. Using the reported technique, the redundancy requirement of information multiplexed FP is reduced. Moreover, the accuracy of reconstruction at each channel is improved with correct color reproduction of the specimen.
A power-law coupled three-form dark energy model
NASA Astrophysics Data System (ADS)
Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He
2018-02-01
We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.
Quantum field theory of interacting dark matter and dark energy: Dark monodromies
D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
2016-11-28
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less
Quantum field theory of interacting dark matter and dark energy: Dark monodromies
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less
Directional x-ray dark-field imaging of strongly ordered systems
NASA Astrophysics Data System (ADS)
Jensen, Torben Haugaard; Bech, Martin; Zanette, Irene; Weitkamp, Timm; David, Christian; Deyhle, Hans; Rutishauser, Simon; Reznikova, Elena; Mohr, Jürgen; Feidenhans'L, Robert; Pfeiffer, Franz
2010-12-01
Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.
Signal chain for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
NASA Technical Reports Server (NTRS)
Bunn, James S., Jr.
1988-01-01
The AVIRIS instrument has a separate dedicated analog signal processing chain for each of its four spectrometers. The signal chains amplify low-level focal-plane line array signals (5 to 10 mV full-scale span) in the presence of larger multiplexing signals (approx 150 mV) providing the data handling system a ten-bit digital word (for each spectrometer) each 1.3 microns. This signal chain provides automatic correction for the line array dark signal nonuniformity (which can approach the full-scale signal span).
Signal chain for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
NASA Technical Reports Server (NTRS)
Bunn, James S., Jr.
1987-01-01
The AVIRIS instrument has a separate dedicated analog signal processing chain for each of its four spectrometers. The signal chains amplify low-level focal-plane line array signals (5 to 10 mV full-scale span) in the presence of larger multiplexing signals (approx 150 mV) providing the data handling system a ten-bit digital word (for each spectrometer) each 1.3 microns. This signal chain provides automatic correction for the line array dark signal nonuniformity (which can approach the full-scale signal span).
Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A
2009-03-10
The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster.
Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A.
2009-01-01
The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster. PMID:20161452
Byun, Woo Jin; Kim, Kwang Seon; Kim, Bong Su; Lee, Young Seung; Song, Myung Sun; Choi, Hyung Do; Cho, Yong Heui
2016-06-02
A multiplexed Cassegrain reflector antenna with a 2 × 2 open-ended rectangular waveguide (OERW) matrix feed and an orbital angular momentum (OAM) mode mux is proposed for the simultaneous generation of three OAM modes (l = 0, ±1). The OAM mode mux (OMM) was designed using sequential combinations of quadrature hybrids, crossovers, and phase shifters to multiplex and demultiplex three OAM modes at the same time. The 2 × 2 OERW matrix feed and the OMM were separately measured and their performances were verified according to proposed theories. A near-field antenna measurement for a multiplexed Cassegrain reflector antenna was conducted to obtain the far-field magnitude and phase patterns around polar elevation angle θ and azimuthal angle ϕ, thus confirming that our antenna can produce three OAM modes simultaneously. We also measured the communication link characteristics of two identical multiplexed antennas. The measurement results show that the channel isolation of three OAM modes is more than 12.7 [dB] and 17 [dB] for fixed and compensated receiver positions, respectively, indicating that the proposed antenna system can be used for independent communication links with the same frequency and polarisation.
Multiplexed time-lapse photomicrography of cultured cells.
Heye, R R; Kiebler, E W; Arnzen, R J; Tolmach, L J
1982-01-01
A system of cinemicrography has been developed in which a single microscope and 16 mm camera are multiplexed to produce a time-lapse photographic record of many fields simultaneously. The field coordinates and focus are selected via a control console and entered into the memory of a dedicated microcomputer; they are then automatically recalled in sequence, thus permitting the photographing of additional fields in the interval between exposures of any given field. Sequential exposures of each field are isolated in separate sections of the film by means of a specially designed random-access camera that is also controlled by the microcomputer. The need to unscramble frames is thereby avoided, and the developed film can be directly analysed.
Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography.
Hellbach, Katharina; Baehr, Andrea; De Marco, Fabio; Willer, Konstantin; Gromann, Lukas B; Herzen, Julia; Dmochewitz, Michaela; Auweter, Sigrid; Fingerle, Alexander A; Noël, Peter B; Rummeny, Ernst J; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Wieberneit, Nataly; Proksa, Roland; Koehler, Thomas; Rindt, Karsten; Schroeter, Tobias J; Mohr, Juergen; Bamberg, Fabian; Ertl-Wagner, Birgit; Pfeiffer, Franz; Reiser, Maximilian F
2018-02-08
The aim of this study was to assess the diagnostic value of x-ray dark-field radiography to detect pneumothoraces in a pig model. Eight pigs were imaged with an experimental grating-based large-animal dark-field scanner before and after induction of a unilateral pneumothorax. Image contrast-to-noise ratios between lung tissue and the air-filled pleural cavity were quantified for transmission and dark-field radiograms. The projected area in the object plane of the inflated lung was measured in dark-field images to quantify the collapse of lung parenchyma due to a pneumothorax. Means and standard deviations for lung sizes and signal intensities from dark-field and transmission images were tested for statistical significance using Student's two-tailed t-test for paired samples. The contrast-to-noise ratio between the air-filled pleural space of lateral pneumothoraces and lung tissue was significantly higher in the dark-field (3.65 ± 0.9) than in the transmission images (1.13 ± 1.1; p = 0.002). In case of dorsally located pneumothoraces, a significant decrease (-20.5%; p > 0.0001) in the projected area of inflated lung parenchyma was found after a pneumothorax was induced. Therefore, the detection of pneumothoraces in x-ray dark-field radiography was facilitated compared to transmission imaging in a large animal model.
Dark-Bright Soliton Dynamics Beyond the Mean-Field Approximation
NASA Astrophysics Data System (ADS)
Katsimiga, Garyfallia; Koutentakis, Georgios; Mistakidis, Simeon; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The dynamics of dark bright solitons beyond the mean-field approximation is investigated. We first examine the case of a single dark-bright soliton and its oscillations within a parabolic trap. Subsequently, we move to the setting of collisions, comparing the mean-field approximation to that involving multiple orbitals in both the dark and the bright component. Fragmentation is present and significantly affects the dynamics, especially in the case of slower solitons and in that of lower atom numbers. It is shown that the presence of fragmentation allows for bipartite entanglement between the distinguishable species. Most importantly the interplay between fragmentation and entanglement leads to the decay of each of the initial mean-field dark-bright solitons into fast and slow fragmented dark-bright structures. A variety of excitations including dark-bright solitons in multiple (concurrently populated) orbitals is observed. Dark-antidark states and domain-wall-bright soliton complexes can also be observed to arise spontaneously in the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
In Vivo Dark-Field Radiography for Early Diagnosis and Staging of Pulmonary Emphysema.
Hellbach, Katharina; Yaroshenko, Andre; Meinel, Felix G; Yildirim, Ali Ö; Conlon, Thomas M; Bech, Martin; Mueller, Mark; Velroyen, Astrid; Notohamiprodjo, Mike; Bamberg, Fabian; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz
2015-07-01
The aim of this study was to evaluate the suitability of in vivo x-ray dark-field radiography for early-stage diagnosis of pulmonary emphysema in mice. Furthermore, we aimed to analyze how the dark-field signal correlates with morphological changes of lung architecture at distinct stages of emphysema. Female 8- to 10-week-old C57Bl/6N mice were used throughout all experiments. Pulmonary emphysema was induced by orotracheal injection of porcine pancreatic elastase (80-U/kg body weight) (n = 30). Control mice (n = 11) received orotracheal injection of phosphate-buffered saline. To monitor the temporal patterns of emphysema development over time, the mice were imaged 7, 14, or 21 days after the application of elastase or phosphate-buffered saline. X-ray transmission and dark-field images were acquired with a prototype grating-based small-animal scanner. In vivo pulmonary function tests were performed before killing the animals. In addition, lungs were obtained for detailed histopathological analysis, including mean cord length (MCL) quantification as a parameter for the assessment of emphysema. Three blinded readers, all of them experienced radiologists and familiar with dark-field imaging, were asked to grade the severity of emphysema for both dark-field and transmission images. Histopathology and MCL quantification confirmed the introduction of different stages of emphysema, which could be clearly visualized and differentiated on the dark-field radiograms, whereas early stages were not detected on transmission images. The correlation between MCL and dark-field signal intensities (r = 0.85) was significantly higher than the correlation between MCL and transmission signal intensities (r = 0.37). The readers' visual ratings for dark-field images correlated significantly better with MCL (r = 0.85) than visual ratings for transmission images (r = 0.36). Interreader agreement and the diagnostic accuracy of both quantitative and visual assessment were significantly higher for dark-field imaging than those for conventional transmission images. X-ray dark-field radiography can reliably visualize different stages of emphysema in vivo and demonstrates significantly higher diagnostic accuracy for early stages of emphysema than conventional attenuation-based radiography.
NASA Astrophysics Data System (ADS)
Miller, Kelsey; Guyon, Olivier
2016-07-01
This paper presents the early-stage simulation results of linear dark field control (LDFC) as a new approach to maintaining a stable dark hole within a stellar post-coronagraphic PSF. In practice, conventional speckle nulling is used to create a dark hole in the PSF, and LDFC is then employed to maintain the dark field by using information from the bright speckle field. The concept exploits the linear response of the bright speckle intensity to wavefront variations in the pupil, and therefore has many advantages over conventional speckle nulling as a method for stabilizing the dark hole. In theory, LDFC is faster, more sensitive, and more robust than using conventional speckle nulling techniques, like electric field conjugation, to maintain the dark hole. In this paper, LDFC theory, linear bright speckle characterization, and first results in simulation are presented as an initial step toward the deployment of LDFC on the UA Wavefront Control testbed in the coming year.
Magnetically multiplexed heating of single domain nanoparticles
NASA Astrophysics Data System (ADS)
Christiansen, M. G.; Senko, A. W.; Chen, R.; Romero, G.; Anikeeva, P.
2014-05-01
Selective hysteretic heating of multiple collocated types of single domain magnetic nanoparticles (SDMNPs) by alternating magnetic fields (AMFs) may offer a useful tool for biomedical applications. The possibility of "magnetothermal multiplexing" has not yet been realized, in part due to prevalent use of linear response theory to model SDMNP heating in AMFs. Dynamic hysteresis modeling suggests that specific driving conditions play an underappreciated role in determining optimal material selection strategies for high heat dissipation. Motivated by this observation, magnetothermal multiplexing is theoretically predicted and empirically demonstrated by selecting SDMNPs with properties that suggest optimal hysteretic heat dissipation at dissimilar AMF driving conditions. This form of multiplexing could effectively offer multiple channels for minimally invasive biological signaling applications.
Grandl, Susanne; Scherer, Kai; Sztrókay-Gaul, Anikó; Birnbacher, Lorenz; Willer, Konstantin; Chabior, Michael; Herzen, Julia; Mayr, Doris; Auweter, Sigrid D; Pfeiffer, Franz; Bamberg, Fabian; Hellerhoff, Karin
2015-12-01
Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. • X-ray dark-field mammography provides significantly improved visualization of tumour features • X-ray dark-field mammography is capable of outperforming conventional mammographic imaging • X-ray dark-field mammography provides imaging sensitivity towards highly dispersed calcium grains.
Comparison between two scalar field models using rotation curves of spiral galaxies
NASA Astrophysics Data System (ADS)
Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh
2018-04-01
Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.
Byun, Woo Jin; Kim, Kwang Seon; Kim, Bong Su; Lee, Young Seung; Song, Myung Sun; Choi, Hyung Do; Cho, Yong Heui
2016-01-01
A multiplexed Cassegrain reflector antenna with a 2 × 2 open-ended rectangular waveguide (OERW) matrix feed and an orbital angular momentum (OAM) mode mux is proposed for the simultaneous generation of three OAM modes (l = 0, ±1). The OAM mode mux (OMM) was designed using sequential combinations of quadrature hybrids, crossovers, and phase shifters to multiplex and demultiplex three OAM modes at the same time. The 2 × 2 OERW matrix feed and the OMM were separately measured and their performances were verified according to proposed theories. A near-field antenna measurement for a multiplexed Cassegrain reflector antenna was conducted to obtain the far-field magnitude and phase patterns around polar elevation angle θ and azimuthal angle ϕ, thus confirming that our antenna can produce three OAM modes simultaneously. We also measured the communication link characteristics of two identical multiplexed antennas. The measurement results show that the channel isolation of three OAM modes is more than 12.7 [dB] and 17 [dB] for fixed and compensated receiver positions, respectively, indicating that the proposed antenna system can be used for independent communication links with the same frequency and polarisation. PMID:27252079
NASA Astrophysics Data System (ADS)
Da Rocha, Roldão; Bernardini, Alex E.; da Silva, J. M. Hoff
2011-04-01
Exotic dark spinor fields are introduced and investigated in the context of inequivalent spin structures on arbitrary curved spacetimes, which induces an additional term on the associated Dirac operator, related to a Čech cohomology class. For the most kinds of spinor fields, any exotic term in the Dirac operator can be absorbed and encoded as a shift of the electromagnetic vector potential representing an element of the cohomology group {H^1}( {M,{{Z}_2}} ) . The possibility of concealing such an exotic term does not exist in case of dark (ELKO) spinor fields, as they cannot carry electromagnetic charge, so that the full topological analysis must be evaluated. Since exotic dark spinor fields also satisfy Klein-Gordon propagators, the dynamical constraints related to the exotic term in the Dirac equation can be explicitly calculated. It forthwith implies that the non-trivial topology associated to the spacetime can drastically engender — from the dynamics of dark spinor fields — constraints in the spacetime metric structure. Meanwhile, such constraints may be alleviated, at the cost of constraining the exotic spacetime topology. Besides being prime candidates to the dark matter problem, dark spinor fields are shown to be potential candidates to probe non-trivial topologies in spacetime, as well as probe the spacetime metric structure.
Simultaneous wood and metal particle detection on dark-field radiography.
Braig, Eva-Maria; Birnbacher, Lorenz; Schaff, Florian; Gromann, Lukas; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Muenzel, Daniela
2018-01-01
Currently, the detection of retained wood is a frequent but challenging task in emergency care. The purpose of this study is to demonstrate improved foreign-body detection with the novel approach of preclinical X-ray dark-field radiography. At a preclinical dark-field x-ray radiography, setup resolution and sensitivity for simultaneous detection of wooden and metallic particles have been evaluated in a phantom study. A clinical setting has been simulated with a formalin fixated human hand where different typical foreign-body materials have been inserted. Signal-to-noise ratios (SNR) have been determined for all test objects. On the phantom, the SNR value for wood in the dark-field channel was strongly improved by a factor 6 compared to conventional radiography and even compared to the SNR of an aluminium structure of the same size in conventional radiography. Splinters of wood < 300 μm in diameter were clearly detected on the dark-field radiography. Dark-field radiography of the formalin-fixated human hand showed a clear signal for wooden particles that could not be identified on conventional radiography. x-ray dark-field radiography enables the simultaneous detection of wooden and metallic particles in the extremities. It has the potential to improve and simplify the current state-of-the-art foreign-body detection.
The viability of phantom dark energy: A review
NASA Astrophysics Data System (ADS)
Ludwick, Kevin J.
2017-09-01
In this brief review, we examine the theoretical consistency and viability of phantom dark energy. Almost all data sets from cosmological probes are compatible with the dark energy of the phantom variety (i.e. equation-of-state parameter w < -1) and may even favor evolving dark energy, and since we expect every physical entity to have some kind of field description, we set out to examine the case for phantom dark energy as a field theory. We discuss the many attempts at frameworks that may mitigate and eliminate theoretical pathologies associated with phantom dark energy. We also examine frameworks that provide an apparent measurement w < -1 while avoiding the need for a phantom field theory.
Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P
2015-12-01
Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.
Scale-invariant scalar field dark matter through the Higgs portal
NASA Astrophysics Data System (ADS)
Cosme, Catarina; Rosa, João G.; Bertolami, O.
2018-05-01
We discuss the dynamics and phenomenology of an oscillating scalar field coupled to the Higgs boson that accounts for the dark matter in the Universe. The model assumes an underlying scale invariance such that the scalar field only acquires mass after the electroweak phase transition, behaving as dark radiation before the latter takes place. While for a positive coupling to the Higgs field the dark scalar is stable, for a negative coupling it acquires a vacuum expectation value after the electroweak phase transition and may decay into photon pairs, albeit with a mean lifetime much larger than the age of the Universe. We explore possible astrophysical and laboratory signatures of such a dark matter candidate in both cases, including annihilation and decay into photons, Higgs decay, photon-dark scalar oscillations and induced oscillations of fundamental constants. We find that dark matter within this scenario will be generically difficult to detect in the near future, except for the promising case of a 7 keV dark scalar decaying into photons, which naturally explains the observed galactic and extra-galactic 3.5 keV X-ray line.
Optofluidic wavelength division multiplexing for single-virus detection
Ozcelik, Damla; Parks, Joshua W.; Wall, Thomas A.; Stott, Matthew A.; Cai, Hong; Parks, Joseph W.; Hawkins, Aaron R.; Schmidt, Holger
2015-01-01
Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context––the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine. PMID:26438840
The 4MOST instrument concept overview
NASA Astrophysics Data System (ADS)
Haynes, Roger; Barden, Samuel; de Jong, Roelof; Schnurr, Olivier; Bellido, Olga; Walcher, Jakob; Haynes, Dionne; Winkler, Roland; Bauer, Svend-Marian; Dionies, Frank; Saviauk, Allar; Chiappini, Cristina; Schwope, Axel; Brynnel, Joar; Steinmetz, Matthias; McMahon, Richard; Feltzing, Sofia; Francois, Patrick; Trager, Scott; Parry, Ian; Irwin, Mike; Walton, Nicholas; King, David; Sun, David; Gonzalez-Solares, Eduaro; Tosh, Ian; Dalton, Gavin; Middleton, Kevin; Bonifacio, Piercarlo; Jagourel, Pascal; Mignot, Shan; Cohen, Mathieu; Amans, Jean-Philippe; Royer, Frederic; Sartoretti, Paola; Pragt, Johan; Gerlofsma, Gerrit; Roelfsema, Ronald; Navarro, Ramon; Thimm, Guido; Seifert, Walter; Christlieb, Norbert; Mandel, Holger; Trifonov, Trifon; Xu, Wenli; Lang-Bardl, Florian; Muschielok, Bernard; Schlichter, Jörg; Hess, Hans-Joachim; Grupp, Frank; Boehringer, Hans; Boller, Thomas; Dwelly, Tom; Bender, Ralf; Rosati, Piero; Iwert, Olaf; Finger, Gert; Lizon L'Allemand, Jean-Louis; Saunders, Will; Sheinis, Andrew; Frost, Gabriella; Farrell, Tony; Waller, Lewis; Depagne, Eric; Laurent, Florence; Caillier, Patrick; Kosmalski, Johan; Richard, Johan; Bacon, Roland; Ansorge, Wolfgang
2014-07-01
The 4MOST[1] instrument is a concept for a wide-field, fibre-fed high multiplex spectroscopic instrument facility on the ESO VISTA telescope designed to perform a massive (initially >25x106 spectra in 5 years) combined all-sky public survey. The main science drivers are: Gaia follow up of chemo-dynamical structure of the Milky Way, stellar radial velocities, parameters and abundances, chemical tagging; eROSITA follow up of cosmology with x-ray clusters of galaxies, X-ray AGN/galaxy evolution to z~5, Galactic X-ray sources and resolving the Galactic edge; Euclid/LSST/SKA and other survey follow up of Dark Energy, Galaxy evolution and transients. The surveys will be undertaken simultaneously requiring: highly advanced targeting and scheduling software, also comprehensive data reduction and analysis tools to produce high-level data products. The instrument will allow simultaneous observations of ~1600 targets at R~5,000 from 390-900nm and ~800 targets at R<18,000 in three channels between ~395-675nm (channel bandwidth: 45nm blue, 57nm green and 69nm red) over a hexagonal field of view of ~ 4.1 degrees. The initial 5-year 4MOST survey is currently expect to start in 2020. We provide and overview of the 4MOST systems: optomechanical, control, data management and operations concepts; and initial performance estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarrick, H., E-mail: hlm2124@columbia.edu; Flanigan, D.; Jones, G.
We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated 20-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, themore » horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the measured noise-equivalent temperatures for a 4 K optical load are in the range 26±6 μK√(s)« less
Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure
NASA Astrophysics Data System (ADS)
Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo
2018-04-01
We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.
Large-Format AlGaN PIN Photodiode Arrays for UV Images
NASA Technical Reports Server (NTRS)
Aslam, Shahid; Franz, David
2010-01-01
A large-format hybridized AlGaN photodiode array with an adjustable bandwidth features stray-light control, ultralow dark-current noise to reduce cooling requirements, and much higher radiation tolerance than previous technologies. This technology reduces the size, mass, power, and cost of future ultraviolet (UV) detection instruments by using lightweight, low-voltage AlGaN detectors in a hybrid detector/multiplexer configuration. The solar-blind feature eliminates the need for additional visible light rejection and reduces the sensitivity of the system to stray light that can contaminate observations.
Roles of dark energy perturbations in dynamical dark energy models: can we ignore them?
Park, Chan-Gyung; Hwang, Jai-chan; Lee, Jae-heon; Noh, Hyerim
2009-10-09
We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.
Study of the true performance limits of the Astrometric Multiplexing Area Scanner (AMAS)
NASA Technical Reports Server (NTRS)
Frederick, L. W.; Mcalister, H. A.
1975-01-01
The Astrometric Multiplexing Area Scanner (AMAS) is an instrument designed to perform photoelectric long focus astrometry of small fields. Modulation of a telescope focal plane with a rotating Ronchi ruling produces a frequency modulated signal from which relative positions and magnitudes can be extracted. Evaluation instrumental precision, accuracy and resolution characteristics with respect to a variety of instrumental and cosmical parameters indicates 1.5 micron precision and accuracy for single stars under specific conditions. This value decreases for increased number of field stars, particularly for fainter stars.
4MOST systems engineering: from conceptual design to preliminary design review
NASA Astrophysics Data System (ADS)
Bellido-Tirado, Olga; Frey, Steffen; Barden, Samuel C.; Brynnel, Joar; Giannone, Domenico; Haynes, Roger; de Jong, Roelof S.; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob; Winkler, Roland
2016-08-01
The 4MOST Facility is a high-multiplex, wide-field, brief-fed spectrograph system for the ESO VISTA telescope. It aims to create a world-class spectroscopic survey facility unique in its combination of wide-field multiplex, spectral resolution, spectral coverage, and sensitivity. At the end of 2014, after a successful concept optimization design phase, 4MOST entered into its Preliminary Design Phase. Here we present the process and tools adopted during the Preliminary Design Phase to define the subsystems specifications, coordinate the interface control documents and draft the system verification procedures.
Facilitated Diagnosis of Pneumothoraces in Newborn Mice Using X-ray Dark-Field Radiography.
Hellbach, Katharina; Yaroshenko, Andre; Willer, Konstantin; Pritzke, Tina; Baumann, Alena; Hesse, Nina; Auweter, Sigrid; Reiser, Maximilian F; Eickelberg, Oliver; Pfeiffer, Franz; Hilgendorff, Anne; Meinel, Felix G
2016-10-01
The aim of this study was to evaluate the diagnostic value of x-ray dark-field imaging in projection radiography-based depiction of pneumothoraces in the neonatal murine lung, a potentially life-threatening medical condition that requires a timely and correct diagnosis. By the use of a unique preclinical model, 7-day-old C57Bl/6N mice received mechanical ventilation for 2 or 8 hours with oxygen-rich gas (FIO2 = 0.4; n = 24). Unventilated mice either spontaneously breathed oxygen-rich gas (FIO2 = 0.4) for 2 or 8 hours or room air (n = 22). At the end of the experiment, lungs were inflated with a standardized volume of air after a lethal dose of pentobarbital was administered to the pups. All lungs were imaged with a prototype grating-based small-animal scanner to acquire x-ray transmission and dark-field radiographs. Image contrast between the air-filled pleural space and lung tissue was quantified for both transmission and dark-field radiograms. After the independent expert's assessment, 2 blinded readers evaluated all dark-field and transmission images for the presence or absence of pneumothoraces. Contrast ratios, diagnostic accuracy, as well as reader's confidence and interreader agreement were recorded for both imaging modalities. Evaluation of both x-ray transmission and dark-field radiographs by independent experts revealed the development of a total of 10 pneumothoraces in 8 mice. Here, the contrast ratio between the air-filled pleural space of the pneumothoraces and the lung tissue was significantly higher in the dark field (8.4 ± 3.5) when compared with the transmission images (5.1 ± 2.8; P < 0.05). Accordingly, the readers' diagnostic confidence for the diagnosis of pneumothoraces was significantly higher for dark-field compared with transmission images (P = 0.001). Interreader agreement improved from moderate for the analysis of transmission images alone (κ = 0.41) to very good when analyzing dark-field images alone (κ = 0.90) or in combination with transmission images (κ = 0.88). Diagnostic accuracy significantly improved for the analysis of dark-field images alone (P = 0.04) or in combination with transmission images (P = 0.02), compared with the analysis of transmission radiographs only. The significant improvement in contrast ratios between lung parenchyma and free air in the dark-field images allows the facilitated detection of pneumothoraces in the newborn mouse. These preclinical experiments indicate the potential of the technique for future clinical applications.
First experiences with in-vivo x-ray dark-field imaging of lung cancer in mice
NASA Astrophysics Data System (ADS)
Gromann, Lukas B.; Scherer, Kai; Yaroshenko, Andre; Bölükbas, Deniz A.; Hellbach, Katharina; Meinel, Felix G.; Braunagel, Margarita; Eickelberg, Oliver; Reiser, Maximilian F.; Pfeiffer, Franz; Meiners, Silke; Herzen, Julia
2017-03-01
Purpose: The purpose of the present study was to evaluate if x-ray dark-field imaging can help to visualize lung cancer in mice. Materials and Methods: The experiments were performed using mutant mice with high-grade adenocarcinomas. Eight animals with pulmonary carcinoma and eight control animals were imaged in radiography mode using a prototype small-animal x-ray dark-field scanner and three of the cancerous ones additionally in CT mode. After imaging, the lungs were harvested for histological analysis. To determine their diagnostic value, x-ray dark-field and conventional attenuation images were analyzed by three experienced readers in a blind assessment. Results radiographic imaging: The lung nodules were much clearer visualized on the dark-field radiographs compared to conventional radiographs. The loss of air-tissue interfaces in the tumor leads to a significant loss of x-ray scattering, reflected in a strong dark-field signal change. The difference between tumor and healthy tissue in terms of x-ray attenuation is significantly less pronounced. Furthermore, the signal from the overlaying structures on conventional radiographs complicates the detection of pulmonary carcinoma. Results CT imaging: The very first in-vivo CT-imaging results are quite promising as smaller tumors are often better visible in the dark-field images. However the imaging quality is still quite low, especially in the attenuation images due to un-optimized scanning parameters. Conclusion: We found a superior diagnostic performance of dark-field imaging compared to conventional attenuation based imaging, especially when it comes to the detection of small lung nodules. These results support the motivation to further develop this technique and translate it towards a clinical environment.
Improved diagnosis of pulmonary emphysema using in vivo dark-field radiography.
Meinel, Felix G; Yaroshenko, Andre; Hellbach, Katharina; Bech, Martin; Müller, Mark; Velroyen, Astrid; Bamberg, Fabian; Eickelberg, Oliver; Nikolaou, Konstantin; Reiser, Maximilian F; Pfeiffer, Franz; Yildirim, Ali Ö
2014-10-01
The purpose of this study was to assess whether the recently developed method of grating-based x-ray dark-field radiography can improve the diagnosis of pulmonary emphysema in vivo. Pulmonary emphysema was induced in female C57BL/6N mice using endotracheal instillation of porcine pancreatic elastase and confirmed by in vivo pulmonary function tests, histopathology, and quantitative morphometry. The mice were anesthetized but breathing freely during imaging. Experiments were performed using a prototype small-animal x-ray dark-field scanner that was operated at 35 kilovolt (peak) with an exposure time of 5 seconds for each of the 10 grating steps. Images were compared visually. For quantitative comparison of signal characteristics, regions of interest were placed in the upper, middle, and lower zones of each lung. Receiver-operating-characteristic statistics were performed to compare the effectiveness of transmission and dark-field signal intensities and the combined parameter "normalized scatter" to differentiate between healthy and emphysematous lungs. A clear visual difference between healthy and emphysematous mice was found for the dark-field images. Quantitative measurements of x-ray dark-field signal and normalized scatter were significantly different between the mice with pulmonary emphysema and the control mice and showed good agreement with pulmonary function tests and quantitative histology. The normalized scatter showed a significantly higher discriminatory power (area under the receiver-operating-characteristic curve [AUC], 0.99) than dark-field (AUC, 0.90; P = 0.01) or transmission signal (AUC, 0.69; P < 0.001) alone did, allowing for an excellent discrimination of healthy and emphysematous lung regions. In a murine model, x-ray dark-field radiography is technically feasible in vivo and represents a substantial improvement over conventional transmission-based x-ray imaging for the diagnosis of pulmonary emphysema.
Schleede, Simone; Meinel, Felix G.; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Potdevin, Guillaume; Malecki, Andreas; Adam-Neumair, Silvia; Thieme, Sven F.; Bamberg, Fabian; Nikolaou, Konstantin; Bohla, Alexander; Yildirim, Ali Ö.; Loewen, Roderick; Gifford, Martin; Ruth, Ronald; Eickelberg, Oliver; Reiser, Maximilian; Pfeiffer, Franz
2012-01-01
In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs. PMID:23074250
Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.
Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang
2015-10-27
Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.
NASA Astrophysics Data System (ADS)
van der Kuur, J.; Gottardi, L. G.; Akamatsu, H.; van Leeuwen, B. J.; den Hartog, R.; Haas, D.; Kiviranta, M.; Jackson, B. J.
2016-07-01
Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.
Dark matter haloes: a multistream view
NASA Astrophysics Data System (ADS)
Ramachandra, Nesar S.; Shandarin, Sergei F.
2017-09-01
Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.
Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial.
Manjappa, Manukumara; Turaga, Shuvan Prashant; Srivastava, Yogesh Kumar; Bettiol, Andrew Anthony; Singh, Ranjan
2017-06-01
Dark mode in metamaterials has become a vital component in determining the merit of the Fano type of interference in the system. Its strength dictates the enhancement and suppression in the amplitude and Q-factors of resulting resonance features. In this work, we experimentally probe the effect of strong near-field coupling on the strength of the dark mode in a concentrically aligned bright resonator and a dark split ring resonator (SRR) system exhibiting the classical analog of the electromagnetically induced transparency effect. An enhanced strong magnetic field between the bright-dark resonators destructively interferes with the inherent magnetic field of the dark mode to completely annihilate its effect in the coupled system. Moreover, the observed annihilation effect in the dark mode has a direct consequence on the disappearance of the SRR effect in the proposed system, wherein under the strong magnetic interactions, the LC resonance feature of the split ring resonator becomes invisible to the incident terahertz wave.
Macroscopic theory of dark sector
NASA Astrophysics Data System (ADS)
Meierovich, Boris
A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant [1]. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves [2]. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe [3]. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution corresponds to the particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to analyse the main properties of the dark sector analytically and avoid unnecessary model assumptions. It opens a possibility to trace how the additional attraction of the space-like dark matter, dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, dominating in the scale of the Universe. 1. B. E. Meierovich. "Vector fields in multidimensional cosmology". Phys. Rev. D 84, 064037 (2011). 2. B. E. Meierovich. "Galaxy rotation curves driven by massive vector fields: Key to the theory of the dark sector". Phys. Rev. D 87, 103510, (2013). 3. B. E. Meierovich. "Towards the theory of the evolution of the Universe". Phys. Rev. D 85, 123544 (2012).
Scalar field dark matter with spontaneous symmetry breaking and the 3.5 keV line
NASA Astrophysics Data System (ADS)
Cosme, Catarina; Rosa, João G.; Bertolami, O.
2018-06-01
We show that the present dark matter abundance can be accounted for by an oscillating scalar field that acquires both mass and a non-zero expectation value from interactions with the Higgs field. The dark matter scalar field can be sufficiently heavy during inflation, due to a non-minimal coupling to gravity, so as to avoid the generation of large isocurvature modes in the CMB anisotropies spectrum. The field begins oscillating after reheating, behaving as radiation until the electroweak phase transition and afterwards as non-relativistic matter. The scalar field becomes unstable, although sufficiently long-lived to account for dark matter, due to mass mixing with the Higgs boson, decaying mainly into photon pairs for masses below the MeV scale. In particular, for a mass of ∼7 keV, which is effectively the only free parameter, the model predicts a dark matter lifetime compatible with the recent galactic and extragalactic observations of a 3.5 keV X-ray line.
Dark matter cosmic string in the gravitational field of a black hole
NASA Astrophysics Data System (ADS)
Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek
2018-03-01
We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.
Lan, S-Y; Radnaev, A G; Collins, O A; Matsukevich, D N; Kennedy, T A; Kuzmich, A
2009-08-03
A quantum repeater is a system for long-distance quantum communication that employs quantum memory elements to mitigate optical fiber transmission losses. The multiplexed quantum memory (O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Phys. Rev. Lett. 98, 060502 (2007)) has been shown theoretically to reduce quantum memory time requirements. We present an initial implementation of a multiplexed quantum memory element in a cold rubidium gas. We show that it is possible to create atomic excitations in arbitrary memory element pairs and demonstrate the violation of Bell's inequality for light fields generated during the write and read processes.
NASA Astrophysics Data System (ADS)
Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung
2016-10-01
In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4 × 4 LGSO crystals, each with a dimension of 3 × 3 × 20 mm3, and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.
Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph
NASA Astrophysics Data System (ADS)
Takada, Masahiro; Ellis, Richard S.; Chiba, Masashi; Greene, Jenny E.; Aihara, Hiroaki; Arimoto, Nobuo; Bundy, Kevin; Cohen, Judith; Doré, Olivier; Graves, Genevieve; Gunn, James E.; Heckman, Timothy; Hirata, Christopher M.; Ho, Paul; Kneib, Jean-Paul; Le Fèvre, Olivier; Lin, Lihwai; More, Surhud; Murayama, Hitoshi; Nagao, Tohru; Ouchi, Masami; Seiffert, Michael; Silverman, John D.; Sodré, Laerte; Spergel, David N.; Strauss, Michael A.; Sugai, Hajime; Suto, Yasushi; Takami, Hideki; Wyse, Rosemary
2014-02-01
The Subaru Prime Focus Spectrograph (PFS) is a massively multiplexed fiber-fed optical and near-infrared three-arm spectrograph (Nfiber = 2400, 380 ≤ λ ≤ 1260 nm, 1 .^{circ}3 diameter field of view). Here, we summarize the science cases in terms of provisional plans for a 300-night Subaru survey. We describe plans to constrain the nature of dark energy via a survey of emission line galaxies spanning a comoving volume of 9.3 h-3 Gpc3 in the redshift range 0.8 < z < 2.4. In each of six redshift bins, the cosmological distances will be measured to 3% precision via the baryonic acoustic oscillation scale, and redshift-space distortion measures will constrain structure growth to 6% precision. In the near-field cosmology program, radial velocities and chemical abundances of stars in the Milky Way and M 31 will be used to infer the past assembly histories of spiral galaxies and the structure of their dark matter halos. Data will be secured for 106 stars in the Galactic thick-disk, halo, and tidal streams as faint as V ˜ 22, including stars with V < 20 to complement the goals of the Gaia mission. A medium-resolution mode with R = 5000 to be implemented in the red arm will allow the measurement of multiple α-element abundances and more precise velocities for Galactic stars. For the galaxy evolution program, our simulations suggest the wide wavelength range of PFS will be powerful in probing the galaxy population and its clustering over a wide redshift range. We plan to conduct a color-selected survey of 1 < z < 2 galaxies and AGN over 16 deg2 to J ≃ 23.4, yielding a fair sample of galaxies with stellar masses above ˜1010 M⊙ at z ≃ 2. A two-tiered survey of higher redshift Lyman break galaxies and Lyman alpha emitters will quantify the properties of early systems close to the reionization epoch.
Can dark matter be a scalar field?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesus, J.F.; Malatrasi, J.L.G.; Pereira, S.H.
2016-08-01
In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m ≥0.12 H {sub 0}{sup -1} eV ( c = h-bar =1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H {sub 0}=73±1.8 km s{sup -1}Mpc{sup -1}, this leads tomore » m ≥1.56×10{sup -33} eV at 99.7% c.l. Such value is much smaller than m ∼ 10{sup -22} eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.« less
[Does dark field microscopy according to Enderlein allow for cancer diagnosis? A prospective study].
El-Safadi, Samer; Tinneberg, Hans-Rudolf; von Georgi, Richard; Münstedt, Karsten; Brück, Friede
2005-06-01
Dark field microscopy according to Enderlin claims to be able to detect forthcoming or beginning cancer at an early stage through minute abnormalities in the blood. In Germany and the USA, this method is used by an increasing number of physicians and health practitioners (non-medically qualified complementary practitioners), because this easy test seems to give important information about patients' health status. Can dark field microscopy reliably detect cancer? In the course of a prospective study on iridology, blood samples were drawn for dark field microscopy in 110 patients. A health practitioner with several years of training in the field carried out the examination without prior information about the patients. Out of 12 patients with present tumor metastasis as confirmed by radiological methods (CT, MRI or ultra-sound) 3 were correctly identified. Analysis of sensitivity (0.25), specificity (0.64), positive (0.09) and negative (0.85) predictive values revealed unsatisfactory results. Dark field micoroscopy does not seem to reliably detect the presence of cancer. Clinical use of the method can therefore not be recommended until future studies are conducted.
NASA Astrophysics Data System (ADS)
Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana
2016-10-01
The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.
Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana
2016-10-14
The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.
Small-animal dark-field radiography for pulmonary emphysema evaluation
NASA Astrophysics Data System (ADS)
Yaroshenko, Andre; Meinel, Felix G.; Hellbach, Katharina; Bech, Martin; Velroyen, Astrid; Müller, Mark; Bamberg, Fabian; Nikolaou, Konstantin; Reiser, Maximilian F.; Yildirim, Ali Ã.-.; Eickelberg, Oliver; Pfeiffer, Franz
2014-03-01
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide and emphysema is one of its main components. The disorder is characterized by irreversible destruction of the alveolar walls and enlargement of distal airspaces. Despite the severe changes in the lung tissue morphology, conventional chest radiographs have only a limited sensitivity for the detection of mild to moderate emphysema. X-ray dark-field is an imaging modality that can significantly increase the visibility of lung tissue on radiographic images. The dark-field signal is generated by coherent, small-angle scattering of x-rays on the air-tissue interfaces in the lung. Therefore, morphological changes in the lung can be clearly visualized on dark-field images. This is demonstrated by a preclinical study with a small-animal emphysema model. To generate a murine model of pulmonary emphysema, a female C57BL/6N mouse was treated with a single orotracheal application of porcine pancreatic elastase (80 U/kg body weight) dissolved in phosphate-buffered saline (PBS). Control mouse received PBS. The mice were imaged using a small-animal dark-field scanner. While conventional x-ray transmission radiography images revealed only subtle indirect signs of the pulmonary disorder, the difference between healthy and emphysematous lungs could be clearly directly visualized on the dark-field images. The dose applied to the animals is compatible with longitudinal studies. The imaging results correlate well with histology. The results of this study reveal the high potential of dark-field radiography for clinical lung imaging.
Ferromagnetic transition in a simple variant of the Ising model on multiplex networks
NASA Astrophysics Data System (ADS)
Krawiecki, A.
2018-02-01
Multiplex networks consist of a fixed set of nodes connected by several sets of edges which are generated separately and correspond to different networks ("layers"). Here, a simple variant of the Ising model on multiplex networks with two layers is considered, with spins located in the nodes and edges corresponding to ferromagnetic interactions between them. Critical temperatures for the ferromagnetic transition are evaluated for the layers in the form of random Erdös-Rényi graphs or heterogeneous scale-free networks using the mean-field approximation and the replica method, from the replica symmetric solution. Both methods require the use of different "partial" magnetizations, associated with different layers of the multiplex network, and yield qualitatively similar results. If the layers are strongly heterogeneous the critical temperature differs noticeably from that for the Ising model on a network being a superposition of the two layers, evaluated in the mean-field approximation neglecting the effect of the underlying multiplex structure on the correlations between the degrees of nodes. The critical temperature evaluated from the replica symmetric solution depends sensitively on the correlations between the degrees of nodes in different layers and shows satisfactory quantitative agreement with that obtained from Monte Carlo simulations. The critical behavior of the magnetization for the model with strongly heterogeneous layers can depend on the distributions of the degrees of nodes and is then determined by the properties of the most heterogeneous layer.
NASA Astrophysics Data System (ADS)
Zheng, Yongping; Tian, Qinghua; Zhang, Wei; Zhang, Qi; Zhu, Lei; Wang, Yongjun; Liu, Bo; Xin, Xiangjun
2018-01-01
Orbital angular momentum (OAM) as a new degree of freedom, greatly improves the spectrum efficiency and channel capacity of optical communication system. It has become the research focus in the field of optical communications. Some scholars have demonstrated that the feasibility of two multiplexed groups of concentric rings of Laguerre-Gaussian (LG) beams with OAM multiplexing transmission in free space. Based on the point, this paper makes the further research on the propagation characteristics of LG beams with this spatial multiplexing structure in atmospheric turbulence. The random phase screen is established by using the modified von Karman power spectrum and the received power and crosstalk power of OAM modes of LG beams are obtained under the Rytov approximation. We investigate the characteristic parameters of LG beams with this spatial multiplexing structure for mitigating turbulence. Simulation results show that the system exists an optimum beam waist related to wavelength in which the received power of OAM modes reaches the maximum. Meanwhile, the BER and aggregate capacity of the system with two multiplexed groups of concentric rings of LG beams with OAM multiplexing are simulated and analyzed under different intensities of atmospheric turbulence. The results reveal that the system with larger mode spacing generally has lower inter-modal crosstalk and larger aggregate capacity than that with the smaller mode spacing. Finally, on the basis of above the analysis and research, some suggestions for efficient OAM multiplexing detection scheme are proposed.
xMAP Technology: Applications in Detection of Pathogens
Reslova, Nikol; Michna, Veronika; Kasny, Martin; Mikel, Pavel; Kralik, Petr
2017-01-01
xMAP technology is applicable for high-throughput, multiplex and simultaneous detection of different analytes within a single complex sample. xMAP multiplex assays are currently available in various nucleic acid and immunoassay formats, enabling simultaneous detection and typing of pathogenic viruses, bacteria, parasites and fungi and also antigen or antibody interception. As an open architecture platform, the xMAP technology is beneficial to end users and therefore it is used in various pharmaceutical, clinical and research laboratories. The main aim of this review is to summarize the latest findings and applications in the field of pathogen detection using microsphere-based multiplex assays. PMID:28179899
Cosmology with interaction in the dark sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, F. E. M.; Barboza, E. M. Jr.; Alcaniz, J. S.
2009-06-15
Unless some unknown symmetry in nature prevents or suppresses a nonminimal coupling in the dark sector, the dark energy field may interact with the pressureless component of dark matter. In this paper, we investigate some cosmological consequences of a general model of interacting dark matter-dark energy characterized by a dimensionless parameter {epsilon}. We derive a coupled scalar field version for this general class of scenarios and carry out a joint statistical analysis involving type Ia supernovae data (Legacy and Constitution sets), measurements of baryon acoustic oscillation peaks at z=0.20 (2dFGRS) and z=0.35 (SDSS), and measurements of the Hubble evolution H(z).more » For the specific case of vacuum decay (w=-1), we find that, although physically forbidden, a transfer of energy from dark matter to dark energy is favored by the data.« less
NASA Astrophysics Data System (ADS)
Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong
2018-02-01
Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.
Toward electroweak scale cold dark matter with local dark gauge symmetry and beyond the DM EFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Pyungwon, E-mail: pko@kias.re.kr
2016-06-21
In this talk, I describe a class of electroweak (EW) scale dark matter (DM) models where its stability or longevity are the results of underlying dark gauge symmetries: stable due to unbroken local dark gauge symmetry or topology, or long-lived due to the accidental global symmetry of dark gauge theories. Compared with the usual phenomenological dark matter models (including DM EFT or simplified DM models), DM models with local dark gauge symmetries include dark gauge bosons, dark Higgs bosons and sometimes excited dark matter. And dynamics among these fields are completely fixed by local gauge principle. The idea of singletmore » portals including the Higgs portal can thermalize these hidden sector dark matter very efficiently, so that these DM could be easily thermal DM. I also discuss the limitation of the usual DM effective field theory or simplified DM models without the full SM gauge symmetry, and emphasize the importance of the full SM gauge symmetry and renormalizability especially for collider searches for DM.« less
Energy weighted x-ray dark-field imaging.
Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo
2014-10-06
The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.
Duality between a dark state and a quasi-dark state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirokawa, Masao, E-mail: hirokawa@amath.hiroshima-u.ac.jp
We study a physical system coupled with two one-mode Bose fields. The physical system is a two-level system or a harmonic oscillator. We prove that each dark and quasi-dark state appears under a proper condition, and then, we derive a duality between the dark state and the quasi-dark state. This duality induces the switch between the dark state and the quasi-dark state.
NASA Astrophysics Data System (ADS)
Liang, Shi-Dong; Harko, Tiberiu
2015-04-01
Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.
Transient and late time attractor tachyon dark energy: Can we distinguish it from quintessence?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Amna; Sami, M.; Sen, A. A.
2009-06-15
The string inspired tachyon field can serve as a candidate of dark energy. Its equation of state parameter w varies from 0 to -1. In the case of tachyon field potential V({phi}){yields}0 slower (faster) than 1/{phi}{sup 2} at infinity, dark energy (dark matter) is a late time attractor. We investigate the tachyon dark energy models under the assumption that w is close to -1. We find that all the models exhibit unique behavior around the present epoch which is exactly the same as that of the thawing quintessence.
An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos
NASA Astrophysics Data System (ADS)
Zhao, Hong Sheng
2008-11-01
Modern astronomical data on galaxy and cosmological scales have revealed powerfully the existence of certain dark sectors of fundamental physics, i.e., existence of particles and fields outside the standard models and inaccessible by current experiments. Various approaches are taken to modify/extend the standard models. Generic theories introduce multiple de-coupled fields A, B, C, each responsible for the effects of DM (cold supersymmetric particles), DE (Dark Energy) effect, and MG (Modified Gravity) effect respectively. Some theories use adopt vanilla combinations like AB, BC, or CA, and assume A, B, C belong to decoupled sectors of physics. MOND-like MG and Cold DM are often taken as antagnising frameworks, e.g. in the muddled debate around the Bullet Cluster. Here we argue that these ad hoc divisions of sectors miss important clues from the data. The data actually suggest that the physics of all dark sectors is likely linked together by a self-interacting oscillating field, which governs a chameleon-like dark fluid, appearing as DM, DE and MG in different settings. It is timely to consider an interdisciplinary approach across all semantic boundaries of dark sectors, treating the dark stress as one identity, hence accounts for several "coincidences" naturally.
Dipolar dark matter with massive bigravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchet, Luc; Heisenberg, Lavinia; Department of Physics & The Oskar Klein Centre, AlbaNova University Centre,Roslagstullsbacken 21, 10691 Stockholm
2015-12-14
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the twomore » metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.« less
Dipolar dark matter with massive bigravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchet, Luc; Heisenberg, Lavinia, E-mail: blanchet@iap.fr, E-mail: laviniah@kth.se
2015-12-01
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the twomore » metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.« less
Preclinical x-ray dark-field imaging: foreign body detection
NASA Astrophysics Data System (ADS)
Braig, Eva-Maria; Muenzel, Daniela; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Pfeiffer, Franz; Noel, Peter
2017-03-01
The purpose of this study was to evaluate the performance of X-ray dark-field imaging for detection of retained foreign bodies in ex-vivo hands and feet. X-ray dark-field imaging, acquired with a three-grating Talbot-Lau interferometer, has proven to provide access to sub-resolution structures due to small-angle scattering. The study was institutional review board (IRB) approved. Foreign body parts included pieces of wood and metal which were placed in a formalin fixated human ex-vivo hand. The samples were imaged with a grating-based interferometer consisting of a standard microfocus X-ray tube (60 kVp, 100 W) and a Varian 2520-DX detector (pixel size: 127 μm). The attenuation and the dark-field signals provide complementary diagnostic information for this clinical task. With regard to detecting of wooden objects, which are clinically the most relevant, only the dark-field image revealed the locations. The signal is especially strong for dry wood which in comparison is poorly to non-visible in computed tomography. The detection of high atomic-number or dense material and wood-like or porous materials in a single X-ray scan is enabled by the simultaneous acquisition of the conventional attenuation and dark-field signal. Our results reveal that with this approach one can reach a significantly improved sensitivity for detection of foreign bodies, while an easy implementation into the clinical arena is becoming feasible.
Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering.
Chen, Ji; Li, Tao; Wang, Shuming; Zhu, Shining
2017-08-09
Thanks to the superiority in controlling the optical wave fronts, plasmonic nanostructures have led to various striking applications, among which metasurface holograms have been well developed and endowed with strong multiplexing capability. Here, we report a new design of multiplexed plasmonic hologram, which allows for reconstruction of multiple holographic images in free space by scatterings of surface plasmon polariton (SPP) waves in different propagation directions. Besides, the scattered polarization states can be further modulated by arranging the orientations of nanoscatterers. By incorporation of the SPP propagation and polarized scattering, a 4-fold hologram with low crosstalk is successfully demonstrated, which breaks the limitation of only two orthogonal states in conventional polarization multiplexers. Moreover, our design using the near-field SPP as reference wave holds the advantage for compact integration. This holographic approach is expected to inspire new photonic designs with enhanced information capacity and integratability.
Time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors
NASA Astrophysics Data System (ADS)
Huang, S. C.; Lin, W. W.; Chen, M. H.
1995-06-01
A system of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors that uses Faraday rotator mirror elements is demonstrated. This system is constructed with conventional low-birefringence single-mode fiber and is able to solve the polarization-fading problem by a combination of Faraday rotator mirrors with unbalanced Michelson interferometers. The system is lead-fiber insensitive and has potentials for practical field applications.
Linear solutions to metamaterial volume hologram design using a variational approach.
Marks, Daniel L; Smith, David R
2018-04-01
Multiplex volume holograms are conventionally constructed by the repeated exposure of a photosensitive medium to a sequence of external fields, each field typically being the superposition of a reference wave that reconstructs the hologram and the other being a desired signal wave. Because there are no sources of radiation internal to the hologram, the pattern of material modulation is limited to the solutions to Helmholtz's equation in the medium. If the three-dimensional structure of the medium could be engineered at each point rather than limited to the patterns produced by standing waves, more versatile structures may result that can overcome the typical limitations to hologram dynamic range imposed by sequentially superimposing holograms. Metamaterial structures and other synthetic electromagnetic materials offer the possibility of achieving high medium contrast engineered at the subwavelength scale. By posing the multiplex volume holography problem as a linear medium design problem, we explore the potential improvements that such engineered synthetic media may provide over conventional multiplex volume holograms.
Wavelength-multiplexing surface plasmon holographic microscopy.
Zhang, Jiwei; Dai, Siqing; Zhong, Jinzhan; Xi, Teli; Ma, Chaojie; Li, Ying; Di, Jianglei; Zhao, Jianlin
2018-05-14
Surface plasmon holographic microscopy (SPHM), which combines surface plasmon microscopy with digital holographic microscopy, can be applied for amplitude- and phase-contrast surface plasmon resonance (SPR) imaging. In this paper, we propose an improved SPHM with the wavelength multiplexing technique based on two laser sources and a common-path hologram recording configuration. Through recording and reconstructing the SPR images at two wavelengths simultaneously employing the improved SPHM, tiny variation of dielectric refractive index in near field is quantitatively monitored with an extended measurement range while maintaining the high sensitivity. Moreover, imaging onion tissues is performed to demonstrate that the detection sensitivities of two wavelengths can compensate for each other in SPR imaging. The proposed wavelength-multiplexing SPHM presents simple structure, high temporal stability and inherent capability of phase curvature compensation, as well as shows great potentials for further applications in monitoring diverse dynamic processes related with refractive index variations and imaging biological tissues with low-contrast refractive index distributions in the near field.
A Novel Universal Primer-Multiplex-PCR Method with Sequencing Gel Electrophoresis Analysis
Huang, Kunlun; Zhang, Nan; Yuan, Yanfang; Shang, Ying; Luo, Yunbo
2012-01-01
In this study, a novel universal primer-multiplex-PCR (UP-M-PCR) method adding a universal primer (UP) in the multiplex PCR reaction system was described. A universal adapter was designed in the 5′-end of each specific primer pairs which matched with the specific DNA sequences for each template and also used as the universal primer (UP). PCR products were analyzed on sequencing gel electrophoresis (SGE) which had the advantage of exhibiting extraordinary resolution. This method overcame the disadvantages rooted deeply in conventional multiplex PCR such as complex manipulation, lower sensitivity, self-inhibition and amplification disparity resulting from different primers, and it got a high specificity and had a low detection limit of 0.1 ng for single kind of crops when screening the presence of genetically modified (GM) crops in mixture samples. The novel developed multiplex PCR assay with sequencing gel electrophoresis analysis will be useful in many fields, such as verifying the GM status of a sample irrespective of the crop and GM trait and so on. PMID:22272223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal
2016-03-21
X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematicmore » investigation of complex samples containing both soft and hard materials.« less
Leptogenesis, radiative neutrino masses and inert Higgs triplet dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wen-Bin; Gu, Pei-Hong
2016-05-18
We extend the standard model by three types of inert fields including Majorana fermion singlets/triplets, real Higgs singlets/triplets and leptonic Higgs doublets. In the presence of a softly broken lepton number and an exactly conserved Z{sub 2} discrete symmetry, these inert fields together can mediate a one-loop diagram for a Majorana neutrino mass generation. The heavier inert fields can decay to realize a successful leptogenesis while the lightest inert field can provide a stable dark matter candidate. As an example, we demonstrate the leptogenesis by the inert Higgs doublet decays. We also perform a systematic study on the inert Higgsmore » triplet dark matter scenario where the interference between the gauge and Higgs portal interactions can significantly affect the dark matter properties.« less
Light and dark adaptation of visually perceived eye level controlled by visual pitch.
Matin, L; Li, W
1995-01-01
The pitch of a visual field systematically influences the elevation at which a monocularly viewing subject sets a target so as to appear at visually perceived eye level (VPEL). The deviation of the setting from true eye level average approximately 0.6 times the angle of pitch while viewing a fully illuminated complexly structured visual field and is only slightly less with one or two pitched-from-vertical lines in a dark field (Matin & Li, 1994a). The deviation of VPEL from baseline following 20 min of dark adaptation reaches its full value less than 1 min after the onset of illumination of the pitched visual field and decays exponentially in darkness following 5 min of exposure to visual pitch, either 30 degrees topbackward or 20 degrees topforward. The magnitude of the VPEL deviation measured with the dark-adapted right eye following left-eye exposure to pitch was 85% of the deviation that followed pitch exposure of the right eye itself. Time constants for VPEL decay to the dark baseline were the same for same-eye and cross-adaptation conditions and averaged about 4 min. The time constants for decay during dark adaptation were somewhat smaller, and the change during dark adaptation extended over a 16% smaller range following the viewing of the dim two-line pitched-from-vertical stimulus than following the viewing of the complex field. The temporal course of light and dark adaptation of VPEL is virtually identical to the course of light and dark adaptation of the scotopic luminance threshold following exposure to the same luminance. We suggest that, following rod stimulation along particular retinal orientations by portions of the pitched visual field, the storage of the adaptation process resides in the retinogeniculate system and is manifested in the focal system as a change in luminance threshold and in the ambient system as a change in VPEL. The linear model previously developed to account for VPEL, which was based on the interaction of influences from the pitched visual field and extraretinal influences from the body-referenced mechanism, was employed to incorporate the effects of adaptation. Connections between VPEL adaptation and other cases of perceptual adaptation of visual direction are described.
Open magnetic fields in active regions
NASA Technical Reports Server (NTRS)
Svestka, Z.; Solodyna, C. V.; Howard, R.; Levine, R. H.
1977-01-01
Soft X-ray images and magnetograms of several active regions and coronal holes are examined which support the interpretation that some of the dark X-ray gaps seen between interconnecting loops and inner cores of active regions are foot points of open field lines inside the active regions. Characteristics of the investigated dark gaps are summarized. All the active regions with dark X-ray gaps at the proper place and with the correct polarity predicted by global potential extrapolation of photospheric magnetic fields are shown to be old active regions, indicating that field opening is accomplished only in a late phase of active-region development. It is noted that some of the observed dark gaps probably have nothing in common with open fields, but are either due to the decreased temperature in low-lying portions of interconnecting loops or are the roots of higher and less dense or cooler loops.
Simple Technique for Dark-Field Photography of Immunodiffusion Bands
Jensh, Ronald P.; Brent, Robert L.
1969-01-01
A simple dark-field photographic technique was developed which enables laboratory personnel with minimal photographic training to easily record antigen-antibody patterns on immunodiffusion plates. Images PMID:4979944
A Unified Model of Phantom Energy and Dark Matter
NASA Astrophysics Data System (ADS)
Chaves, Max; Singleton, Douglas
2008-01-01
To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys w = p/ρ < -1/3. This form of mass-energy leads to accelerated expansion. An extreme form of dark energy, called phantom energy, has been proposed which has w = p/ρ < -1. This possibility is favored by the observational data. The simplest model for phantom energy involves the introduction of a scalar field with a negative kinetic energy term. Here we show that theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann) vector fields which act as a form of two component dark matter. Thus from a gauge theory based o! n a graded algebra we naturally obtained both phantom energy and dark matter.
Diversity of Salmonella isolates from central Florida surface waters.
McEgan, Rachel; Chandler, Jeffrey C; Goodridge, Lawrence D; Danyluk, Michelle D
2014-11-01
Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608-3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Diversity of Salmonella Isolates from Central Florida Surface Waters
McEgan, Rachel; Chandler, Jeffrey C.; Goodridge, Lawrence D.
2014-01-01
Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608–3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:−. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. PMID:25172861
Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana
2016-01-01
The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets. PMID:27739510
Dark energy cosmology with tachyon field in teleparallel gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motavalli, H., E-mail: Motavalli@Tabrizu.ac.ir; Akbarieh, A. Rezaei; Nasiry, M.
2016-07-15
We construct a tachyon teleparallel dark energy model for a homogeneous and isotropic flat universe in which a tachyon as a non-canonical scalar field is non-minimally coupled to gravity in the framework of teleparallel gravity. The explicit form of potential and coupling functions are obtained under the assumption that the Lagrangian admits the Noether symmetry approach. The dynamical behavior of the basic cosmological observables is compared to recent observational data, which implies that the tachyon field may serve as a candidate for dark energy.
Proposal for Axion Dark Matter Detection Using an L C Circuit
Sikivie, P.; Sullivan, N.; Tanner, D. B.
2014-03-01
Here, we show that dark matter axions cause an oscillating electric current to flow along magnetic field lines. The oscillating current induced in a strong magnetic field B → 0 produces a small magnetic field B → a. We propose to amplify and detect B → a using a cooled LC circuit and a very sensitive magnetometer. This appears to be a suitable approach to searching for axion dark matter in the 10 –7 to 10 –9 eV mass range.
Holographic vortices in the presence of dark matter sector
NASA Astrophysics Data System (ADS)
Rogatko, Marek; Wysokinski, Karol I.
2015-12-01
The dark matter seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the dark matter affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with dark matter sector has been modeled by the additional U(1)-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of dark matter sector. This feature can explain why in the Early Universe first the web of dark matter appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.
Cosmological effects of scalar-photon couplings: dark energy and varying-α Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avgoustidis, A.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.
2014-06-01
We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN datamore » one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.« less
Bent dark soliton dynamics in two spatial dimensions beyond the mean field approximation
NASA Astrophysics Data System (ADS)
Mistakidis, Simeon; Katsimiga, Garyfallia; Koutentakis, Georgios; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The dynamics of a bented dark soliton embedded in two spatial dimensions beyond the mean-field approximation is explored. We examine the case of a single bented dark soliton comparing the mean-field approximation to a correlated approach that involves multiple orbitals. Fragmentation is generally present and significantly affects the dynamics, especially in the case of stronger interparticle interactions and in that of lower atom numbers. It is shown that the presence of fragmentation allows for the appearance of solitonic and vortex structures in the higher-orbital dynamics. In particular, a variety of excitations including dark solitons in multiple orbitals and vortex-antidark complexes is observed to arise spontaneously within the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Weak-Link Phenomena in AC-Biased Transition Edge Sensors
NASA Astrophysics Data System (ADS)
Gottardi, L.; Akamatsu, H.; Bruijn, M.; Gao, J.-R.; den Hartog, R.; Hijmering, R.; Hoevers, H.; Khosropanah, P.; Kozorezov, A.; van der Kuur, J.; van der Linden, A.; Ridder, M.
2014-08-01
It has been recently demonstrated that superconducting transition edge-sensors behave as weak-links due to longitudinally induced superconductivity from the leads with higher . In this work we study the implication of this behaviour for transition-edge sensors (TES)-based bolometers and microcalorimeter under ac bias. The TESs are read-out at frequencies between 1 and by a frequency domain multiplexer based on a linearised two-stage SQUID amplifier and high- lithographically made superconducting resonators. In particular, we focus on SRON TiAu TES bolometers with a measured dark noise equivalent power of developed for the short wavelength band for the instrument SAFARI on the SPICA telescope.
Dark Matter Decay between Phase Transitions at the Weak Scale.
Baker, Michael J; Kopp, Joachim
2017-08-11
We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S_{3} and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S_{3} potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.
Dark Matter Decay between Phase Transitions at the Weak Scale
NASA Astrophysics Data System (ADS)
Baker, Michael J.; Kopp, Joachim
2017-08-01
We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S3 and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S3 potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.
Direct optical state preparation of the dark exciton in a quantum dot
NASA Astrophysics Data System (ADS)
Lüker, S.; Kuhn, T.; Reiter, D. E.
2015-11-01
Because of their weak coupling to the electromagnetic field, dark excitons in semiconductor quantum dots possess extremely long lifetimes, which makes them attractive candidates for quantum information processing. On the other hand, the preparation and manipulation of dark states is challenging, because commonly used optical excitation mechanisms are not applicable. We propose an efficient mechanism for the deterministic preparation of the dark exciton exploiting the application of a tilted magnetic field and the optical excitation with a chirped, i.e., frequency modulated, laser pulse.
Heavy dark matter annihilation from effective field theory.
Ovanesyan, Grigory; Slatyer, Tracy R; Stewart, Iain W
2015-05-29
We formulate an effective field theory description for SU(2)_{L} triplet fermionic dark matter by combining nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a given dark matter mass, the annihilation cross section to line photons is obtained with 5% precision by simultaneously including Sommerfeld enhancement and the resummation of electroweak Sudakov logarithms at next-to-leading logarithmic order. Using these results, we present more accurate and precise predictions for the gamma-ray line signal from annihilation, updating both existing constraints and the reach of future experiments.
The features of the Cosmic Web unveiled by the flip-flop field
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.; Medvedev, Mikhail V.
2017-07-01
Currently the dark matter environment is widely accepted as a framework for understanding of the observed structure in the universe. N-body simulations are indispensable for the analysis of the formation and evolution of the dark matter web. Two primary fields - density and velocity fields - are used in most of studies. Dark matter provides two additional fields that are unique for collisionless media only. They are the multistream field in Eulerian space and flip-flop field in Lagrangian space. The flip-flop field represents the number of sign reversals of an elementary volume of each collisionless fluid element. This field can be estimated by counting the sign reversals of the Jacobian at each particle at every time step of the simulation. The Jacobian is evaluated by numerical differentiation of the Lagrangian submanifold, I.e. the three-dimensional dark matter sheet in the six-dimensional space formed by three Lagrangian and three Eulerian coordinates. We present the results of the statistical study of the evolution of the flip-flop field from z = 50 to the present time z = 0. A number of statistical characteristics show that the pattern of the flip-flop field remains remarkably stable from z ≈ 30 to the present time. As a result the flip-flop field evaluated at z = 0 stores a wealth of information about the dynamical history of the dark matter web. In particular one of the most intriguing properties of the flip-flop is a unique capability to preserve the information about the merging history of haloes.
Field theories and fluids for an interacting dark sector
NASA Astrophysics Data System (ADS)
Carrillo González, Mariana; Trodden, Mark
2018-02-01
We consider the relationship between fluid models of an interacting dark sector and the field theoretical models that underlie such descriptions. This question is particularly important in light of suggestions that such interactions may help alleviate a number of current tensions between different cosmological datasets. We construct consistent field theory models for an interacting dark sector that behave exactly like the coupled fluid ones, even at the level of linear perturbations, and can be trusted deep in the nonlinear regime. As a specific example, we focus on the case of a Dirac, Born-Infeld (DBI) field conformally coupled to a quintessence field. We show that the fluid linear regime breaks before the field gradients become large; this means that the field theory is valid inside a large region of the fluid nonlinear regime.
Very special relativity as relativity of dark matter: the Elko connection
NASA Astrophysics Data System (ADS)
Ahluwalia, D. V.; Horvath, S. P.
2010-11-01
In the very special relativity (VSR) proposal by Cohen and Glashow, it was pointed out that invariance under HOM (2) is both necessary and sufficient to explain the null result of the Michelson-Morely experiment. It is the quantum field theoretic demand of locality, or the requirement of P, T, CP, or CT invariance, that makes invariance under the Lorentz group a necessity. Originally it was conjectured that VSR operates at the Planck scale; we propose that the natural arena for VSR is at energies similar to the standard model, but in the dark sector. To this end we provide an ab initio spinor representation invariant under the SIM (2) avatar of VSR and construct a mass dimension one fermionic quantum field of spin one half. This field turns out to be a very close sibling of Elko and it exhibits the same striking property of intrinsic darkness with respect to the standard model fields. In the new construct, the tension between Elko and Lorentz symmetries is fully resolved. We thus entertain the possibility that the symmetries underlying the standard model matter and gauge fields are those of Lorentz, while the event space underlying the dark matter and the dark gauge fields supports the algebraic structure underlying VSR.
Structure formation by a fifth force: N-body versus linear simulations
NASA Astrophysics Data System (ADS)
Li, Baojiu; Zhao, Hongsheng
2009-08-01
We lay out the frameworks to numerically study the structure formation in both linear and nonlinear regimes in general dark-matter-coupled scalar field models, and give an explicit example where the scalar field serves as a dynamical dark energy. Adopting parameters of the scalar field which yield a realistic cosmic microwave background (CMB) spectrum, we generate the initial conditions for our N-body simulations, which follow the spatial distributions of the dark matter and the scalar field by solving their equations of motion using the multilevel adaptive grid technique. We show that the spatial configuration of the scalar field tracks well the voids and clusters of dark matter. Indeed, the propagation of scalar degree of freedom effectively acts as a fifth force on dark matter particles, whose range and magnitude are determined by the two model parameters (μ,γ), local dark matter density as well as the background value for the scalar field. The model behaves like the ΛCDM paradigm on scales relevant to the CMB spectrum, which are well beyond the probe of the local fifth force and thus not significantly affected by the matter-scalar coupling. On scales comparable or shorter than the range of the local fifth force, the fifth force is perfectly parallel to gravity and their strengths have a fixed ratio 2γ2 determined by the matter-scalar coupling, provided that the chameleon effect is weak; if on the other hand there is a strong chameleon effect (i.e., the scalar field almost resides at its effective potential minimum everywhere in the space), the fifth force indeed has suppressed effects in high density regions and shows no obvious correlation with gravity, which means that the dark-matter-scalar-field coupling is not simply equivalent to a rescaling of the gravitational constant or the mass of the dark matter particles. We show these spatial distributions and (lack of) correlations at typical redshifts (z=0,1,5.5) in our multigrid million-particle simulations. The viable parameters for the scalar field can be inferred on intermediate or small scales at late times from, e.g., weak lensing and phase space properties, while the predicted Hubble expansion and linearly simulated CMB spectrum are virtually indistinguishable from the standard ΛCDM predictions.
The cosmological dark sector as a scalar σ -meson field
NASA Astrophysics Data System (ADS)
Carneiro, Saulo
2018-03-01
Previous quantum field estimations of the QCD vacuum in the expanding space-time lead to a dark energy component scaling linearly with the Hubble parameter, which gives the correct figure for the observed cosmological term. Here we show that this behaviour also appears at the classical level, as a result of the chiral symmetry breaking in a low energy, effective σ -model. The dark sector is described in a unified way by the σ condensate and its fluctuations, giving rise to a decaying dark energy and a homogeneous creation of non-relativistic dark particles. The creation rate and the future asymptotic de Sitter horizon are both determined by the σ mass scale.
Dark Matter Detection Using Helium Evaporation and Field Ionization
NASA Astrophysics Data System (ADS)
Maris, Humphrey J.; Seidel, George M.; Stein, Derek
2017-11-01
We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .
Dark Matter Detection Using Helium Evaporation and Field Ionization.
Maris, Humphrey J; Seidel, George M; Stein, Derek
2017-11-03
We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV/c^{2}.
DESTINY, The Dark Energy Space Telescope
NASA Technical Reports Server (NTRS)
Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod
2007-01-01
We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.
Topology and dark energy: testing gravity in voids.
Spolyar, Douglas; Sahlén, Martin; Silk, Joe
2013-12-13
Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field--here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.
Discerning trends in multiplex immunoassay technology with potential for resource-limited settings.
Gordon, Julian; Michel, Gerd
2012-04-01
In the search for more powerful tools for diagnoses of endemic diseases in resource-limited settings, we have been analyzing technologies with potential applicability. Increasingly, the process focuses on readily accessible bodily fluids combined with increasingly powerful multiplex capabilities to unambiguously diagnose a condition without resorting to reliance on a sophisticated reference laboratory. Although these technological advances may well have important implications for the sensitive and specific detection of disease, to date their clinical utility has not been demonstrated, especially in resource-limited settings. Furthermore, many emerging technological developments are in fields of physics or engineering, which are not readily available to or intelligible to clinicians or clinical laboratory scientists. This review provides a look at technology trends that could have applicability to high-sensitivity multiplexed immunoassays in resource-limited settings. Various technologies are explained and assessed according to potential for reaching relevant limits of cost, sensitivity, and multiplex capability. Frequently, such work is reported in technical journals not normally read by clinical scientists, and the authors make enthusiastic claims for the potential of their technology while ignoring potential pitfalls. Thus it is important to draw attention to technical hurdles that authors may not be publicizing. Immunochromatographic assays, optical methods including those involving waveguides, electrochemical methods, magnetorestrictive methods, and field-effect transistor methods based on nanotubes, nanowires, and nanoribbons reveal possibilities as next-generation technologies.
Multiplexed protein measurement: technologies and applications of protein and antibody arrays
Kingsmore, Stephen F.
2006-01-01
The ability to measure the abundance of many proteins precisely and simultaneously in experimental samples is an important, recent advance for static and dynamic, as well as descriptive and predictive, biological research. The value of multiplexed protein measurement is being established in applications such as comprehensive proteomic surveys, studies of protein networks and pathways, validation of genomic discoveries and clinical biomarker development. As standards do not yet exist that bridge all of these applications, the current recommended best practice for validation of results is to approach study design in an iterative process and to integrate data from several measurement technologies. This review describes current and emerging multiplexed protein measurement technologies and their applications, and discusses the remaining challenges in this field. PMID:16582876
Unified TeV scale picture of baryogenesis and dark matter.
Babu, K S; Mohapatra, R N; Nasri, Salah
2007-04-20
We present a simple extension of the minimal supersymmetric standard model which provides a unified picture of cosmological baryon asymmetry and dark matter. Our model introduces a gauge singlet field N and a color triplet field X which couple to the right-handed quark fields. The out-of-equilibrium decay of the Majorana fermion N mediated by the exchange of the scalar field X generates adequate baryon asymmetry for MN approximately 100 GeV and MX approximately TeV. The scalar partner of N (denoted N1) is naturally the lightest SUSY particle as it has no gauge interactions and plays the role of dark matter. The model is experimentally testable in (i) neutron-antineutron oscillations with a transition time estimated to be around 10(10)sec, (ii) discovery of colored particles X at LHC with mass of order TeV, and (iii) direct dark matter detection with a predicted cross section in the observable range.
Periodically modulated dark states
NASA Astrophysics Data System (ADS)
Han, Yingying; Zhang, Jun; Zhang, Wenxian
2018-04-01
Phenomena of electromagnetically induced transparency (PEIT) may be interpreted by the Autler-Townes Splitting (ATS), where the coupled states are split by the coupling laser field, or by the quantum destructive interference (QDI), where the atomic phases caused by the coupling laser and the probe laser field cancel. We propose modulated experiments to explore the PEIT in an alternative way by periodically modulating the coupling and the probe fields in a Λ-type three-level system initially in a dark state. Our analytical and numerical results rule out the ATS interpretation and show that the QDI interpretation is more appropriate for the modulated experiments. Interestingly, dark state persists in the double-modulation situation where control and probe fields never occur simultaneously, which is significant difference from the traditional dark state condition. The proposed experiments are readily implemented in atomic gases, artificial atoms in superconducting quantum devices, or three-level meta-atoms in meta-materials.
Dark energy from gravitoelectromagnetic inflation?
NASA Astrophysics Data System (ADS)
Membiela, F. A.; Bellini, M.
2008-02-01
Gravitoectromagnetic Inflation (GI) was introduced to describe in an unified manner, electromagnetic, gravitatory and inflaton fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields $B_i=A_i/a$ produced during inflation, could be the source of dark energy in the universe.
Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method
NASA Astrophysics Data System (ADS)
Nikitin, M. P.; Orlov, A. V.; Znoyko, S. L.; Bragina, V. A.; Gorshkov, B. G.; Ksenevich, T. I.; Cherkasov, V. R.; Nikitin, P. I.
2018-08-01
Unique properties of magnetic nanoparticles (MNP) have provided many breakthrough solutions for life science. The immense potential of MNP as labels in advanced immunoassays stems from the fact that they, unlike optical labels, can be easily detected inside 3D opaque porous biosensing structures or in colored mediums, manipulated by an external magnetic field, exhibit high stability and negligible background signal in biological samples, etc. In this research, the magnetic nanolabels and an original technique of their quantification by non-linear magnetization have permitted development of novel methods of multiplex biosensing. Several types of highly sensitive multi-channel readers that offer an extremely wide linear dynamic range are developed to count MNP in different recognition zones for quantitative concentration measurements of various analytes. Four approaches to multiplex biosensing based on MNP have been demonstrated in one-run tests based on several 3D porous structures; flat and micropillar microfluidic sensor chips; multi-line lateral flow strips and modular architecture of the strips, which is the first 3D multiplexing method that goes beyond the traditional planar techniques. Detection of cardio- and cancer markers, small molecules and oligonucleotides were used in the experiments. The analytical characteristics of the developed multiplex methods are on the level of the modern time-consuming laboratory techniques. The developed multiplex biosensing platforms are promising for medical and veterinary diagnostics, food inspection, environmental and security monitoring, etc.
Performance of Multiplexed XY Resistive Micromegas detectors in a high intensity beam
NASA Astrophysics Data System (ADS)
Banerjee, D.; Burtsev, V.; Chumakov, A.; Cooke, D.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dubinin, F.; Dusaev, R. R.; Emmenegger, S.; Fabich, A.; Frolov, V. N.; Gardikiotis, A.; Gninenko, S. N.; Hösgen, M.; Karneyeu, A. E.; Ketzer, B.; Kirsanov, M. M.; Konorov, I. V.; Kramarenko, V. A.; Kuleshov, S. V.; Levchenko, E.; Lyubovitskij, V. E.; Lysan, V.; Mamon, S.; Matveev, V. A.; Mikhailov, Yu. V.; Myalkovskiy, V. V.; Peshekhonov, V. D.; Peshekhonov, D. V.; Polyakov, V. A.; Radics, B.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Vasilishin, B.; Arenas, G. Vasquez; Ulloa, P.; Crivelli, P.
2018-02-01
We present the performance of multiplexed XY resistive Micromegas detectors tested in the CERN SPS 100 GeV/c electron beam at intensities up to 3 . 3 × 105e- /(s ṡcm2) . So far, all studies with multiplexed Micromegas have only been reported for tests with radioactive sources and cosmic rays. The use of multiplexed modules in high intensity environments was not explored due to the effect of ambiguities in the reconstruction of the hit point caused by the multiplexing feature. For the specific mapping and beam intensities analyzed in this work with a multiplexing factor of five, more than 50% level of ambiguity is introduced due to particle pile-up as well as fake clusters due to the mapping feature. Our results prove that by using the additional information of cluster size and integrated charge from the signal clusters induced on the XY strips, the ambiguities can be reduced to a level below 2%. The tested detectors are used in the CERN NA64 experiment for tracking the incoming particles bending in a magnetic field in order to reconstruct their momentum. The average hit detection efficiency of each module was found to be ∼96% at the highest beam intensities. By using four modules a tracking resolution of 1.1% was obtained with ∼85% combined tracking efficiency.
Color multiplexing method to capture front and side images with a capsule endoscope.
Tseng, Yung-Chieh; Hsu, Hsun-Ching; Han, Pin; Tsai, Cheng-Mu
2015-10-01
This paper proposes a capsule endoscope (CE), based on color multiplexing, to simultaneously record front and side images. Only one lens associated with an X-cube prism is employed to catch the front and side view profiles in the CE. Three color filters and polarizers are placed on three sides of an X-cube prism. When objects locate at one of the X-cube's three sides, front and side view profiles of different colors will be caught through the proposed lens and recorded at the color image sensor. The proposed color multiplexing CE (CMCE) is designed with a field of view of up to 210 deg and a 180 lp/mm resolution under f-number 2.8 and overall length 13.323 mm. A ray-tracing simulation in the CMCE with the color multiplexing mechanism verifies that the CMCE not only records the front and side view profiles at the same time, but also has great image quality at a small size.
Gómez, D E; Teo, Z Q; Altissimo, M; Davis, T J; Earl, S; Roberts, A
2013-08-14
Plasmonic dark modes are pure near-field modes that can arise from the plasmon hybridization in a set of interacting nanoparticles. When compared to bright modes, dark modes have longer lifetimes due to their lack of a net dipole moment, making them attractive for a number of applications. We demonstrate the excitation and optical detection of a collective dark plasmonic mode from individual plasmonic trimers. The trimers consist of triangular arrangements of gold nanorods, and due to this symmetry, the lowest-energy dark plasmonic mode can interact with radially polarized light. The experimental data presented confirm the excitation of this mode, and its assignment is supported with an electrostatic approximation wherein these dark modes are described in terms of plasmon hybridization. The strong confinement of energy in these modes and their associated near fields hold great promise for achieving strong coupling to single photon emitters.
Gravitational waves from SU( N) glueball dark matter
Soni, Amarjit; Zhang, Yue
2017-05-30
Here, a hidden sector with pure non-abelian gauge symmetry is an elegant and just about the simplest model of dark matter. In this model the dark matter candidate is the lightest bound state made of the confined gauge fields, the dark glueball. In spite of its simplicity, the model has been shown to have several interesting non-standard implications in cosmology. In this work, we explore the gravitational waves from binary boson stars made of self-gravitating dark glueball fields as a natural and important consequence. We derive the dark SU(N) star mass and radius as functions of the only two fundamentalmore » parameters in the model, the glueball mass m and the number of colors N, and identify the regions that could be probed by the LIGO and future gravitational wave observatories.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumbach, S., E-mail: baumbach@rheinahrcampus.de; Wilhein, T.; Kanngießer, B.
2015-08-15
This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detectormore » limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.« less
Baumbach, S; Kanngießer, B; Malzer, W; Stiel, H; Wilhein, T
2015-08-01
This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.
Anatomical background noise power spectrum in differential phase contrast breast images
NASA Astrophysics Data System (ADS)
Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong
2015-03-01
In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.
Sensitivity of Atom Interferometry to Ultralight Scalar Field Dark Matter.
Geraci, Andrew A; Derevianko, Andrei
2016-12-23
We discuss the use of atom interferometry as a tool to search for dark matter (DM) composed of virialized ultralight fields (VULFs). Previous work on VULF DM detection using accelerometers has considered the possibility of equivalence-principle-violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals induced by coherent oscillations of DM fields can also arise due to changes in the atom rest mass that can occur between light pulses throughout the interferometer sequence as well as changes in Earth's gravitational field. We estimate that several orders of magnitude of unexplored phase space for VULF DM couplings can be probed due to these new effects.
Girshovitz, Pinhas; Frenklach, Irena; Shaked, Natan T
2015-11-01
We propose a new portable imaging configuration that can double the field of view (FOV) of existing off-axis interferometric imaging setups, including broadband off-axis interferometers. This configuration is attached at the output port of the off-axis interferometer and optically creates a multiplexed interferogram on the digital camera, which is composed of two off-axis interferograms with straight fringes at orthogonal directions. Each of these interferograms contains a different FOV of the imaged sample. Due to the separation of these two FOVs in the spatial-frequency domain, they can be fully reconstructed separately, while obtaining two complex wavefronts from the sample at once. Since the optically multiplexed off-axis interferogram is recorded by the camera in a single exposure, fast dynamics can be recorded with a doubled imaging area. We used this technique for quantitative phase microscopy of biological samples with extended FOV. We demonstrate attaching the proposed module to a diffractive phase microscopy interferometer, illuminated by a broadband light source. The biological samples used for the experimental demonstrations include microscopic diatom shells, cancer cells, and flowing blood cells.
Bai, Yang; Carena, Marcela; Lykken, Joseph
2009-12-31
A dilaton could be the dominant messenger between standard model fields and dark matter. The measured dark matter relic abundance relates the dark matter mass and spin to the conformal breaking scale. The dark matter-nucleon spin-independent cross section is predicted in terms of the dilaton mass. We compute the current constraints on the dilaton from LEP and Tevatron experiments, and the gamma-ray signal from dark matter annihilation to dilatons that could be observed by Fermi Large Area Telescope.
NASA Astrophysics Data System (ADS)
Najafi, A.; Hossienkhani, H.
2017-10-01
Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, ρ, the deceleration parameter, q, the equations of state parameter, {ω }{{}D}, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the GSLT of thermodynamics in a fractal cosmology.
Interaction between bosonic dark matter and stars
NASA Astrophysics Data System (ADS)
Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos
2016-02-01
We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.
Dark-field imaging with the scanning transmission x-ray microscope
NASA Astrophysics Data System (ADS)
Morrison, G. R.; Browne, M. T.
1992-01-01
The King's College London scanning transmission x-ray microscope in use on beam line 5U2 at the SRS, SERC Daresbury Laboratory, has been modified to allow dark-field images to be formed using only the x rays scattered by the specimen. Experiments have been performed with a number of different detector geometries, and this has confirmed that the strongest scattering arises from edges or thickness gradients in the specimen. Although the dark-field signal is only a small fraction of the normal transmitted bright-field signal, features can be revealed with high contrast, and it has proved possible to detect the presence of features that are below the resolution limit of the microscope.
Scalar field dark energy with a minimal coupling in a spherically symmetric background
NASA Astrophysics Data System (ADS)
Matsumoto, Jiro
Dark energy models and modified gravity theories have been actively studied and the behaviors in the solar system have been also carefully investigated in a part of the models. However, the isotropic solutions of the field equations in the simple models of dark energy, e.g. quintessence model without matter coupling, have not been well investigated. One of the reason would be the nonlinearity of the field equations. In this paper, a method to evaluate the solution of the field equations is constructed, and it is shown that there is a model that can easily pass the solar system tests, whereas, there is also a model that is constrained from the solar system tests.
OUTFLOWS AND DARK BANDS AT ARCADE-LIKE ACTIVE REGION CORE BOUNDARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, J. T.; Martens, P. C. H.; Tarr, L.
Observations from the EUV Imaging Spectrometer (EIS) on board Hinode have revealed outflows and non-thermal line broadening in low intensity regions at the edges of active regions (ARs). We use data from Hinode's EIS, Solar Dynamic Observatory's Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager, and the Transition Region and Coronal Explorer instrument to investigate the boundaries of arcade-like AR cores for NOAA ARs 11112, 10978, and 9077. A narrow, low intensity region that is observed at the core's periphery as a dark band shows outflows and increased spectral line broadening. This dark band is found to exist for daysmore » and appears between the bright coronal loop structures of different coronal topologies. We find a case where the dark band region is formed between the magnetic field from emerging flux and the field of the pre-existing flux. A magnetic field extrapolation indicates that this dark band is coincident with the spine lines or magnetic separatrices in the extrapolated field. This occurs over unipolar regions where the brightened coronal field is separated in connectivity and topology. This separation does not appear to be infinitesimal and an initial estimate of the minimum distance of separation is found to be Almost-Equal-To 1.5-3.5 Mm.« less
Non-invasive Differentiation of Kidney Stone Types using X-ray Dark-Field Radiography
Scherer, Kai; Braig, Eva; Willer, Konstantin; Willner, Marian; Fingerle, Alexander A.; Chabior, Michael; Herzen, Julia; Eiber, Matthias; Haller, Bernhard; Straub, Michael; Schneider, Heike; Rummeny, Ernst J.; Noël, Peter B.; Pfeiffer, Franz
2015-01-01
Treatment of renal calculi is highly dependent on the chemical composition of the stone in question, which is difficult to determine using standard imaging techniques. The objective of this study is to evaluate the potential of scatter-sensitive X-ray dark-field radiography to differentiate between the most common types of kidney stones in clinical practice. Here, we examine the absorption-to-scattering ratio of 118 extracted kidney stones with a laboratory Talbot-Lau Interferometer. Depending on their chemical composition, microscopic growth structure and morphology the various types of kidney stones show strongly varying, partially opposite contrasts in absorption and dark-field imaging. By assessing the microscopic calculi morphology with high resolution micro-computed tomography measurements, we illustrate the dependence of dark-field signal strength on the respective stone type. Finally, we utilize X-ray dark-field radiography as a non-invasive, highly sensitive (100%) and specific (97%) tool for the differentiation of calcium oxalate, uric acid and mixed types of stones, while additionally improving the detectability of radio-lucent calculi. We prove clinical feasibility of the here proposed method by accurately classifying renal stones, embedded within a fresh pig kidney, using dose-compatible measurements and a quick and simple visual inspection. PMID:25873414
Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco
2016-01-01
In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931
Liu, Heng; Dong, Chaoqing; Ren, Jicun
2014-02-19
In this study, a new tempo-spatially resolved fluctuation spectroscopy under dark-field illumination is described, named dark-field illumination-based scattering correlation spectroscopy (DFSCS). DFSCS is a single-particle method, whose principle is similar to that of fluorescence correlation spectroscopy (FCS). DFSCS correlates the fluctuations of the scattered light from single nanoparticle under dark-field illumination. We developed a theoretical model for translational diffusion of nanoparticles in DFSCS system. The results of computer simulations documented that this model was able to well describe the diffusion behaviors of nanoparticles in uniformly illuminated field. The experimental setup of DFSCS was achieved by introducing a dark-field condenser to the frequently used bright-field microscope and an electron multiplying charge-coupled device (EMCCD) as the array detector. In the optimal condition, a stack of 500 000 frames were collected simultaneously on 64 detection channels for a single measurement with acquisition rate of 0.5 ms per frame. We systematically investigated the effect of certain factors such as particle concentration, viscosity of the solution, and heterogeneity of gold nanoparticles (GNPs) samples on DFSCS measurements. The experiment data confirmed theoretical model proposed. Furthermore, this new method was successfully used for investigating dynamic behaviors of GNPs in live cells. Our preliminary results demonstrate that DFSCS is a practical and affordable tool for ordinary laboratories to investigate the dynamic information of nanoparticles in vitro as well as in vivo.
Detecting dark-matter waves with a network of precision-measurement tools
NASA Astrophysics Data System (ADS)
Derevianko, Andrei
2018-04-01
Virialized ultralight fields (VULFs) are viable cold dark-matter candidates and include scalar and pseudoscalar bosonic fields, such as axions and dilatons. Direct searches for VULFs rely on low-energy precision-measurement tools. While previous proposals have focused on detecting coherent oscillations of the VULF signals at the VULF Compton frequencies for individual devices, here I consider a network of such devices. Virialized ultralight fields are essentially dark-matter waves and as such they carry both temporal and spatial phase information. Thereby, the discovery reach can be improved by using networks of precision-measurement tools. To formalize this idea, I derive a spatiotemporal two-point correlation function for the ultralight dark-matter fields in the framework of the standard halo model. Due to VULFs being Gaussian random fields, the derived two-point correlation function fully determines N -point correlation functions. For a network of ND devices within the coherence length of the field, the sensitivity compared to a single device can be improved by a factor of √{ND}. Further, I derive a VULF dark-matter signal profile for an individual device. The resulting line shape is strongly asymmetric due to the parabolic dispersion relation for massive nonrelativistic bosons. I discuss the aliasing effect that extends the discovery reach to VULF frequencies higher than the experimental sampling rate. I present sensitivity estimates and develop a stochastic field signal-to-noise ratio statistic. Finally, I consider an application of the formalism developed to atomic clocks and their networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; ...
2016-05-10
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less
A search for dark matter in the Galactic halo with HAWC
NASA Astrophysics Data System (ADS)
Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Engel, K.; Enríquez-Rivera, O.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; García-González, J. A.; Garfias, F.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hueyotl-Zahuantitla, F.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis-Raya, G.; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rodd, N. L.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Safdi, B. R.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G. B.; Younk, P. W.; Zepeda, A.; Zhou, H.; Álvarez, J. D.
2018-02-01
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Here we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.
A search for dark matter in the Galactic halo with HAWC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abeysekara, A. U.; Albert, A.; Alfaro, R.
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Heremore » we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.« less
A search for dark matter in the Galactic halo with HAWC
Abeysekara, A. U.; Albert, A.; Alfaro, R.; ...
2018-02-23
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Heremore » we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.« less
Dark matter as an effect of the quantum vacuum
NASA Astrophysics Data System (ADS)
Santos, Emilio
2018-04-01
The interaction between the quantum vacuum and a weak gravitational field is calculated for the vacuum fields of quantum electrodynamics. The result shows that the vacuum state is modified by the gravitational field, giving rise to a nonzero interaction energy. This suggests a model that fits in the main properties of the hypothetical dark matter in galactic haloes.
Direction-division multiplexed holographic free-electron-driven light sources
NASA Astrophysics Data System (ADS)
Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.
2018-01-01
We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.
Twisted Acoustics: Metasurface-Enabled Multiplexing and Demultiplexing.
Jiang, Xue; Liang, Bin; Cheng, Jian-Chun; Qiu, Cheng-Wei
2018-05-01
Metasurfaces are used to enable acoustic orbital angular momentum (a-OAM)-based multiplexing in real-time, postprocess-free, and sensor-scanning-free fashions to improve the bandwidth of acoustic communication, with intrinsic compatibility and expandability to cooperate with other multiplexing schemes. The metasurface-based communication relying on encoding information onto twisted beams is numerically and experimentally demonstrated by realizing real-time picture transfer, which differs from existing static data transfer by encoding data onto OAM states. With the advantages of real-time transmission, passive and instantaneous data decoding, vanishingly low loss, compact size, and high transmitting accuracy, the study of a-OAM-based information transfer with metasurfaces offers new route to boost the capacity of acoustic communication and great potential to profoundly advance relevant fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Relatores, Nicole C.; Newman, Andrew B.; Simon, Joshua D.; Ellis, Richard; Truong, Phuongmai N.; Blitz, Leo
2018-01-01
We present high quality Hα velocity fields for a sample of nearby dwarf galaxies (log M/M⊙ = 8.4-9.8) obtained as part of the Dark Matter in Dwarf Galaxies survey. The purpose of the survey is to investigate the cusp-core discrepancy by quantifying the variation of the inner slope of the dark matter distributions of 26 dwarf galaxies, which were selected as likely to have regular kinematics. The data were obtained with the Palomar Cosmic Web Imager, located on the Hale 5m telescope. We extract rotation curves from the velocity fields and use optical and infrared photometry to model the stellar mass distribution. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White dark matter halo along with the stellar and gaseous components. We present the distribution of inner dark matter density profile slopes derived from this analysis. For a subset of galaxies, we compare our results to an independent analysis based on CO observations. In future work, we will compare the scatter in inner density slopes, as well as their correlations with galaxy properties, to theoretical predictions for dark matter core creation via supernovae feedback.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Trunk carriers; (iii) Subscriber carrier; (iv) Point-to-point radio (Microwave); (v) Coaxial cable system electronics; (vi) Fiber optic cable system electronics; (vii) Multiplex equipment; (viii) Mobile...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Trunk carriers; (iii) Subscriber carrier; (iv) Point-to-point radio (Microwave); (v) Coaxial cable system electronics; (vi) Fiber optic cable system electronics; (vii) Multiplex equipment; (viii) Mobile...
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Trunk carriers; (iii) Subscriber carrier; (iv) Point-to-point radio (Microwave); (v) Coaxial cable system electronics; (vi) Fiber optic cable system electronics; (vii) Multiplex equipment; (viii) Mobile...
Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations
NASA Astrophysics Data System (ADS)
Hirano, Shin'ichi; Nishi, Sakine; Kobayashi, Tsutomu
2017-07-01
We study the stability of a recently proposed model of scalar-field matter called mimetic dark matter or imperfect dark matter. It has been known that mimetic matter with higher derivative terms suffers from gradient instabilities in scalar perturbations. To seek for an instability-free extension of imperfect dark matter, we develop an effective theory of cosmological perturbations subject to the constraint on the scalar field's kinetic term. This is done by using the unifying framework of general scalar-tensor theories based on the ADM formalism. We demonstrate that it is indeed possible to construct a model of imperfect dark matter which is free from ghost and gradient instabilities. As a side remark, we also show that mimetic F(Script R) theory is plagued with the Ostrogradsky instability.
Darkflation-One scalar to rule them all?
NASA Astrophysics Data System (ADS)
Lalak, Zygmunt; Nakonieczny, Łukasz
2017-03-01
The problem of explaining both inflationary and dark matter physics in the framework of a minimal extension of the Standard Model was investigated. To this end, the Standard Model completed by a real scalar singlet playing a role of the dark matter candidate has been considered. We assumed both the dark matter field and the Higgs doublet to be nonminimally coupled to gravity. Using quantum field theory in curved spacetime we derived an effective action for the inflationary period and analyzed its consequences. In this approach, after integrating out both dark matter and Standard Model sectors we obtained the effective action expressed purely in terms of the gravitational field. We paid special attention to determination, by explicit calculations, of the form of coefficients controlling the higher-order in curvature gravitational terms. Their connection to the Standard Model coupling constants has been discussed.
Dark Sectors 2016 Workshop: Community Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Jim; et al.
This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years.
The new challenges of multiplex networks: Measures and models
NASA Astrophysics Data System (ADS)
Battiston, Federico; Nicosia, Vincenzo; Latora, Vito
2017-02-01
What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.
Using atom interferometry to detect dark energy
NASA Astrophysics Data System (ADS)
Burrage, Clare; Copeland, Edmund J.
2016-04-01
We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the universe on giga-parsec scales may be found through metre scale laboratory-based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints, these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the chameleon field - this has already been used to rule out large regions of the chameleon parameter space and maybe one day will be able to detect the force due to the dark energy field in the laboratory.
Time multiplexing for increased FOV and resolution in virtual reality
NASA Astrophysics Data System (ADS)
Miñano, Juan C.; Benitez, Pablo; Grabovičkić, Dejan; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj
2017-06-01
We introduce a time multiplexing strategy to increase the total pixel count of the virtual image seen in a VR headset. This translates into an improvement of the pixel density or the Field of View FOV (or both) A given virtual image is displayed by generating a succession of partial real images, each representing part of the virtual image and together representing the virtual image. Each partial real image uses the full set of physical pixels available in the display. The partial real images are successively formed and combine spatially and temporally to form a virtual image viewable from the eye position. Partial real images are imaged through different optical channels depending of its time slot. Shutters or other schemes are used to avoid that a partial real image be imaged through the wrong optical channels or at the wrong time slot. This time multiplexing strategy needs real images be shown at high frame rates (>120fps). Available display and shutters technologies are discussed. Several optical designs for achieving this time multiplexing scheme in a compact format are shown. This time multiplexing scheme allows increasing the resolution/FOV of the virtual image not only by increasing the physical pixel density but also by decreasing the pixels switching time, a feature that may be simpler to achieve in certain circumstances.
Junlong, Liu; Li, Youquan; Liu, Aihong; Guan, Guiquan; Xie, Junren; Yin, Hong; Luo, Jianxun
2015-07-01
Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.
Meinel, Felix G.; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö.; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F.; Pfeiffer, Franz; Nikolaou, Konstantin
2013-01-01
Purpose To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Materials and Methods Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Results Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. Conclusion In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections. PMID:23555692
Meinel, Felix G; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F; Pfeiffer, Franz; Nikolaou, Konstantin
2013-01-01
To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections.
Yang, Yi; Tang, Xiangyang
2014-10-01
Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.
Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.
2000-05-05
Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCRmore » amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... system electronics; (vi) Fiber optic cable system electronics; (vii) Multiplex equipment; (viii) Mobile... Telephone Systems of RUS Borrowers,” RUS Bulletin 344-2. When new items of materials or equipment are... that the field trial is carried out and that the required information on the product's performance is...
Observational constraints on holographic tachyonic dark energy in interaction with dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micheletti, Sandro M. R., E-mail: smrm@fma.if.usp.br
2010-05-01
We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.
Baryogenesis via dark matter-induced symmetry breaking in the early Universe
NASA Astrophysics Data System (ADS)
Sakstein, Jeremy; Trodden, Mark
2017-11-01
We put forward a new proposal for generating the baryon asymmetry of the universe by making use of the dynamics of a U (1) scalar field coupled to dark matter. High dark matter densities cause the U (1) symmetry to break spontaneously so that the field acquires a large vacuum expectation value. The symmetry is restored when the density redshifts below a critical value, resulting in the coherent oscillation of the scalar field. A net B - L number can be generated either via baryon number-conserving couplings to the standard model or through small symmetry-violating operators and the subsequent decay of the scalar condensate.
Label-free hyperspectral dark-field microscopy for quantitative scatter imaging
NASA Astrophysics Data System (ADS)
Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong
2017-03-01
A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.
NASA Astrophysics Data System (ADS)
Van der Donck, M.; Zarenia, M.; Peeters, F. M.
2018-02-01
The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantitatively reproduces the available experimental PL spectra for perpendicular and in-plane magnetic fields. In the presence of a tilted magnetic field, we demonstrate that the dark exciton PL peaks brighten due to the in-plane component of the magnetic field and split for light with different circular polarizations as a consequence of the perpendicular component of the magnetic field. This splitting is more than twice as large as the splitting of the bright exciton peaks in tungsten-based TMDs. We propose an experimental setup that will allow for accessing the predicted splitting of the dark exciton peaks in the PL spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domengie, F., E-mail: florian.domengie@st.com; Morin, P.; Bauza, D.
We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metalmore » atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.« less
Dark Field Microscopy for Analytical Laboratory Courses
ERIC Educational Resources Information Center
Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning
2014-01-01
An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…
An effective description of dark matter and dark energy in the mildly non-linear regime
Lewandowski, Matthew; Maleknejad, Azadeh; Senatore, Leonardo
2017-05-18
In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the informationmore » resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. Furthermore, the Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.« less
An effective description of dark matter and dark energy in the mildly non-linear regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewandowski, Matthew; Maleknejad, Azadeh; Senatore, Leonardo
In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the informationmore » resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. Furthermore, the Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.« less
An effective description of dark matter and dark energy in the mildly non-linear regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewandowski, Matthew; Senatore, Leonardo; Maleknejad, Azadeh, E-mail: matthew.lewandowski@cea.fr, E-mail: azade@ipm.ir, E-mail: senatore@stanford.edu
In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the informationmore » resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.« less
Noise, fluctuation, and HADAMARD-transform spectrometry
NASA Astrophysics Data System (ADS)
Nitzsche, Guenter; Riesenberg, Rainer
2003-05-01
The HADAMARD principle is known in optics as a multiplex technique. It describes the mode with the most advantageous increase of the signal-to-noise ratio (SNR) in terms of scanning (Fellget advantage). The maximum increase of SNR, we call it gain, is (n+1)/(2On), where n is the number of multiplexing. It is valid in the case of pure detector noise. The multiplex encoding Hadamard pattern in case of n = 7 is 1110100, whereby 1 stands for a switched on channel performed by a field selector. The signals of all (switched on) channels are detected by a single detector. n measurement steps with a cyclic change of the pattern is necessary to perform the Hadamard transformation and to get the result of each individual channel. In case of n = 7 the theoretical gain is 1.51. For all possible multiplex pattern (1100000, 1110000 and so on) the gain is theoretically investigated. A multiplexing advantage (gain > 1) is reached only by the Hadamard pattern, the inverse Hadamard pattern and for (0111111)-pattern (gain=1.08). Most of the multiplex pattern are disadvantageous. The reason for maximum gain of the HADAMARD transformation is analysed theoretically. Signal fluctuations during the measurement caused by fluctuations of the illumination or by the object under test, reduce the multiplex gain, too. So the limits for realizing a gain are estimated theoretically. Essential is the transformation procedure and its influence on the error propagation. The results could be verified by experiments with array spectrometeres. Requirements are derived by numerical simulation concerning the stability of the signals to be multiplexed. It is simulated the needed stability of the signals with increasing order of multiplexing. So the increase of the multiplex gain is limited by signal fluctuations. A realized 96 channel spectral reader is presented as a modern application of an optical multiplexing arrangement. ! M. Harvid, N. J. A. Sloane, Hadamard Transform Optics, Academic Press, 1979 ! R.A. De Verse, R.M. Hammaker, W. G. Fately, J.A.Graham, J.D.Tate, "Spectrometry and imaging using a digital micromirror array" American Laboratory, Vol. 30, 21, pp. 112-120, 1998 ! R. Riesenberg, A. Wuttig, B. Harnisch, "Optical MEMS Technology for Multiplexing in High-End Micro-Scpectrometers", Proc. SPIE 4928, 6-14, 2002 ! A. Wuttig, R. Riesenberg, "Hyperspectral imager with a facile MEMS", Proc. SPIE 4881A, 2002, to be published ! R. Riesenberg, G. Nitzsche, W. Voigt, 'HADAMARD Encoding and other optical Multiplexing', VDI-Berichte 1694, pp. 345-350, 2002 ! A. Wuttig, R. Riesenberg, G. Nitzsche, "Subpixel Analysis of Double Array Grating Spectrometer", Proc. SPIE 4480, pp. 334-344, 2002 ! A. Wuttig, R. Riesenberg, G. Nitzsche, "Integral Field and Multi Object Spectrometry with MEMS", Proc. SPIE 4480, pp. 367-376, 2002 ! R. Riesenberg, G. Nitzsche, A. Wuttig, B. Harnisch, "Micro Spectrometer and MEMS for Space" in "Smaller Satellites: Bigger Business?", edited by M. Rycroft, N. Crosby, Kluwer Academic Publisher, pp. 403-406, 2002 ! R. Riesenberg, A. Wuttig, "Optical sensors with MEMS, slit masks and micromechanical devices", Proc. SPIE 4561, pp. 315-322, 2001 ! R. Riesenberg, "MicroMechanical Slit Positioning System as a transmissive spatial Light Modulator", Proc. SPIE 4457, pp.197-203, 2001 ! R. Riesenberg, J. Lonschinski, "HADAMARD-Minispectrometer made by a Micro Device", Proc. "3rd Round Table on Micro/NanoTechnologies for Space", ESTEC, Noordwijk, The Netherlands, pp. 291 - 297, 2000 ! R. Riesenberg, U. Dillner, "HADAMARD Imaging Spectrometers", Proc. SPIE 3753, pp. 203-213, 1999 ! R. Riesenberg, Th. Seifert, "Design of spatial Light Modulator Microdevices - Micro Slit Arrays", Proc. SPIE 3680, Part One, pp. 406-414, 1999 ! R. Riesenberg, W. Voigt, J. Schoneich, "Compact Spectrometers made by Micro System Technology", Sensor 97, Proc. Vol. 2, pp. 145-150,1997
Dragging force on galaxies due to streaming dark matter
NASA Technical Reports Server (NTRS)
Hara, Tetsuya; Miyoshi, Shigeru
1990-01-01
It has been reported that galaxies in large regions (approx. 10(exp 2) Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600 km/sec or more with respect to the rest frame determined by the microwave background radiation. On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So the authors investigated whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events. It seems that, although each galaxy will not follow the motion of dark matter, clusters of galaxies may represent the velocity field of dark matter. The origin of the velocity field of dark matter would be due to the initial adiabatic perturbations and, in fact, the observed peculiar velocities of clusters are within the allowed region constrained from the isotropy of the microwave background radiation.
Yamashita, M; Yamashita, A; Ishii, T; Naruo, Y; Nagatomo, M
1998-11-01
A portable recording system was developed for analysis of more than three analog signals collected in field works. Stereo audio recorder, available as consumer products, was made use for a core cornponent of the system. For the two tracks of recording, a multiplexed analog signal is stored on one track, and reference code on the other track. The reference code indicates the start of one cycle for multiplexing and swiching point of each channel. Multiplexed signal is playbacked and decoded with a reference of the code to reconstruct original profiles of the signal. Since commercial stereo recorders have cut DC component off, a fixed reference voltage is inserted in the sequence of multiplexing. Change of voltage at switching from the reference to the data channel is measured from playbacked signal to get the original data with its DC component. Movement of vehicles and human head were analyzed by the system. It was verified to be capable to record and analyze multi-channel signal at a sampling rate more than 10Hz.
Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok
2016-04-15
Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.
Emergence of Multiplex Communities in Collaboration Networks.
Battiston, Federico; Iacovacci, Jacopo; Nicosia, Vincenzo; Bianconi, Ginestra; Latora, Vito
2016-01-01
Community structures in collaboration networks reflect the natural tendency of individuals to organize their work in groups in order to better achieve common goals. In most of the cases, individuals exploit their connections to introduce themselves to new areas of interests, giving rise to multifaceted collaborations which span different fields. In this paper, we analyse collaborations in science and among movie actors as multiplex networks, where the layers represent respectively research topics and movie genres, and we show that communities indeed coexist and overlap at the different layers of such systems. We then propose a model to grow multiplex networks based on two mechanisms of intra and inter-layer triadic closure which mimic the real processes by which collaborations evolve. We show that our model is able to explain the multiplex community structure observed empirically, and we infer the strength of the two underlying social mechanisms from real-world systems. Being also able to correctly reproduce the values of intra-layer and inter-layer assortativity correlations, the model contributes to a better understanding of the principles driving the evolution of social networks.
Relative ordering between bright and dark excitons in single-walled carbon nanotubes.
Zhou, Weihang; Nakamura, Daisuke; Liu, Huaping; Kataura, Hiromichi; Takeyama, Shojiro
2014-11-11
The ordering and relative energy splitting between bright and dark excitons are critical to the optical properties of single-walled carbon nanotubes (SWNTs), as they eventually determine the radiative and non-radiative recombination processes of generated carriers. In this work, we report systematic high-field magneto-optical study on the relative ordering between bright and dark excitons in SWNTs. We identified the relative energy position of the dark exciton unambiguously by brightening it in ultra-high magnetic field. The bright-dark excitonic ordering was found to depend not only on the tube structure, but also on the type of transitions. For the 1(st) sub-band transition, the bright exciton appears to be higher in energy than its dark counterpart for any chiral species and is robust against environmental effect. While for the 2(nd) sub-band, their relative ordering was found to be chirality-sensitive: the bright exciton can be either higher or lower than the dark one, depending on the specific nanotube structures. These findings provide new clues for engineering the optical and electronic properties of SWNTs.
NASA Astrophysics Data System (ADS)
MacLaughlin, Christina M.; Parker, Edward P. K.; Walker, Gilbert C.; Wang, Chen
2012-01-01
The ease and flexibility of functionalization and inherent light scattering properties of plasmonic nanoparticles make them suitable contrast agents for measurement of cell surface markers. Immunophenotyping of lymphoproliferative disorders is traditionally undertaken using fluorescence detection methods which have a number of limitations. Herein, surface-enhanced Raman scattering (SERS) gold nanoparticles conjugated to monoclonal antibodies are used for the selective targeting of CD molecules on the surface of chronic lymphocytic leukemia (CLL) cells. Raman-active reporters were physisorbed on to the surface of 60 nm spherical Au nanoparticles, the particles were coated with 5kDa polyethylene glycol (PEG) including functionalities for conjugation to monoclonal IgG1 antibodies. A novel method for quantifying the number of antibodies bound to SERS probes on an individual basis as opposed to obtaining averages from solution was demonstrated using metal dots in transmission electron microscopy (TEM). The specificity of the interaction between SERS probes and surface CD molecules of CLL cells was assessed using Raman spectroscopy and dark field microscopy. An in-depth study of SERS probe targeting to B lymphocyte marker CD20 was undertaken, and proof-of-concept targeting using different SERS nanoparticle dyes specific for cell surface CD19, CD45 and CD5 demonstrated using SERS spectroscopy.
The New Worlds Observer: The Astrophysics Strategic Mission Concept Study
2009-08-01
of galaxies and galaxy clusters • Tracing the cosmic evolution of dark energy • Mapping the distribution of dark matter • Characterization of the...imaging of these fields will be used to map the distribution of dark matter us- ing the distortions of galaxy images produced by weak gravitational...dedicated to specific science goals such as mapping dark matter , tracing dark energy, or prob- ing star formation in the local Universe. In the dif
NASA Astrophysics Data System (ADS)
Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene
2018-06-01
We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.
Bayesian evidences for dark energy models in light of current observational data
NASA Astrophysics Data System (ADS)
Lonappan, Anto. I.; Kumar, Sumit; Ruchika; Dinda, Bikash R.; Sen, Anjan A.
2018-02-01
We do a comprehensive study of the Bayesian evidences for a large number of dark energy models using a combination of latest cosmological data from SNIa, CMB, BAO, strong lensing time delay, growth measurements, measurements of Hubble parameter at different redshifts and measurements of angular diameter distance by Megamaser Cosmology Project. We consider a variety of scalar field models with different potentials as well as different parametrizations for the dark energy equation of state. Among 21 models that we consider in our study, we do not find strong evidences in favor of any evolving dark energy model compared to Λ CDM . For the evolving dark energy models, we show that purely nonphantom models have much better evidences compared to those models that allow both phantom and nonphantom behaviors. Canonical scalar field with exponential and tachyon field with square potential have highest evidences among all the models considered in this work. We also show that a combination of low redshift measurements decisively favors an accelerating Λ CDM model compared to a nonaccelerating power law model.
NASA Astrophysics Data System (ADS)
Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.
2017-12-01
We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.
Multiplexed Electrochemical Immunosensors for Clinical Biomarkers
Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M.
2017-01-01
Management and prognosis of disease requires the accurate determination of specific biomarkers indicative of normal or disease-related biological processes or responses to therapy. Moreover since multiple determinations of biomarkers have demonstrated to provide more accurate information than individual determinations to assist the clinician in prognosis and diagnosis, the detection of several clinical biomarkers by using the same analytical device hold enormous potential for early detection and personalized therapy and will simplify the diagnosis providing more information in less time. In this field, electrochemical immunosensors have demonstrated to offer interesting alternatives against conventional strategies due to their simplicity, fast response, low cost, high sensitivity and compatibility with multiplexed determination, microfabrication technology and decentralized determinations, features which made them very attractive for integration in point-of-care (POC) devices. Therefore, in this review, the relevance and current challenges of multiplexed determination of clinical biomarkers are briefly introduced, and an overview of the electrochemical immunosensing platforms developed so far for this purpose is given in order to demonstrate the great potential of these methodologies. After highlighting the main features of the selected examples, the unsolved challenges and future directions in this field are also briefly discussed. PMID:28448466
Frequency-division multiplexer and demultiplexer for terahertz wireless links.
Ma, Jianjun; Karl, Nicholas J; Bretin, Sara; Ducournau, Guillaume; Mittleman, Daniel M
2017-09-28
The development of components for terahertz wireless communications networks has become an active and growing research field. However, in most cases these components have been studied using a continuous or broadband-pulsed terahertz source, not using a modulated data stream. This limitation may mask important aspects of the performance of the device in a realistic system configuration. We report the characterization of one such device, a frequency multiplexer, using modulated data at rates up to 10 gigabits per second. We also demonstrate simultaneous error-free transmission of two signals at different carrier frequencies, with an aggregate data rate of 50 gigabits per second. We observe that the far-field spatial variation of the bit error rate is different from that of the emitted power, due to a small nonuniformity in the angular detection sensitivity. This is likely to be a common feature of any terahertz communication system in which signals propagate as diffracting beams not omnidirectional broadcasts.There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.
Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae.
Ferreira, Raphael; Skrekas, Christos; Nielsen, Jens; David, Florian
2018-01-19
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has greatly accelerated the field of strain engineering. However, insufficient efforts have been made toward developing robust multiplexing tools in Saccharomyces cerevisiae. Here, we exploit the RNA processing capacity of the bacterial endoribonuclease Csy4 from Pseudomonas aeruginosa, to generate multiple gRNAs from a single transcript for genome editing and gene interference applications in S. cerevisiae. In regards to genome editing, we performed a quadruple deletion of FAA1, FAA4, POX1 and TES1 reaching 96% efficiency out of 24 colonies tested. Then, we used this system to efficiently transcriptionally regulate the three genes, OLE1, HMG1 and ACS1. Thus, we demonstrate that multiplexed genome editing and gene regulation can be performed in a fast and effective manner using Csy4.
Eaton, Jerry P.
1976-01-01
Tests of the standard NCER multiplex system recorded and played back on both the Bell and Howell 3700B (about 0.1% tape speed variation) and on the Sony TC-126 cassette recorder (about 1% tape speed variation) showed that subtractive compensation employing a reference frequency multiplexed on the data track was remarkably effective in reducing tape-speed-variation-induced noise 1 and, hence, in increasing the dynamic range of the record/playback system. Further tests suggested that the 0 to 30 Hz bandwidth of the standard system (8 data channels) might be increased substantially, at the 'price' of reducing the number of data channels to 3 or 4, without serious loss of dynamic range if subtractive compensation could be implemented effectively with the broader-band system.
NASA Astrophysics Data System (ADS)
Yazdandoust, Fatemeh; Tatenguem Fankem, Hervé; Milde, Tobias; Jimenez, Alvaro; Sacher, Joachim
2018-02-01
We report the development of a platform, based-on a Field-Programmable Gate Arrays (FPGAs) and suitable for Time-Division-Multiplexed DFB lasers. The designed platform is subsequently combined with a spectroscopy setup, for detection and quantification of species in a gas mixture. The experimental results show a detection limit of 460 ppm, an uncertainty of 0.1% and a computation time of less than 1000 clock cycles. The proposed system offers a high level of flexibility and is applicable to arbitrary types of gas-mixtures.
Shared Aperture Multiplexed (SAM) Lidar Telescopes
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.
1999-01-01
A concept is introduced in which a single optic containing several holographic optical elements, are employed to effect multiple fields of view as an alternative to mechanically scanned lidar receivers.
Holographic reconstruction of scalar fields in extended Kaluza-Klein cosmology
NASA Astrophysics Data System (ADS)
Korunur, Murat
2018-01-01
In recent years, many studies have been conducted to reconstruct the physical properties of scalar fields by establishing a connection between some energy densities and a scalar field of dark energies. In this paper, using the extended five-dimensional (5D) Kaluza-Klein model, we establish a correspondence among modified holographic dark energy and the tachyon, K-essence and dilaton scalar-field models. We also graphically illustrate the evolution of the equation-of-state parameter versus time.
The pursuit of dark matter at colliders—an overview
NASA Astrophysics Data System (ADS)
Penning, Björn
2018-06-01
Dark matter is one of the main puzzles in fundamental physics and the goal of a diverse, multi-pronged research programme. Underground and astrophysical searches look for dark matter particles in the cosmos, either by interacting directly or by searching for dark matter annihilation. Particle colliders, in contrast, might produce dark matter in the laboratory and are able to probe most basic dark-matter–matter interactions. They are sensitive to low dark matter masses, provide complementary information at higher masses and are subject to different systematic uncertainties. Collider searches are therefore an important part of an inter-disciplinary dark matter search strategy. This article highlights the experimental and phenomenological development in collider dark matter searches of recent years and their connection with the wider field.
Dark energy fingerprints in the nonminimal Wu-Yang wormhole structure
NASA Astrophysics Data System (ADS)
Balakin, Alexander B.; Zayats, Alexei E.
2014-08-01
We discuss new exact solutions to nonminimally extended Einstein-Yang-Mills equations describing spherically symmetric static wormholes supported by the gauge field of the Wu-Yang type in a dark energy environment. We focus on the analysis of three types of exact solutions to the gravitational field equations. Solutions of the first type relate to the model, in which the dark energy is anisotropic; i.e., the radial and tangential pressures do not coincide. Solutions of the second type correspond to the isotropic pressure tensor; in particular, we discuss the exact solution, for which the dark energy is characterized by the equation of state for a string gas. Solutions of the third type describe the dark energy model with constant pressure and energy density. For the solutions of the third type, we consider in detail the problem of horizons and find constraints for the parameters of nonminimal coupling and for the constitutive parameters of the dark energy equation of state, which guarantee that the nonminimal wormholes are traversable.
Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers
NASA Astrophysics Data System (ADS)
Robert, C.; Amand, T.; Cadiz, F.; Lagarde, D.; Courtade, E.; Manca, M.; Taniguchi, T.; Watanabe, K.; Urbaszek, B.; Marie, X.
2017-10-01
The intricate interplay between optically dark and bright excitons governs the light-matter interaction in transition metal dichalcogenide monolayers. We have performed a detailed investigation of the "spin-forbidden" dark excitons in WSe2 monolayers by optical spectroscopy in an out-of-plane magnetic field Bz. In agreement with the theoretical predictions deduced from group theory analysis, magnetophotoluminescence experiments reveal a zero-field splitting δ =0.6 ±0.1 meV between two dark exciton states. The low-energy state is strictly dipole forbidden (perfectly dark) at Bz=0 , while the upper state is partially coupled to light with z polarization ("gray" exciton). The first determination of the dark neutral exciton lifetime τD in a transition metal dichalcogenide monolayer is obtained by time-resolved photoluminescence. We measure τD˜110 ±10 ps for the gray exciton state, i.e., two orders of magnitude longer than the radiative lifetime of the bright neutral exciton at T =12 K .
Effective field theory of dark matter from membrane inflationary paradigm
NASA Astrophysics Data System (ADS)
Choudhury, Sayantan; Dasgupta, Arnab
2016-09-01
In this article, we have studied the cosmological and particle physics constraints on dark matter relic abundance from effective field theory of inflation from tensor-to-scalar ratio (r), in case of Randall-Sundrum single membrane (RSII) paradigm. Using semi-analytical approach we establish a direct connection between the dark matter relic abundance (ΩDMh2) and primordial gravity waves (r), which establishes a precise connection between inflation and generation of dark matter within the framework of effective field theory in RSII membrane. Further assuming the UV completeness of the effective field theory perfectly holds good in the prescribed framework, we have explicitly shown that the membrane tension, σ ≤ O(10-9) Mp4 , bulk mass scale M5 ≤ O(0.04 - 0.05) Mp, and cosmological constant Λ˜5 ≥ - O(10-15) Mp5 , in RSII membrane plays the most significant role to establish the connection between dark matter and inflation, using which we have studied the features of various mediator mass scale suppressed effective field theory "relevant operators" induced from the localized s, t and u channel interactions in RSII membrane. Taking a completely model independent approach, we have studied an exhaustive list of tree-level Feynman diagrams for dark matter annihilation within the prescribed setup and to check the consistency of the obtained results, further we apply the constraints as obtained from recently observed Planck 2015 data and Planck + BICEP2 + Keck Array joint data sets. Using all of these derived results we have shown that to satisfy the bound on, ΩDMh2 = 0.1199 ± 0.0027, as from Planck 2015 data, it is possible to put further stringent constraint on r within, 0.01 ≤ r ≤ 0.12, for thermally averaged annihilation cross-section of dark matter, 〈 σv 〉 ≈ O(10-28 - 10-27) cm3 / s, which are very useful to constrain various membrane inflationary models.
Alstott, Jeff; Timberlake, William
2009-01-23
A typical open field consists of a square enclosure, bounded by four straight walls joined by identical corners. For decades behavioral researchers have used the open center and more sheltered perimeter of such fields to examine the effects of drugs, sex differences, and illumination on the behavioral expression of fear and anxiety. The present study "reversed" the relative security of the center and periphery of a circular field to re-examine the functional relation of open field behavior to experience, sex differences and lighting. Across six daily exposures, males in both the light and dark rapidly increased their preference for the center. Females in the light developed a similar pattern, though more slowly; females in the dark continued to spend the great majority of their time in the open periphery, including the edge of the field. The behavior of all groups, but especially the dark females, strongly supports the continued importance of environmental assessment in open field behavior.
Non-minimally coupled tachyon field in teleparallel gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fazlpour, Behnaz; Banijamali, Ali, E-mail: b.fazlpour@umz.ac.ir, E-mail: a.banijamali@nit.ac.ir
2015-04-01
We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P{sub 4}), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of thismore » point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field.« less
Morozova, M V; Kulikov, A V
2010-01-01
The light-dark box (LDB) and the open-field (OF) tests are widespread experimental models for studying locomotion and anxiety in laboratory rats and mice. The fact that rodents are nocturnal animals and more active at night raises a critical question of whether behavioral experiments carried out in the light phase are methodologically correct. Parameters of behavior of four mouse strains (C57BL/6J, DBA2/J, AKR/J and CBA/LacJ) in the light-dark box and open-field tests in the light and dark phases were compared. No significant influence of the phase of testing on anxiety in LDB and OF tests was revealed. In the OF test CBA mice showed increased locomotor activity, whereas AKR and C57BL/6 mice showed increased defecation in the dark phase. It was concluded that: 1) the phase of testing is not crucial for the expression of anxiety in LDB and OF; 2) the sensitivity to the phase of testing depends on the genotype; 3) the indices of behavior in the genotypes sensitive to the phase of testing (locomotion in the CBA and defecation in the AKR and C57BL/6 mouse strains) are increased in the dark phase.
Field lens multiplexing in holographic 3D displays by using Bragg diffraction based volume gratings
NASA Astrophysics Data System (ADS)
Fütterer, G.
2016-11-01
Applications, which can profit from holographic 3D displays, are the visualization of 3D data, computer-integrated manufacturing, 3D teleconferencing and mobile infotainment. However, one problem of holographic 3D displays, which are e.g. based on space bandwidth limited reconstruction of wave segments, is to realize a small form factor. Another problem is to provide a reasonable large volume for the user placement, which means to provide an acceptable freedom of movement. Both problems should be solved without decreasing the image quality of virtual and real object points, which are generated within the 3D display volume. A diffractive optical design using thick hologram gratings, which can be referred to as Bragg diffraction based volume gratings, can provide a small form factor and high definition natural viewing experience of 3D objects. A large collimated wave can be provided by an anamorphic backlight unit. The complex valued spatial light modulator add local curvatures to the wave field he is illuminated with. The modulated wave field is focused onto to the user plane by using a volume grating based field lens. Active type liquid crystal gratings provide 1D fine tracking of approximately +/- 8° deg. Diffractive multiplex has to be implemented for each color and for a set of focus functions providing coarse tracking. Boundary conditions of the diffractive multiplexing are explained. This is done in regards to the display layout and by using the coupled wave theory (CWT). Aspects of diffractive cross talk and its suppression will be discussed including longitudinal apodized volume gratings.
EDITORIAL: Focus on Dark Matter and Particle Physics
NASA Astrophysics Data System (ADS)
Aprile, Elena; Profumo, Stefano
2009-10-01
The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von Doetinchem, H Gast, T Kirn and S Schael Axion searches with helioscopes and astrophysical signatures for axion(-like) particles K Zioutas, M Tsagri, Y Semertzidis, T Papaevangelou, T Dafni and V Anastassopoulos The indirect search for dark matter with IceCube Francis Halzen and Dan Hooper DIRECT DARK MATTER SEARCHES:EXPERIMENTS Gaseous dark matter detectors G Sciolla and C J Martoff Search for dark matter with CRESST Rafael F Lang and Wolfgang Seidel DIRECT AND INDIRECT PARTICLE DARK MATTER SEARCHES:THEORY Dark matter annihilation around intermediate mass black holes: an update Gianfranco Bertone, Mattia Fornasa, Marco Taoso and Andrew R Zentner Update on the direct detection of dark matter in MSSM models with non-universal Higgs masses John Ellis, Keith A Olive and Pearl Sandick Dark stars: a new study of the first stars in the Universe Katherine Freese, Peter Bodenheimer, Paolo Gondolo and Douglas Spolyar Determining the mass of dark matter particles with direct detection experiments Chung-Lin Shan The detection of subsolar mass dark matter halos Savvas M Koushiappas Neutrino coherent scattering rates at direct dark matter detectors Louis E Strigari Gamma rays from dark matter annihilation in the central region of the Galaxy Pasquale Dario Serpico and Dan Hooper DARK MATTER MODELS The dark matter interpretation of the 511 keV line Céline Boehm Axions as dark matter particles Leanne D Duffy and Karl van Bibber Sterile neutrinos Alexander Kusenko Dark matter candidates Lars Bergström Minimal dark matter: model and results Marco Cirelli and Alessandro Strumia Shedding light on the dark sector with direct WIMP production Partha Konar, Kyoungchul Kong, Konstantin T Matchev and Maxim Perelstein Axinos as dark matter particles Laura Covi and Jihn E Kim
Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots.
Petryayeva, Eleonora; Algar, W Russ
2014-03-18
Semiconductor quantum dot (QD) bioconjugates, with their unique and highly advantageous physicochemical and optical properties, have been extensively utilized as probes for bioanalysis and continue to generate widespread interest for these applications. An important consideration for expanding the utility of QDs and making their use routine is to make assays with QDs more accessible for laboratories that do not specialize in nanomaterials. Here, we show that digital color imaging of QD photoluminescence (PL) with a smartphone camera is a viable, easily accessible readout platform for quantitative, multiplexed, and real-time bioanalyses. Red-, green-, and blue-emitting CdSeS/ZnS QDs were conjugated with peptides that were labeled with a deep-red fluorescent dye, Alexa Fluor 647, and the dark quenchers, QSY9 and QSY35, respectively, to generate Förster resonance energy transfer (FRET) pairs sensitive to proteolytic activity. Changes in QD PL caused by the activity of picomolar to nanomolar concentrations of protease were detected as changes in the red-green-blue (RGB) channel intensities in digital color images. Importantly, measurements of replicate samples made with smartphone imaging and a sophisticated fluorescence plate reader yielded the same quantitative results, including initial proteolytic rates and specificity constants. Homogeneous two-plex and three-plex assays for the activity of trypsin, chymotrypsin, and enterokinase were demonstrated with RGB imaging. Given the ubiquity of smartphones, this work largely removes any instrumental impediments to the adoption of QDs as routine tools for bioanalysis in research laboratories and is a critical step toward the use of QDs for point-of-care diagnostics. This work also adds to the growing utility of smartphones in analytical methods by enabling multiplexed fluorimetric assays within a single sample volume and across multiple samples in parallel.
Is Dark Matter Similar to the Force?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Adam; Vranas, Pavlos
When Obi Wan Kenobi explained the Force to Luke Skywalker, he said, "It's an energy field created by all living things. It surrounds us and penetrates us; it binds the galaxy together." The same thing could be said of the invisible, elusive, yet ubiquitous dark matter. Explore the similarities and differences between dark matter and the Force and find out why LLNL studies dark matter.
, technology, engineering and math fields. New world-leading limit on dark matter search from PICO experiment February 27, 2017 The PICO-60 dark matter bubble chamber experiment has produced a new dark matter limit . Construction of world's most sensitive dark matter detector moves forward September 26, 2016 LUX-ZEPLIN (LZ), a
Dark SU (N ) glueball stars on fluid branes
NASA Astrophysics Data System (ADS)
da Rocha, Roldão
2017-06-01
The glueball dark matter, in the pure SU (N ) Yang-Mills theory, engenders dark SU (N ) stars that comprise self-gravitating compact configurations of scalar glueball fields. Corrections to the highest frequency of gravitational wave radiation emitted by dark SU (N ) star mergers on a fluid brane with variable tension, implemented by the minimal geometric deformation, are derived, and their consequences are analyzed. Hence, dark SU (N ) star mergers on a fluid braneworld are shown to be better detectable by the LIGO and the eLISA experiments.
QCD Axion Dark Matter with a Small Decay Constant
NASA Astrophysics Data System (ADS)
Co, Raymond T.; Hall, Lawrence J.; Harigaya, Keisuke
2018-05-01
The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant fa˜O (1011) GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires fa˜(108- 1011) GeV . The axions may be warm enough to give deviations from cold dark matter in large scale structure.
Creating and optimizing interfaces for electric-field and photon-induced charge transfer.
Park, Byoungnam; Whitham, Kevin; Cho, Jiung; Reichmanis, Elsa
2012-11-27
We create and optimize a structurally well-defined electron donor-acceptor planar heterojunction interface in which electric-field and/or photon-induced charge transfer occurs. Electric-field-induced charge transfer in the dark and exciton dissociation at a pentacene/PCBM interface were probed by in situ thickness-dependent threshold voltage shift measurements in field-effect transistor devices during the formation of the interface. Electric-field-induced charge transfer at the interface in the dark is correlated with development of the pentacene accumulation layer close to PCBM, that is, including interface area, and dielectric relaxation time in PCBM. Further, we demonstrate an in situ test structure that allows probing of both exciton diffusion length and charge transport properties, crucial for optimizing optoelectronic devices. Competition between the optical absorption length and the exciton diffusion length in pentacene governs exciton dissociation at the interface. Charge transfer mechanisms in the dark and under illumination are detailed.
Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng
2014-01-01
Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya. PMID:25337891
Osman, Fatima; Dang, Tyler; Bodaghi, Sohrab; Vidalakis, Georgios
2017-07-01
A one-step multiplex reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) based on species-specific minor groove binding (MGB) probes, was developed for the simultaneous detection, identification, and quantification of three citrus viroids belonging to different genera. Citrus exocortis viroid (Pospiviroid), Hop stunt viroid (Hostuviroid), and Citrus bark cracking viroid (Cocadviroid) cause a variety of maladies in agriculturally significant crops. Therefore, reliable assays for their detection are essential tools for various government and industry organizations implementing disease management programs. Singleplex qPCR primers and MGB probes were designed individually for the detection of the three targeted viroids, and subsequently combined in a one-step multiplex RT-qPCR reaction. A wide host range of woody plants, including citrus, grapevines, apricots, plums and herbaceous plants such as tomato, cucumber, eggplant and chrysanthemum different world regions were used to validate the assay. Single, double and triple viroid infections were identified in the tested samples. The developed multiplex RT-qPCR assay was compared with a previously reported SYBR Green I RT-qPCR for the universal detection of citrus viroids. Both assays accurately identified all citrus viroid infected samples. The multiplex assay complemented the SYBR Green I universal detection assay by differentiating among citrus viroid species in the positive samples. The developed multiplex RT-qPCR assay has the potential to simultaneously detect each targeted viroid and could be used in high throughput screenings for citrus viroids in field surveys, germplasm banks, nurseries and other viroid disease management programs. Copyright © 2017. Published by Elsevier B.V.
SQUID-based microwave cavity search for dark-matter axions.
Asztalos, S J; Carosi, G; Hagmann, C; Kinion, D; van Bibber, K; Hotz, M; Rosenberg, L J; Rybka, G; Hoskins, J; Hwang, J; Sikivie, P; Tanner, D B; Bradley, R; Clarke, J
2010-01-29
Axions in the microeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3 microeV and 3.53 microeV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.
Coupled field induced conversion between destructive and constructive quantum interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xiangqian, E-mail: xqjiang@hit.edu.cn; Sun, Xiudong
2016-12-15
We study the control of quantum interference in a four-level atom driven by three coherent fields forming a closed loop. The spontaneous emission spectrum shows two sets of peaks which are dramatically influenced by the fields. Due to destructive quantum interference, a dark line can be observed in the emission spectrum, and the condition of the dark line is given. We found that the conversion between destructive and constructive quantum interference can be achieved through controlling the Rabi frequency of the external fields.
Probing dark energy with atom interferometry
NASA Astrophysics Data System (ADS)
Burrage, Clare; Copeland, Edmund J.; Hinds, E. A.
2015-03-01
Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichev, Eugeny; UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris; Marzola, Luca
2016-09-12
We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Mattermore » searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the requirement of stability constrains the spin-2 mass to be in the 1 to 100 TeV range.« less
Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory
NASA Astrophysics Data System (ADS)
Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Longo Proper, M.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zhou, H.
2018-02-01
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV–100 TeV gamma-rays and cosmic rays. It can also perform diverse indirect searches for dark matter annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma-rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma-rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the field of view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC. We also present the HAWC flux upper limits of the 15 dwarf spheroidal galaxies in half-decade energy bins.
Diurnal behavioral and endocrine effects of chronic shaker stress in mice.
Dubovicky, Michal; Mach, Mojmir; Key, Mary; Morris, Mariana; Paton, Sara; Lucot, James B
2007-12-01
Experiments were performed in C57BL/6J male mice to determine 1) light/dark effects of acute and chronic shaker stress on open field behavioral patterns and 2) light/dark effects of chronic stress on plasma corticosterone and oxytocin. Shaker stress was applied acutely (15 min) or chronically (3 or 7 days). Mice were tested in the open field in the light or dark phase of the circadian cycle. For the endocrine study, mice were exposed to 3 days of intermittent shaker stress and sacrificed after the last stress event (09:00 or 19:00 h). Acute or chronic shaker stress had no significant effects on intensity of motor activity and rearing of mice tested under either light condition. Mice tested in the dark phase had higher motor activity and exhibited lower anxiety-like behavior as expressed by central zone activities and had higher emotionality as expressed by increased defecation. Chronic stress increased corticosterone with a greater absolute increase in the dark period. However, the percentage stress-induced increase was not different between the day and night periods. The oxytocin response to stress was observed only during the light phase with no change seen at dark phase. These results show that there is a marked difference in the light/dark pituitary stress response with no alteration in stress induced behavioral changes. They also suggest that there are circadian interactions in the endocrine stress axis that are without consequences for open field behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Shin'ichi; Nishi, Sakine; Kobayashi, Tsutomu, E-mail: s.hirano@rikkyo.ac.jp, E-mail: sakine@rikkyo.ac.jp, E-mail: tsutomu@rikkyo.ac.jp
We study the stability of a recently proposed model of scalar-field matter called mimetic dark matter or imperfect dark matter. It has been known that mimetic matter with higher derivative terms suffers from gradient instabilities in scalar perturbations. To seek for an instability-free extension of imperfect dark matter, we develop an effective theory of cosmological perturbations subject to the constraint on the scalar field's kinetic term. This is done by using the unifying framework of general scalar-tensor theories based on the ADM formalism. We demonstrate that it is indeed possible to construct a model of imperfect dark matter which ismore » free from ghost and gradient instabilities. As a side remark, we also show that mimetic F (R) theory is plagued with the Ostrogradsky instability.« less
Concept for a dark matter detector using liquid helium-4
NASA Astrophysics Data System (ADS)
Guo, W.; McKinsey, D. N.
2013-06-01
Direct searches for light dark matter particles (mass<10GeV) are especially challenging because of the low energies transferred in elastic scattering to typical heavy nuclear targets. We investigate the possibility of using liquid helium-4 as a target material, taking advantage of the favorable kinematic matching of the helium nucleus to light dark matter particles. Monte Carlo simulations are performed to calculate the charge, scintillation, and triplet helium molecule signals produced by recoil He ions, for a variety of energies and electric fields. We show that excellent background rejection might be achieved based on the ratios between different signal channels. The sensitivity of the helium-based detector to light dark matter particles is estimated for various electric fields and light collection efficiencies.
USDA-ARS?s Scientific Manuscript database
The objective of the study was to use band-based molecular methods including BOX-PCR (Polymerase Chain Reaction) and Pulsed-Field Gel Electrophoresis (PFGE) to determine if genetically related enterococci were found among different stores, food types, or years. Enterococci were also characterized f...
Many-body matter-wave dark soliton.
Delande, Dominique; Sacha, Krzysztof
2014-01-31
The Gross-Pitaevskii equation--which describes interacting bosons in the mean-field approximation--possesses solitonic solutions in dimension one. For repulsively interacting particles, the stationary soliton is dark, i.e., is represented by a local density minimum. Many-body effects may lead to filling of the dark soliton. Using quasiexact many-body simulations, we show that, in single realizations, the soliton appears totally dark although the single particle density tends to be uniform.
NASA Astrophysics Data System (ADS)
Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Freeman, David; Kosmalski, Johan
2012-09-01
HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R≍4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range.
Yang, Yi; Tang, Xiangyang
2012-12-01
The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.
Progress on the FDM Development at SRON: Toward 160 Pixels
NASA Astrophysics Data System (ADS)
den Hartog, R. H.; Bruijn, M. P.; Clenet, A.; Gottardi, L.; Hijmering, R.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Loon, D.; Nieuwenhuizen, A.; Ridder, M.; van Winden, P.
2014-08-01
SRON is developing the electronic read-out for arrays of transition edge sensors using frequency domain multiplexing in combination with base-band feedback. The astronomical applications of this system are the read-out of soft X-ray micro-calorimeters in a potential instrument on the European X-ray mission-under-study Athena+ and far-IR bolometers for the Safari instrument on the Japanese mission SPICA. In this paper we demonstrate the simultaneous read-out of 38 bolometer pixels at a 12 aW/Hz dark NEP level. The stability of the read-out is assessed over 400 s. time spans. Although some 1/f noise is present, there are several bolometers for which 1/f-free read-out can be demonstrated.
NASA Astrophysics Data System (ADS)
Belkin, M. E.
2018-01-01
The results of an experimental study for a long wavelength vertical cavity surface-emitting laser of a wafer-fused construction as an effective resonant cavity enhanced photodetector of analog optical signals are described. The device is of interest for a number of promising microwave photonics applications and for creation of a low-cost photoreceiver in a high-speed fiber optics telecommunication system with dense wavelength division multiplexing. The schematic of the testbed, the original technique allowing to calculate the passband of the built-in optical cavity, and the results of measuring dark current, current responsivity, amplitude- and phase-frequency characteristics during the process of photo-detection are demonstrated.
Multispectral computational ghost imaging with multiplexed illumination
NASA Astrophysics Data System (ADS)
Huang, Jian; Shi, Dongfeng
2017-07-01
Computational ghost imaging has attracted wide attention from researchers in many fields over the last two decades. Multispectral imaging as one application of computational ghost imaging possesses spatial and spectral resolving abilities, and is very useful for surveying scenes and extracting detailed information. Existing multispectral imagers mostly utilize narrow band filters or dispersive optical devices to separate light of different wavelengths, and then use multiple bucket detectors or an array detector to record them separately. Here, we propose a novel multispectral ghost imaging method that uses one single bucket detector with multiplexed illumination to produce a colored image. The multiplexed illumination patterns are produced by three binary encoded matrices (corresponding to the red, green and blue colored information, respectively) and random patterns. The results of the simulation and experiment have verified that our method can be effective in recovering the colored object. Multispectral images are produced simultaneously by one single-pixel detector, which significantly reduces the amount of data acquisition.
High-Definition Optical Velocimetry: A New Diagnostic Paradigm for Nuclear Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daykin, E; Diaz, A; Gallegos, C
This slide-show describes work done to address the challenge of high-definition optical velocimetry with hundred(s) of high-fidelity velocity vs. time measurements. After a review of the historical context and a general technical description of how optical velocimetry, particularly photonic Doppler velocimetry, works, the innovation of multiplexed photonic Doppler velocimetry (MPDV) is described as implemented with commercially available telecom products and dense wavelength division multiplexing (DWDM). High amplification of small signals allows for laser-safe operations. The authors have evaluated and leveraged telecom components– optical amplifiers, wavelength multiplexers, and seed lasers–to provide an economical, compact and rugged approach to system architecture. Fouriermore » transform data analysis is seen to be robust and capable of discriminating simultaneous data traces recorded onto a single digitizer channel. The authors successfully fielded demonstration MPDV system on shock driven experiments.« less
Ruffato, Gianluca; Massari, Michele; Romanato, Filippo
2016-04-20
During the last decade, the orbital angular momentum (OAM) of light has attracted growing interest as a new degree of freedom for signal channel multiplexing in order to increase the information transmission capacity in today's optical networks. Here we present the design, fabrication and characterization of phase-only diffractive optical elements (DOE) performing mode-division (de)multiplexing (MDM) and spatial-division (de)multiplexing (SDM) at the same time. Samples have been fabricated with high-resolution electron-beam lithography patterning a polymethylmethacrylate (PMMA) resist layer spun over a glass substrate. Different DOE designs are presented for the sorting of optical vortices differing in either OAM content or beam size in the optical regime, with different steering geometries in far-field. These novel DOE designs appear promising for telecom applications both in free-space and in multi-core fibers propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, J.E.; Adams, R.; Carlson, A.L.
Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. The authors use simultaneous 2-D-spatial and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion variation, and sensitivity. A semi-automated line-fitting procedure determines the Stark shiftmore » and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {+-}2--4%. Detailed tests of the fitting procedure confirm that the wavelength shift uncertainties are accurate to better than {+-}20%. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain 3-D space- and time-resolved measurements of the electric and magnetic fields is in progress.« less
Fermi Bubbles under Dark Matter Scrutiny Part II: Particle Physics Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Wei-Chih; Urbano, Alfredo; Xue, Wei, E-mail: whuang@sissa.it, E-mail: alfredo.urbano@sissa.it, E-mail: wxue@sissa.it
2014-04-01
The analysis of the gamma-ray photons collected by the Fermi Large Area Telescope reveals, after removal of astrophysical background, the existence of an excess towards the Galactic center. This excess peaks around few GeV, and its origin is compatible with the gamma-ray flux originating from Dark Matter annihilation. In this work we take a closer look on this interpretation; we investigate which kind of Dark Matter, and which type of interactions with the Standard Model fields are able to reproduce the observed signal. The structure of the paper is twofold. In the first part, we follow an effective field theorymore » approach considering both fermionic and scalar Dark Matter. The computation of the relic density, the constraint imposed from the null result of direct searches, and the reliability of the effective field theory description allow us to single out only two viable dim-6 operators in the case of fermionic Dark Matter. In the second part, we analyze some concrete models. In particular, we find that the scalar Higgs portal can provide a simple, concrete and realistic scenario able to explain the GeV excess under scrutiny.« less
Binary Mixture of Perfect Fluid and Dark Energy in Modified Theory of Gravity
NASA Astrophysics Data System (ADS)
Shaikh, A. Y.
2016-07-01
A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.
Bi-scalar modified gravity and cosmology with conformal invariance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saridakis, Emmanuel N.; Tsoukalas, Minas, E-mail: Emmanuel_Saridakis@baylor.edu, E-mail: minasts@central.ntua.gr
2016-04-01
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sectormore » we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to 'mimetic dark matter' or to 'dark radiation' respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviors reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.« less
Weakly dynamic dark energy via metric-scalar couplings with torsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sur, Sourav; Bhatia, Arshdeep Singh, E-mail: sourav.sur@gmail.com, E-mail: arshdeepsb@gmail.com
We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping themmore » within the confidence limits set for the standard LCDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.« less
Weakly dynamic dark energy via metric-scalar couplings with torsion
NASA Astrophysics Data System (ADS)
Sur, Sourav; Singh Bhatia, Arshdeep
2017-07-01
We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping them within the confidence limits set for the standard LCDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.
QCD Axion Dark Matter with a Small Decay Constant.
Co, Raymond T; Hall, Lawrence J; Harigaya, Keisuke
2018-05-25
The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant f_{a}∼O(10^{11}) GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires f_{a}∼(10^{8}-10^{11}) GeV. The axions may be warm enough to give deviations from cold dark matter in large scale structure.
3D multiplexed immunoplasmonics microscopy
NASA Astrophysics Data System (ADS)
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence.Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence. Electronic supplementary information (ESI) available: Characterization of functionalized nanoparticles by UV-visible-NIR spectroscopy, standard dark field microscopy and reflected light microscopy. Immunofluorescence of cells. See DOI: 10.1039/c6nr01257d
Fabrication of the pinhole aperture for AdaptiSPECT
Kovalsky, Stephen; Kupinski, Matthew A.; Barrett, Harrison H.; Furenlid, Lars R.
2015-01-01
AdaptiSPECT is a pre-clinical pinhole SPECT imaging system under final construction at the Center for Gamma-Ray Imaging. The system is designed to be able to autonomously change its imaging configuration. The system comprises 16 detectors mounted on translational stages to move radially away and towards the center of the field-of-view. The system also possesses an adaptive pinhole aperture with multiple collimator diameters and pinhole sizes, as well as the possibility to switch between multiplexed and non-multiplexed imaging configurations. In this paper, we describe the fabrication of the AdaptiSPECT pinhole aperture and its controllers. PMID:26146443
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary,; Bruce, R; Stubben, Christopher J
The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.
Extremal noncommutative black holes as dark matter furnaces
NASA Astrophysics Data System (ADS)
Kawamoto, Shoichi; Wei, Chun-Yu; Wen, Wen-Yu
2017-09-01
In this paper, we consider dark matter annihilation in the gravitational field of noncommutative black holes. Instead of a violent fate predicted in the usual Hawking radiation, we propose a thermal equilibrium state where a mildly burning black hole relic is fueled by dark matter accretion at the final stage of evaporation.
Ward identities and consistency relations for the large scale structure with multiple species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peloso, Marco; Pietroni, Massimo, E-mail: peloso@physics.umn.edu, E-mail: pietroni@pd.infn.it
2014-04-01
We present fully nonlinear consistency relations for the squeezed bispectrum of Large Scale Structure. These relations hold when the matter component of the Universe is composed of one or more species, and generalize those obtained in [1,2] in the single species case. The multi-species relations apply to the standard dark matter + baryons scenario, as well as to the case in which some of the fields are auxiliary quantities describing a particular population, such as dark matter halos or a specific galaxy class. If a large scale velocity bias exists between the different populations new terms appear in the consistencymore » relations with respect to the single species case. As an illustration, we discuss two physical cases in which such a velocity bias can exist: (1) a new long range scalar force in the dark matter sector (resulting in a violation of the equivalence principle in the dark matter-baryon system), and (2) the distribution of dark matter halos relative to that of the underlying dark matter field.« less
Dark matter and the equivalence principle
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Gradwohl, Ben-Ami
1993-01-01
A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.
NASA Astrophysics Data System (ADS)
D'Agostino, Gregorio; De Nicola, Antonio
2016-10-01
Exploiting the information about members of a Social Network (SN) represents one of the most attractive and dwelling subjects for both academic and applied scientists. The community of Complexity Science and especially those researchers working on multiplex social systems are devoting increasing efforts to outline general laws, models, and theories, to the purpose of predicting emergent phenomena in SN's (e.g. success of a product). On the other side the semantic web community aims at engineering a new generation of advanced services tailored to specific people needs. This implies defining constructs, models and methods for handling the semantic layer of SNs. We combined models and techniques from both the former fields to provide a hybrid approach to understand a basic (yet complex) phenomenon: the propagation of individual interests along the social networks. Since information may move along different social networks, one should take into account a multiplex structure. Therefore we introduced the notion of "Semantic Multiplex". In this paper we analyse two different semantic social networks represented by authors publishing in the Computer Science and those in the American Physical Society Journals. The comparison allows to outline common and specific features.
Integrated-Optic Wavelength Multiplexer In Glass Fabricated By A Charge Controlled Ion Exchange
NASA Astrophysics Data System (ADS)
Klein, R.; Jestel, D.; Lilienhof, H. J.; Rottman, F.; Voges, E.
1989-02-01
Integrated-optic wavelength division multiplexing (WDM) is commonly used in communication systems. These WDM-devices are also well suited to build up optical fiber networks for both intensity and interferometric sensor types. The operation principle of our wavelength division multiplexing devise is based on the wavelength dependent two-mode interference in a two-moded waveguide, which is coupled adiabatically to the single-mode input and output strip waveguides. The single-mode input and output waveguides are connected via two Y-branches ( "'kJ- 1° branching angle ) with a two-moded intersection region. The ratio of the light powers in the single-mode output waveguides depends on wavelength . The two-mode interference within the two-moded center waveguide leads to an almost wavelength periodic transmission caracteristic . Dual-channel multiplexers/demultiplexers were fabricated by a charge controlled field assisted pottasium exchange in B-270 glass (Desag). The devices have a typical channel separation of 30 - 40 nm and a far-end crosstalk attenuation of better than 16 dB. The operation wavelength regions of the fabricated devices are 0.6 - 0.8 µm and 1.3 - 1.6 µm, respectively.
Dark sector shining through 750 GeV dark Higgs boson at the LHC
NASA Astrophysics Data System (ADS)
Ko, P.; Nomura, Takaaki
2016-07-01
We consider a dark sector with SU(3)C × U(1)Y × U(1)X and three families of dark fermions that are chiral under dark U(1)X gauge symmetry, whereas scalar dark matter X is the SM singlet. U(1)X dark symmetry is spontaneously broken by nonzero VEV of dark Higgs field 〈 Φ 〉, generating the masses of dark fermions and dark photon Z‧. The resulting dark Higgs boson ϕ can be produced at the LHC by dark quark loop (involving 3 generations) and will decay into a pair of photon through charged dark fermion loop. Its decay width can be easily ∼ 45 GeV due to its possible decays into a pair of dark photon, which is not strongly constrained by the current LHC searches pp → ϕ →Z‧Z‧ followed by Z‧ decays into the SM fermion pairs. The scalar DM can achieve thermal relic density without conflict with direct detection bound or the invisible ϕ decay into a pair of DM.
In Situ observation of dark current emission in a high gradient rf photocathode gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
In Situ observation of dark current emission in a high gradient rf photocathode gun
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.; ...
2016-08-15
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
Dark matter effective field theory scattering in direct detection experiments
Schneck, K.
2015-05-01
We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implicationsmore » of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less
Dark matter effective field theory scattering in direct detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneck, K.; Cabrera, B.; Cerdeño, D. G.
2015-05-18
We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discussmore » the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less
Dark matter effective field theory scattering in direct detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneck, K.; Cabrera, B.; Cerdeño, D. G.
2015-05-18
We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implicationsmore » of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less
Scalar-fluid interacting dark energy: Cosmological dynamics beyond the exponential potential
NASA Astrophysics Data System (ADS)
Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola
2017-01-01
We extend the dynamical systems analysis of scalar-fluid interacting dark energy models performed in C. G. Boehmer et al., Phys. Rev. D 91, 123002 (2015), 10.1103/PhysRevD.91.123002 by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and advanced mathematical techniques, such as center manifold theory. We show that the interesting results obtained with an exponential potential can generally be recovered also for more complicated scalar field potentials. In particular, employing power law and hyperbolic potentials as examples, we find late time accelerated attractors, transitions from dark matter to dark energy domination with specific distinguishing features, and accelerated scaling solutions capable of solving the cosmic coincidence problem.
Dark energy coupling with electromagnetism as seen from future low-medium redshift probes
NASA Astrophysics Data System (ADS)
Calabrese, E.; Martinelli, M.; Pandolfi, S.; Cardone, V. F.; Martins, C. J. A. P.; Spiro, S.; Vielzeuf, P. E.
2014-04-01
Beyond the standard cosmological model the late-time accelerated expansion of the Universe can be reproduced by the introduction of an additional dynamical scalar field. In this case, the field is expected to be naturally coupled to the rest of the theory's fields, unless a (still unknown) symmetry suppresses this coupling. Therefore, this would possibly lead to some observational consequences, such as space-time variations of nature's fundamental constants. In this paper we investigate the coupling between a dynamical dark energy model and the electromagnetic field, and the corresponding evolution of the fine structure constant (α) with respect to the standard local value α0. In particular, we derive joint constraints on two dynamical dark energy model parametrizations (the Chevallier-Polarski-Linder and early dark energy model) and on the coupling with electromagnetism ζ, forecasting future low-medium redshift observations. We combine supernovae and weak lensing measurements from the Euclid experiment with high-resolution spectroscopy measurements of fundamental couplings and the redshift drift from the European Extremely Large Telescope, highlighting the contribution of each probe. Moreover, we also consider the case where the field driving the α evolution is not the one responsible for cosmic acceleration and investigate how future observations can constrain this scenario.
Growth rate in the dynamical dark energy models.
Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina
Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.
Barbee, Kristopher D.; Hsiao, Alexander P.; Roller, Eric E.; Huang, Xiaohua
2011-01-01
We report the development of a microfabricated electrophoretic device for assembling high-density arrays of antibody-conjugated microbeads for chip-based protein detection. The device consists of a flow cell formed between a gold-coated silicon chip with an array of microwells etched in a silicon dioxide film and a glass coverslip with a series of thin gold counter electrode lines. We have demonstrated that 0.4 and 1 μm beads conjugated with antibodies can be rapidly assembled into the microwells by applying a pulsed electric field across the chamber. By assembling step-wise a mixture of fluorescently labeled antibody-conjugated microbeads, we incorporated both spatial and fluorescence encoding strategies to demonstrate significant multiplexing capabilities. We have shown that these antibody-conjugated microbead arrays can be used to perform on-chip sandwich immunoassays to detect test antigens at concentrations as low as 40 pM (6 ng/mL). A finite element model was also developed to examine the electric field distribution within the device for different counter electrode configurations over a range of line pitches and chamber heights. This device will be useful for assembling high-density, encoded antibody arrays for multiplexed detection of proteins and other types of protein-conjugated microbeads for applications such as the analysis of protein-protein interactions. PMID:20820631
Dynamic field theory and equations of motion in cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu; Petrov, Alexander N., E-mail: alex.petrov55@gmail.com
2014-11-15
We discuss a field-theoretical approach based on general-relativistic variational principle to derive the covariant field equations and hydrodynamic equations of motion of baryonic matter governed by cosmological perturbations of dark matter and dark energy. The action depends on the gravitational and matter Lagrangian. The gravitational Lagrangian depends on the metric tensor and its first and second derivatives. The matter Lagrangian includes dark matter, dark energy and the ordinary baryonic matter which plays the role of a bare perturbation. The total Lagrangian is expanded in an asymptotic Taylor series around the background cosmological manifold defined as a solution of Einstein’s equationsmore » in the form of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric tensor. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the series expansion is gauge-invariant and all of them together form a basis for the successive post-Friedmannian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Friedmannian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background FLRW metric. The temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large scale inhomogeneities in these two components as those generated by the primordial cosmological perturbations with an effective matter density contrast δρ/ρ≤1. The small scale inhomogeneities are generated by the condensations of baryonic matter considered as the bare perturbations of the background manifold that admits δρ/ρ≫1. Mathematically, the large scale perturbations are given by the homogeneous solution of the linearized field equations while the small scale perturbations are described by a particular solution of these equations with the bare stress–energy tensor of the baryonic matter. We explicitly work out the covariant field equations of the successive post-Friedmannian approximations of Einstein’s equations in cosmology and derive equations of motion of large and small scale inhomogeneities of dark matter and dark energy. We apply these equations to derive the post-Friedmannian equations of motion of baryonic matter comprising stars, galaxies and their clusters.« less
An improved large-field focusing schlieren system
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M.
1991-01-01
The analysis and performance of a high-brightness large-field focusing schlieren system is described. The system can be used to examine complex two- and three-dimensional flows. Techniques are described to obtain focusing schlieren through distorting optical elements, to use multiple colors in a time multiplexing technique, and to use diffuse screen holography for three-dimensional photographs.
Dark field photoelectron emission microscopy of micron scale few layer graphene
NASA Astrophysics Data System (ADS)
Barrett, N.; Conrad, E.; Winkler, K.; Krömker, B.
2012-08-01
We demonstrate dark field imaging in photoelectron emission microscopy (PEEM) of heterogeneous few layer graphene (FLG) furnace grown on SiC(000-1). Energy-filtered, threshold PEEM is used to locate distinct zones of FLG graphene. In each region, selected by a field aperture, the k-space information is imaged using appropriate transfer optics. By selecting the photoelectron intensity at a given wave vector and using the inverse transfer optics, dark field PEEM gives a spatial distribution of the angular photoelectron emission. In the results presented here, the wave vector coordinates of the Dirac cones characteristic of commensurate rotations of FLG on SiC(000-1) are selected providing a map of the commensurate rotations across the surface. This special type of contrast is therefore a method to map the spatial distribution of the local band structure and offers a new laboratory tool for the characterisation of technically relevant, microscopically structured matter.
NASA Astrophysics Data System (ADS)
Steinhardt, Charles; Jauzac, Mathilde; Capak, Peter; Koekemoer, Anton; Oesch, Pascal; Richard, Johan; Sharon, Keren q.; BUFFALO
2018-01-01
Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO) is an astronomical survey built around the six Hubble Space Telescope (HST) Frontier Fields clusters designed to learn about early galactic assembly and clustering and prepare targets for observations with the James Webb Space Telescope. BUFFALO will place significant new constraints on how and when the most massive and luminous galaxies in the universe formed and how early galaxy formation is linked to dark matter assembly. The same data will also probe the temperature and cross section of dark matter in the massive Frontier Fields galaxy clusters, and tell us how the dark matter, cluster gas, and dynamics of the clusters influence the galaxies in and around them. These studies are possible because the Spitzer Space Telescope, Chandra X-ray Observatory, XMM-Newton, and ground based telescopes have already invested heavily in deep observations around the Frontier Fields, so that the addition of HST observations can yield significant new results.
Infrared Telescopes Spy Small, Dark Asteroids
2011-09-29
This chart based on data from NASA Wide-field Infrared Survey Explorer illustrates why infrared-sensing telescopes are more suited to finding small, dark asteroids than telescopes that detect visible light.
MEST- avoid next extinction by a space-time effect
NASA Astrophysics Data System (ADS)
Cao, Dayong
2013-03-01
Sun's companion-dark hole seasonal took its dark comets belt and much dark matter to impact near our earth. And some of them probability hit on our earth. So this model kept and triggered periodic mass extinctions on our earth every 25 to 27 million years. After every impaction, many dark comets with very special tilted orbits were arrested and lurked in solar system. When the dark hole-Tyche goes near the solar system again, they will impact near planets. The Tyche, dark comet and Oort Cloud have their space-time center. Because the space-time are frequency and amplitude square of wave. Because the wave (space-time) can make a field, and gas has more wave and fluctuate. So they like dense gas ball and a dark dense field. They can absorb the space-time and wave. So they are ``dark'' like the dark matter which can break genetic codes of our lives by a dark space-time effect. So the upcoming next impaction will cause current ``biodiversity loss.'' The dark matter can change dead plants and animals to coal, oil and natural gas which are used as energy, but break our living environment. According to our experiments, which consciousness can use thought waves remotely to change their systemic model between Electron Clouds and electron holes of P-N Junction and can change output voltages of solar cells by a life information technology and a space-time effect, we hope to find a new method to the orbit of the Tyche to avoid next extinction. (see Dayong Cao, BAPS.2011.APR.K1.17 and BAPS.2012.MAR.P33.14) Support by AEEA
Dark matter and dark energy from the solution of the strong CP problem.
Mainini, Roberto; Bonometto, Silvio A
2004-09-17
The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.
Lee, Seungah; Nan, He; Yu, Hyunung; Kang, Seong Ho
2016-05-15
A nanoimmunosensor based on wavelength-dependent dark-field illumination with enhanced sensitivity was used to detect a disease-related protein molecule at zeptomolar (zM) concentrations. The assay platform of 100-nm gold nanospots could be selectively acquired using the wavelength-dependence of enhanced scattering signals from antibody-conjugated plasmonic silver nanoparticles (NPs) with on-off switching using optical filters. Detection of human thyroid-stimulating hormone (hTSH) at a sensitivity of 100 zM, which corresponds to 1-2 molecules per gold spot, was possible within a linear range of 100 zM-100 fM (R=0.9968). A significantly enhanced sensitivity (~4-fold) was achieved with enhanced dark-field illumination compared to using a total internal reflection fluorescence immunosensor. Immunoreactions were confirmed via optical axial-slicing based on the spectral characteristics of two plasmonic NPs. This method of using wavelength-dependent dark-field illumination had an enhanced sensitivity and a wide, linear dynamic range of 100 zM-100 fM, and was an effective tool for quantitatively detecting a single molecule on a nanobiochip for molecular diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.
Hard-X-ray dark-field imaging using a grating interferometer.
Pfeiffer, F; Bech, M; Bunk, O; Kraft, P; Eikenberry, E F; Brönnimann, Ch; Grünzweig, C; David, C
2008-02-01
Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early stage with several techniques, dark-field imaging, or more generally scattering-based imaging, with hard X-rays and good signal-to-noise ratio, in practice still remains a challenging task even at highly brilliant synchrotron sources. In this letter, we report a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. Because the image contrast is formed through the mechanism of small-angle scattering, it provides complementary and otherwise inaccessible structural information about the specimen at the micrometre and submicrometre length scale. Our approach is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme. Applications to X-ray medical imaging, industrial non-destructive testing and security screening are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, D.-C.; Stojkovic, Dejan; Dutta, Sourish
2009-09-15
We examine a dark energy model where a scalar unparticle degree of freedom plays the role of quintessence. In particular, we study a model where the unparticle degree of freedom has a standard kinetic term and a simple mass potential, the evolution is slowly rolling and the field value is of the order of the unparticle energy scale ({lambda}{sub u}). We study how the evolution of w depends on the parameters B (a function of unparticle scaling dimension d{sub u}), the initial value of the field {phi}{sub i} (or equivalently, {lambda}{sub u}) and the present matter density {omega}{sub m0}. Wemore » use observational data from type Ia supernovae, baryon acoustic oscillations and the cosmic microwave background to constrain the model parameters and find that these models are not ruled out by the observational data. From a theoretical point of view, unparticle dark energy model is very attractive, since unparticles (being bound states of fundamental fermions) are protected from radiative corrections. Further, coupling of unparticles to the standard model fields can be arbitrarily suppressed by raising the fundamental energy scale M{sub F}, making the unparticle dark energy model free of most of the problems that plague conventional scalar field quintessence models.« less
ASTROPHYSICS. Atom-interferometry constraints on dark energy.
Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J
2015-08-21
If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration. Copyright © 2015, American Association for the Advancement of Science.
Theoretical Investigation of Dual Tuning of Solitonic Processes in Multiferroic Structures
NASA Astrophysics Data System (ADS)
Cherkasskii, M. A.; Nikitin, A. A.; Ustinov, A. B.; Stashkevich, A.; Kalinikos, B. A.
2016-11-01
. The solitonic wave processes in a multiferroic structure based on ferroelectric and ferrite layers are studied. The influence of external electric and magnetic fields on frequency and wave-number ranges, where bright and dark solitons can exist, are analysed. The investigation was carried out with the nonlinear Schrodinger equation. Results show that an increase of the electric field shifts the boundary between bright and dark solitons to long-wave region. An increase in magnetic field results in the opposite effect.
Diamagnetic Solar-Wind Cavity Discovered behind Moon.
Colburn, D S; Currie, R G; Mihalov, J D; Sonett, C P
1967-11-24
Preliminary Ames-magnetometer data from Explorer 35, the lunar orbiter, show no evidence of a lunar bow shock. However, an increase of the magnetic field by about 1.5 gamma (over the interplanetary value) is evident on Moon's dark side, as well as dips in field strength at the limbs. Interpretation of these spatial variations in the field as deriving from plasma diamagnetism is consistent with a plasma void on the dark side, and steady-state (B = 0) magnetic transparency of Moon.
Microscopy refocusing and dark-field imaging by using a simple LED array.
Zheng, Guoan; Kolner, Christopher; Yang, Changhuei
2011-10-15
The condenser is one of the main components in most transmitted light compound microscopes. In this Letter, we show that such a condenser can be replaced by a programmable LED array to achieve greater imaging flexibility and functionality. Without mechanically scanning the sample or changing the microscope setup, the proposed approach can be used for dark-field imaging, bright-field imaging, microscopy sectioning, and digital refocusing. Images of a starfish embryo were acquired by using such an approach for demonstration.
Cosmological tachyon condensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilic, Neven; Tupper, Gary B.; Viollier, Raoul D.
2009-07-15
We consider the prospects for dark matter/energy unification in k-essence type cosmologies. General mappings are established between the k-essence scalar field, the hydrodynamic and braneworld descriptions. We develop an extension of the general relativistic dust model that incorporates the effects of both pressure and the associated acoustic horizon. Applying this to a tachyon model, we show that this inhomogeneous 'variable Chaplygin gas' does evolve into a mixed system containing cold dark matter like gravitational condensate in significant quantities. Our methods can be applied to any dark energy model, as well as to mixtures of dark energy and traditional dark matter.
Singlet particles as cold dark matter in a noncommutative space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettefaghi, M. M.
2009-03-15
We extend the noncommutative (NC) standard model to incorporate singlet particles as cold dark matter. In the NC space-time, the singlet particles can be coupled to the U(1) gauge field in the adjoint representation. We study the relic density of the singlet particles due to the NC induced interaction. Demanding either the singlet fermion or the singlet scalar to serve as cold dark matter and the NC induced interactions to be relevant to the dark matter production, we obtain the corresponding relations between the NC scale and the dark matter masses, which are consistent with some existing bounds.
2018-01-01
All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity. PMID:29768011
Gao, Zhaoli; Xia, Han; Zauberman, Jonathan; Tomaiuolo, Maurizio; Ping, Jinglei; Zhang, Qicheng; Ducos, Pedro; Ye, Huacheng; Wang, Sheng; Yang, Xinping; Lubna, Fahmida; Luo, Zhengtang; Ren, Li; Johnson, Alan T Charlie
2018-06-13
All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity.
Huang, Yongyang; Badar, Mudabbir; Nitkowski, Arthur; Weinroth, Aaron; Tansu, Nelson; Zhou, Chao
2017-01-01
Space-division multiplexing optical coherence tomography (SDM-OCT) is a recently developed parallel OCT imaging method in order to achieve multi-fold speed improvement. However, the assembly of fiber optics components used in the first prototype system was labor-intensive and susceptible to errors. Here, we demonstrate a high-speed SDM-OCT system using an integrated photonic chip that can be reliably manufactured with high precisions and low per-unit cost. A three-layer cascade of 1 × 2 splitters was integrated in the photonic chip to split the incident light into 8 parallel imaging channels with ~3.7 mm optical delay in air between each channel. High-speed imaging (~1s/volume) of porcine eyes ex vivo and wide-field imaging (~18.0 × 14.3 mm2) of human fingers in vivo were demonstrated with the chip-based SDM-OCT system. PMID:28856055
NASA Astrophysics Data System (ADS)
Granero, Luis; Ferreira, Carlos; Zalevsky, Zeev; García, Javier; Micó, Vicente
2016-07-01
Single-Exposure Super-Resolved Interferometric Microscopy (SESRIM) reports on a way to achieve one-dimensional (1-D) superresolved imaging in digital holographic microscopy (DHM) by a single illumination shot and digital recording. SESRIM provides color-coded angular multiplexing of the accessible sample's range of spatial frequencies and it allows their recording in a single CCD (color or monochrome) snapshot by adding 3 RGB coherent reference beams at the output plane. In this manuscript, we extend the applicability of SESRIM to the field of digital in-line holographic microscopy (DIHM), that is, working without lenses. As consequence of the in-line configuration, an additional restriction concerning the object field of view (FOV) must be imposed to the technique. Experimental results are reported for both a synthetic object (USAF resolution test target) and a biological sample (swine sperm sample) validating this new kind of superresolution imaging method named as lensless SESRIM (L-SESRIM).
NASA Astrophysics Data System (ADS)
Jauzac, Mathilde; Harvey, David; Massey, Richard
2018-04-01
We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and VLT/MUSE spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z=0.397, M(R < 200 kpc)=1.6×1014M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.
NASA Astrophysics Data System (ADS)
Jauzac, Mathilde; Harvey, David; Massey, Richard
2018-07-01
We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and Very Large Telescope/Multi Unit Spectroscopic Explorer spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z = 0.397, M(R < 200 kpc) = 1.6 × 1014 M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar haloes are allowed, the model improves by 35 per cent. This technique may provide a new way to investigate the processes and time-scales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.
NASA Astrophysics Data System (ADS)
Chang, Cheng-Yi; Pan, Fu-Ming; Lin, Jian-Siang; Yu, Tung-Yuan; Li, Yi-Ming; Chen, Chieh-Yang
2016-12-01
We fabricated amorphous selenium (a-Se) photodetectors with a lateral metal-insulator-semiconductor-insulator-metal (MISIM) device structure. Thermal aluminum oxide, plasma-enhanced chemical vapor deposited silicon nitride, and thermal atomic layer deposited (ALD) aluminum oxide and hafnium oxide (ALD-HfO2) were used as the electron and hole blocking layers of the MISIM photodetectors for dark current suppression. A reduction in the dark current by three orders of magnitude can be achieved at electric fields between 10 and 30 V/μm. The effective dark current suppression is primarily ascribed to electric field lowering in the dielectric layers as a result of charge trapping in deep levels. Photogenerated carriers in the a-Se layer can be transported across the blocking layers to the Al electrodes via Fowler-Nordheim tunneling because a high electric field develops in the ultrathin dielectric layers under illumination. Since the a-Se MISIM photodetectors have a very low dark current without significant degradation in the photoresponse, the signal contrast is greatly improved. The MISIM photodetector with the ALD-HfO2 blocking layer has an optimal signal contrast more than 500 times the contrast of the photodetector without a blocking layer at 15 V/μm.
Condensate of massive graviton and dark matter
NASA Astrophysics Data System (ADS)
Aoki, Katsuki; Maeda, Kei-ichi
2018-02-01
We study coherently oscillating massive gravitons in the ghost-free bigravity theory. This coherent field can be interpreted as a condensate of the massive gravitons. We first define the effective energy-momentum tensor of the coherent massive gravitons in a curved spacetime. We then study the background dynamics of the Universe and the cosmic structure formation including the effects of the coherent massive gravitons. We find that the condensate of the massive graviton behaves as a dark matter component of the Universe. From the geometrical point of view the condensate is regarded as a spacetime anisotropy. Hence, in our scenario, dark matter is originated from the tiny deformation of the spacetime. We also discuss a production of the spacetime anisotropy and find that the extragalactic magnetic field of a primordial origin can yield a sufficient amount for dark matter.
Multiple kinetic k-essence, phantom barrier crossing and stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sur, Sourav; Das, Saurya, E-mail: sourav.sur@uleth.ca
We investigate models of dark energy with purely kinetic multiple k-essence sources that allow for the crossing of the phantom divide line, without violating the conditions of stability. It is known that with more than one kinetic k-field one can possibly construct dark energy models whose equation of state parameter w{sub X} crosses -1 (the phantom barrier) at recent red-shifts, as indicated by the Supernova Ia and other observational probes. However, such models may suffer from cosmological instabilities, as the effective speed of propagation c{sub X} of the dark energy density perturbations may become imaginary while the w{sub X} =more » -1 barrier is crossed. Working out the expression for c{sub X} we show that multiple kinetic k-essence fields do indeed lead to a w{sub X} = -1 crossing dark energy model, satisfying the stability criterion c{sub X}{sup 2} {>=} 0 as well as the condition c{sub X} {<=} 1 (in natural units), which implies that the dark energy is not super-luminal. As a specific example, we construct a phantom barrier crossing model involving three k-fields for which c{sub X} is a constant, lying between 0 and 1. The model fits well with the latest Supernova Ia Union data, and the best fit shows that w{sub X} crosses -1 at red-shift z {approx} 0.2, whereas the dark energy density nearly tracks the matter density at higher red-shifts.« less
Cosmological bounds on non-Abelian dark forces
NASA Astrophysics Data System (ADS)
Forestell, Lindsay; Morrissey, David E.; Sigurdson, Kris
2018-04-01
Non-Abelian dark gauge forces that do not couple directly to ordinary matter may be realized in nature. The minimal form of such a dark force is a pure Yang-Mills theory. If the dark sector is reheated in the early Universe, it will be realized as a set of dark gluons at high temperatures and as a collection of dark glueballs at lower temperatures, with a cosmological phase transition from one form to the other. Despite being dark, the gauge fields of the new force can connect indirectly to the standard model through nonrenormalizable operators. These operators will transfer energy between the dark and visible sectors, and they allow some or all of the dark glueballs to decay. In this work we investigate the cosmological evolution and decays of dark glueballs in the presence of connector operators to the standard model. Dark glueball decays can modify cosmological and astrophysical observables, and we use these considerations to put very strong limits on the existence of pure non-Abelian dark forces. On the other hand, if one or more of the dark glueballs are stable, we find that they can potentially make up the dark matter of the Universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilic, Neven
We discuss thermodynamic properties of dark energy using the formalism of field theory at finite temperature. In particular, we apply our formalism to a purely kinetic type of k-essence. We show quite generally that the entropy associated with dark energy is always equal or greater than zero. Hence, contrary to often stated claims, a violation of the null energy condition (phantom dark energy) does not necessarily yield a negative entropy. In addition, we find that the thermal fluctuations of a k-essence field may be represented by a free boson gas with an effective number of degrees of freedom equal tomore » c{sub s}{sup -3}.« less
Simplified models vs. effective field theory approaches in dark matter searches
NASA Astrophysics Data System (ADS)
De Simone, Andrea; Jacques, Thomas
2016-07-01
In this review we discuss and compare the usage of simplified models and Effective Field Theory (EFT) approaches in dark matter searches. We provide a state of the art description on the subject of EFTs and simplified models, especially in the context of collider searches for dark matter, but also with implications for direct and indirect detection searches, with the aim of constituting a common language for future comparisons between different strategies. The material is presented in a form that is as self-contained as possible, so that it may serve as an introductory review for the newcomer as well as a reference guide for the practitioner.
NASA Astrophysics Data System (ADS)
Levene, Michael John
In all attempts to emulate the considerable powers of the brain, one is struck by both its immense size, parallelism, and complexity. While the fields of neural networks, artificial intelligence, and neuromorphic engineering have all attempted oversimplifications on the considerable complexity, all three can benefit from the inherent scalability and parallelism of optics. This thesis looks at specific aspects of three modes in which optics, and particularly volume holography, can play a part in neural computation. First, holography serves as the basis of highly-parallel correlators, which are the foundation of optical neural networks. The huge input capability of optical neural networks make them most useful for image processing and image recognition and tracking. These tasks benefit from the shift invariance of optical correlators. In this thesis, I analyze the capacity of correlators, and then present several techniques for controlling the amount of shift invariance. Of particular interest is the Fresnel correlator, in which the hologram is displaced from the Fourier plane. In this case, the amount of shift invariance is limited not just by the thickness of the hologram, but by the distance of the hologram from the Fourier plane. Second, volume holography can provide the huge storage capacity and high speed, parallel read-out necessary to support large artificial intelligence systems. However, previous methods for storing data in volume holograms have relied on awkward beam-steering or on as-yet non- existent cheap, wide-bandwidth, tunable laser sources. This thesis presents a new technique, shift multiplexing, which is capable of very high densities, but which has the advantage of a very simple implementation. In shift multiplexing, the reference wave consists of a focused spot a few millimeters in front of the hologram. Multiplexing is achieved by simply translating the hologram a few tens of microns or less. This thesis describes the theory for how shift multiplexing works based on an unconventional, but very intuitive, analysis of the optical far-field. A more detailed analysis based on a path-integral interpretation of the Born approximation is also derived. The capacity of shift multiplexing is compared with that of angle and wavelength multiplexing. The last part of this thesis deals with the role of optics in neuromorphic engineering. Up until now, most neuromorphic engineering has involved one or a few VLSI circuits emulating early sensory systems. However, optical interconnects will be required in order to push towards more ambitious goals, such as the simulation of early visual cortex. I describe a preliminary approach to designing such a system, and show how shift multiplexing can be used to simultaneously store and implement the immense interconnections required by such a project.
Efficient Multiplexer FPGA Block Structures Based on G4FETs
NASA Technical Reports Server (NTRS)
Vatan, Farrokh; Fijany, Amir
2009-01-01
Generic structures have been conceived for multiplexer blocks to be implemented in field-programmable gate arrays (FPGAs) based on four-gate field-effect transistors (G(sup 4)FETs). This concept is a contribution to the continuing development of digital logic circuits based on G4FETs and serves as a further demonstration that logic circuits based on G(sup 4)FETs could be more efficient (in the sense that they could contain fewer transistors), relative to functionally equivalent logic circuits based on conventional transistors. Results in this line of development at earlier stages were summarized in two previous NASA Tech Briefs articles: "G(sup 4)FETs as Universal and Programmable Logic Gates" (NPO-41698), Vol. 31, No. 7 (July 2007), page 44, and "Efficient G4FET-Based Logic Circuits" (NPO-44407), Vol. 32, No. 1 ( January 2008), page 38 . As described in the first-mentioned previous article, a G4FET can be made to function as a three-input NOT-majority gate, which has been shown to be a universal and programmable logic gate. The universality and programmability could be exploited to design logic circuits containing fewer components than are required for conventional transistor-based circuits performing the same logic functions. The second-mentioned previous article reported results of a comparative study of NOT-majority-gate (G(sup 4)FET)-based logic-circuit designs and equivalent NOR- and NAND-gate-based designs utilizing conventional transistors. [NOT gates (inverters) were also included, as needed, in both the G(sup 4)FET- and the NOR- and NAND-based designs.] In most of the cases studied, fewer logic gates (and, hence, fewer transistors), were required in the G(sup 4)FET-based designs. There are two popular categories of FPGA block structures or architectures: one based on multiplexers, the other based on lookup tables. In standard multiplexer- based architectures, the basic building block is a tree-like configuration of multiplexers, with possibly a few additional logic gates such as ANDs or ORs. Interconnections are realized by means of programmable switches that may connect the input terminals of a block to output terminals of other blocks, may bridge together some of the inputs, or may connect some of the input terminals to signal sources representing constant logical levels 0 or 1. The left part of the figure depicts a four-to-one G(sup 4)FET-based multiplexer tree; the right part of the figure depicts a functionally equivalent four-to-one multiplexer based on conventional transistors. The G(sup 4)FET version would contains 54 transistors; the conventional version contains 70 transistors.
Polarimetry and spectroscopy of a simple sunspot. I - On the magnetic field of a sunspot penumbra
NASA Technical Reports Server (NTRS)
Schmidt, W.; Hofmann, A.; Balthasar, H.; Tarbell, T. D.; Frank, Z. A.
1992-01-01
We investigate the magnetic field structure of a medium sized sunspot using high resolution magnetograms and spectrograms and derive a relationship between the brightness of penumbral structures and the inclination of the magnetic field. The field inclination to the spot normal is larger in the dark structures than in the bright ones. We show that the field strength does not vary between dark and bright structures. At the inner penumbral boundary the field strength is 2000 Gauss and about 1000 Gauss at the outer penumbral edge. The line-of sight component of the material flow decreases rapidly within one arcsecond at the photospheric boundary of the spot.
NASA Astrophysics Data System (ADS)
Yuan, Yu-Qiang; Tian, Bo; Liu, Lei; Chai, Han-Peng
2017-11-01
In this paper, we investigate the coupled cubic-quintic nonlinear Schrödinger equations, which can describe the effects of quintic nonlinearity on the ultrashort optical soliton pulse propagation in a twin-core nonlinear optical fiber. Through the Kadomtsev-Petviashvili hierarchy reduction, we present the bright-dark and dark-dark soliton solutions in terms of the Grammian for such equations. With the help of analytic and graphic analysis, head-on and overtaking elastic interactions between the two solitons are presented, as well as the bound-state solitons. Particularly, we find the inelastic interaction between the bright-dark two solitons. One of the electromagnetic fields presents the V-shape profile, while the other one presents the Y-shape profile.
Dark Radiation predictions from general Large Volume Scenarios
NASA Astrophysics Data System (ADS)
Hebecker, Arthur; Mangat, Patrick; Rompineve, Fabrizio; Witkowski, Lukas T.
2014-09-01
Recent observations constrain the amount of Dark Radiation (Δ N eff ) and may even hint towards a non-zero value of Δ N eff . It is by now well-known that this puts stringent constraints on the sequestered Large Volume Scenario (LVS), i.e. on LVS realisations with the Standard Model at a singularity. We go beyond this setting by considering LVS models where SM fields are realised on 7-branes in the geometric regime. As we argue, this naturally goes together with high-scale supersymmetry. The abundance of Dark Radiation is determined by the competition between the decay of the lightest modulus to axions, to the SM Higgs and to gauge fields, and leads to strict constraints on these models. Nevertheless, these constructions can in principle meet current DR bounds due to decays into gauge bosons alone. Further, a rather robust prediction for a substantial amount of Dark Radiation can be made. This applies both to cases where the SM 4-cycles are stabilised by D-terms and are small `by accident', i.e. tuning, as well as to fibred models with the small cycles stabilised by loops. In these constructions the DR axion and the QCD axion are the same field and we require a tuning of the initial misalignment to avoid Dark Matter overproduction. Furthermore, we analyse a closely related setting where the SM lives at a singularity but couples to the volume modulus through flavour branes. We conclude that some of the most natural LVS settings with natural values of model parameters lead to Dark Radiation predictions just below the present observational limits. Barring a discovery, rather modest improvements of present Dark Radiation bounds can rule out many of these most simple and generic variants of the LVS.
Lu, Chen D; Lee, ByungKun; Schottenhamml, Julia; Maier, Andreas; Pugh, Edward N; Fujimoto, James G
2017-09-01
To examine outer retinal band changes after flash stimulus and subsequent dark adaptation with ultrahigh-resolution optical coherence tomography (UHR-OCT). Five dark-adapted left eyes of five normal subjects were imaged with 3-μm axial-resolution UHR-OCT during 30 minutes of dark adaptation following 96%, 54%, 23%, and 0% full-field and 54% half-field rhodopsin bleach. We identified the ellipsoid zone inner segment/outer segment (EZ[IS/OS]), cone interdigitation zone (CIZ), rod interdigitation zone (RIZ), retinal pigment epithelium (RPE), and Bruch's membrane (BM) axial positions and generated two-dimensional thickness maps of the EZ(IS/OS) to the four bands. The average thickness over an area of the thickness map was compared against that of the dark-adapted baselines. The time-dependent thickness changes (photoresponses) were statistically compared against 0% bleach. Dark adaptometry was performed with the same bleaching protocol. The EZ(IS/OS)-CIZ photoresponse was significantly different at 96% (P < 0.0001) and 54% (P = 0.006) bleach. At all three bleaching levels, the EZ(IS/OS)-RIZ, -RPE, and -BM responses were significantly different (P < 0.0001). The EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ time courses were similar to the recovery of rod- and cone-mediated sensitivity, respectively, measured with dark adaptometry. The maximal EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ response magnitudes doubled from 54% to 96% bleach. Both EZ(IS/OS)-RPE and EZ(IS/OS)-BM responses resembled dampened oscillations that were graded in amplitude and duration with bleaching intensity. Half-field photoresponses were localized to the stimulated retina. With noninvasive, near-infrared UHR-OCT, we characterized three distinct, spatially localized photoresponses in the outer retinal bands. These photoresponses have potential value as physical correlates of photoreceptor function.
Fischer, Andreas; Kupsch, Christian; Gürtler, Johannes; Czarske, Jürgen
2015-09-21
Non-intrusive fast 3d measurements of volumetric velocity fields are necessary for understanding complex flows. Using high-speed cameras and spectroscopic measurement principles, where the Doppler frequency of scattered light is evaluated within the illuminated plane, each pixel allows one measurement and, thus, planar measurements with high data rates are possible. While scanning is one standard technique to add the third dimension, the volumetric data is not acquired simultaneously. In order to overcome this drawback, a high-speed light field camera is proposed for obtaining volumetric data with each single frame. The high-speed light field camera approach is applied to a Doppler global velocimeter with sinusoidal laser frequency modulation. As a result, a frequency multiplexing technique is required in addition to the plenoptic refocusing for eliminating the crosstalk between the measurement planes. However, the plenoptic refocusing is still necessary in order to achieve a large refocusing range for a high numerical aperture that minimizes the measurement uncertainty. Finally, two spatially separated measurement planes with 25×25 pixels each are simultaneously acquired with a measurement rate of 0.5 kHz with a single high-speed camera.
Three-wavelength multiplexer/demultiplexer based on photonic crystal ring resonator and cavities
NASA Astrophysics Data System (ADS)
Zhang, Jia; Xu, Xu-Ming; He, Ling-Juan
2011-12-01
We proposed a three-wavelength multiplexer/demultiplexer based on the characteristics of resonant coupling between photonic crystal ring resonator (PCRR) and cavity. The structure composed of one PCRR and three cavities. The numerical results obtained by the finite-different time-domain (FTDT) method show that it can realize the demultiplexing of three wavelengths, i.e. 1430nm, 1490nm and 1550nm only by modulating the radius of the cavities. The designed device not only has a compact size with 12μm×11μm but also a high efficiency, may have potential applications in the integrated optics fields.
Tanaka, Akihiro; Fujiwara, Mikio; Nam, Sae W; Nambu, Yoshihiro; Takahashi, Seigo; Maeda, Wakako; Yoshino, Ken-ichiro; Miki, Shigehito; Baek, Burm; Wang, Zhen; Tajima, Akio; Sasaki, Masahide; Tomita, Akihisa
2008-07-21
We demonstrated ultra fast BB84 quantum key distribution (QKD) transmission at 625 MHz clock rate through a 97 km field-installed fiber using practical clock synchronization based on wavelength-division multiplexing (WDM). We succeeded in over-one-hour stable key generation at a high sifted key rate of 2.4 kbps and a low quantum bit error rate (QBER) of 2.9%. The asymptotic secure key rate was estimated to be 0.78- 0.82 kbps from the transmission data with the decoy method of average photon numbers 0, 0.15, and 0.4 photons/pulse.
High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy
NASA Astrophysics Data System (ADS)
Mikami, Hideharu; Harmon, Jeffrey; Ozeki, Yasuyuki; Goda, Keisuke
2017-04-01
We present methods of fluorescence confocal microscopy that enable unprecedentedly high frame rate of > 10,000 fps. The methods are based on a frequency-division multiplexing technique, which was originally developed in the field of communication engineering. Specifically, we achieved a broad bandwidth ( 400 MHz) of detection signals using a dual- AOD method and overcame limitations in frame rate, due to a scanning device, by using a multi-line focusing method, resulting in a significant increase in frame rate. The methods have potential biomedical applications such as observation of sub-millisecond dynamics in biological tissues, in-vivo three-dimensional imaging, and fluorescence imaging flow cytometry.
Modified relativistic dynamics
NASA Astrophysics Data System (ADS)
Qadir, Asghar; Lee, Hyung Won; Kim, Kyoung Yee
One of the major problems in Cosmology is the fact that there is no good candidate of dark matter in the Standard Model of Particle Physics or any experimentally supported modifications of it. At the same time, one of the major problems of General Relativity is that it cannot be unified with Quantum Theory. Here, we present a program to see if there is not a common source of both problems. The idea is that an interaction term between matter fields and the gravitational field in the total Lagrangian, analogous to that for Electromagnetism, could possibly provide the dynamical effect for which the dark matter is postulated, on the one hand and a Quantum-Field Theory (QFT) incorporating Gravity, that does not have unmanageable divergences, on the other. One could first check that the modified relativistic dynamics, if fitted for the dark matter in individual galaxies fits also for systems and clusters of galaxies, at all scales. If there is no problem with the explanation of the dynamics usually explained by dark matter at all scales, we could check if it leads to a workable QFT of Relativity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.
2004-11-04
A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope willmore » be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.« less
Heredia, Luis; Torrente, Margarita; Colomina, María T; Domingo, José L
2014-01-01
In order to assess anxiety in mammals various tests and species are currently available. These current assays measure changes in anxiety-like behaviors. The open-field and the light/dark are anxiety tests based on the spontaneous behavior of the animals, with C57BL/6J mice being a frequently used strain in behavioral studies. However, the suitability of this strain as a choice in anxiety studies has been questioned. In this study, we performed two pharmacological characterizations of this strain in both the open-field and the light/dark tests. We examined the changes in the anxiety-like behaviors of C57BL/6J mice exposed to chlordiazepoxide (CDP), an anxiolytic drug, at doses of 5 and 10 mg/kg, picrotoxine (PTX), an anxiogenic drug, at doses of 0.5 and 1 mg/kg, and methylphenidate (MPH), a psychomotor stimulant drug, at doses of 5 and 10 mg/kg, in a first experiment. In a second experiment, we tested CDP at 2.5 mg/kg, PTX at 2 mg/kg and MPH at 2.5 mg/kg. Results showed an absence of anxiolytic-like effects of CDP in open-field and light/dark tests. Light/dark test was more sensitive to the anxiogenic effects of PTX than the open-field test. Finally, a clear anxiogenic effect of MPH was observed in the two tests. Although C57BL/6J mice could not be a sensitive model to study anxiolytic effects in pharmacological or behavioral interventions, it might be a suitable model to test anxiogenic effects. Further studies are necessary to corroborate these results. Copyright © 2013 Elsevier Inc. All rights reserved.
Alternative to particle dark matter
NASA Astrophysics Data System (ADS)
Khoury, Justin
2015-01-01
We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem on nonlinear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an inverse-square law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.
Analytic study of the effect of dark energy-dark matter interaction on the growth of structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcondes, Rafael J.F.; Landim, Ricardo C.G.; Costa, André A.
2016-12-01
Large-scale structure has been shown as a promising cosmic probe for distinguishing and constraining dark energy models. Using the growth index parametrization, we obtain an analytic formula for the growth rate of structures in a coupled dark energy model in which the exchange of energy-momentum is proportional to the dark energy density. We find that the evolution of f σ{sub 8} can be determined analytically once we know the coupling, the dark energy equation of state, the present value of the dark energy density parameter and the current mean amplitude of dark matter fluctuations. After correcting the growth function formore » the correspondence with the velocity field through the continuity equation in the interacting model, we use our analytic result to compare the model's predictions with large-scale structure observations.« less
NASA Astrophysics Data System (ADS)
Linder, Eric V.
2006-08-01
Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or "reasonable" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of ≲2% of total energy density at z ≫ 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5% of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently σ8, and the shape and evolution of the nonlinear mass power spectrum for z < 2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z = 0-1100.
Characterization of gigahertz (GHz) bandwidth photomultipliers
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Rowe, H. E.
1977-01-01
The average impulse response, root-mean-square times jitter as a function of signal level, single photoelectron distribution, and multiphotoelectron dark-count distribution have been measured for two static crossed-field and five electrostatic photomultipliers. The optical signal source for the first three of these tests was a 30 picosecond mode-locked laser pulse at 0.53 micron. The static crossed-field detectors had 2-photoelectron resolution, less than 200 ps rise times, and rms time jitters of 30 ps at the single photoelectron level. The electrostatic photomultipliers had rise times from 1 to 2.5 nanoseconds, and rms time jitters from 160 to 650 ps at the same signal level. The two static crossed-field photomultipliers had ion-feedback-generated dark pulses to the 50-photoelectron level, whereas one electrostatic photomultiplier had dark pulses to the 30-photoelectron level.
Noda, Naoki; Kamimura, Shinji
2008-02-01
With conventional light microscopy, precision in the measurement of the displacement of a specimen depends on the signal-to-noise ratio when we measure the light intensity of magnified images. This implies that, for the improvement of precision, getting brighter images and reducing background light noise are both inevitably required. For this purpose, we developed a new optics for laser dark-field illumination. For the microscopy, we used a laser beam and a pair of axicons (conical lenses) to get an optimal condition for dark-field observations. The optics was applied to measuring two dimensional microbead displacements with subnanometer precision. The bandwidth of our detection system overall was 10 kHz. Over most of this bandwidth, the observed noise level was as small as 0.1 nm/radicalHz.
The general form of the coupled Horndeski Lagrangian that allows cosmological scaling solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomes, Adalto R.; Amendola, Luca, E-mail: argomes.ufma@gmail.com, E-mail: l.amendola@thphys.uni-heidelberg.de
We consider the general scalar field Horndeski Lagrangian coupled to dark matter. Within this class of models, we present two results that are independent of the particular form of the model. First, we show that in a Friedmann-Robertson-Walker metric the Horndeski Lagrangian coincides with the pressure of the scalar field. Second, we employ the previous result to identify the most general form of the Lagrangian that allows for cosmological scaling solutions, i.e. solutions where the ratio of dark matter to field density and the equation of state remain constant. Scaling solutions of this kind may help solving the coincidence problemmore » since in this case the presently observed ratio of matter to dark energy does not depend on initial conditions, but rather on the theoretical parameters.« less
Brault, Aaron C.; Fang, Ying; Reisen, William K.
2015-01-01
Following the introduction of West Nile virus into California during the summer of 2003, public health and vector control programs expanded surveillance efforts and were in need of diagnostics capable of rapid, sensitive, and specific detection of arbovirus infections of mosquitoes to inform decision support for intervention. Development of a multiplex TaqMan or real-time semiquantitative reverse transcription polymerase chain reaction (RT-PCR) assay in which three virus specific primer–probe sets were used in the same reaction is described herein for the detection of western equine encephalomyelitis, St. Louis encephalitis and West Nile viral RNA. Laboratory validation and field data from 10 transmission seasons are reported. The comparative sensitivity and specificity of this multiplex assay to singleplex RT-PCR as well as an antigen detection (rapid analyte measurement platform) and standard plaque assays indicate this assay to be rapid and useful in providing mosquito infection data to estimate outbreak risk. PMID:26334826
Development of a unit cell for a Ge:Ga detector array
NASA Technical Reports Server (NTRS)
1988-01-01
Two modules of gallium-doped germanium (Ge:Ga) infrared detectors with integrated multiplexing readouts and supporting drive electronics were designed and tested. This development investigated the feasibility of producing two-dimensional Ge:Ga arrays by stacking linear modules in a housing capable of providing uniaxial stress for enhanced long-wavelength response. Each module includes 8 detectors (1x1x2 mm) mounted to a sapphire board. The element spacing is 12 microns. The back faces of the detector elements are beveled with an 18 deg angle, which was proved to significantly enhance optical absorption. Each module includes a different silicon metal-oxide semiconductor field effect transistor (MOSFET) readout. The first circuit was built from discrete MOSFET components; the second incorporated devices taken from low-temperature integrated circuit multiplexers. The latter circuit exhibited much lower stray capacitance and improved stability. Using these switched-FET circuits, it was demonstrated that burst readout, with multiplexer active only during the readout period, could successfully be implemented at approximately 3.5 K.
NASA Astrophysics Data System (ADS)
Yin, Stuart (Shizhuo); Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Dubinskiy, Mark; Hoffman, Robert C.
2017-08-01
In this paper, we present a novel large capacity (a 1000+ channel) time division multiplexing (TDM) laser beam combining technique by harnessing a state-of-the-art nanosecond speed potassium tantalate niobate (KTN) electro-optic (EO) beam deflector as the time division multiplexer. The major advantages of TDM approach are: (1) large multiplexing capability (over 1000 channels), (2) high spatial beam quality (the combined beam has the same spatial profile as the individual beam), (3) high spectral beam quality (the combined beam has the same spectral width as the individual beam, and (4) insensitive to the phase fluctuation of individual laser because of the nature of the incoherent beam combining. The quantitative analyses show that it is possible to achieve over one hundred kW average power, single aperture, single transverse mode solid state and/or fiber laser by pursuing this innovative beam combining method, which represents a major technical advance in the field of high energy lasers. Such kind of 100+ kW average power diffraction limited beam quality lasers can play an important role in a variety of applications such as laser directed energy weapons (DEW) and large-capacity high-speed laser manufacturing, including cutting, welding, and printing.
Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors
NASA Astrophysics Data System (ADS)
Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.
2016-07-01
Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.
Identification of spider-mite species and their endosymbionts using multiplex PCR.
Zélé, Flore; Weill, Mylène; Magalhães, Sara
2018-02-01
Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.
Hidden SU ( N ) glueball dark matter
Soni, Amarjit; Zhang, Yue
2016-06-21
Here we investigate the possibility that the dark matter candidate is from a pure non-abelian gauge theory of the hidden sector, motivated in large part by its elegance and simplicity. The dark matter is the lightest bound state made of the confined gauge fields, the hidden glueball. We point out this simple setup is capable of providing rich and novel phenomena in the dark sector, especially in the parameter space of large N. They include self-interacting and warm dark matter scenarios, Bose-Einstein condensation leading to massive dark stars possibly millions of times heavier than our sun giving rise to gravitationalmore » lensing effects, and indirect detections through higher dimensional operators as well as interesting collider signatures.« less
On Detailed Contrast of Biomedical Object in X-ray Dark-Field Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimao, Daisuke; Mori, Koichi; Sugiyama, Hiroshi
2007-01-19
Over the past 10 years, refraction-based X-ray imaging has been studied together with a perspective view to clinical application. X-ray Dark-Field Imaging that utilizes a Laue geometry analyzer has recently been proposed and has the proven ability to depict articular cartilage in an intact human finger. In the current study, we researched detailed image contrast using X-ray Dark-Field Imaging by observing the edge contrast of an acrylic rod as a simple case, and found differences in image contrast between the right and left edges of the rod. This effect could cause undesirable contrast in the thin articular cartilage on themore » head of the phalanx. To avoid overlapping with this contrast at the articular cartilage, which would lead to a wrong diagnosis, we suggest that a joint surface on which articular cartilage is located should be aligned in the same sense as the scattering vector of the Laue case analyzer crystal. Defects of articular cartilage were successfully detected under this condition. When utilized under appropriate imaging conditions, X-ray Dark-Field Imaging will be a powerful tool for the diagnosis of arthropathy, as minute changes in articular cartilage may be early-stage features of this disease.« less
NASA Astrophysics Data System (ADS)
Chang, Y.-Y.; Cornell, B.; Aralis, T.; Bumble, B.; Golwala, S. R.
2018-04-01
We present a status update on the development of a phonon-mediated particle detector using kinetic inductance detector (KID). The design is intended for O(1) kg substrate, using O(102) KIDs on a single readout line, to image the athermal phonon distribution at < 1 mm position resolution and O(10) eV energy resolution. The design specification is set by the need to improve position reconstruction fidelity while maintaining low energy threshold for future rare-event searches such as for low-mass dark matter. We report on the design, which shows negligible crosstalk and > 95% inductor current uniformity, using the coplanar waveguide feedline, ground shield, and a new class of KIDs with symmetric coplanar stripline (sCPS) inductor. The multiplexing is designed upon the frequency-geometry relation we develop for the sCPS KIDs. We introduce the fabrications of the Nb RF assessment prototypes and the high phonon collection efficiency Al-Nb devices. We achieve ≲ 0.07% frequency displacement on a 80-KID RF assessment prototype, and the result indicates that we may place more than 180 resonances in our 0.4 GHz readout band with minimal frequency misordering. The coupling quality factors are ˜ 105 as designed. Finally, we update our work in progress in fabricating the O(102) KID, bi-material, O(1) kg detectors, and the expected position and energy resolutions.
Metaoptics for Spectral and Spatial Beam Manipulation
NASA Astrophysics Data System (ADS)
Raghu Srimathi, Indumathi
Laser beam combining and beam shaping are two important areas with applications in optical communications, high power lasers, and atmospheric propagation studies. In this dissertation, metaoptical elements have been developed for spectral and spatial beam shaping, and multiplexing. Beams carrying orbital angular momentum (OAM), referred to as optical vortices, have unique propagation properties. Optical vortex beams carrying different topological charges are orthogonal to each other and have low inter-modal crosstalk which allows for them to be (de)multiplexed. Efficient spatial (de)multiplexing of these beams have been carried out by using diffractive optical geometrical coordinate transformation elements. The spatial beam combining technique shown here is advantageous because the efficiency of the system is not dependent on the number of OAM states being combined. The system is capable of generating coaxially propagating beams in the far-field and the beams generated can either be incoherently or coherently multiplexed with applications in power scaling and dynamic intensity profile manipulations. Spectral beam combining can also be achieved with the coordinate transformation elements. The different wavelengths emitted by fiber sources can be spatially overlapped in the far-field plane and the generated beams are Bessel-Gauss in nature with enhanced depth of focus properties. Unique system responses and beam shapes in the far-field can be realized by controlling amplitude, phase, and polarization at the micro-scale. This has been achieved by spatially varying the structural parameters at the subwavelength scale and is analogous to local modification of material properties. With advancements in fabrication technology, it is possible to control not just the lithographic process, but also the deposition process. In this work, a unique combination of spatial structure variations in conjunction with the conformal coating properties of an atomic layer deposition tool has been utilized to create metal-oxide nano-hair structures that are compatible with high power laser systems. These devices are multifunctional--acting as resonant structures for one wavelength regime and as effective index structures in a different wavelength regime. Discrete and continuous phase functions have been realized with this controlled fabrication process. The design, simulation, fabrication and experimental characterization of these optical elements are presented.
Dark matter as a ghost free conformal extension of Einstein theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barvinsky, A.O., E-mail: barvin@td.lpi.ru
We discuss ghost free models of the recently suggested mimetic dark matter theory. This theory is shown to be a conformal extension of Einstein general relativity. Dark matter originates from gauging out its local Weyl invariance as an extra degree of freedom which describes a potential flow of the pressureless perfect fluid. For a positive energy density of this fluid the theory is free of ghost instabilities, which gives strong preference to stable configurations with a positive scalar curvature and trace of the matter stress tensor. Instabilities caused by caustics of the geodesic flow, inherent in this model, serve asmore » a motivation for an alternative conformal extension of Einstein theory, based on the generalized Proca vector field. A potential part of this field modifies the inflationary stage in cosmology, whereas its rotational part at the post inflationary epoch might simulate rotating flows of dark matter.« less
Tachyon cosmology with non-vanishing minimum potential: a unified model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huiquan, E-mail: hqli@ustc.edu.cn
2012-07-01
We investigate the tachyon condensation process in the effective theory with non-vanishing minimum potential and its implications to cosmology. It is shown that the tachyon condensation on an unstable three-brane described by this modified tachyon field theory leads to lower-dimensional branes (defects) forming within a stable three-brane. Thus, in the cosmological background, we can get well-behaved tachyon matter after tachyon inflation, (partially) avoiding difficulties encountered in the original tachyon cosmological models. This feature also implies that the tachyon inflated and reheated universe is followed by a Chaplygin gas dark matter and dark energy universe. Hence, such an unstable three-brane behavesmore » quite like our universe, reproducing the key features of the whole evolutionary history of the universe and providing a unified description of inflaton, dark matter and dark energy in a very simple single-scalar field model.« less
Broadband and Resonant Approaches to Axion Dark Matter Detection.
Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse
2016-09-30
When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6} eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.
MeV dark matter complementarity and the dark photon portal
NASA Astrophysics Data System (ADS)
Dutra, Maíra; Lindner, Manfred; Profumo, Stefano; Queiroz, Farinaldo S.; Rodejohann, Werner; Siqueira, Clarissa
2018-03-01
We discuss the phenomenology of an MeV-scale Dirac fermion coupled to the Standard Model through a dark photon with kinetic mixing with the electromagnetic field. We compute the dark matter relic density and explore the interplay of direct detection and accelerator searches for dark photons. We show that precise measurements of the temperature and polarization power spectra of the Cosmic Microwave Background Radiation lead to stringent constraints, leaving a small window for the thermal production of this MeV dark matter candidate. The forthcoming MeV gamma-ray telescope e-ASTROGAM will offer important and complementary opportunities to discover dark matter particles with masses below ~ 10 MeV . Lastly, we discuss how a late-time inflation episode and freeze-in production could conspire to yield the correct relic density while being consistent with existing and future constraints.
Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate
NASA Astrophysics Data System (ADS)
Aoki, Hajime; Iso, Satoshi; Lee, Da-Shin; Sekino, Yasuhiro; Yeh, Chen-Pin
2018-02-01
We consider an open universe created by bubble nucleation, and study possible effects of our "ancestor vacuum," a de Sitter space in which bubble nucleation occurred, on the present universe. We compute vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly, and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy equation of state w (z ) as a function of the redshift.
Effects of primordial magnetic field on the formation rate of dark matter halos
NASA Astrophysics Data System (ADS)
Cheera, Varalakshmi; Nigam, Rahul
2018-05-01
We construct and demonstrate a method for computing the formation rate of the dark matter halo in the hierarchical model set up. This method uses the Press-Schecter distribution for the halos and hence applies only to the spherical halos. But this can be generalized to ellipsoidal structures also if one uses the Sheth-Torman distribution. After obtaining the formation rate, we study the effect of primordial magnetic field on the dynamics of these halos. We investigate the effect for different field strengths and conclude that a magnetic field stronger than 10 nG would impact the halos larger than 108 solar masses while a weaker field affects the formation rate of smaller halos.
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Chekhovsky, V.; Dvornikov, O.; Dydyshka, Y.; Emeliantchik, I.; Litomin, A.; Makarenko, V.; Mossolov, V.; Stefanovitch, R.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohamed, A.; Mohamed, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Gasparini, U.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; SavoyNavarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Alexakhin, V.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chadeeva, M.; Markin, O.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Sandoval Gonzalez, I. D.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Kenny, R. P.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2017-03-01
A search for dark matter and unparticle production at the LHC has been performed using events containing two charged leptons (electrons or muons), consistent with the decay of a Z boson, and large missing transverse momentum. This study is based on data collected with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 fb-1 of proton-proton collisions at the LHC, at a center-of-mass energy of 13 TeV. No excess over the standard model expectation is observed. Compared to previous searches in this topology, which exclusively relied on effective field theories, the results are interpreted in terms of a simplified model of dark matter production for both vector and axial vector couplings between a mediator and dark matter particles. The first study of this class of models using CMS data at √{s}=13 TeV is presented. Additionally, effective field theories of dark matter and unparticle production are used to interpret the data. [Figure not available: see fulltext.
Spin precession experiments for light axionic dark matter
NASA Astrophysics Data System (ADS)
Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.; Trahms, Lutz; Wilkason, Thomas
2018-03-01
Axionlike particles are promising candidates to make up the dark matter of the Universe, but it is challenging to design experiments that can detect them over their entire allowed mass range. Dark matter in general, and, in particular, axionlike particles and hidden photons, can be as light as roughly 10-22 eV (˜10-8 Hz ), with astrophysical anomalies providing motivation for the lightest masses ("fuzzy dark matter"). We propose experimental techniques for direct detection of axionlike dark matter in the mass range from roughly 10-13 eV (˜102 Hz ) down to the lowest possible masses. In this range, these axionlike particles act as a time-oscillating magnetic field coupling only to spin, inducing effects such as a time-oscillating torque and periodic variations in the spin-precession frequency with the frequency and direction of these effects set by the axion field. We describe how these signals can be measured using existing experimental technology, including torsion pendulums, atomic magnetometers, and atom interferometry. These experiments demonstrate a strong discovery capability, with future iterations of these experiments capable of pushing several orders of magnitude past current astrophysical bounds.
QCD nature of dark energy at finite temperature: Cosmological implications
NASA Astrophysics Data System (ADS)
Azizi, K.; Katırcı, N.
2016-05-01
The Veneziano ghost field has been proposed as an alternative source of dark energy, whose energy density is consistent with the cosmological observations. In this model, the energy density of the QCD ghost field is expressed in terms of QCD degrees of freedom at zero temperature. We extend this model to finite temperature to search the model predictions from late time to early universe. We depict the variations of QCD parameters entering the calculations, dark energy density, equation of state, Hubble and deceleration parameters on temperature from zero to a critical temperature. We compare our results with the observations and theoretical predictions existing at different eras. It is found that this model safely defines the universe from quark condensation up to now and its predictions are not in tension with those of the standard cosmology. The EoS parameter of dark energy is dynamical and evolves from -1/3 in the presence of radiation to -1 at late time. The finite temperature ghost dark energy predictions on the Hubble parameter well fit to those of Λ CDM and observations at late time.
Holographic Dark Energy in Brans-Dicke Theory with Logarithmic Form of Scalar Field
NASA Astrophysics Data System (ADS)
Singh, C. P.; Kumar, Pankaj
2017-10-01
In this paper, an interacting holographic dark energy model with Hubble horizon as an infra-red cut-off is considered in the framework of Brans-Dicke theory. We assume the Brans-Dicke scalar field as a logarithmic form ϕ = ϕ 0 l n( α + β a), where a is the scale factor, α and β are arbitrary constants, to interpret the physical phenomena of the Universe. The equation of state parameter w h and deceleration parameter q are obtained to discuss the dynamics of the evolution of the Universe. We present a unified model of holographic dark energy which explains the early time acceleration (inflation), medieval time deceleration and late time acceleration. It is also observed that w h may cross the phantom divide line in the late time evolution. We also discuss the cosmic coincidence problem. We obtain a time-varying density ratio of holographic dark energy to dark matter which is a constant of order one (r˜ O(1)) during early and late time evolution, and may evolve sufficiently slow at present time. Thus, the model successfully resolves the cosmic coincidence problem.
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...
2017-03-10
Here, a search for dark matter and unparticle production at the LHC has been performed using events containing two charged leptons (electrons or muons), consistent with the decay of a Z boson, and large missing transverse momentum. This study is based on data collected with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 fb –1 of proton-proton collisions at the LHC, at a center-of-mass energy of 13 TeV. No excess over the standard model expectation is observed. Compared to previous searches in this topology, which exclusively relied on effective field theories, the results are interpreted inmore » terms of a simplified model of dark matter production for both vector and axial vector couplings between a mediator and dark matter particles. The first study of this class of models using CMS data at √s = 13 TeV is presented. Additionally, effective field theories of dark matter and unparticle production are used to interpret the data.« less
Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection
NASA Astrophysics Data System (ADS)
Shikha, Swati; Zheng, Xiang; Zhang, Yong
2018-06-01
Fluorescently encoded microbeads are in demand for multiplexed applications in different fields. Compared to organic dye-based commercially available Luminex's xMAP technology, upconversion nanoparticles (UCNPs) are better alternatives due to their large anti-Stokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate (PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swelling-based encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence, we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface. Methods to functionalize the surface of PEGDA microbeads (acrylic acid incorporation, polydopamine coating) reported thus far quench the fluorescence of UCNPs. Here, PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared. Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin (HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein (hCRP) and HSA protein by immobilizing anti-hCRP antibodies on green UCNPs.
NO gas loss from biologically crusted soils in Canyonlands National Park, Utah
Barger, N.N.; Belnap, J.; Ojima, D.S.; Mosier, A.
2005-01-01
In this study, we examined N gas loss as nitric oxide (NO) from N-fixing biologically crusted soils in Canyonlands National Park, Utah. We hypothesized that NO gas loss would increase with increasing N fixation potential of the biologically crusted soil. NO fluxes were measured from biologically crusted soils with three levels of N fixation potential (Scytonema-Nostoc-Collema spp. (dark)>Scytonema-Nostoc-Microcoleus spp. (medium)>Microcoleus spp. (light)) from soil cores and field chambers. In both cores and field chambers there was a significant effect of crust type on NO fluxes, but this was highly dependent on season. NO fluxes from field chambers increased with increasing N fixation potential of the biologically crusted soils (dark>medium>light) in the summer months, with no differences in the spring and autumn. Soil chlorophyllasis Type a content (an index of N fixation potential), percent N, and temperature explained 40% of the variability in NO fluxes from our field sites. Estimates of annual NO loss from dark and light crusts was 0.04-0.16 and 0.02-0.11-N/ha/year. Overall, NO gas loss accounts for approximately 3-7% of the N inputs via N fixation in dark and light biologically crusted soils. Land use practices have drastically altered biological soil crusts communities over the past century. Livestock grazing and intensive recreational use of public lands has resulted in a large scale conversion of dark cyanolichen crusts to light cyanobacterial crusts. As a result, changes in biologically crusted soils in arid and semi-arid regions of the western US may subsequently impact regional NO loss. ?? Springer 2005.
Hughes, Robert N; Otto, Maria T
2013-01-10
In groups of four same-sexed animals, PVG/c hooded rats were housed for 4.5 months in standard or enriched cages containing several objects that could be explored and manipulated. On separate occasions, each rat then experienced two consecutive daily trials in an open field, a light-dark box or a Y maze with arm inserts that enabled an acquisition trial comprising one black and one white arm to be changed for a retention trial consisting of two black arms. Before their trials in the open field and light-dark box, and following each acquisition trial in the Y maze, the rats received an intraperitoneal injection of 2 mg/kg scopolamine or isotonic saline. In the open field, enrichment led to higher levels of ambulation, walking, rearing and occupancy of the center of the apparatus and shorter emergence latencies from the dark into the light compartment of the light-dark box accompanied by more entries of this compartment. Enrichment also increased entries of and time spent in the changed (or novel) Y-maze arm only for male rats treated with scopolamine. The drug decreased rearing and increased grooming in the open field as well as increasing emergence latencies and decreasing entries of and the time spent on the light compartment of the light-dark box. The main results were interpreted as enrichment having attenuated anxiogenic effects of the behavioral testing and the action of scopolamine for male (but not female) rats in their choices of the novel arm in the Y maze. Copyright © 2012 Elsevier Inc. All rights reserved.
Dark energy models through nonextensive Tsallis' statistics
NASA Astrophysics Data System (ADS)
Barboza, Edésio M.; Nunes, Rafael da C.; Abreu, Everton M. C.; Ananias Neto, Jorge
2015-10-01
The accelerated expansion of the Universe is one of the greatest challenges of modern physics. One candidate to explain this phenomenon is a new field called dark energy. In this work we have used the Tsallis nonextensive statistical formulation of the Friedmann equation to explore the Barboza-Alcaniz and Chevalier-Polarski-Linder parametric dark energy models and the Wang-Meng and Dalal vacuum decay models. After that, we have discussed the observational tests and the constraints concerning the Tsallis nonextensive parameter. Finally, we have described the dark energy physics through the role of the q-parameter.
2015-04-08
The target of this observation as seen by ASA Mars Reconnaissance Orbiter is a circular depression in a dark-toned unit associated with a field of cones to the northeast. At the image scale of a Context Camera image, the depression appears to expose layers especially on the sides or walls of the depression, which are overlain by dark sands presumably associated with the dark-toned unit. HiRISE resolution, which is far higher than that of the Context Camera and its larger footprint, can help identify possible layers. http://photojournal.jpl.nasa.gov/catalog/PIA19358
Nyx: Adaptive mesh, massively-parallel, cosmological simulation code
NASA Astrophysics Data System (ADS)
Almgren, Ann; Beckner, Vince; Friesen, Brian; Lukic, Zarija; Zhang, Weiqun
2017-12-01
Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.
Symmetron dark energy in laboratory experiments.
Upadhye, Amol
2013-01-18
The symmetron scalar field is a matter-coupled dark energy candidate which effectively decouples from matter in high-density regions through a symmetry restoration. We consider a previously unexplored regime, in which the vacuum mass μ~2.4×10(-3) eV of the symmetron is near the dark energy scale, and the matter coupling parameter M~1 TeV is just beyond standard model energies. Such a field will give rise to a fifth force at submillimeter distances which can be probed by short-range gravity experiments. We show that a torsion pendulum experiment such as Eöt-Wash can exclude symmetrons in this regime for all self-couplings λ is < or approximately equal to 7.5.
Mimicking dark matter in Horndeski gravity
NASA Astrophysics Data System (ADS)
Rinaldi, Massimiliano
2017-06-01
Since the rediscovery of Horndeski gravity, a lot of work has been devoted to the exploration of its properties, especially in the context of dark energy. However, one sector of this theory, namely the one containing the coupling of the Einstein tensor to the kinetic term of the scalar field, shows some surprising features in the construction of black holes and neutron stars. Motivated by these new results, I explore the possibility that this sector of Horndeski gravity can mimic cold dark matter at cosmological level and also explain the flattening of galactic rotation curves. I will show that, in principle, it is possible to achieve both goals with at least two scalar fields and a minimal set of assumptions.
Simulation of complex phenomena in optical fibres
NASA Astrophysics Data System (ADS)
Allington-Smith, Jeremy; Murray, Graham; Lemke, Ulrike
2012-12-01
Optical fibres are essential for many types of highly multiplexed and precision spectroscopy. The success of the new generation of multifibre instruments under construction to investigate fundamental problems in cosmology, such as the nature of dark energy, requires accurate modellization of the fibre system to achieve their signal-to-noise ratio (SNR) goals. Despite their simple construction, fibres exhibit unexpected behaviour including non-conservation of etendue (focal ratio degradation, FRD) and modal noise. Furthermore, new fibre geometries (non-circular or tapered) have become available to improve the scrambling properties that, together with modal noise, limit the achievable SNR in precision spectroscopy. These issues have often been addressed by extensive tests on candidate fibres and their terminations, but these are difficult and time-consuming. Modelling by ray tracing and wave analysis is possible with commercial software packages, but these do not address the more complex features, in particular FRD. We use a phase-tracking ray-tracing method to provide a practical description of FRD derived from our previous experimental work on circular fibres and apply it to non-standard fibres. This allows the relationship between scrambling and FRD to be quantified for the first time. We find that scrambling primarily affects the shape of the near-field pattern but has negligible effect on the barycentre. FRD helps to homogenize the near-field pattern but does not make it completely uniform. Fibres with polygonal cross-section improve scrambling without amplifying the FRD. Elliptical fibres, in conjunction with tapering, may offer an efficient means of image slicing to improve the product of resolving power and throughput, but the result is sensitive to the details of illumination. We also investigated the performance of fibres close to the limiting numerical aperture since this may affect the uniformity of the SNR for some prime focus fibre instrumentation.
Silicon Photomultiplier Performance in High ELectric Field
NASA Astrophysics Data System (ADS)
Montoya, J.; Morad, J.
2016-12-01
Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to distinguish these ratios relies on the high sensitivity to single photons. To achieve a similar sensitivity to dark matter interactions as LUX, the new SiPM devices need to operate in the same conditions without any loss in sensitivity to single photons. Knowing that this new type of technology operates in high electric field without issues, could save hundreds of thousands of dollars and valuable space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galyardt, Jason; Shelton, Robin L., E-mail: jeg@uga.edu, E-mail: rls@physast.uga.edu
2016-01-01
The Galaxy’s population of High Velocity Clouds (HVCs) may include a subpopulation that is confined by dark matter minihalos and falling toward the Galactic disk. We present the first magnetohydrodynamic simulational study of dark-matter-dominated HVCs colliding with a weakly magnetized galactic disk. Our HVCs have baryonic masses of 5 × 10{sup 6}M{sub ⊙} and dark matter minihalo masses of 0, 3 × 10{sup 8}, or 1 × 10{sup 9} M{sub ⊙}. They are modeled on the Smith Cloud, which is said to have collided with the disk 70 Myr ago. We find that, in all cases, the cloud’s collision with the galactic disk creates a hole inmore » the disk, completely disperses the cloud, and forms a bubble-shaped structure on the far side of the disk. In contrast, when present, the dark matter minihalo continues unimpeded along its trajectory. Later, as the minihalo passes through the bubble structure and galactic halo, it accretes up to 6.0 × 10{sup 5} M{sub ⊙} in baryonic material, depending on the strengths of the magnetic field and minihalo gravity. These simulations suggest that if the Smith Cloud is associated with a dark matter minihalo and collided with the Galactic disk, the minihalo has accreted the observed gas. However, if the Smith Cloud is dark-matter-free, it is on its first approach toward the disk. These simulations also suggest that the dark matter is most concentrated either at the head of the cloud or near the cloud, depending upon the strength of the magnetic field, a point that could inform indirect dark matter searches.« less
Dark Field Microscopy for Analytical Laboratory Courses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augspurger, Ashley E; Stender, Anthony S; Marchuk, Kyle
2014-06-10
An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.
Dark-field X-ray microscopy for multiscale structural characterization
NASA Astrophysics Data System (ADS)
Simons, H.; King, A.; Ludwig, W.; Detlefs, C.; Pantleon, W.; Schmidt, S.; Snigireva, I.; Snigirev, A.; Poulsen, H. F.
2015-01-01
Many physical and mechanical properties of crystalline materials depend strongly on their internal structure, which is typically organized into grains and domains on several length scales. Here we present dark-field X-ray microscopy; a non-destructive microscopy technique for the three-dimensional mapping of orientations and stresses on lengths scales from 100 nm to 1 mm within embedded sampling volumes. The technique, which allows ‘zooming’ in and out in both direct and angular space, is demonstrated by an annealing study of plastically deformed aluminium. Facilitating the direct study of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements (for example, positioned at interfaces) is crucial to the performance and lifetime of macro-scale devices and components thereof.
Dark energy from the string axiverse.
Kamionkowski, Marc; Pradler, Josef; Walker, Devin G E
2014-12-19
String theories suggest the existence of a plethora of axionlike fields with masses spread over a huge number of decades. Here, we show that these ideas lend themselves to a model of quintessence with no super-Planckian field excursions and in which all dimensionless numbers are order unity. The scenario addresses the "Why now?" problem-i.e., Why has accelerated expansion begun only recently?-by suggesting that the onset of dark-energy domination occurs randomly with a slowly decreasing probability per unit logarithmic interval in cosmic time. The standard axion potential requires us to postulate a rapid decay of most of the axion fields that do not become dark energy. The need for these decays is averted, though, with the introduction of a slightly modified axion potential. In either case, a universe like ours arises in roughly 1 in 100 universes. The scenario may have a host of observable consequences.
Weak scratch detection and defect classification methods for a large-aperture optical element
NASA Astrophysics Data System (ADS)
Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng
2017-03-01
Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.
Quantitative Assessment of Fat Levels in Caenorhabditis elegans Using Dark Field Microscopy
Fouad, Anthony D.; Pu, Shelley H.; Teng, Shelly; Mark, Julian R.; Fu, Moyu; Zhang, Kevin; Huang, Jonathan; Raizen, David M.; Fang-Yen, Christopher
2017-01-01
The roundworm Caenorhabditis elegans is widely used as a model for studying conserved pathways for fat storage, aging, and metabolism. The most broadly used methods for imaging fat in C. elegans require fixing and staining the animal. Here, we show that dark field images acquired through an ordinary light microscope can be used to estimate fat levels in worms. We define a metric based on the amount of light scattered per area, and show that this light scattering metric is strongly correlated with worm fat levels as measured by Oil Red O (ORO) staining across a wide variety of genetic backgrounds and feeding conditions. Dark field imaging requires no exogenous agents or chemical fixation, making it compatible with live worm imaging. Using our method, we track fat storage with high temporal resolution in developing larvae, and show that fat storage in the intestine increases in at least one burst during development. PMID:28404661
Johnston-Peck, Aaron C; Winterstein, Jonathan P; Roberts, Alan D; DuChene, Joseph S; Qian, Kun; Sweeny, Brendan C; Wei, Wei David; Sharma, Renu; Stach, Eric A; Herzing, Andrew A
2016-03-01
Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce(3+) influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce(3+) ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. Published by Elsevier B.V.
IRAC test report. Gallium doped silicon band 2: Read noise and dark current
NASA Technical Reports Server (NTRS)
Lamb, Gerald; Shu, Peter; Mather, John; Ewin, Audrey; Bowser, Jeffrey
1987-01-01
A direct readout infrared detector array, a candidate for the Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC), has been tested. The array has a detector surface of gallium doped silicon, bump bonded to a 58x62 pixel MOSFET multiplexer on a separate chip. Although this chip and system do not meet all the SIRTF requirements, the critically important read noise is within a factor of 3 of the requirement. Significant accomplishments of this study include: (1) development of a low noise correlated double sampling readout system with a readout noise of 127 to 164 electrons (based on the detector integrator capacitance of 0.1 pF); (2) measurement of the readout noise of the detector itself, ranging from 123 to 214 electrons with bias only (best to worst pixel), and 256 to 424 electrons with full clocking in normal operation at 5.4 K where dark current is small. Thirty percent smaller read noises are obtained at a temperature of 15K; (3) measurement of the detector response versus integration time, showing significant nonlinear behavior for large signals, well below the saturation level; and (4) development of a custom computer interface and suitable software for collection, analysis and display of data.
Recognising Axionic Dark Matter by Compton and de-Broglie Scale Modulation of Pulsar Timing
NASA Astrophysics Data System (ADS)
De Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth
2017-11-01
Light Axionic Dark Matter, motivated by string theory, is increasingly favored for the "no-WIMP era". Galaxy formation is suppressed below a Jeans scale, of ≃ 10^8 M_⊙ by setting the axion mass to, m_B ˜ 10^{-22}eV, and the large dark cores of dwarf galaxies are explained as solitons on the de-Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency, ω_B= (2.5 months)^{-1}(m_B/10^{-22}eV), would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de-Broglie interference, with a dense soliton core of size ≃ 150pc, at the Galactic center. The oscillating field pressure induces General Relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals, of ≃ 400nsec/(m_B/10^{-22}eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.
The search for axion-like dark matter using magnetic resonance
NASA Astrophysics Data System (ADS)
Sushkov, Alexander; Casper Collaboration
2016-05-01
The nature of dark matter is one of the most important open problems in modern physics, and it is necessary to develop techniques to search for a wide class of dark-matter candidates. Axions, originally introduced to resolve the strong CP problem in quantum chromodynamics (QCD), and axion-like particles (ALPs) are strongly motivated dark matter candidates. Nuclear spins interacting with axion-like background dark matter experience an energy shift, oscillating at the frequency equal to the axion Compton frequency. The Cosmic Axion Spin Precession Experiments (CASPEr) use precision magnetometry and nuclear magnetic resonance techniques to search for the effects of this interaction. The experimental signature is precession of the nuclear spins under the condition of magnetic resonance: when the bias magnetic field is tuned such that the nuclear spin sublevel splitting is equal to the axion Compton frequency. These experiments have the potential to detect axion-like dark matter in a wide mass range (10-12 eV to 10-6 eV, scanned by changing the bias magnetic field from approximately 1 gauss to 20 tesla) and with coupling strengths many orders of magnitude beyond the current astrophysical and laboratory limits, and all the way down to those corresponding to the QCD axion. Supported by the Heising-Simons Foundation.
Asymmetric dark matter and baryogenesis from pseudoscalar inflation
NASA Astrophysics Data System (ADS)
Cado, Yann; Sabancilar, Eray
2017-04-01
We show that both the baryon asymmetry of the Universe and the dark matter abundance can be explained within a single framework that makes use of maximally helical hypermagnetic fields produced during pseudoscalar inflation and the chiral anomaly in the Standard Model. We consider a minimal asymmetric dark matter model free from anomalies and constraints. We find that the observed baryon and the dark matter abundances are achieved for a wide range of inflationary parameters, and the dark matter mass ranges between 7-15 GeV . The novelty of our mechanism stems from the fact that the same source of CP violation occurring during inflation explains both baryonic and dark matter in the Universe with two inflationary parameters, hence addressing all the initial condition problems in an economical way.
Dark matter and neutrino masses from a scale-invariant multi-Higgs portal
NASA Astrophysics Data System (ADS)
Karam, Alexandros; Tamvakis, Kyriakos
2015-10-01
We consider a classically scale invariant version of the Standard Model, extended by an extra dark S U (2 )X gauge group. Apart from the dark gauge bosons and a dark scalar doublet which is coupled to the Standard Model Higgs through a portal coupling, we incorporate right-handed neutrinos and an additional real singlet scalar field. After symmetry breaking à la Coleman-Weinberg, we examine the multi-Higgs sector and impose theoretical and experimental constraints. In addition, by computing the dark matter relic abundance and the spin-independent scattering cross section off a nucleon we determine the viable dark matter mass range in accordance with present limits. The model can be tested in the near future by collider experiments and direct detection searches such as XENON 1T.
Asymmetric dark matter and baryogenesis from pseudoscalar inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cado, Yann; Sabancilar, Eray, E-mail: yann.cado@epfl.ch, E-mail: eray.sabancilar@epfl.ch
2017-04-01
We show that both the baryon asymmetry of the Universe and the dark matter abundance can be explained within a single framework that makes use of maximally helical hypermagnetic fields produced during pseudoscalar inflation and the chiral anomaly in the Standard Model. We consider a minimal asymmetric dark matter model free from anomalies and constraints. We find that the observed baryon and the dark matter abundances are achieved for a wide range of inflationary parameters, and the dark matter mass ranges between 7–15 GeV . The novelty of our mechanism stems from the fact that the same source of CPmore » violation occurring during inflation explains both baryonic and dark matter in the Universe with two inflationary parameters, hence addressing all the initial condition problems in an economical way.« less
M-CARS and EFISHG study of the influence of a static electric field on a non-polar molecule
NASA Astrophysics Data System (ADS)
Capitaine, E.; Louot, C.; Ould-Moussa, N.; Lefort, C.; Kaneyasu, J. F.; Kano, H.; Pagnoux, D.; Couderc, V.; Leproux, P.
2016-03-01
The influence of a static electric field on a non-polar molecule has been studied by means of multiplex coherent anti-Stokes Raman scattering (M-CARS). A parallel measurement of electric field induced second harmonic generation (EFISHG) has also been led. Both techniques suggest a reorientation of the molecule due to the presence of an electric field. This phenomenon can be used to increase the chemical selectivity and the signal to non-resonant background ratio, namely, the sensitivity of the M-CARS spectroscopy.
Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction
NASA Astrophysics Data System (ADS)
Suárez, Abril; Chavanis, Pierre-Henri
2017-03-01
We study the cosmological evolution of a complex scalar field with a self-interaction potential V (|φ |2) , possibly describing self-gravitating Bose-Einstein condensates, using a fully general relativistic treatment. We generalize the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field approximation developed in our previous paper [A. Suárez and P.-H. Chavanis, Phys. Rev. D 92, 023510 (2015), 10.1103/PhysRevD.92.023510]. We establish the general equations governing the evolution of a spatially homogeneous complex scalar field in an expanding background. We show how they can be simplified in the fast oscillation regime (equivalent to the Thomas-Fermi, or semiclassical, approximation) and derive the equation of state of the scalar field in parametric form for an arbitrary potential V (|φ |2) . We explicitly consider the case of a quartic potential with repulsive or attractive self-interaction. For repulsive self-interaction, the scalar field undergoes a stiff matter era followed by a pressureless dark matter era in the weakly self-interacting regime and a stiff matter era followed by a radiationlike era and a pressureless dark matter era in the strongly self-interacting regime. For attractive self-interaction, the scalar field undergoes an inflation era followed by a stiff matter era and a pressureless dark matter era in the weakly self-interacting regime and an inflation era followed by a cosmic stringlike era and a pressureless dark matter era in the strongly self-interacting regime (the inflation era is suggested, not demonstrated). We also find a peculiar branch on which the scalar field emerges suddenly at a nonzero scale factor with a finite energy density. At early times, it behaves as a gas of cosmic strings. At later times, it behaves as dark energy with an almost constant energy density giving rise to a de Sitter evolution. This is due to spintessence. We derive the effective cosmological constant produced by the scalar field. Throughout the paper, we analytically characterize the transition scales of the scalar field and establish the domain of validity of the fast oscillation regime. We analytically confirm and complement the important results of Li, Rindler-Daller, and Shapiro [Phys. Rev. D 89, 083536 (2014), 10.1103/PhysRevD.89.083536]. We determine the phase diagram of a scalar field with repulsive or attractive self-interaction. We show that the transition between the weakly self-interacting regime and the strongly self-interacting regime depends on how the scattering length of the bosons compares with their effective Schwarzschild radius. We also constrain the parameters of the scalar field from astrophysical and cosmological observations. Numerical applications are made for ultralight bosons without self-interaction (fuzzy dark matter), for bosons with repulsive self-interaction, and for bosons with attractive self-interaction (QCD axions and ultralight axions).
Yang, Ming; Caterer, Nigel R; Xu, Wanhong; Goolia, Melissa
2015-09-01
Foot-and-mouth disease (FMD) is one of the world's most highly contagious animal diseases with tremendous economic consequences. A rapid and specific test for FMD diagnosis at the site of a suspected outbreak is crucial for the implementation of control measures. This project developed a multiplex lateral flow immunochromatographic strip test (multiplex-LFI) for the rapid detection and serotyping of FMD viruses. The monoclonal antibodies (mAbs) against serotypes O, A, and Asia 1 were used as capture mAbs. The mAbs were conjugated with fluorescein, rhodamine or biotin for serotype O, A and Asia 1, respectively. The detection mAbs which consisted of a serotype-independent mAb in combination with one serotype A-specific mAb and one Asia 1-specific mAb, were each colloidal gold-conjugated. The strips used in this study contained one control line and three test lines, which corresponded to one of the three serotypes, O, A or Asia 1. The newly developed multiplex-LFI strip test specifically identified serotype O (n=46), A (n=45) and Asia 1 (n=17) in all tested field isolates. The sensitivity of this strip test was comparable to the double antibody sandwich ELISA for serotypes O and A, but lower than the ELISA for serotype Asia 1. The multiplex-LFI strip test identified all tissue suspensions from animals that were experimentally inoculated with serotypes O, A or Asia 1. FMD viruses were detected in 38% and 50% of the swab samples from the lesion areas of experimentally inoculated sheep for serotypes O and A, respectively. The capability of the multiplex-LFI strip tests to produce rapid results with high specificity for FMD viruses of multiple serotypes makes this test a valuable tool to detect FMD viruses at outbreak sites. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
2010-09-29
NASA Wide-field Infrared Survey Explorer captured this image of a hidden star-forming cloud of dust and gas located in the constellation of Cepheus. What appears to the naked eye as the blackness of space is in fact a dark nebula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roszkowski, Leszek; Trojanowski, Sebastian; Turzyński, Krzysztof, E-mail: leszek.roszkowski@ncbj.gov.pl, E-mail: sebastian.trojanowski@uci.edu, E-mail: Krzysztof-Jan.Turzynski@fuw.edu.pl
We examine the question to what extent prospective detection of dark matter by direct and indirect- detection experiments could shed light on what fraction of dark matter was generated thermally via the freeze-out process in the early Universe. By simulating putative signals that could be seen in the near future and using them to reconstruct WIMP dark matter properties, we show that, in a model- independent approach this could only be achieved in a thin sliver of the parameter space. However, with additional theoretical input the hypothesis about the thermal freeze-out as the dominant mechanism for generating dark matter canmore » potentially be verified. We illustrate this with two examples: an effective field theory of dark matter with a vector messenger and a higgsino or wino dark matter within the MSSM.« less
High-speed wavelength-division multiplexing quantum key distribution system.
Yoshino, Ken-ichiro; Fujiwara, Mikio; Tanaka, Akihiro; Takahashi, Seigo; Nambu, Yoshihiro; Tomita, Akihisa; Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Sasaki, Masahide; Tajima, Akio
2012-01-15
A high-speed quantum key distribution system was developed with the wavelength-division multiplexing (WDM) technique and dedicated key distillation hardware engines. Two interferometers for encoding and decoding are shared over eight wavelengths to reduce the system's size, cost, and control complexity. The key distillation engines can process a huge amount of data from the WDM channels by using a 1 Mbit block in real time. We demonstrated a three-channel WDM system that simultaneously uses avalanche photodiodes and superconducting single-photon detectors. We achieved 12 h continuous key generation with a secure key rate of 208 kilobits per second through a 45 km field fiber with 14.5 dB loss.
Chameleon gravity, electrostatics, and kinematics in the outer galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourhasan, R.; Mann, R.B.; Afshordi, N.
2011-12-01
Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of the fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the field's mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude.more » In this paper, we argue that thin-shell conditions are equivalent to ''conducting'' boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of the equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell.« less
Dark state with counter-rotating dissipative channels.
Zhou, Zheng-Yang; Chen, Mi; Wu, Lian-Ao; Yu, Ting; You, J Q
2017-07-24
Dark state as a consequence of interference between different quantum states has great importance in the fields of chip-scale atomic clock and quantum information. For the Λ-type three-level system, this dark state is generally regarded as being dissipation-free because it is a superposition of two lowest states without dipole transition between them. However, previous studies are based on the rotating-wave approximation (RWA) by neglecting the counter-rotating terms in the system-environment interaction. In this work, we study non-Markovian quantum dynamics of the dark state in a Λ-type three-level system coupled to two bosonic baths and reveal the effect of counter-rotating terms on the dark state. In contrast to the dark state within the RWA, leakage of the dark state occurs even at zero temperature, as a result of these counter-rotating terms. Also, we present a method to restore the quantum coherence of the dark state by applying a leakage elimination operator to the system.
Design of Magnetic Shielding and Field Coils for a TES X-Ray Microcalorimeter Test Platform
NASA Technical Reports Server (NTRS)
Miniussi, Antoine R.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Doriese, William B.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.;
2017-01-01
The performance of Transition-Edge Sensors (TES) and their SQUID multiplexed read-outs are very sensitive to the ambient magnetic field from Earth and fluctuations that can arise due to fluctuating magnetic fields outside of the focal plane assembly from the Adiabatic Demagnetization Refrigerator (ADR).Thus, the experimental platform we are building to test the FPA of the X-ray Integral Field Unit (X-IFU) of the Athena mission needs to include a series of shields and a coil in order to meet the following requirement of magnetic field density and uniformity.
NASA Astrophysics Data System (ADS)
Flambaum, Victor
2016-05-01
Low-mass boson dark matter particles produced after Big Bang form classical field and/or topological defects. In contrast to traditional dark matter searches, effects produced by interaction of an ordinary matter with this field and defects may be first power in the underlying interaction strength rather than the second or fourth power (which appears in a traditional search for the dark matter). This may give a huge advantage since the dark matter interaction constant is extremely small. Interaction between the density of the dark matter particles and ordinary matter produces both `slow' cosmological evolution and oscillating variations of the fundamental constants including the fine structure constant alpha and particle masses. Recent atomic dysprosium spectroscopy measurements and the primordial helium abundance data allowed us to improve on existing constraints on the quadratic interactions of the scalar dark matter with the photon, electron and light quarks by up to 15 orders of magnitude. Limits on the linear and quadratic interactions of the dark matter with W and Z bosons have been obtained for the first time. In addition to traditional methods to search for the variation of the fundamental constants (atomic clocks, quasar spectra, Big Bang Nucleosynthesis, etc) we discuss variations in phase shifts produced in laser/maser interferometers (such as giant LIGO, Virgo, GEO600 and TAMA300, and the table-top silicon cavity and sapphire interferometers), changes in pulsar rotational frequencies (which may have been observed already in pulsar glitches), non-gravitational lensing of cosmic radiation and the time-delay of pulsar signals. Other effects of dark matter and dark energy include apparent violation of the fundamental symmetries: oscillating or transient atomic electric dipole moments, precession of electron and nuclear spins about the direction of Earth's motion through an axion condensate, and axion-mediated spin-gravity couplings, violation of Lorentz symmetry and Einstein equivalence principle. Finally, we explore a possibility to explain the DAMA collaboration claim of dark matter detection by the dark matter scattering on electrons. We have shown that the electron relativistic effects increase the ionization differential cross section up to 3 orders of magnitude [9].
NASA Astrophysics Data System (ADS)
Frey, Joel Brandon
Recently, the world of diagnostic radiography has seen the integration of digital flat panel x-ray image detectors into x-ray imaging systems, replacing analog film screens. These flat panel x-ray imagers (FPXIs) have been shown to produce high quality x-ray images and provide many advantages that are inherent to a fully digital technology. Direct conversion FPXIs based on a photoconductive layer of stabilized amorphous selenium (a-Se) have been commercialized and have proven particularly effective in the field of mammography. In the operation of these detectors, incident x-ray photons are converted directly to charge carriers in the a-Se layer and drifted to electrodes on either side of the layer by a large applied field (10 V/microm). The applied field causes a dark current to flow which is not due to the incident radiation and this becomes a source of noise which can reduce the dynamic range of the detector. The level of dark current in commercialized detectors has been reduced by the deposition of thin n- and p- type blocking layers between the electrodes and the bulk of the a-Se. Despite recent research into the dark current in metal/a-Se/metal sandwich structures, much is still unknown about the true cause and nature of this phenomenon. The work in this Ph.D. thesis describes an experimental and theoretical study of the dark current in these structures. Experiments have been performed on five separate sets of a-Se samples which approximate the photoconductive layer in an FPXI. The dark current has been measured as a function of time, sample structure, applied field, sample thickness and contact metal used. This work has conclusively shown that the dark current is almost entirely due to the injection of charge carriers from the contacts and the contribution of Poole-Frenkel enhanced bulk thermal generation is negligible. There is also evidence that while the dark current is initially controlled by the injection of holes from the positive contact, several minutes after the application of the bias, the dark current due to hole injection may decay to the point where the electron current becomes significant and even dominant. These conclusions are supported by numerical calculations of the dark current transients which have been calibrated to match experimental results. Work detailed in this Ph.D. thesis also focuses on Monte Carlo modeling of the x-ray sensitivity of a-Se FPXIs. The higher the x-ray sensitivity of a detector, the lower the radiation dose required to acquire an acceptable image. FPXIs can experience a decrease in the x-ray sensitivity of the photoconductive layer with accumulating exposure, leading to a phenomenon known as "ghosting". Modeling this decrease in sensitivity can uncover the reasons behind it. The Monte Carlo model described in this thesis is a continuation of a previous model which now considers the effects of the n- and p-like blocking layers and the flow of dark current between x-ray exposures. The simulation results explain how deep trapping of photogenerated charge carriers, and the resulting effect on the electric field distribution, contribute to sensitivity loss. The model has shown excellent agreement with experimental data and has accurately predicted a sensitivity recovery once exposure has ceased which is due to primarily to the relaxation of metastable x-ray-induced carrier trap states.
Could the electroweak scale be linked to the large scale structure of the Universe?
NASA Technical Reports Server (NTRS)
Chakravorty, Alak; Massarotti, Alessandro
1991-01-01
We study a model where the domain walls are generated through a cosmological phase transition involving a scalar field. We assume the existence of a coupling between the scalar field and dark matter and show that the interaction between domain walls and dark matter leads to an energy dependent reflection mechanism. For a simple Yakawa coupling, we find that the vacuum expectation value of the scalar field is theta approx. equals 30GeV - 1TeV, in order for the model to be successful in the formation of large scale 'pancake' structures.
Cosmological evolution of a tachyon-quintom model of dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Shang-Gang; Piao, Yun-Song; Qiao, Cong-Feng, E-mail: shishanggang06@mails.gucas.ac.cn, E-mail: yspiao@gucas.ac.cn, E-mail: qiaocf@gucas.ac.cn
2009-04-15
In this work we study the cosmological evolution of a dark energy model with two scalar fields, i.e. the tachyon and the phantom tachyon. This model enables the equation of state w to change from w > -1 to w < -1 in the evolution of the universe. The phase-space analysis for such a system with inverse square potentials shows that there exists a unique stable critical point, which has power-law solution. In this paper, we also study another form of tachyon-quintom model with two fields, which involves the interactions between both fields.
Scanning Transmission Electron Microscopy at High Resolution
Wall, J.; Langmore, J.; Isaacson, M.; Crewe, A. V.
1974-01-01
We have shown that a scanning transmission electron microscope with a high brightness field emission source is capable of obtaining better than 3 Å resolution using 30 to 40 keV electrons. Elastic dark field images of single atoms of uranium and mercury are shown which demonstrate this fact as determined by a modified Rayleigh criterion. Point-to-point micrograph resolution between 2.5 and 3.0 Å is found in dark field images of micro-crystallites of uranium and thorium compounds. Furthermore, adequate contrast is available to observe single atoms as light as silver. Images PMID:4521050
Dark energy simulacrum in nonlinear electrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labun, Lance; Rafelski, Johann
2010-03-15
Quasiconstant external fields in nonlinear electromagnetism generate a global contribution proportional to g{sup {mu}{nu}}in the energy-momentum tensor, thus a simulacrum of dark energy. To provide a thorough understanding of the origin and strength of its effects, we undertake a complete theoretical and numerical study of the energy-momentum tensor T{sup {mu}{nu}}for nonlinear electromagnetism. The Euler-Heisenberg nonlinearity due to quantum fluctuations of spinor and scalar matter fields is considered and contrasted with the properties of classical nonlinear Born-Infeld electromagnetism. We address modifications of charged particle kinematics by strong background fields.
Blocked impurity band hybrid infrared focal plane arrays for astronomy
NASA Technical Reports Server (NTRS)
Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.
1989-01-01
High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.
The solutions and thermodynamic dark energy in the accelerating universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirel, E. C. Günay
Recently, Tachyonic matter expressed in terms of scalar field is suggested to be the reason of acceleration of the universe as dark energy [1]-[3]. In this study, dynamic solutions and thermodynamic properties of matters such as Tachyonic matters were investigated.
How CMB and large-scale structure constrain chameleon interacting dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au
2015-07-01
We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength,more » can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.« less
Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ureña-López, L. Arturo; Gonzalez-Morales, Alma X., E-mail: lurena@ugto.mx, E-mail: alma.gonzalez@fisica.ugto.mx
2016-07-01
As we are entering the era of precision cosmology, it is necessary to count on accurate cosmological predictions from any proposed model of dark matter. In this paper we present a novel approach to the cosmological evolution of scalar fields that eases their analytic and numerical analysis at the background and at the linear order of perturbations. The new method makes use of appropriate angular variables that simplify the writing of the equations of motion, and which also show that the usual field variables play a secondary role in the cosmological dynamics. We apply the method to a scalar fieldmore » endowed with a quadratic potential and revisit its properties as dark matter. Some of the results known in the literature are recovered, and a better understanding of the physical properties of the model is provided. It is confirmed that there exists a Jeans wavenumber k {sub J} , directly related to the suppression of linear perturbations at wavenumbers k > k {sub J} , and which is verified to be k {sub J} = a √ mH . We also discuss some semi-analytical results that are well satisfied by the full numerical solutions obtained from an amended version of the CMB code CLASS. Finally we draw some of the implications that this new treatment of the equations of motion may have in the prediction of cosmological observables from scalar field dark matter models.« less
de Sitter limit analysis for dark energy and modified gravity models
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios
2017-07-01
The effective field theory of dark energy and modified gravity is supposed to well describe, at low energies, the behavior of the gravity modifications due to one extra scalar degree of freedom. The usual curvature perturbation is very useful when studying the conditions for the avoidance of ghost instabilities as well as the positivity of the squared speeds of propagation for both the scalar and tensor modes, or the Stückelberg field performs perfectly when investigating the evolution of linear perturbations. We show that the viable parameter space identified by requiring no-ghost instabilities and positive squared speeds of propagation does not change by performing a field redefinition, while the requirement of the avoidance of tachyonic instability might instead be different. Therefore, we find it interesting to associate to the general modified gravity theory described in the effective field theory framework, a perturbation field which will inherit all of the properties of the theory. In the present paper we address the following questions: (1) how can we define such a field? and (2) what is the mass of such a field as the background approaches a final de Sitter state? We define a gauge-invariant quantity which identifies the density of the dark energy perturbation field valid for any background. We derive the mass associated to the gauge-invariant dark energy field on a de Sitter background, which we retain to be still a good approximation also at very low redshift (z ≃0 ). On this background we also investigate the value of the speed of propagation and we find that there exist classes of theories which admit a nonvanishing speed of propagation, even in the Horndeski model, for which a zero speed of sound has previously been found in the literature. We finally apply our results to specific well-known models.
Thermal dark matter co-annihilating with a strongly interacting scalar
NASA Astrophysics Data System (ADS)
Biondini, S.; Laine, M.
2018-04-01
Recently many investigations have considered Majorana dark matter co-annihilating with bound states formed by a strongly interacting scalar field. However only the gluon radiation contribution to bound state formation and dissociation, which at high temperatures is subleading to soft 2 → 2 scatterings, has been included. Making use of a non-relativistic effective theory framework and solving a plasma-modified Schrödinger equation, we address the effect of soft 2 → 2 scatterings as well as the thermal dissociation of bound states. We argue that the mass splitting between the Majorana and scalar field has in general both a lower and an upper bound, and that the dark matter mass scale can be pushed at least up to 5…6TeV.
Light weakly interacting massive particles
NASA Astrophysics Data System (ADS)
Gelmini, Graciela B.
2017-08-01
Light weakly interacting massive particles (WIMPs) are dark matter particle candidates with weak scale interaction with the known particles, and mass in the GeV to tens of GeV range. Hints of light WIMPs have appeared in several dark matter searches in the last decade. The unprecedented possible coincidence into tantalizingly close regions of mass and cross section of four separate direct detection experimental hints and a potential indirect detection signal in gamma rays from the galactic center, aroused considerable interest in our field. Even if these hints did not so far result in a discovery, they have had a significant impact in our field. Here we review the evidence for and against light WIMPs as dark matter candidates and discuss future relevant experiments and observations.
Warm and cold fermionic dark matter via freeze-in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klasen, Michael; Yaguna, Carlos E., E-mail: michael.klasen@uni-muenster.de, E-mail: carlos.yaguna@uni-muenster.de
2013-11-01
The freeze-in mechanism of dark matter production provides a simple and intriguing alternative to the WIMP paradigm. In this paper, we analyze whether freeze-in can be used to account for the dark matter in the so-called singlet fermionic model. In it, the SM is extended with only two additional fields, a singlet scalar that mixes with the Higgs boson, and the dark matter particle, a fermion assumed to be odd under a Z{sub 2} symmetry. After numerically studying the generation of dark matter, we analyze the dependence of the relic density with respect to all the free parameters of themore » model. These results are then used to obtain the regions of the parameter space that are compatible with the dark matter constraint. We demonstrate that the observed dark matter abundance can be explained via freeze-in over a wide range of masses extending down to the keV range. As a result, warm and cold dark matter can be obtained in this model. It is also possible to have dark matter masses well above the unitarity bound for WIMPs.« less
Dark Matter Decays from Nonminimal Coupling to Gravity.
Catà, Oscar; Ibarra, Alejandro; Ingenhütt, Sebastian
2016-07-08
We consider the standard model extended with a dark matter particle in curved spacetime, motivated by the fact that the only current evidence for dark matter is through its gravitational interactions, and we investigate the impact on the dark matter stability of terms in the Lagrangian linear in the dark matter field and proportional to the Ricci scalar. We show that this "gravity portal" induces decay even if the dark matter particle only has gravitational interactions, and that the decay branching ratios into standard model particles only depend on one free parameter: the dark matter mass. We study in detail the case of a singlet scalar as a dark matter candidate, which is assumed to be absolutely stable in flat spacetime due to a discrete Z_{2} symmetry, but which may decay in curved spacetimes due to a Z_{2}-breaking nonminimal coupling to gravity. We calculate the dark matter decay widths and we set conservative limits on the nonminimal coupling parameter from experiments. The limits are very stringent and suggest that there must exist an additional mechanism protecting the singlet scalar from decaying via this gravity portal.
van den Aarssen, Laura G; Bringmann, Torsten; Pfrommer, Christoph
2012-12-07
The cold dark matter paradigm describes the large-scale structure of the Universe remarkably well. However, there exists some tension with the observed abundances and internal density structures of both field dwarf galaxies and galactic satellites. Here, we demonstrate that a simple class of dark matter models may offer a viable solution to all of these problems simultaneously. Their key phenomenological properties are velocity-dependent self-interactions mediated by a light vector messenger and thermal production with much later kinetic decoupling than in the standard case.
Lu, Chen D.; Lee, ByungKun; Schottenhamml, Julia; Maier, Andreas; Pugh, Edward N.; Fujimoto, James G.
2017-01-01
Purpose To examine outer retinal band changes after flash stimulus and subsequent dark adaptation with ultrahigh-resolution optical coherence tomography (UHR-OCT). Methods Five dark-adapted left eyes of five normal subjects were imaged with 3-μm axial-resolution UHR-OCT during 30 minutes of dark adaptation following 96%, 54%, 23%, and 0% full-field and 54% half-field rhodopsin bleach. We identified the ellipsoid zone inner segment/outer segment (EZ[IS/OS]), cone interdigitation zone (CIZ), rod interdigitation zone (RIZ), retinal pigment epithelium (RPE), and Bruch's membrane (BM) axial positions and generated two-dimensional thickness maps of the EZ(IS/OS) to the four bands. The average thickness over an area of the thickness map was compared against that of the dark-adapted baselines. The time-dependent thickness changes (photoresponses) were statistically compared against 0% bleach. Dark adaptometry was performed with the same bleaching protocol. Results The EZ(IS/OS)-CIZ photoresponse was significantly different at 96% (P < 0.0001) and 54% (P = 0.006) bleach. At all three bleaching levels, the EZ(IS/OS)-RIZ, -RPE, and -BM responses were significantly different (P < 0.0001). The EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ time courses were similar to the recovery of rod- and cone-mediated sensitivity, respectively, measured with dark adaptometry. The maximal EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ response magnitudes doubled from 54% to 96% bleach. Both EZ(IS/OS)-RPE and EZ(IS/OS)-BM responses resembled dampened oscillations that were graded in amplitude and duration with bleaching intensity. Half-field photoresponses were localized to the stimulated retina. Conclusions With noninvasive, near-infrared UHR-OCT, we characterized three distinct, spatially localized photoresponses in the outer retinal bands. These photoresponses have potential value as physical correlates of photoreceptor function. PMID:28898357
Kulesskaya, Natalia; Voikar, Vootele
2014-06-22
Light-dark box and open field are conventional tests for assessment of anxiety-like behavior in the laboratory mice, based on approach-avoidance conflict. However, except the basic principles, variations in the equipment and procedures are very common. Therefore, contribution of certain methodological issues in different settings was investigated. Three inbred strains (C57BL/6, 129/Sv, DBA/2) and one outbred stock (ICR) of mice were used in the experiments. An effect of initial placement of mice either in the light or dark compartment was studied in the light-dark test. Moreover, two tracking systems were applied - position of the animals was detected either by infrared sensors in square box (1/2 dark) or by videotracking in rectangular box (1/3 dark). Both approaches revealed robust and consistent strain differences in the exploratory behavior. In general, C57BL/6 and ICR mice showed reduced anxiety-like behavior as compared to 129/Sv and DBA/2 strains. However, the latter two strains differed markedly in their behavior. DBA/2 mice displayed high avoidance of the light compartment accompanied by thigmotaxis, whereas the hypoactive 129 mice spent a significant proportion of time in risk-assessment behavior at the opening between two compartments. Starting from the light side increased the time spent in the light compartment and reduced the latency to the first transition. In the open field arena, black floor promoted exploratory behavior - increased time and distance in the center and increased rearing compared to white floor. In conclusion, modifications of the apparatus and procedure had significant effects on approach-avoidance behavior in general whereas the strain rankings remained unaffected. Copyright © 2014 Elsevier Inc. All rights reserved.
Combined cosmological tests of a bivalent tachyonic dark energy scalar field model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keresztes, Zoltán; Gergely, László Á., E-mail: zkeresztes@titan.physx.u-szeged.hu, E-mail: gergely@physx.u-szeged.hu
A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω{sub b}h{sup 2} = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates intomore » a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω{sub CDM} = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model.« less
Evolution of Mass and Velocity Field in the Cosmic Web: Comparison between Baryonic and Dark Matter
NASA Astrophysics Data System (ADS)
Zhu, Weishan; Feng, Long-Long
2017-03-01
We investigate the evolution of the cosmic web since z = 5 in grid-based cosmological hydrodynamical simulations, focusing on the mass and velocity fields of both baryonic and cold dark matter. The tidal tensor of density is used as the main method for web identification, with λ th = 0.2-1.2. The evolution trends in baryonic and dark matter are similar, although moderate differences are observed. Sheets appear early, and their large-scale pattern may have been set up by z = 3. In terms of mass, filaments supersede sheets as the primary collapsing structures from z ˜ 2-3. Tenuous filaments assembled with each other to form prominent ones at z < 2. In accordance with the construction of the frame of the sheets, the cosmic divergence velocity, v div, was already well-developed above 2-3 Mpc by z = 3. Afterwards, the curl velocity, v curl, grew dramatically along with the rising of filaments, becoming comparable to v div, for <2-3 Mpc at z = 0. The scaling of v curl can be described by the hierarchical turbulence model. The alignment between the vorticity and the eigenvectors of the shear tensor in the baryonic matter field resembles that in the dark matter field, and is even moderately stronger between {\\boldsymbol{ω }} and {{\\boldsymbol{e}}}1, and ω and {{\\boldsymbol{e}}}3. Compared with dark matter, there is slightly less baryonic matter found residing in filaments and clusters, and its vorticity developed more significantly below 2-3 Mpc. These differences may be underestimated because of the limited resolution and lack of star formation in our simulation. The impact of the change of dominant structures in overdense regions at z ˜ 2-3 on galaxy formation and evolution is shortly discussed.
k-essence model of inflation, dark matter, and dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Nilok; Majumdar, A. S.
We investigate the possibility for k-essence dynamics to reproduce the primary features of inflation in the early universe, generate dark matter subsequently, and finally account for the presently observed acceleration. We first show that for a purely kinetic k-essence model the late-time energy density of the universe when expressed simply as a sum of a cosmological constant and a dark matter term leads to a static universe. We then study another k-essence model in which the Lagrangian contains a potential for the scalar field as well as a noncanonical kinetic term. We show that such a model generates the basicmore » features of inflation in the early universe, and also gives rise to dark matter and dark energy at appropriate subsequent stages. Observational constraints on the parameters of this model are obtained.« less
A New Target Object for Constraining Annihilating Dark Matter
NASA Astrophysics Data System (ADS)
Chan, Man Ho
2017-07-01
In the past decade, gamma-ray observations and radio observations of our Milky Way and the Milky Way dwarf spheroidal satellite galaxies put very strong constraints on annihilation cross sections of dark matter. In this paper, we suggest a new target object (NGC 2976) that can be used for constraining annihilating dark matter. The radio and X-ray data of NGC 2976 can put very tight constraints on the leptophilic channels of dark matter annihilation. The lower limits of dark matter mass annihilating via {e}+{e}-, {μ }+{μ }-, and {τ }+{τ }- channels are 200 GeV, 130 GeV, and 110 GeV, respectively, with the canonical thermal relic cross section. We suggest that this kind of large nearby dwarf galaxy with a relatively high magnetic field can be a good candidate for constraining annihilating dark matter in future analyses.
NASA Astrophysics Data System (ADS)
Merle, Alexander
2017-03-01
This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground-based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.
Beyond the bump-hunt: A game plan for discovering dynamical dark matter at the LHC
NASA Astrophysics Data System (ADS)
Dienes, Keith R.; Su, Shufang; Thomas, Brooks
2016-06-01
Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which an ensemble of individual constituent fields with a spectrum of masses, lifetimes, and cosmological abundances collectively constitute the dark-matter candidate, and in which the traditional notion of dark-matter stability is replaced by a balancing between lifetimes and abundances across the ensemble. In this talk, we discuss the prospects for distinguishing between DDM ensembles and traditional dark-matter candidates at hadron colliders - and in particular, at the upgraded LHC - via the analysis of event-shape distributions of kine-matic variables. We also examine the correlations between these kinematic variables and other relevant collider variables in order to assess how imposing cuts on these additional variables may distort - for better or worse - their event-shape distributions.
Noguchi, H
1919-08-01
Examinations of fresh blood from yellow fever patients by means of the dark-field microscope, made in more than twenty-seven cases, revealed in three cases the presence of Leptospira icteroides. In no instance was a large number of organisms found, a long search being required before one was encountered. The injection of the blood into guinea pigs from two of the three positive cases induced in the animals a fatal infection, while the blood from the third positive case failed to infect the guinea pigs fatally. Careful but by no means exhaustive dark-field searches for the leptospira with fresh specimens of blood from the remaining cases of yellow fever ended without positive findings, although four of the specimens, when injected into guinea pigs, caused a fatal leptospira infection. Stained blood film preparations from the corresponding cases were also examined, but the percentage showing the leptospira in the blood was no greater than that found by examination in the fresh state with the dark-field microscope. In fact, owing to the defective stains that were available at the time of the investigation a great many slides did not take the proper coloration with Giemsa's or Wright's stain and could not be relied upon. Regarding the presence of Leptospira icteroides in various organs both dark-field and stained films were examined. In only one instance so far a few organisms were detected in the emulsion of liver taken shortly after death from a case dying on the 4th day of yellow fever. This part of the work will be reported later upon completion. Examinations of the urine from different cases of yellow fever were made both by dark-field microscope and by inoculation into guinea pigs. The results were totally negative in thirteen cases, including many convalescents, but in one case one of the guinea pigs inoculated with 10 cc. of the urine came down on the 15th day with suggestive symptoms (suspicion of jaundice, and some hemorrhagic and parenchymatous lesions of the lungs and kidneys). This specimen showed no leptospira by dark-field examination. In experimental infection of guinea pigs with Leptospira icteroides the blood became infective in many instances 48 hours after inoculation, and was always infective after 72 hours. The liver and kidney become infective simultaneously with the blood. Detection of the organism by means of the dark-field microscope has seldom been accomplished before the 5th day. The organisms are most abundant on the 6th to the 7th day, but become fewer or completely disappear before death. In the meanwhile the number of organisms increases in the liver and kidney, from which they disappear as the jaundice and other symptoms become aggravated. When death occurs these organs seem to have lost most of the leptospira) and positive transfer by means of them is less certain. At the later stage of the disease the blood is often free from the organisms and ceases to be infective. Positive transmission with blood obtained from moribund animals is not impossible, however, even when no leptospira can be detected under the dark-field microscope.
Multiloop atom interferometer measurements of chameleon dark energy in microgravity
NASA Astrophysics Data System (ADS)
Chiow, Sheng-wey; Yu, Nan
2018-02-01
Chameleon field is one of the promising candidates of dark energy scalar fields. As in all viable candidate field theories, a screening mechanism is implemented to be consistent with all existing tests of general relativity. The screening effect in the chameleon theory manifests its influence limited only to the thin outer layer of a bulk object, thus producing extra forces orders of magnitude weaker than that of the gravitational force of the bulk. For pointlike particles such as atoms, the depth of screening is larger than the size of the particle, such that the screening mechanism is ineffective and the chameleon force is fully expressed on the atomic test particles. Extra force measurements using atom interferometry are thus much more sensitive than bulk mass based measurements, and indeed have placed the most stringent constraints on the parameters characterizing chameleon field. In this paper, we present a conceptual measurement approach for chameleon force detection using atom interferometry in microgravity, in which multiloop atom interferometers exploit specially designed periodic modulation of chameleon fields. We show that major systematics of the dark energy force measurements, i.e., effects of gravitational forces and their gradients, can be suppressed below all hypothetical chameleon signals in the parameter space of interest.
Kim, Eun Hye; Lee, Hwan Young; Yang, In Seok; Jung, Sang-Eun; Yang, Woo Ick; Shin, Kyoung-Jin
2016-05-01
The next-generation sequencing (NGS) method has been utilized to analyze short tandem repeat (STR) markers, which are routinely used for human identification purposes in the forensic field. Some researchers have demonstrated the successful application of the NGS system to STR typing, suggesting that NGS technology may be an alternative or additional method to overcome limitations of capillary electrophoresis (CE)-based STR profiling. However, there has been no available multiplex PCR system that is optimized for NGS analysis of forensic STR markers. Thus, we constructed a multiplex PCR system for the NGS analysis of 18 markers (13CODIS STRs, D2S1338, D19S433, Penta D, Penta E and amelogenin) by designing amplicons in the size range of 77-210 base pairs. Then, PCR products were generated from two single-sources, mixed samples and artificially degraded DNA samples using a multiplex PCR system, and were prepared for sequencing on the MiSeq system through construction of a subsequent barcoded library. By performing NGS and analyzing the data, we confirmed that the resultant STR genotypes were consistent with those of CE-based typing. Moreover, sequence variations were detected in targeted STR regions. Through the use of small-sized amplicons, the developed multiplex PCR system enables researchers to obtain successful STR profiles even from artificially degraded DNA as well as STR loci which are analyzed with large-sized amplicons in the CE-based commercial kits. In addition, successful profiles can be obtained from mixtures up to a 1:19 ratio. Consequently, the developed multiplex PCR system, which produces small size amplicons, can be successfully applied to STR NGS analysis of forensic casework samples such as mixtures and degraded DNA samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindson, B J; Baker, B R; Bentley Tammero, L F
2007-09-18
A high-throughput multiplexed assay (Multiplex Version 1.0) was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspectmore » cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRTPCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.« less
Isocurvature cold dark matter fluctuations
NASA Technical Reports Server (NTRS)
Efstathiou, G.; Bond, J. R.
1986-01-01
According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.
Here, a search for dark matter and unparticle production at the LHC has been performed using events containing two charged leptons (electrons or muons), consistent with the decay of a Z boson, and large missing transverse momentum. This study is based on data collected with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 fb –1 of proton-proton collisions at the LHC, at a center-of-mass energy of 13 TeV. No excess over the standard model expectation is observed. Compared to previous searches in this topology, which exclusively relied on effective field theories, the results are interpreted inmore » terms of a simplified model of dark matter production for both vector and axial vector couplings between a mediator and dark matter particles. The first study of this class of models using CMS data at √s = 13 TeV is presented. Additionally, effective field theories of dark matter and unparticle production are used to interpret the data.« less
The search for TeV-scale dark matter with the HAWC observatory
Harding, J. Patrick
2015-01-01
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to 100 GeV - 100 TeV gamma rays and cosmic rays. Located at an elevation of 4100 m on the Sierra Negra mountain in Mexico, HAWC observes extensive air showers from gamma and cosmic rays with an array of water tanks which produce Cherenkov light in the presence of air showers. With a field-of-view capable of observing 2/3 of the sky each day, and a sensitivity of 1 Crab/day, HAWC will be able to map out the sky in gamma and cosmic rays in detail. In thismore » paper, we discuss the capabilities of HAWC to map out the directions and spectra of TeV gamma rays and cosmic rays coming from sources of dark matter annihilation. We discuss the HAWC sensitivity to multiple extended sources of dark matter annihilation and the possibility of HAWC observations of annihilations in nearby dark matter subhalos.« less
Quantum matter bounce with a dark energy expanding phase
NASA Astrophysics Data System (ADS)
Colin, Samuel; Pinto-Neto, Nelson
2017-09-01
Analyzing quantum cosmological scenarios containing one scalar field with exponential potential, we have obtained a universe model which realizes a classical dust contraction from very large scales, the initial repeller of the model, and moves to a stiff matter contraction near the singularity, which is avoided due to a quantum bounce. The universe is then launched in a stiff matter expanding phase, which then moves to a dark energy era, finally returning to the dust expanding phase, the final attractor of the model. Hence, one has obtained a nonsingular cosmological model where a single scalar field can describe both the matter contracting phase of a bouncing model, necessary to give an almost scale invariant spectrum of scalar cosmological perturbations, and a transient expanding dark energy phase. As the universe is necessarily dust dominated in the far past, usual adiabatic vacuum initial conditions can be easily imposed in this era, avoiding the usual issues appearing when dark energy is considered in bouncing models.
Non-thermal leptogenesis with distinct CP violation and minimal dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hang; Gu, Pei-Hong, E-mail: einsteinzh@sjtu.edu.cn, E-mail: peihong.gu@sjtu.edu.cn
We demonstrate a unified scenario for neutrino mass, baryon asymmetry, dark matter and inflation. In addition to a fermion triplet for the so-called minimal dark matter, we extend the standard model by three heavy fields including a scalar singlet, a fermion triplet and a fermion singlet/Higgs triplet. The heavy scalar singlet, which is expected to drive an inflation, and the dark matter fermion triplet are odd under an unbroken Z {sub 2} discrete symmetry, while the other fields are all even. The heavy fermion triplet offers a tree-level type-III seesaw and then mediates a three-body decay of the inflaton intomore » the standard model lepton and Higgs doublets with the dark matter fermion triplet. The heavy fermion singlet/Higgs triplet not only results in a type-I/II seesaw at tree level but also contributes to the inflaton decay at one-loop level. In this scenario, the type-I/II seesaw contains all of the physical CP phases in the lepton sector and hence the CP violation for the non-thermal leptogenesis by the inflaton decay exactly comes from the imaginary part of the neutrino mass matrix.« less
The Dark Energy Spectroscopic Instrument (DESI)
NASA Astrophysics Data System (ADS)
Flaugher, Brenna; Bebek, Chris
2014-07-01
The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar spectroscopic redshift survey. The DESI instrument consists of a new wide-field (3.2 deg. linear field of view) corrector plus a multi-object spectrometer with up to 5000 robotically positioned optical fibers and will be installed at prime focus on the Mayall 4m telescope at Kitt Peak, Arizona. The fibers feed 10 three-arm spectrographs producing spectra that cover a wavelength range from 360-980 nm and have resolution of 2000-5500 depending on the wavelength. The DESI instrument is designed for a 14,000 sq. deg. multi-year survey of targets that trace the evolution of dark energy out to redshift 3.5 using the redshifts of luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars. DESI is the successor to the successful Stage-III BOSS spectroscopic redshift survey and complements imaging surveys such as the Stage-III Dark Energy Survey (DES, currently operating) and the Stage-IV Large Synoptic Survey Telescope (LSST, planned start early in the next decade).
Light dark matter, naturalness, and the radiative origin of the electroweak scale
Altmannshofer, Wolfgang; Bardeen, William A.; Bauer, Martin; ...
2015-01-09
We study classically scale invariant models in which the Standard Model Higgs mass term is replaced in the Lagrangian by a Higgs portal coupling to a complex scalar field of a dark sector. We focus on models that are weakly coupled with the quartic scalar couplings nearly vanishing at the Planck scale. The dark sector contains fermions and scalars charged under dark SU(2) × U(1) gauge interactions. Radiative breaking of the dark gauge group triggers electroweak symmetry breaking through the Higgs portal coupling. Requiring both a Higgs boson mass of 125.5 GeV and stability of the Higgs potential up tomore » the Planck scale implies that the radiative breaking of the dark gauge group occurs at the TeV scale. We present a particular model which features a long-range abelian dark force. The dominant dark matter component is neutral dark fermions, with the correct thermal relic abundance, and in reach of future direct detection experiments. The model also has lighter stable dark fermions charged under the dark force, with observable effects on galactic-scale structure. Collider signatures include a dark sector scalar boson with mass ≲ 250 GeV that decays through mixing with the Higgs boson, and can be detected at the LHC. As a result, the Higgs boson, as well as the new scalar, may have significant invisible decays into dark sector particles.« less
Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki
2011-10-01
The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.
Cross-correlation cosmography with intensity mapping of the neutral hydrogen 21 cm emission
NASA Astrophysics Data System (ADS)
Pourtsidou, A.; Bacon, D.; Crittenden, R.
2015-11-01
The cross-correlation of a foreground density field with two different background convergence fields can be used to measure cosmographic distance ratios and constrain dark energy parameters. We investigate the possibility of performing such measurements using a combination of optical galaxy surveys and neutral hydrogen (HI) intensity mapping surveys, with emphasis on the performance of the planned Square Kilometre Array (SKA). Using HI intensity mapping to probe the foreground density tracer field and/or the background source fields has the advantage of excellent redshift resolution and a longer lever arm achieved by using the lensing signal from high redshift background sources. Our results show that, for our best SKA-optical configuration of surveys, a constant equation of state for dark energy can be constrained to ≃8 % for a sky coverage fsky=0.5 and assuming a σ (ΩDE)=0.03 prior for the dark energy density parameter. We also show that using the cosmic microwave background as the second source plane is not competitive, even when considering a COrE-like satellite.
NASA Astrophysics Data System (ADS)
Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.
2013-07-01
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.
Dark energy, non-minimal couplings and the origin of cosmic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez, Jose Beltrán; Maroto, Antonio L., E-mail: jobeltra@fis.ucm.es, E-mail: maroto@fis.ucm.es
2010-12-01
In this work we consider the most general electromagnetic theory in curved space-time leading to linear second order differential equations, including non-minimal couplings to the space-time curvature. We assume the presence of a temporal electromagnetic background whose energy density plays the role of dark energy, as has been recently suggested. Imposing the consistency of the theory in the weak-field limit, we show that it reduces to standard electromagnetism in the presence of an effective electromagnetic current which is generated by the momentum density of the matter/energy distribution, even for neutral sources. This implies that in the presence of dark energy,more » the motion of large-scale structures generates magnetic fields. Estimates of the present amplitude of the generated seed fields for typical spiral galaxies could reach 10{sup −9} G without any amplification. In the case of compact rotating objects, the theory predicts their magnetic moments to be related to their angular momenta in the way suggested by the so called Schuster-Blackett conjecture.« less
de Morais Sousa, Kleiton; Probst, Werner; Bortolotti, Fernando; Martelli, Cicero; da Silva, Jean Carlos Cardozo
2014-09-05
This work reports the thermal modeling and characterization of a thyristor. The thyristor is used in a 6.5-MW generator excitation bridge. Temperature measurements are performed using fiber Bragg grating (FBG) sensors. These sensors have the benefits of being totally passive and immune to electromagnetic interference and also multiplexed in a single fiber. The thyristor thermal model consists of a second order equivalent electric circuit, and its power losses lead to an increase in temperature, while the losses are calculated on the basis of the excitation current in the generator. Six multiplexed FBGs are used to measure temperature and are embedded to avoid the effect of the strain sensitivity. The presented results show a relationship between field current and temperature oscillation and prove that this current can be used to determine the thermal model of a thyristor. The thermal model simulation presents an error of 1.5 °C, while the FBG used allows for the determination of the thermal behavior and the field current dependence. Since the temperature is a function of the field current, the corresponding simulation can be used to estimate the temperature in the thyristors.
de Morais Sousa, Kleiton; Probst, Werner; Bortolotti, Fernando; Martelli, Cicero; da Silva, Jean Carlos Cardozo
2014-01-01
This work reports the thermal modeling and characterization of a thyristor. The thyristor is used in a 6.5-MW generator excitation bridge. Temperature measurements are performed using fiber Bragg grating (FBG) sensors. These sensors have the benefits of being totally passive and immune to electromagnetic interference and also multiplexed in a single fiber. The thyristor thermal model consists of a second order equivalent electric circuit, and its power losses lead to an increase in temperature, while the losses are calculated on the basis of the excitation current in the generator. Six multiplexed FBGs are used to measure temperature and are embedded to avoid the effect of the strain sensitivity. The presented results show a relationship between field current and temperature oscillation and prove that this current can be used to determine the thermal model of a thyristor. The thermal model simulation presents an error of 1.5 °C, while the FBG used allows for the determination of the thermal behavior and the field current dependence. Since the temperature is a function of the field current, the corresponding simulation can be used to estimate the temperature in the thyristors. PMID:25198007
The 15 273 Å diffuse interstellar band in the dark cloud Barnard 68
NASA Astrophysics Data System (ADS)
Elyajouri, Meriem; Cox, Nick L. J.; Lallement, Rosine
2017-09-01
High obscuration of background stars behind dark clouds precludes the detection of optical diffuse interstellar bands (DIBs) and hence our knowledge of DIB carriers in these environments. Taking advantage of the reduced obscuration of starlight in the near-infrared (NIR) we used one of the strongest NIR DIBs at 15 273 Å to probe the presence and properties of its carrier throughout the nearby interstellar dark cloud Barnard 68. We measured equivalent widths (EW) for different ranges of visual extinction AV, using VLT/KMOS H-band (1.46-1.85 μm) moderate-resolution (R 4000) spectra of 43 stars situated behind the cloud. To do so, we fitted the data with synthetic stellar spectra from the APOGEE project and TAPAS synthetic telluric transmissions appropriate for the observing site and time period. The results show an increase of DIB EW with increasing AV. However, the rate of increase is much flatter than expected from the EW-AV quasi-proportionality established for this DIB in the Galactic diffuse interstellar medium. Based on a simplified inversion assuming sphericity, it is found that the volume density of the DIB carrier is 2.7 and 7.9 times lower than this expected average value in the external and central regions of the cloud, which have nH≃ 0.4 and 3.5 × 105 cm-3, respectively. Further measurements with multiplex NIR spectrographs should allow detailed modeling of such an edge effect of this DIB and other bands and help clarify its actual origin. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 096.C-0931(A).
Accelerated Genome Engineering through Multiplexing
Zhao, Huimin
2015-01-01
Throughout the biological sciences, the past fifteen years have seen a push towards the analysis and engineering of biological systems at the organism level. Given the complexity of even the simplest organisms, though, to elicit a phenotype of interest often requires genotypic manipulation of several loci. By traditional means, sequential editing of genomic targets requires a significant investment of time and labor, as the desired editing event typically occurs at a very low frequency against an overwhelming unedited background. In recent years, the development of a suite of new techniques has greatly increased editing efficiency, opening up the possibility for multiple editing events to occur in parallel. Termed as multiplexed genome engineering, this approach to genome editing has greatly expanded the scope of possible genome manipulations in diverse hosts, ranging from bacteria to human cells. The enabling technologies for multiplexed genome engineering include oligonucleotide-based and nuclease-based methodologies, and their application has led to the great breadth of successful examples described in this review. While many technical challenges remain, there also exists a multiplicity of opportunities in this rapidly expanding field. PMID:26394307
Effects of temporal correlations in social multiplex networks.
Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo
2017-08-17
Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.
Multiplexed phase-space imaging for 3D fluorescence microscopy.
Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura
2017-06-26
Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.
Large resistive 2D Micromegas with genetic multiplexing and some imaging applications
NASA Astrophysics Data System (ADS)
Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.
2016-10-01
The performance of the first large resistive Micromegas detectors with 2D readout and genetic multiplexing is presented. These detectors have a 50 × 50cm2 active area and are equipped with 1024 strips both in X- and Y-directions. The same genetic multiplexing pattern is applied on both coordinates, resulting in the compression of signals on 2 × 61 readout channels. Four such detectors have been built at CERN, and extensively tested with cosmics. The resistive strip film allows for very high gain operation, compensating for the charge spread on the 2 dimensions as well as the S / N loss due to the huge, 1 nF input capacitance. This film also creates a significantly different signal shape in the X- and Y-coordinates due to the charge evacuation along the resistive strips. All in all a detection efficiency above 95% is achieved with a 1 cm drift gap. Though not yet optimal, the measured 300 μm spatial resolution allows for very precise imaging in the field of muon tomography, and some applications of these detectors are presented.
Figueroa, J V; Alvarez, J A; Ramos, J A; Vega, C A; Buening, G M
1993-01-01
A study was conducted to test the applicability of a Polymerase Chain Reaction (PCR)-based approach for the simultaneous detection of the bovine hemoparasites Babesia bigemina, B. bovis and Anaplasma marginale. Bovine blood samples from cattle ranches of a previously determined enzootic zone in the Yucatan Peninsula of Mexico, were collected from peripheral blood and processed for PCR analysis. Blood samples were subjected to DNA amplification by placing an aliquot in a reaction tube containing oligonucleotide primers specific for DNA of each hemoparasite species. The PCR products were detected by Dot-Blot nucleic acid hybridization utilizing nonradioactive, species-specific, digoxigenin PCR-labeled DNA probes. Four hundred twenty one field samples analyzed by the multiplex PCR-DNA probe assay showed 66.7%, 60.1% and 59.6% prevalence rates for B. bigemina, B. bovis and A. marginale, respectively. The multiplex PCR analysis showed that animals with single, double or triple infection could be detected with the parasite specific DNA probes. The procedure is proposed as a valuable tool for the epidemiological analysis in regions where the hemoparasite species are concurrently infecting cattle.
Quick, Joshua; Grubaugh, Nathan D; Pullan, Steven T; Claro, Ingra M; Smith, Andrew D; Gangavarapu, Karthik; Oliveira, Glenn; Robles-Sikisaka, Refugio; Rogers, Thomas F; Beutler, Nathan A; Burton, Dennis R; Lewis-Ximenez, Lia Laura; de Jesus, Jaqueline Goes; Giovanetti, Marta; Hill, Sarah C; Black, Allison; Bedford, Trevor; Carroll, Miles W; Nunes, Marcio; Alcantara, Luiz Carlos; Sabino, Ester C; Baylis, Sally A; Faria, Nuno R; Loose, Matthew; Simpson, Jared T; Pybus, Oliver G; Andersen, Kristian G; Loman, Nicholas J
2017-06-01
Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples (i.e., without isolation and culture) remains challenging for viruses such as Zika, for which metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence-complete genomes, comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimized library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an Internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved in 1-2 d by starting with clinical samples and following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. The protocol can be used to sequence other viral genomes using the online Primal Scheme primer designer software. It is suitable for sequencing either RNA or DNA viruses in the field during outbreaks or as an inexpensive, convenient method for use in the lab.
No-Go Theorem for k-Essence Dark Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonvin, Camille; Caprini, Chiara; Durrer, Ruth
We demonstrate that if k-essence can solve the coincidence problem and play the role of dark energy in the Universe, the fluctuations of the field have to propagate superluminally at some stage. We argue that this implies that successful k-essence models violate causality. It is not possible to define a time ordered succession of events in a Lorentz invariant way. Therefore, k-essence cannot arise as a low energy effective field theory of a causal, consistent high energy theory.
Laboratory Constraints on Chameleon Dark Energy and Power-Law Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steffen, J. H.; Baumbaugh, A.; Chou, A. S.
2010-12-31
We report results from a search for chameleon particles created via photon-chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of unexplored chameleon power-law and dark energy models. These results exclude 5 orders of magnitude in the coupling of chameleons to photons covering a range of 4 orders of magnitude in chameleon effective mass and, for individual models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.
NASA Astrophysics Data System (ADS)
Storm, Emma; Jeltema, Tesla E.; Splettstoesser, Megan; Profumo, Stefano
2017-04-01
The annihilation of dark matter particles is expected to yield a broad radiation spectrum via the production of Standard Model particles in astrophysical environments. In particular, electrons and positrons from dark matter annihilation produce synchrotron radiation in the presence of magnetic fields. Galaxy clusters are the most massive collapsed structures in the universe, and are known to host ˜μG-scale magnetic fields. They are therefore ideal targets to search for, or to constrain the synchrotron signal from dark matter annihilation. In this work, we use the expected sensitivities of several planned surveys from the next generation of radio telescopes to predict the constraints on dark matter annihilation models which will be achieved in the case of non-detections of diffuse radio emission from galaxy clusters. Specifically, we consider the Tier 1 survey planned for the Low Frequency Array (LOFAR) at 120 MHz, the Evolutionary Map of the Universe (EMU) survey planned for the Australian Square Kilometre Array Pathfinder (ASKAP) at 1.4 GHz, and planned surveys for Aperture Tile in Focus (APERTIF) at 1.4 GHz. We find that, for massive clusters and dark matter masses ≲ 100 {GeV}, the predicted limits on the annihilation cross section would rule out vanilla thermal relic models for even the shallow LOFAR Tier 1, ASKAP, and APERTIF surveys.
Recognizing Axionic Dark Matter by Compton and de Broglie Scale Modulation of Pulsar Timing.
De Martino, Ivan; Broadhurst, Tom; Tye, S-H Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth
2017-12-01
Light axionic dark matter, motivated by string theory, is increasingly favored for the "no weakly interacting massive particle era". Galaxy formation is suppressed below a Jeans scale of ≃10^{8} M_{⊙} by setting the axion mass to m_{B}∼10^{-22} eV, and the large dark cores of dwarf galaxies are explained as solitons on the de Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency ω_{B}=(2.5 months)^{-1}(m_{B}/10^{-22} eV) would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de Broglie interference, with a dense soliton core of size ≃150 pc, at the Galactic center. The oscillating field pressure induces general relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals of ≃400 nsec/(m_{B}/10^{-22} eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.
Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning
NASA Astrophysics Data System (ADS)
Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram
2014-06-01
High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.
A new approach for strawberry disease control
USDA-ARS?s Scientific Manuscript database
Here, we report a new approach demonstrating the killing power of UV-C treatment against fungal pathogens without damaging strawberry plants. UV-C light was followed by a specific dark period. Field trials also included applications of microbial antagonists twice a week. The dark period most like...
The presence of a phantom field in a Randall–Sundrum scenario
NASA Astrophysics Data System (ADS)
Acuña-Cárdenas, Rubén O.; Astorga-Moreno, J. A.; García-Aspeitia, Miguel A.; López-Domínguez, J. C.
2018-02-01
The presence of phantom dark energy in brane world cosmology generates important new effects, causing a premature big rip singularity when we increase the presence of extra dimensions and considerably competing with the other components of our Universe. This article first considers only a field with the characteristic equation ω<-1 and then the explicit form of the scalar field with a potential with a maximum (with the aim of avoiding a big rip singularity). In both cases we study the dynamics robustly through dynamical analysis theory, considering in detail parameters such as the deceleration q and the vector field associated to the dynamical system. Results are discussed with the purpose of treating the cosmology with a phantom field as dark energy in a Randall–Sundrum scenario.
Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days
NASA Astrophysics Data System (ADS)
Yoshino, Ken-ichiro; Ochi, Takao; Fujiwara, Mikio; Sasaki, Masahide; Tajima, Akio
2013-12-01
Maintenance-free wavelength-division-multiplexing quantum key distribution for 30 days was achieved through a 22-km field fiber. Using polarization-independent interferometers and stabilization techniques, we attained a quantum bit error rate as low as 1.70% and a key rate as high as 229.8 kbps, making the record of total secure key of 595.6 Gbits accumulated over an uninterrupted operation period.
Three-dimensional particle tracking via tunable color-encoded multiplexing.
Duocastella, Martí; Theriault, Christian; Arnold, Craig B
2016-03-01
We present a novel 3D tracking approach capable of locating single particles with nanometric precision over wide axial ranges. Our method uses a fast acousto-optic liquid lens implemented in a bright field microscope to multiplex light based on color into different and selectable focal planes. By separating the red, green, and blue channels from an image captured with a color camera, information from up to three focal planes can be retrieved. Multiplane information from the particle diffraction rings enables precisely locating and tracking individual objects up to an axial range about 5 times larger than conventional single-plane approaches. We apply our method to the 3D visualization of the well-known coffee-stain phenomenon in evaporating water droplets.
NASA Technical Reports Server (NTRS)
Barrett, John R. (Inventor)
1986-01-01
A silicon wafer is provided which does not employ individually bonded leads between the IR sensitive elements and the input stages of multiplexers. The wafer is first coated with lead selenide in a first detector array area and is thereafter coated with lead sulfide within a second detector array area. The described steps result in the direct chemical deposition of lead selenide and lead sulfide upon the silicon wafer to eliminate individual wire bonding, bumping, flip chipping, planar interconnecting methods of connecting detector array elements to silicon chip circuitry, e.g., multiplexers, to enable easy fabrication of very long arrays. The electrode structure employed, produces an increase in the electrical field gradient between the electrodes for a given volume of detector material, relative to conventional electrode configurations.
NASA Astrophysics Data System (ADS)
Sarfatti, Jack; Levit, Creon
2009-06-01
We present a model for the origin of gravity, dark energy and dark matter: Dark energy and dark matter are residual pre-inflation false vacuum random zero point energy (w = - 1) of large-scale negative, and short-scale positive pressure, respectively, corresponding to the "zero point" (incoherent) component of a superfluid (supersolid) ground state. Gravity, in contrast, arises from the 2nd order topological defects in the post-inflation virtual "condensate" (coherent) component. We predict, as a consequence, that the LHC will never detect exotic real on-mass-shell particles that can explain dark matter ΩMDM approx 0.23. We also point out that the future holographic dark energy de Sitter horizon is a total absorber (in the sense of retro-causal Wheeler-Feynman action-at-a-distance electrodynamics) because it is an infinite redshift surface for static detectors. Therefore, the advanced Hawking-Unruh thermal radiation from the future de Sitter horizon is a candidate for the negative pressure dark vacuum energy.
Dissipative dark matter halos: The steady state solution
NASA Astrophysics Data System (ADS)
Foot, R.
2018-02-01
Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.
Constraints on dark matter from intergalactic radiation
NASA Technical Reports Server (NTRS)
Overduin, J. M.; Wesson, P. S.
1992-01-01
Several of the dark matter candidates that have been proposed are believed to be unstable to decay, which would contribute photons to the radiation field between galaxies. The main candidates of this type are light neutrinos and axions, primordial mini-black holes, and a nonzero 'vacuum' energy. All of these can be constrained in nature by observational data on the extragalactic background light and the microwave background radiation. Black holes and the vacuum can be ruled out as significant contributors to the 'missing mass'. Light axions are also unlikely candidates; however, those with extremely small rest energies (the so-called 'invisible' axions) remain feasible. Light neutrinos, like those proposed by Sciama, are marginally viable. In general, we believe that the intergalactic radiation field is an important way of constraining all types of dark matter.
Search for Indirect Signals of Dark Matter with The High Altitude Water Cherenkov (HAWC) Observatory
NASA Astrophysics Data System (ADS)
Baughman, Brian; Harding, Patrick; HAWC Collaboration
2015-04-01
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view observatory sensitive to 100 GeV-100 TeV gamma rays and cosmic rays. Located at an elevation of 4100 m on the Sierra Negra volcano in Mexico, HAWC observes extensive air showers from gamma rays via their production of Cherenkov light within an array of water tanks. With a wide field-of-view observing 2/3 of the sky each day and a sensitivity of greater than 1 Crab per day, HAWC has the ability to probe a large fraction of the sky for the signals of TeV-mass dark matter. HAWC's sensitivity to dark matter for several astrophysical sources and some early limits from the built detector will be presented.
A 750 GeV portal: LHC phenomenology and dark matter candidates
D’Eramo, Francesco; de Vries, Jordy; Panci, Paolo
2016-05-16
We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigate where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise.more » In conclusion, pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.« less
A 750 GeV portal: LHC phenomenology and dark matter candidates
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Eramo, Francesco; de Vries, Jordy; Panci, Paolo
We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigate where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise.more » In conclusion, pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.« less
NASA Astrophysics Data System (ADS)
Li, Jiahua; Qu, Ye; Yu, Rong; Wu, Ying
2018-02-01
We explore theoretically the generation and all-optical control of optical frequency combs (OFCs) in photon transmission based on a combination of single-atom-cavity quantum electrodynamics (CQED) and electromagnetically induced transparency (EIT). Here an external control field is used to form the cavity dark mode of the CQED system. When the strengths of the applied EIT control field are appropriately tuned, enhanced comb generation can be achieved. We discuss the properties of the dark mode and clearly show that the formation of the dark mode enables the efficient generation of OFCs. In our approach, the comb spacing is determined by the beating frequency between the driving pump and seed lasers. Our demonstrated theory may pave the way towards all-optical coherent control of OFCs using a CQED architecture.
Finding structure in the dark: Coupled dark energy, weak lensing, and the mildly nonlinear regime
NASA Astrophysics Data System (ADS)
Miranda, Vinicius; González, Mariana Carrillo; Krause, Elisabeth; Trodden, Mark
2018-03-01
We reexamine interactions between the dark sectors of cosmology, with a focus on robust constraints that can be obtained using only mildly nonlinear scales. While it is well known that couplings between dark matter and dark energy can be constrained to the percent level when including the full range of scales probed by future optical surveys, calibrating matter power spectrum emulators to all possible choices of potentials and couplings requires many computationally expensive n-body simulations. Here we show that lensing and clustering of galaxies in combination with the cosmic microwave background (CMB) are capable of probing the dark sector coupling to the few percent level for a given class of models, using only linear and quasilinear Fourier modes. These scales can, in principle, be described by semianalytical techniques such as the effective field theory of large-scale structure.
Dark matter influence on black objects thermodynamics
NASA Astrophysics Data System (ADS)
Rogatko, Marek; Wojnar, Aneta
2018-05-01
Physical process version of the first law of black hole thermodynamics in Einstein-Maxwell dark matter gravity was derived. The dark matter sector is mimicked by the additional U(1)-gauge field coupled to the ordinary Maxwell one. By considering any cross section of the black hole event horizon to the future of the bifurcation surface, the equilibrium state version of the first law of black hole mechanics was achieved. The considerations were generalized to the case of Einstein-Yang-Mills dark matter gravity theory. The main conclusion is that the influence of dark matter is crucial in the formation process of black objects. This fact may constitute the explanation of the recent observations of the enormous mass of the super luminous quasars formed in a relatively short time after Big Bang. We also pay attention to the compact binaries thermodynamics, when dark matter sector enters the game.
Updates to Post-Flash Calibration for the Advanced Camera for Surveys Wide Field Channel
NASA Astrophysics Data System (ADS)
Miles, Nathan
2018-03-01
This report presents a new technique for generating the post-flash calibration reference file for the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC). The new method substantially reduces, if not, eliminates all together the presence of dark current artifacts arising from improper dark subtraction, while simultaneously preserving flat-field artifacts. The stability of the post-flash calibration reference file over time is measured using data taken yearly since 2012 and no statistically significant deviations are found. An analysis of all short-flashed darks taken every two days since January 2015 reveals a periodic modulation of the LED intensity on timescales of about one year. This effect is most readily explained by changes to the local temperature in the area surrounding the LED. However, a slight offset between the periods of the temperature and LED modulations lends to the possibility that the effect is a chance observation of the two sinusoids at an unfortunate point in their beat cycle.
NASA Astrophysics Data System (ADS)
Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.
2015-04-01
The objective of this paper is to discuss the Chameleon Brans-Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. The financial Supported from Department of Science and Technology, Govt. of India under Project Grant No. SR/FTP/PS-167/2011 is thankfully acknowledged by SC
Direct observation of charged domain walls in hybrid improper ferroelectric (Ca,Sr)3Ti2O7
NASA Astrophysics Data System (ADS)
Kurushima, Kousuke; Yoshimoto, Wataru; Ishii, Yui; Cheong, Sang-Wook; Mori, Shigeo
2017-10-01
We investigated ferroelectric (FE) domain wall structures including “charged domain walls” of hybrid improper FE (Ca,Sr)3Ti2O7 at the subatomic resolution by dark-field transmission electron microscopy (TEM) and high-resolution state-of-the-art aberration-corrected high-angle annular-dark-field (HAADF) scanning transmission electron microscopy (STEM). Dark-field TEM and high-resolution HAADF-STEM images obtained in the FE phase of single crystals of Ca2.46Sr0.54Ti2O7 revealed the formation of abundant charged domain walls with the head-to-head and tail-to-tail configurations in the FE domain structure, in addition to the FE 180° domain structure. The charged domain walls with the head-to-head and tail-to-tail FE polarizations exist stably and can be characterized as the unique double arc-type displacement of Ca/Sr ions in a unit cell without charge accumulation.
Higgs production as a probe of chameleon dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Philippe; Burrage, Clare; Davis, Anne-Christine
2010-05-15
In this paper we study various particle physics effects of a light, scalar dark energy field with chameleonlike couplings to matter. We show that a chameleon model with only matter couplings will induce a coupling to photons. In doing so, we derive the first microphysical realization of a chameleonic dark energy model coupled to the electromagnetic field strength. This analysis provides additional motivation for current and near-future tests of axionlike and chameleon particles. We find a new bound on the coupling strength of chameleons in uniformly coupled models. We also study the effect of chameleon fields on Higgs production, whichmore » is relevant for hadron colliders. These are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W{sup {+-}.} We show that, like the Tevatron, the LHC will not be able to rule out or observe chameleons through this mechanism, because gauge invariance of the low energy Lagrangian suppresses the corrections that may arise.« less
Detection of magnetized quark-nuggets, a candidate for dark matter.
VanDevender, J Pace; VanDevender, Aaron P; Sloan, T; Swaim, Criss; Wilson, Peter; Schmitt, Robert G; Zakirov, Rinat; Blum, Josh; Cross, James L; McGinley, Niall
2017-08-18
Quark nuggets are theoretical objects composed of approximately equal numbers of up, down, and strange quarks and are also called strangelets and nuclearites. They have been proposed as a candidate for dark matter, which constitutes ~85% of the universe's mass and which has been a mystery for decades. Previous efforts to detect quark nuggets assumed that the nuclear-density core interacts directly with the surrounding matter so the stopping power is minimal. Tatsumi found that quark nuggets could well exist as a ferromagnetic liquid with a ~10 12 -T magnetic field. We find that the magnetic field produces a magnetopause with surrounding plasma, as the earth's magnetic field produces a magnetopause with the solar wind, and substantially increases their energy deposition rate in matter. We use the magnetopause model to compute the energy deposition as a function of quark-nugget mass and to analyze testing the quark-nugget hypothesis for dark matter by observations in air, water, and land. We conclude the water option is most promising.
Pinot, C; Deredjian, A; Nazaret, S; Brothier, E; Cournoyer, B; Segonds, C; Favre-Bonté, S
2011-11-01
Aim of the study is to identify accurately Stenotrophomonas maltophilia isolates recovered from environmental and clinical samples. Recovery of Sten. maltophilia-like isolates from soil samples using the vancomycin, imipenem, amphotericin B (VIA) selective agar medium enabled distinction of various morphotype colonies. A set of soil and clinical isolates was tested for species identification using different methods. 16S rDNA analyses showed the dark green with a blue halo morphotype to be typical Sten. maltophilia strains. The API-20NE, Vitek-2 and Biolog phenotypic analyses typically used for the identification of clinical isolates did not perform well on these soil isolates. The species-specific PCR screening targeting Sten. maltophilia 23S rDNA and the multiplex smeD/ggpS PCR, differentiating Sten. maltophilia from Stenotrophomonas rhizophila, were tested for improvement of these identification schemes. The latter multiplex PCR identified all isolates tested in this study, whatever be their origin. Isolation on VIA medium and confirmation of Sten. maltophilia species membership by smeD PCR is proposed to identify environmental and clinical isolates of Sten. maltophilia. The proposed approach enables isolation and identification of Sten. maltophilia from different environments in an easy and rapid way. This approach will be useful to accurately manage studies on the abundance and distribution of Sten. maltophilia in hospital and nonhospital environments. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun
2016-01-01
We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.
Shiojiri, M; Saijo, H
2006-09-01
The first part of this paper is devoted to physics, to explain high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and to interpret why HAADF-STEM imaging is incoherent, instructing a strict definition of interference and coherence of electron waves. Next, we present our recent investigations of InGaN/GaN multiple quantum wells and AlGaN/GaN strained-layer superlattice claddings in GaN-based violet laser diodes, which have been performed by HAADF-STEM and high-resolution field-emission gun scanning electron microscopy.
Accounting for Dark Current Accumulated during Readout of Hubble's ACS/WFC Detectors
NASA Astrophysics Data System (ADS)
Ryon, Jenna E.; Grogin, Norman A.; Coe, Dan A.; ACS Team
2018-06-01
We investigate the properties of excess dark current accumulated during the 100-second full-frame readout of the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) detectors. This excess dark current, called "readout dark", gives rise to ambient background gradients and hot columns in each ACS/WFC image. While readout dark signal is removed from science images during the bias correction step in CALACS, the additional noise from the readout dark is currently not taken into account. We develop a method to estimate the readout dark noise properties in ACS/WFC observations. We update the error (ERR) extensions of superbias images to include the appropriate noise from the ambient readout dark gradient and stable hot columns. In recent data, this amounts to about 5 e-/pixel added variance in the rows farthest from the WFC serial registers, and about 7 to 30 e-/pixel added variance along the stable hot columns. We also flag unstable hot columns in the superbias data quality (DQ) extensions. The new reference file pipeline for ACS/WFC implements these updates to our superbias creation process.
Collider study on the loop-induced dark matter mediation
NASA Astrophysics Data System (ADS)
Tsai, Yuhsin
2016-06-01
Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling - given by the Dark Penguin - in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.
The Dark UNiverse Explorer (DUNE): proposal to ESA's cosmic vision
NASA Astrophysics Data System (ADS)
Refregier, A.
2009-03-01
The Dark UNiverse Explorer (DUNE) is a wide-field space imager whose primary goal is the study of dark energy and dark matter with unprecedented precision. For this purpose, DUNE is optimised for the measurement of weak gravitational lensing but will also provide complementary measurements of baryonic accoustic oscillations, cluster counts and the Integrated Sachs Wolfe effect. Immediate auxiliary goals concern the evolution of galaxies, to be studied with unequalled statistical power, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is an Medium-class mission which makes use of readily available components, heritage from other missions, and synergy with ground based facilities to minimise cost and risks. The payload consists of a 1.2 m telescope with a combined visible/NIR field-of-view of 1 deg2. DUNE will carry out an all-sky survey, ranging from 550 to 1600 nm, in one visible and three NIR bands which will form a unique legacy for astronomy. DUNE will yield major advances in a broad range of fields in astrophysics including fundamental cosmology, galaxy evolution, and extrasolar planet search. DUNE was recently selected by ESA as one of the mission concepts to be studied in its Cosmic Vision programme.
NASA Astrophysics Data System (ADS)
Ma, Haotong; Hu, Haojun; Xie, Wenke; Xu, Xiaojun
2013-09-01
The generation of vortex laser beam by using phase-only liquid crystal spatial light modulator (LC-SLM) combined with the spiral phase screen is experimentally and theoretically studied. Results show that Gaussian and dark hollow vortex laser beams can be generated by using this method successfully. Differing with the Gaussian and dark hollow beams, far field intensities of the generated vortex laser beams still exhibit dark hollow distributions. The comparisons between the ideal generation and experimental generation of vortex laser beams with different optical topological charges by using phase only LC-SLM is investigated in detail. Compared with the ideal generated vortex laser beam, phase distribution of the experimental generated vortex laser beam contains many phase singularities, the number of which is the same as that of the optical topological charges. The corresponding near field and far field dark hollow intensity distributions of the generated vortex laser beams exhibit discontinuous in rotational direction. Detailed theoretical analysis show that the main reason for the physical phenomenon mentioned above is the response error of phase only LC-SLM. These studies can provide effective guide for the generation of vortex laser beam by using phase only LC-SLM for optical tweezers and free space optical communication.
The Chameleon Solid Rocket Propulsion Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Glen A.
The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to thismore » forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).« less
Challenging the cosmological constant
NASA Astrophysics Data System (ADS)
Kaloper, Nemanja
2007-09-01
We outline a dynamical dark energy scenario whose signatures may be simultaneously tested by astronomical observations and laboratory experiments. The dark energy is a field with slightly sub-gravitational couplings to matter, a logarithmic self-interaction potential with a scale tuned to ˜10 eV, as is usual in quintessence models, and an effective mass m influenced by the environmental energy density. Its forces may be suppressed just below the current bounds by the chameleon-like mimicry, whereby only outer layers of mass distributions, of thickness 1/m, give off appreciable long range forces. After inflation and reheating, the field is relativistic, and attains a Planckian expectation value before Hubble friction freezes it. This can make gravity in space slightly stronger than on Earth. During the matter era, interactions with nonrelativistic matter dig a minimum close to the Planck scale. However, due to its sub-gravitational matter couplings the field will linger away from this minimum until the matter energy density dips below ˜10 eV. Then it starts to roll to the minimum, driving a period of cosmic acceleration. Among the signatures of this scenario may be dark energy equation of state w≠-1, stronger gravity in dilute mediums, that may influence BBN and appear as an excess of dark matter, and sub-millimeter corrections to Newton's law, close to the present laboratory limits.
Surface chemistry and morphology in single particle optical imaging
NASA Astrophysics Data System (ADS)
Ekiz-Kanik, Fulya; Sevenler, Derin Deniz; Ünlü, Neşe Lortlar; Chiari, Marcella; Ünlü, M. Selim
2017-05-01
Biological nanoparticles such as viruses and exosomes are important biomarkers for a range of medical conditions, from infectious diseases to cancer. Biological sensors that detect whole viruses and exosomes with high specificity, yet without additional labeling, are promising because they reduce the complexity of sample preparation and may improve measurement quality by retaining information about nanoscale physical structure of the bio-nanoparticle (BNP). Towards this end, a variety of BNP biosensor technologies have been developed, several of which are capable of enumerating the precise number of detected viruses or exosomes and analyzing physical properties of each individual particle. Optical imaging techniques are promising candidates among broad range of label-free nanoparticle detectors. These imaging BNP sensors detect the binding of single nanoparticles on a flat surface functionalized with a specific capture molecule or an array of multiplexed capture probes. The functionalization step confers all molecular specificity for the sensor's target but can introduce an unforeseen problem; a rough and inhomogeneous surface coating can be a source of noise, as these sensors detect small local changes in optical refractive index. In this paper, we review several optical technologies for label-free BNP detectors with a focus on imaging systems. We compare the surface-imaging methods including dark-field, surface plasmon resonance imaging and interference reflectance imaging. We discuss the importance of ensuring consistently uniform and smooth surface coatings of capture molecules for these types of biosensors and finally summarize several methods that have been developed towards addressing this challenge.
Li, Wenbin; Abad, Jorge A; French-Monar, Ronald D; Rascoe, John; Wen, Aimin; Gudmestad, Neil C; Secor, Gary A; Lee, Ing-Ming; Duan, Yongping; Levy, Laurene
2009-07-01
The new Liberibacter species, 'Candidatus Liberibacter solanacearum' (Lso) recently associated with potato/tomato psyllid-transmitted diseases in tomato and capsicum in New Zealand, was found to be consistently associated with a newly emerging potato zebra chip (ZC) disease in Texas and other southwestern states in the USA. A species-specific primer LsoF was developed for both quantitative real-time PCR (qPCR) and conventional PCR (cPCR) to detect and quantify Lso in infected samples. In multiplex qPCR, a plant cytochrome oxidase (COX)-based probe-primer set was used as a positive internal control for host plants, which could be used to reliably access the DNA extraction quality and to normalize qPCR data for accurate quantification of the bacterial populations in environment samples. Neither the qPCR nor the cPCR using the primer and/or probe sets with LsoF reacted with other Liberibacter species infecting citrus or other potato pathogens. The low detection limit of the multiplex qPCR was about 20 copies of the target 16S rDNA templates per reaction for field samples. Lso was readily detected and quantified in various tissues of ZC-affected potato plants collected from fields in Texas. A thorough but uneven colonization of Lso was revealed in various tissues of potato plants. The highest Lso populations were about 3x10(8) genomes/g tissue in the root, which were 3-order higher than those in the above-ground tissues of potato plants. The Lso bacterial populations were normally distributed across the ZC-affected potato plants collected from fields in Texas, with 60% of ZC-affected potato plants harboring an average Lso population from 10(5) to 10(6) genomes/g tissue, 4% of plants hosting above 10(7) Lso genomes/g tissue, and 8% of plants holding below 10(3) Lso genomes/g tissue. The rapid, sensitive, specific and reliable multiplex qPCR showed its potential to become a powerful tool for early detection and quantification of the new Liberibacter species associated with potato ZC, and will be very useful for the potato quarantine programs and seed potato certification programs to ensure the availability of clean seed potato stocks and also for epidemiological studies on the disease.
Finite Temperature Density Profile in SFDM
NASA Astrophysics Data System (ADS)
Robles, Victor H.; Matos, T.
Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. On the other hand the standard cold dark matter model simulations predict a more cuspy behavior. Feedback from star formation has been widely used to reconcile simulations with observations, this might be successful in field dwarf galaxies but its success in high mass LSB galaxies remains unclear. Additionally, including too much feedback in the simulations is a double-edged sword, in order to obtain a cored DM distribution from an initially cuspy one, feedback recipes require to remove a large quantity of baryons from the center of galaxies, however, other feedback recipes produce twice more satellite galaxies of a given luminosity and with much smaller mass to light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that the dark matter is an auto-interacting real scalar field in a thermal bath of temperature T with an initial Z 2 symmetric potential, as the universe expands the temperature drops so that the Z 2 symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system and show both, that it satisfies the two desired requirements and that the rotation curve profile is not longer universal.
Li, Jia-Han; Webb, Kevin J; Burke, Gerald J; White, Daniel A; Thompson, Charles A
2006-05-01
A multiresolution direct binary search iterative procedure is used to design small dielectric irregular diffractive optical elements that have subwavelength features and achieve near-field focusing below the diffraction limit. Designs with a single focus or with two foci, depending on wavelength or polarization, illustrate the possible functionalities available from the large number of degrees of freedom. These examples suggest that the concept of such elements may find applications in near-field lithography, wavelength-division multiplexing, spectral analysis, and polarization beam splitters.
NASA Astrophysics Data System (ADS)
Starks, Michael R.
1990-09-01
A variety of low cost devices for capturing, editing and displaying field sequential 60 cycle stereoscopic video have recently been marketed by 3D TV Corp. and others. When properly used, they give very high quality images with most consumer and professional equipment. Our stereoscopic multiplexers for creating and editing field sequential video in NTSC or component(SVHS, Betacain, RGB) and Home 3D Theater system employing LCD eyeglasses have made 3D movies and television available to a large audience.
Thresholded-Rewards Decision Problems: Acting Effectively in Timed Domains
2009-04-02
intermediate reward (score difference). 89 5.8 Regions covered by each role in each play. (a) RoboCup play. The defender’s region is colored with dark dots; the...colored with dark dots; the middle defender’s region is colored with a light checkerboard pattern, and the front defender’s region is colored with...defender’s region is colored with dark dots; the supporter’s region is colored with diagonal lines. The attacker’s region is the entire field. (b
Anisotropic ghost dark energy cosmological model with hybrid expansion law
NASA Astrophysics Data System (ADS)
Mahanta, Chandra Rekha; Sarma, Nitin
2017-11-01
In this paper, we study the anisotropic Bianchi type-VI0 metric filled with dark matter and anisotropic ghost dark energy. We have solved the Einstein's field equations by considering hybrid expansion law (HEL) for the average scale factor. It is found that at later times the universe becomes spatially homogeneous, isotropic and flat. From a state finder diagnosis, it is found that our model is having similar behavior like ɅCDM model at late phase of cosmic time.
First SN Discoveries from the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Abbott, T.; Abdalla, F.; Achitouv, I.; Ahn, E.; Aldering, G.; Allam, S.; Alonso, D.; Amara, A.; Annis, J.; Antonik, M.; Aragon-Salamanca, A.; Armstrong, R.; Ashall, C.; Asorey, J.; Bacon, D.; Balbinot, E.; Banerji, M.; Barbary, K.; Barkhouse, W.; Baruah, L.; Bauer, A.; Bechtol, K.; Becker, M.; Bender, R.; Benoist, C.; Benoit-Levy, A.; Bernardi, M.; Bernstein, G.; Bernstein, J. P.; Bernstein, R.; Bertin, E.; Beynon, E.; Bhattacharya, S.; Biesiadzinski, T.; Biswas, R.; Blake, C.; Bloom, J. S.; Bocquet, S.; Brandt, C.; Bridle, S.; Brooks, D.; Brown, P. J.; Brunner, R.; Buckley-Geer, E.; Burke, D.; Burkert, A.; Busha, M.; Campa, J.; Campbell, H.; Cane, R.; Capozzi, D.; Carlstrom, J.; Carnero Rosell, A.; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Carter, M.; Casas, R.; Castander, F. J.; Chen, Y.; Chiu, I.; Chue, C.; Clampitt, J.; Clerkin, L.; Cohn, J.; Colless, M.; Copeland, E.; Covarrubias, R. A.; Crittenden, R.; Crocce, M.; Cunha, C.; da Costa, L.; d'Andrea, C.; Das, S.; Das, R.; Davis, T. M.; Deb, S.; DePoy, D.; Derylo, G.; Desai, S.; de Simoni, F.; Devlin, M.; Diehl, H. T.; Dietrich, J.; Dodelson, S.; Doel, P.; Dolag, K.; Efstathiou, G.; Eifler, T.; Erickson, B.; Eriksen, M.; Estrada, J.; Etherington, J.; Evrard, A.; Farrens, S.; Fausti Neto, A.; Fernandez, E.; Ferreira, P. C.; Finley, D.; Fischer, J. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Furlanetto, C.; Garcia-Bellido, J.; Gaztanaga, E.; Gelman, M.; Gerdes, D.; Giannantonio, T.; Gilhool, S.; Gill, M.; Gladders, M.; Gladney, L.; Glazebrook, K.; Gray, M.; Gruen, D.; Gruendl, R.; Gupta, R.; Gutierrez, G.; Habib, S.; Hall, E.; Hansen, S.; Hao, J.; Heitmann, K.; Helsby, J.; Henderson, R.; Hennig, C.; High, W.; Hirsch, M.; Hoffmann, K.; Holhjem, K.; Honscheid, K.; Host, O.; Hoyle, B.; Hu, W.; Huff, E.; Huterer, D.; Jain, B.; James, D.; Jarvis, M.; Jarvis, M. J.; Jeltema, T.; Johnson, M.; Jouvel, S.; Kacprzak, T.; Karliner, I.; Katsaros, J.; Kent, S.; Kessler, R.; Kim, A.; Kim-Vy, T.; King, L.; Kirk, D.; Kochanek, C.; Kopp, M.; Koppenhoefer, J.; Kovacs, E.; Krause, E.; Kravtsov, A.; Kron, R.; Kuehn, K.; Kuemmel, M.; Kuhlmann, S.; Kunder, A.; Kuropatkin, N.; Kwan, J.; Lahav, O.; Leistedt, B.; Levi, M.; Lewis, P.; Liddle, A.; Lidman, C.; Lilly, S.; Lin, H.; Liu, J.; Lopez-Arenillas, C.; Lorenzon, W.; LoVerde, M.; Ma, Z.; Maartens, R.; Maccrann, N.; Macri, L.; Maia, M.; Makler, M.; Manera, M.; Maraston, C.; March, M.; Markovic, K.; Marriner, J.; Marshall, J.; Marshall, S.; Martini, P.; Marti Sanahuja, P.; Mayers, J.; McKay, T.; McMahon, R.; Melchior, P.; Merritt, K. W.; Merson, A.; Miller, C.; Miquel, R.; Mohr, J.; Moore, T.; Mortonson, M.; Mosher, J.; Mould, J.; Mukherjee, P.; Neilsen, E.; Ngeow, C.; Nichol, R.; Nidever, D.; Nord, B.; Nugent, P.; Ogando, R.; Old, L.; Olsen, J.; Ostrovski, F.; Paech, K.; Papadopoulos, A.; Papovich, C.; Patton, K.; Peacock, J.; Pellegrini, P. S. S.; Peoples, J.; Percival, W.; Perlmutter, S.; Petravick, D.; Plazas, A.; Ponce, R.; Poole, G.; Pope, A.; Refregier, A.; Reyes, R.; Ricker, P.; Roe, N.; Romer, K.; Roodman, A.; Rooney, P.; Ross, A.; Rowe, B.; Rozo, E.; Rykoff, E.; Sabiu, C.; Saglia, R.; Sako, M.; Sanchez, A.; Sanchez, C.; Sanchez, E.; Sanchez, J.; Santiago, B.; Saro, A.; Scarpine, V.; Schindler, R.; Schmidt, B. P.; Schmitt, R. L.; Schubnell, M.; Seitz, S.; Senger, R.; Sevilla, I.; Sharp, R.; Sheldon, E.; Sheth, R.; Smith, R. C.; Smith, M.; Snigula, J.; Soares-Santos, M.; Sobreira, F.; Song, J.; Soumagnac, M.; Spinka, H.; Stebbins, A.; Stoughton, C.; Suchyta, E.; Suhada, R.; Sullivan, M.; Sun, F.; Suntzeff, N.; Sutherland, W.; Swanson, M. E. C.; Sypniewski, A. J.; Szepietowski, R.; Talaga, R.; Tarle, G.; Tarrant, E.; Balan, S. Thaithara; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Uddin, S. A.; Ural, S.; Vikram, V.; Voigt, L.; Walker, A. R.; Walker, T.; Wechsler, R.; Weinberg, D.; Weller, J.; Wester, W.; Wetzstein, M.; White, M.; Wilcox, H.; Wilman, D.; Yanny, B.; Young, J.; Zablocki, A.; Zenteno, A.; Zhang, Y.; Zuntz, J.
2012-12-01
The Dark Energy Survey (DES) report the discovery of the first set of supernovae (SN) from the project. Images were observed as part of the DES Science Verification phase using the newly-installed 570-Megapixel Dark Energy Camera on the CTIO Blanco 4-m telescope by observers J. Annis, E. Buckley-Geer, and H. Lin. SN observations are planned throughout the observing campaign on a regular cadence of 4-6 days in each of the ten 3-deg2 fields in the DES griz filters.
A Korteweg-de Vries description of dark solitons in polariton superfluids
NASA Astrophysics Data System (ADS)
Carretero-González, R.; Cuevas-Maraver, J.; Frantzeskakis, D. J.; Horikis, T. P.; Kevrekidis, P. G.; Rodrigues, A. S.
2017-12-01
We study the dynamics of dark solitons in an incoherently pumped exciton-polariton condensate by means of a system composed of a generalized open-dissipative Gross-Pitaevskii equation for the polaritons' wavefunction and a rate equation for the exciton reservoir density. Considering a perturbative regime of sufficiently small reservoir excitations, we use the reductive perturbation method, to reduce the system to a Korteweg-de Vries (KdV) equation with linear loss. This model is used to describe the analytical form and the dynamics of dark solitons. We show that the polariton field supports decaying dark soliton solutions with a decay rate determined analytically in the weak pumping regime. We also find that the dark soliton evolution is accompanied by a shelf, whose dynamics follows qualitatively the effective KdV picture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bo; Jiang, Yunchun; Yang, Jiayan
Taking advantage of the high spatiotemporal resolution observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we present rare observations of the rapid formation of a filament caused by magnetic reconnection between two sets of dark threadlike structures. The two sets of dark threadlike structures belong to distinct flux systems with their adjacent ends anchored in an opposite-polarity magnetic field region, where the calculated photospheric velocity field shows that converging flows dominate there. Due to the converging flows, opposite-polarity magnetic flux converged and then canceled, leading to the formation ofmore » extreme ultraviolet (EUV) brightening that spread in opposite directions along the spine of the dark threadlike structures. Meanwhile, very weak remote brightening in the other terminals of the dark threadlike structures, as well as EUV loops, which rooted in the opposite-polarity magnetic field region, appeared. In addition, all of the AIA Fe line observations reveal that a flux rope was formed and underwent a rolling motion during the fadeaway of the EUV brightening. Soon after, as the EUV brightening disappeared, a filament that is very likely composed of two sets of intertwined dark threadlike structures was formed. Via differential emission measure (EM) analysis, it is found that both the EM and temperature of the plasma around the flux-canceling site increased during the brightening, implying that there, magnetic reconnection may occur to heat the plasma. These observations provide evidence that the filament is formed by magnetic reconnection associated with flux convergence and cancellation, and the magnetic structure of the filament is most likely a flux rope.« less
NASA Technical Reports Server (NTRS)
DiZio, P.; Li, W.; Lackner, J. R.; Matin, L.
1997-01-01
Psychophysical measurements of the level at which observers set a small visual target so as to appear at eye level (VPEL) were made on 13 subjects in 1.0 g and 1.5 g environments in the Graybiel Laboratory rotating room while they viewed a pitched visual field or while in total darkness. The gravitoinertial force was parallel to the z-axis of the head and body during the measurements. The visual field consisted of two 58 degrees high, luminous, pitched-from-vertical, bilaterally symmetric, parallel lines, viewed in otherwise total darkness. The lines were horizontally separated by 53 degrees and presented at each of 7 angles of pitch ranging from 30 degrees with the top of the visual field turned away from the subject (top backward) to 30 degrees with the top turned toward the subject (top forward). At 1.5 g, VPEL changed linearly with the pitch of the 2-line stimulus and was depressed with top backward pitch and elevated with top forward pitch as had been reported previously at 1.0 g (1,2); however, the slopes of the VPEL-vs-pitch functions at 1.0 g and 1.5 g were indistinguishable. As reported previously also (3,4), the VPEL in darkness was considerably lower at 1.5 g than at 1.0 g; however, although the y-intercept of the VPEL-vs-pitch function in the presence of the 2-line visual field (visual field erect) was also lower at 1.5 g than at 1.0 g as it was in darkness, the G-related difference was significantly attenuated by the presence of the visual field. The quantitative characteristics of the results are consistent with a model in which VPEL is treated as a consequence of an algebraic weighted average or a vector sum of visual and nonvisual influences although the two combining rules lead to fits that are equally good.
NASA Astrophysics Data System (ADS)
Huang, Yu; Chen, Yun; Gao, Weixiang; Yang, Zhengxuan; Wang, Lingling
2018-04-01
Depending on the experimental conditions and plasmonic systems, the correlations between near-field surface enhanced Raman scattering (SERS) behaviors and far-field optical responses have sometimes been accepted directly, or argued, or explored. In this work, we have numerically demonstrated the anomalous spectral correlations between the near- and far-field properties for roughened Au mesoparticles. As a counterexample, it is witnessed that the dipole extinction peak of the mesoparticles may mislead us in seeking favorable SERS performance. The simple Rayleigh scattering spectra can also be misguided in the presence of dark modes. For roughened mesoparticles with a moderate size here, the huge near-field enhancement is a synergistic result of the overall dark quadrupole mode and the substructural bonding dipole coupling. The conclusions demonstrated here would be of general interest to the field of plasmonics, especially the optimization of single-particle SERS substrates.
Reeves, Adam; Grayhem, Rebecca
2016-03-01
Rod-mediated 500 nm test spots were flashed in Maxwellian view at 5 deg eccentricity, both on steady 10.4 deg fields of intensities (I) from 0.00001 to 1.0 scotopic troland (sc td) and from 0.2 s to 1 s after extinguishing the field. On dim fields, thresholds of tiny (5') tests were proportional to √I (Rose-DeVries law), while thresholds after extinction fell within 0.6 s to the fully dark-adapted absolute threshold. Thresholds of large (1.3 deg) tests were proportional to I (Weber law) and extinction thresholds, to √I. rod thresholds are elevated by photon-driven noise from dim fields that disappears at field extinction; large spot thresholds are additionally elevated by neural light adaptation proportional to √I. At night, recovery from dimly lit fields is fast, not slow.
Detection of a possible superluminous supernova in the epoch of reionization
NASA Astrophysics Data System (ADS)
Mould, Jeremy; Abbott, Tim; Cooke, Jeff; Curtin, Chris; Katsiani, Antonios; Koekemoer, Anton; Tescari, Edoardo; Uddin, Syed; Wang, Lifan; Wyithe, Stuaet
2017-04-01
An interesting transient has been detected in one of our three Dark Energy Camera deep fields. Observations of these deep fields take advantage of the high red sensitivity of DECam on the Cerro Tololo Interamerican Observatory Blanco telescope. The survey includes the Y band with rest wavelength 1430{Å} at z = 6. Survey fields (the Prime field 0555-6130, the 16hr field 1600-75 and the SUDSS New Southern Field) are deeper in Y than other infrared surveys. They are circumpolar, allowing all night to be used efficiently, exploiting the moon tolerance of 1 micron observations to minimize conflict with the Dark Energy Survey. As an i-band dropout (meaning that the flux decrement shortward of Lyman alpha is in the i bandpass), the transient we report here is a supernova candidate with z 6, with a luminosity comparable to the brightest known current epoch superluminous supernova (i.e., 2 x 10^11 solar luminosities).
Linear velocity fields in non-Gaussian models for large-scale structure
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1992-01-01
Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.
Digitized molecular diagnostics: reading disk-based bioassays with standard computer drives.
Li, Yunchao; Ou, Lily M L; Yu, Hua-Zhong
2008-11-01
We report herein a digital signal readout protocol for screening disk-based bioassays with standard optical drives of ordinary desktop/notebook computers. Three different types of biochemical recognition reactions (biotin-streptavidin binding, DNA hybridization, and protein-protein interaction) were performed directly on a compact disk in a line array format with the help of microfluidic channel plates. Being well-correlated with the optical darkness of the binding sites (after signal enhancement by gold nanoparticle-promoted autometallography), the reading error levels of prerecorded audio files can serve as a quantitative measure of biochemical interaction. This novel readout protocol is about 1 order of magnitude more sensitive than fluorescence labeling/scanning and has the capability of examining multiplex microassays on the same disk. Because no modification to either hardware or software is needed, it promises a platform technology for rapid, low-cost, and high-throughput point-of-care biomedical diagnostics.
Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui
2016-10-01
Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.
Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui
2016-01-01
Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691
Real-time ESI-MS of enzymatic conversion: impact of organic solvents and multiplexing.
Scheerle, Romy K; Grassmann, Johanna; Letzel, Thomas
2012-01-01
Different enzymatic assays were characterized systematically by real-time electrospray ionization mass spectrometry (ESI-MS) in the presence of organic solvents as well as in multiplex approaches and in a combination of both. Typically, biological enzymatic reactions are studied in aqueous solutions, since most enzymes show their full activity solely in aqueous solutions. However, in recent years, the use of organic solvents in combination with enzymatic reactions has gained increasing interest due to biotechnological advantages in chemical synthesis, development of online coupled setups screening for enzyme regulatory compounds, advantages regarding mass spectrometric detection and others. In the current study, the influence of several common organic solvents (methanol, ethanol, isopropanol, acetone, acetonitrile) on enzymatic activity (hen egg white lysozyme, chitinase, α-chymotrypsin, elastase from human neutrophils and porcine pancreas, acetylcholinesterase) was tested. Moreover, multiplexing is a promising approach enabling fast and cost-efficient screening methods, e.g. for determination of inhibitors in complex mixtures or in the field of biomedical research. Although in multiplexed setups the enzymatic activity may be affected by the presence of other substrates and/or enzymes, the expected advantages possibly will predominate. To investigate those effects, we measured multiple enzymatic assays simultaneously. For all conducted measurements, the conversion rate of the substrate(s) was calculated, which reflects the enzymatic activity. The results provide an overview about the susceptibility of the selected enzymes towards diverse factors and a reference point for many applications in analytical chemistry and biotechnology.
Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland
2014-01-01
The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.
Fatemeh, Dehghan; Reza, Zolfaghari Mohammad; Mohammad, Arjomandzadegan; Salomeh, Kalantari; Reza, Ahmari Gholam; Hossein, Sarmadian; Maryam, Sadrnia; Azam, Ahmadi; Mana, Shojapoor; Negin, Najarian; Reza, Kasravi Alii; Saeed, Falahat
2014-01-01
Objective To analyse molecular detection of coliforms and shorten the time of PCR. Methods Rapid detection of coliforms by amplification of lacZ and uidA genes in a multiplex PCR reaction was designed and performed in comparison with most probably number (MPN) method for 16 artificial and 101 field samples. The molecular method was also conducted on isolated coliforms from positive MPN samples; standard sample for verification of microbial method certificated reference material; isolated strains from certificated reference material and standard bacteria. The PCR and electrophoresis parameters were changed for reducing the operation time. Results Results of PCR for lacZ and uidA genes were similar in all of standard, operational and artificial samples and showed the 876 bp and 147 bp bands of lacZ and uidA genes by multiplex PCR. PCR results were confirmed by MPN culture method by sensitivity 86% (95% CI: 0.71-0.93). Also the total execution time, with a successful change of factors, was reduced to less than two and a half hour. Conclusions Multiplex PCR method with shortened operation time was used for the simultaneous detection of total coliforms and Escherichia coli in distribution system of Arak city. It's recommended to be used at least as an initial screening test, and then the positive samples could be randomly tested by MPN. PMID:25182727
Saingamsook, Jassada; Saeung, Atiporn; Yanola, Jintana; Lumjuan, Nongkran; Walton, Catherine; Somboon, Pradya
2017-10-10
Mutation of the voltage-gated sodium channel (VGSC) gene, or knockdown resistance (kdr) gene, is an important resistance mechanism of the dengue vector Aedes aegypti mosquitoes against pyrethroids. In many countries in Asia, a valine to glycine substitution (V1016G) and a phenylalanine to cysteine substitution (F1534C) are common in Ae. aegypti populations. The G1016 and C1534 allele frequencies have been increasing in recent years, and hence there is a need to have a simple and inexpensive tool to monitor the alleles in large scale. A multiplex PCR to detect V1016G and F1534C mutations has been developed in the current study. This study utilized primers from previous studies for detecting the mutation at position 1016 and newly designed primers to detect variants at position 1534. The PCR conditions were validated and compared with DNA sequencing using known kdr mutant laboratory strains and field collected mosquitoes. The efficacy of this method was also compared with allele-specific PCR (AS-PCR). The results of our multiplex PCR were in complete agreement with sequencing data and better than the AS-PCR. In addition, the efficiency of two non-toxic DNA staining dyes, Ultrapower™ and RedSafe™, were evaluated by comparing with ethidium bromide (EtBr) and the results were satisfactory. Our multiplex PCR method is highly reliable and useful for implementing vector surveillance in locations where the two alleles co-occur.
Measuring the dark matter equation of state and its cosmological consequences
NASA Astrophysics Data System (ADS)
Domínguez Romero, Mariano Javier de León; Ruiz, Andrés Nicolás
2012-10-01
We explore the consequences of the measurements of the equation of state of dark matter7, on the homogenous FRW universe dynamics and build an alternative cosmological scenario to the concordance ΛCDM universe. The new paradigm is based on the introduction of an effective scalar field replacing the undetected components of the dark sector: dark matter and dark energy in the form of a cosmological constant. The scalar field obeys a barotropic equation of state p = ωρ with ω = -1/3 and dominates the cosmological dynamics in the last 14.27 Gyr, in a universe with an age of 14.83 Gyr . Before that epoch, baryons and photons drove the general behaviour of the universe as in the standard ΛCDM scenario. We compute a minimal set of cosmological parameters which allow us to reproduce several observational results such us baryon abundance, constrains on the age of the universe, the astronomical scale of distance and the high redshift supernova data with a high degree of precision. However, it should be emphasized that the new model is not accelerating, instead expands asymptotically towards an Einstein Static Universe. We briefly mention the possible mechanisms behind the origin of such dominant component and analyze the prospective of reproducing the success of the standard cosmological model explaining the process of structure formation.
A Spread-Spectrum SQUID Multiplexer
NASA Astrophysics Data System (ADS)
Irwin, K. D.; Chaudhuri, S.; Cho, H.-M.; Dawson, C.; Kuenstner, S.; Li, D.; Titus, C. J.; Young, B. A.
2018-06-01
The transition-edge sensor (TES) is a mature, high-resolution x-ray spectrometer technology that provides a much higher efficiency than dispersive spectrometers such as gratings and crystal spectrometers. As larger arrays are developed, time-division multiplexing schemes operating at MHz frequencies are being replaced by microwave SQUID multiplexers using frequency-division multiplexing at GHz frequencies. However, the multiplexing factor achievable with microwave SQUIDs is limited by the high slew rate on the leading edge of x-ray pulses. In this paper, we propose a new multiplexing scheme for high-slew-rate TES x-ray calorimeters: the spread-spectrum SQUID multiplexer, which has the potential to enable higher multiplexing factors, especially in applications with lower photon-arrival rates.
Enhanced speed in fluorescence imaging using beat frequency multiplexing
NASA Astrophysics Data System (ADS)
Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke
2016-03-01
Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.
Multiplexing detection of IgG against Plasmodium falciparum pregnancy-specific antigens
Fonseca, Ana Maria; Quinto, Llorenç; Jiménez, Alfons; González, Raquel; Bardají, Azucena; Maculuve, Sonia; Dobaño, Carlota; Rupérez, Maria; Vala, Anifa; Aponte, John J.; Sevene, Esperanza; Macete, Eusebio; Menéndez, Clara
2017-01-01
Background Pregnant women exposed to Plasmodium falciparum generate antibodies against VAR2CSA, the parasite protein that mediates adhesion of infected erythrocytes to the placenta. There is a need of high-throughput tools to determine the fine specificity of these antibodies that can be used to identify immune correlates of protection and exposure. Here we aimed at developing a multiplex-immunoassay to detect antibodies against VAR2CSA antigens. Methods and findings We constructed two multiplex-bead arrays, one composed of 3 VAR2CSA recombinant-domains (DBL3X, DBL5Ɛ and DBL6Ɛ) and another composed of 46 new peptides covering VAR2CSA conserved and semi-conserved regions. IgG reactivity was similar in multiplexed and singleplexed determinations (Pearson correlation, protein array: R2 = 0.99 and peptide array: R2 = 0.87). IgG recognition of 25 out of 46 peptides and all recombinant-domains was higher in pregnant Mozambican women (n = 106) than in Mozambican men (n = 102) and Spanish individuals (n = 101; p<0.05). Agreement of IgG levels detected in cryopreserved plasma and in elutions from dried blood spots was good after exclusion of inappropriate filter papers. Under heterogeneous levels of exposure to malaria, similar seropositivity cutoffs were obtained using finite mixture models applied to antibodies measured on pregnant Mozambican women and average of antibodies measured on pregnant Spanish women never exposed to malaria. The application of the multiplex-bead array developed here, allowed the assessment of higher IgG levels and seroprevalences against VAR2CSA-derived antigens in women pregnant during 2003–2005 than during 2010–2012, in accordance with the levels of malaria transmission reported for these years in Mozambique. Conclusions The multiplex bead-based immunoassay to detect antibodies against selected 25 VAR2CSA new-peptides and recombinant-domains was successfully implemented. Analysis of field samples showed that responses were specific among pregnant women and dependent on the level of exposure to malaria. This platform provides a high-throughput approach to investigating correlates of protection and identifying serological markers of exposure for malaria in pregnancy. PMID:28715465
Particle field diagnose using angular multiplexing volume holography
NASA Astrophysics Data System (ADS)
Zhao, Yu; Li, Zeren; Luo, Zhenxiong; Jun, Li; Zhong, Jie; Ye, Yan; Li, Shengfu; Zhu, Jianhua
2017-08-01
The problem of particle field diagnosing using holography can be met in many areas. But single frame hologram can only catch one moment of the fast event, which can't reveal the change process of an unrepeatable fast event. For events in different time-scale, different solution should be used. We did this work to record a laser induced particle field in the time-scale of tens of micron seconds. A laser of pulse sequence mode is applied to provide 10 pulses, the energy and time interval of whom is 150mJ and 1μs. Four pockels cells are employed to pick up the last four pulses for holographic recording, the other pulses are controlled to pre-expose the photopolymer based recording material, which can enhance photosensitivity of the photopolymer during the moment of holographic recording. The angular multiplexing technique and volume holography is accepted to avoid shifting the photopolymer between each shot. Another Q-switch YAG laser (pulse energy 100mJ, pulse width 10ns) is applied to produce the fast event. As a result, we successfully caught the motion process of the laser induced particle field. The time interval of each frame is 1μs, the angular range of the four references is 14°, and the diffraction efficiency of each hologram is less than 2%. After a basic analysis, this optical system could catch more holograms through a compact design.
Multiplexed image storage by electromagnetically induced transparency in a solid
NASA Astrophysics Data System (ADS)
Heinze, G.; Rentzsch, N.; Halfmann, T.
2012-11-01
We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.
Uchiyama, Hidemori; Toda, Akihisa; Imoto, Masumi; Nishimura, Satoko; Kuroki, Hiroaki; Soeda, Shinji; Shimeno, Hiroshi; Watanabe, Shigenori; Eyanagi, Reiko
2010-01-22
Abnormal behaviors and death associated with the use of oseltamivir (Tamiflu) have emerged as a major issue in influenza patients taking the drug. Here, we investigated the mechanisms underlying the effects of oseltamivir on the behavior of mice using light-dark and open-field preference tests. Oseltamivir (75 and 150 mg/kg, intraperitoneally (i.p.)) alone affected neither time spent in the open area in the light-dark preference test nor ambulation in the open-field test at 2h post-injection. However, a non-selective adenosine A(1)/A(2) receptor antagonist, caffeine (10mg/kg, i.p.) in combination with oseltamivir (150 mg/kg, i.p.) increased time spent in the open area in the light-dark preference test. This enhancement was not inhibited by a benzodiazepine receptor antagonist, flumazenil (10-20mg/kg, subcutaneously (s.c.)). Enhancement of ambulation in the open-field test was also observed when caffeine (10mg/kg, i.p.) was combined with oseltamivir (150 mg/kg, i.p.). This enhancement was inhibited by a dopamine D(2) receptor antagonist, haloperidol (0.1mg/kg, s.c.). Furthermore, an adenosine A(2) receptor antagonist, SCH58261 (3mg/kg, i.p.) in combination with oseltamivir (150 mg/kg, i.p.) increased ambulation in the open-field test, while an adenosine A(1) receptor antagonist, DPCPX (1-3mg/kg, i.p.) did not. These findings suggest that the actions of oseltamivir may involve the dopamine and adenosine systems. Our findings suggest that due to the interaction between central blockade of adenosine A(2) receptors by caffeine, and oseltamivir-induced behavioral changes, patients being treated with oseltamivir should be closely monitored. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Nadort, Annemarie; Woolthuis, Rutger G.; van Leeuwen, Ton G.; Faber, Dirk J.
2013-01-01
We present integrated Laser Speckle Contrast Imaging (LSCI) and Sidestream Dark Field (SDF) flowmetry to provide real-time, non-invasive and quantitative measurements of speckle decorrelation times related to microcirculatory flow. Using a multi exposure acquisition scheme, precise speckle decorrelation times were obtained. Applying SDF-LSCI in vitro and in vivo allows direct comparison between speckle contrast decorrelation and flow velocities, while imaging the phantom and microcirculation architecture. This resulted in a novel analysis approach that distinguishes decorrelation due to flow from other additive decorrelation sources. PMID:24298399
Surface topography and ordering-variant segregation in GaInP[sub 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, D.J.; Zhu, J.G.; Kibbler, A.E.
1993-09-27
Using transmission electron diffraction dark-field imaging, atomic force microscopy (AFM), and Nomarski microscopy, we demonstrate a direct connection between surface topography and cation site ordering in GaInP[sub 2]. We study epilayers grown by organometallic vapor-phase epitaxy on GaAs substrates oriented 2[degree] off (100) towards (110). Nomarski microscopy shows that, as growth proceeds, the surface of ordered material forms faceted structures aligned roughly along [011]. A comparison with the dark-field demonstrates that the [1[bar 1]1] and [11[bar 1
Laboratory constraints on chameleon dark energy and power-law fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steffen, Jason H.; /Fermilab; Upadhye, Amol
2010-10-01
We report results from the GammeV Chameleon Afterglow Search - a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.
Dark matter and weak signals of quantum spacetime
NASA Astrophysics Data System (ADS)
Doplicher, Sergio; Fredenhagen, Klaus; Morsella, Gerardo; Pinamonti, Nicola
2017-03-01
In physically motivated models of quantum spacetime, a U (1 ) gauge theory turns into a U (∞ ) gauge theory; hence, free classical electrodynamics is no longer free and neutral fields may have electromagnetic interactions. We discuss the last point for scalar fields, as a way to possibly describe dark matter; we have in mind the gravitational collapse of binary systems or future applications to self-gravitating Bose-Einstein condensates as possible sources of evidence of quantum gravitational phenomena. The effects considered so far, however, seem too faint to be detectable at present.
Secluded WIMPs, Dark QED with Massive Photons, and the Galactic Center Gamma-Ray Excess
NASA Technical Reports Server (NTRS)
Fortes, E. C. F. S.; Pleitez, V.; Stecker, F. W.
2015-01-01
We discuss a particular secluded WIMP dark matter model consisting of neutral fermions as the dark matter candidate and a Proca-Wentzel (PW) field as a mediator. In the model that we consider here, dark matter WIMPs interact with standard model (SM) particles only through the PW field of approximately MeV-multi-GeV mass particles. The interactions occur via a U(1)' mediator, V'(sub mu), which couples to the SM by kinetic mixing with U(1) hypercharge bosons, B'(sub mu). One important difference between our model and other such models in the literature is the absence of an extra singlet scalar, so that the parameter with dimension of mass M(sup 2, sub V) is not related to a spontaneous symmetry breaking. This QED based model is also renormalizable. The mass scale of the mediator and the absence of the singlet scalar can lead to interesting astrophysical signatures. The dominant annihilation channels are different from those usually considered in previous work. We show that the GeV energy gamma-ray excess in the galactic center region, as derived from Fermi-LAT Gamma-ray Space Telescope data, can be attributed to such secluded dark matter WIMPs, given parameters of the model that are consistent with both the cosmological dark matter density and the upper limits on WIMP spin-independent elastic scattering. Secluded WIMP models are also consistent with suggested upper limits on a DM contribution to the cosmic-ray antiproton flux.
Dark current, breakdown, and magnetic field effects in a multicell, 805MHz cavity
NASA Astrophysics Data System (ADS)
Norem, J.; Wu, V.; Moretti, A.; Popovic, M.; Qian, Z.; Ducas, L.; Torun, Y.; Solomey, N.
2003-07-01
We present measurements of dark currents and x rays in a six cell 805MHz cavity, taken as part of an rf development program for muon cooling, which requires high power, high stored energy, low frequency cavities operating in a strong magnetic field. We have done the first systematic study of the behavior of high power rf in a strong (2.5 4T) magnetic field. Our measurements extend over a very large dynamic range in current and provide good fits to the Fowler-Nordheim field emission model assuming mechanical structures produce field enhancements at the surface. The locally enhanced field intensities we derive at the tips of these emitters are very large, (˜10 GV/m), and should produce tensile stresses comparable to the tensile strength of the copper cavity walls and should be capable of causing breakdown events. We also compare our data with estimates of tensile stresses from a variety of accelerating structures. Preliminary studies of the internal surface of the cavity and window are presented, which show splashes of copper with many sharp cone shaped protrusions and wires which can explain the experimentally measured field enhancements. We discuss a “cold copper” breakdown mechanism and briefly review alternatives. We also discuss a number of effects due to the 2.5T solenoidal fields on the cavity such as altered field emission due to mechanical deformation of emitters, and dark current ring beams, which are produced from the irises by E×B drifts during the nonrelativistic part of the acceleration process.
Searching for Dark Matter with Cosmic Rays
NASA Astrophysics Data System (ADS)
Seo, Eun-Suk
2015-04-01
One of the most exciting possibilities in cosmic ray research is the potential to discover new phenomena. A number of elementary particles were discovered in cosmic rays before modern-day accelerators became available to study their detailed properties. Since the discovery of cosmic ray antiprotons in 1979 using a balloon-borne magnet spectrometer, a series of magnet spectrometers have been flown to search for the signature of dark matter annihilation in antiprotons and positrons. Being the same as particles except for their opposite charge sign, antiparticles are readily distinguished as they bend in opposite directions in the magnetic field. As long-duration balloon flights over Antarctica became available, not only antiproton to proton ratios but also measurements of antiproton energy spectra became possible. More recently, space missions are also providing precision measurements of electron and position energy spectra. With other measurements to constrain cosmic ray propagation models, these new measurements play key roles in constraining dark-matter models for understanding the nature of dark matter. Recent results, their implications, and outlook for the field will be presented.
NASA Astrophysics Data System (ADS)
Butler, Satya P.; Lima, Alicia R.; Baumgarte, Thomas W.; Shapiro, Stuart L.
2018-04-01
The discovery of quasars at increasingly large cosmological redshifts may favor "direct collapse" as the most promising evolutionary route to the formation of supermassive black holes. In this scenario, supermassive black holes form when their progenitors - supermassive stars - become unstable to gravitational collapse. For uniformly rotating stars supported by pure radiation pressure and spinning at the mass-shedding limit, the critical configuration at the onset of collapse is characterized by universal values of the dimensionless spin and radius parameters J/M2 and R/M, independent of mass M. We consider perturbative effects of gas pressure, magnetic fields, dark matter and dark energy on these parameters, and thereby determine the domain of validity of this universality. We obtain leading-order corrections for the critical parameters and establish their scaling with the relevant physical parameters. We compare two different approaches to approximate the effects of gas pressure, which plays the most important role, find identical results for the above dimensionless parameters, and also find good agreement with recent numerical results.
NASA Astrophysics Data System (ADS)
Butler, Satya P.; Lima, Alicia R.; Baumgarte, Thomas W.; Shapiro, Stuart L.
2018-07-01
The discovery of quasars at increasingly large cosmological redshifts may favour `direct collapse' as the most promising evolutionary route to the formation of supermassive black holes. In this scenario, supermassive black holes form when their progenitors - supermassive stars - become unstable to gravitational collapse. For uniformly rotating stars supported by pure radiation pressure and spinning at the mass-shedding limit, the critical configuration at the onset of collapse is characterized by universal values of the dimensionless spin and radius parameters J/M2 and R/M, independent of mass M. We consider perturbative effects of gas pressure, magnetic fields, dark matter, and dark energy on these parameters, and thereby determine the domain of validity of this universality. We obtain leading-order corrections for the critical parameters and establish their scaling with the relevant physical parameters. We compare two different approaches to approximate the effects of gas pressure, which plays the most important role, find identical results for the above dimensionless parameters, and also find good agreement with recent numerical results.
Dark matter, long-range forces, and large-scale structure
NASA Technical Reports Server (NTRS)
Gradwohl, Ben-Ami; Frieman, Joshua A.
1992-01-01
If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. We discuss the astrophysical and cosmological implications of a long-range force coupled only to the dark matter and find rather tight constraints on its strength. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). We explore the consequent effects on the two-point correlation function, large-scale velocity flows, and microwave background anisotropies, for models with initial scale-invariant adiabatic perturbations and cold dark matter.
Gravitational collapse and the vacuum energy
NASA Astrophysics Data System (ADS)
Campos, M.
2014-03-01
To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.
Collider detection of dark matter electromagnetic anapole moments
NASA Astrophysics Data System (ADS)
Alves, Alexandre; Santos, A. C. O.; Sinha, Kuver
2018-03-01
Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly and weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-Z signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.
Collider study on the loop-induced dark matter mediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Yuhsin, E-mail: yhtsai@umd.edu
2016-06-21
Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling – given by the Dark Penguin – in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results tomore » constraints from the direct detection experiments.« less
Sound of Dark Matter: Searching for Light Scalars with Resonant-Mass Detectors.
Arvanitaki, Asimina; Dimopoulos, Savas; Van Tilburg, Ken
2016-01-22
The fine-structure constant and the electron mass in string theory are determined by the values of scalar fields called moduli. If the dark matter takes on the form of such a light modulus, it oscillates with a frequency equal to its mass and an amplitude determined by the local dark-matter density. This translates into an oscillation of the size of a solid that can be observed by resonant-mass antennas. Existing and planned experiments, combined with a dedicated resonant-mass detector proposed in this Letter, can probe dark-matter moduli with frequencies between 1 kHz and 1 GHz, with much better sensitivity than searches for fifth forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneck, Kristiana
The area of dark matter is one of the most interesting and exciting topics in physics today. Existing at the intersection of particle physics and astrophysics, the existence of a new dark matter particle can be used to explain many astrophysical and cosmological observations, as well as to reconcile outstanding issues in the standard model of particle physics. Experiments such as SuperCDMS are built to detect dark matter in the lab by looking for low-energy nuclear recoils produced by collisions between dark matter particles and atoms in terrestrial detectors. SuperCDMS Soudan is particularly well-suited to follow up on possible hintsmore » of low-mass dark matter seen by other recent experiments because of its low thresholds and excellent background discrimination. Analyzing SuperCDMS Soudan data to look for low-mass dark matter comes with particular challenges because of the low signal-to-noise very near threshold. However, with a detailed background model developed by scaling high-energy events down into the low-energy signal region, SuperCDMS Soudan produced worldleading limits on the existence of low-mass dark matter. In addition, a few SuperCDMS Soudan detectors experienced cold hardware problems that can affect the data collected. Of particular interest is one detector considered for the low-mass WIMP search that has one of its charge electrodes shorted to chassis ground. Three events were observed in this detector upon unblinding the SuperCDMS Soudan low-energy data, even though <1 event was expected based on pre-unblinding calulations. However, the data collected by the shorted detector may have been compromised since an electrode shorted to ground will modify the electric field in the detector. The SuperCDMS Detector Monte Carlo (DMC) provides an excellent way to model the effects of the modified electric field, so a new model of the expected backgrounds in the low-mass WIMP search is developed using the DMC to try to explain how the short may have affected the data collected. This thesis is organized as follows: Chapter 1 gives a broad introduction to dark matter, discussing the astrophysical and cosmological evidence for its existence, listing several possible particle physics candidates, and outlining several experimental strategies to look for dark matter. Chapter 2 is an overview of CDMS detector technology and the experimental setup at the Soudan Underground Laboratory, with a focus on how data coming out of Soudan is analyzed. Chapter 3 presents results from a search for low-mass dark matter at SuperCDMS Soudan and discusses the interpretation of the results. Chapter 4 contains follow-up work that uses the CDMS Detector Monte Carlo (DMC) to understand the possible systematics associated with a detector that had one of its charge electrodes shorted to ground. This chapter represents the first time the DMC has been used to inform ongoing CDMS analysis. Chapter 5 takes a brief detour into the world of effective field theory (EFT), examining the consequences of an expanded set of possible WIMP-nucleon interactions in the EFT framework. Finally, Chapter 6 wraps up the material of the previous chapters and discusses how the research presented in this thesis can be applied as CDMS moves toward SuperCDMS SNOLAB.« less
Search for Chameleon Scalar Fields with the Axion Dark Matter Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybka, G.; Hotz, M.; Rosenberg, L. J
2010-07-30
Scalar fields with a 'chameleon' property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling {beta}{sub {gamma}}excluding values between 2x10{sup 9} and 5x10{sup 14} for effective chameleon masses between 1.9510 and 1.9525 {mu}eV.
Reconfigurable data path processor
NASA Technical Reports Server (NTRS)
Donohoe, Gregory (Inventor)
2005-01-01
A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.
Parallel-multiplexed excitation light-sheet microscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Xu, Dongli; Zhou, Weibin; Peng, Leilei
2017-02-01
Laser scanning light-sheet imaging allows fast 3D image of live samples with minimal bleach and photo-toxicity. Existing light-sheet techniques have very limited capability in multi-label imaging. Hyper-spectral imaging is needed to unmix commonly used fluorescent proteins with large spectral overlaps. However, the challenge is how to perform hyper-spectral imaging without sacrificing the image speed, so that dynamic and complex events can be captured live. We report wavelength-encoded structured illumination light sheet imaging (λ-SIM light-sheet), a novel light-sheet technique that is capable of parallel multiplexing in multiple excitation-emission spectral channels. λ-SIM light-sheet captures images of all possible excitation-emission channels in true parallel. It does not require compromising the imaging speed and is capable of distinguish labels by both excitation and emission spectral properties, which facilitates unmixing fluorescent labels with overlapping spectral peaks and will allow more labels being used together. We build a hyper-spectral light-sheet microscope that combined λ-SIM with an extended field of view through Bessel beam illumination. The system has a 250-micron-wide field of view and confocal level resolution. The microscope, equipped with multiple laser lines and an unlimited number of spectral channels, can potentially image up to 6 commonly used fluorescent proteins from blue to red. Results from in vivo imaging of live zebrafish embryos expressing various genetic markers and sensors will be shown. Hyper-spectral images from λ-SIM light-sheet will allow multiplexed and dynamic functional imaging in live tissue and animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiuchi, Shunsaku, E-mail: horiuchi@vt.edu
2016-06-21
The cold dark matter paradigm has been extremely successful in explaining the large-scale structure of the Universe. However, it continues to face issues when confronted by observations on sub-Galactic scales. A major caveat, now being addressed, has been the incomplete treatment of baryon physics. We first summarize the small-scale issues surrounding cold dark matter and discuss the solutions explored by modern state-of-the-art numerical simulations including treatment of baryonic physics. We identify the too big to fail in field galaxies as among the best targets to study modifications to dark matter, and discuss the particular connection with sterile neutrino warm darkmore » matter. We also discuss how the recently detected anomalous 3.55 keV X-ray lines, when interpreted as sterile neutrino dark matter decay, provide a very good description of small-scale observations of the Local Group.« less
Detecting ultralight axion dark matter wind with laser interferometers
NASA Astrophysics Data System (ADS)
Aoki, Arata; Soda, Jiro
The ultralight axion with mass around 10-22eV is known as a candidate of dark matter. A peculiar feature of the ultralight axion is oscillating pressure in time, which produces oscillation of gravitational potentials. Since the solar system moves through the dark matter halo at the velocity of about v ˜ 300km/s = 10-3, there exists axion wind, which looks like scalar gravitational waves for us. Hence, there is a chance to detect ultralight axion dark matter with a wide mass range by using laser interferometer detectors. We calculate the detector signal induced by the oscillating pressure of the ultralight axion field, which would be detected by future laser interferometer experiments. We also argue that the detector signal can be enhanced due to the resonance in modified gravity theory explaining the dark energy.
Dark energy, scalar singlet dark matter and the Higgs portal
NASA Astrophysics Data System (ADS)
Landim, Ricardo G.
2018-05-01
One of the simplest extensions of the Standard Model (SM) comprises the inclusion of a massive real scalar field, neutral under the SM gauge groups, to be a dark matter candidate. The addition of a dimension-six term into the potential of the scalar dark matter enables the appearance of a false vacuum that describes the cosmic acceleration. We show that the running of the singlet self-interaction and the Higgs portal coupling differs from the standard scalar singlet dark matter model. If we maintain a positive quartic coupling, it is also possible to describe the accelerated expansion of the Universe through a false vacuum with the addition of a dimension-eight interaction term. In this case, where the potential remains bounded from below at low energies, the false vacuum decay is highly suppressed.
Large- and small-scale constraints on power spectra in Omega = 1 universes
NASA Technical Reports Server (NTRS)
Gelb, James M.; Gradwohl, Ben-Ami; Frieman, Joshua A.
1993-01-01
The CDM model of structure formation, normalized on large scales, leads to excessive pairwise velocity dispersions on small scales. In an attempt to circumvent this problem, we study three scenarios (all with Omega = 1) with more large-scale and less small-scale power than the standard CDM model: (1) cold dark matter with significantly reduced small-scale power (inspired by models with an admixture of cold and hot dark matter); (2) cold dark matter with a non-scale-invariant power spectrum; and (3) cold dark matter with coupling of dark matter to a long-range vector field. When normalized to COBE on large scales, such models do lead to reduced velocities on small scales and they produce fewer halos compared with CDM. However, models with sufficiently low small-scale velocities apparently fail to produce an adequate number of halos.