Sample records for multiplex gene expression

  1. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    PubMed

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  2. Multiplex cDNA quantification method that facilitates the standardization of gene expression data

    PubMed Central

    Gotoh, Osamu; Murakami, Yasufumi; Suyama, Akira

    2011-01-01

    Microarray-based gene expression measurement is one of the major methods for transcriptome analysis. However, current microarray data are substantially affected by microarray platforms and RNA references because of the microarray method can provide merely the relative amounts of gene expression levels. Therefore, valid comparisons of the microarray data require standardized platforms, internal and/or external controls and complicated normalizations. These requirements impose limitations on the extensive comparison of gene expression data. Here, we report an effective approach to removing the unfavorable limitations by measuring the absolute amounts of gene expression levels on common DNA microarrays. We have developed a multiplex cDNA quantification method called GEP-DEAN (Gene expression profiling by DCN-encoding-based analysis). The method was validated by using chemically synthesized DNA strands of known quantities and cDNA samples prepared from mouse liver, demonstrating that the absolute amounts of cDNA strands were successfully measured with a sensitivity of 18 zmol in a highly multiplexed manner in 7 h. PMID:21415008

  3. Dataset of proinflammatory cytokine and cytokine receptor gene expression in rainbow trout (Oncorhynchus mykiss) measured using a novel GeXP multiplex, RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A GeXP multiplex, RT-PCR assay was developed and optimized that simultaneously measures expression of a suite of immune-relevant genes in rainbow trout (Oncorhynchus mykiss), concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. The dataset ...

  4. Sensitive and quantitative measurement of gene expression directly from a small amount of whole blood.

    PubMed

    Zheng, Zhi; Luo, Yuling; McMaster, Gary K

    2006-07-01

    Accurate and precise quantification of mRNA in whole blood is made difficult by gene expression changes during blood processing, and by variations and biases introduced by sample preparations. We sought to develop a quantitative whole-blood mRNA assay that eliminates blood purification, RNA isolation, reverse transcription, and target amplification while providing high-quality data in an easy assay format. We performed single- and multiplex gene expression analysis with multiple hybridization probes to capture mRNA directly from blood lysate and used branched DNA to amplify the signal. The 96-well plate singleplex assay uses chemiluminescence detection, and the multiplex assay combines Luminex-encoded beads with fluorescent detection. The single- and multiplex assays could quantitatively measure as few as 6000 and 24,000 mRNA target molecules (0.01 and 0.04 amoles), respectively, in up to 25 microL of whole blood. Both formats had CVs < 10% and dynamic ranges of 3-4 logs. Assay sensitivities allowed quantitative measurement of gene expression in the minority of cells in whole blood. The signals from whole-blood lysate correlated well with signals from purified RNA of the same sample, and absolute mRNA quantification results from the assay were similar to those obtained by quantitative reverse transcription-PCR. Both single- and multiplex assay formats were compatible with common anticoagulants and PAXgene-treated samples; however, PAXgene preparations induced expression of known antiapoptotic genes in whole blood. Both the singleplex and the multiplex branched DNA assays can quantitatively measure mRNA expression directly from small volumes of whole blood. The assay offers an alternative to current technologies that depend on RNA isolation and is amenable to high-throughput gene expression analysis of whole blood.

  5. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    PubMed

    Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo

    2016-01-01

    Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  6. Direct multiplexed measurement of gene expression with color-coded probe pairs.

    PubMed

    Geiss, Gary K; Bumgarner, Roger E; Birditt, Brian; Dahl, Timothy; Dowidar, Naeem; Dunaway, Dwayne L; Fell, H Perry; Ferree, Sean; George, Renee D; Grogan, Tammy; James, Jeffrey J; Maysuria, Malini; Mitton, Jeffrey D; Oliveri, Paola; Osborn, Jennifer L; Peng, Tao; Ratcliffe, Amber L; Webster, Philippa J; Davidson, Eric H; Hood, Leroy; Dimitrov, Krassen

    2008-03-01

    We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.

  7. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene.

    PubMed

    Gergen, Janina; Coulon, Flora; Creneguy, Alison; Elain-Duret, Nathan; Gutierrez, Alejandra; Pinkenburg, Olaf; Verhoeyen, Els; Anegon, Ignacio; Nguyen, Tuan Huy; Halary, Franck Albert; Haspot, Fabienne

    2018-01-01

    Anti-HCMV treatments used in immunosuppressed patients reduce viral replication, but resistant viral strains can emerge. Moreover, these drugs do not target latently infected cells. We designed two anti-viral CRISPR/Cas9 strategies to target the UL122/123 gene, a key regulator of lytic replication and reactivation from latency. The singleplex strategy contains one gRNA to target the start codon. The multiplex strategy contains three gRNAs to excise the complete UL122/123 gene. Primary fibroblasts and U-251 MG cells were transduced with lentiviral vectors encoding Cas9 and one or three gRNAs. Both strategies induced mutations in the target gene and a concomitant reduction of immediate early (IE) protein expression in primary fibroblasts. Further detailed analysis in U-251 MG cells showed that the singleplex strategy induced 50% of indels in the viral genome, leading to a reduction in IE protein expression. The multiplex strategy excised the IE gene in 90% of all viral genomes and thus led to the inhibition of IE protein expression. Consequently, viral genome replication and late protein expression were reduced by 90%. Finally, the production of new viral particles was nearly abrogated. In conclusion, the multiplex anti-UL122/123 CRISPR/Cas9 system can target the viral genome efficiently enough to significantly prevent viral replication.

  8. Multiplex transcriptional analysis of paraffin-embedded liver needle biopsy from patients with liver fibrosis

    PubMed Central

    2012-01-01

    Background The possibility of extracting RNA and measuring RNA expression from paraffin sections can allow extensive investigations on stored paraffin samples obtained from diseased livers and could help with studies of the natural history of liver fibrosis and inflammation, and in particular, correlate basic mechanisms to clinical outcomes. Results To address this issue, a pilot study of multiplex gene expression using branched-chain DNA technology was conducted to directly measure mRNA expression in formalin-fixed paraffin-embedded needle biopsy samples of human liver. Twenty-five genes were selected for evaluation based on evidence obtained from human fibrotic liver, a rat BDL model and in vitro cultures of immortalized human hepatic stellate cells. The expression levels of these 25 genes were then correlated with liver fibrosis and inflammation activity scores. Statistical analysis revealed that three genes (COL3A1, KRT18, and TUBB) could separate fibrotic from non-fibrotic samples and that the expression of ten genes (ANXA2, TIMP1, CTGF, COL4A1, KRT18, COL1A1, COL3A1, ACTA2, TGFB1, LOXL2) were positively correlated with the level of liver inflammation activity. Conclusion This is the first report describing this multiplex technique for liver fibrosis and has provided the proof of concept of the suitability of RNA extracted from paraffin sections for investigating the modulation of a panel of proinflammatory and profibrogenic genes. This pilot study suggests that this technique will allow extensive investigations on paraffin samples from diseased livers and possibly from any other tissue. Using identical or other genes, this multiplex expression technique could be applied to samples obtained from extensive patient cohorts with stored paraffin samples in order to correlate gene expression with valuable clinically relevant information. This method could be used to provide a better understanding of the mechanisms of liver fibrosis and inflammation, its progression, and help development of new therapeutic approaches for this indication. PMID:23270325

  9. Multiplex reverse transcription polymerase chain reaction to study the expression of virulence and stress response genes in Staphylococcus aureus.

    PubMed

    Shrihari, Rohinishree Yadahalli; Singh, Negi Pradeep

    2012-02-01

    Staphylococcus aureus survives well in different stress conditions. The ability of this organism to adapt to various stresses is the result of a complex regulatory response, which is attributed to regulation of multiple genes. The aims of the present study were (1) to develop a multiplex PCR for the detection of genes which are involved in stress adaptation (asp23, dnaK, and groEL); alternative sigma factor (sigB) and virulence determination (entB and spa) and (2) to study the expression of these genes during stress conditions for S. aureus culture collection strains (FRI 722 and ATCC 6538) and S. aureus food isolates at mRNA level using multiplex reverse transcription polymerase chain reaction (RT-PCR). During heat shock treatment groEL, dnaK, asp23, sodA, entB, spa, and sigB genes were up regulated up to 2.58, 2.07, 2.76, 2.55, 3.55, 2.71, and 2.62- folds, respectively, whereas in acid shock treatment, sodA and groEL were up regulated; dnaK was downregulated; and entB and sigB genes were not expressed in food isolates. Multiplex PCR assay standardized in this study offers an inexpensive alternative to uniplex PCR for detection of various virulence and stress response genes. This study is relevant to rapid and accurate detection of potential pathogenic S. aureus in foods. © 2012 Institute of Food Technologists®

  10. Quantification of differential gene expression by multiplexed targeted resequencing of cDNA

    PubMed Central

    Arts, Peer; van der Raadt, Jori; van Gestel, Sebastianus H.C.; Steehouwer, Marloes; Shendure, Jay; Hoischen, Alexander; Albers, Cornelis A.

    2017-01-01

    Whole-transcriptome or RNA sequencing (RNA-Seq) is a powerful and versatile tool for functional analysis of different types of RNA molecules, but sample reagent and sequencing cost can be prohibitive for hypothesis-driven studies where the aim is to quantify differential expression of a limited number of genes. Here we present an approach for quantification of differential mRNA expression by targeted resequencing of complementary DNA using single-molecule molecular inversion probes (cDNA-smMIPs) that enable highly multiplexed resequencing of cDNA target regions of ∼100 nucleotides and counting of individual molecules. We show that accurate estimates of differential expression can be obtained from molecule counts for hundreds of smMIPs per reaction and that smMIPs are also suitable for quantification of relative gene expression and allele-specific expression. Compared with low-coverage RNA-Seq and a hybridization-based targeted RNA-Seq method, cDNA-smMIPs are a cost-effective high-throughput tool for hypothesis-driven expression analysis in large numbers of genes (10 to 500) and samples (hundreds to thousands). PMID:28474677

  11. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector

    PubMed Central

    Kabadi, Ami M.; Ousterout, David G.; Hilton, Isaac B.; Gersbach, Charles A.

    2014-01-01

    Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types. PMID:25122746

  12. Highly Multiplexed, Single Cell Transcriptomic Analysis of T-Cells by Microfluidic PCR.

    PubMed

    Dominguez, Maria; Roederer, Mario; Chattopadhyay, Pratip K

    2017-01-01

    Recently, technologies have been developed to measure expression of 96 (or more) mRNA transcripts at once from a single cell. Here we describe methods and important considerations for use of Fluidigm's BioMark platform for multiplexed single cell gene expression. We describe how to qualify primer/probes, select genes to examine in 96-parameter panels, perform the reverse transcription/cDNA synthesis step, and operate the instrument. In addition, we describe data analysis considerations. This technology has enormous value for characterizing the heterogeneity of T-cells, thereby providing a useful tool for immune monitoring.

  13. Network regularised Cox regression and multiplex network models to predict disease comorbidities and survival of cancer.

    PubMed

    Xu, Haoming; Moni, Mohammad Ali; Liò, Pietro

    2015-12-01

    In cancer genomics, gene expression levels provide important molecular signatures for all types of cancer, and this could be very useful for predicting the survival of cancer patients. However, the main challenge of gene expression data analysis is high dimensionality, and microarray is characterised by few number of samples with large number of genes. To overcome this problem, a variety of penalised Cox proportional hazard models have been proposed. We introduce a novel network regularised Cox proportional hazard model and a novel multiplex network model to measure the disease comorbidities and to predict survival of the cancer patient. Our methods are applied to analyse seven microarray cancer gene expression datasets: breast cancer, ovarian cancer, lung cancer, liver cancer, renal cancer and osteosarcoma. Firstly, we applied a principal component analysis to reduce the dimensionality of original gene expression data. Secondly, we applied a network regularised Cox regression model on the reduced gene expression datasets. By using normalised mutual information method and multiplex network model, we predict the comorbidities for the liver cancer based on the integration of diverse set of omics and clinical data, and we find the diseasome associations (disease-gene association) among different cancers based on the identified common significant genes. Finally, we evaluated the precision of the approach with respect to the accuracy of survival prediction using ROC curves. We report that colon cancer, liver cancer and renal cancer share the CXCL5 gene, and breast cancer, ovarian cancer and renal cancer share the CCND2 gene. Our methods are useful to predict survival of the patient and disease comorbidities more accurately and helpful for improvement of the care of patients with comorbidity. Software in Matlab and R is available on our GitHub page: https://github.com/ssnhcom/NetworkRegularisedCox.git. Copyright © 2015. Published by Elsevier Ltd.

  14. Development and Application of a Multiplex Real-Time PCR Assay as an Indicator of Potential Allergenicity in Citrus Fruits.

    PubMed

    Wu, Jinlong; Chen, Lin; Lin, Dingbo; Ma, Zhaocheng; Deng, Xiuxin

    2016-11-30

    The effects of tissue type, harvest maturity, and genetic factors on the expression of genes that related to citrus fruit allergies remain poorly understood. In the present study, a multiplex real-time PCR assay was developed to monitor the expression of citrus allergen genes individually with the advantages of much fewer sample requirements and simultaneously multiple target genes detection. Gene specific primer pairs and Taqman probes of three citrus allergen genes Cit s 1.01, Cit s 2.01, and Cit s 3.01 and the house-keeping gene β-actin were designed based on gene sequence differences. The PCR results showed that differential expression patterns were found during the ripening process. The expression levels of Cit s 3.01 were much higher than those of Cit s 1.01 and Cit s 2.01 in both peel and pulp tissues among 10 citrus cultivars. Data suggested that Kao Phuang Pummelo could be safely consumed with a potential low risk in allergenicity. Considering that assessing allergenicity is one of the tests in food safety, this assay might also facilitate the breeding and production of "allergy-friendly" citrus fruits.

  15. Brief Report: A mass spectrometry assay to simultaneously analyze ROS1 and RET fusion gene expression in non-small cell lung cancer

    PubMed Central

    Wijesinghe, Priyanga; Bepler, Gerold

    2014-01-01

    Introduction ROS1 and RET gene fusions were recently discovered in non-small cell lung cancer (NSCLC) as potential therapeutic targets with small molecule kinase inhibitors. The conventional screening methods of these fusions are time consuming and require samples of high quality and quantity. Here, we describe a novel and efficient method by coupling the power of multiplexing PCR and the sensitivity of mass spectrometry. Methods The multiplex mass spectrometry platform simultaneously tests samples for the expression of nine ROS1 and six RET fusion genes. The assay incorporates detection of wild-type exon junctions immediately upstream and downstream of the fusion junction to exclude false negative results. To flag false positives, the system also comprises two independent assays for each fusion gene junction. Results The characteristic mass spectrometric peaks of the gene fusions were obtained using engineered plasmid constructs. Specific assays targeting the wild-type gene exon junctions were validated using cDNA from lung tissue of healthy individuals. The system was further validated using cDNA derived from NSCLC cell lines that express endogenous fusion genes. The expressed ROS1-SLC34A2 and CCDC6-RET gene fusions from the NSCLC cell lines HCC78 and LC-2/ad, respectively, were accurately detected by the novel assay. The assay is extremely sensitive, capable of detecting an event in test specimens containing 0.5% positive tumors. Conclusion The novel multiplexed assay is robustly capable of detecting 15 different clinically relevant RET and ROS1 fusion variants. The benefits of this detection method include exceptionally low sample input, high cost efficiency, flexibility, and rapid turnover. PMID:25384172

  16. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs

    PubMed Central

    Yin, Linlin; Maddison, Lisette A.; Li, Mingyu; Kara, Nergis; LaFave, Matthew C.; Varshney, Gaurav K.; Burgess, Shawn M.; Patton, James G.; Chen, Wenbiao

    2015-01-01

    Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward. PMID:25855067

  17. Quantitative multiplex quantum dot in-situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tholouli, Eleni; MacDermott, Sarah; Hoyland, Judith

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Development of a quantitative high throughput in situ expression profiling method. Black-Right-Pointing-Pointer Application to a tissue microarray of 242 AML bone marrow samples. Black-Right-Pointing-Pointer Identification of HOXA4, HOXA9, Meis1 and DNMT3A as prognostic markers in AML. -- Abstract: Measurement and validation of microarray gene signatures in routine clinical samples is problematic and a rate limiting step in translational research. In order to facilitate measurement of microarray identified gene signatures in routine clinical tissue a novel method combining quantum dot based oligonucleotide in situ hybridisation (QD-ISH) and post-hybridisation spectral image analysis was used for multiplex in-situ transcript detection inmore » archival bone marrow trephine samples from patients with acute myeloid leukaemia (AML). Tissue-microarrays were prepared into which white cell pellets were spiked as a standard. Tissue microarrays were made using routinely processed bone marrow trephines from 242 patients with AML. QD-ISH was performed for six candidate prognostic genes using triplex QD-ISH for DNMT1, DNMT3A, DNMT3B, and for HOXA4, HOXA9, Meis1. Scrambled oligonucleotides were used to correct for background staining followed by normalisation of expression against the expression values for the white cell pellet standard. Survival analysis demonstrated that low expression of HOXA4 was associated with poorer overall survival (p = 0.009), whilst high expression of HOXA9 (p < 0.0001), Meis1 (p = 0.005) and DNMT3A (p = 0.04) were associated with early treatment failure. These results demonstrate application of a standardised, quantitative multiplex QD-ISH method for identification of prognostic markers in formalin-fixed paraffin-embedded clinical samples, facilitating measurement of gene expression signatures in routine clinical samples.« less

  18. Digital analysis of the expression levels of multiple colorectal cancer-related genes by multiplexed digital-PCR coupled with hydrogel bead-array.

    PubMed

    Qi, Zongtai; Ma, Yinjiao; Deng, Lili; Wu, Haiping; Zhou, Guohua; Kajiyama, Tomoharu; Kambara, Hideki

    2011-06-07

    To digitally analyze expression levels of multiple genes in one reaction, we proposed a method termed as 'MDHB' (Multiplexed Digital-PCR coupled with Hydrogel Bead-array). The template for bead-based emulsion PCR (emPCR) was prepared by reverse transcription using sequence-tagged primers. The beads recovered from emPCR were immobilized with hydrogel to form a single-bead layer on a chip, and then decoded by gene-specific probe hybridization and Cy3-dUTP based primer extension reaction. The specificity of probe hybridization was improved by using electrophoresis to remove mismatched probes on the bead's surface. The number of positive beads reflects the abundance of expressed genes; the expression levels of target genes were normalized to a housekeeping gene and expressed as the number ratio of green beads to red beads. The discrimination limit of MDHB is 0.1% (i.e., one target molecule from 1000 background molecules), and the sensitivity of the method is below 100 cells when using the β-actin gene as the detection target. We have successfully employed MDHB to detect the relative expression levels of four colorectal cancer (CRC)-related genes (c-myc, COX-2, MMP7, and DPEP1) in 8 tissue samples and 9 stool samples from CRC patients, giving the detection rates of 100% and 77%, respectively. The results suggest that MDHB could be a potential tool for early non-invasive diagnosis of CRC.

  19. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.

    PubMed

    Yin, Linlin; Maddison, Lisette A; Li, Mingyu; Kara, Nergis; LaFave, Matthew C; Varshney, Gaurav K; Burgess, Shawn M; Patton, James G; Chen, Wenbiao

    2015-06-01

    Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward. Copyright © 2015 by the Genetics Society of America.

  20. PCR-free Quantification of Multiple Splice Variants in Cancer Gene by Surface Enhanced Raman Spectroscopy

    PubMed Central

    Sun, Lan; Irudayaraj, Joseph

    2009-01-01

    We demonstrate a surface enhanced Raman spectroscopy (SERS) based array platform to monitor gene expression in cancer cells in a multiplex and quantitative format without amplification steps. A strategy comprising of DNA/RNA hybridization, S1 nuclease digestion, and alkaline hydrolysis was adopted to obtain DNA targets specific to two splice junction variants Δ(9, 10) and Δ(5) of the breast cancer susceptibility gene 1 (BRCA1) from MCF-7 and MDA-MB-231 breast cancer cell lines. These two targets were identified simultaneously and their absolute quantities were estimated by a SERS strategy utilizing the inherent plasmon-phonon Raman mode of gold nanoparticle probes as a self-referencing standard to correct for variability in surface enhancement. Results were then validated by reverse transcription PCR (RT-PCR). Our proposed methodology could be expanded to a higher level of multiplexing for quantitative gene expression analysis of any gene without any amplification steps. PMID:19780515

  1. Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue Specimens for Enhanced Clinical Guidance

    DTIC Science & Technology

    2015-07-01

    SLC7A5, NRDG1, HTF9C, CEACAM5). Gene-expression assays using qRT-PCR, array hybridization, and RNA sequence assays have also been developed. The...and RNA sequence assays have also been developed. The OncotypeDX, for example, uses a panel of 21 genes (16 analytical, 5 controls: Ki67, STK15...Provide a brief list of keywords (limit to 20 words). Breast Cancer Diagnosis Pathology Immunophenotype Multiplex Morphology RNA In Situ

  2. Inducible, tunable and multiplex human gene regulation using CRISPR-Cpf1-based transcription factors | Office of Cancer Genomics

    Cancer.gov

    Targeted and inducible regulation of mammalian gene expression is a broadly important research capability that may also enable development of novel therapeutics for treating human diseases. Here we demonstrate that a catalytically inactive RNA-guided CRISPR-Cpf1 nuclease fused to transcriptional activation domains can up-regulate endogenous human gene expression. We engineered drug-inducible Cpf1-based activators and show how this system can be used to tune the regulation of endogenous gene transcription in human cells.

  3. Gene expression in the rectus abdominus muscle of patients with and without pelvic organ prolapse.

    PubMed

    Hundley, Andrew F; Yuan, Lingwen; Visco, Anthony G

    2008-02-01

    The objective of the study was to compare gene expression in a group of actin and myosin-related proteins in the rectus muscle of 15 patients with pelvic organ prolapse and 13 controls. Six genes previously identified by microarray GeneChip analysis were examined using real-time quantitative reverse transcriptase-polymerase chain reaction analysis, including 2 genes showing differential expression in pubococcygeus muscle. Samples and controls were run in triplicate in multiplexed wells, and levels of gene expression were analyzed using the comparative critical threshold method. One gene, MYH3, was 3.2 times overexpressed in patients with prolapse (P = .032), but no significant differences in expression were seen for the other genes examined. An age-matched subset of 9 patients and controls showed that MYH3 gene expression was no longer significantly different (P = .058). Differential messenger ribonucleic acid levels of actin and myosin-related genes in patients with pelvic organ prolapse and controls may be limited to skeletal muscle from the pelvic floor.

  4. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize.

    PubMed

    Qi, Weiwei; Zhu, Tong; Tian, Zhongrui; Li, Chaobin; Zhang, Wei; Song, Rentao

    2016-08-11

    CRISPR/Cas9 genome editing strategy has been applied to a variety of species and the tRNA-processing system has been used to compact multiple gRNAs into one synthetic gene for manipulating multiple genes in rice. We optimized and introduced the multiplex gene editing strategy based on the tRNA-processing system into maize. Maize glycine-tRNA was selected to design multiple tRNA-gRNA units for the simultaneous production of numerous gRNAs under the control of one maize U6 promoter. We designed three gRNAs for simplex editing and three multiple tRNA-gRNA units for multiplex editing. The results indicate that this system not only increased the number of targeted sites but also enhanced mutagenesis efficiency in maize. Additionally, we propose an advanced sequence selection of gRNA spacers for relatively more efficient and accurate chromosomal fragment deletion, which is important for complete abolishment of gene function especially long non-coding RNAs (lncRNAs). Our results also indicated that up to four tRNA-gRNA units in one expression cassette design can still work in maize. The examples reported here demonstrate the utility of the tRNA-processing system-based strategy as an efficient multiplex genome editing tool to enhance maize genetic research and breeding.

  5. Reliable Gene Expression Measurements from Fine Needle Aspirates of Pancreatic Tumors

    PubMed Central

    Anderson, Michelle A.; Brenner, Dean E.; Scheiman, James M.; Simeone, Diane M.; Singh, Nalina; Sikora, Matthew J.; Zhao, Lili; Mertens, Amy N.; Rae, James M.

    2010-01-01

    Background and aims: Biomarker use for pancreatic cancer diagnosis has been impaired by a lack of samples suitable for reliable quantitative RT-PCR (qRT-PCR). Fine needle aspirates (FNAs) from pancreatic masses were studied to define potential causes of RNA degradation and develop methods for accurately measuring gene expression. Methods: Samples from 32 patients were studied. RNA degradation was assessed by using a multiplex PCR assay for varying lengths of glyceraldehyde-3-phosphate dehydrogenase, and effects on qRT-PCR were determined by using a 150-bp and a 80-bp amplicon for RPS6. Potential causes of and methods to circumvent RNA degradation were studied by using FNAs from a pancreatic cancer xenograft. Results: RNA extracted from pancreatic mass FNAs was extensively degraded. Fragmentation was related to needle bore diameter and could not be overcome by alterations in aspiration technique. Multiplex PCR for glyceraldehyde-3-phosphate dehydrogenase could distinguish samples that were suitable for qRT-PCR. The use of short PCR amplicons (<100 bp) provided reliable gene expression analysis from FNAs. When appropriate samples were used, the assay was highly reproducible for gene copy number with minimal (0.0003 or about 0.7% of total) variance. Conclusions: The degraded properties of endoscopic FNAs markedly affect the accuracy of gene expression measurements. Our novel approach to designate specimens “informative” for qRT-PCR allowed accurate molecular assessment for the diagnosis of pancreatic diseases. PMID:20709792

  6. Multiplexed color-coded probe-based gene expression assessment for clinical molecular diagnostics in formalin-fixed paraffin-embedded human renal allograft tissue.

    PubMed

    Adam, Benjamin; Afzali, Bahman; Dominy, Katherine M; Chapman, Erin; Gill, Reeda; Hidalgo, Luis G; Roufosse, Candice; Sis, Banu; Mengel, Michael

    2016-03-01

    Histopathologic diagnoses in transplantation can be improved with molecular testing. Preferably, molecular diagnostics should fit into standard-of-care workflows for transplant biopsies, that is, formalin-fixed paraffin-embedded (FFPE) processing. The NanoString(®) gene expression platform has recently been shown to work with FFPE samples. We aimed to evaluate its methodological robustness and feasibility for gene expression studies in human FFPE renal allograft samples. A literature-derived antibody-mediated rejection (ABMR) 34-gene set, comprised of endothelial, NK cell, and inflammation transcripts, was analyzed in different retrospective biopsy cohorts and showed potential to molecularly discriminate ABMR cases, including FFPE samples. NanoString(®) results were reproducible across a range of RNA input quantities (r = 0.998), with different operators (r = 0.998), and between different reagent lots (r = 0.983). There was moderate correlation between NanoString(®) with FFPE tissue and quantitative reverse transcription polymerase chain reaction (qRT-PCR) with corresponding dedicated fresh-stabilized tissue (r = 0.487). Better overall correlation with histology was observed with NanoString(®) (r = 0.354) than with qRT-PCR (r = 0.146). Our results demonstrate the feasibility of multiplexed gene expression quantification from FFPE renal allograft tissue. This represents a method for prospective and retrospective validation of molecular diagnostics and its adoption in clinical transplantation pathology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Novel deletion of the E3A ubiquitin protein ligase gene detected by multiplex ligation-dependent probe amplification in a patient with Angelman syndrome

    PubMed Central

    Calì, Francesco; Ragalmuto, Alda; Chiavetta, Valeria; Calabrese, Giuseppe; Fichera, Marco; Vinci, Mirella; Ruggeri, Giuseppa; Schinocca, Pietro; Sturnio, Maurizio; Romano, Salvatore; Elia, Maurizio

    2010-01-01

    Angelman syndrome (AS) is a severe neurobehavioural disorder caused by failure of expression of the maternal copy of the imprinted domain located on 15q11-q13. There are different mechanisms leading to AS: maternal microdeletion, uniparental disomy, defects in a putative imprinting centre, mutations of the E3 ubiquitin protein ligase (UBE3A) gene. However, some of suspected cases of AS are still scored negative to all the latter mutations. Recently, it has been shown that a proportion of negative cases bear large deletions overlapping one or more exons of the UBE3A gene. These deletions are difficult to detect by conventional gene-scanning methods due to the masking effect by the non-deleted allele. In this study, we have used for the first time multiplex ligation-dependent probe amplification (MLPA) and comparative multiplex dosage analysis (CMDA) to search for large deletions affecting the UBE3A gene. Using this approach, we identified a novel causative deletion involving exon 8 in an affected sibling. Based on our results, we propose the use of MLPA as a fast, accurate and inexpensive test to detect large deletions in the UBE3A gene in a small but significant percentage of AS patients. PMID:21072004

  8. Facing the problem of "false positives": re-assessment and improvement of a multiplex RT-PCR procedure for the diagnosis of A. flavus mycotoxin producers.

    PubMed

    Degola, F; Berni, E; Spotti, E; Ferrero, I; Restivo, F M

    2009-02-28

    The aim of our research project was to consolidate a multiplex RT-PCR protocol to detect aflatoxigenic strains of Aspergillus flavus. Several independent A. flavus strains were isolated from corn and flour samples from the North of Italy and from three European countries. Aflatoxin producing/not producing phenotype was assessed by qualitative and quantitative assays at day five of growth in aflatoxin inducing conditions. Expression of 16 genes belonging to the aflatoxin cluster was assayed by multiplex or monomeric RT-PCR. There is a good correlation between gene expression and aflatoxin production. Strains that apparently transcribed all the relevant genes but did not release aflatoxin in the medium ("false positives") were re-assessed for mycotoxin production after extended growth in inducing condition. All the "false positive" strains in actual fact were positive when aflatoxin determination was performed after 10 days of growth. These strains should then be re-classified as "slow aflatoxin accumulators". To optimise the diagnostic procedure, a quintuplex RT-PCR procedure was designed consisting of a primer set directed against four informative aflatoxin cluster genes and the beta-tubulin gene as an internal amplification control. In conclusion we have provided evidence for the robustness and reliability of our RT-PCR protocol in discriminating mycotoxin producer from non-producer strains of A. flavus. and the molecular procedure we devised is a promising tool with which to screen and control the endemic population of A. flavus colonising different areas of the World.

  9. A Multiplexed Amplicon Approach for Detecting Gene Fusions by Next-Generation Sequencing.

    PubMed

    Beadling, Carol; Wald, Abigail I; Warrick, Andrea; Neff, Tanaya L; Zhong, Shan; Nikiforov, Yuri E; Corless, Christopher L; Nikiforova, Marina N

    2016-03-01

    Chromosomal rearrangements that result in oncogenic gene fusions are clinically important drivers of many cancer types. Rapid and sensitive methods are therefore needed to detect a broad range of gene fusions in clinical specimens that are often of limited quantity and quality. We describe a next-generation sequencing approach that uses a multiplex PCR-based amplicon panel to interrogate fusion transcripts that involve 19 driver genes and 94 partners implicated in solid tumors. The panel also includes control assays that evaluate the 3'/5' expression ratios of 12 oncogenic kinases, which might be used to infer gene fusion events when the partner is unknown or not included on the panel. There was good concordance between the solid tumor fusion gene panel and other methods, including fluorescence in situ hybridization, real-time PCR, Sanger sequencing, and other next-generation sequencing panels, because 40 specimens known to harbor gene fusions were correctly identified. No specific fusion reads were observed in 59 fusion-negative specimens. The 3'/5' expression ratio was informative for fusions that involved ALK, RET, and NTRK1 but not for BRAF or ROS1 fusions. However, among 37 ALK or RET fusion-negative specimens, four exhibited elevated 3'/5' expression ratios, indicating that fusions predicted solely by 3'/5' read ratios require confirmatory testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  10. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.

    PubMed

    Yin, L; Maddison, L A; Chen, W

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is a powerful tool for genome editing in numerous organisms. However, the system is typically used for gene editing throughout the entire organism. Tissue and temporal specific mutagenesis is often desirable to determine gene function in a specific stage or tissue and to bypass undesired consequences of global mutations. We have developed the CRISPR/Cas system for conditional mutagenesis in transgenic zebrafish using tissue-specific and/or inducible expression of Cas9 and U6-driven expression of sgRNA. To allow mutagenesis of multiple targets, we have isolated four distinct U6 promoters and designed Golden Gate vectors to easily assemble transgenes with multiple sgRNAs. We provide experimental details on the reagents and applications for multiplex conditional mutagenesis in zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Modular Ligation Extension of Guide RNA Operons (LEGO) for Multiplexed dCas9 Regulation of Metabolic Pathways in Saccharomyces cerevisiae.

    PubMed

    Deaner, Matthew; Holzman, Allison; Alper, Hal S

    2018-04-16

    Metabolic engineering typically utilizes a suboptimal step-wise gene target optimization approach to parse a highly connected and regulated cellular metabolism. While the endonuclease-null CRISPR/Cas system has enabled gene expression perturbations without genetic modification, it has been mostly limited to small sets of gene targets in eukaryotes due to inefficient methods to assemble and express large sgRNA operons. In this work, we develop a TEF1p-tRNA expression system and demonstrate that the use of tRNAs as splicing elements flanking sgRNAs provides higher efficiency than both Pol III and ribozyme-based expression across a variety of single sgRNA and multiplexed contexts. Next, we devise and validate a scheme to allow modular construction of tRNA-sgRNA (TST) operons using an iterative Type IIs digestion/ligation extension approach, termed CRISPR-Ligation Extension of sgRNA Operons (LEGO). This approach enables facile construction of large TST operons. We demonstrate this utility by constructing a metabolic rewiring prototype for 2,3-butanediol production in 2 distinct yeast strain backgrounds. These results demonstrate that our approach can act as a surrogate for traditional genetic modification on a much shorter design-cycle timescale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multiplex titration RT-PCR: rapid determination of gene expression patterns for a large number of genes

    NASA Technical Reports Server (NTRS)

    Nebenfuhr, A.; Lomax, T. L.

    1998-01-01

    We have developed an improved method for determination of gene expression levels with RT-PCR. The procedure is rapid and does not require extensive optimization or densitometric analysis. Since the detection of individual transcripts is PCR-based, small amounts of tissue samples are sufficient for the analysis of expression patterns in large gene families. Using this method, we were able to rapidly screen nine members of the Aux/IAA family of auxin-responsive genes and identify those genes which vary in message abundance in a tissue- and light-specific manner. While not offering the accuracy of conventional semi-quantitative or competitive RT-PCR, our method allows quick screening of large numbers of genes in a wide range of RNA samples with just a thermal cycler and standard gel analysis equipment.

  13. Application of anti-listerial bacteriocins: monitoring enterocin expression by multiplex relative reverse transcription-PCR.

    PubMed

    Williams, D Ross; Chanos, Panagiotis

    2012-12-01

    Listeriosis is a deadly food-borne disease, and its incidence may be limited through the biotechnological exploitation of a number of anti-listerial biocontrol agents. The most widely used of these agents are bacteriocins and the Class II enterocins are characterized by their activity against Listeria. Enterocins are primarily produced by enterococci, particularly Enterococcus faecium and many strains have been described, often encoding multiple bacteriocins. The use of these strains in food will require that they are free of virulence functions and that they exhibit a high level expression of anti-listerial enterocins in fermentation conditions. Multiplex relative RT (reverse transcription)-PCR is a technique that is useful in the discovery of advantageous expression characteristics among enterocin-producing strains. It allows the levels of individual enterocin gene expression to be monitored and determination of how expression is altered under different growth conditions.

  14. Highly multiplexed subcellular RNA sequencing in situ

    PubMed Central

    Lee, Je Hyuk; Daugharthy, Evan R.; Scheiman, Jonathan; Kalhor, Reza; Ferrante, Thomas C.; Yang, Joyce L.; Terry, Richard; Jeanty, Sauveur S. F.; Li, Chao; Amamoto, Ryoji; Peters, Derek T.; Turczyk, Brian M.; Marblestone, Adam H.; Inverso, Samuel A.; Bernard, Amy; Mali, Prashant; Rios, Xavier; Aach, John; Church, George M.

    2014-01-01

    Understanding the spatial organization of gene expression with single nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked cDNA amplicons are sequenced within a biological sample. Using 30-base reads from 8,742 genes in situ, we examined RNA expression and localization in human primary fibroblasts using a simulated wound healing assay. FISSEQ is compatible with tissue sections and whole mount embryos, and reduces the limitations of optical resolution and noisy signals on single molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ. PMID:24578530

  15. Multiplexed chemiluminescent assays in ArrayPlates for high-throughput measurement of gene expression

    NASA Astrophysics Data System (ADS)

    Martel, Ralph R.; Rounseville, Matthew P.; Botros, Ihab W.; Seligmann, Bruce E.

    2002-06-01

    Multiplexed Molecular Profiling (MMP) assays for drug discovery are performed in ArrayPlates. ArrayPlates are 96- well microtiter plates that contain a 16-element array at the bottom of each well. Each element within an array measures one analyte in a sample. A CCD imager records the quantitative chemiluminescent readout of all 1,536 elements in a 96-well plate simultaneously. Since array elements are reagent modifiable by the end-user, ArrayPlates can be adapted to a broad range of nucleic acid- and protein-based assays. Such multiplexed assays are rapidly established, flexible, robust, automation-friendly and cost-effective. Nucleic acid assays in ArrayPlates can detect DNA and RNA, including SNPs and ESTs. A multiplexed mRNA assay to measure the expression of 16 genes is described. The assay combines a homogeneous nuclease protection assay with subsequent probe immobilization to the array by means of a sandwich hybridization followed with chemiluminescent detection. This assay was used to examine cells grown and treated in microplates and avoided cloning, transfection, RNA insolation, reverse transcription, amplification and fluorochrome labeling. Standard deviations for the measurement of 16 genes ranged from 3 percent to 13 percent in samples of 30,000 cells. Such ArrayPlates transcription assays are useful in drug discovery and development for target validation, screening, lead optimization, metabolism and toxicity profiling. Chemiluminescent detection provides ArrayPlates assays with high signal-to-noise readout and simplifies imager requirements. Imaging a 2D surface that contains arrays simplifies lens requirements relative to imaging columns of liquid in microtiter plate wells. The Omix imager for ArrayPlates is described.

  16. Identification and characterization of DNAzymes targeting DNA methyltransferase I for suppressing bladder cancer proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiangbo; Zhang, Lu; Ding, Nianhua

    2015-05-29

    Epigenetic inactivation of genes plays a critical role in many important human diseases, especially in cancer. A core mechanism for epigenetic inactivation of the genes is methylation of CpG islands in genome DNA, which is catalyzed by DNA methyltransferases (DNMTs). The inhibition of DNMTs may lead to demethylation and expression of the silenced tumor suppressor genes. Although DNMT inhibitors are currently being developed as potential anticancer agents, only limited success is achieved due to substantial toxicity. Here, we utilized a multiplex selection system to generate efficient RNA-cleaving DNAzymes targeting DNMT1. The lead molecule from the selection was shown to possessmore » efficient kinetic profiles and high efficiency in inhibiting the enzyme activity. Transfection of the DNAzyme caused significant down-regulation of DNMT1 expression and reactivation of p16 gene, resulting in reduced cell proliferation of bladder cancers. This study provides an alternative for targeting DNMTs for potential cancer therapy. - Highlights: • Identified DNMT1-targeted DNAzymes by multiplex selection system. • Biochemically characterized a lead DNAzyme with high kinetic efficiency. • Validated DNMT1-targeted DNAzyme in its enzymatic and cellular activities.« less

  17. Multiplex PCR assay for detection of recombinant genes encoding fatty acid desaturases fused with lichenase reporter protein in GM plants.

    PubMed

    Berdichevets, Iryna N; Shimshilashvili, Hristina R; Gerasymenko, Iryna M; Sindarovska, Yana R; Sheludko, Yuriy V; Goldenkova-Pavlova, Irina V

    2010-07-01

    Thermostable lichenase encoded by licB gene of Clostridium thermocellum can be used as a reporter protein in plant, bacterial, yeast, and mammalian cells. It has important advantages of high sensitivity and specificity in qualitative and quantitative assays. Deletion variants of LicB (e.g., LicBM3) retain its enzymatic activity and thermostability and can be expressed in translational fusion with target proteins without compromising with their properties. Fusion with the lichenase reporter is especially convenient for the heterologous expression of proteins whose analysis is difficult or compromised by host enzyme activities, as it is in case of fatty acid desaturases occurring in all groups of organisms. Recombinant desaturase-lichenase genes can be used for creating genetically modified (GM) plants with improved chill tolerance. Development of an analytical method for detection of fused desaturase-lichenase transgenes is necessary both for production of GM plants and for their certification. Here, we report a multiplex polymerase chain reaction method for detection of desA and desC desaturase genes of cyanobacteria Synechocystis sp. PCC6803 and Synechococcus vulcanus, respectively, fused to licBM3 reporter in GM plants.

  18. Genetics Home Reference: steatocystoma multiplex

    MedlinePlus

    ... Genetic Changes Steatocystoma multiplex can be caused by mutations in the KRT17 gene. This gene provides instructions ... skin, nails, and other tissues. The KRT17 gene mutations that cause steatocystoma multiplex alter the structure of ...

  19. Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.

    PubMed

    Vad-Nielsen, Johan; Lin, Lin; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun

    2016-11-01

    The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.

  20. A 10-Gene Classifier for Indeterminate Thyroid Nodules: Development and Multicenter Accuracy Study

    PubMed Central

    González, Hernán E.; Martínez, José R.; Vargas-Salas, Sergio; Solar, Antonieta; Veliz, Loreto; Cruz, Francisco; Arias, Tatiana; Loyola, Soledad; Horvath, Eleonora; Tala, Hernán; Traipe, Eufrosina; Meneses, Manuel; Marín, Luis; Wohllk, Nelson; Diaz, René E.; Véliz, Jesús; Pineda, Pedro; Arroyo, Patricia; Mena, Natalia; Bracamonte, Milagros; Miranda, Giovanna; Bruce, Elsa

    2017-01-01

    Background: In most of the world, diagnostic surgery remains the most frequent approach for indeterminate thyroid cytology. Although several molecular tests are available for testing in centralized commercial laboratories in the United States, there are no available kits for local laboratory testing. The aim of this study was to develop a prototype in vitro diagnostic (IVD) gene classifier for the further characterization of nodules with an indeterminate thyroid cytology. Methods: In a first stage, the expression of 18 genes was determined by quantitative polymerase chain reaction (qPCR) in a broad histopathological spectrum of 114 fresh-tissue biopsies. Expression data were used to train several classifiers by supervised machine learning approaches. Classifiers were tested in an independent set of 139 samples. In a second stage, the best classifier was chosen as a model to develop a multiplexed-qPCR IVD prototype assay, which was tested in a prospective multicenter cohort of fine-needle aspiration biopsies. Results: In tissue biopsies, the best classifier, using only 10 genes, reached an optimal and consistent performance in the ninefold cross-validated testing set (sensitivity 93% and specificity 81%). In the multicenter cohort of fine-needle aspiration biopsy samples, the 10-gene signature, built into a multiplexed-qPCR IVD prototype, showed an area under the curve of 0.97, a positive predictive value of 78%, and a negative predictive value of 98%. By Bayes' theorem, the IVD prototype is expected to achieve a positive predictive value of 64–82% and a negative predictive value of 97–99% in patients with a cancer prevalence range of 20–40%. Conclusions: A new multiplexed-qPCR IVD prototype is reported that accurately classifies thyroid nodules and may provide a future solution suitable for local reference laboratory testing. PMID:28521616

  1. Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA.

    PubMed

    Xu, Li; Zhao, Lixia; Gao, Yandi; Xu, Jing; Han, Renzhi

    2017-03-17

    Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system has emerged in recent years as a highly efficient RNA-guided gene manipulation platform. Simultaneous editing or transcriptional activation/suppression of different genes becomes feasible with the co-delivery of multiple guide RNAs (gRNAs). Here, we report that multiple gRNAs linked with self-cleaving ribozymes and/or tRNA could be simultaneously expressed from a single U6 promoter to exert genome editing of dystrophin and myosin binding protein C3 in human and mouse cells. Moreover, this strategy allows the expression of multiple gRNAs for synergistic transcription activation of follistatin when used with catalytically inactive dCas9-VP64 or dCas9-p300core fusions. Finally, the gRNAs linked by the self-cleaving ribozymes and tRNA could be expressed from RNA polymerase type II (pol II) promoters such as generic CMV and muscle/heart-specific MHCK7. This is particularly useful for in vivo applications when the packaging capacity of recombinant adeno-associated virus is limited while tissue-specific delivery of gRNAs and Cas9 is desired. Taken together, this study provides a novel strategy to enable tissue-specific expression of more than one gRNAs for multiplex gene editing from a single pol II promoter. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Transcriptional Consequences of 16p11.2 Deletion and Duplication in Mouse Cortex and Multiplex Autism Families

    PubMed Central

    Blumenthal, Ian; Ragavendran, Ashok; Erdin, Serkan; Klei, Lambertus; Sugathan, Aarathi; Guide, Jolene R.; Manavalan, Poornima; Zhou, Julian Q.; Wheeler, Vanessa C.; Levin, Joshua Z.; Ernst, Carl; Roeder, Kathryn; Devlin, Bernie; Gusella, James F.; Talkowski, Michael E.

    2014-01-01

    Reciprocal copy-number variation (CNV) of a 593 kb region of 16p11.2 is a common genetic cause of autism spectrum disorder (ASD), yet it is not completely penetrant and can manifest in a wide array of phenotypes. To explore its molecular consequences, we performed RNA sequencing of cerebral cortex from mouse models with CNV of the syntenic 7qF3 region and lymphoblast lines from 34 members of 7 multiplex ASD-affected families harboring the 16p11.2 CNV. Expression of all genes in the CNV region correlated well with their DNA copy number, with no evidence of dosage compensation. We observed effects on gene expression outside the CNV region, including apparent positional effects in cis and in trans at genomic segments with evidence of physical interaction in Hi-C chromosome conformation data. One of the most significant positional effects was telomeric to the 16p11.2 CNV and includes the previously described “distal” 16p11.2 microdeletion. Overall, 16p11.2 CNV was associated with altered expression of genes and networks that converge on multiple hypotheses of ASD pathogenesis, including synaptic function (e.g., NRXN1, NRXN3), chromatin modification (e.g., CHD8, EHMT1, MECP2), transcriptional regulation (e.g., TCF4, SATB2), and intellectual disability (e.g., FMR1, CEP290). However, there were differences between tissues and species, with the strongest effects being consistently within the CNV region itself. Our analyses suggest that through a combination of indirect regulatory effects and direct effects on nuclear architecture, alteration of 16p11.2 genes disrupts expression networks that involve other genes and pathways known to contribute to ASD, suggesting an overlap in mechanisms of pathogenesis. PMID:24906019

  3. Automated multiplex genome-scale engineering in yeast

    PubMed Central

    Si, Tong; Chao, Ran; Min, Yuhao; Wu, Yuying; Ren, Wen; Zhao, Huimin

    2017-01-01

    Genome-scale engineering is indispensable in understanding and engineering microorganisms, but the current tools are mainly limited to bacterial systems. Here we report an automated platform for multiplex genome-scale engineering in Saccharomyces cerevisiae, an important eukaryotic model and widely used microbial cell factory. Standardized genetic parts encoding overexpression and knockdown mutations of >90% yeast genes are created in a single step from a full-length cDNA library. With the aid of CRISPR-Cas, these genetic parts are iteratively integrated into the repetitive genomic sequences in a modular manner using robotic automation. This system allows functional mapping and multiplex optimization on a genome scale for diverse phenotypes including cellulase expression, isobutanol production, glycerol utilization and acetic acid tolerance, and may greatly accelerate future genome-scale engineering endeavours in yeast. PMID:28469255

  4. Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing.

    PubMed

    Redchuk, Taras A; Kaberniuk, Andrii A; Verkhusha, Vladislav V

    2018-05-01

    Near-infrared (NIR, 740-780 nm) optogenetic systems are well-suited to spectral multiplexing with blue-light-controlled tools. Here, we present two protocols, one for regulation of gene transcription and another for control of protein localization, that use a NIR-responsive bacterial phytochrome BphP1-QPAS1 optogenetic pair. In the first protocol, cells are transfected with the optogenetic constructs for independently controlling gene transcription by NIR (BphP1-QPAS1) and blue (LightOn) light. The NIR and blue-light-controlled gene transcription systems show minimal spectral crosstalk and induce a 35- to 40-fold increase in reporter gene expression. In the second protocol, the BphP1-QPAS1 pair is combined with a light-oxygen-voltage-sensing (LOV) domain-based construct into a single optogenetic tool, termed iRIS. This dual-light-controllable protein localization tool allows tridirectional protein translocation among the cytoplasm, nucleus and plasma membrane. Both procedures can be performed within 3-5 d. Use of NIR light-controlled optogenetic systems should advance basic and biomedical research.

  5. Parallel gene analysis with allele-specific padlock probes and tag microarrays

    PubMed Central

    Banér, Johan; Isaksson, Anders; Waldenström, Erik; Jarvius, Jonas; Landegren, Ulf; Nilsson, Mats

    2003-01-01

    Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes. PMID:12930977

  6. Determination of absolute expression profiles using multiplexed miRNA analysis

    PubMed Central

    Song, Jee Hoon; Cheng, Yulan; Saeui, Christopher T.; Cheung, Douglas G.; Croce, Carlo M.; Yarema, Kevin J.; Meltzer, Stephen J.; Liu, Kelvin J.; Wang, Tza-Huei

    2017-01-01

    Accurate measurement of miRNA expression is critical to understanding their role in gene expression as well as their application as disease biomarkers. Correct identification of changes in miRNA expression rests on reliable normalization to account for biological and technological variance between samples. Ligo-miR is a multiplex assay designed to rapidly measure absolute miRNA copy numbers, thus reducing dependence on biological controls. It uses a simple 2-step ligation process to generate length coded products that can be quantified using a variety of DNA sizing methods. We demonstrate Ligo-miR’s ability to quantify miRNA expression down to 20 copies per cell sensitivity, accurately discriminate between closely related miRNA, and reliably measure differential changes as small as 1.2-fold. Then, benchmarking studies were performed to show the high correlation between Ligo-miR, microarray, and TaqMan qRT-PCR. Finally, Ligo-miR was used to determine copy number profiles in a number of breast, esophageal, and pancreatic cell lines and to demonstrate the utility of copy number analysis for providing layered insight into expression profile changes. PMID:28704432

  7. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots

    NASA Astrophysics Data System (ADS)

    Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.

    2016-05-01

    The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis. Electronic supplementary information (ESI) available: Base pair mismatch tuning of CProbes. Binding capacity of the QDs. Theoretical limit of detection (LOD) for the monoplex systems. Kinetics of strand displacement. Kinetics of QProbe-CProbe binding. LOD and saturation point calculations. See DOI: 10.1039/c6nr00484a

  8. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

    PubMed Central

    Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.

    2015-01-01

    Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438

  9. Gene Expression Patterns Associated With Histopathology in Toxic Liver Fibrosis.

    PubMed

    Ippolito, Danielle L; AbdulHameed, Mohamed Diwan M; Tawa, Gregory J; Baer, Christine E; Permenter, Matthew G; McDyre, Bonna C; Dennis, William E; Boyle, Molly H; Hobbs, Cheryl A; Streicker, Michael A; Snowden, Bobbi S; Lewis, John A; Wallqvist, Anders; Stallings, Jonathan D

    2016-01-01

    Toxic industrial chemicals induce liver injury, which is difficult to diagnose without invasive procedures. Identifying indicators of end organ injury can complement exposure-based assays and improve predictive power. A multiplexed approach was used to experimentally evaluate a panel of 67 genes predicted to be associated with the fibrosis pathology by computationally mining DrugMatrix, a publicly available repository of gene microarray data. Five-day oral gavage studies in male Sprague Dawley rats dosed with varying concentrations of 3 fibrogenic compounds (allyl alcohol, carbon tetrachloride, and 4,4'-methylenedianiline) and 2 nonfibrogenic compounds (bromobenzene and dexamethasone) were conducted. Fibrosis was definitively diagnosed by histopathology. The 67-plex gene panel accurately diagnosed fibrosis in both microarray and multiplexed-gene expression assays. Necrosis and inflammatory infiltration were comorbid with fibrosis. ANOVA with contrasts identified that 51 of the 67 predicted genes were significantly associated with the fibrosis phenotype, with 24 of these specific to fibrosis alone. The protein product of the gene most strongly correlated with the fibrosis phenotype PCOLCE (Procollagen C-Endopeptidase Enhancer) was dose-dependently elevated in plasma from animals administered fibrogenic chemicals (P < .05). Semiquantitative global mass spectrometry analysis of the plasma identified an additional 5 protein products of the gene panel which increased after fibrogenic toxicant administration: fibronectin, ceruloplasmin, vitronectin, insulin-like growth factor binding protein, and α2-macroglobulin. These results support the data mining approach for identifying gene and/or protein panels for assessing liver injury and may suggest bridging biomarkers for molecular mediators linked to histopathology. Published by Oxford University Press on behalf of the Society of Toxicology 2015. This work is written by US Government employees and is in the public domain in the US.

  10. Presence of the vancomycin resistance gene cluster vanC1, vanXYc, and vanT in Enterococcus casseliflavus.

    PubMed

    Hölzel, Christina; Bauer, Johann; Stegherr, Eva-Maria; Schwaiger, Karin

    2014-04-01

    The three chromosomally located clustered genes vanC1, vanXYc, and vanT confer intrinsic resistance to vancomycin and are used for species identification of Enterococcus gallinarum. In this study, 28 strains belonging to the E. gallinarum/casseliflavus group isolated from cloacal swabs from laying hens were screened for the presence of vanC1. As confirmed by species-specific multiplex PCR, 11 vanC1-positive strains were identified as E. gallinarum. Surprisingly, one yellow pigmented strain, verified as E. casseliflavus by species-specific multiplex PCR, was also vanC1 positive; vanXYc and vanT were additionally detectable in this strain. To our knowledge, this is the first report of vanC1, vanXYc, and vanT in E. casseliflavus. The minimum inhibitory concentration of vancomycin was 4 mg/L. Real-time reverse transcription-PCR revealed that none of the clustered genes was expressed in this strain. Even if the genes seem not to be active, there is a certain risk that they will be transferred to other bacteria where they might be functionally expressed. Therefore, it may be advisable to expand the search for vanC1, vanXYc, and vanT from E. gallinarum to other (enterococcal) species. This study confirms that enterococci live up to their name as being reservoir bacteria and should therefore always be closely monitored.

  11. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food.

    PubMed

    Lee, Nari; Kwon, Kyung Yoon; Oh, Su Kyung; Chang, Hyun-Joo; Chun, Hyang Sook; Choi, Sung-Wook

    2014-07-01

    A multiplex polymerase chain reaction (PCR) assay was developed for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in various Korean ready-to-eat foods. The six specific primer pairs for multiplex PCR were selected based on the O157 antigen (rfbE) gene of E. coli O157:H7, the DNA gyrase subunit B (gyrB) gene of B. cereus, the toxin regulatory protein (toxR) gene of V. parahaemolyticus, the invasion protein A (invA) gene of Salmonella spp., the hemolysin (hly) gene of L. monocytogenes, and the thermonuclease (nuc) gene of S. aureus. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity assays for multiplex primer pairs were investigated by testing different strains. When this multiplex PCR assay was applied to evaluate the validity of detecting six foodborne pathogens in artificially inoculated several ready-to-eat food samples, the assay was able to specifically simultaneously detect as few as 1 colony-forming unit/mL of each pathogen after enrichment for 12 h. Their presence in naturally contaminated samples also indicates that the developed multiplex PCR assay is an effective and informative supplement for practical use.

  12. Let there be bioluminescence – Development of a biophotonic imaging platform for in situ analyses of oral biofilms in animal models

    PubMed Central

    Merritt, Justin; Senpuku, Hidenobu; Kreth, Jens

    2016-01-01

    Summary In the current study, we describe a novel biophotonic imaging-based reporter system that is particularly useful for the study of virulence in polymicrobial infections and interspecies interactions within animal models. A suite of luciferase enzymes was compared using three early colonizing species of the human oral flora (Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis) to determine the utility of the different reporters for multiplexed imaging studies in vivo. Using the multiplex approach, we were able to track individual species within a dual species oral infection model in mice with both temporal and spatial resolution. We also demonstrate how biophotonic imaging of multiplexed luciferase reporters could be adapted for real-time quantification of bacterial gene expression in situ. By creating an inducible dual-luciferase expressing reporter strain of S. mutans, we were able to exogenously control and measure expression of nlmAB (encoding the bacteriocin mutacin IV) within mice to assess its importance for the persistence ability of S. mutans in the oral cavity. The imaging system described in the current study circumvents many of the inherent limitations of current animal model systems, which should now make it feasible to test hypotheses that were previously impractical to model. PMID:26119252

  13. Differentiating true androgen receptor inhibition from cytotoxicity-mediated reduction of reporter-gene transactivation in-vitro.

    PubMed

    Marin-Kuan, Maricel; Fussell, Karma C; Riederer, Nicolas; Latado, Helia; Serrant, Patrick; Mollergues, Julie; Coulet, Myriam; Schilter, Benoit

    2017-12-01

    In vitro effect-based reporter assays are applied as biodetection tools designed to address nuclear receptor mediated-modulation. While such assays detect receptor modulating potential, cell viability needs to be addressed, preferably in the same well. Some assays circumvent this by co-transfecting a second constitutively-expressed marker gene or by multiplexing a cytotoxicity assay. Some assays, such as the CALUX®, lack this feature. The cytotoxic effects of unknown substances can confound in vitro assays, making the interpretation of results difficult and uncertain, particularly when assessing antagonistic activity. It's necessary to determine whether the cause of the reporter signal decrease is an antagonistic effect or a non-specific cytotoxic effect. To remedy this, we assessed the suitability of multiplexing a cell viability assay within the CALUX® transcriptional activation test for anti-androgenicity. Tests of both well-characterized anti-androgens and cytotoxic compounds demonstrated the suitability of this approach for discerning between the molecular mechanisms of action without altering the nuclear receptor assay; though some compounds were both cytotoxic and anti-androgenic. The optimized multiplexed assay was then applied to an uncharacterized set of polycyclic aromatic compounds. These results better characterized the mode of action and the classification of effects. Overall, the multiplexed protocol added value to CALUX test performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Gene repression via multiplex gRNA strategy in Y. lipolytica.

    PubMed

    Zhang, Jin-Lai; Peng, Yang-Zi; Liu, Duo; Liu, Hong; Cao, Ying-Xiu; Li, Bing-Zhi; Li, Chun; Yuan, Ying-Jin

    2018-04-20

    The oleaginous yeast Yarrowia lipolytica is a promising microbial cell factory due to their biochemical characteristics and native capacity to accumulate lipid-based chemicals. To create heterogenous biosynthesis pathway and manipulate metabolic flux in Y. lipolytica, numerous studies have been done for developing synthetic biology tools for gene regulation. CRISPR interference (CRISPRi), as an emerging technology, has been applied for specifically repressing genes of interest. In this study, we established CRISPRi systems in Y. lipolytica based on four different repressors, that was DNase-deactivated Cpf1 (dCpf1) from Francisella novicida, deactivated Cas9 (dCas9) from Streptococcus pyogenes, and two fusion proteins (dCpf1-KRAB and dCas9-KRAB). Ten gRNAs that bound to different regions of gfp gene were designed and the results indicated that there was no clear correlation between the repression efficiency and targeting sites no matter which repressor protein was used. In order to rapidly yield strong gene repression, a multiplex gRNAs strategy based on one-step Golden-brick assembly technology was developed. High repression efficiency 85% (dCpf1) and 92% (dCas9) were achieved in a short time by making three different gRNAs towards gfp gene simultaneously, which avoided the need of screening effective gRNA loci in advance. Moreover, two genes interference including gfp and vioE and three genes repression including vioA, vioB and vioE in protodeoxy-violaceinic acid pathway were also realized. Taken together, successful CRISPRi-mediated regulation of gene expression via four different repressors dCpf1, dCas9, dCpf1-KRAB and dCas9-KRAB in Y. lipolytica is achieved. And we demonstrate a multiplexed gRNA targeting strategy can efficiently achieve transcriptional simultaneous repression of several targeted genes and different sites of one gene using the one-step Golden-brick assembly. This timesaving method promised to be a potent transformative tool valuable for metabolic engineering, synthetic biology, and functional genomic studies of Y. lipolytica.

  15. Transcriptional consequences of 16p11.2 deletion and duplication in mouse cortex and multiplex autism families.

    PubMed

    Blumenthal, Ian; Ragavendran, Ashok; Erdin, Serkan; Klei, Lambertus; Sugathan, Aarathi; Guide, Jolene R; Manavalan, Poornima; Zhou, Julian Q; Wheeler, Vanessa C; Levin, Joshua Z; Ernst, Carl; Roeder, Kathryn; Devlin, Bernie; Gusella, James F; Talkowski, Michael E

    2014-06-05

    Reciprocal copy-number variation (CNV) of a 593 kb region of 16p11.2 is a common genetic cause of autism spectrum disorder (ASD), yet it is not completely penetrant and can manifest in a wide array of phenotypes. To explore its molecular consequences, we performed RNA sequencing of cerebral cortex from mouse models with CNV of the syntenic 7qF3 region and lymphoblast lines from 34 members of 7 multiplex ASD-affected families harboring the 16p11.2 CNV. Expression of all genes in the CNV region correlated well with their DNA copy number, with no evidence of dosage compensation. We observed effects on gene expression outside the CNV region, including apparent positional effects in cis and in trans at genomic segments with evidence of physical interaction in Hi-C chromosome conformation data. One of the most significant positional effects was telomeric to the 16p11.2 CNV and includes the previously described "distal" 16p11.2 microdeletion. Overall, 16p11.2 CNV was associated with altered expression of genes and networks that converge on multiple hypotheses of ASD pathogenesis, including synaptic function (e.g., NRXN1, NRXN3), chromatin modification (e.g., CHD8, EHMT1, MECP2), transcriptional regulation (e.g., TCF4, SATB2), and intellectual disability (e.g., FMR1, CEP290). However, there were differences between tissues and species, with the strongest effects being consistently within the CNV region itself. Our analyses suggest that through a combination of indirect regulatory effects and direct effects on nuclear architecture, alteration of 16p11.2 genes disrupts expression networks that involve other genes and pathways known to contribute to ASD, suggesting an overlap in mechanisms of pathogenesis. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Constitutional downregulation of SEMA5A expression in autism.

    PubMed

    Melin, M; Carlsson, B; Anckarsater, H; Rastam, M; Betancur, C; Isaksson, A; Gillberg, C; Dahl, N

    2006-01-01

    There is strong evidence for the importance of genetic factors in idiopathic autism. The results from independent twin and family studies suggest that the disorder is caused by the action of several genes, possibly acting epistatically. We have used cDNA microarray technology for the identification of constitutional changes in the gene expression profile associated with idiopathic autism. Samples were obtained and analyzed from 6 affected subjects belonging to multiplex autism families and from 6 healthy controls. We assessed the expression levels for approximately 7,700 genes by cDNA microarrays using mRNA derived from Epstein-Barr virus-transformed B lymphocytes. The microarray data were analyzed in order to identify up- or downregulation of specific genes. A common pattern with nine downregulated genes was identified among samples derived from individuals with autism when compared to controls. Four of these nine genes encode proteins involved in biological processes associated with brain function or the immune system, and are consequently considered as candidates for genes associated with autism. Quantitative real-time PCR confirms the downregulation of the gene encoding SEMA5A, a protein involved in axonal guidance. Epstein-Barr virus should be considered as a possible source for altered expression, but our consistent results make us suggest SEMA5A as a candidate gene in the etiology of idiopathic autism.

  17. Constitutional downregulation of SEMA5A expression in autism

    PubMed Central

    Melin, Malin; Carlsson, Birgit; Anckarsäter, Henrik; Rastam, Maria; Betancur, Catalina; Isaksson, Anders; Gillberg, Christopher; Dahl, Niklas

    2006-01-01

    There is strong evidence for the importance of genetic factors in idiopathic autism. The results from independent twin and family studies suggest that the disorder is caused by the action of several genes, possibly acting epistatically. We have used cDNA microarray technology for the identification of constitutional changes in the gene expression profile associated with idiopathic autism. Samples were obtained and analyzed from six affected subjects belonging to multiplex autism families and from six healthy controls. We assessed the expression levels for approximately 7,700 genes by cDNA microarrays using mRNA derived from Epstein Barr virus (EBV)-transformed B-lymphocytes. The microarray data was analyzed in order to identify up- or down-regulation of specific genes. A common pattern with nine down-regulated genes was identified among samples derived from individuals with autism when compared to controls. Four of these nine genes encode proteins involved in biological processes associated with brain function or the immune system, and are consequently considered as candidates for genes associated with autism. Quantitative realtime PCR confirms the down-regulation of the gene encoding SEMA5A, a protein involved in axonal guidance. EBV should be considered as a possible source for altered expression but our consistent results make us suggest SEMA5A a candidate gene in the etiology of idiopathic autism. PMID:17028446

  18. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.

    PubMed

    Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R

    2015-10-01

    Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.

  19. Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism

    PubMed Central

    Sood, Anup; Miller, Alexandra M.; Brogi, Edi; Sui, Yunxia; Armenia, Joshua; McDonough, Elizabeth; Santamaria-Pang, Alberto; Stamper, Aleksandra; Campos, Carl; Pang, Zhengyu; Li, Qing; Port, Elisa; Graeber, Thomas G.; Schultz, Nikolaus; Ginty, Fiona; Larson, Steven M.

    2016-01-01

    The phenotypic diversity of cancer results from genetic and nongenetic factors. Most studies of cancer heterogeneity have focused on DNA alterations, as technologies for proteomic measurements in clinical specimen are currently less advanced. Here, we used a multiplexed immunofluorescence staining platform to measure the expression of 27 proteins at the single-cell level in formalin-fixed and paraffin-embedded samples from treatment-naive stage II/III human breast cancer. Unsupervised clustering of protein expression data from 638,577 tumor cells in 26 breast cancers identified 8 clusters of protein coexpression. In about one-third of breast cancers, over 95% of all neoplastic cells expressed a single protein coexpression cluster. The remaining tumors harbored tumor cells representing multiple protein coexpression clusters, either in a regional distribution or intermingled throughout the tumor. Tumor uptake of the radiotracer 18F-fluorodeoxyglucose was associated with protein expression clusters characterized by hormone receptor loss, PTEN alteration, and HER2 gene amplification. Our study demonstrates an approach to generate cellular heterogeneity metrics in routinely collected solid tumor specimens and integrate them with in vivo cancer phenotypes. PMID:27182557

  20. Analysis of multiplex gene expression maps obtained by voxelation.

    PubMed

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental results confirm the hypothesis that genes with similar gene expression maps might have similar gene functions. The voxelation data takes into account the location information of gene expression level in mouse brain, which is novel in related research. The proposed approach can potentially be used to predict gene functions and provide helpful suggestions to biologists.

  1. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  2. Very Low Abundance Single-Cell Transcript Quantification with 5-Plex ddPCRTM Assays.

    PubMed

    Karlin-Neumann, George; Zhang, Bin; Litterst, Claudia

    2018-01-01

    Gene expression studies have provided one of the most accessible windows for understanding the molecular basis of cell and tissue phenotypes and how these change in response to stimuli. Current PCR-based and next generation sequencing methods offer great versatility in allowing the focused study of the roles of small numbers of genes or comprehensive profiling of the entire transcriptome of a sample at one time. Marrying of these approaches to various cell sorting technologies has recently enabled the profiling of expression in single cells, thereby increasing the resolution and sensitivity and strengthening the inferences from observed expression levels and changes. This chapter presents a quick and efficient 1-day workflow for sorting single cells with a small laboratory cell-sorter followed by an ultrahigh sensitivity, multiplexed digital PCR method for quantitative tracking of changes in 5-10 genes per single cell.

  3. Genetic barcoding with fluorescent proteins for multiplexed applications.

    PubMed

    Smurthwaite, Cameron A; Williams, Wesley; Fetsko, Alexandra; Abbadessa, Darin; Stolp, Zachary D; Reed, Connor W; Dharmawan, Andre; Wolkowicz, Roland

    2015-04-14

    Fluorescent proteins, fluorescent dyes and fluorophores in general have revolutionized the field of molecular cell biology. In particular, the discovery of fluorescent proteins and their genes have enabled the engineering of protein fusions for localization, the analysis of transcriptional activation and translation of proteins of interest, or the general tracking of individual cells and cell populations. The use of fluorescent protein genes in combination with retroviral technology has further allowed the expression of these proteins in mammalian cells in a stable and reliable manner. Shown here is how one can utilize these genes to give cells within a population of cells their own biosignature. As the biosignature is achieved with retroviral technology, cells are barcoded 'indefinitely'. As such, they can be individually tracked within a mixture of barcoded cells and utilized in more complex biological applications. The tracking of distinct populations in a mixture of cells is ideal for multiplexed applications such as discovery of drugs against a multitude of targets or the activation profile of different promoters. The protocol describes how to elegantly develop and amplify barcoded mammalian cells with distinct genetic fluorescent markers, and how to use several markers at once or one marker at different intensities. Finally, the protocol describes how the cells can be further utilized in combination with cell-based assays to increase the power of analysis through multiplexing.

  4. Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression.

    PubMed

    Lintas, C; Sacco, R; Garbett, K; Mirnics, K; Militerni, R; Bravaccio, C; Curatolo, P; Manzi, B; Schneider, C; Melmed, R; Elia, M; Pascucci, T; Puglisi-Allegra, S; Reichelt, K-L; Persico, A M

    2009-07-01

    Protein kinase C enzymes play an important role in signal transduction, regulation of gene expression and control of cell division and differentiation. The fsI and betaII isoenzymes result from the alternative splicing of the PKCbeta gene (PRKCB1), previously found to be associated with autism. We performed a family-based association study in 229 simplex and 5 multiplex families, and a postmortem study of PRKCB1 gene expression in temporocortical gray matter (BA41/42) of 11 autistic patients and controls. PRKCB1 gene haplotypes are significantly associated with autism (P<0.05) and have the autistic endophenotype of enhanced oligopeptiduria (P<0.05). Temporocortical PRKCB1 gene expression was reduced on average by 35 and 31% for the PRKCB1-1 and PRKCB1-2 isoforms (P<0.01 and <0.05, respectively) according to qPCR. Protein amounts measured for the PKCbetaII isoform were similarly decreased by 35% (P=0.05). Decreased gene expression characterized patients carrying the 'normal' PRKCB1 alleles, whereas patients homozygous for the autism-associated alleles displayed mRNA levels comparable to those of controls. Whole genome expression analysis unveiled a partial disruption in the coordinated expression of PKCbeta-driven genes, including several cytokines. These results confirm the association between autism and PRKCB1 gene variants, point toward PKCbeta roles in altered epithelial permeability, demonstrate a significant downregulation of brain PRKCB1 gene expression in autism and suggest that it could represent a compensatory adjustment aimed at limiting an ongoing dysreactive immune process. Altogether, these data underscore potential PKCbeta roles in autism pathogenesis and spur interest in the identification and functional characterization of PRKCB1 gene variants conferring autism vulnerability.

  5. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved.

  6. Multiplex bioimaging of piRNA molecular pathway-regulated theragnostic effects in a single breast cancer cell using a piRNA molecular beacon.

    PubMed

    Lee, Youn Jung; Moon, Sung Ung; Park, Min Geun; Jung, Woon Yong; Park, Yong Keun; Song, Sung Kyu; Ryu, Je Gyu; Lee, Yong Seung; Heo, Hye Jung; Gu, Ha Na; Cho, Su Jeong; Ali, Bahy A; Al-Khedhairy, Abdulaziz A; Lee, Ilkyun; Kim, Soonhag

    2016-09-01

    Recently, PIWI-interacting small non-coding RNAs (piRNAs) have emerged as novel cancer biomarkers candidate because of their high expression level in various cancer types and role in the control of tumor suppressor genes. In this study, a novel breast cancer theragnostics probe based on a single system targeting the piRNA-36026 (piR-36026) molecular pathway was developed using a piR-36026 molecular beacon (MB). The piR-36026 MB successfully visualized endogenous piR-36026 biogenesis, which is highly expressed in MCF7 cells (a human breast cancer cell line), and simultaneously inhibited piR-36026-mediated cancer progression in vitro and in vivo. We discovered two tumor suppressor proteins, SERPINA1 and LRAT, that were directly regulated as endogenous piR-36026 target genes in MCF7 cells. Furthermore, multiplex bioimaging of a single MCF7 cell following treatment with piR-36026 MB clearly visualized the direct molecular interaction of piRNA-36026 with SERPINA1 or LRAT and subsequent molecular therapeutic responses including caspase-3 and PI in the nucleus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Multiplex PCR for Rapid Detection of Genes Encoding Class A Carbapenemases

    PubMed Central

    Hong, Sang Sook; Kim, Kyeongmi; Huh, Ji Young; Jung, Bochan; Kang, Myung Seo

    2012-01-01

    In recent years, there have been increasing reports of KPC-producing Klebsiella pneumoniae in Korea. The modified Hodge test can be used as a phenotypic screening test for class A carbapenamase (CAC)-producing clinical isolates; however, it does not distinguish between carbapenemase types. The confirmation of type of CAC is important to ensure optimal therapy and to prevent transmission. This study applied a novel multiplex PCR assay to detect and differentiate CAC genes in a single reaction. Four primer pairs were designed to amplify fragments encoding 4 CAC families (SME, IMI/NMC-A, KPC, and GES). The multiplex PCR detected all genes tested for 4 CAC families that could be differentiated by fragment size according to gene type. This multiplex PCR offers a simple and useful approach for detecting and distinguishing CAC genes in carbapenem-resistant strains that are metallo-β-lactamase nonproducers. PMID:22950072

  8. Multiplex PCR for rapid detection of genes encoding class A carbapenemases.

    PubMed

    Hong, Sang Sook; Kim, Kyeongmi; Huh, Ji Young; Jung, Bochan; Kang, Myung Seo; Hong, Seong Geun

    2012-09-01

    In recent years, there have been increasing reports of KPC-producing Klebsiella pneumoniae in Korea. The modified Hodge test can be used as a phenotypic screening test for class A carbapenamase (CAC)-producing clinical isolates; however, it does not distinguish between carbapenemase types. The confirmation of type of CAC is important to ensure optimal therapy and to prevent transmission. This study applied a novel multiplex PCR assay to detect and differentiate CAC genes in a single reaction. Four primer pairs were designed to amplify fragments encoding 4 CAC families (SME, IMI/NMC-A, KPC, and GES). The multiplex PCR detected all genes tested for 4 CAC families that could be differentiated by fragment size according to gene type. This multiplex PCR offers a simple and useful approach for detecting and distinguishing CAC genes in carbapenem-resistant strains that are metallo-β-lactamase nonproducers.

  9. Rapid and simple method by combining FTA™ card DNA extraction with two set multiplex PCR for simultaneous detection of non-O157 Shiga toxin-producing Escherichia coli strains and virulence genes in food samples.

    PubMed

    Kim, S A; Park, S H; Lee, S I; Ricke, S C

    2017-12-01

    The aim of this research was to optimize two multiplex polymerase chain reaction (PCR) assays that could simultaneously detect six non-O157 Shiga toxin-producing Escherichia coli (STEC) as well as the three virulence genes. We also investigated the potential of combining the FTA™ card-based DNA extraction with the multiplex PCR assays. Two multiplex PCR assays were optimized using six primer pairs for each non-O157 STEC serogroup and three primer pairs for virulence genes respectively. Each STEC strain specific primer pair only amplified 155, 238, 321, 438, 587 and 750 bp product for O26, O45, O103, O111, O121 and O145 respectively. Three virulence genes were successfully multiplexed: 375 bp for eae, 655 bp for stx1 and 477 bp for stx2. When two multiplex PCR assays were validated with ground beef samples, distinctive bands were also successfully produced. Since the two multiplex PCR examined here can be conducted under the same PCR conditions, the six non-O157 STEC and their virulence genes could be concurrently detected with one run on the thermocycler. In addition, all bands clearly appeared to be amplified by FTA card DNA extraction in the multiplex PCR assay from the ground beef sample, suggesting that an FTA card could be a viable sampling approach for rapid and simple DNA extraction to reduce time and labour and therefore may have practical use for the food industry. Two multiplex polymerase chain reaction (PCR) assays were optimized for discrimination of six non-O157 Shiga toxin-producing Escherichia coli (STEC) and identification of their major virulence genes within a single reaction, simultaneously. This study also determined the successful ability of the FTA™ card as an alternative to commercial DNA extraction method for conducting multiplex STEC PCR assays. The FTA™ card combined with multiplex PCR holds promise for the food industry by offering a simple and rapid DNA sample method for reducing time, cost and labour for detection of STEC in food and environmental samples. © 2017 The Society for Applied Microbiology.

  10. Digital detection of multiple minority mutants and expression levels of multiple colorectal cancer-related genes using digital-PCR coupled with bead-array.

    PubMed

    Huang, Huan; Li, Shuo; Sun, Lizhou; Zhou, Guohua

    2015-01-01

    To simultaneously analyze mutations and expression levels of multiple genes on one detection platform, we proposed a method termed "multiplex ligation-dependent probe amplification-digital amplification coupled with hydrogel bead-array" (MLPA-DABA) and applied it to diagnose colorectal cancer (CRC). CRC cells and tissues were sampled to extract nucleic acid, perform MLPA with sequence-tagged probes, perform digital emulsion polymerase chain reaction (PCR), and produce a hydrogel bead-array to immobilize beads and form a single bead layer on the array. After hybridization with fluorescent probes, the number of colored beads, which reflects the abundance of expressed genes and the mutation rate, was counted for diagnosis. Only red or green beads occurred on the chips in the mixed samples, indicating the success of single-molecule PCR. When a one-source sample was analyzed using mixed MLPA probes, beads of only one color occurred, suggesting the high specificity of the method in analyzing CRC mutation and gene expression. In gene expression analysis of a CRC tissue from one CRC patient, the mutant percentage was 3.1%, and the expression levels of CRC-related genes were much higher than those of normal tissue. The highly sensitive MLPA-DABA succeeds in the relative quantification of mutations and gene expressions of exfoliated cells in stool samples of CRC patients on the same chip platform. MLPA-DABA coupled with hydrogel bead-array is a promising method in the non-invasive diagnosis of CRC.

  11. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo

    2005-05-18

    To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.

  12. Multiplex single-tube screening for mutations in the Nijmegen Breakage Syndrome (NBS1) gene in Hodgkin's and non-Hodgkin's lymphoma patients of Slavic origin.

    PubMed

    Soucek, Pavel; Gut, Ivan; Trneny, Marek; Skovlund, Eva; Grenaker Alnaes, Grethe; Kristensen, Tom; Børresen-Dale, Anne-Lise; Kristensen, Vessela N

    2003-05-01

    Patients with Nijmegen Breakage Syndrome (NBS) have a high risk to develop malignant diseases, most frequently B-cell lymphomas. It has been demonstrated that this chromosomal breakage syndrome results from mutations in the NBS1 gene that cause either a loss of full-length protein expression or expression of a variant protein. A large proportion of the known NBS patients are of Slavic origin who carry a major founder mutation 657del5 in exon 6 of the NBS1 gene. The prevalence of this mutation in Slav populations is reported to be high, possibly contributing to higher cancer risk in these populations. Therefore, if mutations in NBS1 are associated with higher risk of developing lymphoid cancers it would be most likely to be observed in these populations. A multiplex assay for four of the most frequent NBS1 mutations was designed and a series of 119 lymphoma patients from Slavic origin as well as 177 healthy controls were tested. One of the patients was a heterozygote carrier of the ACAAA deletion mutation in exon 6 (1/119). No mutation was observed in the control group, despite the reported high frequency (1/177). The power of this study was 30% to detect a relative risk of 2.0.

  13. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing.

    PubMed

    Amabile, Angelo; Migliara, Alessandro; Capasso, Paola; Biffi, Mauro; Cittaro, Davide; Naldini, Luigi; Lombardo, Angelo

    2016-09-22

    Gene silencing is instrumental to interrogate gene function and holds promise for therapeutic applications. Here, we repurpose the endogenous retroviruses' silencing machinery of embryonic stem cells to stably silence three highly expressed genes in somatic cells by epigenetics. This was achieved by transiently expressing combinations of engineered transcriptional repressors that bind to and synergize at the target locus to instruct repressive histone marks and de novo DNA methylation, thus ensuring long-term memory of the repressive epigenetic state. Silencing was highly specific, as shown by genome-wide analyses, sharply confined to the targeted locus without spreading to nearby genes, resistant to activation induced by cytokine stimulation, and relieved only by targeted DNA demethylation. We demonstrate the portability of this technology by multiplex gene silencing, adopting different DNA binding platforms and interrogating thousands of genomic loci in different cell types, including primary T lymphocytes. Targeted epigenome editing might have broad application in research and medicine. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes.

    PubMed

    Ehrke-Schulz, Eric; Schiwon, Maren; Leitner, Theo; Dávid, Stephan; Bergmann, Thorsten; Liu, Jing; Ehrhardt, Anja

    2017-12-07

    The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system revolutionized the field of gene editing but viral delivery of the CRISPR/Cas9 system has not been fully explored. Here we adapted clinically relevant high-capacity adenoviral vectors (HCAdV) devoid of all viral genes for the delivery of the CRISPR/Cas9 machinery using a single viral vector. We present a platform enabling fast transfer of the Cas9 gene and gRNA expression units into the HCAdV genome including the option to choose between constitutive or inducible Cas9 expression and gRNA multiplexing. Efficacy and versatility of this pipeline was exemplified by producing different CRISPR/Cas9-HCAdV targeting the human papillomavirus (HPV) 18 oncogene E6, the dystrophin gene causing Duchenne muscular dystrophy (DMD) and the HIV co-receptor C-C chemokine receptor type 5 (CCR5). All CRISPR/Cas9-HCAdV proved to be efficient to deliver the respective CRISPR/Cas9 expression units and to introduce the desired DNA double strand breaks at their intended target sites in immortalized and primary cells.

  15. Increase in expression of brain serotonin transporter and monoamine oxidase a genes induced by repeated experience of social defeats in male mice.

    PubMed

    Filipenko, M L; Beilina, A G; Alekseyenko, O V; Dolgov, V V; Kudryavtseva, N N

    2002-04-01

    Serotonin transporter and monoamine oxidase (MAO) A are involved in the inactivation of serotonin. The former is responsible for serotonin re-uptake from the synapse, whereas the latter catalyzes serotonin deamination in presynaptic terminals. Expression of serotonin transporter and MAO A genes was investigated in raphe nuclei of midbrain of CBA/Lac male mice with repeated experience of social victories or defeats in 10 daily aggressive confrontations. The amount of cDNA of these genes was evaluated using multiplex RT-PCR. Two independent experiments revealed that the defeated mice were characterized by significantly higher levels of serotonin transporter and MAO A mRNAs than the control and aggressive animals. Increased expression of MAO A and serotonin transporter genes is suggested to reflect the accelerated serotonin degradation in response to activation of the serotonergic system functioning induced by social stress. Significant positive correlation between MAO A and serotonin transporter mRNA levels suggests common pathways of regulation of transcriptional activity of these genes.

  16. Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay

    PubMed Central

    Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt

    2003-01-01

    We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378

  17. Case report: value of gene expression profiling in the diagnosis of atypical neuroblastoma.

    PubMed

    Harttrampf, Anne C; Chen, Qingrong; Jüttner, Eva; Geiger, Julia; Vansant, Gordon; Khan, Javed; Kontny, Udo

    2017-08-17

    Nephroblastoma and neuroblastoma belong to the most common abdominal malignancies in childhood. Similarities in the initial presentation may provide difficulties in distinguishing between these two entities, especially if unusual variations to prevalent patterns of disease manifestation occur. Because of the risk of tumor rupture, European protocols do not require biopsy for diagnosis, which leads to misdiagnosis in some cases. We report on a 4½-year-old girl with a renal tumor displaying radiological and laboratory characteristics supporting the diagnosis of nephroblastoma. Imaging studies showed tumor extension into the inferior vena cava and bilateral lung metastases while urine catecholamines and MIBG-scintigraphy were negative. Preoperative chemotherapy with vincristine, actinomycine D and adriamycin according to the SIOP2001/GPOH protocol for the treatment of nephroblastoma was initiated and followed by surgical tumor resection. Histopathology revealed an undifferentiated tumor with expression of neuronal markers, suggestive of neuroblastoma. MYCN amplification could not be detected. DNA-microarray analysis was performed using Affymetrix genechip human genome U133 plus 2.0 and artificial neural network analysis. Results were confirmed by multiplex RT-PCR. Principal component analysis using 84 genes showed that the patient sample was clearly clustering with neuroblastoma tumors. This was confirmed by hierarchical clustering of the multiplex RT-PCR data. The patient underwent treatment for high-risk neuroblastoma comprising chemotherapy including cisplatin, etoposide, vindesine, dacarbacine, ifosfamide, vincristine, adriamycine and autologous stem cell transplantation followed by maintenance therapy with 13-cis retinoic acid (GPOH NB2004 High Risk Trial Protocol) and is in complete long-term remission. The use of gene expression profiling in an individual patient strongly contributed to clarification in a diagnostic dilemma which finally led to a change of diagnosis from nephroblastoma to neuroblastoma. This case underlines the importance of gene-expression profiling in the correct diagnosis of childhood neoplasms with atypical presentation to ensure that adequate treatment regimens can be applied.

  18. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry.

    PubMed

    Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland

    2014-01-01

    The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.

  19. Preparation of highly multiplexed small RNA sequencing libraries.

    PubMed

    Persson, Helena; Søkilde, Rolf; Pirona, Anna Chiara; Rovira, Carlos

    2017-08-01

    MicroRNAs (miRNAs) are ~22-nucleotide-long small non-coding RNAs that regulate the expression of protein-coding genes by base pairing to partially complementary target sites, preferentially located in the 3´ untranslated region (UTR) of target mRNAs. The expression and function of miRNAs have been extensively studied in human disease, as well as the possibility of using these molecules as biomarkers for prognostication and treatment guidance. To identify and validate miRNAs as biomarkers, their expression must be screened in large collections of patient samples. Here, we develop a scalable protocol for the rapid and economical preparation of a large number of small RNA sequencing libraries using dual indexing for multiplexing. Combined with the use of off-the-shelf reagents, more samples can be sequenced simultaneously on large-scale sequencing platforms at a considerably lower cost per sample. Sample preparation is simplified by pooling libraries prior to gel purification, which allows for the selection of a narrow size range while minimizing sample variation. A comparison with publicly available data from benchmarking of miRNA analysis platforms showed that this method captures absolute and differential expression as effectively as commercially available alternatives.

  20. RNA-Seq for Bacterial Gene Expression.

    PubMed

    Poulsen, Line Dahl; Vinther, Jeppe

    2018-06-01

    RNA sequencing (RNA-seq) has become the preferred method for global quantification of bacterial gene expression. With the continued improvements in sequencing technology and data analysis tools, the most labor-intensive and expensive part of an RNA-seq experiment is the preparation of sequencing libraries, which is also essential for the quality of the data obtained. Here, we present a straightforward and inexpensive basic protocol for preparation of strand-specific RNA-seq libraries from bacterial RNA as well as a computational pipeline for the data analysis of sequencing reads. The protocol is based on the Illumina platform and allows easy multiplexing of samples and the removal of sequencing reads that are PCR duplicates. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  1. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Exome sequences of multiplex, multigenerational families reveal schizophrenia risk loci with potential implications for neurocognitive performance.

    PubMed

    Kos, Mark Z; Carless, Melanie A; Peralta, Juan; Curran, Joanne E; Quillen, Ellen E; Almeida, Marcio; Blackburn, August; Blondell, Lucy; Roalf, David R; Pogue-Geile, Michael F; Gur, Ruben C; Göring, Harald H H; Nimgaonkar, Vishwajit L; Gur, Raquel E; Almasy, Laura

    2017-12-01

    Schizophrenia is a serious mental illness, involving disruptions in thought and behavior, with a worldwide prevalence of about one percent. Although highly heritable, much of the genetic liability of schizophrenia is yet to be explained. We searched for susceptibility loci in multiplex, multigenerational families affected by schizophrenia, targeting protein-altering variation with in silico predicted functional effects. Exome sequencing was performed on 136 samples from eight European-American families, including 23 individuals diagnosed with schizophrenia or schizoaffective disorder. In total, 11,878 non-synonymous variants from 6,396 genes were tested for their association with schizophrenia spectrum disorders. Pathway enrichment analyses were conducted on gene-based test results, protein-protein interaction (PPI) networks, and epistatic effects. Using a significance threshold of FDR < 0.1, association was detected for rs10941112 (p = 2.1 × 10 -5 ; q-value = 0.073) in AMACR, a gene involved in fatty acid metabolism and previously implicated in schizophrenia, with significant cis effects on gene expression (p = 5.5 × 10 -4 ), including brain tissue data from the Genotype-Tissue Expression project (minimum p = 6.0 × 10 -5 ). A second SNP, rs10378 located in TMEM176A, also shows risk effects in the exome data (p = 2.8 × 10 -5 ; q-value = 0.073). PPIs among our top gene-based association results (p < 0.05; n = 359 genes) reveal significant enrichment of genes involved in NCAM-mediated neurite outgrowth (p = 3.0 × 10 -5 ), while exome-wide SNP-SNP interaction effects for rs10941112 and rs10378 indicate a potential role for kinase-mediated signaling involved in memory and learning. In conclusion, these association results implicate AMACR and TMEM176A in schizophrenia risk, whose effects may be modulated by genes involved in synaptic plasticity and neurocognitive performance. © 2017 Wiley Periodicals, Inc.

  3. Digital Detection of Multiple Minority Mutants and Expression Levels of Multiple Colorectal Cancer-Related Genes Using Digital-PCR Coupled with Bead-Array

    PubMed Central

    Huang, Huan; Li, Shuo; Sun, Lizhou; Zhou, Guohua

    2015-01-01

    To simultaneously analyze mutations and expression levels of multiple genes on one detection platform, we proposed a method termed “multiplex ligation-dependent probe amplification–digital amplification coupled with hydrogel bead-array” (MLPA–DABA) and applied it to diagnose colorectal cancer (CRC). CRC cells and tissues were sampled to extract nucleic acid, perform MLPA with sequence-tagged probes, perform digital emulsion polymerase chain reaction (PCR), and produce a hydrogel bead-array to immobilize beads and form a single bead layer on the array. After hybridization with fluorescent probes, the number of colored beads, which reflects the abundance of expressed genes and the mutation rate, was counted for diagnosis. Only red or green beads occurred on the chips in the mixed samples, indicating the success of single-molecule PCR. When a one-source sample was analyzed using mixed MLPA probes, beads of only one color occurred, suggesting the high specificity of the method in analyzing CRC mutation and gene expression. In gene expression analysis of a CRC tissue from one CRC patient, the mutant percentage was 3.1%, and the expression levels of CRC-related genes were much higher than those of normal tissue. The highly sensitive MLPA–DABA succeeds in the relative quantification of mutations and gene expressions of exfoliated cells in stool samples of CRC patients on the same chip platform. MLPA–DABA coupled with hydrogel bead-array is a promising method in the non-invasive diagnosis of CRC. PMID:25880764

  4. Discriminating cellular heterogeneity using microwell-based RNA cytometry

    PubMed Central

    Dimov, Ivan K.; Lu, Rong; Lee, Eric P.; Seita, Jun; Sahoo, Debashis; Park, Seung-min; Weissman, Irving L.; Lee, Luke P.

    2014-01-01

    Discriminating cellular heterogeneity is important for understanding cellular physiology. However, it is limited by the technical difficulties of single-cell measurements. Here, we develop a two-stage system to determine cellular heterogeneity. In the first stage, we perform multiplex single-cell RNA-cytometry in a microwell array containing over 60,000 reaction chambers. In the second stage, we use the RNA-cytometry data to determine cellular heterogeneity by providing a heterogeneity likelihood score. Moreover, we use Monte-Carlo simulation and RNA-cytometry data to calculate the minimum number of cells required for detecting heterogeneity. We applied this system to characterize the RNA distributions of aging related genes in a highly purified mouse hematopoietic stem cell population. We identified genes that reveal novel heterogeneity of these cells. We also show that changes in expression of genes such as Birc6 during aging can be attributed to the shift of relative portions of cells in the high-expressing subgroup versus low-expressing subgroup. PMID:24667995

  5. Association Between Germline Mutation in VSIG10L and Familial Barrett Neoplasia.

    PubMed

    Fecteau, Ryan E; Kong, Jianping; Kresak, Adam; Brock, Wendy; Song, Yeunjoo; Fujioka, Hisashi; Elston, Robert; Willis, Joseph E; Lynch, John P; Markowitz, Sanford D; Guda, Kishore; Chak, Amitabh

    2016-10-01

    Esophageal adenocarcinoma and its precursor lesion Barrett esophagus have seen a dramatic increase in incidence over the past 4 decades yet marked genetic heterogeneity of this disease has precluded advances in understanding its pathogenesis and improving treatment. To identify novel disease susceptibility variants in a familial syndrome of esophageal adenocarcinoma and Barrett esophagus, termed familial Barrett esophagus, by using high-throughput sequencing in affected individuals from a large, multigenerational family. We performed whole exome sequencing (WES) from peripheral lymphocyte DNA on 4 distant relatives from our multiplex, multigenerational familial Barrett esophagus family to identify candidate disease susceptibility variants. Gene variants were filtered, verified, and segregation analysis performed to identify a single candidate variant. Gene expression analysis was done with both quantitative real-time polymerase chain reaction and in situ RNA hybridization. A 3-dimensional organotypic cell culture model of esophageal maturation was utilized to determine the phenotypic effects of our gene variant. We used electron microscopy on esophageal mucosa from an affected family member carrying the gene variant to assess ultrastructural changes. Identification of a novel, germline disease susceptibility variant in a previously uncharacterized gene. A multiplex, multigenerational family with 14 members affected (3 members with esophageal adenocarcinoma and 11 with Barrett esophagus) was identified, and whole-exome sequencing identified a germline mutation (S631G) at a highly conserved serine residue in the uncharacterized gene VSIG10L that segregated in affected members. Transfection of S631G variant into a 3-dimensional organotypic culture model of normal esophageal squamous cells dramatically inhibited epithelial maturation compared with the wild-type. VSIG10L exhibited high expression in normal squamous esophagus with marked loss of expression in Barrett-associated lesions. Electron microscopy of squamous esophageal mucosa harboring the S631G variant revealed dilated intercellular spaces and reduced desmosomes. This study presents VSIG10L as a candidate familial Barrett esophagus susceptibility gene, with a putative role in maintaining normal esophageal homeostasis. Further research assessing VSIG10L function may reveal pathways important for esophageal maturation and the pathogenesis of Barrett esophagus and esophageal adenocarcinoma.

  6. Association Between Germline Mutation in VSIG10L and Familial Barrett Neoplasia

    PubMed Central

    Fecteau, Ryan E.; Kong, Jianping; Kresak, Adam; Brock, Wendy; Song, Yeunjoo; Fujioka, Hisashi; Elston, Robert; Willis, Joseph E.; Lynch, John P.; Markowitz, Sanford D.; Guda, Kishore; Chak, Amitabh

    2016-01-01

    IMPORTANCE Esophageal adenocarcinoma and its precursor lesion Barrett esophagus have seen a dramatic increase in incidence over the past 4 decades yet marked genetic heterogeneity of this disease has precluded advances in understanding its pathogenesis and improving treatment. OBJECTIVE To identify novel disease susceptibility variants in a familial syndrome of esophageal adenocarcinoma and Barrett esophagus, termed familial Barrett esophagus, by using high-throughput sequencing in affected individuals from a large, multigenerational family. DESIGN, SETTING, AND PARTICIPANTS We performed whole exome sequencing (WES) from peripheral lymphocyte DNA on 4 distant relatives from our multiplex, multigenerational familial Barrett esophagus family to identify candidate disease susceptibility variants. Gene variants were filtered, verified, and segregation analysis performed to identify a single candidate variant. Gene expression analysis was done with both quantitative real-time polymerase chain reaction and in situ RNA hybridization. A 3-dimensional organotypic cell culture model of esophageal maturation was utilized to determine the phenotypic effects of our gene variant. We used electron microscopy on esophageal mucosa from an affected family member carrying the gene variant to assess ultrastructural changes. MAIN OUTCOMES AND MEASURES Identification of a novel, germline disease susceptibility variant in a previously uncharacterized gene. RESULTS A multiplex, multigenerational family with 14 members affected (3 members with esophageal adenocarcinoma and 11 with Barrett esophagus) was identified, and whole-exome sequencing identified a germline mutation (S631G) at a highly conserved serine residue in the uncharacterized gene VSIG10L that segregated in affected members. Transfection of S631G variant into a 3-dimensional organotypic culture model of normal esophageal squamous cells dramatically inhibited epithelial maturation compared with the wild-type. VSIG10L exhibited high expression in normal squamous esophagus with marked loss of expression in Barrett-associated lesions. Electron microscopy of squamous esophageal mucosa harboring the S631G variant revealed dilated intercellular spaces and reduced desmosomes. CONCLUSIONS AND RELEVANCE This study presents VSIG10L as a candidate familial Barrett esophagus susceptibility gene, with a putative role in maintaining normal esophageal homeostasis. Further research assessing VSIG10L function may reveal pathways important for esophageal maturation and the pathogenesis of Barrett esophagus and esophageal adenocarcinoma. PMID:27467440

  7. Peripheral blood gene expression signature differentiates children with autism from unaffected siblings

    PubMed Central

    Kong, SW; Shimizu-Motohashi, Y; Campbell, MG; Lee, IH; Collins, CD; Brewster, SJ; Holm, IA; Rappaport, L

    2013-01-01

    Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental disorders with high heritability, yet a majority of genetic contribution to pathophysiology is not known. Siblings of individuals with ASD are at increased risk for ASD and autistic traits, but the genetic contribution for simplex families is estimated to be less when compared to multiplex families. To explore the genomic (dis-) similarity between proband and unaffected sibling in simplex families, we used genome-wide gene expression profiles of blood from 20 proband-unaffected sibling pairs and 18 unrelated control individuals. The global gene expression profiles of unaffected siblings were more similar to those from probands as they shared genetic and environmental background. One hundred eighty nine genes were significantly differentially expressed between proband-sib pairs (nominal p-value < 0.01) after controlling for age, sex, and family effects. Probands and siblings were distinguished into two groups by cluster analysis with these genes. Overall, unaffected siblings were equally distant from the centroid of probands and from that of unrelated controls with the differentially expressed genes. Interestingly, 5 of 20 siblings had gene expression profiles that were more similar to unrelated controls than to their matched probands. In summary, we found a set of genes that distinguished probands from the unaffected siblings, and a subgroup of unaffected siblings who were more similar to probands. The pathways that characterized probands compared to siblings using peripheral blood gene expression profiles were the up-regulation of ribosomal, spliceosomal, and mitochondrial pathways, and the down-regulation of neuroreceptor-ligand, immune response and calcium signaling pathways. Further integrative study with structural genetic variations such as de novo mutations, rare variants, and copy number variations would clarify whether these transcriptomic changes are structural or environmental in origin. PMID:23625158

  8. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide.

    PubMed

    Wang, Hong-Xia; Song, Ziyuan; Lao, Yeh-Hsing; Xu, Xin; Gong, Jing; Cheng, Du; Chakraborty, Syandan; Park, Ji Sun; Li, Mingqiang; Huang, Dantong; Yin, Lichen; Cheng, Jianjun; Leong, Kam W

    2018-05-08

    Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-l-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications. Copyright © 2018 the Author(s). Published by PNAS.

  9. A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design.

    PubMed

    Smith, Robin P; Riesenfeld, Samantha J; Holloway, Alisha K; Li, Qiang; Murphy, Karl K; Feliciano, Natalie M; Orecchia, Lorenzo; Oksenberg, Nir; Pollard, Katherine S; Ahituv, Nadav

    2013-07-18

    Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences. We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly. This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries.

  10. Gene editing for cell engineering: trends and applications.

    PubMed

    Gupta, Sanjeev K; Shukla, Pratyoosh

    2017-08-01

    Gene editing with all its own advantages in molecular biology applications has made easy manipulation of various production hosts with the discovery and implementation of modern gene editing tools such as Crispr (Clustered regularly interspaced short palindromic repeats), TALENs (Transcription activator-like effector nucleases) and ZFNs (Zinc finger nucleases). With the advent of these modern tools, it is now possible to manipulate the genome of industrial production hosts such as yeast and mammalian cells which allows developing a potential and cost effective recombinant therapeutic protein. These tools also allow single editing to multiple genes for knocking-in or knocking-out of a host genome quickly in an efficient manner. A recent study on "multiplexed" gene editing revolutionized the knock-out and knock-in events of yeast and CHO, mammalian cells genome for metabolic engineering as well as high, stable, and consistent expression of a transgene encoding complex therapeutic protein such as monoclonal antibody. The gene of interest can either be integrated or deleted at single or multiple loci depending on the strategy and production requirement. This review will give a gist of all the modern tools with a brief description and advances in genetic manipulation using three major tools being implemented for the modification of such hosts with the emphasis on the use of Crispr-Cas9 for the "multiplexing gene-editing approach" for genetic manipulation of yeast and CHO mammalian hosts that ultimately leads to a fast track product development with consistent, improved product yield, quality, and thus affordability for a population at large.

  11. Lamellar ichthyosis maps to chromosome 14q11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, L.J.; Compton, J.G.; Bale, S.J.

    1994-09-01

    Lamellar ichthyosis (LI) is a serious skin disorder inherited as an autosomal recessive trait and characterized by large, brown plate-like scales covering the body. Skin involvement is apparent at birth, often as a collodion membrane. Scarring alopecia, ectropion, and secondary hypohidrosis are frequent. We used a panel of candidates genes that are expressed in the epidermis to study seven multiplex Caucasian families in the U.S. and six inbred (multiplex and simplex) families in Egypt. We find no recombination (Z=9.11 at {theta}=0) in either set of families with transglutaminse 1 (TGM1), the gene encoding the enzyme responsible for cross-linking proteins tomore » the cell envelope in the upper-most layer of the epidermis. In addition, striking homozygosity is observed in the inbred families for markers neighboring TGM1, defining a 9.3 cM candidate region which is bounded by MYH7 and D14S275. This is the first report of linkage in LI and suggests that further study of the TGM1 gene may identify the underlying pathogenesis of this severe, disfiguring disorder. Linkage-based genetic counseling and prenatal diagnosis is now available for informative at-risk families.« less

  12. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.

    PubMed

    Konermann, Silvana; Brigham, Mark D; Trevino, Alexandro E; Joung, Julia; Abudayyeh, Omar O; Barcena, Clea; Hsu, Patrick D; Habib, Naomi; Gootenberg, Jonathan S; Nishimasu, Hiroshi; Nureki, Osamu; Zhang, Feng

    2015-01-29

    Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.

  13. Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation.

    PubMed

    Richard, Arianne C; Lyons, Paul A; Peters, James E; Biasci, Daniele; Flint, Shaun M; Lee, James C; McKinney, Eoin F; Siegel, Richard M; Smith, Kenneth G C

    2014-08-04

    Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study. Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this "gold-standard" comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues. Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently.

  14. Identification of Streptococcus pneumoniae lytA, plyA and psaA genes in pleural fluid by multiplex real-time PCR.

    PubMed

    Sanz, Juan Carlos; Ríos, Esther; Rodríguez-Avial, Iciar; Ramos, Belén; Marín, Mercedes; Cercenado, Emilia

    2017-08-14

    The aim was to evaluate the utility of a multiplex real-time PCR to detect Streptococcus pneumoniae lytA, plyA and psaA genes in pleural fluid (PF). A collection of 81 PF samples was used. Sixty were considered positive for S. pneumoniae according to previous results (54 by an in-house lytA gene PCR and eight by universal rRNA PCR). The sensitivity for detection of the lytA, plyA and psaA genes by multiplex PCR was 100% (60/60), 98.3% (59/60) and 91.7% (55/60), respectively. The detection of all three genes was negative in 21 samples formerly confirmed as negative for S. pneumoniae (100% specificity) by the other procedures (9 by in-house lytA PCR and 12 by rRNA PCR). The use of this multiplex PCR may be a useful option to identify S. pneumoniae directly in PF samples. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  15. Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing Aspergillus niger and A. awamori strains

    USDA-ARS?s Scientific Manuscript database

    In order to determine the genetic basis for loss of fumonisin B¬2 (FB2) biosynthesis in FB2 non-producing A. niger strains, we developed multiplex PCR primer sets to amplify fragments of eight fumonisin biosynthetic pathway (fum) genes. Fragments of all eight fum genes were amplified in FB2-produci...

  16. Gamma-oryzanol rich fraction regulates the expression of antioxidant and oxidative stress related genes in stressed rat's liver.

    PubMed

    Ismail, Maznah; Al-Naqeeb, Ghanya; Mamat, Wan Abd Aziz Bin; Ahmad, Zalinah

    2010-03-24

    Gamma-oryzanol (OR), a phytosteryl ferulate mixture extracted from rice bran oil, has a wide spectrum of biological activities in particular, it has antioxidant properties. The regulatory effect of gamma-oryzanol rich fraction (ORF) extracted and fractionated from rice bran using supercritical fluid extraction (SFE) in comparison with commercially available OR on 14 antioxidant and oxidative stress related genes was determined in rat liver. Rats were subjected to a swimming exercise program for 10 weeks to induce stress and were further treated with either ORF at 125, 250 and 500 mg/kg or OR at 100 mg/kg in emulsion forms for the last 5 weeks of the swimming program being carried out. The GenomeLab Genetic Analysis System (GeXPS) was used to study the multiplex gene expression of the selected genes. Upon comparison of RNA expression levels between the stressed and untreated group (PC) and the unstressed and untreated group (NC), seven genes were found to be down-regulated, while seven genes were up-regulated in PC group compared to NC group. Further treatment of stressed rats with ORF at different doses and OR resulted in up-regulation of 10 genes and down regulation of four genes compared to the PC group. Gamma-oryzanol rich fraction showed potential antioxidant activity greater than OR in the regulation of antioxidants and oxidative stress gene markers.

  17. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR.

    PubMed

    Kannika, K; Pisuttharachai, D; Srisapoome, P; Wongtavatchai, J; Kondo, H; Hirono, I; Unajak, S; Areechon, N

    2017-06-01

    This study aimed to biotype Streptococcus agalactiae isolated from tilapia farms in Thailand based on molecular biotyping methods and to determine the correlation between the serotype and virulence of bacteria. In addition to a biotyping (serotyping) technique based on multiplex PCR of cps genes, in this study, we developed multiplex PCR typing of Group B streptococcus (GBS) virulence genes to examine three clusters of virulence genes and their correlation with the pathogenicity of S. agalactiae. The epidemiology of S. agalactiae in Thailand was analysed to provide bacterial genetic information towards a future rational vaccine strategy for tilapia culture systems. Streptococcus agalactiae were isolated from diseased tilapia from different areas of Thailand. A total of 124 S. agalactiae isolates were identified by phenotypic analysis and confirmed by 16S rRNA PCR. Bacterial genotyping was conducted based on (i) molecular serotyping of the capsular polysaccharide (cps) gene cluster and (ii) virulence gene profiling using multiplex PCR analysis of 14 virulence genes (lmb, scpB, pavA, cspA, spb1, cyl, bca, rib, fbsA, fbsB, cfb, hylB, bac and pbp1A/ponA). Only serotypes Ia and III were found in this study; serotype Ia lacks the lmb, scpB and spb1 genes, whereas serotype III lacks only the bac gene. Virulence tests in juvenile Nile tilapia demonstrated a correlation between the pathogenicity of the bacteria and their virulence gene profile, with serotype III showing higher virulence than serotype Ia. Epidemiological analysis showed an almost equal distribution in all regions of Thailand, except serotype III was found predominantly in the southern areas. Only two serotypes of S. agalactiae were isolated from diseased tilapia in Thailand. Serotype Ia showed fewer virulence genes and lower virulence than serotype III. Both serotypes showed a similar distribution throughout Thailand. We identified two major serotypes of S. agalactiae isolates associated with the outbreak in tilapia culture in Thailand. We developed multiplex PCR assays for 14 virulence genes, which may be used to predict the pathogenicity of the isolates and track future infections. Multiplex PCR typing of the GBS virulence genes was developed and might be further used to predict the pathogenicity of S. agalactiae. © 2017 The Society for Applied Microbiology.

  18. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence.

    PubMed

    Finnigan, Gregory C; Thorner, Jeremy

    2016-07-07

    Genome editing exploiting CRISPR/Cas9 has been adopted widely in academia and in the biotechnology industry to manipulate DNA sequences in diverse organisms. Molecular engineering of Cas9 itself and its guide RNA, and the strategies for using them, have increased efficiency, optimized specificity, reduced inappropriate off-target effects, and introduced modifications for performing other functions (transcriptional regulation, high-resolution imaging, protein recruitment, and high-throughput screening). Moreover, Cas9 has the ability to multiplex, i.e., to act at different genomic targets within the same nucleus. Currently, however, introducing concurrent changes at multiple loci involves: (i) identification of appropriate genomic sites, especially the availability of suitable PAM sequences; (ii) the design, construction, and expression of multiple sgRNA directed against those sites; (iii) potential difficulties in altering essential genes; and (iv) lingering concerns about "off-target" effects. We have devised a new approach that circumvents these drawbacks, as we demonstrate here using the yeast Saccharomyces cerevisiae First, any gene(s) of interest are flanked upstream and downstream with a single unique target sequence that does not normally exist in the genome. Thereafter, expression of one sgRNA and cotransformation with appropriate PCR fragments permits concomitant Cas9-mediated alteration of multiple genes (both essential and nonessential). The system we developed also allows for maintenance of the integrated, inducible Cas9-expression cassette or its simultaneous scarless excision. Our scheme-dubbed mCAL for " M: ultiplexing of C: as9 at A: rtificial L: oci"-can be applied to any organism in which the CRISPR/Cas9 methodology is currently being utilized. In principle, it can be applied to install synthetic sequences into the genome, to generate genomic libraries, and to program strains or cell lines so that they can be conveniently (and repeatedly) manipulated at multiple loci with extremely high efficiency. Copyright © 2016 Finnigan and Thorner.

  19. Combination of gene expression patterns in whole blood discriminate between tuberculosis infection states

    PubMed Central

    2014-01-01

    Background Genetic factors are involved in susceptibility or protection to tuberculosis (TB). Apart from gene polymorphisms and mutations, changes in levels of gene expression, induced by non-genetic factors, may also determine whether individuals progress to active TB. Methods We analysed the expression level of 45 genes in a total of 47 individuals (23 healthy household contacts and 24 new smear-positive pulmonary TB patients) in Addis Ababa using a dual colour multiplex ligation-dependent probe amplification (dcRT-MLPA) technique to assess gene expression profiles that may be used to distinguish TB cases and their contacts and also latently infected (LTBI) and uninfected household contacts. Results The gene expression level of BLR1, Bcl2, IL4d2, IL7R, FCGR1A, MARCO, MMP9, CCL19, and LTF had significant discriminatory power between sputum smear-positive TB cases and household contacts, with AUCs of 0.84, 0.81, 0.79, 0.79, 0.78, 0.76, 0.75, 0.75 and 0.68 respectively. The combination of Bcl2, BLR1, FCGR1A, IL4d2 and MARCO identified 91.66% of active TB cases and 95.65% of household contacts without active TB. The expression of CCL19, TGFB1, and Foxp3 showed significant difference between LTBI and uninfected contacts, with AUCs of 0.85, 0.82, and 0.75, respectively, whereas the combination of BPI, CCL19, FoxP3, FPR1 and TGFB1 identified 90.9% of QFT- and 91.6% of QFT+ household contacts. Conclusions Expression of single and especially combinations of host genes can accurately differentiate between active TB cases and healthy individuals as well as between LTBI and uninfected contacts. PMID:24885723

  20. Comparative Evaluation of Multiplex PCR and Routine Laboratory Phenotypic Methods for Detection of Carbapenemases among Gram Negative Bacilli.

    PubMed

    Solanki, Rachana; Vanjari, Lavanya; Subramanian, Sreevidya; B, Aparna; E, Nagapriyanka; Lakshmi, Vemu

    2014-12-01

    Carbapenem resistant pathogens cause infections associated with significant morbidity and mortality. This study evaluates the use of Multiplex PCR for rapid detection of carbapenemase genes among carbapenem resistant Gram negative bacteria in comparison with the existing phenotypic methods like modified Hodge test (MHT), combined disc test (CDT) and automated methods. A total of 100 Carbapenem resistant clinical isolates, [Escherichia coli (25), Klebsiella pneumoniae (35) P. aeruginosa (18) and Acinetobacter baumannii (22)] were screened for the presence of carbapenemases (bla NDM-1, bla VIM , blaIMP and blaKPC genes) by phenotype methods such as the modified Hodge test (MHT) and combined disc test (CDT) and the molecular methods such as Multiplex PCR. Seventy of the 100 isolates were MHT positive while, 65 isolates were positive by CDT. All the CDT positive isolates with EDTA and APB were Metallo betalactamase (MBL) and K. pneumoniae carbapenemase (KPC) producers respectively. bla NDM-1 was present as a lone gene in 44 isolates. In 14 isolates bla NDM-1 gene was present with blaKPC gene, and in one isolate bla NDM-1 gene was present with blaVIM , gene. Only one E. coli isolate had a lone blaKPC gene. We didn't find bla IMP gene in any of the isolates. Neither of the genes could be detected in 35 isolates. Accurate detection of the genes related with carbapenemase production by Molecular methods like Multiplex PCR overcome the limitations of the phenotypic methods and Automated systems.

  1. Molecular Characterization of Virulence Genes in Vancomycin-Resistant and Vancomycin-Sensitive Enterococci

    PubMed Central

    Biswas, Priyanka Paul; Dey, Sangeeta; Sen, Aninda; Adhikari, Luna

    2016-01-01

    Background: The aim of this study was to find out the correlation between presence of virulence (gelatinase [gel E], enterococcal surface protein [esp], cytolysin A [cyl A], hyaluronidase [hyl], and aggregation substance [asa1]) and vancomycin-resistant genes (van A and van B) in enterococci, with their phenotypic expression. Materials and Methods: A total of 500 isolates (250 each clinical and fecal) were processed. Enterococci were isolated from various clinical samples and from fecal specimens of colonized patients. Various virulence determinants namely asa1, esp, hyl, gel E, and cyl were detected by phenotypic methods. Minimum inhibitory concentration (MIC) of vancomycin was determined by agar dilution method. Multiplex polymerase chain reaction (PCR) was used to detect the presence of virulence and van genes. Results: Out of all the samples processed, 12.0% (60/500) isolates carried van A or van B genes as confirmed by MIC test and PCR methods. Genes responsible for virulence were detected by multiplex PCR and at least one of the five was detected in all the clinical vancomycin-resistant enterococci (VRE) and vancomycin-sensitive enterococci (VSE). gel E, esp, and hyl genes were found to be significantly higher in clinical VRE. Of the fecal isolates, presence of gel E, esp, and asa1 was significantly higher in VRE as compared to VSE. The presence of hyl gene in the clinical VRE was found to be statistically significant (P = 0.043) as against the fecal VRE. Correlation between the presence of virulence genes and their expression as detected by phenotypic tests showed that while biofilm production was seen in 61.1% (22/36) of clinical VRE, the corresponding genes, i.e., asa1 and esp were detected in 30.5% (11/36) and 27.8% (10/36) of strains only. Conclusion: Enterococcus faecium isolates were found to carry esp gene, a phenomenon that has been described previously only for Enterococcus faecalis, but we were unable to correlate the presence of esp with their capacity to form biofilms. PMID:27013840

  2. Development of touch down-multiplex PCR for the diagnosis of toxoplasmosis.

    PubMed

    Hallur, V; Sehgal, R; Khurana, S

    2015-01-01

    The diagnosis of toxoplasmosis is challenging since conventional methods like culture and immunofluorescence are not universally available. Serology, which is used regularly might be negative during early phase of infection and in immunosuppressed patients or may remain positive for a long time. Several molecular tests have been used for the diagnosis of toxoplasmosis, but none of them have an internal control which would inform us regarding the presence of polymerase chain reaction (PCR) inhibitors thus, undermining the confidence of a laboratory physician. We designed a multiplex PCR containing primers targeting human beta globin gene which would act as internal control and two primers against the B1 gene and 5s gene which aid in sensitive detection of T. gondii. Multiplex PCR had a sensitivity of 83.3% and specificity of 100%. Multiplex PCR may provide a sensitive and specific tool for diagnosis of human toxoplasmosis.

  3. [Detection of large deletions in X linked Alport syndrome using competitive multiplex fluorescence polymerase chain reaction].

    PubMed

    Wang, F; Zhang, Y Q; Ding, J; Yu, L X

    2017-10-18

    To evaluate the ability of multiplex competitive fluorescence polymerase chain reaction in detection of large deletion and duplication genotypes of X-linked Alport syndrome. Clinical diagnosis of X-linked Alport syndrome was based on either abnormal staining of type IV collagen α5 chain in the epidermal basement membrane alone or with abnormal staining of type IV collagen α5 chain in the glomerular basement membrane and Bowman's capsule/ultrastructural changes in the glomerular basement membrane typical of Alport syndrome. A total of 20 unrelated Chinese patients (13 males and 7 females) clinically diagnosed as X-linked Alport syndrome were included in the study. Their genotypes were unknown. Control subjects included a male patient with other renal disease and two patients who had large deletions in COL4A5 gene detected by multiplex ligation-dependent probe amplification. Genomic DNA was isolated from peripheral blood leukocytes in all the participants. Multiplex competitive fluorescence polymerase chain reaction was used to coamplify 53 exons of COL4A5 gene and four reference genes in a single reaction. When a deletion removed exon 1 of COL4A5 gene was identified, the same method was used to coamplify the first 4 exons of COL4A5 and COL4A6 genes, a promoter shared by COL4A5 and COL4A6 genes, and three reference genes in a single reaction. Any copy number loss suggested by this method was verified by electrophoresis of corresponding polymerase chain reaction amplified products or DNA sequencing to exclude possible DNA variations in the primer regions. Genotypes of two positive controls identified by multiplex competitive fluorescence polymerase chain reaction were consistent with those detected by multiplex ligation-dependent probe amplification. Deletions were identified in 6 of the 20 patients, including two large deletions removing the 5' part of both COL4A5 and COL4A6 genes with the breakpoint located in the second intron of COL4A6, two large deletions removing more than 30 exons of COL4A5 gene, one large deletion removing at least 1 exon of COL4A5 gene, and one small deletion involving 13 bps. No duplication was found. Our results show that multiplex competitive fluorescence polymerase chain reaction is a good alternative to classical techniques for large deletion genotyping in X-linked Alport syndrome.

  4. Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity

    PubMed Central

    Krönig, Malte; Walter, Max; Drendel, Vanessa; Werner, Martin; Jilg, Cordula A.; Richter, Andreas S.; Backofen, Rolf; McGarry, David; Follo, Marie; Schultze-Seemann, Wolfgang; Schüle, Roland

    2015-01-01

    A lack of cell surface markers for the specific identification, isolation and subsequent analysis of living prostate tumor cells hampers progress in the field. Specific characterization of tumor cells and their microenvironment in a multi-parameter molecular assay could significantly improve prognostic accuracy for the heterogeneous prostate tumor tissue. Novel functionalized gold-nano particles allow fluorescence-based detection of absolute mRNA expression levels in living cells by fluorescent activated flow cytometry (FACS). We use of this technique to separate prostate tumor and benign cells in human prostate needle biopsies based on the expression levels of the tumor marker alpha-methylacyl-CoA racemase (AMACR). We combined RNA and protein detection of living cells by FACS to gate for epithelial cell adhesion molecule (EPCAM) positive tumor and benign cells, EPCAM/CD45 double negative mesenchymal cells and CD45 positive infiltrating lymphocytes. EPCAM positive epithelial cells were further sub-gated into AMACR high and low expressing cells. Two hundred cells from each population and several biopsies from the same patient were analyzed using a multiplexed gene expression profile to generate a cell type resolved profile of the specimen. This technique provides the basis for the clinical evaluation of cell type resolved gene expression profiles as pre-therapeutic prognostic markers for prostate cancer. PMID:25514598

  5. Molecular Analysis-Based Genetic Characterization of a Cohort of Patients with Duchenne and Becker Muscular Dystrophy in Eastern China.

    PubMed

    Zhao, Hui-Hui; Sun, Xue-Ping; Shi, Ming-Chao; Yi, Yong-Xiang; Cheng, Hong; Wang, Xing-Xia; Xu, Qing-Cheng; Ma, Hong-Ming; Wu, Hao-Quan; Jin, Qing-Wen; Niu, Qi

    2018-04-05

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders caused by mutations in dystrophin gene. Multiplex polymerase chain reaction (multiplex PCR) and multiplex ligation-dependent probe amplification (MLPA) are the most common methods for detecting dystrophin gene mutations. This study aimed to contrast the two methods and discern the genetic characterization of patients with DMD/BMD in Eastern China. We collected 121 probands, 64 mothers of probands, and 15 fetuses in our study. The dystrophin gene was detected by multiplex PCR primarily in 28 probands, and MLPA was used in multiplex PCR-negative cases subsequently. The dystrophin gene of the remaining 93 probands and 62 female potential carriers was tested by MLPA directly. In fetuses, multiplex PCR and MLPA were performed on 4 fetuses and 10 fetuses, respectively. In addition, sequencing was also performed in 4 probands with negative MLPA. We found that 61.98% of the subjects had genetic mutations including deletions (50.41%) and duplications (11.57%). There were 43.75% of mothers as carriers of the mutation. In 15 fetuses, 2 out of 7 male fetuses were found to be unhealthy and 2 out of 8 female fetuses were found to be carriers. Exons 3-26 and 45-52 have the maximum frequency in mutation regions. In the frequency of exons individually, exon 47 and exon 50 were the most common in deleted regions and exons 5, 6, and 7 were found most frequently in duplicated regions. MLPA has better productivity and sensitivity than multiplex PCR. Prenatal diagnosis should be applied in DMD high-risk fetuses to reduce the disease incidence. Furthermore, it is the responsibility of physicians to inform female carriers the importance of prenatal diagnosis.

  6. Detection and characterization of recombinant DNA expressing vip3A-type insecticidal gene in GMOs--standard single, multiplex and construct-specific PCR assays.

    PubMed

    Singh, Chandra K; Ojha, Abhishek; Bhatanagar, Raj K; Kachru, Devendra N

    2008-01-01

    Vegetative insecticidal protein (Vip), a unique class of insecticidal protein, is now part of transgenic plants for conferring resistance against lepidopteron pests. In order to address the imminent regulatory need for detection and labeling of vip3A carrying genetically modified (GM) products, we have developed a standard single PCR and a multiplex PCR assay. As far as we are aware, this is the first report on PCR-based detection of a vip3A-type gene (vip-s) in transgenic cotton and tobacco. Our assay involves amplification of a 284-bp region of the vip-s gene. This assay can possibly detect as many as 20 natural wild-type isolates bearing a vip3A-like gene and two synthetic genes of vip3A in transgenic plants. The limit of detection as established by our assay for GM trait (vip-s) is 0.1%. Spiking with nontarget DNA originating from diverse plant sources had no inhibitory effect on vip-s detection. Since autoclaving of vip-s bearing GM leaf samples showed no deterioration/interference in detection efficacy, the assay seems to be suitable for processed food products as well. The vip-s amplicon identity was reconfirmed by restriction endonuclease assay. The primer set for vip-s was equally effective in a multiplex PCR assay format (duplex, triplex and quadruplex), used in conjunction with the primer sets for the npt-II selectable marker gene, Cauliflower mosaic virus 35S promoter and nopaline synthetase terminator, enabling concurrent detection of the transgene, regulatory sequences and marker gene. Further, the entire transgene construct was amplified using the forward primer of the promoter and the reverse primer of the terminator. The resultant amplicon served as a template for nested PCR to confirm the construct integrity. The method is suitable for screening any vip3A-carrying GM plant and food. The availability of a reliable PCR assay method prior to commercial release of vip3A-based transgenic crops and food would facilitate rapid and efficient regulatory compliance.

  7. A multiplex method for detection of glucose-6-phosphate dehydrogenase (G6PD) gene mutations.

    PubMed

    Zhang, L; Yang, Y; Liu, R; Li, Q; Yang, F; Ma, L; Liu, H; Chen, X; Yang, Z; Cui, L; He, Y

    2015-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect caused by G6PD gene mutations. This study aimed to develop a cost-effective, multiplex, genotyping method for detecting common mutations in the G6PD gene. We used a SNaPshot approach to genotype multiple G6PD mutations that are common to human populations in South-East Asia. This assay is based on multiplex PCR coupled with primer extension reactions. Different G6PD gene mutations were determined by peak retention time and colors of the primer extension products. We designed PCR primers for multiplex amplification of the G6PD gene fragments and for primer extension reactions to genotype 11 G6PD mutations. DNA samples from a total of 120 unrelated G6PD-deficient individuals from the China-Myanmar border area were used to establish and validate this method. Direct sequencing of the PCR products demonstrated 100% concordance between the SNaPshot and the sequencing results. The SNaPshot method offers a specific and sensitive alternative for simultaneously interrogating multiple G6PD mutations. © 2015 John Wiley & Sons Ltd.

  8. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator

    PubMed Central

    Jung, Jennifer; Nayak, Arnab; Schaeffer, Véronique; Starzetz, Tatjana; Kirsch, Achim K; Müller, Stefan; Dikic, Ivan; Mittelbronn, Michel; Behrends, Christian

    2017-01-01

    Autophagy is an intracellular recycling and degradation pathway that depends on membrane trafficking. Rab GTPases are central for autophagy but their regulation especially through the activity of Rab GEFs remains largely elusive. We employed a RNAi screen simultaneously monitoring different populations of autophagosomes and identified 34 out of 186 Rab GTPase, GAP and GEF family members as potential autophagy regulators, amongst them SMCR8. SMCR8 uses overlapping binding regions to associate with C9ORF72 or with a C9ORF72-ULK1 kinase complex holo-assembly, which function in maturation and formation of autophagosomes, respectively. While focusing on the role of SMCR8 during autophagy initiation, we found that kinase activity and gene expression of ULK1 are increased upon SMCR8 depletion. The latter phenotype involved association of SMCR8 with the ULK1 gene locus. Global mRNA expression analysis revealed that SMCR8 regulates transcription of several other autophagy genes including WIPI2. Collectively, we established SMCR8 as multifaceted negative autophagy regulator. DOI: http://dx.doi.org/10.7554/eLife.23063.001 PMID:28195531

  9. Kcne2 Deletion Creates a Multisystem Syndrome Predisposing to Sudden Cardiac Death

    PubMed Central

    Hu, Zhaoyang; Kant, Ritu; Anand, Marie; King, Elizabeth C.; Krogh-Madsen, Trine; Christini, David J.; Abbott, Geoffrey W.

    2014-01-01

    Background Sudden cardiac death (SCD) is the leading global cause of mortality, exhibiting increased incidence in diabetics. Ion channel gene perturbations provide a well-established ventricular arrhythmogenic substrate for SCD. However, most arrhythmia susceptibility genes - including the KCNE2 K+ channel β subunit - are expressed in multiple tissues, suggesting potential multiplex SCD substrates. Methods and Results Using “whole transcript” transcriptomics, we uncovered cardiac angiotensinogen upregulation and remodeling of cardiac angiotensinogen interaction networks in P21 Kcne2−/− mouse pups, and adrenal remodeling consistent with metabolic syndrome in adult Kcne2−/− mice. This led to the discovery that Kcne2 disruption causes multiple acknowledged SCD substrates of extracardiac origin: diabetes, hypercholesterolemia, hyperkalemia, anemia and elevated angiotensin II. Kcne2 deletion was also prerequisite for aging-dependent QT prolongation, ventricular fibrillation and SCD immediately following transient ischemia, and fasting-dependent hypoglycemia, myocardial ischemia and atrioventricular block. Conclusions Disruption of a single, widely expressed arrhythmia susceptibility gene can generate a multisystem syndrome comprising manifold electrical and systemic substrates and triggers of SCD. This paradigm is expected to apply to other arrhythmia susceptibility genes, the majority of which encode ubiquitously expressed ion channel subunits or regulatory proteins. PMID:24403551

  10. The intratumoral balance between metabolic and immunologic gene expression is associated with anti-PD-1 response in patients with renal cell carcinoma

    PubMed Central

    Ascierto, Maria Libera; McMiller, Tracee L.; Berger, Alan E.; Danilova, Ludmila; Anders, Robert A.; Netto, George J.; Xu, Haiying; Pritchard, Theresa S.; Fan, Jinshui; Cheadle, Chris; Cope, Leslie; Drake, Charles G.; Pardoll, Drew M.; Taube, Janis M.; Topalian, Suzanne L.

    2016-01-01

    Pretreatment tumor PD-L1 expression correlates with response to anti-PD-1/PD-L1 therapies. Yet, most patients with PD-L1+ tumors do not respond to treatment. The current study was undertaken to investigate mechanisms underlying the failure of PD-1–targeted therapies in patients with advanced renal cell carcinoma (RCC) whose tumors express PD-L1. Formalin-fixed, paraffin-embedded (FFPE) pretreatment tumor biopsies expressing PD-L1 were derived from 13 RCC patients. RNA was isolated from PD-L1+ regions and subjected to whole genome microarray and multiplex quantitative (q)RT-PCR gene expression analysis. A balance between gene expression profiles reflecting metabolic pathways and immune functions was associated with clinical outcomes following anti-PD-1 therapy. In particular, the expression of genes involved in metabolic and solute transport functions such as UGT1A family members, also found in kidney cancer cell lines, was associated with treatment failure in patients with PD-L1+ RCC. Conversely, tumors from responding patients overexpressed immune markers such as BACH2, a regulator of CD4+ T cell differentiation, and CCL3, involved in leukocyte migration. These findings suggest that tumor cell–intrinsic metabolic factors may contribute to treatment resistance in RCC, thus serving as predictive markers for treatment outcomes and potential new targets for combination therapy regimens with anti-PD-1. PMID:27491898

  11. High frequency of ribosomal protein gene deletions in Italian Diamond-Blackfan anemia patients detected by multiplex ligation-dependent probe amplification assay

    PubMed Central

    Quarello, Paola; Garelli, Emanuela; Brusco, Alfredo; Carando, Adriana; Mancini, Cecilia; Pappi, Patrizia; Vinti, Luciana; Svahn, Johanna; Dianzani, Irma; Ramenghi, Ugo

    2012-01-01

    Diamond-Blackfan anemia is an autosomal dominant disease due to mutations in nine ribosomal protein encoding genes. Because most mutations are loss of function and detected by direct sequencing of coding exons, we reasoned that part of the approximately 50% mutation negative patients may have carried a copy number variant of ribosomal protein genes. As a proof of concept, we designed a multiplex ligation-dependent probe amplification assay targeted to screen the six genes that are most frequently mutated in Diamond-Blackfan anemia patients: RPS17, RPS19, RPS26, RPL5, RPL11, and RPL35A. Using this assay we showed that deletions represent approximately 20% of all mutations. The combination of sequencing and multiplex ligation-dependent probe amplification analysis of these six genes allows the genetic characterization of approximately 65% of patients, showing that Diamond-Blackfan anemia is indisputably a ribosomopathy. PMID:22689679

  12. Epigenetic events underlie the pathogenesis of sinonasal papillomas.

    PubMed

    Stephen, Josena K; Vaught, Lori E; Chen, Kang M; Sethi, Seema; Shah, Veena; Benninger, Michael S; Gardner, Glendon M; Schweitzer, Vanessa G; Khan, Mumtaz; Worsham, Maria J

    2007-10-01

    Benign inverted papillomas have been reported as monoclonal but lacking common genetic alterations identified in squamous cell carcinoma of the head and neck. Epigenetic changes alter the heritable state of gene expression and chromatin organization without change in DNA sequence. We investigated whether epigenetic events of aberrant promoter hypermethylation in genes known to be involved in squamous head and neck cancer underlie the pathogenesis of sinonasal papillomas. Ten formalin-fixed paraffin DNA samples from three inverted papilloma cases, two exophytic (everted) papilloma cases, and two cases with inverted and exophytic components were studied. DNA was obtained from microdissected areas of normal and papilloma areas and examined using a panel of 41 gene probes, designed to interrogate 35 unique genes for aberrant methylation status (22 genes) using the methylation-specific multiplex-ligation-specific polymerase assay. Methylation-specific PCR was employed to confirm aberrant methylation detected by the methylation-specific multiplex-ligation-specific polymerase assay. All seven cases indicated at least one epigenetic event of aberrant promoter hypermethylation. The CDKN2B gene was a consistent target of aberrant methylation in six of seven cases. Methylation-specific PCR confirmed hypermethylation of CDKN2B. Recurrent biopsies from two inverted papilloma cases had common epigenetic events. Promoter hypermethylation of CDKN2B was a consistent epigenetic event. Common epigenetic alterations in recurrent biopsies underscore a monoclonal origin for these lesions. Epigenetic events contribute to the underlying pathogenesis of benign inverted and exophytic papillomas. As a consistent target of aberrant promoter hypermethylation, CDKN2B may serve as an important epigenetic biomarker for gene reactivation studies.

  13. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.

    PubMed

    Ma, Xingliang; Zhang, Qunyu; Zhu, Qinlong; Liu, Wei; Chen, Yan; Qiu, Rong; Wang, Bin; Yang, Zhongfang; Li, Heying; Lin, Yuru; Xie, Yongyao; Shen, Rongxin; Chen, Shuifu; Wang, Zhi; Chen, Yuanling; Guo, Jingxin; Chen, Letian; Zhao, Xiucai; Dong, Zhicheng; Liu, Yao-Guang

    2015-08-01

    CRISPR/Cas9 genome targeting systems have been applied to a variety of species. However, most CRISPR/Cas9 systems reported for plants can only modify one or a few target sites. Here, we report a robust CRISPR/Cas9 vector system, utilizing a plant codon optimized Cas9 gene, for convenient and high-efficiency multiplex genome editing in monocot and dicot plants. We designed PCR-based procedures to rapidly generate multiple sgRNA expression cassettes, which can be assembled into the binary CRISPR/Cas9 vectors in one round of cloning by Golden Gate ligation or Gibson Assembly. With this system, we edited 46 target sites in rice with an average 85.4% rate of mutation, mostly in biallelic and homozygous status. We reasoned that about 16% of the homozygous mutations in rice were generated through the non-homologous end-joining mechanism followed by homologous recombination-based repair. We also obtained uniform biallelic, heterozygous, homozygous, and chimeric mutations in Arabidopsis T1 plants. The targeted mutations in both rice and Arabidopsis were heritable. We provide examples of loss-of-function gene mutations in T0 rice and T1 Arabidopsis plants by simultaneous targeting of multiple (up to eight) members of a gene family, multiple genes in a biosynthetic pathway, or multiple sites in a single gene. This system has provided a versatile toolbox for studying functions of multiple genes and gene families in plants for basic research and genetic improvement. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  14. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.

    PubMed

    Han, M; Gao, X; Su, J Z; Nie, S

    2001-07-01

    Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots (zinc sulfide-capped cadmium selenide nanocrystals) into polymeric microbeads at precisely controlled ratios. Their novel optical properties (e.g., size-tunable emission and simultaneous excitation) render these highly luminescent quantum dots (QDs) ideal fluorophores for wavelength-and-intensity multiplexing. The use of 10 intensity levels and 6 colors could theoretically code one million nucleic acid or protein sequences. Imaging and spectroscopic measurements indicate that the QD-tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99% under favorable conditions. DNA hybridization studies demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnostics.

  15. Differentiation of Mycobacterium tuberculosis complex from non-tubercular mycobacteria by nested multiplex PCR targeting IS6110, MTP40 and 32kD alpha antigen encoding gene fragments.

    PubMed

    Sinha, Pallavi; Gupta, Anamika; Prakash, Pradyot; Anupurba, Shampa; Tripathi, Rajneesh; Srivastava, G N

    2016-03-12

    Control of the global burden of tuberculosis is obstructed due to lack of simple, rapid and cost effective diagnostic techniques that can be used in resource poor-settings. To facilitate the early diagnosis of TB directly from clinical specimens, we have standardized and validated the use of nested multiplex PCR, targeting gene fragments IS6110, MTP40 and 32kD α-antigen encoding genes specific for Mycobacterium tuberculosis complex and non-tubercular mycobacteria (NTM), in comparison to smear microscopy, solid culture and single step multiplex PCR. The results were evaluated in comparison to a composite reference standard (CRS) comprising of microbiological results (smear and culture), clinical, radiological and cytopathological findings, clinical treatment and response to anti-tubercular therapy. The nested multiplex PCR (nMPCR) assay was evaluated to test its utility in 600 (535 pulmonary and 65 extra-pulmonary specimens) clinically suspected TB cases. All specimens were processed for smear, culture, single step multiplex PCR and nested multiplex PCR testing. Out of 535 screened pulmonary and 65 extra-pulmonary specimens, 329 (61.5%) and 19 (29.2%) cases were culture positive for M. tuberculosis. Based on CRS, 450 patients had "clinical TB" (definitive-TB, probable-TB and possible-TB). Remaining 150 were confirmed "non-TB" cases. For culture, the sensitivity was low, 79.3% for pulmonary and 54.3% for extra-pulmonary cases. The sensitivity and specificity results for nMPCR test were evaluated taken composite reference standard as a gold standard. The sensitivity of the nMPCR assay was 97.1% for pulmonary and 91.4% for extra-pulmonary TB cases with specificity of 100% and 93.3% respectively. Nested multiplex PCR using three gene primers is a rapid, reliable and highly sensitive and specific diagnostic technique for the detection and differentiation of M. tuberculosis complex from NTM genome and will be useful in diagnosing paucibacillary samples. Nested multiplex PCR assay was found to be better than single step multiplex PCR for assessing the diagnosis of TB.

  16. Nanobarcode gene expression monitoring system for potential miniaturized space applications

    NASA Astrophysics Data System (ADS)

    Ruan, Weiming; Eastman, P. Scott; Cooke, Patrick A.; Park, Jennifer S.; Chu, Julia S. F.; Gray, Joe W.; Li, Song; Chen, Fanqing Frank

    Manned mission to space has been threatened by various cosmos risks including radiation, mirogravity, vacuum, confinement, etc., which may cause genetic variations of astronauts and eventually lead to damages of their health. Thus, the development of small biomedical devices, which can monitor astronaut gene expression changes, is useful for future long-term space missions. Using magnetic microbeads packed with nanocrystal quantum dots at controlled ratios, we were able to generate highly multiplexed nanobarcodes, which can encode a flexible panel of genes. Also, by using a reporter quantum dot, this nanobarcode platform can monitor and quantify gene expression level with improved speed and sensitivity. As a comparison, we studied TGF-β1 induced transcription changes in human bone marrow mesenchymal stem cells with both the nanobarcode microbead system and the Affymetrix GeneChip ® HTA system, which is currently considered as the industrial standard. Though using only 1/20 of the sample RNA, the nanobarcode system showed sensitivity equivalent to Affymetrix GeneChip ® system. The coefficient of variation, dynamic range, and accuracy of the nanobarcodes measurement is equivalent to that of the GeneChip ® HTA system. Therefore, this newly invented nanobarcode microbead platform is thought to be sensitive, flexible, cost-effective and accurate in a level equivalent to the conventional methods. As an extension of the use of this new platform, spacecrafts may carry this miniaturized system as a diagnostic tool for the astronauts.

  17. NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia

    PubMed Central

    LaRue, Rebecca S.; Nguyen, Hanh T.; Sachs, Karen; Noble, Klara E.; Mohd Hassan, Nurul Azyan; Diaz-Flores, Ernesto; Rathe, Susan K.; Sarver, Aaron L.; Bendall, Sean C.; Ha, Ngoc A.; Diers, Miechaleen D.; Nolan, Garry P.; Shannon, Kevin M.; Largaespada, David A.

    2014-01-01

    Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific functions of these pathways in AML are unclear, thwarting the rational application of targeted therapeutics. To elucidate the downstream functions of activated NRAS in AML, we used a murine model that harbors Mll-AF9 and a tetracycline-repressible, activated NRAS (NRASG12V). Using computational approaches to explore our gene-expression data sets, we found that NRASG12V enforced the leukemia self-renewal gene-expression signature and was required to maintain an MLL-AF9– and Myb-dependent leukemia self-renewal gene-expression program. NRASG12V was required for leukemia self-renewal independent of its effects on growth and survival. Analysis of the gene-expression patterns of leukemic subpopulations revealed that the NRASG12V-mediated leukemia self-renewal signature is preferentially expressed in the leukemia stem cell–enriched subpopulation. In a multiplexed analysis of RAS-dependent signaling, Mac-1Low cells, which harbor leukemia stem cells, were preferentially sensitive to NRASG12V withdrawal. NRASG12V maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell–specific therapies. Together, these experimental results define a RAS oncogene–driven function that is critical for leukemia maintenance and represents a novel mechanism of oncogene addiction. PMID:25316678

  18. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation.

    PubMed

    Kang, Hyun Min; Subramaniam, Meena; Targ, Sasha; Nguyen, Michelle; Maliskova, Lenka; McCarthy, Elizabeth; Wan, Eunice; Wong, Simon; Byrnes, Lauren; Lanata, Cristina M; Gate, Rachel E; Mostafavi, Sara; Marson, Alexander; Zaitlen, Noah; Criswell, Lindsey A; Ye, Chun Jimmie

    2018-01-01

    Droplet single-cell RNA-sequencing (dscRNA-seq) has enabled rapid, massively parallel profiling of transcriptomes. However, assessing differential expression across multiple individuals has been hampered by inefficient sample processing and technical batch effects. Here we describe a computational tool, demuxlet, that harnesses natural genetic variation to determine the sample identity of each droplet containing a single cell (singlet) and detect droplets containing two cells (doublets). These capabilities enable multiplexed dscRNA-seq experiments in which cells from unrelated individuals are pooled and captured at higher throughput than in standard workflows. Using simulated data, we show that 50 single-nucleotide polymorphisms (SNPs) per cell are sufficient to assign 97% of singlets and identify 92% of doublets in pools of up to 64 individuals. Given genotyping data for each of eight pooled samples, demuxlet correctly recovers the sample identity of >99% of singlets and identifies doublets at rates consistent with previous estimates. We apply demuxlet to assess cell-type-specific changes in gene expression in 8 pooled lupus patient samples treated with interferon (IFN)-β and perform eQTL analysis on 23 pooled samples.

  19. An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells.

    PubMed

    Guo, Jianying; Ma, Dacheng; Huang, Rujin; Ming, Jia; Ye, Min; Kee, Kehkooi; Xie, Zhen; Na, Jie

    2017-05-01

    Human pluripotent stem cells (hPSCs) are an important system to study early human development, model human diseases, and develop cell replacement therapies. However, genetic manipulation of hPSCs is challenging and a method to simultaneously activate multiple genomic sites in a controllable manner is sorely needed. Here, we constructed a CRISPR-ON system to efficiently upregulate endogenous genes in hPSCs. A doxycycline (Dox) inducible dCas9-VP64-p65-Rta (dCas9-VPR) transcription activator and a reverse Tet transactivator (rtTA) expression cassette were knocked into the two alleles of the AAVS1 locus to generate an iVPR hESC line. We showed that the dCas9-VPR level could be precisely and reversibly controlled by the addition and withdrawal of Dox. Upon transfection of multiplexed gRNA plasmid targeting the NANOG promoter and Dox induction, we were able to control NANOG gene expression from its endogenous locus. Interestingly, an elevated NANOG level promoted naïve pluripotent gene expression, enhanced cell survival and clonogenicity, and enabled hESCs to integrate with the inner cell mass (ICM) of mouse blastocysts in vitro. Thus, iVPR cells provide a convenient platform for gene function studies as well as high-throughput screens in hPSCs.

  20. RNA-guided genome editing for target gene mutations in wheat.

    PubMed

    Upadhyay, Santosh Kumar; Kumar, Jitesh; Alok, Anshu; Tuli, Rakesh

    2013-12-09

    The clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system has been used as an efficient tool for genome editing. We report the application of CRISPR-Cas-mediated genome editing to wheat (Triticum aestivum), the most important food crop plant with a very large and complex genome. The mutations were targeted in the inositol oxygenase (inox) and phytoene desaturase (pds) genes using cell suspension culture of wheat and in the pds gene in leaves of Nicotiana benthamiana. The expression of chimeric guide RNAs (cgRNA) targeting single and multiple sites resulted in indel mutations in all the tested samples. The expression of Cas9 or sgRNA alone did not cause any mutation. The expression of duplex cgRNA with Cas9 targeting two sites in the same gene resulted in deletion of DNA fragment between the targeted sequences. Multiplexing the cgRNA could target two genes at one time. Target specificity analysis of cgRNA showed that mismatches at the 3' end of the target site abolished the cleavage activity completely. The mismatches at the 5' end reduced cleavage, suggesting that the off target effects can be abolished in vivo by selecting target sites with unique sequences at 3' end. This approach provides a powerful method for genome engineering in plants.

  1. On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie

    2015-01-01

    NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of air, surface, water, and clinical samples to monitor environmental pathogens and crew health. The validation flight of the WetLab-2 system using E. coli bacteria and mouse liver launched on SpaceX-7 in June 2015 and will remain on the ISS National Laboratory.

  2. Gene Expression Patterns during the Early Stages of Chemically Induced Larval Metamorphosis and Settlement of the Coral Acropora millepora

    PubMed Central

    Siboni, Nachshon; Abrego, David; Motti, Cherie A.; Tebben, Jan; Harder, Tilmann

    2014-01-01

    The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT–qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement. PMID:24632854

  3. Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae.

    PubMed

    Ferreira, Raphael; Skrekas, Christos; Nielsen, Jens; David, Florian

    2018-01-19

    Clustered regularly interspaced short palindromic repeats (CRISPR) technology has greatly accelerated the field of strain engineering. However, insufficient efforts have been made toward developing robust multiplexing tools in Saccharomyces cerevisiae. Here, we exploit the RNA processing capacity of the bacterial endoribonuclease Csy4 from Pseudomonas aeruginosa, to generate multiple gRNAs from a single transcript for genome editing and gene interference applications in S. cerevisiae. In regards to genome editing, we performed a quadruple deletion of FAA1, FAA4, POX1 and TES1 reaching 96% efficiency out of 24 colonies tested. Then, we used this system to efficiently transcriptionally regulate the three genes, OLE1, HMG1 and ACS1. Thus, we demonstrate that multiplexed genome editing and gene regulation can be performed in a fast and effective manner using Csy4.

  4. Gamma-oryzanol rich fraction regulates the expression of antioxidant and oxidative stress related genes in stressed rat's liver

    PubMed Central

    2010-01-01

    Background Gamma-oryzanol (OR), a phytosteryl ferulate mixture extracted from rice bran oil, has a wide spectrum of biological activities in particular, it has antioxidant properties. Methods The regulatory effect of gamma-oryzanol rich fraction (ORF) extracted and fractionated from rice bran using supercritical fluid extraction (SFE) in comparison with commercially available OR on 14 antioxidant and oxidative stress related genes was determined in rat liver. Rats were subjected to a swimming exercise program for 10 weeks to induce stress and were further treated with either ORF at 125, 250 and 500 mg/kg or OR at 100 mg/kg in emulsion forms for the last 5 weeks of the swimming program being carried out. The GenomeLab Genetic Analysis System (GeXPS) was used to study the multiplex gene expression of the selected genes. Results Upon comparison of RNA expression levels between the stressed and untreated group (PC) and the unstressed and untreated group (NC), seven genes were found to be down-regulated, while seven genes were up-regulated in PC group compared to NC group. Further treatment of stressed rats with ORF at different doses and OR resulted in up-regulation of 10 genes and down regulation of four genes compared to the PC group. Conclusions Gamma-oryzanol rich fraction showed potential antioxidant activity greater than OR in the regulation of antioxidants and oxidative stress gene markers. PMID:20331906

  5. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  6. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-01-01

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya. PMID:25337891

  7. Truncating Mutations of MAGEL2, a Gene within the Prader-Willi Locus, Are Responsible for Severe Arthrogryposis

    PubMed Central

    Mejlachowicz, Dan; Nolent, Flora; Maluenda, Jérome; Ranjatoelina-Randrianaivo, Hanitra; Giuliano, Fabienne; Gut, Ivo; Sternberg, Damien; Laquerrière, Annie; Melki, Judith

    2015-01-01

    Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene. PMID:26365340

  8. Identification of diagnostic markers in colorectal cancer via integrative epigenomics and genomics data

    PubMed Central

    KOK-SIN, TEOW; MOKHTAR, NORFILZA MOHD; HASSAN, NUR ZARINA ALI; SAGAP, ISMAIL; ROSE, ISA MOHAMED; HARUN, ROSLAN; JAMAL, RAHMAN

    2015-01-01

    Apart from genetic mutations, epigenetic alteration is a common phenomenon that contributes to neoplastic transformation in colorectal cancer. Transcriptional silencing of tumor-suppressor genes without changes in the DNA sequence is explained by the existence of promoter hypermethylation. To test this hypothesis, we integrated the epigenome and transcriptome data from a similar set of colorectal tissue samples. Methylation profiling was performed using the Illumina InfiniumHumanMethylation27 BeadChip on 55 paired cancer and adjacent normal epithelial cells. Fifteen of the 55 paired tissues were used for gene expression profiling using the Affymetrix GeneChip Human Gene 1.0 ST array. Validation was carried out on 150 colorectal tissues using the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) technique. PCA and supervised hierarchical clustering in the two microarray datasets showed good separation between cancer and normal samples. Significant genes from the two analyses were obtained based on a ≥2-fold change and a false discovery rate (FDR) P-value of <0.05. We identified 1,081 differentially hypermethylated CpG sites and 36 hypomethylated CpG sites. We also found 709 upregulated and 699 downregulated genes from the gene expression profiling. A comparison of the two datasets revealed 32 overlapping genes with 27 being hypermethylated with downregulated expression and 4 hypermethylated with upregulated expression. One gene was found to be hypomethylated and downregulated. The most enriched molecular pathway identified was cell adhesion molecules that involved 4 overlapped genes, JAM2, NCAM1, ITGA8 and CNTN1. In the present study, we successfully identified a group of genes that showed methylation and gene expression changes in well-defined colorectal cancer tissues with high purity. The integrated analysis gives additional insight regarding the regulation of colorectal cancer-associated genes and their underlying mechanisms that contribute to colorectal carcinogenesis. PMID:25997610

  9. Gene Expression Profiling Specifies Chemokine, Mitochondrial and Lipid Metabolism Signatures in Leprosy

    PubMed Central

    Guerreiro, Luana Tatiana Albuquerque; Robottom-Ferreira, Anna Beatriz; Ribeiro-Alves, Marcelo; Toledo-Pinto, Thiago Gomes; Rosa Brito, Tiana; Rosa, Patrícia Sammarco; Sandoval, Felipe Galvan; Jardim, Márcia Rodrigues; Antunes, Sérgio Gomes; Shannon, Edward J.; Sarno, Euzenir Nunes; Pessolani, Maria Cristina Vidal; Williams, Diana Lynn; Moraes, Milton Ozório

    2013-01-01

    Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy. PMID:23798993

  10. Populational analysis of suspended microtissues for high-throughput, multiplexed 3D tissue engineering

    PubMed Central

    Chen, Alice A.; Underhill, Gregory H.; Bhatia, Sangeeta N.

    2014-01-01

    Three-dimensional (3D) tissue models have significantly improved our understanding of structure/function relationships and promise to lead to new advances in regenerative medicine. However, despite the expanding diversity of 3D tissue fabrication methods, approaches for functional assessment have been relatively limited. Here, we describe the fabrication of microtissue (μ-tissue) suspensions and their quantitative evaluation with techniques capable of analyzing large sample numbers and performing multiplexed parallel analysis. We applied this platform to 3D μ-tissues representing multiple stages of liver development and disease including: embryonic stem cells, bipotential hepatic progenitors, mature hepatocytes, and hepatoma cells photoencapsulated in polyethylene glycol hydrogels. Multiparametric μ-tissue cytometry enabled quantitation of fluorescent reporter expression within populations of intact μ-tissues (n≥102-103) and sorting-based enrichment of subsets for subsequent studies. Further, 3D μ-tissues could be implanted in vivo, respond to systemic stimuli, retrieved and quantitatively assessed. In order to facilitate multiplexed ‘pooled’ experimentation, fluorescent labeling strategies were developed and utilized to investigate the impact of μ-tissue composition and exposure to soluble factors. In particular, examination of drug/gene interactions on collections of 3D hepatoma μ-tissues indicated synergistic influence of doxorubicin and knockdown of the anti-apoptotic gene BCL-XL. Collectively, these studies highlight the broad utility of μ-tissue suspensions as an enabling approach for high n, populational analysis of 3D tissue biology in vitro and in vivo. PMID:20820630

  11. A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.

    PubMed

    Lowder, Levi G; Zhang, Dengwei; Baltes, Nicholas J; Paul, Joseph W; Tang, Xu; Zheng, Xuelian; Voytas, Daniel F; Hsieh, Tzung-Fu; Zhang, Yong; Qi, Yiping

    2015-10-01

    The relative ease, speed, and biological scope of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Protein9 (Cas9)-based reagents for genomic manipulations are revolutionizing virtually all areas of molecular biosciences, including functional genomics, genetics, applied biomedical research, and agricultural biotechnology. In plant systems, however, a number of hurdles currently exist that limit this technology from reaching its full potential. For example, significant plant molecular biology expertise and effort is still required to generate functional expression constructs that allow simultaneous editing, and especially transcriptional regulation, of multiple different genomic loci or multiplexing, which is a significant advantage of CRISPR/Cas9 versus other genome-editing systems. To streamline and facilitate rapid and wide-scale use of CRISPR/Cas9-based technologies for plant research, we developed and implemented a comprehensive molecular toolbox for multifaceted CRISPR/Cas9 applications in plants. This toolbox provides researchers with a protocol and reagents to quickly and efficiently assemble functional CRISPR/Cas9 transfer DNA constructs for monocots and dicots using Golden Gate and Gateway cloning methods. It comes with a full suite of capabilities, including multiplexed gene editing and transcriptional activation or repression of plant endogenous genes. We report the functionality and effectiveness of this toolbox in model plants such as tobacco (Nicotiana benthamiana), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), demonstrating its utility for basic and applied plant research. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Development of multiplex PCR for the detection of total coliform bacteria for Escherichia coli and Clostridium perfringens in drinking water.

    PubMed

    Tantawiwat, Suwalee; Tansuphasiri, Unchalee; Wongwit, Waranya; Wongchotigul, Varee; Kitayaporn, Dwip

    2005-01-01

    Multiplex PCR amplification of lacZ, uidA and plc genes was developed for the simultaneous detection of total coliform bacteria for Escherichia coli and Clostridium perfringens, in drinking water. Detection by agarose gel electrophoresis yielded a band of 876 bp for the lacZ gene of all coliform bacteria; a band of 147 bp for the uidA gene and a band of 876 bp for the lacZ gene of all strains of E. coli; a band of 280 bp for the p/c gene for all strains of C. perfringens; and a negative result for all three genes when tested with other bacteria. The detection limit was 100 pg for E. coli and C. perfringens, and 1 ng for coliform bacteria when measured with purified DNA. This assay was applied to the detection of these bacteria in spiked water samples. Spiked water samples with 0-1,000 CFU/ml of coliform bacteria and/or E. coli and/or C. perfringens were detected by this multiplex PCR after a pre-enrichment step to increase the sensitivity and to ensure that the detection was based on the presence of cultivable bacteria. The result of bacterial detection from the multiplex PCR was comparable with that of a standard plate count on selective medium (p=0.62). When using standard plate counts as a gold standard, the sensitivity for this test was 99.1% (95% CI 95.33, 99.98) and the specificity was 90.9 % (95% CI 75.67, 98.08). Multiplex PCR amplification with a pre-enrichment step was shown to be an effective, sensitive and rapid method for the simultaneous detection of these three microbiological parameters in drinking water.

  13. Two Multiplex Real-Time PCR Assays to Detect and Differentiate Acinetobacter baumannii and Non- baumannii Acinetobacter spp. Carrying blaNDM, blaOXA-23-Like, blaOXA-40-Like, blaOXA-51-Like, and blaOXA-58-Like Genes

    PubMed Central

    Yang, Qiu; Rui, Yongyu

    2016-01-01

    Nosocomial infections caused by Acinetobacter spp. resistant to carbapenems are increasingly reported worldwide. Carbapenem-resistant Acinetobacter (CRA) is becoming a serious concern with increasing patient morbidity, mortality, and lengths of hospital stay. Therefore, the rapid detection of CRA is essential for epidemiological surveillance. Polymerase chain reaction (PCR) has been extensively used for the rapid identification of most pathogens. In this study, we have developed two multiplex real-time PCR assays to detect and differentiate A. baumannii and non-A. baumannii Acinetobacter spp, and common carbapenemase genes, including blaNDM, blaOXA-23-like, blaOXA-40-like, blaOXA-51-like, and blaOXA-58-like. We demonstrate the potential utility of these assays for the direct detection of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA in clinical specimens. Primers were specifically designed, and two multiplex real-time PCR assays were developed: multiplex real-time PCR assay1 for the detection of Acinetobacter baumannii 16S–23S rRNA internal transcribed spacer sequence, the Acinetobacter recA gene, and class-B-metalloenzyme-encoding gene blaNDM; and multiplex real-time PCR assay2 to detect class-D-oxacillinase-encoding genes (blaOXA-23-like, blaOXA-40-like, blaOXA-51-like,and blaOXA-58-like). The assays were performed on an ABI Prism 7500 FAST Real-Time PCR System. CRA isolates were used to compare the assays with conventional PCR and sequencing. Known amounts of CRA cells were added to sputum and fecal specimens and used to test the multiplex real-time PCR assays. The results for target and nontarget amplification showed that the multiplex real-time PCR assays were specific, the limit of detection for each target was 10 copies per 20 μL reaction volume, the assays were linear over six log dilutions of the target genes (r2 > 0.99), and the Ct values of the coefficients of variation for intra- and interassay reproducibility were less than 5%. The multiplex real-time PCR assays showed 100% concordance with conventional PCR when tested against 400 CRA isolates and their sensitivity for the target DNA in sputum and fecal specimens was 102 CFU/mL. Therefore, these novel multiplex real-time PCR assays allow the sensitive and specific characterization and differentiation of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA, making them potential tools for the direct detection of CRA in clinical specimens and the surveillance of nosocomial infections. PMID:27391234

  14. Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome.

    PubMed

    Bénit, Paule; Steffann, Julie; Lebon, Sophie; Chretien, Dominique; Kadhom, Noman; de Lonlay, Pascale; Goldenberg, Alice; Dumez, Yves; Dommergues, Marc; Rustin, Pierre; Munnich, Arnold; Rötig, Agnès

    2003-05-01

    Complex I deficiency, the most common cause of mitochondrial disorders, accounts for a variety of clinical symptoms and its genetic heterogeneity makes identification of the disease genes particularly tedious. Indeed, most of the 43 complex I subunits are encoded by nuclear genes, only seven of them being mitochondrially encoded. In order to offer urgent prenatal diagnosis, we have studied an inbred/multiplex family with complex I deficiency by using microsatellite DNA markers flanking the putative disease loci. Microsatellite DNA markers have allowed us to exclude the NDUFS7, NDUFS8, NDUFV1 and NDUFS1 genes and to find homozygosity at the NDUFS4 locus. Direct sequencing has led to identification of a homozygous splice acceptor site mutation in intron 1 of the NDUFS4 gene (IVS1nt -1, G-->A); this was not found in chorion villi of the ongoing pregnancy. We suggest that genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families helps to identify the disease-causing mutation. More generally, we suggest giving consideration to a more systematic microsatellite analysis of putative disease loci for identification of disease genes in inbred/multiplex families affected with genetically heterogeneous conditions.

  15. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    PubMed Central

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products. PMID:26257724

  16. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    PubMed

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  17. A multiplex PCR assay for determination of mating type in isolates of the honey bee fungal pathogen, Ascosphaera apis

    USDA-ARS?s Scientific Manuscript database

    In this study we developed a multiplex PCR for identification of mating type idiomorphs in the filamentous fungus, Ascosphaera apis, the causative agent of chalkbrood disease in the honey bee (Apis melliffera). A combination of gene-specific primers was designed to amplify Mat1-1 and Mat1-2 gene fra...

  18. Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes.

    PubMed

    Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid

    2012-11-01

    Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.

  19. Mapping a multiplexed zoo of mRNA expression.

    PubMed

    Choi, Harry M T; Calvert, Colby R; Husain, Naeem; Huss, David; Barsi, Julius C; Deverman, Benjamin E; Hunter, Ryan C; Kato, Mihoko; Lee, S Melanie; Abelin, Anna C T; Rosenthal, Adam Z; Akbari, Omar S; Li, Yuwei; Hay, Bruce A; Sternberg, Paul W; Patterson, Paul H; Davidson, Eric H; Mazmanian, Sarkis K; Prober, David A; van de Rijn, Matt; Leadbetter, Jared R; Newman, Dianne K; Readhead, Carol; Bronner, Marianne E; Wold, Barbara; Lansford, Rusty; Sauka-Spengler, Tatjana; Fraser, Scott E; Pierce, Niles A

    2016-10-01

    In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences. © 2016. Published by The Company of Biologists Ltd.

  20. Mapping a multiplexed zoo of mRNA expression

    PubMed Central

    Choi, Harry M. T.; Calvert, Colby R.; Husain, Naeem; Huss, David; Barsi, Julius C.; Deverman, Benjamin E.; Hunter, Ryan C.; Kato, Mihoko; Lee, S. Melanie; Abelin, Anna C. T.; Rosenthal, Adam Z.; Akbari, Omar S.; Li, Yuwei; Hay, Bruce A.; Sternberg, Paul W.; Patterson, Paul H.; Davidson, Eric H.; Mazmanian, Sarkis K.; Prober, David A.; van de Rijn, Matt; Leadbetter, Jared R.; Newman, Dianne K.; Readhead, Carol; Bronner, Marianne E.; Wold, Barbara; Lansford, Rusty; Sauka-Spengler, Tatjana; Fraser, Scott E.

    2016-01-01

    In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences. PMID:27702788

  1. Multiplexing of ChIP-Seq Samples in an Optimized Experimental Condition Has Minimal Impact on Peak Detection.

    PubMed

    Kacmarczyk, Thadeous J; Bourque, Caitlin; Zhang, Xihui; Jiang, Yanwen; Houvras, Yariv; Alonso, Alicia; Betel, Doron

    2015-01-01

    Multiplexing samples in sequencing experiments is a common approach to maximize information yield while minimizing cost. In most cases the number of samples that are multiplexed is determined by financial consideration or experimental convenience, with limited understanding on the effects on the experimental results. Here we set to examine the impact of multiplexing ChIP-seq experiments on the ability to identify a specific epigenetic modification. We performed peak detection analyses to determine the effects of multiplexing. These include false discovery rates, size, position and statistical significance of peak detection, and changes in gene annotation. We found that, for histone marker H3K4me3, one can multiplex up to 8 samples (7 IP + 1 input) at ~21 million single-end reads each and still detect over 90% of all peaks found when using a full lane for sample (~181 million reads). Furthermore, there are no variations introduced by indexing or lane batch effects and importantly there is no significant reduction in the number of genes with neighboring H3K4me3 peaks. We conclude that, for a well characterized antibody and, therefore, model IP condition, multiplexing 8 samples per lane is sufficient to capture most of the biological signal.

  2. Multiplexing of ChIP-Seq Samples in an Optimized Experimental Condition Has Minimal Impact on Peak Detection

    PubMed Central

    Kacmarczyk, Thadeous J.; Bourque, Caitlin; Zhang, Xihui; Jiang, Yanwen; Houvras, Yariv; Alonso, Alicia; Betel, Doron

    2015-01-01

    Multiplexing samples in sequencing experiments is a common approach to maximize information yield while minimizing cost. In most cases the number of samples that are multiplexed is determined by financial consideration or experimental convenience, with limited understanding on the effects on the experimental results. Here we set to examine the impact of multiplexing ChIP-seq experiments on the ability to identify a specific epigenetic modification. We performed peak detection analyses to determine the effects of multiplexing. These include false discovery rates, size, position and statistical significance of peak detection, and changes in gene annotation. We found that, for histone marker H3K4me3, one can multiplex up to 8 samples (7 IP + 1 input) at ~21 million single-end reads each and still detect over 90% of all peaks found when using a full lane for sample (~181 million reads). Furthermore, there are no variations introduced by indexing or lane batch effects and importantly there is no significant reduction in the number of genes with neighboring H3K4me3 peaks. We conclude that, for a well characterized antibody and, therefore, model IP condition, multiplexing 8 samples per lane is sufficient to capture most of the biological signal. PMID:26066343

  3. Simultaneous differential detection of human pathogenic and nonpathogenic Vibrio species using a multiplex PCR based on gyrB and pntA genes.

    PubMed

    Teh, C S J; Chua, K H; Thong, K L

    2010-06-01

    To develop a multiplex PCR targeting the gyrB and pntA genes for Vibrio species differentiation. Four pairs of primers targeting gyrB gene of Vibrios at genus level and pntA gene of Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus were designed. This PCR method precisely identified 250 Vibrio species and demonstrated sensitivity in the range of 4 x 10(4) CFU ml(-1) (c. 200 CFU per PCR) to 2 x 10(3) CFU ml(-1) (c. 10 CFU per PCR). Overall, the gyrB gene marker showed a higher specificity than the dnaJ gene marker for Vibrio detection and was able to distinguish Aeromonas from Vibrio species. The multiplex PCR based on combined gyrB and pntA provides a high discriminatory power in the differentiation between Vibrio alginolyticus and V. parahaemolyticus, and between V. cholerae and Vibrio mimicus. This assay will be useful for rapid differentiation of various Vibrio species from clinical and environmental sources and significantly overcomes the limitations of the conventional methods.

  4. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation.

    PubMed

    Dominguez, Antonia A; Lim, Wendell A; Qi, Lei S

    2016-01-01

    The bacterial CRISPR-Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR-dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies.

  5. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation

    PubMed Central

    Dominguez, Antonia A.; Lim, Wendell A.; Qi, Lei S.

    2016-01-01

    The bacterial CRISPR–Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR–dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies. PMID:26670017

  6. Exploring target-specific primer extension in combination with a bead-based suspension array for multiplexed detection and typing using Streptococcus suis as a model pathogen

    PubMed Central

    van der Wal, Fimme J.; Achterberg, René P.; van Solt-Smits, Conny; Bergervoet, Jan H. W.; de Weerdt, Marjanne; Wisselink, Henk J.

    2017-01-01

    We investigated the feasibility of an assay based on target-specific primer extension, combined with a suspension array, for the multiplexed detection and typing of a veterinary pathogen in animal samples, using Streptococcus suis as a model pathogen. A procedure was established for simultaneous detection of 6 S. suis targets in pig tonsil samples (i.e., 4 genes associated with serotype 1, 2, 7, or 9, the generic S. suis glutamate dehydrogenase gene [gdh], and the gene encoding the extracellular protein factor [epf]). The procedure was set up as a combination of protocols: DNA isolation from porcine tonsils, a multiplex PCR, a multiplex target-specific primer extension, and finally a suspension array as the readout. The resulting assay was compared with a panel of conventional PCR assays. The proposed multiplex assay can correctly identify the serotype of isolates and is capable of simultaneous detection of multiple targets in porcine tonsillar samples. The assay is not as sensitive as the current conventional PCR assays, but with the correct sampling strategy, the assay can be useful for screening pig herds to establish which S. suis serotypes are circulating in a pig population. PMID:28980519

  7. Development of a multiplex PCR assay for detection and discrimination of Theileria annulata and Theileria sergenti in cattle.

    PubMed

    Junlong, Liu; Li, Youquan; Liu, Aihong; Guan, Guiquan; Xie, Junren; Yin, Hong; Luo, Jianxun

    2015-07-01

    Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.

  8. Digital gene expression analysis with sample multiplexing and PCR duplicate detection: A straightforward protocol.

    PubMed

    Rozenberg, Andrey; Leese, Florian; Weiss, Linda C; Tollrian, Ralph

    2016-01-01

    Tag-Seq is a high-throughput approach used for discovering SNPs and characterizing gene expression. In comparison to RNA-Seq, Tag-Seq eases data processing and allows detection of rare mRNA species using only one tag per transcript molecule. However, reduced library complexity raises the issue of PCR duplicates, which distort gene expression levels. Here we present a novel Tag-Seq protocol that uses the least biased methods for RNA library preparation combined with a novel approach for joint PCR template and sample labeling. In our protocol, input RNA is fragmented by hydrolysis, and poly(A)-bearing RNAs are selected and directly ligated to mixed DNA-RNA P5 adapters. The P5 adapters contain i5 barcodes composed of sample-specific (moderately) degenerate base regions (mDBRs), which later allow detection of PCR duplicates. The P7 adapter is attached via reverse transcription with individual i7 barcodes added during the amplification step. The resulting libraries can be sequenced on an Illumina sequencer. After sample demultiplexing and PCR duplicate removal with a free software tool we designed, the data are ready for downstream analysis. Our protocol was tested on RNA samples from predator-induced and control Daphnia microcrustaceans.

  9. In situ amplification of intracellular microRNA with MNAzyme nanodevices for multiplexed imaging, logic operation, and controlled drug release.

    PubMed

    Zhang, Penghui; He, Zhimei; Wang, Chen; Chen, Jiangning; Zhao, Jingjing; Zhu, Xuena; Li, Chen-Zhong; Min, Qianhao; Zhu, Jun-Jie

    2015-01-27

    MicroRNAs (miRNAs), as key regulators in gene expression networks, have participated in many biological processes, including cancer initiation, progression, and metastasis, indicative of potential diagnostic biomarkers and therapeutic targets. To tackle the low abundance of miRNAs in a single cell, we have developed programmable nanodevices with MNAzymes to realize stringent recognition and in situ amplification of intracellular miRNAs for multiplexed detection and controlled drug release. As a proof of concept, miR-21 and miR-145, respectively up- and down-expressed in most tumor tissues, were selected as endogenous cancer indicators and therapy triggers to test the efficacy of the photothermal nanodevices. The sequence programmability and specificity of MNAzyme motifs enabled the fluorescent turn-on probes not only to sensitively profile the distributions of miR-21/miR-145 in cell lysates of HeLa, HL-60, and NIH 3T3 (9632/0, 14147/0, 2047/421 copies per cell, respectively) but also to visualize trace amounts of miRNAs in a single cell, allowing logic operation for graded cancer risk assessment and dynamic monitoring of therapy response by confocal microscopy and flow cytometry. Furthermore, through general molecular design, the MNAzyme motifs could serve as three-dimensional gatekeepers to lock the doxorubicin inside the nanocarriers. The drug nanocarriers were exclusively internalized into the target tumor cells via aptamer-guided recognition and reopened by the endogenous miRNAs, where the drug release rates could be spatial-temporally controlled by the modulation of miRNA expression. Integrated with miRNA profiling techniques, the designed nanodevices can provide general strategy for disease diagnosis, prognosis, and combination treatment with chemotherapy and gene therapy.

  10. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing

    PubMed Central

    2012-01-01

    Background RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Results Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. Conclusions This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates. PMID:22985019

  11. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing.

    PubMed

    Robles, José A; Qureshi, Sumaira E; Stephen, Stuart J; Wilson, Susan R; Burden, Conrad J; Taylor, Jennifer M

    2012-09-17

    RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.

  12. Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species.

    PubMed Central

    Choi, Su Mi; Kim, Seung-Han; Kim, Hee-Jung; Lee, Dong-Gun; Choi, Jung-Hyun; Yoo, Jin-Hong; Kang, Jin-Han; Shin, Wan-Shik; Kang, Moon-Won

    2003-01-01

    We developed multiplex polymerase chain reaction (PCR) to detect aac(6 ')/aph(2 "), aph(3 ')-IIIa, and ant(4 ')-Ia, the genes encoding the most clinically relevant amino-glycoside modifying enzymes (AME), and simultaneously, the methicillin resistant gene, mecA, in Staphylococcus species. Clinical isolates of 45 S. aureus and 47 coagulase negative staphylococci (CNS) from tertiary university hospitals were tested by conventional susceptibility testing, using the agar dilution method and by multiplex PCR. Of a total of 92 isolates, 61 isolates were found to be methicillin-resistant. Of these, 54 isolates (89%) were found to be harboring mecA. Seventy-five percent of the 92 isolates demonstrated resistance to at least one of the aminoglycosides tested. Moreover, resistance to aminoglycosides was closely associated with methicillin-resistance (p<0.05). The most prevalent AME gene was aac(6 ')/aph(2 ") which was found in 65% of the isolates, and ant(4 ')-Ia and aph(3 ')-IIIa were present in 41% and 9% of the isolates, respectively. The concordance between methicillin-resistance and the presence of mecA gene was 98% in S. aureus and 81% in CNS. The concordance between gentamicin resistance and the presence of aac(6 ')/aph(2 ") gene was 100% in S. aureus and 85% in CNS. The multiplex PCR method that we developed appears to be both a more rapid and reliable than conventional method. PMID:14555812

  13. Sensitive and specific detection of EML4-ALK rearrangements in non-small cell lung cancer (NSCLC) specimens by multiplex amplicon RNA massive parallel sequencing.

    PubMed

    Moskalev, Evgeny A; Frohnauer, Judith; Merkelbach-Bruse, Sabine; Schildhaus, Hans-Ulrich; Dimmler, Arno; Schubert, Thomas; Boltze, Carsten; König, Helmut; Fuchs, Florian; Sirbu, Horia; Rieker, Ralf J; Agaimy, Abbas; Hartmann, Arndt; Haller, Florian

    2014-06-01

    Recurrent gene fusions of anaplastic lymphoma receptor tyrosine kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) have been recently identified in ∼5% of non-small cell lung cancers (NSCLCs) and are targets for selective tyrosine kinase inhibitors. While fluorescent in situ hybridization (FISH) is the current gold standard for detection of EML4-ALK rearrangements, several limitations exist including high costs, time-consuming evaluation and somewhat equivocal interpretation of results. In contrast, targeted massive parallel sequencing has been introduced as a powerful method for simultaneous and sensitive detection of multiple somatic mutations even in limited biopsies, and is currently evolving as the method of choice for molecular diagnostic work-up of NSCLCs. We developed a novel approach for indirect detection of EML4-ALK rearrangements based on 454 massive parallel sequencing after reverse transcription and subsequent multiplex amplification (multiplex ALK RNA-seq) which takes advantage of unbalanced expression of the 5' and 3' ALK mRNA regions. Two lung cancer cell lines and a selected series of 32 NSCLC samples including 11 cases with EML4-ALK rearrangement were analyzed with this novel approach in comparison to ALK FISH, ALK qRT-PCR and EML4-ALK RT-PCR. The H2228 cell line with known EML4-ALK rearrangement showed 171 and 729 reads for 5' and 3' ALK regions, respectively, demonstrating a clearly unbalanced expression pattern. In contrast, the H1299 cell line with ALK wildtype status displayed no reads for both ALK regions. Considering a threshold of 100 reads for 3' ALK region as indirect indicator of EML4-ALK rearrangement, there was 100% concordance between the novel multiplex ALK RNA-seq approach and ALK FISH among all 32 NSCLC samples. Multiplex ALK RNA-seq is a sensitive and specific method for indirect detection of EML4-ALK rearrangements, and can be easily implemented in panel based molecular diagnostic work-up of NSCLCs by massive parallel sequencing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Thirtyfold multiplex genotyping of the p53 gene using solid phase capturable dideoxynucleotides and mass spectrometry.

    PubMed

    Kim, Sobin; Ulz, Michael E; Nguyen, Tuan; Li, Chi-Ming; Sato, Takaaki; Tycko, Benjamin; Ju, Jingyue

    2004-05-01

    A mass spectrometry (MS) based multiplex genotyping method using solid phase capturable (SPC) dideoxynucleotides and single base extension (SBE), named the SPC-SBE, has been developed for mutation detection. We report here the simultaneous genotyping of 30 potential point mutation sites in exons 5, 7, and 8 of the human p53 gene in one tube using the SPC-SBE method. The 30 mutation sites, including the most frequently mutated p53 codons, were chosen to explore the high multiplexing scope of the SPC-SBE method. Thirty primers specific to each potential mutation site were designed to yield SBE products with sufficient mass differences. This was achieved by tuning the mass of some primers using modified nucleotides. Genomic DNA was amplified by multiplex PCR to produce amplicons of the three p53 exons. The 30 primers were combined with the PCR products and biotinylated dideoxynucleotides for SBE to generate 3'-biotinylated extension DNA products. These products were then captured by streptavidin-coated magnetic beads, while the unextended primers and other components in the reaction were washed away. The pure extension DNA products were subsequently released from the solid phase and analyzed with MS. We simultaneously genotyped 30 potential mutation sites in the p53 gene from Wilms' tumor, head and neck tumor, and colorectal tumor. Both homozygous and heterozygous genotypes were accurately determined with digital resolution. This is the highest level of multiplex genotyping reported thus far using MS, indicating that the approach might be applicable to screening a repertoire of genotypes in candidate genes as potential disease markers.

  15. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart

    PubMed Central

    Cardona, Maria; López, Juan Antonio; Serafín, Anna; Rongvaux, Anthony; Inserte, Javier; García-Dorado, David; Flavell, Richard; Llovera, Marta; Cañas, Xavier; Vázquez, Jesús; Sanchis, Daniel

    2015-01-01

    Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development. PMID:26121671

  16. Common patterns and disease-related signatures in tuberculosis and sarcoidosis.

    PubMed

    Maertzdorf, Jeroen; Weiner, January; Mollenkopf, Hans-Joachim; Bauer, Torsten; Prasse, Antje; Müller-Quernheim, Joachim; Kaufmann, Stefan H E

    2012-05-15

    In light of the marked global health impact of tuberculosis (TB), strong focus has been on identifying biosignatures. Gene expression profiles in blood cells identified so far are indicative of a persistent activation of the immune system and chronic inflammatory pathology in active TB. Definition of a biosignature with unique specificity for TB demands that identified profiles can differentiate diseases with similar pathology, like sarcoidosis (SARC). Here, we present a detailed comparison between pulmonary TB and SARC, including whole-blood gene expression profiling, microRNA expression, and multiplex serum analytes. Our analysis reveals that previously disclosed gene expression signatures in TB show highly similar patterns in SARC, with a common up-regulation of proinflammatory pathways and IFN signaling and close similarity to TB-related signatures. microRNA expression also presented a highly similar pattern in both diseases, whereas cytokines in the serum of TB patients revealed a slightly elevated proinflammatory pattern compared with SARC and controls. Our results indicate several differences in expression between the two diseases, with increased metabolic activity and significantly higher antimicrobial defense responses in TB. However, matrix metallopeptidase 14 was identified as the most distinctive marker of SARC. Described communalities as well as unique signatures in blood profiles of two distinct inflammatory pulmonary diseases not only have considerable implications for the design of TB biosignatures and future diagnosis, but they also provide insights into biological processes underlying chronic inflammatory disease entities of different etiology.

  17. Multiplex PCR assay to identify methicillin-resistant Staphylococcus haemolyticus.

    PubMed

    Schuenck, Ricardo P; Pereira, Eliezer M; Iorio, Natalia L P; Dos Santos, Kátia R N

    2008-04-01

    Staphylococcus haemolyticus is the most frequently coagulase-negative Staphylococcus species associated with antimicrobial resistance isolated from nosocomial infections. We developed an accurate and simple multiplex PCR assay to identify methicillin-resistant S. haemolyticus (MRSH) isolates. We designed species-specific primers of the mvaA gene that encodes a 3-hydroxy-3-methylglutaryl coenzyme A involved in the mevalonate pathway of the microorganism. Simultaneously, mecA gene primers of methicillin resistance were also used. The PCR assay was established using 16 strains of different reference Staphylococcus species and validated with a collection of 147 clinical staphylococcal isolates that were also phenotypically characterized. Reliable results for the detection of MRSH isolates were obtained for 100% of the strains evaluated, showing that this PCR assay can be used for the routine microbiology laboratories. This is the first report using species-specific multiplex PCR to detect a single segment of S. haemolyticus associated with a segment of mecA gene.

  18. [Effect of TUBB3, TS and ERCC1 mRNA expression on chemoresponse and clinical outcome of advanced gastric cancer by multiplex branched-DNA liquid chip technology].

    PubMed

    Huang, Jin; Hu, Huabin; Xie, Yangchun; Tang, Youhong; Liu, Wei; Zhong, Meizuo

    2013-06-01

    To analyze the impact of β-tubulin-III (TUBB3), thymidylate synthase (TS) and excision repair cross complementation group 1 (ERCC1) mRNA expression on chemoresponse and clinical outcome of patients with advanced gastric cancer treated with TXT/CDDP/FU (DCF) regimen chemotherapy. The study population consisted of 48 patients with advanced gastric cancer. All patients were treated with DCF regimen palliative chemotherapy. The mRNA expressions of TUBB3, TS and ERCC1 of primary tumors were examined by multiplex branched-DNA liquid chip technology. The patients with low TUBB3 mRNA expression had higher response rate to chemotherapy than patients with high TUBB3 expression (P=0.011). There were no significant differences between response rate and TS or ERCC1 expression pattern. Median overall survival (OS) and median time to progression (TTP) were significantly longer in patients with low TUBB3 mRNA expression (P=0.002, P<0.001). TS or ERCC1 expression was not correlated with TTP and OS. In the combined analysis including TUBB3, TS and ERCC1, the patients with 0 or 1 high expression gene had better response rate, TTP and OS than the remaining patients (all P<0.001). Multivariate analysis revealed that ECOG (Eastern Cooperative Oncology Group)≥2 (HR=2.42, P=0.009) and TUBB3 (HR=2.34, P=0.036) mRNA expression significantly impacted on OS. High TUBB3 mRNA expression is correlated with resistance to DCF regimen chemotherapy. TUBB3 might be a predictive and prognostic factor in patients with advanced gastric cancer treated with TXT-based chemotherapy. The combined evaluation of TUBB3, TS and ERCC1 expression can promote the individual treatment in advanced gastric cancer.

  19. Modifying a standard method allows simultaneous extraction of RNA and protein, enabling detection of enzymes in the rat retina with low expressions and protein levels.

    PubMed

    Agardh, Elisabet; Gustavsson, Carin; Hagert, Per; Nilsson, Marie; Agardh, Carl-David

    2006-02-01

    The aim of the study was to evaluate messenger RNA and protein expression in limited amounts of tissue with low protein content. The Chomczynski method was used for simultaneous extraction of RNA, and protein was modified in the protein isolation step. Template mass and cycling time for the complementary DNA synthesis step of real-time reverse transcription-polymerase chain reaction (RT-PCR) for analysis of catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, the catalytic subunit of glutamylcysteine ligase, glutathione peroxidase 1, and the endogenous control cyclophilin B (CypB) were optimized before PCR. Polymerase chain reaction accuracy and efficacy were demonstrated by calculating the regression (R2) values of the separate amplification curves. Appropriate antibodies, blocking buffers, and running conditions were established for Western blot, and protein detection and multiplex assays with CypB were performed for each target. During the extraction procedure, the protein phase was dissolved in a modified washing buffer containing 0.1% sodium dodecyl sulfate, followed by ultrafiltration. Enzyme expression on real-time RT-PCR was accomplished with high reliability and reproducibility (R2, 0.990-0.999), and all enzymes except for glutathione peroxidase 1 were detectable in individual retinas on Western blot. Western blot multiplexing with CypB was possible for all targets. In conclusion, connecting gene expression directly to protein levels in the individual rat retina was possible by simultaneous extraction of RNA and protein. Real-time RT-PCR and Western blot allowed accurate detection of retinal protein expressions and levels.

  20. [Multiplex PCR strategy for the simultaneous identification of Staphylococcus aureus and detection of staphylococcal enterotoxins in isolates from food poisoning outbreaks].

    PubMed

    Brizzio, Aníbal A; Tedeschi, Fabián A; Zalazar, Fabián E

    2013-01-01

    Staphylococcal food poisoning is the most frequent type of food poisoning around the world. Staphylococcus aureus enterotoxins cause significant loss of water in the intestinal lumen, followed by vomiting and diarrhea. To report a fast, reliable and inexpensive strategy based on multiplex PCR for the simultaneous identification of S. aureus and detection of five classical S. aureus enterotoxin genes ( sea, seb, sec, sed, see ) in Staphylococcus spp. strains isolated from food poisoning outbreaks. We analyzed isolates from 12 food poisoning outbreaks occurred in Santa Fe province (Argentina). Isolation and phenotypic characterization were carried out by standard procedures. Genotypic analysis was performed by multiplex PCR, using primers for nuc , sea-see and 16S rRNA genes simultaneously. Of all the strains tested, 58% were found to carry toxigenic genes. Sea and seb toxins were found at the same percentage (29%) while sec, sed and see genes were found in a lower and identical proportion (14%). We did not find more than one different type of S. aureus enterotoxin in the isolates analyzed. The multiplex PCR strategy designed in this work has enabled us to identify strains of S. aureus and detect -at the same time- their enterotoxigenic ability. At present, our efforts are devoted to the detection of genes encoding enterotoxins other than the classical ones, in order to know their impact on staphylococcal food poisoning, as well as to investigate their relevance to our country's public health.

  1. Identification and quantification of virulence factors of enterotoxigenic Escherichia coli by high-resolution melting curve quantitative PCR.

    PubMed

    Wang, Weilan; Zijlstra, Ruurd T; Gänzle, Michael G

    2017-05-15

    Diagnosis of enterotoxigenic E. coli (ETEC) associated diarrhea is complicated by the diversity of E.coli virulence factors. This study developed a multiplex quantitative PCR assay based on high-resolution melting curves analysis (HRM-qPCR) to identify and quantify genes encoding five ETEC fimbriae related to diarrhea in swine, i.e. K99, F41, F18, F6 and K88. Five fimbriae expressed by ETEC were amplified in multiple HRM-qPCR reactions to allow simultaneous identification and quantification of five target genes. The assay was calibrated to allow quantification of the most abundant target gene, and validated by analysis of 30 samples obtained from piglets with diarrhea and healthy controls, and comparison to standard qPCR detection. The five amplicons with melting temperatures (Tm) ranging from 74.7 ± 0.06 to 80.5 ± 0.15 °C were well-separated by HRM-qPCR. The area of amplicons under the melting peak correlated linearly to the proportion of the template in the calibration mixture if the proportion exceeded 4.8% (K88) or <1% (all other amplicons). The suitability of the method was evaluated using 30 samples from weaned pigs aged 6-7 weeks; 14 of these animals suffered from diarrhea in consequence of poor sanitary conditions. Genes encoding fimbriae and enterotoxins were quantified by HRM-qPCR and/or qPCR. The multiplex HRM-qPCR allowed accurate analysis when the total gene copy number of targets was more than 1 × 10 5 / g wet feces and the HRM curves were able to simultaneously distinguish fimbriae genes in the fecal samples. The relative quantification of the most abundant F18 based on melting peak area was highly correlated (P < 0.001; r 2  = 0.956) with that of individual qPCR result but the correlation for less abundant fimbriae was much lower. The multiplex HRM assay identifies ETEC virulence factors specifically and efficiently. It correctly indicated the predominant fimbriae type and additionally provides information of presence/ absence of other fimbriae types and it could find broad applications for pathogen diagnosis.

  2. A triplex ribozyme expression system based on a single hairpin ribozyme.

    PubMed

    Aquino-Jarquin, Guillermo; Benítez-Hess, María Luisa; DiPaolo, Joseph A; Alvarez-Salas, Luis M

    2008-09-01

    Triplex ribozyme (RZ) configurations allow for the individual activity of trans-acting RZs in multiple expression cassettes (multiplex), thereby increasing target cleavage relative to conventionally expressed RZs. Although hairpin RZs have been advantageously compared to hammerhead RZs, their longer size and structural features complicated triplex design. We present a triplex expression system based on a single hairpin RZ with transcleavage capability and simple engineering. The system was tested in vitro using cis- and trans-cleavage kinetic assays against a known target RNA from HPV-16 E6/E7 mRNA. Single and multiplex triplex RZ constructs were more efficient in cleaving the target than tandem-cloned hairpin RZs, suggesting that the release of individual RZs enhanced trans-cleavage kinetics. Multiplex systems constructed with two different hairpin RZs resulted in better trans-cleavage compared to standard double-RZ constructs. In addition, the triplex RZ performed cis- and trans-cleavage in cervical cancer cells. The use of triplex configurations with multiplex RZs permit differential targeting of the same or different RNA, thus improving potential use against unstable targets. This prototype will provide the basis for the development of future RZ-based therapies and technologies.

  3. DNA hypermethylation profiles in squamous cell carcinoma of the vulva.

    PubMed

    Stephen, Josena K; Chen, Kang Mei; Raitanen, Misa; Grénman, Seija; Worsham, Maria J

    2009-01-01

    Gene silencing through promoter hypermethylation is a growing concept in the development of human cancers. In this study, we examined the contribution of aberrant methylation of promoter regions in methylation-prone tumor suppressors to the pathogenesis of vulvar cancer. Thirteen cell lines from 12 patients with squamous cell carcinoma of the vulva were evaluated for aberrant methylation status and gene copy number alterations, concomitantly, using the methylation-specific multiplex ligation-dependent probe amplification assay. Of the 22 tumor suppressor genes examined, aberrant methylation was observed for 9 genes: tumor protein p73 (TP73), fragile histidine triad (FHIT), von Hippel-Lindau (VHL), adenomatosis polyposis coli (APC), estrogen receptor 1 (ESR1), cyclin-dependent kinase inhibitor 2B (CDKN2B), death-associated protein kinase 1 (DAPK1), glutathione S-transferase pi (GSTP1), and immunoglobin superfamily, member 4 (IGSF4). The most frequently methylated genes included TP73 in 9 of 13 cell lines, and IGSF4, DAPK1, and FHIT in 3 of 13 cell lines. Methylation-specific polymerase chain reaction was performed for TP73 and FHIT to confirm aberrant methylation by methylation-specific multiplex ligation-dependent probe amplification. In the context of gene copy number and methylation status, both copies of the TP73 gene were hypermethylated. Loss or decreased mRNA expression of TP73 and IGSF4 by reverse transcription polymerase chain reaction confirmed aberrant methylation. Frequent genetic alterations of loss and gain of gene copy number included gain of GSTP1 and multiple endocrine neoplasia type 1 (MEN1), and loss of malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) and IGSF4 in over 50% of the squamous cell carcinoma of the vulva cell lines. These findings underscore the contribution of both genetic and epigenetic events to the underlying pathogenesis of squamous cell carcinoma of the vulva.

  4. Microfluidics-Based PCR for Fusion Transcript Detection.

    PubMed

    Chen, Hui

    2016-01-01

    The microfluidic technology allows the production of network of submillimeter-size fluidic channels and reservoirs in a variety of material systems. The microfluidic-based polymerase chain reaction (PCR) allows automated multiplexing of multiple samples and multiple assays simultaneously within a network of microfluidic channels and chambers that are co-ordinated in controlled fashion by the valves. The individual PCR reaction is performed in nanoliter volume, which allows testing on samples with limited DNA and RNA. The microfluidics devices are used in various types of PCR such as digital PCR and single molecular emulsion PCR for genotyping, gene expression, and miRNA expression. In this chapter, the use of a microfluidics-based PCR for simultaneous screening of 14 known fusion transcripts in patients with leukemia is described.

  5. MEERCAT: Multiplexed Efficient Cell Free Expression of Recombinant QconCATs For Large Scale Absolute Proteome Quantification*

    PubMed Central

    Takemori, Nobuaki; Takemori, Ayako; Tanaka, Yuki; Endo, Yaeta; Hurst, Jane L.; Gómez-Baena, Guadalupe; Harman, Victoria M.; Beynon, Robert J.

    2017-01-01

    A major challenge in proteomics is the absolute accurate quantification of large numbers of proteins. QconCATs, artificial proteins that are concatenations of multiple standard peptides, are well established as an efficient means to generate standards for proteome quantification. Previously, QconCATs have been expressed in bacteria, but we now describe QconCAT expression in a robust, cell-free system. The new expression approach rescues QconCATs that previously were unable to be expressed in bacteria and can reduce the incidence of proteolytic damage to QconCATs. Moreover, it is possible to cosynthesize QconCATs in a highly-multiplexed translation reaction, coexpressing tens or hundreds of QconCATs simultaneously. By obviating bacterial culture and through the gain of high level multiplexing, it is now possible to generate tens of thousands of standard peptides in a matter of weeks, rendering absolute quantification of a complex proteome highly achievable in a reproducible, broadly deployable system. PMID:29055021

  6. Multiplex polymerase chain reaction assay for the detection of minute virus of mice and mouse parvovirus infections in laboratory mice.

    PubMed

    Wang, K W; Chueh, L L; Wang, M H; Huang, Y T; Fang, B H; Chang, C Y; Fang, M C; Chou, J Y; Hsieh, S C; Wan, C H

    2013-04-01

    Mouse parvoviruses are among the most prevalent infectious pathogens in contemporary mouse colonies. To improve the efficiency of routine screening for mouse parvovirus infections, a multiplex polymerase chain reaction (PCR) assay targeting the VP gene was developed. The assay detected minute virus of mice (MVM), mouse parvovirus (MPV) and a mouse housekeeping gene (α-actin) and was able to specifically detect MVM and MPV at levels as low as 50 copies. Co-infection with the two viruses with up to 200-fold differences in viral concentrations can easily be detected. The multiplex PCR assay developed here could be a useful tool for monitoring mouse health and the viral contamination of biological materials.

  7. Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ

    PubMed Central

    Mignardi, Marco; Mezger, Anja; Qian, Xiaoyan; La Fleur, Linnea; Botling, Johan; Larsson, Chatarina; Nilsson, Mats

    2015-01-01

    In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ. PMID:26240388

  8. Enhanced capillary electrophoretic screening of Alzheimer based on direct apolipoprotein E genotyping and one-step multiplex PCR.

    PubMed

    Woo, Nain; Kim, Su-Kang; Sun, Yucheng; Kang, Seong Ho

    2018-01-01

    Human apolipoprotein E (ApoE) is associated with high cholesterol levels, coronary artery disease, and especially Alzheimer's disease. In this study, we developed an ApoE genotyping and one-step multiplex polymerase chain reaction (PCR) based-capillary electrophoresis (CE) method for the enhanced diagnosis of Alzheimer's. The primer mixture of ApoE genes enabled the performance of direct one-step multiplex PCR from whole blood without DNA purification. The combination of direct ApoE genotyping and one-step multiplex PCR minimized the risk of DNA loss or contamination due to the process of DNA purification. All amplified PCR products with different DNA lengths (112-, 253-, 308-, 444-, and 514-bp DNA) of the ApoE genes were analyzed within 2min by an extended voltage programming (VP)-based CE under the optimal conditions. The extended VP-based CE method was at least 120-180 times faster than conventional slab gel electrophoresis methods In particular, all amplified DNA fragments were detected in less than 10 PCR cycles using a laser-induced fluorescence detector. The detection limits of the ApoE genes were 6.4-62.0pM, which were approximately 100-100,000 times more sensitive than previous Alzheimer's diagnosis methods In addition, the combined one-step multiplex PCR and extended VP-based CE method was also successfully applied to the analysis of ApoE genotypes in Alzheimer's patients and normal samples and confirmed the distribution probability of allele frequencies. This combination of direct one-step multiplex PCR and an extended VP-based CE method should increase the diagnostic reliability of Alzheimer's with high sensitivity and short analysis time even with direct use of whole blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Multiplex PCR Targeting tpi (Triose Phosphate Isomerase), tcdA (Toxin A), and tcdB (Toxin B) Genes for Toxigenic Culture of Clostridium difficile

    PubMed Central

    Lemee, Ludovic; Dhalluin, Anne; Testelin, Sabrina; Mattrat, Marie-Andre; Maillard, Karine; Lemeland, Jean-François; Pons, Jean-Louis

    2004-01-01

    A multiplex PCR toxigenic culture approach was designed for simultaneous identification and toxigenic type characterization of Clostridium difficile isolates. Three pairs of primers were designed for the amplification of (i) a species-specific internal fragment of the tpi (triose phosphate isomerase) gene, (ii) an internal fragment of the tcdB (toxin B) gene, and (iii) an internal fragment of the tcdA (toxin A) gene allowing distinction between toxin A-positive, toxin B-positive (A+B+) strains and toxin A-negative, toxin B-positive (A−B+) variant strains. The reliability of the multiplex PCR was established by using a panel of 72 C. difficile strains including A+B+, A−B−, and A−B+ toxigenic types and 11 other Clostridium species type strains. The multiplex PCR assay was then included in a toxigenic culture approach for the detection, identification, and toxigenic type characterization of C. difficile in 1,343 consecutive human and animal stool samples. Overall, 111 (15.4%) of 721 human samples were positive for C. difficile; 67 (60.4%) of these samples contained A+B+ toxigenic isolates, and none of them contained A−B+ variant strains. Fifty (8%) of 622 animal samples contained C. difficile strains, which were toxigenic in 27 (54%) cases, including 1 A−B+ variant isolate. Eighty of the 721 human stool samples (37 positive and 43 negative for C. difficile culture) were comparatively tested by Premier Toxins A&B (Meridian Bioscience) and Triage C. difficile Panel (Biosite) immunoassays, the results of which were found concordant with toxigenic culture for 82.5 and 92.5% of the samples, respectively. The multiplex PCR toxigenic culture scheme described here allows combined diagnosis and toxigenic type characterization for human and animal C. difficile intestinal infections. PMID:15583303

  10. NanoString, a novel digital color-coded barcode technology: current and future applications in molecular diagnostics.

    PubMed

    Tsang, Hin-Fung; Xue, Vivian Weiwen; Koh, Su-Pin; Chiu, Ya-Ming; Ng, Lawrence Po-Wah; Wong, Sze-Chuen Cesar

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissue sample is a gold mine of resources for molecular diagnosis and retrospective clinical studies. Although molecular technologies have expanded the range of mutations identified in FFPE samples, the applications of existing technologies are limited by the low nucleic acids yield and poor extraction quality. As a result, the routine clinical applications of molecular diagnosis using FFPE samples has been associated with many practical challenges. NanoString technologies utilize a novel digital color-coded barcode technology based on direct multiplexed measurement of gene expression and offer high levels of precision and sensitivity. Each color-coded barcode is attached to a single target-specific probe corresponding to a single gene which can be individually counted without amplification. Therefore, NanoString is especially useful for measuring gene expression in degraded clinical specimens. Areas covered: This article describes the applications of NanoString technologies in molecular diagnostics and challenges associated with its applications and the future development. Expert commentary: Although NanoString technology is still in the early stages of clinical use, it is expected that NanoString-based cancer expression panels would play more important roles in the future in classifying cancer patients and in predicting the response to therapy for better personal therapeutic care.

  11. A Single Multiplex crRNA Array for FnCpf1-Mediated Human Genome Editing.

    PubMed

    Sun, Huihui; Li, Fanfan; Liu, Jie; Yang, Fayu; Zeng, Zhenhai; Lv, Xiujuan; Tu, Mengjun; Liu, Yeqing; Ge, Xianglian; Liu, Changbao; Zhao, Junzhao; Zhang, Zongduan; Qu, Jia; Song, Zongming; Gu, Feng

    2018-06-15

    Cpf1 has been harnessed as a tool for genome manipulation in various species because of its simplicity and high efficiency. Our recent study demonstrated that FnCpf1 could be utilized for human genome editing with notable advantages for target sequence selection due to the flexibility of the protospacer adjacent motif (PAM) sequence. Multiplex genome editing provides a powerful tool for targeting members of multigene families, dissecting gene networks, modeling multigenic disorders in vivo, and applying gene therapy. However, there are no reports at present that show FnCpf1-mediated multiplex genome editing via a single customized CRISPR RNA (crRNA) array. In the present study, we utilize a single customized crRNA array to simultaneously target multiple genes in human cells. In addition, we also demonstrate that a single customized crRNA array to target multiple sites in one gene could be achieved. Collectively, FnCpf1, a powerful genome-editing tool for multiple genomic targets, can be harnessed for effective manipulation of the human genome. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  12. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.

    PubMed

    Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael

    2009-01-01

    A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.

  13. Biomarker discovery for colon cancer using a 761 gene RT-PCR assay.

    PubMed

    Clark-Langone, Kim M; Wu, Jenny Y; Sangli, Chithra; Chen, Angela; Snable, James L; Nguyen, Anhthu; Hackett, James R; Baker, Joffre; Yothers, Greg; Kim, Chungyeul; Cronin, Maureen T

    2007-08-15

    Reverse transcription PCR (RT-PCR) is widely recognized to be the gold standard method for quantifying gene expression. Studies using RT-PCR technology as a discovery tool have historically been limited to relatively small gene sets compared to other gene expression platforms such as microarrays. We have recently shown that TaqMan RT-PCR can be scaled up to profile expression for 192 genes in fixed paraffin-embedded (FPE) clinical study tumor specimens. This technology has also been used to develop and commercialize a widely used clinical test for breast cancer prognosis and prediction, the Onco typeDX assay. A similar need exists in colon cancer for a test that provides information on the likelihood of disease recurrence in colon cancer (prognosis) and the likelihood of tumor response to standard chemotherapy regimens (prediction). We have now scaled our RT-PCR assay to efficiently screen 761 biomarkers across hundreds of patient samples and applied this process to biomarker discovery in colon cancer. This screening strategy remains attractive due to the inherent advantages of maintaining platform consistency from discovery through clinical application. RNA was extracted from formalin fixed paraffin embedded (FPE) tissue, as old as 28 years, from 354 patients enrolled in NSABP C-01 and C-02 colon cancer studies. Multiplexed reverse transcription reactions were performed using a gene specific primer pool containing 761 unique primers. PCR was performed as independent TaqMan reactions for each candidate gene. Hierarchal clustering demonstrates that genes expected to co-express form obvious, distinct and in certain cases very tightly correlated clusters, validating the reliability of this technical approach to biomarker discovery. We have developed a high throughput, quantitatively precise multi-analyte gene expression platform for biomarker discovery that approaches low density DNA arrays in numbers of genes analyzed while maintaining the high specificity, sensitivity and reproducibility that are characteristics of RT-PCR. Biomarkers discovered using this approach can be transferred to a clinical reference laboratory setting without having to re-validate the assay on a second technology platform.

  14. Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for GMO screening--assay for simultaneous detection of five genetically modified cotton events and species.

    PubMed

    Nadal, Anna; Esteve, Teresa; Pla, Maria

    2009-01-01

    A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (<1.7% of false classification rate), with limit of detection values of 0.1% for each event, which were also achieved with simulated mixtures at different relative percentages of targets. The assay was further combined with a second multiplex PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.

  15. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station.

    PubMed

    Parra, Macarena; Jung, Jimmy; Boone, Travis D; Tran, Luan; Blaber, Elizabeth A; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J; Rubins, Kathleen; Sgarlato, Gregory D; Talavera, Rafael O; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S; Schonfeld, Julie; Almeida, Eduardo A C

    2017-01-01

    The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment.

  16. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station

    PubMed Central

    Boone, Travis D.; Tran, Luan; Blaber, Elizabeth A.; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T.; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J.; Rubins, Kathleen; Sgarlato, Gregory D.; Talavera, Rafael O.; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S.; Schonfeld, Julie

    2017-01-01

    The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment. PMID:28877184

  17. [Multiplexing mapping of human cDNAs]. Final report, September 1, 1991--February 28, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Using PCR with automated product analysis, 329 human brain cDNA sequences have been assigned to individual human chromosomes. Primers were designed from single-pass cDNA sequences expressed sequence tags (ESTs). Primers were used in PCR reactions with DNA from somatic cell hybrid mapping panels as templates, often with multiplexing. Many ESTs mapped match sequence database records. To evaluate of these matches, the position of the primers relative to the matching region (In), the BLAST scores and the Poisson probability values of the EST/sequence record match were determined. In cases where the gene product was stringently identified by the sequence match hadmore » already been mapped, the gene locus determined by EST was consistent with the previous position which strongly supports the validity of assigning unknown genes to human chromosomes based on the EST sequence matches. In the present cases mapping the ESTs to a chromosome can also be considered to have mapped the known gene product: rolipram-sensitive cAMP phosphodiesterase, chromosome 1; protein phosphatase 2A{beta}, chromosome 4; alpha-catenin, chromosome 5; the ELE1 oncogene, chromosome 10q11.2 or q2.1-q23; MXII protein, chromosome l0q24-qter; ribosomal protein L18a homologue, chromosome 14; ribosomal protein L3, chromosome 17; and moesin, Xp11-cen. There were also ESTs mapped that were closely related to non-human sequence records. These matches therefore can be considered to identify human counterparts of known gene products, or members of known gene families. Examples of these include membrane proteins, translation-associated proteins, structural proteins, and enzymes. These data then demonstrate that single pass sequence information is sufficient to design PCR primers useful for assigning cDNA sequences to human chromosomes. When the EST sequence matches previous sequence database records, the chromosome assignments of the EST can be used to make preliminary assignments of the human gene to a chromosome.« less

  18. Multiplexed quantitation of protein expression and phosphorylation based on functionalized soluble nanopolymers

    PubMed Central

    Pan, Li; Iliuk, Anton; Yu, Shuai; Geahlen, Robert L.; Tao, W. Andy

    2012-01-01

    We report here for the first time the multiplexed quantitation of phosphorylation and protein expression based on a functionalized soluble nanopolymer. The soluble nanopolymer, pIMAGO, is functionalized with Ti (IV) ions for chelating phosphoproteins in high specificity, and with infrared fluorescent tags for direct, multiplexed assays. The nanopolymer allows for direct competition for epitopes on proteins of interest, thus facilitating simultaneous detection of phosphorylation by pIMAGO and total protein amount by protein antibody in the same well of microplates. The new strategy has a great potential to measure cell signaling events by clearly distinguishing actual phosphorylation signals from protein expression changes, thus providing a powerful tool to accurately profile cellular signal transduction in healthy and disease cells. We anticipate broad applications of this new strategy in monitoring cellular signaling pathways and discovering new signaling events. PMID:23088311

  19. A Cytolethal Distending Toxin Gene-Based Multiplex PCR Assay for Campylobacter jejuni, C. fetus, C. coli, C. upsaliensis, C. hyointestinalis, and C. lari.

    PubMed

    Kamei, Kazumasa; Kawabata, Hiroki; Asakura, Masahiro; Samosornsuk, Worada; Hinenoya, Atsushi; Nakagawa, Shinsaku; Yamasaki, Shinji

    2016-05-20

    In this study, we devised a multiplex PCR assay based on the gene of cytolethal distending toxin (cdt) B subunit to simultaneously detect and discriminate Campylobacter jejuni, C. fetus, C. coli, C. upsaliensis, C. hyointestinalis, and C. lari. Species-specific PCR products were successfully obtained from all 38 C. jejuni, 12 C. fetus, 39 C. coli, 22 C. upsaliensis, 24 C. hyointestinalis, and 7 C. lari strains tested. On the other hand, no specific PCR products were obtained from other campylobacters and bacterial species tested (41 strains in total). The proposed multiplex PCR assay is a valuable tool for detection and descrimination of 6 major Campylobacter species, that are associated with gastrointestinal diseases in humans.

  20. Multiplex PCR for simultaneous identification of E. coli O157:H7, Salmonella spp. and L. monocytogenes in food.

    PubMed

    Nguyen, Thuy Trang; Van Giau, Vo; Vo, Tuong Kha

    2016-12-01

    The rapid detection of pathogens in food is becoming increasingly critical for ensuring the safety of consumers, since the majority of food-borne illnesses and deaths are caused by pathogenic bacteria. Hence, rapid, sensitive, inexpensive and convenient approaches to detect food-borne pathogenic bacteria is essential in controlling food safety. In this study, a multiplex PCR assay for the rapid and simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes was established. The invA, stx and hlyA genes specifically amplified DNA fragments of 284, 404 and 510 bp from Salmonella spp., L. monocytogenes and E. coli O157:H7, respectively. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity of the multiplex PCR were performed by testing different strains. The multiplex PCR assay was able to specifically simultaneously detect ten colony-forming unit/mL of each pathogen in artificially inoculated samples after enrichment for 12 h. The whole process took less than 24 h to complete, indicating that the assay is suitable for reliable and rapid identification of these three food-borne pathogens, which could be suitable in microbial epidemiology investigation.

  1. Screening DNA chip and event-specific multiplex PCR detection methods for biotech crops.

    PubMed

    Lee, Seong-Hun

    2014-11-01

    There are about 80 biotech crop events that have been approved by safety assessment in Korea. They have been controlled by genetically modified organism (GMO) and living modified organism (LMO) labeling systems. The DNA-based detection method has been used as an efficient scientific management tool. Recently, the multiplex polymerase chain reaction (PCR) and DNA chip have been developed as simultaneous detection methods for several biotech crops' events. The event-specific multiplex PCR method was developed to detect five biotech maize events: MIR604, Event 3272, LY 038, MON 88017 and DAS-59122-7. The specificity was confirmed and the sensitivity was 0.5%. The screening DNA chip was developed from four endogenous genes of soybean, maize, cotton and canola respectively along with two regulatory elements and seven genes: P35S, tNOS, pat, bar, epsps1, epsps2, pmi, cry1Ac and cry3B. The specificity was confirmed and the sensitivity was 0.5% for four crops' 12 events: one soybean, six maize, three cotton and two canola events. The multiplex PCR and DNA chip can be available for screening, gene-specific and event-specific analysis of biotech crops as efficient detection methods by saving on workload and time. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  2. Correlative mRNA and Protein Expression of Middle and Inner Ear Inflammatory Cytokines during Mouse Acute Otitis Media

    PubMed Central

    Trune, Dennis R.; Kempton, Beth; Hausman, Frances A.; Larrain, Barbara E.; MacArthur, Carol J.

    2015-01-01

    Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 hours. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 hour samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2 to 122 fold higher at 18 hours, declining slightly from there at 24 hours. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media. PMID:25922207

  3. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media.

    PubMed

    Trune, Dennis R; Kempton, Beth; Hausman, Frances A; Larrain, Barbara E; MacArthur, Carol J

    2015-08-01

    Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 h. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 h samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2-122 fold higher at 18 h, declining slightly from there at 24 h. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum L.).

    PubMed

    Kamenetsky, Rina; Faigenboim, Adi; Shemesh Mayer, Einat; Ben Michael, Tomer; Gershberg, Chen; Kimhi, Sagie; Esquira, Itzhak; Rohkin Shalom, Sarit; Eshel, Dani; Rabinowitch, Haim D; Sherman, Amir

    2015-01-22

    Garlic is cultivated and consumed worldwide as a popular condiment and green vegetable with medicinal and neutraceutical properties. Garlic cultivars do not produce seeds, and therefore, this plant has not been the subject of either classical breeding or genetic studies. However, recent achievements in fertility restoration in a number of genotypes have led to flowering and seed production, thus enabling genetic studies and breeding in garlic. A transcriptome catalogue of fertile garlic was produced from multiplexed gene libraries, using RNA collected from various plant organs, including inflorescences and flowers. Over 32 million 250-bp paired-end reads were assembled into an extensive transcriptome of 240,000 contigs. An abundant transcriptome assembled separately from 102,000 highly expressed contigs was annotated and analyzed for gene ontology and metabolic pathways. Organ-specific analysis showed significant variation of gene expression between plant organs, with the highest number of specific reads in inflorescences and flowers. Analysis of the enriched biological processes and molecular functions revealed characteristic patterns for stress response, flower development and photosynthetic activity. Orthologues of key flowering genes were differentially expressed, not only in reproductive tissues, but also in leaves and bulbs, suggesting their role in flower-signal transduction and the bulbing process. More than 100 variants and isoforms of enzymes involved in organosulfur metabolism were differentially expressed and had organ-specific patterns. In addition to plant genes, viral RNA of at least four garlic viruses was detected, mostly in the roots and cloves, whereas only 1-4% of the reads were found in the foliage leaves. The de novo transcriptome of fertile garlic represents a new resource for research and breeding of this important crop, as well as for the development of effective molecular markers for useful traits, including fertility and seed production, resistance to pests and neutraceutical characteristics.

  5. Laser Capture Microdissection and Multiplex-Tandem PCR Analysis of Proximal Tubular Epithelial Cell Signaling in Human Kidney Disease

    PubMed Central

    Wilkinson, Ray; Wang, Xiangju; Kassianos, Andrew J.; Zuryn, Steven; Roper, Kathrein E.; Osborne, Andrew; Sampangi, Sandeep; Francis, Leo; Raghunath, Vishwas; Healy, Helen

    2014-01-01

    Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue. PMID:24475278

  6. Multiplex ligation-dependent probe amplification analysis on capillary electrophoresis instruments for a rapid gene copy number study.

    PubMed

    Jankowski, Stéphane; Currie-Fraser, Erica; Xu, Licen; Coffa, Jordy

    2008-09-01

    Annotated DNA samples that had been previously analyzed were tested using multiplex ligation-dependent probe amplification (MLPA) assays containing probes targeting BRCA1, BRCA2, and MMR (MLH1/MSH2 genes) and the 9p21 chromosomal region. MLPA polymerase chain reaction products were separated on a capillary electrophoresis platform, and the data were analyzed using GeneMapper v4.0 software (Applied Biosystems, Foster City, CA). After signal normalization, loci regions that had undergone deletions or duplications were identified using the GeneMapper Report Manager and verified using the DyeScale functionality. The results highlight an easy-to-use, optimal sample preparation and analysis workflow that can be used for both small- and large-scale studies.

  7. Protocadherin α (PCDHA) as a novel susceptibility gene for autism

    PubMed Central

    Anitha, Ayyappan; Thanseem, Ismail; Nakamura, Kazuhiko; Yamada, Kazuo; Iwayama, Yoshimi; Toyota, Tomoko; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Tsujii, Masatsugu; Yoshikawa, Takeo; Mori, Norio

    2013-01-01

    Background Synaptic dysfunction has been shown to be involved in the pathogenesis of autism. We hypothesized that the protocadherin α gene cluster (PCDHA), which is involved in synaptic specificity and in serotonergic innervation of the brain, could be a suitable candidate gene for autism. Methods We examined 14 PCDHA single nucleotide polymorphisms (SNPs) for genetic association with autism in DNA samples of 3211 individuals (841 families, including 574 multiplex families) obtained from the Autism Genetic Resource Exchange. Results Five SNPs (rs251379, rs1119032, rs17119271, rs155806 and rs17119346) showed significant associations with autism. The strongest association (p < 0.001) was observed for rs1119032 (z score of risk allele G = 3.415) in multiplex families; SNP associations withstand multiple testing correction in multiplex families (p = 0.041). Haplotypes involving rs1119032 showed very strong associations with autism, withstanding multiple testing corrections. In quantitative transmission disequilibrium testing of multiplex families, the G allele of rs1119032 showed a significant association (p = 0.033) with scores on the Autism Diagnostic Interview–Revised (ADI-R)_D (early developmental abnormalities). We also found a significant difference in the distribution of ADI-R_A (social interaction) scores between the A/A, A/G and G/G genotypes of rs17119346 (p = 0.002). Limitations Our results should be replicated in an independent population and/or in samples of different racial backgrounds. Conclusion Our study provides strong genetic evidence of PCDHA as a potential candidate gene for autism. PMID:23031252

  8. Myeloperoxidase activity and its corresponding mRNA expression as well as gene polymorphism in the population living in the coal-burning endemic fluorosis area in Guizhou of China.

    PubMed

    Zhang, Ting; Shan, Ke-Ren; Tu, Xi; He, Yan; Pei, Jin-Jing; Guan, Zhi-Zhong

    2013-06-01

    The myeloperoxidase (MPO) activity and its corresponding mRNA expression as well as gene polymorphism were investigated in the population who live in the endemic fluorosis area. In the study, 150 people were selected from the coal-burning endemic fluorosis area and 150 normal persons from the non-fluorosis area in Guizhou province of China. The blood samples were collected from these people. The activity of MPO in the plasma was determined by spectrophotometer; the expression of MPO mRNA was measured by employing real-time polymerase chain reaction; DNAs were extracted from the leucocytes in blood and five SNP genotypes of MPO promoter gene detected by a multiplex genotyping method, adapter-ligation-mediated allele-specific amplification. The results showed that the MPO activity and its corresponding mRNA in blood were significantly increased in the population living in the area of fluorosis. The different genotype frequencies of MPO, including -1228G/A, -585T/C, -463G/A, and -163C/T, and the three haplotypes with higher frequencies, including -163C-463G-585T-1228G-1276T, -163C-463G-585T-1228G-1276C, and -163C-463G-585T-1228A-1276T, were significantly associated with fluorosis. The results indicated that the elevated activity of MPO induced by endemic fluorosis may be connected in mechanism to the stimulated expression of MPO mRNA and the changed gene polymorphism.

  9. Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics

    PubMed Central

    Handel, Adam E.; Chintawar, Satyan; Lalic, Tatjana; Whiteley, Emma; Vowles, Jane; Giustacchini, Alice; Argoud, Karene; Sopp, Paul; Nakanishi, Mahito; Bowden, Rory; Cowley, Sally; Newey, Sarah; Akerman, Colin; Ponting, Chris P.; Cader, M. Zameel

    2016-01-01

    Induced pluripotent stem cell (iPSC)-derived cortical neurons potentially present a powerful new model to understand corticogenesis and neurological disease. Previous work has established that differentiation protocols can produce cortical neurons, but little has been done to characterize these at cellular resolution. In particular, it is unclear to what extent in vitro two-dimensional, relatively disordered culture conditions recapitulate the development of in vivo cortical layer identity. Single-cell multiplex reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to interrogate the expression of genes previously implicated in cortical layer or phenotypic identity in individual cells. Totally, 93.6% of single cells derived from iPSCs expressed genes indicative of neuronal identity. High proportions of single neurons derived from iPSCs expressed glutamatergic receptors and synaptic genes. And, 68.4% of iPSC-derived neurons expressing at least one layer marker could be assigned to a laminar identity using canonical cortical layer marker genes. We compared single-cell RNA-seq of our iPSC-derived neurons to available single-cell RNA-seq data from human fetal and adult brain and found that iPSC-derived cortical neurons closely resembled primary fetal brain cells. Unexpectedly, a subpopulation of iPSC-derived neurons co-expressed canonical fetal deep and upper cortical layer markers. However, this appeared to be concordant with data from primary cells. Our results therefore provide reassurance that iPSC-derived cortical neurons are highly similar to primary cortical neurons at the level of single cells but suggest that current layer markers, although effective, may not be able to disambiguate cortical layer identity in all cells. PMID:26740550

  10. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation.

    PubMed

    Fichorova, Raina N; Mendonca, Kevin; Yamamoto, Hidemi S; Murray, Ryan; Chandra, Neelima; Doncel, Gustavo F

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV+2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P<0.05), and decreased levels of TLR2 (P<0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P<0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Analytical expressions for the nonlinear interference in dispersion managed transmission coherent optical systems

    NASA Astrophysics Data System (ADS)

    Qiao, Yaojun; Li, Ming; Yang, Qiuhong; Xu, Yanfei; Ji, Yuefeng

    2015-01-01

    Closed-form expressions of nonlinear interference of dense wavelength-division-multiplexed (WDM) systems with dispersion managed transmission (DMT) are derived. We carry out a simulative validation by addressing an ample and significant set of the Nyquist-WDM systems based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) subcarriers at a baud rate of 32 Gbaud per channel. Simulation results show the simple closed-form analytical expressions can provide an effective tool for the quick and accurate prediction of system performance in DMT coherent optical systems.

  12. Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

    PubMed

    Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections. © 2016 Society for Laboratory Automation and Screening.

  13. Microfluidic extraction and microarray detection of biomarkers from cancer tissue slides

    NASA Astrophysics Data System (ADS)

    Nguyen, H. T.; Dupont, L. N.; Jean, A. M.; Géhin, T.; Chevolot, Y.; Laurenceau, E.; Gijs, M. A. M.

    2018-03-01

    We report here a new microfluidic method allowing for the quantification of human epidermal growth factor receptor 2 (HER2) expression levels from formalin-fixed breast cancer tissues. After partial extraction of proteins from the tissue slide, the extract is routed to an antibody (Ab) microarray for HER2 titration by fluorescence. Then the HER2-expressing cell area is evaluated by immunofluorescence (IF) staining of the tissue slide and used to normalize the fluorescent HER2 signal measured from the Ab microarray. The number of HER2 gene copies measured by fluorescence in situ hybridization (FISH) on an adjacent tissue slide is concordant with the normalized HER2 expression signal. This work is the first study implementing biomarker extraction and detection from cancer tissue slides using microfluidics in combination with a microarray system, paving the way for further developments towards multiplex and precise quantification of cancer biomarkers.

  14. Constitutional MLH1 methylation presenting with colonic polyposis syndrome and not Lynch syndrome.

    PubMed

    Kidambi, Trilokesh D; Blanco, Amie; Van Ziffle, Jessica; Terdiman, Jonathan P

    2016-04-01

    At least one-third of patients meeting clinical criteria for Lynch syndrome will have no germline mutation and constitutional epimutations leading to promoter methylation of MLH1 have been identified in a subset of these patients. We report the first case of constitutional MLH1 promoter methylation associated with a colonic polyposis syndrome in a 39 year-old man with a family history of colorectal cancer (CRC) and a personal history of 21 polyps identified over 8 years as well as the development of two synchronous CRCs over 16 months who was evaluated for a hereditary cancer syndrome. Immunohistochemistry (IHC) of multiple tumors showed absent MLH1 and PMS2 expression, though germline testing with Sanger sequencing and multiplex ligation-dependent probe amplification of these mismatch repair genes (MMR) genes was negative. A next generation sequencing panel of 29 genes also failed to identify a pathogenic mutation. Hypermethylation was identified in MLH1 intron 1 in tumor specimens along with buccal cells and peripheral white blood cells, confirming the diagnosis of constitutional MLH1 promoter methylation. This case highlights that constitutional MLH1 methylation should be considered in the differential diagnosis for a polyposis syndrome if IHC staining shows absent MMR gene expression.

  15. Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm.

    PubMed

    Farlow, Janice L; Lin, Hai; Sauerbeck, Laura; Lai, Dongbing; Koller, Daniel L; Pugh, Elizabeth; Hetrick, Kurt; Ling, Hua; Kleinloog, Rachel; van der Vlies, Pieter; Deelen, Patrick; Swertz, Morris A; Verweij, Bon H; Regli, Luca; Rinkel, Gabriel J E; Ruigrok, Ynte M; Doheny, Kimberly; Liu, Yunlong; Broderick, Joseph; Foroud, Tatiana

    2015-01-01

    Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.

  16. Prevalence of MLH1 constitutional epimutations as a cause of Lynch syndrome in unselected versus selected consecutive series of patients with colorectal cancer.

    PubMed

    Castillejo, Adela; Hernández-Illán, Eva; Rodriguez-Soler, María; Pérez-Carbonell, Lucía; Egoavil, Cecilia; Barberá, Victor M; Castillejo, María-Isabel; Guarinos, Carla; Martínez-de-Dueñas, Eduardo; Juan, María-Jose; Sánchez-Heras, Ana-Beatriz; García-Casado, Zaida; Ruiz-Ponte, Clara; Brea-Fernández, Alejandro; Juárez, Miriam; Bujanda, Luis; Clofent, Juan; Llor, Xavier; Andreu, Montserrat; Castells, Antoni; Carracedo, Angel; Alenda, Cristina; Payá, Artemio; Jover, Rodrigo; Soto, José-Luis

    2015-07-01

    The prevalence of MLH1 constitutional epimutations in the general population is unknown. We sought to analyse the prevalence of MLH1 constitutional epimutations in unselected and selected series of patients with colorectal cancer (CRC). Patients with diagnoses of CRC (n=2123) were included in the unselected group. For comparison, a group of 847 selected patients with CRC who fulfilled the revised Bethesda guidelines (rBG) were also included. Somatic and constitutional MLH1 methylation was assayed via methylation-specific multiplex ligation-dependent probe amplification of cases lacking MLH1 expression. Germline alterations in mismatch-repair (MMR) genes were assessed via Sanger sequencing and methylation-specific multiplex ligation-dependent probe amplification. Loss of MLH1 expression occurred in 5.5% of the unselected series and 12.5% of the selected series (p<0.0001). No constitutional epimutations in MLH1 were detected in the unselected population (0/62); five cases from the selected series were positive for MLH1 epimutations (15.6%, 5/32; p=0.004). Our results suggest a negligible prevalence of MLH1 constitutional epimutations in unselected cases of CRC. Therefore, MLH1 constitutional epimutation analysis should be conducted only for patients who fulfil the rBG and who lack MLH1 expression with methylated MLH1. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Copy number variation in 19 Italian multiplex families with autism spectrum disorder: Importance of synaptic and neurite elongation genes.

    PubMed

    Lintas, Carla; Picinelli, Chiara; Piras, Ignazio Stefano; Sacco, Roberto; Brogna, Claudia; Persico, Antonio M

    2017-03-17

    Autism Spectrum Disorder (ASD) is endowed with impressive heritability estimates and high recurrence rates. Its genetic underpinnings are nonetheless very heterogeneous, with common, and rare contributing variants located in hundreds of different loci, each characterized by variable levels of penetrance. Multiplex families from single ethnic groups represent a useful means to reduce heterogeneity and enhance genetic load. We screened 19 Italian ASD multiplex families (3 triplets and 16 duplets, total N = 41 ASD subjects), using array-CGH (Agilent 180 K). Causal or ASD-relevant CNVs were detected in 36.6% (15/41) of ASD probands, corresponding to 36.8% (7/19) multiplex families with at least one affected sibling genetically positive. However, only in less than half (3/7) of positive families, affected siblings share the same causal or ASD-relevant CNV. Even in these three families, additional potentially relevant CNVs not shared by affected sib pairs were also detected. These results provide further evidence of genetic heterogeneity in ASD even within multiplex families belonging to a single ethnic group. Differences in CNV burden may likely contribute to the substantial clinical heterogeneity observed between affected siblings. In addition, Gene Ontology enrichment analysis indicates that most potentially causal or relevant ASD genes detected in our cohort belong to nervous system-specific categories, especially involved in neurite elongation and synaptic structure/function. These findings point toward the existence of genomic instability in these families, whose underlying genetic and epigenetic mechanisms deserve further scrutiny. © 2017 Wiley Periodicals, Inc.

  18. A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations.

    PubMed

    Taghavi, Shaghayegh; Chaouni, Rita; Tafakhori, Abbas; Azcona, Luis J; Firouzabadi, Saghar Ghasemi; Omrani, Mir Davood; Jamshidi, Javad; Emamalizadeh, Babak; Shahidi, Gholam Ali; Ahmadi, Mona; Habibi, Seyed Amir Hassan; Ahmadifard, Azadeh; Fazeli, Atena; Motallebi, Marzieh; Petramfar, Peyman; Askarpour, Saeed; Askarpour, Shiva; Shahmohammadibeni, Hossein Ali; Shahmohammadibeni, Neda; Eftekhari, Hajar; Shafiei Zarneh, Amir Ehtesham; Mohammadihosseinabad, Saeed; Khorrami, Mehdi; Najmi, Safa; Chitsaz, Ahmad; Shokraeian, Parasto; Ehsanbakhsh, Hossein; Rezaeidian, Jalal; Ebrahimi Rad, Reza; Madadi, Faranak; Andarva, Monavvar; Alehabib, Elham; Atakhorrami, Minoo; Mortazavi, Seyed Erfan; Azimzadeh, Zahra; Bayat, Mahdis; Besharati, Amir Mohammad; Harati-Ghavi, Mohammad Ali; Omidvari, Samareh; Dehghani-Tafti, Zahra; Mohammadi, Faraz; Mohammad Hossein Pour, Banafsheh; Noorollahi Moghaddam, Hamid; Esmaili Shandiz, Ehsan; Habibi, Arman; Taherian-Esfahani, Zahra; Darvish, Hossein; Paisán-Ruiz, Coro

    2018-04-01

    In this study, the role of known Parkinson's disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55%; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families.

  19. Detection of α-thalassemia-1 Southeast Asian and Thai Type Deletions and β-thalassemia 3.5-kb Deletion by Single-tube Multiplex Real-time PCR with SYBR Green1 and High-resolution Melting Analysis

    PubMed Central

    Wiengkum, Thanatcha; Srithep, Sarinee; Chainoi, Isarapong; Singboottra, Panthong; Wongwiwatthananukit, Sanchai

    2011-01-01

    Background Prevention and control of thalassemia requires simple, rapid, and accurate screening tests for carrier couples who are at risk of conceiving fetuses with severe thalassemia. Methods Single-tube multiplex real-time PCR with SYBR Green1 and high-resolution melting (HRM) analysis were used for the identification of α-thalassemia-1 Southeast Asian (SEA) and Thai type deletions and β-thalassemia 3.5-kb gene deletion. The results were compared with those obtained using conventional gap-PCR. DNA samples were derived from 28 normal individuals, 11 individuals with α-thalassemia-1 SEA type deletion, 2 with α-thalassemia-1 Thai type deletion, and 2 with heterozygous β-thalassemia 3.5-kb gene deletion. Results HRM analysis indicated that the amplified fragments from α-thalassemia-1 SEA type deletion, α-thalassemia-1 Thai type deletion, β-thalassemia 3.5-kb gene deletion, and the wild-type β-globin gene had specific peak heights at mean melting temperature (Tm) values of 86.89℃, 85.66℃, 77.24℃, and 74.92℃, respectively. The results obtained using single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis showed 100% consistency with those obtained using conventional gap-PCR. Conclusions Single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis is a potential alternative for routine clinical screening of the common types of α- and β-thalassemia large gene deletions, since it is simple, cost-effective, and highly accurate. PMID:21779184

  20. Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System.

    PubMed

    Hong, Cheol-Hwa; Sohn, Hyun-Jung; Lee, Hyun-Joo; Cho, Hyun-Il; Kim, Tai-Gyu

    Human leukocyte antigens (HLAs) are essential immune molecules that affect transplantation and adoptive immunotherapy. When hematopoietic stem cells or organs are transplanted with HLA-mismatched recipients, graft-versus-host disease or graft rejection can be induced by allogeneic immune responses. The function of each HLA allele has been studied using HLA-deficient cells generated from mutant cell lines or by RNA interference, zinc finger nuclease, and the CRISPR/Cas9 system. To improve HLA gene editing, we attempted to generate an HLA class I null cell line using the multiplex CRISPR/Cas9 system by targeting exons 2 and 3 of HLA-A, HLA-B, and HLA-C genes simultaneously. Multiplex HLA editing could induce the complete elimination of HLA class I genes by bi-allelic gene disruption on target sites which was defined by flow cytometry and target-specific polymerase chain reaction. Furthermore, artificial antigen-presenting cells were generated by transfer of a single HLA class I allele and co-stimulatory molecules into this novel HLA class I null cell line. Artificial antigen-presenting cells showed HLA-restricted antigen presentation following antigen processing and were successfully used for the efficient generation of tumor antigen-specific cytotoxic T cells in vitro. The efficient editing of HLA genes may provide a basis for universal cellular therapies and transplantation.

  1. Multiplex-PCR-Based Screening and Computational Modeling of Virulence Factors and T-Cell Mediated Immunity in Helicobacter pylori Infections for Accurate Clinical Diagnosis.

    PubMed

    Oktem-Okullu, Sinem; Tiftikci, Arzu; Saruc, Murat; Cicek, Bahattin; Vardareli, Eser; Tozun, Nurdan; Kocagoz, Tanil; Sezerman, Ugur; Yavuz, Ahmet Sinan; Sayi-Yazgan, Ayca

    2015-01-01

    The outcome of H. pylori infection is closely related with bacteria's virulence factors and host immune response. The association between T cells and H. pylori infection has been identified, but the effects of the nine major H. pylori specific virulence factors; cagA, vacA, oipA, babA, hpaA, napA, dupA, ureA, ureB on T cell response in H. pylori infected patients have not been fully elucidated. We developed a multiplex- PCR assay to detect nine H. pylori virulence genes with in a three PCR reactions. Also, the expression levels of Th1, Th17 and Treg cell specific cytokines and transcription factors were detected by using qRT-PCR assays. Furthermore, a novel expert derived model is developed to identify set of factors and rules that can distinguish the ulcer patients from gastritis patients. Within all virulence factors that we tested, we identified a correlation between the presence of napA virulence gene and ulcer disease as a first data. Additionally, a positive correlation between the H. pylori dupA virulence factor and IFN-γ, and H. pylori babA virulence factor and IL-17 was detected in gastritis and ulcer patients respectively. By using computer-based models, clinical outcomes of a patients infected with H. pylori can be predicted by screening the patient's H. pylori vacA m1/m2, ureA and cagA status and IFN-γ (Th1), IL-17 (Th17), and FOXP3 (Treg) expression levels. Herein, we report, for the first time, the relationship between H. pylori virulence factors and host immune responses for diagnostic prediction of gastric diseases using computer-based models.

  2. Multiplex-PCR-Based Screening and Computational Modeling of Virulence Factors and T-Cell Mediated Immunity in Helicobacter pylori Infections for Accurate Clinical Diagnosis

    PubMed Central

    Oktem-Okullu, Sinem; Tiftikci, Arzu; Saruc, Murat; Cicek, Bahattin; Vardareli, Eser; Tozun, Nurdan; Kocagoz, Tanil; Sezerman, Ugur; Yavuz, Ahmet Sinan; Sayi-Yazgan, Ayca

    2015-01-01

    The outcome of H. pylori infection is closely related with bacteria's virulence factors and host immune response. The association between T cells and H. pylori infection has been identified, but the effects of the nine major H. pylori specific virulence factors; cagA, vacA, oipA, babA, hpaA, napA, dupA, ureA, ureB on T cell response in H. pylori infected patients have not been fully elucidated. We developed a multiplex- PCR assay to detect nine H. pylori virulence genes with in a three PCR reactions. Also, the expression levels of Th1, Th17 and Treg cell specific cytokines and transcription factors were detected by using qRT-PCR assays. Furthermore, a novel expert derived model is developed to identify set of factors and rules that can distinguish the ulcer patients from gastritis patients. Within all virulence factors that we tested, we identified a correlation between the presence of napA virulence gene and ulcer disease as a first data. Additionally, a positive correlation between the H. pylori dupA virulence factor and IFN-γ, and H. pylori babA virulence factor and IL-17 was detected in gastritis and ulcer patients respectively. By using computer-based models, clinical outcomes of a patients infected with H. pylori can be predicted by screening the patient's H. pylori vacA m1/m2, ureA and cagA status and IFN-γ (Th1), IL-17 (Th17), and FOXP3 (Treg) expression levels. Herein, we report, for the first time, the relationship between H. pylori virulence factors and host immune responses for diagnostic prediction of gastric diseases using computer—based models. PMID:26287606

  3. Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan.

    PubMed

    Tabassum, Najia; Saboor, Mohammad; Ghani, Rubina; Moinuddin, Moinuddin

    2014-07-01

    Breakpoint cluster region-Abelson (BCR-ABL) rearrangement or Philadelphia (Ph) chromosome in Chronic Myeloid Leukemia (CML) is derived from a reciprocal chromosomal translocation between ABL gene on chromosome 9 and BCR gene on chromosome 22. This chimeric protein has various sizes and therefore different clinical behaviour. The purpose of this study was to determine the heterogeneity of BCR-ABL rearrangement in patients with Ph(+)CML in Pakistan. The study was conducted at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify various BCR-ABL transcripts. All 25 samples showed BCR-ABL rearrangements. Out of these, 24 (96%) patients expressed p210 BCR-ABL rearrangements i.e. 60% (n=15) had b3a2 and 32% (n=8) had b2a2 rearrangements. Co-expression of b3a2 /b2a2 rearrangement and p190 (e1a3) rearrangement was also identified in two patients. It is apparent that majority of the patients had p210 BCR-ABL rearrangements. Frequency of co-expression and rare fusion transcripts was very low.

  4. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, K.; Sugiyama, N.; Kawanishi, C.

    1996-07-01

    Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused by abnormalities in the proteolipid protein (PLP) gene, which is essential for oligodendrocyte differentiation and CNS myelin formation. Although linkage analysis has shown the homogeneity at the PLP locus in patients with PMD, exonic mutations in the PLP gene have been identified in only 10% - 25% of all cases, which suggests the presence of other genetic aberrations, including gene duplication. In this study, we examined five families with PMD not carrying exonic mutations in PLP gene, using comparative multiplex PCR (CM-PCR) as a semiquantitative assay of gene dosage. PLP genemore » duplications were identified in four families by CM-PCR and confirmed in three families by densitometric RFLP analysis. Because a homologous myelin protein gene, PMP22, is duplicated in the majority of patients with Charcot-Marie-Tooth 1A, PLP gene overdosage may be an important genetic abnormality in PMD and affect myelin formation. 38 ref., 5 figs., 2 tabs.« less

  5. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology

    Treesearch

    Richard Cronn; Aaron Liston; Matthew Parks; David S. Gernandt; Rongkun Shen; Todd Mockler

    2008-01-01

    Organellar DNA sequences are widely used in evolutionary and population genetic studies; however, the conservative nature of chloroplast gene and genome evolution often limits phylogenetic resolution and statistical power. To gain maximal access to the historical record contained within chloroplast genomes, we have adapted multiplex sequencing-by-synthesis (MSBS) to...

  6. Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus: methicillin-resistant isolates are detected directly in blood cultures by multiplex PCR.

    PubMed

    Pereira, Eliezer M; Schuenck, Ricardo P; Malvar, Karoline L; Iorio, Natalia L P; Matos, Pricilla D M; Olendzki, André N; Oelemann, Walter M R; dos Santos, Kátia R N

    2010-03-31

    In this study, we standardized and evaluated a multiplex-PCR methodology using specific primers to identify Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus and their methicillin-resistance directly from blood cultures. Staphylococci clinical isolates (149) and control strains (16) previously identified by conventional methods were used to establish the multiplex PCR protocol. Subsequently, this methodology was evaluated using a fast and cheap DNA extraction protocol from 25 staphylococci positive blood cultures. A wash step of the pellet with 0.1% bovine serum albumin (BSA) solution was performed to reduce PCR inhibitors. Amplicons of 154bp (mecA gene), 271bp (S. haemolyticus mvaA gene) and 108 and 124bp (S. aureus and S. epidermidis species-specific fragments, respectively) were observed. Reliable results were obtained for 100% of the evaluated strains, suggesting that this new multiplex-PCR combined with an appropriate DNA-extraction method could be useful in the laboratory for fast and accurate identification of three staphylococci species and simultaneously their methicillin resistance directly in blood cultures.

  7. Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains.

    PubMed

    He, Peiyan; Chen, Zhongwen; Luo, Jianyong; Wang, Henghui; Yan, Yong; Chen, Lixia; Gao, Wenjie

    2014-01-01

    Foodborne disease caused by pathogenic Vibrio parahaemolyticus has become a serious public health problem in many countries. Rapid diagnosis and the identification of pathogenic V. parahaemolyticus are very important in the context of public health. In this study, an EvaGreen-based multiplex real-time PCR assay was established for the detection of pathogenic V. parahaemolyticus. This assay targeted three genetic markers of V. parahaemolyticus (species-specific gene toxR and virulence genes tdh and trh). The assay could unambiguously identify pathogenic V. parahaemolyticus with a minimum detection limit of 1.4 pg genomic DNA per reaction (concentration giving a positive multiplex real-time PCR result in 95% of samples). The specificity of the assay was evaluated using 72 strains of V. parahaemolyticus and other bacteria. A validation of the assay with clinical samples confirmed its sensitivity and specificity. Our data suggest the newly established multiplex real-time PCR assay is practical, cost-effective, specific, sensitive and capable of high-throughput detection of pathogenic V. parahaemolyticus. Copyright © 2014. Published by Elsevier Ltd.

  8. Development of multiplex polymerase chain reaction for detection of Ehrlichia canis, Babesia spp and Hepatozoon canis in canine blood.

    PubMed

    Kledmanee, Kan; Suwanpakdee, Sarin; Krajangwong, Sakranmanee; Chatsiriwech, Jarin; Suksai, Parut; Suwannachat, Pongpun; Sariya, Ladawan; Buddhirongawatr, Ruangrat; Charoonrut, Phingphol; Chaichoun, Kridsada

    2009-01-01

    A multiplex polymerase chain reaction (PCR) has been developed for simultaneous detection of canine blood parasites, Ehrlichia canis, Babesia spp and Hepatozoon canis, from blood samples in a single reaction. The multiplex PCR primers were specific to E. canis VirB9, Babesia spp 16S rRNA and H. canis 16S rRNA genes. Specificity of the amplicons was confirmed by DNA sequencing. The assay was evaluated using normal canine and infected blood samples, which were detected by microscopic examination. This multiplex PCR offers scope for simultaneous detection of three important canine blood parasites and should be valuable in monitoring parasite infections in dogs and ticks.

  9. Multiplex Detection of Toxigenic Penicillium Species.

    PubMed

    Rodríguez, Alicia; Córdoba, Juan J; Rodríguez, Mar; Andrade, María J

    2017-01-01

    Multiplex PCR-based methods for simultaneous detection and quantification of different mycotoxin-producing Penicillia are useful tools to be used in food safety programs. These rapid and sensitive techniques allow taking corrective actions during food processing or storage for avoiding accumulation of mycotoxins in them. In this chapter, three multiplex PCR-based methods to detect at least patulin- and ochratoxin A-producing Penicillia are detailed. Two of them are different multiplex real-time PCR suitable for monitoring and quantifying toxigenic Penicillium using the nonspecific dye SYBR Green and specific hydrolysis probes (TaqMan). All of them successfully use the same target genes involved in the biosynthesis of such mycotoxins for designing primers and/or probes.

  10. Perturbation of B Cell Gene Expression Persists in HIV-Infected Children Despite Effective Antiretroviral Therapy and Predicts H1N1 Response.

    PubMed

    Cotugno, Nicola; De Armas, Lesley; Pallikkuth, Suresh; Rinaldi, Stefano; Issac, Biju; Cagigi, Alberto; Rossi, Paolo; Palma, Paolo; Pahwa, Savita

    2017-01-01

    Despite effective antiretroviral therapy (ART), HIV-infected individuals with apparently similar clinical and immunological characteristics can vary in responsiveness to vaccinations. However, molecular mechanisms responsible for such impairment, as well as biomarkers able to predict vaccine responsiveness in HIV-infected children, remain unknown. Following the hypothesis that a B cell qualitative impairment persists in HIV-infected children (HIV) despite effective ART and phenotypic B cell immune reconstitution, the aim of the current study was to investigate B cell gene expression of HIV compared to age-matched healthy controls (HCs) and to determine whether distinct gene expression patterns could predict the ability to respond to influenza vaccine. To do so, we analyzed prevaccination transcriptional levels of a 96-gene panel in equal numbers of sort-purified B cell subsets (SPBS) isolated from peripheral blood mononuclear cells using multiplexed RT-PCR. Immune responses to H1N1 antigen were determined by hemaglutination inhibition and memory B cell ELISpot assays following trivalent-inactivated influenza vaccination (TIV) for all study participants. Although there were no differences in terms of cell frequencies of SPBS between HIV and HC, the groups were distinguishable based upon gene expression analyses. Indeed, a 28-gene signature, characterized by higher expression of genes involved in the inflammatory response and immune activation was observed in activated memory B cells (CD27 + CD21 - ) from HIV when compared to HC despite long-term viral control (>24 months). Further analysis, taking into account H1N1 responses after TIV in HIV participants, revealed that a 25-gene signature in resting memory (RM) B cells (CD27 + CD21 + ) was able to distinguish vaccine responders from non-responders (NR). In fact, prevaccination RM B cells of responders showed a higher expression of gene sets involved in B cell adaptive immune responses ( APRIL, BTK, BLIMP1 ) and BCR signaling ( MTOR, FYN, CD86 ) when compared to NR. Overall, these data suggest that a perturbation at a transcriptional level in the B cell compartment persists despite stable virus control achieved through ART in HIV-infected children. Additionally, the present study demonstrates the potential utility of transcriptional evaluation of RM B cells before vaccination for identifying predictive correlates of vaccine responses in this population.

  11. Perturbation of B Cell Gene Expression Persists in HIV-Infected Children Despite Effective Antiretroviral Therapy and Predicts H1N1 Response

    PubMed Central

    Cotugno, Nicola; De Armas, Lesley; Pallikkuth, Suresh; Rinaldi, Stefano; Issac, Biju; Cagigi, Alberto; Rossi, Paolo; Palma, Paolo; Pahwa, Savita

    2017-01-01

    Despite effective antiretroviral therapy (ART), HIV-infected individuals with apparently similar clinical and immunological characteristics can vary in responsiveness to vaccinations. However, molecular mechanisms responsible for such impairment, as well as biomarkers able to predict vaccine responsiveness in HIV-infected children, remain unknown. Following the hypothesis that a B cell qualitative impairment persists in HIV-infected children (HIV) despite effective ART and phenotypic B cell immune reconstitution, the aim of the current study was to investigate B cell gene expression of HIV compared to age-matched healthy controls (HCs) and to determine whether distinct gene expression patterns could predict the ability to respond to influenza vaccine. To do so, we analyzed prevaccination transcriptional levels of a 96-gene panel in equal numbers of sort-purified B cell subsets (SPBS) isolated from peripheral blood mononuclear cells using multiplexed RT-PCR. Immune responses to H1N1 antigen were determined by hemaglutination inhibition and memory B cell ELISpot assays following trivalent-inactivated influenza vaccination (TIV) for all study participants. Although there were no differences in terms of cell frequencies of SPBS between HIV and HC, the groups were distinguishable based upon gene expression analyses. Indeed, a 28-gene signature, characterized by higher expression of genes involved in the inflammatory response and immune activation was observed in activated memory B cells (CD27+CD21−) from HIV when compared to HC despite long-term viral control (>24 months). Further analysis, taking into account H1N1 responses after TIV in HIV participants, revealed that a 25-gene signature in resting memory (RM) B cells (CD27+CD21+) was able to distinguish vaccine responders from non-responders (NR). In fact, prevaccination RM B cells of responders showed a higher expression of gene sets involved in B cell adaptive immune responses (APRIL, BTK, BLIMP1) and BCR signaling (MTOR, FYN, CD86) when compared to NR. Overall, these data suggest that a perturbation at a transcriptional level in the B cell compartment persists despite stable virus control achieved through ART in HIV-infected children. Additionally, the present study demonstrates the potential utility of transcriptional evaluation of RM B cells before vaccination for identifying predictive correlates of vaccine responses in this population. PMID:28955330

  12. Application of six multiplex PCR's among 200 clinical isolates of Pseudomonas aeruginosa for the detection of 20 drug resistance encoding genes.

    PubMed

    Murugan, Nandagopal; Malathi, Jambulingam; Therese, K Lily; Madhavan, Hajib NarahariRao

    2018-02-01

    Pseudomonas aeruginosa (P. aeruginosa) is a menacing opportunistic, nosocomial pathogen; become a growing concern as conventional antimicrobial therapy is now futile against it. Multi-drug resistant P. aeruginosa (MDRPA) has distinctive resistance mechanisms such as production of β-lactamases, repression of porin genes and over-expression of efflux pumps. The focus of this study is to standardize and application of multiplex PCR (mPCR) to detect the presence of betalactamase genes encoding bla Tem , bla OXA , bla CTX-M-15 , bla Vim , bla Ges , bla Veb , bla DIM , AmpC and Efflux pump genes encoding Mex A,B-oprM, Mex C,D-oprJ, Mex X,Y-oprN, oprD, nfxB, MexR. A total of 200 clinical isolates of P. aeruginosa were tested for the presence of the above mentioned genes genotypically through mPCR and characterized by phenotypic methods for ESBL and MBL production. Out of 200 isolates, 163 (81.5%) nfxB regulator gene, 102 (51%) MexA, 96 (48%) MexC, 93 (46.5%) MexB, 86 (43%) MexD, 81 (40.5%) OprM, 74 (37%) OprJ, 72 (36%) OprD and MexR, 53 (26.5%) Mex X and OprN, 49 (24.5%) MexY gene. Betalactamase genes 145 (72.5%) bla Tem , 67 (33.5%) bla OXA, 35 (17.5%) blaVim, 25(12.50%), 23 (11.50%) blaVeb, 21 (11.5%) blaGes, 14 (7%) Ctx-m and 10 (5%) AmpC and 5 (2.5%) blaDim-1 gene were tested positive by mPCR. Phenotypically 38 (19%) and 29 (14.5%) out of 200 tested positive for ESBL and MBL production. Application of this mPCR on clinical specimens is fast, accurate, specific and low-cost reliable tool for the screening, where culture negative Eubacterial PCR positive cases for an early molecular detection of drug resistance mechanism assisting the clinician to treat the disease with appropriate antibiotic selection. Copyright © 2017. Published by Elsevier Taiwan.

  13. Multiplex Ligation-Dependent Probe Amplification Analysis on Capillary Electrophoresis Instruments for a Rapid Gene Copy Number Study

    PubMed Central

    Jankowski, Stéphane; Currie-Fraser, Erica; Xu, Licen; Coffa, Jordy

    2008-01-01

    Annotated DNA samples that had been previously analyzed were tested using multiplex ligation-dependent probe amplification (MLPA) assays containing probes targeting BRCA1, BRCA2, and MMR (MLH1/MSH2 genes) and the 9p21 chromosomal region. MLPA polymerase chain reaction products were separated on a capillary electrophoresis platform, and the data were analyzed using GeneMapper v4.0 software (Applied Biosystems, Foster City, CA). After signal normalization, loci regions that had undergone deletions or duplications were identified using the GeneMapper Report Manager and verified using the DyeScale functionality. The results highlight an easy-to-use, optimal sample preparation and analysis workflow that can be used for both small- and large-scale studies. PMID:19137113

  14. Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in the termite gut hydrogen economy.

    PubMed

    Rosenthal, Adam Z; Zhang, Xinning; Lucey, Kaitlyn S; Ottesen, Elizabeth A; Trivedi, Vikas; Choi, Harry M T; Pierce, Niles A; Leadbetter, Jared R

    2013-10-01

    Identifying microbes responsible for particular environmental functions is challenging, given that most environments contain an uncultivated microbial diversity. Here we combined approaches to identify bacteria expressing genes relevant to catabolite flow and to locate these genes within their environment, in this case the gut of a "lower," wood-feeding termite. First, environmental transcriptomics revealed that 2 of the 23 formate dehydrogenase (FDH) genes known in the system accounted for slightly more than one-half of environmental transcripts. FDH is an essential enzyme of H2 metabolism that is ultimately important for the assimilation of lignocellulose-derived energy by the insect. Second, single-cell PCR analysis revealed that two different bacterial types expressed these two transcripts. The most commonly transcribed FDH in situ is encoded by a previously unappreciated deltaproteobacterium, whereas the other FDH is spirochetal. Third, PCR analysis of fractionated gut contents demonstrated that these bacteria reside in different spatial niches; the spirochete is free-swimming, whereas the deltaproteobacterium associates with particulates. Fourth, the deltaproteobacteria expressing FDH were localized to protozoa via hybridization chain reaction-FISH, an approach for multiplexed, spatial mapping of mRNA and rRNA targets. These results underscore the importance of making direct vs. inference-based gene-species associations, and have implications in higher termites, the most successful termite lineage, in which protozoa have been lost from the gut community. Contrary to expectations, in higher termites, FDH genes related to those from the protozoan symbiont dominate, whereas most others were absent, suggesting that a successful gene variant can persist and flourish after a gut perturbation alters a major environmental niche.

  15. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis

    PubMed Central

    2012-01-01

    Background The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Results Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. Conclusions By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand. PMID:22276739

  16. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis.

    PubMed

    Tu, Jing; Ge, Qinyu; Wang, Shengqin; Wang, Lei; Sun, Beili; Yang, Qi; Bai, Yunfei; Lu, Zuhong

    2012-01-25

    The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand.

  17. HD-03/ES: A Herbal Medicine Inhibits Hepatitis B Surface Antigen Secretion in Transfected Human Hepatocarcinoma PLC/PRF/5 Cells.

    PubMed

    Varma, Sandeep R; Sundaram, R; Gopumadhavan, S; Vidyashankar, Satyakumar; Patki, Pralhad S

    2013-01-01

    HD-03/ES is a herbal formulation used for the treatment of hepatitis B. However, the molecular mechanism involved in the antihepatitis B (HBV) activity of this drug has not been studied using in vitro models. The effect of HD-03/ES on hepatitis B surface antigen (HBsAg) secretion and its gene expression was studied in transfected human hepatocarcinoma PLC/PRF/5 cells. The anti-HBV activity was tested based on the inhibition of HBsAg secretion into the culture media, as detected by HBsAg-specific antibody-mediated enzyme assay (ELISA) at concentrations ranging from 125 to 1000  μ g/mL. The effect of HD-03/ES on HBsAg gene expression was analyzed using semiquantitative multiplex RT-PCR by employing specific primers. The results showed that HD-03/ES suppressed HBsAg production with an IC50 of 380  μ g/mL in PLC/PRF/5 cells for a period of 24 h. HD-03/ES downregulated HBsAg gene expression in PLC/PRF/5 cells. In conclusion, HD-03/ES exhibits strong anti-HBV properties by inhibiting the secretion of hepatitis B surface antigen in PLC/PRF/5 cells, and this action is targeted at the transcription level. Thus, HD-03/ES could be beneficial in the treatment of acute and chronic hepatitis B infections.

  18. Strategies for the acquisition of transcriptional and epigenetic information in single cells.

    PubMed

    Li, Guang; Dzilic, Elda; Flores, Nick; Shieh, Alice; Wu, Sean M

    2017-03-01

    As the basic unit of living organisms, each single cell has unique molecular signatures and functions. Our ability to uncover the transcriptional and epigenetic signature of single cells has been hampered by the lack of tools to explore this area of research. The advent of microfluidic single cell technology along with single cell genome-wide DNA amplification methods had greatly improved our understanding of the expression variation in single cells. Transcriptional expression profile by multiplex qPCR or genome-wide RNA sequencing has enabled us to examine genes expression in single cells in different tissues. With the new tools, the identification of new cellular heterogeneity, novel marker genes, unique subpopulations, and spatial locations of each single cell can be acquired successfully. Epigenetic modifications for each single cell can also be obtained via similar methods. Based on single cell genome sequencing, single cell epigenetic information including histone modifications, DNA methylation, and chromatin accessibility have been explored and provided valuable insights regarding gene regulation and disease prognosis. In this article, we review the development of strategies to obtain single cell transcriptional and epigenetic data. Furthermore, we discuss ways in which single cell studies may help to provide greater understanding of the mechanisms of basic cardiovascular biology that will eventually lead to improvement in our ability to diagnose disease and develop new therapies.

  19. Negative Feedback Regulation of HIV-1 by Gene Editing Strategy.

    PubMed

    Kaminski, Rafal; Chen, Yilan; Salkind, Julian; Bella, Ramona; Young, Won-Bin; Ferrante, Pasquale; Karn, Jonathan; Malcolm, Thomas; Hu, Wenhui; Khalili, Kamel

    2016-08-16

    The CRISPR/Cas9 gene editing method is comprised of the guide RNA (gRNA) to target a specific DNA sequence for cleavage and the Cas9 endonuclease for introducing breaks in the double-stranded DNA identified by the gRNA. Co-expression of both a multiplex of HIV-1-specific gRNAs and Cas9 in cells results in the modification and/or excision of the segment of viral DNA, leading to replication-defective virus. In this study, we have personalized the activity of CRISPR/Cas9 by placing the gene encoding Cas9 under the control of a minimal promoter of HIV-1 that is activated by the HIV-1 Tat protein. We demonstrate that functional activation of CRISPR/Cas9 by Tat during the course of viral infection excises the designated segment of the integrated viral DNA and consequently suppresses viral expression. This strategy was also used in a latently infected CD4+ T-cell model after treatment with a variety of HIV-1 stimulating agents including PMA and TSA. Controlled expression of Cas9 by Tat offers a new strategy for safe implementation of the Cas9 technology for ablation of HIV-1 at a very early stage of HIV-1 replication during the course of the acute phase of infection and the reactivation of silent proviral DNA in latently infected cells.

  20. Stromal-Based Signatures for the Classification of Gastric Cancer.

    PubMed

    Uhlik, Mark T; Liu, Jiangang; Falcon, Beverly L; Iyer, Seema; Stewart, Julie; Celikkaya, Hilal; O'Mahony, Marguerita; Sevinsky, Christopher; Lowes, Christina; Douglass, Larry; Jeffries, Cynthia; Bodenmiller, Diane; Chintharlapalli, Sudhakar; Fischl, Anthony; Gerald, Damien; Xue, Qi; Lee, Jee-Yun; Santamaria-Pang, Alberto; Al-Kofahi, Yousef; Sui, Yunxia; Desai, Keyur; Doman, Thompson; Aggarwal, Amit; Carter, Julia H; Pytowski, Bronislaw; Jaminet, Shou-Ching; Ginty, Fiona; Nasir, Aejaz; Nagy, Janice A; Dvorak, Harold F; Benjamin, Laura E

    2016-05-01

    Treatment of metastatic gastric cancer typically involves chemotherapy and monoclonal antibodies targeting HER2 (ERBB2) and VEGFR2 (KDR). However, reliable methods to identify patients who would benefit most from a combination of treatment modalities targeting the tumor stroma, including new immunotherapy approaches, are still lacking. Therefore, we integrated a mouse model of stromal activation and gastric cancer genomic information to identify gene expression signatures that may inform treatment strategies. We generated a mouse model in which VEGF-A is expressed via adenovirus, enabling a stromal response marked by immune infiltration and angiogenesis at the injection site, and identified distinct stromal gene expression signatures. With these data, we designed multiplexed IHC assays that were applied to human primary gastric tumors and classified each tumor to a dominant stromal phenotype representative of the vascular and immune diversity found in gastric cancer. We also refined the stromal gene signatures and explored their relation to the dominant patient phenotypes identified by recent large-scale studies of gastric cancer genomics (The Cancer Genome Atlas and Asian Cancer Research Group), revealing four distinct stromal phenotypes. Collectively, these findings suggest that a genomics-based systems approach focused on the tumor stroma can be used to discover putative predictive biomarkers of treatment response, especially to antiangiogenesis agents and immunotherapy, thus offering an opportunity to improve patient stratification. Cancer Res; 76(9); 2573-86. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    PubMed

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  2. Linkage and association studies identify a novel locus for Alzheimer disease at 7q36 in a Dutch population-based sample.

    PubMed

    Rademakers, Rosa; Cruts, Marc; Sleegers, Kristel; Dermaut, Bart; Theuns, Jessie; Aulchenko, Yurii; Weckx, Stefan; De Pooter, Tim; Van den Broeck, Marleen; Corsmit, Ellen; De Rijk, Peter; Del-Favero, Jurgen; van Swieten, John; van Duijn, Cornelia M; Van Broeckhoven, Christine

    2005-10-01

    We obtained conclusive linkage of Alzheimer disease (AD) with a candidate region of 19.7 cM at 7q36 in an extended multiplex family, family 1270, ascertained in a population-based study of early-onset AD in the northern Netherlands. Single-nucleotide polymorphism and haplotype association analyses of a Dutch patient-control sample further supported the linkage at 7q36. In addition, we identified a shared haplotype at 7q36 between family 1270 and three of six multiplex AD-affected families from the same geographical region, which is indicative of a founder effect and defines a priority region of 9.3 cM. Mutation analysis of coding exons of 29 candidate genes identified one linked synonymous mutation, g.38030G-->C in exon 10, that affected codon 626 of the PAX transactivation domain interacting protein gene (PAXIP1). It remains to be determined whether PAXIP1 has a functional role in the expression of AD in family 1270 or whether another mutation at this locus explains the observed linkage and sharing. Together, our linkage data from the informative family 1270 and the association data in the population-based early-onset AD patient-control sample strongly support the identification of a novel AD locus at 7q36 and re-emphasize the genetic heterogeneity of AD.

  3. A novel multiplex pyrosequencing assay for genotyping functionally relevant CTLA-4 polymorphisms: potential applications in autoimmunity and cancer.

    PubMed

    Banelli, Barbara; Morabito, Anna; Laurent, Stefania; Piccioli, Patrizia; Dozin, Beatrice; Ghio, Massimo; Ascierto, Paolo Antonio; Monteghirfo, Stefano; Marasco, Antonella; Ottaviano, Vincenzo; Queirolo, Paola; Romani, Massimo; Pistillo, Maria Pia

    2014-08-01

    CTLA-4 expression/function can be affected by single nucleotide polymorphisms (SNPs) of CTLA-4 gene, which have been widely associated with susceptibility or progression to autoimmune diseases and cancer development. In this study, we analyzed six CTLA-4 SNPs (-1661A>G, -1577G>A, -658C>T, -319C>T, +49A>G, CT60G>A) in 197 DNA samples from 43 B-lymphoblastoid cell lines (B-LCLs), 40 systemic sclerosis (SSc) patients, 14 pre-analyzed melanoma patients and 100 Italian healthy subjects. Genotyping of -1661A>G, -1577G>A, -658C>T and CT60G>A was performed by newly developed multiplex pyrosequencing (PSQ) assays, whereas -319C>T and +49A>G by T-ARMS PCR and direct sequencing. Genotype/allele frequency were analyzed using χ(2) or Fisher exact test. Our study provides the first multiplex PSQ method that allows simultaneous genotyping of two CTLA-4 SNP pairs (i.e. -1661A>G/-658C>T and -1577G>A/CT60G>A) by two multiplex PSQ reactions. Herein, we show the CTLA-4 genotype distribution in the B-LCLs providing the first and best characterized cell line panel typed for functionally relevant CTLA-4 SNPs. We also report the significant association of the -1661A/G genotype, -1661 & -319 AC-GT diplotype and -319 & CT60 TG haplotype with susceptibility to SSc without Hashimoto's thyroiditis occurrence. Furthermore, we confirmed previous genotyping data referred to melanoma patients and provided new genotyping data for Italian healthy subjects. Copyright © 2014 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  4. Development of a multiplex assay for genus and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    USDA-ARS?s Scientific Manuscript database

    The availability of a molecular diagnostic assay for Phytophthora that is specific, sensitive, has both genus and species specific detection capabilities multiplexed and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory ef...

  5. Molecular analysis and test of linkage between the FMR-I gene and infantile autism in multiplex families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallmayer, J.; Pintado, E.; Lotspeich, L.

    Approximately 2%-5% of autistic children show cytogenetic evidence of the fragile X syndrome. This report tests whether infantile autism in multiplex autism families arises from an unusual manifestion of the fragile X syndrome. This could arise either by expansion of the (CGG)n trinucleotide repeat in FMR-1 or from a mutation elsewhere in the gene. We studied 35 families that met stringent criteria for multiplex autism. Amplification of the trinucleotide repeat and analysis of methylation status were performed in 79 autistic children and in 31 of their unaffected siblings by Southern blot analysis. No examples of amplified repeats were seen inmore » the autistic or control children or in their parents or grandparents. We next examined the hypothesis that there was a mutation elsewhere in the FMR-1 gene, by linkage analysis in 32 of these families. We tested four different dominant models and a recessive model. Linkage to FMR-1 could be excluded (lod score between -24 and -62) in all models by using probes DXS548, FRAXAC1, and FRAXAC2 and the CGG repeat itself. Tests for heterogeneity in this sample were negative, and the occurrence of positive lod scores in this data set could be attributed to chance. Analysis of the data by the affected-sib method also did not show evidence for linkage of any marker to autism. These results enable us to reject the hypothesis that multiplex autism arises from expansion of the (CGG)n trinucleotide repeat in FMR-1. Further, because the overall lod scores for all probes in all models tested were highly negative, linkage to FMR-1 can also be ruled out in multiplex autistic families. 35 refs., 2 figs., 5 tabs.« less

  6. QconCATs: design and expression of concatenated protein standards for multiplexed protein quantification.

    PubMed

    Simpson, Deborah M; Beynon, Robert J

    2012-09-01

    Systems biology requires knowledge of the absolute amounts of proteins in order to model biological processes and simulate the effects of changes in specific model parameters. Quantification concatamers (QconCATs) are established as a method to provide multiplexed absolute peptide standards for a set of target proteins in isotope dilution standard experiments. Two or more quantotypic peptides representing each of the target proteins are concatenated into a designer gene that is metabolically labelled with stable isotopes in Escherichia coli or other cellular or cell-free systems. Co-digestion of a known amount of QconCAT with the target proteins generates a set of labelled reference peptide standards for the unlabelled analyte counterparts, and by using an appropriate mass spectrometry platform, comparison of the intensities of the peptide ratios delivers absolute quantification of the encoded peptides and in turn the target proteins for which they are surrogates. In this review, we discuss the criteria and difficulties associated with surrogate peptide selection and provide examples in the design of QconCATs for quantification of the proteins of the nuclear factor κB pathway.

  7. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains

    DOE PAGES

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng; ...

    2018-02-20

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. Furthermore, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to constructmore » xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories.« less

  8. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. Furthermore, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to constructmore » xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories.« less

  9. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.

    PubMed

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng; Zhao, Huimin

    2018-06-01

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. However, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to construct xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories. © 2018 Wiley Periodicals, Inc.

  10. A Perron-Frobenius theory for block matrices associated to a multiplex network

    NASA Astrophysics Data System (ADS)

    Romance, Miguel; Solá, Luis; Flores, Julio; García, Esther; García del Amo, Alejandro; Criado, Regino

    2015-03-01

    The uniqueness of the Perron vector of a nonnegative block matrix associated to a multiplex network is discussed. The conclusions come from the relationships between the irreducibility of some nonnegative block matrix associated to a multiplex network and the irreducibility of the corresponding matrices to each layer as well as the irreducibility of the adjacency matrix of the projection network. In addition the computation of that Perron vector in terms of the Perron vectors of the blocks is also addressed. Finally we present the precise relations that allow to express the Perron eigenvector of the multiplex network in terms of the Perron eigenvectors of its layers.

  11. Development of multiplex PCR assay for authentication of Cornu Cervi Pantotrichum in traditional Chinese medicine based on cytochrome b and C oxidase subunit 1 genes.

    PubMed

    Gao, Lijun; Xia, Wei; Ai, Jinxia; Li, Mingcheng; Yuan, Guanxin; Niu, Jiamu; Fu, Guilian; Zhang, Lihua

    2016-07-01

    This study describes a method for discriminating the true Cervus antlers from its counterfeits using multiplex PCR. Bioinformatics were carried out to design the specific alleles primers for mitochondrial (mt) cytochrome b (Cyt b) and cytochrome C oxidase subunit 1 (Cox 1) genes. The mt DNA and genomic DNA were extracted from Cervi Cornu Pantotrichum through the modified alkaline and the salt-extracting method in addition to its counterfeits, respectively. Sufficient DNA templates were extracted from all samples used in two methods, and joint fragments of 354 bp and 543 bp that were specifically amplified from both of true Cervus antlers served as a standard control. The data revealed that the multiplex PCR-based assays using two primer sets can be used for forensic and quantitative identification of original Cervus deer products from counterfeit antlers in a single step.

  12. Contribution of MLH1 constitutional methylation for Lynch syndrome diagnosis in patients with tumor MLH1 downregulation.

    PubMed

    Pinto, Diana; Pinto, Carla; Guerra, Joana; Pinheiro, Manuela; Santos, Rui; Vedeld, Hege Marie; Yohannes, Zeremariam; Peixoto, Ana; Santos, Catarina; Pinto, Pedro; Lopes, Paula; Lothe, Ragnhild; Lind, Guro Elisabeth; Henrique, Rui; Teixeira, Manuel R

    2018-02-01

    Constitutional epimutation of the two major mismatch repair genes, MLH1 and MSH2, has been identified as an alternative mechanism that predisposes to the development of Lynch syndrome. In the present work, we aimed to investigate the prevalence of MLH1 constitutional methylation in colorectal cancer (CRC) patients with abnormal expression of the MLH1 protein in their tumors. In a series of 38 patients who met clinical criteria for Lynch syndrome genetic testing, with loss of MLH1 expression in the tumor and with no germline mutations in the MLH1 gene (35/38) or with tumors presenting the BRAF p.Val600Glu mutation (3/38), we screened for constitutional methylation of the MLH1 gene promoter using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in various biological samples. We found four (4/38; 10.5%) patients with constitutional methylation in the MLH1 gene promoter. RNA studies demonstrated decreased MLH1 expression in the cases with constitutional methylation when compared with controls. We could infer the mosaic nature of MLH1 constitutional hypermethylation in tissues originated from different embryonic germ layers, and in one family we could show that it occurred de novo. We conclude that constitutional MLH1 methylation occurs in a significant proportion of patients who have loss of MLH1 protein expression in their tumors and no MLH1 pathogenic germline mutation. Furthermore, we provide evidence that MLH1 constitutional hypermethylation is the molecular mechanism behind about 3% of Lynch syndrome families diagnosed in our institution, especially in patients with early onset or multiple primary tumors without significant family history. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.

    PubMed

    Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L

    2016-07-01

    Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR.

  14. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.

    PubMed

    Shen, Lan; Hua, Yufeng; Fu, Yaping; Li, Jian; Liu, Qing; Jiao, Xiaozhen; Xin, Gaowei; Wang, Junjie; Wang, Xingchun; Yan, Changjie; Wang, Kejian

    2017-05-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease 9 (CRISPR/Cas9) system has emerged as a promising technology for specific genome editing in many species. Here we constructed one vector targeting eight agronomic genes in rice using the CRISPR/Cas9 multiplex genome editing system. By subsequent genetic transformation and DNA sequencing, we found that the eight target genes have high mutation efficiencies in the T 0 generation. Both heterozygous and homozygous mutations of all editing genes were obtained in T 0 plants. In addition, homozygous sextuple, septuple, and octuple mutants were identified. As the abundant genotypes in T 0 transgenic plants, various phenotypes related to the editing genes were observed. The findings demonstrate the potential of the CRISPR/Cas9 system for rapid introduction of genetic diversity during crop breeding.

  15. High-throughput multiplex HLA-typing by ligase detection reaction (LDR) and universal array (UA) approach.

    PubMed

    Consolandi, Clarissa

    2009-01-01

    One major goal of genetic research is to understand the role of genetic variation in living systems. In humans, by far the most common type of such variation involves differences in single DNA nucleotides, and is thus termed single nucleotide polymorphism (SNP). The need for improvement in throughput and reliability of traditional techniques makes it necessary to develop new technologies. Thus the past few years have witnessed an extraordinary surge of interest in DNA microarray technology. This new technology offers the first great hope for providing a systematic way to explore the genome. It permits a very rapid analysis of thousands genes for the purpose of gene discovery, sequencing, mapping, expression, and polymorphism detection. We generated a series of analytical tools to address the manufacturing, detection and data analysis components of a microarray experiment. In particular, we set up a universal array approach in combination with a PCR-LDR (polymerase chain reaction-ligation detection reaction) strategy for allele identification in the HLA gene.

  16. Detection of Staphylococcus aureus enterotoxigenic strains in bovine raw milk by reversed passive latex agglutination and multiplex polymerase chain reaction.

    PubMed

    Mansour, Asmaa Samy; Wagih, Gad El-Said; Morgan, Sabry D; Elhariri, Mahmoud; El-Shabrawy, Mona A; Abuelnaga, Azza S M; Elgabry, E A

    2017-08-01

    This review gives an outline of the assessment of enterotoxigenic Staphylococcus aureus tainting levels in raw milk from different sources in Egypt and characterization of enterotoxigenic strains utilizing a technique in light of PCR to identify genes coding for the production of staphylococcal enterotoxin (SE). The obtained data were compared with results from the application of the reversed passive latex. Multiplex PCR and reversed passive latex agglutination (RPLA) were used. A total of 141 samples of raw milk (cow's milk=33, buffalo's milk=58, and bulk tank milk=50) were investigated for S. aureus contamination and tested for enterotoxin genes presence and toxin production. S. aureus was detected in 23 (16.3%) samples phenotypically and genotypically by amplification of nuc gene. The S. aureus isolates were investigated for SEs genes ( sea to see ) by multiplex PCR and the toxin production by these isolates was screened by RPLA. SEs genes were detected in six isolates (26.1%) molecularly; see was the most observed gene where detected in all isolates, two isolates harbored seb , and two isolates harbored sec . According to RPLA, three isolates produced SEB and SEC. The study revealed the widespread of S. aureus strains caring genes coding for toxins. The real significance of the presence of these strains or its toxins in raw milk and their possible impact a potential hazard for staphylococcal food poisoning by raw milk consumption. Therefore, detection of enterotoxigenic S. aureus strains in raw milk is necessary for consumer safety.

  17. Elevated osteopontin and thrombospondin expression identifies malignant human breast carcinoma but is not indicative of metastatic status

    PubMed Central

    Wang-Rodriguez, Jessica; Urquidi, Virginia; Rivard, Amber; Goodison, Steve

    2003-01-01

    Background Our previous characterization of a human breast tumor metastasis model identified several candidate metastasis genes. The expression of osteopontin (OPN) correlated with the metastatic phenotype, whereas thrombospondin-1 (TSP-1) and tyrosinase-related protein-1 (TYRP-1) correlated with the nonmetastatic phenotype of independent MDA-MB-435 cell lines implanted orthotopically into athymic mice. The aim of the present study was to examine the cellular distribution of these molecules in human breast tissue and to determine whether the relative expression level of these three genes is associated with human breast tumor metastasis. Methods Sixty-eight fresh, frozen specimens including 31 primary infiltrating ductal carcinomas, 22 nodal metastases, 10 fibroadenomas, and five normal breast tissues were evaluated for OPN expression, TSP-1 expression and TYRP-1 expression. Immunohistochemistry was performed to monitor the cellular distribution and to qualitatively assess expression. Quantitative analysis was achieved by enrichment of breast epithelial cells using laser-capture microdissection and subsequent real-time, quantitative PCR. Results The epithelial components of the breast tissue were the source of OPN and TSP-1 expression, whereas TYRP-1 was present in both the epithelial and stromal components. Both OPN and TSP-1 expression were significantly higher in malignant epithelial sources over normal and benign epithelial sources, but no difference in expression levels was evident between primary tumors with or without metastases, nor between primary and metastatic carcinomas. Conclusion Elevated expression of OPN and TSP-1 may play a role in the pathogenesis of breast cancer. The multiplex analysis of these molecules may enhance our ability to diagnose and/or prognosticate human breast malignancy. PMID:12927044

  18. Simultaneous detection and differentiation of three Potyviridae viruses by a multiplex TaqMan real time RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay w...

  19. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates.

    PubMed

    Baums, Christoph G; Schotte, Ulrich; Amtsberg, Gunter; Goethe, Ralph

    2004-05-20

    In this study we provide a protocol for genotyping Clostridium perfringens with a new multiplex PCR. This PCR enables reliable and specific detection of the toxin genes cpa, cpb, etx, iap, cpe and cpb2 from heat lysed bacterial suspensions. The efficiency of the protocol was demonstrated by typing C. perfringens reference strains and isolates from veterinary bacteriological routine diagnostic specimens.

  20. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    Treesearch

    G. J. Bilodeau; F. N. Martin; M. D. Coffey; C. L. Blomquist

    2014-01-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed...

  1. Intrinsic biocontainment: Multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes

    PubMed Central

    Cai, Yizhi; Agmon, Neta; Choi, Woo Jin; Ubide, Alba; Stracquadanio, Giovanni; Caravelli, Katrina; Hao, Haiping; Bader, Joel S.; Boeke, Jef D.

    2015-01-01

    Biocontainment may be required in a wide variety of situations such as work with pathogens, field release applications of engineered organisms, and protection of intellectual properties. Here, we describe the control of growth of the brewer’s yeast, Saccharomyces cerevisiae, using both transcriptional and recombinational “safeguard” control of essential gene function. Practical biocontainment strategies dependent on the presence of small molecules require them to be active at very low concentrations, rendering them inexpensive and difficult to detect. Histone genes were controlled by an inducible promoter and controlled by 30 nM estradiol. The stability of the engineered genes was separately regulated by the expression of a site-specific recombinase. The combined frequency of generating viable derivatives when both systems were active was below detection (<10−10), consistent with their orthogonal nature and the individual escape frequencies of <10−6. Evaluation of escaper mutants suggests strategies for reducing their emergence. Transcript profiling and growth test suggest high fitness of safeguarded strains, an important characteristic for wide acceptance. PMID:25624482

  2. Multiplex PCR To Identify Macrolide Resistance Determinants in Mannheimia haemolytica and Pasteurella multocida

    PubMed Central

    Rose, Simon; Desmolaize, Benoit; Jaju, Puneet; Wilhelm, Cornelia; Warrass, Ralf

    2012-01-01

    The bacterial pathogens Mannheimia haemolytica and Pasteurella multocida are major etiological agents in respiratory tract infections of cattle. Although these infections can generally be successfully treated with veterinary macrolide antibiotics, a few recent isolates have shown resistance to these drugs. Macrolide resistance in members of the family Pasteurellaceae is conferred by combinations of at least three genes: erm(42), which encodes a monomethyltransferase and confers a type I MLSB (macrolide, lincosamide, and streptogramin B) phenotype; msr(E), which encodes a macrolide efflux pump; and mph(E), which encodes a macrolide-inactivating phosphotransferase. Here, we describe a multiplex PCR assay that detects the presence of erm(42), msr(E), and mph(E) and differentiates between these genes. In addition, the assay distinguishes P. multocida from M. haemolytica by amplifying distinctive fragments of the 23S rRNA (rrl) genes. One rrl fragment acts as a general indicator of gammaproteobacterial species and confirms whether the PCR assay has functioned as intended on strains that are negative for erm(42), msr(E), and mph(E). The multiplex system has been tested on more than 40 selected isolates of P. multocida and M. haemolytica and correlated with MICs for the veterinary macrolides tulathromycin and tilmicosin, and the newer compounds gamithromycin and tildipirosin. The multiplex PCR system gives a rapid and robustly accurate determination of macrolide resistance genotypes and bacterial genus, matching results from microbiological methods and whole-genome sequencing. PMID:22564832

  3. Development and clinical validation of a multiplex real-time PCR assay for herpes simplex and varicella zoster virus.

    PubMed

    Tan, Thean Yen; Zou, Hao; Ong, Danny Chee Tiong; Ker, Khor Jia; Chio, Martin Tze Wei; Teo, Rachael Yu Lin; Koh, Mark Jean Aan

    2013-12-01

    Herpes simplex virus (HSV) and varicella zoster virus (VZV) are related members of the Herpesviridae family and are well-documented human pathogens causing a spectrum of diseases, from mucocutaneous disease to infections of the central nervous system. This study was carried out to evaluate and validate the performance of a multiplex real-time polymerase chain reaction (PCR) assay in detecting and differentiating HSV1, HSV2, and VZV from clinical samples. Consensus PCR primers for HSV were designed from the UL30 component of the DNA polymerase gene of HSV, with 2 separate hydrolysis probes designed to differentiate HSV1 and HSV2. Separate primers and a probe were also designed against the DNA polymerase gene of VZV. A total of 104 clinical samples were available for testing by real-time PCR, conventional PCR, and viral culture. The sensitivity and specificity of the real-time assay was calculated by comparing the multiplex PCR result with that of a combined standard of virus culture and conventional PCR. The sensitivity of the real-time assay was 100%, with specificity ranging from 98% to 100% depending on the target gene. Both PCR methods detected more positive samples for HSV or VZV, compared with conventional virus culture. This multiplex PCR assay provides accurate and rapid diagnostic capabilities for the diagnosis and differentiation of HSV1, HSV2, and VZV infections, with the presence of an internal control to monitor for inhibition of the PCR reaction.

  4. Rapid detection of coliforms in drinking water of Arak city using multiplex PCR method in comparison with the standard method of culture (Most Probably Number)

    PubMed Central

    Fatemeh, Dehghan; Reza, Zolfaghari Mohammad; Mohammad, Arjomandzadegan; Salomeh, Kalantari; Reza, Ahmari Gholam; Hossein, Sarmadian; Maryam, Sadrnia; Azam, Ahmadi; Mana, Shojapoor; Negin, Najarian; Reza, Kasravi Alii; Saeed, Falahat

    2014-01-01

    Objective To analyse molecular detection of coliforms and shorten the time of PCR. Methods Rapid detection of coliforms by amplification of lacZ and uidA genes in a multiplex PCR reaction was designed and performed in comparison with most probably number (MPN) method for 16 artificial and 101 field samples. The molecular method was also conducted on isolated coliforms from positive MPN samples; standard sample for verification of microbial method certificated reference material; isolated strains from certificated reference material and standard bacteria. The PCR and electrophoresis parameters were changed for reducing the operation time. Results Results of PCR for lacZ and uidA genes were similar in all of standard, operational and artificial samples and showed the 876 bp and 147 bp bands of lacZ and uidA genes by multiplex PCR. PCR results were confirmed by MPN culture method by sensitivity 86% (95% CI: 0.71-0.93). Also the total execution time, with a successful change of factors, was reduced to less than two and a half hour. Conclusions Multiplex PCR method with shortened operation time was used for the simultaneous detection of total coliforms and Escherichia coli in distribution system of Arak city. It's recommended to be used at least as an initial screening test, and then the positive samples could be randomly tested by MPN. PMID:25182727

  5. Robust Inference of Cell-to-Cell Expression Variations from Single- and K-Cell Profiling

    PubMed Central

    Narayanan, Manikandan; Martins, Andrew J.; Tsang, John S.

    2016-01-01

    Quantifying heterogeneity in gene expression among single cells can reveal information inaccessible to cell-population averaged measurements. However, the expression level of many genes in single cells fall below the detection limit of even the most sensitive technologies currently available. One proposed approach to overcome this challenge is to measure random pools of k cells (e.g., 10) to increase sensitivity, followed by computational “deconvolution” of cellular heterogeneity parameters (CHPs), such as the biological variance of single-cell expression levels. Existing approaches infer CHPs using either single-cell or k-cell data alone, and typically within a single population of cells. However, integrating both single- and k-cell data may reap additional benefits, and quantifying differences in CHPs across cell populations or conditions could reveal novel biological information. Here we present a Bayesian approach that can utilize single-cell, k-cell, or both simultaneously to infer CHPs within a single condition or their differences across two conditions. Using simulated as well as experimentally generated single- and k-cell data, we found situations where each data type would offer advantages, but using both together can improve precision and better reconcile CHP information contained in single- and k-cell data. We illustrate the utility of our approach by applying it to jointly generated single- and k-cell data to reveal CHP differences in several key inflammatory genes between resting and inflammatory cytokine-activated human macrophages, delineating differences in the distribution of ‘ON’ versus ‘OFF’ cells and in continuous variation of expression level among cells. Our approach thus offers a practical and robust framework to assess and compare cellular heterogeneity within and across biological conditions using modern multiplexed technologies. PMID:27438699

  6. Identification of individual powdery mildew fungi infecting leaves and direct detection of gene expression by single conidium polymerase chain reaction.

    PubMed

    Matsuda, Yoshinori; Sameshima, Takeshi; Moriura, Nobuyuki; Inoue, Kanako; Nonomura, Teruo; Kakutani, Koji; Nishimura, Hiroaki; Kusakari, Shin-Ichi; Takamatsu, Susumu; Toyoda, Hideyoshi

    2005-10-01

    ABSTRACT Greenhouse-grown tomato seedlings were inoculated naturally with two genera of powdery mildew conidia forming appressorial germ tubes that could not be differentiated by length alone. For direct identification, single germinated conidia were removed from leaves by means of a glass pipette linked to the manipulator of a high-fidelity digital microscope. This microscope enabled in vivo observation of the fungi without leaf decoloration or fungal staining. The isolated conidia were subjected to PCR amplification of the 5.8S rDNA and its adjacent internal transcribed spacer sequences followed by nested PCR to attain sensitivity high enough to amplify target nucleotide sequences (PCR/nested PCR). Target sequences from the conidia were completely coincident with those of the pathogen Oidium neolycopersici or Erysiphe trifolii (syn. Microsphaera trifolii), which is nonpathogenic on tomato. Using RT-PCR/nested PCR or multiplex RT-PCR/nested PCR, it was possible to amplify transcripts expressed in single conidia. Conidia at pre- and postgermination stages were removed individually from tomato leaves, and two powdery mildew genes were monitored. The results indicated that the beta-tubulin homolog TUB2-ol was expressed at pre- and postgermination stages and the cutinase homolog CUT1-ol was only expressed postgermination. Combining digital microscopic micromanipulation and two-step PCR amplification is thus useful for investigation of individual propagules on the surface of plants.

  7. Probiotic lactobacillus and estrogen effects on vaginal epithelial gene expression responses to Candida albicans.

    PubMed

    Wagner, R Doug; Johnson, Shemedia J

    2012-06-20

    Vaginal epithelial cells have receptors, signal transduction mechanisms, and cytokine secretion capabilities to recruit host defenses against Candida albicans infections. This research evaluates how probiotic lactobacilli affect the defensive epithelial response. This study used quantitative reverse transcription-polymerase chain reaction assay (qRT-PCR), flow cytometry, and a multiplex immunoassay to observe changes in the regulation of gene expression related to cytokine responses in the VK2 (E6/E7) vaginal epithelial cell line treated with 17β-estradiol, exposed to probiotic Lactobacillus rhamnosus GR-1® and Lactobacillus reuteri RC-14® and challenged with C. albicans. Data were statistically evaluated by repeated measures analysis of variance and paired t-tests where appropriate. C. albicans induced mRNA expression of genes related to inflammatory cytokine responses associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signal transduction pathways. 17β-estradiol suppressed expression of interleukin-1α (IL-1α), IL-6, IL-8, and tumor necrosis factor alpha (TNFα) mRNA. Probiotic lactobacilli suppressed C. albicans-induced nuclear factor-kappa B inhibitor kinase kinase alpha (Iκκα), Toll-like receptor-2 (TLR2), TLR6, IL-8, and TNFα, also suggesting inhibition of NF-κB signaling. The lactobacilli induced expression of IL-1α, and IL-1β mRNA, which was not inhibited by curcumin, suggesting that they induce an alternate inflammatory signal transduction pathway to NF-κB, such as the mitogen activated protein kinase and activator protein-1 (MAPK/AP-1) signal transduction pathway. Curcumin inhibited IL-13 secretion, suggesting that expression of this cytokine is mainly regulated by NF-κB signaling in VK2 cells. The results suggest that C. albicans infection induces pro-inflammatory responses in vaginal epithelial cells, and estrogen and lactobacilli suppress expression of NF-κB-related inflammatory genes. Probiotic lactobacilli may induce IL-1α and IL-1β expression by an alternate signal transduction pathway, such as MAPK/AP-1. Activation of alternate signaling mechanisms by lactobacilli to modify epithelial cell cytokine production may be a mechanism for probiotic modulation of morbidity in vulvovaginal candidiasis.

  8. Messenger RNA Detection in Leukemia Cell lines by Novel Metal-Tagged in situ Hybridization using Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Ornatsky, Olga I; Baranov, Vladimir I; Bandura, Dmitry R; Tanner, Scott D; Dick, John

    2006-01-01

    Conventional gene expression profiling relies on using fluorescent detection of hybridized probes. Physical characteristics of fluorophores impose limitations on achieving a highly multiplex gene analysis of single cells. Our work demonstrates the feasibility of using metal-tagged in situ hybridization for mRNA detection by inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS as an analytical detector has a number of unique and relevant properties: 1) metals and their stable isotopes generate non-overlapping distinct signals that can be detected simultaneously; 2) these signals can be measured over a wide dynamic range; 3) ICP-MS is quantitative and very sensitive. We used commercial antibodies conjugated to europium (Eu) and gold together with biotinylated oligonucleotide probes reacted with terbium-labeled streptavidin to demonstrate simultaneous mRNA and protein detection by ICP-MS in leukemia cells.

  9. Messenger RNA Detection in Leukemia Cell lines by Novel Metal-Tagged in situ Hybridization using Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Ornatsky, Olga I.; Baranov, Vladimir I.; Bandura, Dmitry R.; Tanner, Scott D.; Dick, John

    2006-01-01

    Conventional gene expression profiling relies on using fluorescent detection of hybridized probes. Physical characteristics of fluorophores impose limitations on achieving a highly multiplex gene analysis of single cells. Our work demonstrates the feasibility of using metal-tagged in situ hybridization for mRNA detection by inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS as an analytical detector has a number of unique and relevant properties: 1) metals and their stable isotopes generate non-overlapping distinct signals that can be detected simultaneously; 2) these signals can be measured over a wide dynamic range; 3) ICP-MS is quantitative and very sensitive. We used commercial antibodies conjugated to europium (Eu) and gold together with biotinylated oligonucleotide probes reacted with terbium-labeled streptavidin to demonstrate simultaneous mRNA and protein detection by ICP-MS in leukemia cells. PMID:23662035

  10. OPCML is a broad tumor suppressor for multiple carcinomas and lymphomas with frequently epigenetic inactivation.

    PubMed

    Cui, Yan; Ying, Ying; van Hasselt, Andrew; Ng, Ka Man; Yu, Jun; Zhang, Qian; Jin, Jie; Liu, Dingxie; Rhim, Johng S; Rha, Sun Young; Loyo, Myriam; Chan, Anthony T C; Srivastava, Gopesh; Tsao, George S W; Sellar, Grant C; Sung, Joseph J Y; Sidransky, David; Tao, Qian

    2008-08-20

    Identification of tumor suppressor genes (TSGs) silenced by CpG methylation uncovers the molecular mechanism of tumorigenesis and potential tumor biomarkers. Loss of heterozygosity at 11q25 is common in multiple tumors including nasopharyngeal carcinoma (NPC). OPCML, located at 11q25, is one of the downregulated genes we identified through digital expression subtraction. Semi-quantitative RT-PCR showed frequent OPCML silencing in NPC and other common tumors, with no homozygous deletion detected by multiplex differential DNA-PCR. Instead, promoter methylation of OPCML was frequently detected in multiple carcinoma cell lines (nasopharyngeal, esophageal, lung, gastric, colon, liver, breast, cervix, prostate), lymphoma cell lines (non-Hodgkin and Hodgkin lymphoma, nasal NK/T-cell lymphoma) and primary tumors, but not in any non-tumor cell line and seldom weakly methylated in normal epithelial tissues. Pharmacological and genetic demethylation restored OPCML expression, indicating a direct epigenetic silencing. We further found that OPCML is stress-responsive, but this response is epigenetically impaired when its promoter becomes methylated. Ecotopic expression of OPCML led to significant inhibition of both anchorage-dependent and -independent growth of carcinoma cells with endogenous silencing. Thus, through functional epigenetics, we identified OPCML as a broad tumor suppressor, which is frequently inactivated by methylation in multiple malignancies.

  11. Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan

    PubMed Central

    Tabassum, Najia; Saboor, Mohammad; Ghani, Rubina; Moinuddin, Moinuddin

    2014-01-01

    Background and Objective: Breakpoint cluster region-Abelson (BCR-ABL) rearrangement or Philadelphia (Ph) chromosome in Chronic Myeloid Leukemia (CML) is derived from a reciprocal chromosomal translocation between ABL gene on chromosome 9 and BCR gene on chromosome 22. This chimeric protein has various sizes and therefore different clinical behaviour. The purpose of this study was to determine the heterogeneity of BCR-ABL rearrangement in patients with Ph+CML in Pakistan. Methods: The study was conducted at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify various BCR-ABL transcripts. Results: All 25 samples showed BCR-ABL rearrangements. Out of these, 24 (96%) patients expressed p210 BCR-ABL rearrangements i.e. 60% (n=15) had b3a2 and 32% (n=8) had b2a2 rearrangements. Co-expression of b3a2 /b2a2 rearrangement and p190 (e1a3) rearrangement was also identified in two patients. Conclusion: It is apparent that majority of the patients had p210 BCR-ABL rearrangements. Frequency of co-expression and rare fusion transcripts was very low. PMID:25097530

  12. De Novo whole genome sequence of Xylella fastidiosa subsp. multiplex strain BB01 from blueberry in Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    This study reports a de novo assembled draft genome sequence of Xylella fastidiosa subsp. multiplex strain BB01 causing blueberry bacterial leaf scorch in Georgia, USA. The BB01 genome is 2,517,579 bp with a G+C content of 51.8% and 2,943 open reading frames (ORFs) and 48 RNA genes....

  13. Comparative evaluation of uniplex, nested, semi-nested, multiplex and nested multiplex PCR methods in the identification of microbial etiology of clinically suspected infectious endophthalmitis.

    PubMed

    Bharathi, Madasamy Jayahar; Murugan, Nandagopal; Rameshkumar, Gunasekaran; Ramakrishnan, Rengappa; Venugopal Reddy, Yerahaia Chinna; Shivkumar, Chandrasekar; Ramesh, Srinivasan

    2013-05-01

    This study is aimed to determine the utility of various polymerase chain reaction (PCR) methods in vitreous fluids (VFs) for detecting the infectious genomes in the diagnosis of infectious endophthalmitis in terms of sensitivity and specificity. This prospective and consecutive analysis included a total of 66 VFs that were submitted for the microbiological evaluation, which were obtained from 66 clinically diagnosed endophthalmitis patients presented between November 2010 and October 2011 at the tertiary eye care referral centre in South India. Part of the collected VFs were subjected to cultures and smears, and the remaining parts were utilized for five PCR methods: uniplex, nested, semi-nested, multiplex and nested multiplex after extracting DNA, using universal eubacterial and Propionibacterium acnes species-specific primer sets targeting 16S rRNA gene in all bacteria and P. acnes, and panfungal primers, targeting 28S rRNA gene in all fungi. Of the 66 VFs, five (7.5%) showed positive results in smears, 16 (24%) in cultures and 43 (65%) showed positive results in PCRs. Among the 43 positively amplified VFs, 10 (15%) were positive for P. acnes genome, one for panfungal genome and 42 (62%) for eubacterial genome (including 10 P. acnes positives). Among 42 eubacterial-positive VFs, 36 were positive by both uniplex (first round) and multiplex (first round) PCRs, while nested (second round) and nested multiplex (second round) PCRs produced positive results in 42 and 41 VFs, respectively. Of the 43 PCR-positive specimens, 16 (37%) had positive growth (15 bacterial and one fungal) in culture. Of 50 culture-negative specimens, 27 (54%) were showed positive amplification, of which 10 were amplified for both P. acnes and eubacterial genomes and the remaining 17 were for eubacterial genome alone. Nested PCRs are superior than uniplex and multiplex PCR. PCRs proved to be a powerful tool in the diagnosis of endophthalmitis, especially for detecting uncultured microbes.

  14. Comparison of genome-wide selection strategies to identify furfural tolerance genes in Escherichia coli.

    PubMed

    Glebes, Tirzah Y; Sandoval, Nicholas R; Gillis, Jacob H; Gill, Ryan T

    2015-01-01

    Engineering both feedstock and product tolerance is important for transitioning towards next-generation biofuels derived from renewable sources. Tolerance to chemical inhibitors typically results in complex phenotypes, for which multiple genetic changes must often be made to confer tolerance. Here, we performed a genome-wide search for furfural-tolerant alleles using the TRackable Multiplex Recombineering (TRMR) method (Warner et al. (2010), Nature Biotechnology), which uses chromosomally integrated mutations directed towards increased or decreased expression of virtually every gene in Escherichia coli. We employed various growth selection strategies to assess the role of selection design towards growth enrichments. We also compared genes with increased fitness from our TRMR selection to those from a previously reported genome-wide identification study of furfural tolerance genes using a plasmid-based genomic library approach (Glebes et al. (2014) PLOS ONE). In several cases, growth improvements were observed for the chromosomally integrated promoter/RBS mutations but not for the plasmid-based overexpression constructs. Through this assessment, four novel tolerance genes, ahpC, yhjH, rna, and dicA, were identified and confirmed for their effect on improving growth in the presence of furfural. © 2014 Wiley Periodicals, Inc.

  15. Biallelic mutation of UNC50, encoding a protein involved in AChR trafficking, is responsible for arthrogryposis.

    PubMed

    Abiusi, Emanuela; D'Alessandro, Manuela; Dieterich, Klaus; Quevarec, Loic; Turczynski, Sandrina; Valfort, Aurore-Cecile; Mezin, Paulette; Jouk, Pierre Simon; Gut, Marta; Gut, Ivo; Bessereau, Jean Louis; Melki, Judith

    2017-10-15

    Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Homozygosity mapping of disease loci combined with whole exome sequencing in a consanguineous family presenting with lethal AMC allowed the identification of a homozygous frameshift deletion in UNC50 gene (c.750_751del:p.Cys251Phefs*4) in the index case. To assess the effect of the mutation, an equivalent mutation in the Caenorhabditis elegans orthologous gene was created using CRISPR/Cas9. We demonstrated that unc-50(kr331) modification caused the loss of acetylcholine receptor (AChR) expression in C. elegans muscle. unc-50(kr331) animals were as resistant to the cholinergic agonist levamisole as unc-50 null mutants suggesting that AChRs were no longer expressed in this animal model. This was confirmed by using a knock-in strain in which a red fluorescent protein was inserted into the AChR locus: no signal was detected in unc-50(kr331) background, suggesting that UNC-50, a protein known to be involved in AChR trafficking, was no longer functional. These data indicate that biallelic mutation in the UNC50 gene underlies AMC through a probable loss of AChR expression at the neuromuscular junction which is essential for the cholinergic transmission during human muscle development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Sequential inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease.

    PubMed

    Scriba, Thomas J; Penn-Nicholson, Adam; Shankar, Smitha; Hraha, Tom; Thompson, Ethan G; Sterling, David; Nemes, Elisa; Darboe, Fatoumatta; Suliman, Sara; Amon, Lynn M; Mahomed, Hassan; Erasmus, Mzwandile; Whatney, Wendy; Johnson, John L; Boom, W Henry; Hatherill, Mark; Valvo, Joe; De Groote, Mary Ann; Ochsner, Urs A; Aderem, Alan; Hanekom, Willem A; Zak, Daniel E

    2017-11-01

    Our understanding of mechanisms underlying progression from Mycobacterium tuberculosis infection to pulmonary tuberculosis disease in humans remains limited. To define such mechanisms, we followed M. tuberculosis-infected adolescents longitudinally. Blood samples from forty-four adolescents who ultimately developed tuberculosis disease (“progressors”) were compared with those from 106 matched controls, who remained healthy during two years of follow up. We performed longitudinal whole blood transcriptomic analyses by RNA sequencing and plasma proteome analyses using multiplexed slow off-rate modified DNA aptamers. Tuberculosis progression was associated with sequential modulation of immunological processes. Type I/II interferon signalling and complement cascade were elevated 18 months before tuberculosis disease diagnosis, while changes in myeloid inflammation, lymphoid, monocyte and neutrophil gene modules occurred more proximally to tuberculosis disease. Analysis of gene expression in purified T cells also revealed early suppression of Th17 responses in progressors, relative to M. tuberculosis-infected controls. This was confirmed in an independent adult cohort who received BCG re-vaccination; transcript expression of interferon response genes in blood prior to BCG administration was associated with suppression of IL-17 expression by BCG-specific CD4 T cells 3 weeks post-vaccination. Our findings provide a timeline to the different immunological stages of disease progression which comprise sequential inflammatory dynamics and immune alterations that precede disease manifestations and diagnosis of tuberculosis disease. These findings have important implications for developing diagnostics, vaccination and host-directed therapies for tuberculosis. Clincialtrials.gov, NCT01119521.

  17. Highly Tissue Substructure-Specific Effects of Human Papilloma Virus in Mucosa of HIV-Infected Patients Revealed by Laser-Dissection Microscopy-Assisted Gene Expression Profiling

    PubMed Central

    Baumgarth, Nicole; Szubin, Richard; Dolganov, Greg M.; Watnik, Mitchell R.; Greenspan, Deborah; Da Costa, Maria; Palefsky, Joel M.; Jordan, Richard; Roederer, Mario; Greenspan, John S.

    2004-01-01

    Human papilloma virus (HPV) causes focal infections of epithelial layers in skin and mucosa. HIV-infected patients on highly active antiretroviral therapy (HAART) appear to be at increased risk of developing HPV-induced oral warts. To identify the mechanisms that allow long-term infection of oral epithelial cells in these patients, we used a combination of laser-dissection microscopy (LDM) and highly sensitive and quantitative, non-biased, two-step multiplex real-time RT-PCR to study pathogen-induced alterations of specific tissue subcompartments. Expression of 166 genes was compared in three distinct epithelial and subepithelial compartments isolated from biopsies of normal mucosa from HIV-infected and non-infected patients and of HPV32-induced oral warts from HIV-infected patients. In contrast to the underlying HIV infection and/or HAART, which did not significantly elaborate tissue substructure-specific effects, changes in oral warts were strongly tissue substructure-specific. HPV 32 seems to establish infection by selectively enhancing epithelial cell growth and differentiation in the stratum spinosum and to evade the immune system by actively suppressing inflammatory responses in adjacent underlying tissues. With this highly sensitive and quantitative method tissue-specific expression of hundreds of genes can be studied simultaneously in a few cells. Because of its large dynamic measurement range it could also become a method of choice to confirm and better quantify results obtained by microarray analysis. PMID:15331396

  18. Dodging silver bullets: good CRISPR gene-drive design is critical for eradicating exotic vertebrates.

    PubMed

    Prowse, Thomas A A; Cassey, Phillip; Ross, Joshua V; Pfitzner, Chandran; Wittmann, Talia A; Thomas, Paul

    2017-08-16

    Self-replicating gene drives that can spread deleterious alleles through animal populations have been promoted as a much needed but controversial 'silver bullet' for controlling invasive alien species. Homing-based drives comprise an endonuclease and a guide RNA (gRNA) that are replicated during meiosis via homologous recombination. However, their efficacy for controlling wild populations is threatened by inherent polymorphic resistance and the creation of resistance alleles via non-homologous end-joining (NHEJ)-mediated DNA repair. We used stochastic individual-based models to identify realistic gene-drive strategies capable of eradicating vertebrate pest populations (mice, rats and rabbits) on islands. One popular strategy, a sex-reversing drive that converts heterozygous females into sterile males, failed to spread and required the ongoing deployment of gene-drive carriers to achieve eradication. Under alternative strategies, multiplexed gRNAs could overcome inherent polymorphic resistance and were required for eradication success even when the probability of NHEJ was low. Strategies causing homozygotic embryonic non-viability or homozygotic female sterility produced high probabilities of eradication and were robust to NHEJ-mediated deletion of the DNA sequence between multiplexed endonuclease recognition sites. The latter two strategies also purged the gene drive when eradication failed, therefore posing lower long-term risk should animals escape beyond target islands. Multiplexing gRNAs will be necessary if this technology is to be useful for insular extirpation attempts; however, precise knowledge of homing rates will be required to design low-risk gene drives with high probabilities of eradication success. © 2017 The Author(s).

  19. Chip-Based Sensors for Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Fang, Zhichao

    Nucleic acid analysis is one of the most important disease diagnostic approaches in medical practice, and has been commonly used in cancer biomarker detection, bacterial speciation and many other fields in laboratory. Currently, the application of powerful research methods for genetic analysis, including the polymerase chain reaction (PCR), DNA sequencing, and gene expression profiling using fluorescence microarrays, are not widely used in hospitals and extended-care units due to high-cost, long detection times, and extensive sample preparation. Bioassays, especially chip-based electrochemical sensors, may be suitable for the next generation of rapid, sensitive, and multiplexed detection tools. Herein, we report three different microelectrode platforms with capabilities enabled by nano- and microtechnology: nanoelectrode ensembles (NEEs), nanostructured microelectrodes (NMEs), and hierarchical nanostructured microelectrodes (HNMEs), all of which are able to directly detect unpurified RNA in clinical samples without enzymatic amplification. Biomarkers that are cancer and infectious disease relevant to clinical medicine were chosen to be the targets. Markers were successfully detected with clinically-relevant sensitivity. Using peptide nucleic acids (PNAs) as probes and an electrocatalytic reporter system, NEEs were able to detect prostate cancer-related gene fusions in tumor tissue samples with 100 ng of RNA. The development of NMEs improved the sensitivity of the assay further to 10 aM of DNA target, and multiplexed detection of RNA sequences of different prostate cancer-related gene fusion types was achieved on the chip-based NMEs platform. An HNMEs chip integrated with a bacterial lysis device was able to detect as few as 25 cfu bacteria in 30 minutes and monitor the detection in real time. Bacterial detection could also be performed in neat urine samples. The development of these versatile clinical diagnostic tools could be extended to the detection of various cancers, genetic, and infectious diseases.

  20. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening.

    PubMed

    Gerstel-Thompson, Jacalyn L; Wilkey, Jonathan F; Baptiste, Jennifer C; Navas, Jennifer S; Pai, Sung-Yun; Pass, Kenneth A; Eaton, Roger B; Comeau, Anne Marie

    2010-09-01

    Real-time quantitative PCR (qPCR) targeting a specific marker of functional T cells, the T-cell-receptor excision circle (TREC), detects the absence of functional T cells and has a demonstrated clinical validity for detecting severe combined immunodeficiency (SCID) in infants. There is need for a qPCR TREC assay with an internal control to monitor DNA quality and the relative cellular content of the particular dried blood spot punch sampled in each reaction. The utility of the qPCR TREC assay would also be far improved if more tests could be performed on the same newborn screening sample. We approached the multiplexing of qPCR for TREC by attenuating the reaction for the reference gene, with focus on maintaining tight quality assurance for reproducible slopes and for prevention of sample-to-sample cross contamination. Statewide newborn screening for SCID using the multiplexed assay was implemented, and quality-assurance data were recorded. The multiplex qPCR TREC assay showed nearly 100% amplification efficiency for each of the TREC and reference sequences, clinical validity for multiple forms of SCID, and an analytic limit of detection consistent with prevention of contamination. The eluate and residual ghost from a 3.2-mm dried blood spot could be used as source material for multiplexed immunoassays and multiplexed DNA tests (Multiplex Plus), with no disruption to the multiplex TREC qPCR. Population-based SCID newborn screening programs should consider multiplexing for quality assurance purposes. Potential benefits of using Multiplex Plus include the ability to perform multianalyte profiling.

  1. Highly multiplexed simultaneous detection of RNAs and proteins in single cells.

    PubMed

    Frei, Andreas P; Bava, Felice-Alessio; Zunder, Eli R; Hsieh, Elena W Y; Chen, Shih-Yu; Nolan, Garry P; Gherardini, Pier Federico

    2016-03-01

    To enable the detection of expression signatures specific to individual cells, we developed PLAYR (proximity ligation assay for RNA), a method for highly multiplexed transcript quantification by flow and mass cytometry that is compatible with standard antibody staining. When used with mass cytometry, PLAYR allowed for the simultaneous quantification of more than 40 different mRNAs and proteins. In primary cells, we quantified multiple transcripts, with the identity and functional state of each analyzed cell defined on the basis of the expression of a separate set of transcripts or proteins. By expanding high-throughput deep phenotyping of cells beyond protein epitopes to include RNA expression, PLAYR opens a new avenue for the characterization of cellular metabolism.

  2. Multiplex real-time PCR assay for Legionella species.

    PubMed

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Novel Multiplex MethyLight Protocol for Detection of DNA Methylation in Patient Tissues and Bodily Fluids

    PubMed Central

    Olkhov-Mitsel, Ekaterina; Zdravic, Darko; Kron, Ken; van der Kwast, Theodorus; Fleshner, Neil; Bapat, Bharati

    2014-01-01

    Aberrant DNA methylation is a hallmark of cancer and is an important potential biomarker. Particularly, combined analysis of a panel of hypermethylated genes shows the most promising clinical performance. Herein, we developed, optimized and standardized a multiplex MethyLight assay to simultaneously detect hypermethylation of APC, HOXD3 and TGFB2 in DNA extracted from prostate cancer (PCa) cell lines, archival tissue specimens, and urine samples. We established that the assay is capable of discriminating between fully methylated and unmethylated alleles with 100% specificity and demonstrated the assay as highly accurate and reproducible as the singleplex approach. For proof of principle, we analyzed the methylation status of these genes in tissue and urine samples of PCa patients as well as PCa-free controls. These data show that the multiplex MethyLight assay offers a significant advantage when working with limited quantities of DNA and has potential applications in research and clinical settings. PMID:24651255

  4. Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin.

    PubMed

    Gousia, Panagiota; Economou, Vangelis; Bozidis, Petros; Papadopoulou, Chrissanthy

    2015-03-01

    In the present study, 500 raw beef, pork, and chicken meat samples and 100 pooled egg samples were analyzed for the presence of vancomycin-resistant enterococci, vancomycin-resistance phenotypes, and resistance genes. Of 141 isolates of enterococci, 88 strains of Enterococcus faecium and 53 strains of E. faecalis were identified. The most prevalent species was E. faecium. Resistance to ampicillin (n = 93, 66%), ciprofloxacin (n = 74, 52.5%), erythromycin (n = 73, 51.8%), penicillin (n = 59, 41.8%) and tetracycline (n = 52, 36.9%) was observed, while 53.2% (n = 75) of the isolates were multiresistant and 15.6% (n = 22) were susceptible to all antibiotics. Resistance to vancomycin was exhibited in 34.1% (n = 30) of the E. faecium isolates (n = 88) and 1.9% (n = 1) of the E. faecalis isolates (n = 53) using the disc-diffusion test and the E-test. All isolates were tested for vanA and vanB using real-time polymerase chain reaction (PCR) and multiplex PCR, and for vanC, vanD, vanE, vanG genes using multiplex PCR only. Among E. faecalis isolates, no resistance genes were identified. Among the E. faecium isolates, 28 carried the vanA gene when tested by multiplex PCR and 29 when tested with real-time PCR. No isolate carrying the vanC, vanD, vanE, or vanG genes was identified. Melting-curve analysis of the positive real-time PCR E. faecium isolates showed that 22 isolates carried the vanA gene only, 2 isolates the vanB2,3 genes only, and seven isolates carried both the vanA and vanB2,3 genes. Enterococci should be considered a significant zoonotic pathogen and a possible reservoir of genes encoding resistance potentially transferred to other bacterial species.

  5. The Broader Autism Phenotype in Simplex and Multiplex Families

    ERIC Educational Resources Information Center

    Gerdts, Jennifer A.; Bernier, Raphael; Dawson, Geraldine; Estes, Annette

    2013-01-01

    Mothers, fathers, and siblings from 87 multiplex (M-mothers, M-fathers, and M-siblings) and 41 simplex (S-mothers, S-fathers, and S-siblings) Autism spectrum disorder families were assessed using the Broader Phenotype Autism Symptom Scale. S-mothers, S-fathers, and S-siblings showed more social interest and were more expressive in their use of…

  6. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  7. Distinguishing body lice from head lice by multiplex real-time PCR analysis of the Phum_PHUM540560 gene.

    PubMed

    Drali, Rezak; Boutellis, Amina; Raoult, Didier; Rolain, Jean Marc; Brouqui, Philippe

    2013-01-01

    Body louse or head louse? Once removed from their environment, body and head lice are indistinguishable. Neither the morphological criteria used since the mid-18th century nor the various genetic studies conducted since the advent of molecular biology tools have allowed body lice and head lice to be differentiated. In this work, using a portion of the Phum_PHUM540560 gene from the body louse, we aimed to develop a multiplex real-time polymerase chain reaction (PCR) assay to differentiate between body and head lice in a single reaction. A total of 142 human lice were collected from mono-infested hosts from 13 countries on five continents. We first identified the louse clade using a cytochrome b (CYTB) PCR sequence alignment. We then aligned a fragment of the Phum_PHUM540560 gene amplified from head and body lice to design-specific TaqMan(©) FAM- and VIC-labeled probes. All the analyzed lice were Clade A lice. A total of 22 polymorphisms between the body and head lice were characterized. The multiplex real-time PCR analysis enabled the body and head lice to be distinguished in two hours. This method is simple, with 100% specificity and sensitivity. We confirmed that the Phum_PHUM540560 gene is a useful genetic marker for the study of lice.

  8. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay.

    PubMed

    Williamson, Charles H D; Vazquez, Adam J; Hill, Karen; Smith, Theresa J; Nottingham, Roxanne; Stone, Nathan E; Sobek, Colin J; Cocking, Jill H; Fernández, Rafael A; Caballero, Patricia A; Leiser, Owen P; Keim, Paul; Sahl, Jason W

    2017-09-15

    Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present ( ha positive [ ha + ] or orfX + ). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene ( bont ) clusters. IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Since BoNT-producing and nontoxigenic isolates can be found in each species, a PCR assay to determine the presence of the ntnh gene, which is a universally present component of bont gene clusters, and to provide information about the type ( ha + or orfX + ) of bont gene cluster present in a sample was also developed. The PCR assays provide simple, rapid, and inexpensive tools for screening uncharacterized isolates from clinical or environmental samples. The information provided by these assays can inform epidemiological studies, aid with identifying mixtures of isolates and unknown isolates in culture collections, and confirm the presence of bacteria of interest. Copyright © 2017 Williamson et al.

  9. Rapid screening of pyogenic Staphylococcus aureus for confirmation of genus and species, methicillin resistance and virulence factors by using two novel multiplex PCR.

    PubMed

    Haque, Abdul; Haque, Asma; Saeed, Muhammad; Azhar, Aysha; Rasool, Samreen; Shan, Sidra; Ehsan, Beenish; Nisar, Zohaib

    2017-01-01

    Emergence of methicillin resistant Staphylococcus aureus (MRSA) is a major medical problem of current era. These bacteria are resistant to most drugs and rapid diagnosis can provide a clear guideline to clinicians. They possess specific virulence factors and relevant information can be very useful. We designed this study to develop multiplex PCRs to provide rapid information. We studied 60 Staphylococcus aureus isolates and detected methicillin resistance by cefoxitin sensitivity and targeting of mecA gene. After initial studies with uniplex PCRs we optimized two multiplex PCRs with highly reproducible results. The first multiplex PCR was developed to confirm genus, species and methicillin resistance simultaneously, and the second multiplex PCR was for screening of virulence factors. We found 38.33% isolates as methicillin resistant. α -toxin, the major cytotoxic factor, was detected in 40% whereas β-hemolysin was found in 25% cases. Panton Valentine leucocidin was detected in 8.33% and toxic shock syndrome toxin in5% cases. The results of uniplex and multiplex PCRs were highly compatible. These two multiplex PCRs when run simultaneously can provide vital information about methicillin resistance and virulence status of the isolate within a few hours as compared to several days needed by routine procedures.

  10. Comparison of Conventional PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Arcobacter Species

    PubMed Central

    Wang, Xiaoyu; Seo, Dong Joo; Lee, Min Hwa

    2014-01-01

    This study aimed to develop a loop-mediated isothermal amplification (LAMP) method for the rapid detection of Arcobacter species. Specific primers targeting the 23S ribosomal RNA gene were used to detect Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. The specificity of the LAMP primer set was assessed using DNA samples from a panel of Arcobacter and Campylobacter species, and the sensitivity was determined using serial dilutions of Arcobacter species cultures. LAMP showed a 10- to 1,000-fold-higher sensitivity than multiplex PCR, with a detection limit of 2 to 20 CFU per reaction in vitro. Whereas multiplex PCR showed cross-reactivity with Campylobacter species, the LAMP method developed in this study was more sensitive and reliable than conventional PCR or multiplex PCR for the detection of Arcobacter species. PMID:24478488

  11. EDRN Pre-Validation of Multiplex Biomarker in Urine — EDRN Public Portal

    Cancer.gov

    The goal of this proposal is to begin to establish an EDRN “pre-validation” trial of a multiplex set of transcripts, including the ETS gene fusions, in post-DRE urine sediments. As can be evidenced by our preliminary data, we have established the utility of this multiplex urine test (which includes TMPRSS-ERG, SPINK1, PCA3 and GOLPH2) in a cohort of prospectively collected urine sediments from the University of Michigan EDRN CEVC site (collected by co-I, Dr. John Wei). In this proposal, we will run this multiplex assay on prospectively collected post-DRE urines collected from other EDRN sites. The idea is to couple this “pre-validation” study with an EDRN validation trial under consideration for the Gen-Probe PCA3 urine test (directed by Drs. John Wei and Harry Rittenhouse).

  12. Antibody-independent Targeted Quantification of TMPRSS2-ERG Fusion Protein Products in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jintang; Sun, Xuefei; Shi, Tujin

    2014-10-01

    Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. The studies on TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies or an antibody-independent method that is sufficiently sensitive for detecting the truncated ERG protein products resulting from TMPRSS2-ERG gene fusions and alternative splicing. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancermore » cell lines and tumors. The highly sensitive PRISM-SRM assays led to confident detection of 6 unique ERG peptides in either the TMPRSS2-ERG positive cell lines or tissues but not in the negative controls, indicating that ERG protein expression is highly correlated with TMPRSS2-ERG gene rearrangements. Significantly, our results demonstrated for the first time that at least two groups of ERG protein isoforms were simultaneously expressed at variable levels in TMPRSS2-ERG positive samples as evidenced by concomitant detection of two mutually exclusive peptides. Three peptides shared across almost all fusion protein products were determined to be the most abundant peptides, and hence can be used as “signature” peptides for detecting ERG overexpression resulting from TMPRSS2-ERG gene fusion. These PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products, thus improving our understanding of the role of TMPRSS2-ERG gene fusion in the biology of prostate cancer.« less

  13. Using newly developed multiplex polymerase chain reaction and melting curve analysis for detection and discrimination of β-lactamases in Escherichia coli isolates from intensive care patients.

    PubMed

    Chromá, Magdaléna; Hricová, Kristýna; Kolář, Milan; Sauer, Pavel; Koukalová, Dagmar

    2011-11-01

    A total of 78 bacterial strains with known β-lactamases were used to optimize a rapid detection system consisting of multiplex polymerase chain reaction and melting curve analysis to amplify and identify blaTEM, blaSHV, and blaCTX-M genes in a single reaction. Additionally, to evaluate the applicability of this method, 32 clinical isolates of Escherichia coli displaying an extended-spectrum β-lactamase phenotype from patients hospitalized at intensive care units were tested. Results were analyzed by the Rotor-Gene operating software and Rotor-Gene ScreenClust HRM Software. The individual melting curves differed by a temperature shift or curve shape, according to the presence of β-lactamase genes. With the use of this method and direct sequencing, blaCTX-M-15-like was identified as the most prevalent β-lactamase gene. In conclusion, this novel detection system seems to be a suitable tool for rapid detection of present β-lactamase genes and their characterization. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Decreased endothelin receptor B expression in large primary uveal melanomas is associated with early clinical metastasis and short survival

    PubMed Central

    Smith, S L; Damato, B E; Scholes, A G M; Nunn, J; Field, J K; Heighway, J

    2002-01-01

    The most devastating aspect of cancer is the metastasis of tumour cells to organs distant from the original tumour site. The major problem facing oncologists treating uveal melanoma, the most common cancer of the eye, is metastatic disease. To lower mortality, it is necessary to increase our understanding of the molecular genetic alterations involved in this process. Using suppression subtractive hybridisation, we have analysed differential gene expression between four primary tumours from patients who have developed clinical metastasis and four primary tumours from patients with no evidence of metastasis to date. We have identified endothelin receptor type B as differentially expressed between these tumours and confirmed this observation using comparative multiplex RT–PCR. In a further 33 tumours, reduced endothelin receptor type B expression correlated with death from metastatic disease. Reduced expression also correlated with other known prognostic indicators, including the presence of epithelioid cells, chromosome 3 allelic imbalance and chromosome 8q allelic imbalance. Endothelin receptor type B expression was also reduced in four out of four primary small cell lung carcinomas compared to normal bronchial epithelium. We also show that the observed down-regulation of endothelin receptor type B in uveal melanoma was not due to gene deletion. Our findings suggest a role for endothelin receptor type B in the metastasis of uveal melanoma and, potentially, in the metastasis of other neural crest tumours. British Journal of Cancer (2002) 87, 1308–1313. doi:10.1038/sj.bjc.6600620 www.bjcancer.com © 2002 Cancer Research UK PMID:12439722

  15. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes

    PubMed Central

    Rebelo, Ana Rita; Bortolaia, Valeria; Kjeldgaard, Jette S; Pedersen, Susanne K; Leekitcharoenphon, Pimlapas; Hansen, Inge M; Guerra, Beatriz; Malorny, Burkhard; Borowiak, Maria; Hammerl, Jens Andre; Battisti, Antonio; Franco, Alessia; Alba, Patricia; Perrin-Guyomard, Agnes; Granier, Sophie A; De Frutos Escobar, Cristina; Malhotra-Kumar, Surbhi; Villa, Laura; Carattoli, Alessandra; Hendriksen, Rene S

    2018-01-01

    Background and aim Plasmid-mediated colistin resistance mechanisms have been identified worldwide in the past years. A multiplex polymerase chain reaction (PCR) protocol for detection of all currently known transferable colistin resistance genes (mcr-1 to mcr-5, and variants) in Enterobacteriaceae was developed for surveillance or research purposes. Methods: We designed four new primer pairs to amplify mcr-1, mcr-2, mcr-3 and mcr-4 gene products and used the originally described primers for mcr-5 to obtain a stepwise separation of ca 200 bp between amplicons. The primer pairs and amplification conditions allow for single or multiple detection of all currently described mcr genes and their variants present in Enterobacteriaceae. The protocol was validated testing 49 European Escherichia coli and Salmonella isolates of animal origin. Results: Multiplex PCR results in bovine and porcine isolates from Spain, Germany, France and Italy showed full concordance with whole genome sequence data. The method was able to detect mcr-1, mcr-3 and mcr-4 as singletons or in different combinations as they were present in the test isolates. One new mcr-4 variant, mcr-4.3, was also identified. Conclusions: This method allows rapid identification of mcr-positive bacteria and overcomes the challenges of phenotypic detection of colistin resistance. The multiplex PCR should be particularly interesting in settings or laboratories with limited resources for performing genetic analysis as it provides information on the mechanism of colistin resistance without requiring genome sequencing. PMID:29439754

  16. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing.

    PubMed

    Hanson, E; Ingold, S; Haas, C; Ballantyne, J

    2018-05-01

    The recovery of a DNA profile from the perpetrator or victim in criminal investigations can provide valuable 'source level' information for investigators. However, a DNA profile does not reveal the circumstances by which biological material was transferred. Some contextual information can be obtained by a determination of the tissue or fluid source of origin of the biological material as it is potentially indicative of some behavioral activity on behalf of the individual that resulted in its transfer from the body. Here, we sought to improve upon established RNA based methods for body fluid identification by developing a targeted multiplexed next generation mRNA sequencing assay comprising a panel of approximately equal sized gene amplicons. The multiplexed biomarker panel includes several highly specific gene targets with the necessary specificity to definitively identify most forensically relevant biological fluids and tissues (blood, semen, saliva, vaginal secretions, menstrual blood and skin). In developing the biomarker panel we evaluated 66 gene targets, with a progressive iteration of testing target combinations that exhibited optimal sensitivity and specificity using a training set of forensically relevant body fluid samples. The current assay comprises 33 targets: 6 blood, 6 semen, 6 saliva, 4 vaginal secretions, 5 menstrual blood and 6 skin markers. We demonstrate the sensitivity and specificity of the assay and the ability to identify body fluids in single source and admixed stains. A 16 sample blind test was carried out by one lab with samples provided by the other participating lab. The blinded lab correctly identified the body fluids present in 15 of the samples with the major component identified in the 16th. Various classification methods are being investigated to permit inference of the body fluid/tissue in dried physiological stains. These include the percentage of reads in a sample that are due to each of the 6 tissues/body fluids tested and inter-sample differential gene expression revealed by agglomerative hierarchical clustering. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome.

    PubMed

    Zhang, Kaihui; Liu, Shu; Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.

  18. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome

    PubMed Central

    Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis. PMID:26841067

  19. Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform.

    PubMed

    Qiu, Ji; LaBaer, Joshua

    2011-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Multiplexed Imaging of Protein Phosphorylation on Membranes Based on Ti(IV) Functionalized Nanopolymers.

    PubMed

    Iliuk, Anton; Li, Li; Melesse, Michael; Hall, Mark C; Tao, W Andy

    2016-05-17

    Accurate protein phosphorylation analysis reveals dynamic cellular signaling events not evident from protein expression levels. The most dominant biochemical assay, western blotting, suffers from the inadequate availability and poor quality of phospho-specific antibodies for phosphorylated proteins. Furthermore, multiplexed assays based on antibodies are limited by steric interference between the antibodies. Here we introduce a multifunctionalized nanopolymer for the universal detection of phosphoproteins that, in combination with regular antibodies, allows multiplexed imaging and accurate determination of protein phosphorylation on membranes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Detection of coliform bacteria and Escherichia coli by multiplex polymerase chain reaction: comparison with defined substrate and plating methods for water quality monitoring.

    PubMed Central

    Bej, A K; McCarty, S C; Atlas, R M

    1991-01-01

    Multiplex polymerase chain reaction (PCR) and gene probe detection of target lacZ and uidA genes were used to detect total coliform bacteria and Escherichia coli, respectively, for determining water quality. In tests of environmental water samples, the lacZ PCR method gave results statistically equivalent to those of the plate count and defined substrate methods accepted by the U.S. Environmental Protection Agency for water quality monitoring and the uidA PCR method was more sensitive than 4-methylumbelliferyl-beta-D-glucuronide-based defined substrate tests for specific detection of E. coli. Images PMID:1768116

  2. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  3. Ethyl acetate extract of germinated brown rice attenuates hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuroblastoma cells: role of anti-apoptotic, pro-survival and antioxidant genes.

    PubMed

    Azmi, Nur Hanisah; Ismail, Norsharina; Imam, Mustapha Umar; Ismail, Maznah

    2013-07-17

    There are reports of improved metabolic outcomes due to consumption of germinated brown rice (GBR). Many of the functional effects of GBR can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of neurodegenerative diseases like Alzheimer's disease (AD). This effect of dietary components is mostly based on their ability to prevent apoptosis, which is believed to link oxidative damage to pathological changes in AD. In view of the rich antioxidant content of GBR, we studied its potential to modulate processes leading up to AD. The total phenolic content and antioxidant capacity of the ethyl acetate extract of GBR were compared to that of brown rice (BR), and the cytotoxicity of both extracts were determined on human SH-SY5Y neuronal cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay. Based on its higher antioxidant potentials, the effect of the GBR extract on morphological changes due to hydrogen peroxide (H₂O₂)-induced oxidative damage in human SH-SY5Y neuronal cells was examined using inverted light microscope and fluorescence microscope by means of acridine orange-propidium iodide (AO/PI) staining. Also, evaluation of the transcriptional regulation of antioxidant and apoptotic genes was carried out using Multiplex Gene Expression System. The ethyl acetate extract of GBR had higher total phenolic content and antioxidant capacity compared to BR. The cytotoxicity results showed that GBR extract did not cause any damage to the human SH-SY5Y neuronal cells at concentrations of up to 20 ppm, and the morphological analyses showed that the GBR extract (up to 10 ppm) prevented H₂O₂-induced apoptotic changes in the cells. Furthermore, multiplex gene expression analyses showed that the protection of the cells by the GBR extract was linked to its ability to induce transcriptional changes in antioxidant (SOD 1, SOD 2 and catalase) and apoptotic (AKT, NF-Kβ, ERK1/2, JNK, p53 and p38 MAPK) genes that tended towards survival. Taken together, the results of our study showed that the ethyl acetate extract of GBR, with high antioxidant potentials, could prevent H₂O₂-induced oxidative damage in SH-SY5Y cells. The potential of GBR and its neuroprotective mechanism in ameliorating oxidative stress-related cytotoxicity is therefore worth exploring further.

  4. Multicapillary gel electrophoresis based analysis of genetic variants in the WFS1 gene.

    PubMed

    Elek, Zsuzsanna; Dénes, Réka; Prokop, Susanne; Somogyi, Anikó; Yowanto, Handy; Luo, Jane; Souquet, Manfred; Guttman, András; Rónai, Zsolt

    2016-09-01

    The WFS1 gene is one of the thoroughly investigated targets in diabetes research, variants of the gene were suggested to be the genetic components of the common forms (type 1 and type 2) of diabetes. Our project focused on the analysis of polymorphisms (rs4689388, rs148797429, rs4273545) localized in the WFS1 promoter region. Although submarine gel electrophoresis based approaches were also employed in the genetic tests, it was demonstrated that multicapillary electrophoresis offers a state of the art approach for reliable high-throughput SNP and VNTR analysis. Association studies were carried out in a case-control setup. Luciferase reporter assay was employed to test the effect of the investigated loci on the activity of gene expression in vitro. Significant association could be demonstrated between all three polymorphisms and type 2 diabetes in both allele- and genotype-wise settings even using Bonferroni correction. It is notable; however, that the three loci were in strong linkage disequilibrium, thus the observed associations cannot be considered as separate effects. Molecular analyses showed that the rs4273545 GT SNP played a role in the regulation of transcription in vitro. However, this effect took place only in the presence of the region including the rs148797429 site, although this latter locus did not have its own impact on the regulation of gene expression. The paper provides genotyping protocols readily applicable in any multiplex SNP and VNTR analyses, moreover confirms and extends previous results about the role of WFS1 polymorphisms in the genetic risk of diabetes mellitus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of endocrine disruptors on imprinted gene expression in the mouse embryo

    PubMed Central

    Tran, Diana A; Rivas, Guillermo E; Singh, Purnima; Pfeifer, Gerd P

    2011-01-01

    Environmental endocrine disruptors (EDs) are synthetic chemicals that resemble natural hormones and are known to cause epigenetic perturbations. EDs have profound effects on development and fertility. Imprinted genes had been identified as candidate susceptibility loci to environmental insults because they are functionally haploid, and because the imprints undergo epigenetic resetting between generations. To screen for possible epigenetic perturbations caused by EDs at imprinted loci, we treated pregnant mice daily between 8.5 and 12.5 days post coitum (dpc) with di-(2-ethylhexyl)-phthalate (DEHP), bisphenol A (BPA), vinclozolin (VZ) or control oil vehicle. After isolating RNA from the placenta, yolk sac, amnion, head, body, heart, liver, lung, stomach and intestines of 13.5 dpc embryos we measured the allele-specific expression of 39 imprinted transcripts using multiplex single nucleotide primer extension (SNuPE) assays. In this representative data set we identified only a small number of transcripts that exhibited a substantial relaxation of imprinted expression with statistical significance: Slc22a18 with 10% relaxation in the embryo after BPA treatment; Rtl1as with 11 and 16% relaxation in the lung and placenta, respectively after BPA treatment; and Rtl1 with 12% relaxation in the yolk sac after DEHP treatment. Additionally, the standard deviation of allele-specificity increased in various organs after ED treatment for several transcripts including Igf2r, Rasgrf1, Usp29, Slc38a4 and Xist. Our data suggest that the maintenance of strongly biased monoallelic expression of imprinted genes is generally insensitive to EDs in the 13.5 dpc embryo and extra-embryonic organs, but is not immune to those effects. PMID:21636974

  6. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes

    PubMed Central

    Herbold, Craig W.; Pelikan, Claus; Kuzyk, Orest; Hausmann, Bela; Angel, Roey; Berry, David; Loy, Alexander

    2015-01-01

    High throughput sequencing of phylogenetic and functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we introduce a highly adaptable and economical PCR approach to barcoding and pooling libraries of numerous target genes. In this approach, we replace gene- and sequencing platform-specific fusion primers with general, interchangeable barcoding primers, enabling nearly limitless customized barcode-primer combinations. Compared to barcoding with long fusion primers, our multiple-target gene approach is more economical because it overall requires lower number of primers and is based on short primers with generally lower synthesis and purification costs. To highlight our approach, we pooled over 900 different small-subunit rRNA and functional gene amplicon libraries obtained from various environmental or host-associated microbial community samples into a single, paired-end Illumina MiSeq run. Although the amplicon regions ranged in size from approximately 290 to 720 bp, we found no significant systematic sequencing bias related to amplicon length or gene target. Our results indicate that this flexible multiplexing approach produces large, diverse, and high quality sets of amplicon sequence data for modern studies in microbial ecology. PMID:26236305

  7. Design and Construction of a Single-Tube, LATE-PCR, Multiplex Endpoint Assay with Lights-On/Lights-Off Probes for the Detection of Pathogens Associated with Sepsis

    PubMed Central

    Carver-Brown, Rachel K.; Reis, Arthur H.; Rice, Lisa M.; Czajka, John W.; Wangh, Lawrence J.

    2012-01-01

    Aims. The goal of this study was to construct a single tube molecular diagnostic multiplex assay for the detection of microbial pathogens commonly associated with septicemia, using LATE-PCR and Lights-On/Lights-Off probe technology. Methods and Results. The assay described here identified pathogens associated with sepsis by amplification and analysis of the 16S ribosomal DNA gene sequence for bacteria and specific gene sequences for fungi. A sequence from an unidentified gene in Lactococcus lactis subsp. cremoris served as a positive control for assay function. LATE-PCR was used to generate single-stranded amplicons that were then analyzed at endpoint over a wide temperature range in a specific fluorescent color. Each bacterial target was identified by its pattern of hybridization to Lights-On/Lights-Off probes derived from molecular beacons. Complex mixtures of targets were also detected. Conclusions. All microbial targets were identified in samples containing low starting copy numbers of pathogen genomic DNA, both as individual targets and in complex mixtures. Significance and Impact of the Study. This assay uses new technology to achieve an advance in the field of molecular diagnostics: a single-tube multiplex assay for identification of pathogens commonly associated with sepsis. PMID:23326668

  8. Loss of delta catenin function in severe autism

    PubMed Central

    Turner, Tychele N.; Sharma, Kamal; Oh, Edwin C.; Liu, Yangfan P.; Collins, Ryan L.; Sosa, Maria X.; Auer, Dallas R.; Brand, Harrison; Sanders, Stephan J.; Moreno-De-Luca, Daniel; Pihur, Vasyl; Plona, Teri; Pike, Kristen; Soppet, Daniel R.; Smith, Michael W.; Cheung, Sau Wai; Martin, Christa Lese; State, Matthew W.; Talkowski, Michael E.; Cook, Edwin; Huganir, Richard; Katsanis, Nicholas; Chakravarti, Aravinda

    2015-01-01

    SUMMARY Autism is a multifactorial neurodevelopmental disorder affecting more males than females; consequently, under a multifactorial genetic hypothesis, females are affected only when they cross a higher biological threshold. We hypothesize that deleterious variants at conserved residues are enriched in severely affected patients arising from FEMFs (female-enriched multiplex families) with severe disease, enhancing the detection of key autism genes in modest numbers of cases. We show the utility of this strategy by identifying missense and dosage sequence variants in the gene encoding the adhesive junction-associated delta catenin protein (CTNND2) in FEMFs and demonstrating their loss-of-function effect by functional analyses in zebrafish embryos and cultured hippocampal neurons from wildtype and Ctnnd2 null mouse embryos. Finally, through gene expression and network analyses, we highlight a critical role for CTNND2 in neuronal development and an intimate connection to chromatin biology. Our data contribute to the understanding of the genetic architecture of autism and suggest that genetic analyses of phenotypic extremes, such as FEMFs, are of innate value in multifactorial disorders. PMID:25807484

  9. Antigen S1, encoded by the MIC1 gene, is characterized as an epitope of human CD59, enabling measurement of mutagen-induced intragenic deletions in the AL cell system

    NASA Technical Reports Server (NTRS)

    Wilson, A. B.; Seilly, D.; Willers, C.; Vannais, D. B.; McGraw, M.; Waldren, C. A.; Hei, T. K.; Davies, A.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    S1 cell membrane antigen is encoded by the MIC1 gene on human chromosome 11. This antigen has been widely used as a marker for studies in gene mapping or in analysis of mutagen-induced gene deletions/mutations, which utilized the human-hamster hybrid cell-line, AL-J1, carrying human chromosome 11. Evidence is presented here which identifies S1 as an epitope of CD59, a cell membrane complement inhibiting protein. E7.1 monoclonal antibody, specific for the S1 determinant, was found to react strongly with membrane CD59 in Western blotting, and to bind to purified, urinary form of CD59 in ELISAs. Cell membrane expression of S1 on various cell lines always correlated with that of CD59 when examined by immunofluorescent staining. In addition, E7.1 antibody inhibited the complement regulatory function of CD59. Identification of S1 protein as CD59 has increased the scope of the AL cell system by enabling analysis of intragenic mutations, and multiplex PCR analysis of mutated cells is described, showing variable loss of CD59 exons.

  10. A Novel Multiplex PCR Discriminates Bacillus anthracis and Its Genetically Related Strains from Other Bacillus cereus Group Species

    PubMed Central

    Ogawa, Hirohito; Fujikura, Daisuke; Ohnuma, Miyuki; Ohnishi, Naomi; Hang'ombe, Bernard M.; Mimuro, Hitomi; Ezaki, Takayuki; Mweene, Aaron S.; Higashi, Hideaki

    2015-01-01

    Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis. PMID:25774512

  11. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    PubMed

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comprehensive analysis of cancers of unknown primary for the biomarkers of response to immune checkpoint blockade therapy.

    PubMed

    Gatalica, Zoran; Xiu, Joanne; Swensen, Jeff; Vranic, Semir

    2018-05-01

    Cancer of unknown primary (CUP) accounts for approximately 3% of all malignancies. Avoiding immune destruction is a major cancer characteristic and therapies aimed at immune checkpoint blockade are in use for several specific cancer types. A comprehensive survey of predictive biomarkers to immune checkpoint blockade in CUP were explored in this study. About 389 cases of CUP were analysed for mutations in 592 genes and 52 gene fusions using a massively parallel DNA sequencing platform (next-generation sequencing [NGS]). Total mutational load (TML) and microsatellite instability (MSI) were calculated from NGS data. PD-L1 expression was explored using immunohistochemistry (with 5% cutoff value). High TML was seen in 11.8% (46/389) of tumours. MSI-high (MSI-H) was detected in 7/384 (1.8%) of tumours. Tumour PD-L1 expression was detected in 80/362 CUP (22%). A small proportion of CUP cases harboured genetic alterations of negative predictive biomarkers to immune checkpoint inhibitors (predictors to hyperprogression) including MDM2 gene amplification (2%) and loss of function JAK2 gene mutations (1%). Amplifications of CD274 (PD-L1) and PDCD1LG2 (PD-L2) genes were also rare (1.4% and 0.8%, respectively). The most frequently mutated genes were TP53 (54%), KRAS (22%), ARID1A (13%), PIK3CA (9%), CDKN2A (8%), SMARCA4 (7%) and PBRM1, STK11, APC, RB1 (5%, respectively). Using a multiplex testing approach, 28% of CUP carried one or more predictive biomarkers (MSI-H, PD-L1 and/or TML-H) to the immune checkpoint blockade, providing a novel option for treatment in patients with CUP. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Genetic Response of Rat Supraspinatus Tendon and Muscle to Exercise

    PubMed Central

    Rooney, Sarah Ilkhanipour; Tobias, John W.; Bhatt, Pankti R.; Kuntz, Andrew F.; Soslowsky, Louis J.

    2015-01-01

    Inflammation is a complex, biologic event that aims to protect and repair tissue. Previous studies suggest that inflammation is critical to induce a healing response following acute injury; however, whether similar inflammatory responses occur as a result of beneficial, non-injurious loading is unknown. The objective of this study was to screen for alterations in a subset of inflammatory and extracellular matrix genes to identify the responses of rat supraspinatus tendon and muscle to a known, non-injurious loading condition. We sought to define how a subset of genes representative of specific inflammation and matrix turnover pathways is altered in supraspinatus tendon and muscle 1) acutely following a single loading bout and 2) chronically following repeated loading bouts. In this study, Sprague-Dawley rats in the acute group ran a single bout of non-injurious exercise on a flat treadmill (10 m/min, 1 hour) and were sacrificed 12 or 24 hours after. Rats in the chronic group ran 5 days/wk for 1 or 8 weeks. A control group maintained normal cage activity. Supraspinatus muscle and tendon were harvested for RNA extractions, and a custom Panomics QuantiGene 2.0 multiplex assay was used to detect 48 target and 3 housekeeping genes. Muscle/tendon and acute/chronic groups had distinct gene expression. Components of the arachidonic acid cascade and matrix metalloproteinases and their inhibitors were altered with acute and chronic exercise. Collagen expression increased. Using a previously validated model of non-injurious exercise, we have shown that supraspinatus tendon and muscle respond to acute and chronic exercise by regulating inflammatory- and matrix turnover-related genes, suggesting that these pathways are involved in the beneficial adaptations to exercise. PMID:26447778

  14. Simultaneous detection of eight avian influenza A virus subtypes by multiplex reverse transcription-PCR using a GeXP analyser.

    PubMed

    Li, Meng; Xie, Zhixun; Xie, Zhiqin; Liu, Jiabo; Xie, Liji; Deng, Xianwen; Luo, Sisi; Fan, Qing; Huang, Li; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Wang, Sheng

    2018-04-18

    Recent studies have demonstrated that at least eight subtypes of avian influenza virus (AIV) can infect humans, including H1, H2, H3, H5, H6, H7, H9 and H10. A GeXP analyser-based multiplex reverse transcription (RT)-PCR (GeXP-multiplex RT-PCR) assay was developed in our recent studies to simultaneously detect these eight AIV subtypes using the haemagglutinin (HA) gene. The assay consists of chimeric primer-based PCR amplification with fluorescent labelling and capillary electrophoresis separation. RNA was extracted from chick embryo allantoic fluid or liquid cultures of viral isolates. In addition, RNA synthesised via in vitro transcription was used to determine the specificity and sensitivity of the assay. After selecting the primer pairs, their concentrations and GeXP-multiplex RT-PCR conditions were optimised. The established GeXP-multiplex RT-PCR assay can detect as few as 100 copies of premixed RNA templates. In the present study, 120 clinical specimens collected from domestic poultry at live bird markets and from wild birds were used to evaluate the performance of the assay. The GeXP-multiplex RT-PCR assay specificity was the same as that of conventional RT-PCR. Thus, the GeXP-multiplex RT-PCR assay is a rapid and relatively high-throughput method for detecting and identifying eight AIV subtypes that may infect humans.

  15. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system.

    PubMed

    Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong

    2011-01-01

    Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Apolipoprotein E genotyping by multiplex tetra-primer amplification refractory mutation system PCR in single reaction tube.

    PubMed

    Yang, Young Geun; Kim, Jong Yeol; Park, Su Jeong; Kim, Suhng Wook; Jeon, Ok-Hee; Kim, Doo-Sik

    2007-08-31

    Apolipoprotein E (APOE) plays a critical role in lipoprotein metabolism by binding to both low-density lipoprotein and APOE receptors. The APOE gene has three allelic forms, epsilon2, epsilon3, and epsilon4, which encode different isoforms of the APOE protein. In this study, we have developed a new genotyping method for APOE. Our multiplex tetra-primer amplification refractory mutation system (multiplex T-ARMS) polymerase chain reaction (PCR) was performed in a single reaction tube with six primers consisting of two common primers and two specific primers for each of two single nucleotide polymorphism (SNP) sites. We obtained definitive electropherograms that showed three (epsilon2/epsilon2, epsilon3/epsilon3, and epsilon4/epsilon4), four (epsilon2/epsilon3 and epsilon3/epsilon4), and five (epsilon2/epsilon4) amplicons by multiplex T-ARMS PCR in a single reaction tube. Multiplex T-ARMS PCR for APOE genotyping is a simple and accurate method that requires only a single PCR reaction, without any another treatments or expensive instrumentation, to simultaneously identify two sites of single nucleotide polymorphisms.

  17. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.

    PubMed

    Sakuma, Tetsushi; Sakamoto, Takuya; Yamamoto, Takashi

    2017-01-01

    CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.

  18. Loop-Mediated Isothermal Amplification Label-Based Gold Nanoparticles Lateral Flow Biosensor for Detection of Enterococcus faecalis and Staphylococcus aureus

    PubMed Central

    Wang, Yi; Li, Hui; Wang, Yan; Zhang, Lu; Xu, Jianguo; Ye, Changyun

    2017-01-01

    The report describes a simple, rapid and sensitive assay for visual and multiplex detection of Enterococcus faecalis and Staphylococcus aureus based on multiple loop-mediated isothermal amplification (mLAMP) and lateral flow biosensor (LFB). Detection and differentiation of the Ef0027 gene (E. faecalis-specific gene) and nuc gene (S. aureus-specific gene) were determined using fluorescein (FITC)-and digoxin-modified primers in the mLAMP process. In the presence of biotin- and FITC-/digoxin-modified primers, the mLAMP yielded numerous biotin- and FITC-/digoxin-attached duplex products, which were detected by LFB through biotin/streptavidin interaction (biotin on the duplex and streptavidin on the gold nanoparticle) and immunoreactions (FITC/digoxin on the duplex and anti-FITC/digoxin on the LFB test line). The accumulation of gold nanoparticles generated a characteristic red line, enabling visual and multiplex detection of target pathogens without instrumentation. The limit of detection (LoD), analytical specificity and feasibility of LAMP-LFB technique were successfully examined in pure culture and blood samples. The entire procedure, including specimen (blood samples) processing (30 min), isothermal reaction (40 min) and result reporting (within 2 min), could be completed within 75 min. Thus, this assay offers a simple, rapid, sensitive and specific test for multiplex detection of E. faecalis and S. aureus strains. Furthermore, the LAMP-LFB strategy is a universal technique, which can be extended to detect various target sequences by re-designing the specific LAMP primers. PMID:28239371

  19. Molecular diagnosis of Salmonella typhi and its virulence in suspected typhoid blood samples through nested multiplex PCR.

    PubMed

    Prabagaran, Solai Ramatchandirane; Kalaiselvi, Vellingiri; Chandramouleeswaran, Naganathan; Deepthi, Krishnan Nair Geetha; Brahmadathan, Kootallur Narayanan; Mani, Mariappa

    2017-08-01

    A nested multiplex polymerase chain reaction (PCR) based diagnosis was developed for the detection of virulent Salmonella typhi in the blood specimens from patients suspected for typhoid fever. After the Widal test, two pairs of primers were used for the detection of flagellin gene (fliC) of S. typhi. Among them, those positive for fliC alone were subjected to identification of genes in Via B operon of Salmonella Pathogenesity Island (SPI-7) where four primer pairs were used to detect tviA and tviB genes. Among 250 blood samples tested, 115 were positive by fliC PCR; 22 of these were negative for tviA and tviB. Hence, the method described here can be used to diagnose the incidence of Vi-negative serovar typhi especially in endemic regions where the Vi vaccine is administered. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  1. The role of the GABRA2 polymorphism in multiplex alcohol dependence families with minimal comorbidity: within-family association and linkage analyses.

    PubMed

    Matthews, Abigail G; Hoffman, Eric K; Zezza, Nicholas; Stiffler, Scott; Hill, Shirley Y

    2007-09-01

    The genes encoding the gamma-aminobutyric acid(A) (GABA(A)) receptor have been the focus of several recent studies investigating the genetic etiology of alcohol dependence. Analyses of multiplex families found a particular gene, GABRA2, to be highly associated with alcohol dependence, using within-family association tests and other methods. Results were confirmed in three case-control studies. The objective of this study was to investigate the GABRA2 gene in another collection of multiplex families. Analyses were based on phenotypic and genotypic data available for 330 individuals from 65 bigenerational pedigrees with a total of 232 alcohol-dependent subjects. A proband pair of same-sex siblings meeting Diagnostic and Statistical Manual of Mental Disorders, Third Edition, criteria for alcohol dependence was required for entry of a family into the study. One member of the proband pair was identified while in treatment for alcohol dependence. Linkage and association of GABRA2 and alcohol dependence were evaluated using SIBPAL (a nonparametric linkage package) and both the Pedigree Disequilibrium Test and the Family-Based Association Test, respectively. We find no evidence of a relationship between GABRA2 and alcohol dependence. Linkage analyses exhibited no linkage using affected/affected, affected/unaffected, and unaffected/unaffected sib pairs (all p's < .13). There was no evidence of a within-family association (all p's > .39). Comorbidity may explain why our results differ from those in the literature. The presence of primary drug dependence and/or other psychiatric disorders is minimal in our pedigrees, although several of the other previously published multiplex family analyses exhibit a greater degree of comorbidity.

  2. Universal multiplex PCR and CE for quantification of SMN1/SMN2 genes in spinal muscular atrophy.

    PubMed

    Wang, Chun-Chi; Chang, Jan-Gowth; Jong, Yuh-Jyh; Wu, Shou-Mei

    2009-04-01

    We established a universal multiplex PCR and CE to calculate the copy number of survival motor neuron (SMN1 and SMN2) genes for clinical screening of spinal muscular atrophy (SMA). In this study, one universal fluorescent primer was designed and applied for multiplex PCR of SMN1, SMN2 and two internal standards (CYBB and KRIT1). These amplicons were separated by conformation sensitive CE. Mixture of hydroxyethyl cellulose and hydroxypropyl cellulose were used in this CE system. Our method provided the potential to separate two 390-bp PCR products that differ in a single nucleotide. Differentiation and quantification of SMN1 and SMN2 are essential for clinical screening of SMA patients and carriers. The DNA samples included 22 SMA patients, 45 parents of SMA patients (obligatory carriers) and 217 controls. For evaluating accuracy, those 284 samples were blind-analyzed by this method and denaturing high pressure liquid chromatography (DHPLC). Eight of the total samples showed different results. Among them, two samples were diagnosed as having only SMN2 gene by DHPLC, however, they contained both SMN1 and SMN2 by our method. They were further confirmed by DNA sequencing. Our method showed good agreement with the DNA sequencing. The multiplex ligation-dependent probe amplification (MLPA) was used for confirming the other five samples, and showed the same results with our CE method. For only one sample, our CE showed different results with MLPA and DNA sequencing. One out of 284 samples (0.35%) belonged to mismatching. Our method provided a better accurate method and convenient method for clinical genotyping of SMA disease.

  3. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria.

    PubMed

    Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-06-21

    In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.

  4. Multiplex Touchdown PCR for Rapid Typing of the Opportunistic Pathogen Propionibacterium acnes

    PubMed Central

    Barnard, Emma; Nagy, István; Hunyadkürti, Judit; Patrick, Sheila

    2015-01-01

    The opportunistic human pathogen Propionibacterium acnes is composed of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II, and III, which vary in their production of putative virulence factors, their inflammatory potential, and their biochemical, aggregative, and morphological characteristics. Although multilocus sequence typing (MLST) currently represents the gold standard for unambiguous phylogroup classification and individual strain identification, it is a labor-intensive and time-consuming technique. As a consequence, we developed a multiplex touchdown PCR assay that in a single reaction can confirm the species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA gene (all isolates), ATPase (types IA1, IA2, and IC), sodA (types IA2 and IB), atpD (type II), and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterized by MLST and representing types IA1 (n = 145), IA2 (n = 20), IB (n = 65), IC (n = 7), II (n = 45), and III (n = 30), the multiplex displayed 100% sensitivity and 100% specificity for detecting isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. This multiplex assay will provide researchers with a rapid, high-throughput, and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, and it will serve as a prescreening tool to maximize the number of genetically diverse isolates selected for downstream higher-resolution sequence-based analyses. PMID:25631794

  5. Regulatory RNA-assisted genome engineering in microorganisms.

    PubMed

    Si, Tong; HamediRad, Mohammad; Zhao, Huimin

    2015-12-01

    Regulatory RNAs are increasingly recognized and utilized as key modulators of gene expression in diverse organisms. Thanks to their modular and programmable nature, trans-acting regulatory RNAs are especially attractive in genome-scale applications. Here we discuss the recent examples in microbial genome engineering implementing various trans-acting RNA platforms, including sRNA, RNAi, asRNA and CRISRP-Cas. In particular, we focus on how the scalable and multiplex nature of trans-acting RNAs has been used to tackle the challenges in creating genome-wide and combinatorial diversity for functional genomics and metabolic engineering applications. Advances in computational design and context-dependent regulation are also discussed for their contribution in improving fine-tuning capabilities of trans-acting RNAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families.

    PubMed

    Harripaul, R; Vasli, N; Mikhailov, A; Rafiq, M A; Mittal, K; Windpassinger, C; Sheikh, T I; Noor, A; Mahmood, H; Downey, S; Johnson, M; Vleuten, K; Bell, L; Ilyas, M; Khan, F S; Khan, V; Moradi, M; Ayaz, M; Naeem, F; Heidari, A; Ahmed, I; Ghadami, S; Agha, Z; Zeinali, S; Qamar, R; Mozhdehipanah, H; John, P; Mir, A; Ansar, M; French, L; Ayub, M; Vincent, J B

    2018-04-01

    Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations (ABI2, MAPK8, MPDZ, PIDD1, SLAIN1, TBC1D23, TRAPPC6B, UBA7 and USP44), and missense mutations include the first reports of variants in BDNF or TET1 associated with ID. The genes identified also showed overlap with de novo gene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.

  7. CRISPR-Cas9: a new and promising player in gene therapy.

    PubMed

    Xiao-Jie, Lu; Hui-Ying, Xue; Zun-Ping, Ke; Jin-Lian, Chen; Li-Juan, Ji

    2015-05-01

    First introduced into mammalian organisms in 2013, the RNA-guided genome editing tool CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) offers several advantages over conventional ones, such as simple-to-design, easy-to-use and multiplexing (capable of editing multiple genes simultaneously). Consequently, it has become a cost-effective and convenient tool for various genome editing purposes including gene therapy studies. In cell lines or animal models, CRISPR-Cas9 can be applied for therapeutic purposes in several ways. It can correct the causal mutations in monogenic disorders and thus rescue the disease phenotypes, which currently represents the most translatable field in CRISPR-Cas9-mediated gene therapy. CRISPR-Cas9 can also engineer pathogen genome such as HIV for therapeutic purposes, or induce protective or therapeutic mutations in host tissues. Moreover, CRISPR-Cas9 has shown potentials in cancer gene therapy such as deactivating oncogenic virus and inducing oncosuppressor expressions. Herein, we review the research on CRISPR-mediated gene therapy, discuss its advantages, limitations and possible solutions, and propose directions for future research, with an emphasis on the opportunities and challenges of CRISPR-Cas9 in cancer gene therapy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Gene expression profiling of human alveolar macrophages infected by B. anthracis spores demonstrates TNF-α and NF-κb are key components of the innate immune response to the pathogen

    PubMed Central

    2009-01-01

    Background Bacillus anthracis, the etiologic agent of anthrax, has recently been used as an agent of bioterrorism. The innate immune system initially appears to contain the pathogen at the site of entry. Because the human alveolar macrophage (HAM) plays a key role in lung innate immune responses, studying the HAM response to B. anthracis is important in understanding the pathogenesis of the pulmonary form of this disease. Methods In this paper, the transcriptional profile of B. anthracis spore-treated HAM was compared with that of mock-infected cells, and differentially expressed genes were identified by Affymetrix microarray analysis. A portion of the results were verified by Luminex protein analysis. Results The majority of genes modulated by spores were upregulated, and a lesser number were downregulated. The differentially expressed genes were subjected to Ingenuity Pathway analysis, the Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis, the Promoter Analysis and Interaction Network Toolset (PAINT) and Oncomine analysis. Among the upregulated genes, we identified a group of chemokine ligand, apoptosis, and, interestingly, keratin filament genes. Central hubs regulating the activated genes were TNF-α, NF-κB and their ligands/receptors. In addition to TNF-α, a broad range of cytokines was induced, and this was confirmed at the level of translation by Luminex multiplex protein analysis. PAINT analysis revealed that many of the genes affected by spores contain the binding site for c-Rel, a member of the NF-κB family of transcription factors. Other transcription regulatory elements contained in many of the upregulated genes were c-Myb, CP2, Barbie Box, E2F and CRE-BP1. However, many of the genes are poorly annotated, indicating that they represent novel functions. Four of the genes most highly regulated by spores have only previously been associated with head and neck and lung carcinomas. Conclusion The results demonstrate not only that TNF-α and NF-κb are key components of the innate immune response to the pathogen, but also that a large part of the mechanisms by which the alveolar macrophage responds to B. anthracis are still unknown as many of the genes involved are poorly annotated. PMID:19744333

  9. Single Multiplex PCR Assay To Identify Simultaneously the Six Categories of Diarrheagenic Escherichia coli Associated with Enteric Infections

    PubMed Central

    Vidal, Maricel; Kruger, Eileen; Durán, Claudia; Lagos, Rosanna; Levine, Myron; Prado, Valeria; Toro, Cecilia; Vidal, Roberto

    2005-01-01

    We designed a multiplex PCR for the detection of all categories of diarrheagenic Escherichia coli. This method proved to be specific and rapid in detecting virulence genes from Shiga toxin-producing (stx1, stx2, and eae), enteropathogenic (eae and bfp), enterotoxigenic (stII and lt), enteroinvasive (virF and ipaH), enteroaggregative (aafII), and diffuse adherent (daaE) Escherichia coli in stool samples. PMID:16208019

  10. Rapid identification of HPV 16 and 18 by multiplex nested PCR-immunochromatographic test.

    PubMed

    Kuo, Yung-Bin; Li, Yi-Shuan; Chan, Err-Cheng

    2015-02-01

    Human papillomavirus (HPV) types 16 and 18 are known to be high-risk viruses that cause cervical cancer. An HPV rapid testing kit that could help physicians to make early and more informed decisions regarding patient care is needed urgently but not yet available. This study aimed to develop a multiplex nested polymerase chain reaction-immunochromatographic test (PCR-ICT) for the rapid identification of HPV 16 and 18. A multiplex nested PCR was constructed to amplify the HPV 16 and 18 genotype-specific L1 gene fragments and followed by ICT which coated with antibodies to identify rapidly the different PCR products. The type-specific gene regions of high-risk HPV 16 and 18 could be amplified successfully by multiplex nested PCR at molecular sizes of approximately 99 and 101bp, respectively. The capture antibodies raised specifically against the moleculars labeled on the PCR products could be detected simultaneously both HPV 16 and 18 in one strip. Under optimal conditions, this PCR-ICT assay had the capability to detect HPV in a sample with as low as 100 copies of HPV viral DNA. The PCR-ICT system has the advantage of direct and simultaneous detection of two high-risk HPV 16 and 18 DNA targets in one sample, which suggested a significant potential of this assay for clinical application. Copyright © 2014. Published by Elsevier B.V.

  11. [Application of multiplex rt-PCR assay for screening rare or cryptic chromosome translocations in de novo patients with acute myeloid leukemia].

    PubMed

    Chen, Hai-Min; Yuan, Hai-Yang; Fan, Xing; He, Hai-Yan; Chen, Bing; Shi, Jing-Yi; Zhu, Yong-Mei

    2010-10-01

    This study was aimed to investigate the clinical feasibility of using multiplex PT-PCR assay for screening rare/cryptic chromosome translocations in patients with de novo acute myeloid leukemia. For 126 patients with de novo AML-M4/M5 without common chromosome translocations including t(15;17), t(8;21) and t(16;16), 3 parallel multiplex RT-PCR assays were set up to detect 6 mll-related gene rearrangements (mll/af10, mll/af17, mll/ell, mll/af9, mll/af6 and mll/enl) with low detection rate and 4 rare fusion genes (dek/can, tls/erg, aml1/mds (evi1) and npm/mlf1). The results showed that 11 patients with positive result from 126 patients were detected which involved in 5 molecular abnormalities. Among them, 10 cases were AML-M5 (16.67%), 1 cases AML-M4 (1.51%). The marker chromosomes were observed in 2 cases out of 11 cases through conventional karyotyping analysis, the karyotyping analysis in 1 case was not performed because this case had 1 mitotic figure only, no any cytogenetic aberrations were found in other 8 cases through R-band karyotyping analysis. It is concluded that multiplex RT-PCR designed in this study can quickly, effectively and accurately identify the rare/cryptic chromosome translocations and can be used in clinical detection.

  12. The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay

    PubMed Central

    Garrido-Bailón, Encarna; Higes, Mariano; Martínez-Salvador, Amparo; Antúnez, Karina; Botías, Cristina; Meana, Aránzazu; Prieto, Lourdes; Martín-Hernández, Raquel

    2013-01-01

    The microorganisms Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius are the three most important pathogens that affect honeybee brood. The aim of the present study was to evaluate the prevalence of these pathogens in honeybee colonies and to elucidate their role in the honeybee colony losses in Spain. In order to get it, a multiplex polymerase chain reaction (PCR) assay was developed to simultaneously amplify the16S ribosomal ribonucleic acid (rRNA) gene of P. larvae and M. plutonius, and the 5.8S rRNA gene of A. apis. The multiplex PCR assay provides a quick and specific tool that successfully detected the three infectious pathogens (P. larvae, M. plutonius and A. apis) in brood and adult honeybee samples without the need for microbiological culture. This technique was then used to evaluate the prevalence of these pathogens in Spanish honeybee colonies in 2006 and 2007, revealing our results a low prevalence of these pathogens in most of the geographic areas studied. PMID:23919248

  13. Inflammatory gene networks in term human decidual cells define a potential signature for cytokine-mediated parturition.

    PubMed

    Ibrahim, Sherrine A; Ackerman, William E; Summerfield, Taryn L; Lockwood, Charles J; Schatz, Frederick; Kniss, Douglas A

    2016-02-01

    Inflammation is a proximate mediator of preterm birth and fetal injury. During inflammation several microRNAs (22 nucleotide noncoding ribonucleic acid (RNA) molecules) are up-regulated in response to cytokines such as interleukin-1β. MicroRNAs, in most cases, fine-tune gene expression, including both up-regulation and down-regulation of their target genes. However, the role of pro- and antiinflammatory microRNAs in this process is poorly understood. The principal goal of the work was to examine the inflammatory genomic profile of human decidual cells challenged with a proinflammatory cytokine known to be present in the setting of preterm parturition. We determined the coding (messenger RNA) and noncoding (microRNA) sequences to construct a network of interacting genes during inflammation using an in vitro model of decidual stromal cells. The effects of interleukin-1β exposure on mature microRNA expression were tested in human decidual cell cultures using the multiplexed NanoString platform, whereas the global inflammatory transcriptional response was measured using oligonucleotide microarrays. Differential expression of select transcripts was confirmed by quantitative real time-polymerase chain reaction. Bioinformatics tools were used to infer transcription factor activation and regulatory interactions. Interleukin-1β elicited up- and down-regulation of 350 and 78 nonredundant transcripts (false discovery rate < 0.1), respectively, including induction of numerous cytokines, chemokines, and other inflammatory mediators. Whereas this transcriptional response included marked changes in several microRNA gene loci, the pool of fully processed, mature microRNA was comparatively stable following a cytokine challenge. Of a total of 6 mature microRNAs identified as being differentially expressed by NanoString profiling, 2 (miR-146a and miR-155) were validated by quantitative real time-polymerase chain reaction. Using complementary bioinformatics approaches, activation of several inflammatory transcription factors could be inferred downstream of interleukin-1β based on the overall transcriptional response. Further analysis revealed that miR-146a and miR-155 both target genes involved in inflammatory signaling, including Toll-like receptor and mitogen-activated protein kinase pathways. Stimulation of decidual cells with interleukin-1β alters the expression of microRNAs that function to temper proinflammatory signaling. In this setting, some microRNAs may be involved in tissue-level inflammation during the bulk of gestation and assist in pregnancy maintenance. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Development Status of the WetLab-2 Project: New Tools for On-orbit Real-time Quantitative Gene Expression.

    NASA Technical Reports Server (NTRS)

    Jung, Jimmy; Parra, Macarena P.; Almeida, Eduardo; Boone, Travis; Chinn, Tori; Ricco, Antonio; Souza, Kenneth; Hyde, Liz; Rukhsana, Yousuf; Richey, C. Scott

    2013-01-01

    The primary objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform to facilitate gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens grown or cultured on orbit. The WetLab-2 equipment will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. In addition to the logistical benefits of in-situ sample processing and analysis, conducting qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms. The system can also validate terrestrial analyses of samples returned from ISS by providing quantitative on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experimental parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Finally, WetLab-2 can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-5 in Aug. 2014.Progress to date: The WetLab-2 project completed a thorough study of commercially available qRT-PCR systems and performed a downselect based on both scientific and engineering requirements. The selected instrument, the Cepheid SmartCycler, has advantages including modular design (16 independent PCR modules), low power consumption, and rapid ramp times. The SmartCycler has multiplex capabilities, assaying up to four genes of interest in each of the 16 modules. The WetLab-2 team is currently working with Cepheid to modify the unit for housing within an EXPRESS rack locker on the ISS. This will enable the downlink of data to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project is currently designing a module that will lyse the cells and extract RNA of sufficient quality for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. Current testing focuses on two promising commercial products and chemistries that allow for RNA extraction with minimal complexity and crew time.

  15. Detection of Shiga-Like Toxin (stx1 and stx2), Intimin (eaeA), and Enterohemorrhagic Escherichia coli (EHEC) Hemolysin (EHEC hlyA) Genes in Animal Feces by Multiplex PCR

    PubMed Central

    Fagan, Peter K.; Hornitzky, Michael A.; Bettelheim, Karl A.; Djordjevic, Steven P.

    1999-01-01

    A multiplex PCR was developed for the rapid detection of genes encoding Shiga toxins 1 and 2 (stx1 and stx2), intimin (eaeA), and enterohemolysin A (hlyA) in 444 fecal samples derived from healthy and clinically affected cattle, sheep, pigs, and goats. The method involved non-solvent-based extraction of nucleic acid from an aliquot of an overnight culture of feces in EC (modified) broth. The detection limit of the assay for both fecal samples and pure cultures was between 18 and 37 genome equivalents. stx1 and hlyA were the most commonly encountered virulence factors. PMID:9925634

  16. Development of a tiered and binned genetic counseling model for informed consent in the era of multiplex testing for cancer susceptibility.

    PubMed

    Bradbury, Angela R; Patrick-Miller, Linda; Long, Jessica; Powers, Jacquelyn; Stopfer, Jill; Forman, Andrea; Rybak, Christina; Mattie, Kristin; Brandt, Amanda; Chambers, Rachelle; Chung, Wendy K; Churpek, Jane; Daly, Mary B; Digiovanni, Laura; Farengo-Clark, Dana; Fetzer, Dominique; Ganschow, Pamela; Grana, Generosa; Gulden, Cassandra; Hall, Michael; Kohler, Lynne; Maxwell, Kara; Merrill, Shana; Montgomery, Susan; Mueller, Rebecca; Nielsen, Sarah; Olopade, Olufunmilayo; Rainey, Kimberly; Seelaus, Christina; Nathanson, Katherine L; Domchek, Susan M

    2015-06-01

    Multiplex genetic testing, including both moderate- and high-penetrance genes for cancer susceptibility, is associated with greater uncertainty than traditional testing, presenting challenges to informed consent and genetic counseling. We sought to develop a new model for informed consent and genetic counseling for four ongoing studies. Drawing from professional guidelines, literature, conceptual frameworks, and clinical experience, a multidisciplinary group developed a tiered-binned genetic counseling approach proposed to facilitate informed consent and improve outcomes of cancer susceptibility multiplex testing. In this model, tier 1 "indispensable" information is presented to all patients. More specific tier 2 information is provided to support variable informational needs among diverse patient populations. Clinically relevant information is "binned" into groups to minimize information overload, support informed decision making, and facilitate adaptive responses to testing. Seven essential elements of informed consent are provided to address the unique limitations, risks, and uncertainties of multiplex testing. A tiered-binned model for informed consent and genetic counseling has the potential to address the challenges of multiplex testing for cancer susceptibility and to support informed decision making and adaptive responses to testing. Future prospective studies including patient-reported outcomes are needed to inform how to best incorporate multiplex testing for cancer susceptibility into clinical practice.Genet Med 17 6, 485-492.

  17. Prevalence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using multiplex polymerase chain reaction

    PubMed Central

    Latha, C.; Anu, C. J.; Ajaykumar, V. J.; Sunil, B.

    2017-01-01

    Aim: The objective of the study was to investigate the occurrence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using the multiplex polymerase chain reaction (PCR) method. Materials and Methods: The assay combined an enrichment step in tryptic soy broth with yeast extract formulated for the simultaneous growth of target pathogens, DNA isolation and multiplex PCR. A total of 1134 samples including beef (n=349), chicken (n=325), pork (n=310), chevon (n=50), and meat products (n=100) were collected from different parts of Kerala, India. All the samples were subjected to multiplex PCR analysis and culture-based detection for the four pathogens in parallel. Results: Overall occurrence of L. monocytogenes was 0.08 % by cultural method. However, no L. monocytogenes was obtained by multiplex PCR method. Yersinia enterocolitica was obtained from beef and pork samples. A high prevalence of S. aureus (46.7%) was found in all types of meat samples tested. None of the samples was positive for S. Typhimurium. Conclusion: Multiplex PCR assay used in this study can detect more than one pathogen simultaneously by amplifying more than one target gene in a single reaction, which can save time and labor cost. PMID:28919685

  18. Differential Patterning of Genes Involved in Serotonin Metabolism and Transport in Extra-embryonic Tissues of the Mouse

    PubMed Central

    Wu, Hsiao-Huei; Choi, Sera; Levitt, Pat

    2016-01-01

    Introduction Serotonin (5-HT) is an important neuromodulator, but recently has been shown to be involved in neurodevelopment. Although previous studies have demonstrated that the placenta is a major source of forebrain 5-HT during early forebrain development, the processes of how 5-HT production, metabolism, and transport from placenta to fetus are regulated are unknown. As an initial step in determining the mechanisms involved, we investigated the expression patterns of genes critical for 5-HT system function in mouse extraembryonic tissues. Methods Mid- through late gestation expression of 5-HT system-related enzymes, Tph1, Ddc, Maoa, and 5-HT transporters, Sert/Slc6a4, Oct3/Slc22a3, Vmat2/Slc18a2, and 5-HT in placenta and yolk sac were examined, with cell type-specific resolution, using multiplex fluorescent in situ hybridization to co-localize transcripts and immunocytochemistry to co-localize the corresponding proteins and neurotransmitter. Results Tph1 and Ddc are found in the syncytiotrophoblast I (SynT-I) and sinusoidal trophoblast giant cells (S-TGC), whereas Maoa is expressed in SynT-I, syncytiotrophoblast II (SynT-II) and S-TGC. Oct3 expression is observed in the SynT-II only, while Vmat2 is mainly expressed in S-TGC. Surprisingly, there were comparatively high expression of Tph1, Ddc, and Maoa in the yolk sac visceral endoderm. Discussion In addition to trophoblast cells, visceral endoderm cells in the yolk sac may contribute to fetal 5-HT production. The findings raise the possibility of a more complex regulation of 5-HT access to the fetus through the differential roles of trophoblasts that surround maternal and fetal blood space and of yolk sac endoderm prior to normal degeneration. PMID:27238716

  19. Is α‐T catenin (VR22) an Alzheimer's disease risk gene?

    PubMed Central

    Bertram, Lars; Mullin, Kristina; Parkinson, Michele; Hsiao, Monica; Moscarillo, Thomas J; Wagner, Steven L; Becker, K David; Velicelebi, Gonul; Blacker, Deborah; Tanzi, Rudolph E

    2007-01-01

    Background Recently, conflicting reports have been published on the potential role of genetic variants in the α‐T catenin gene (VR22; CTNNA3) on the risk for Alzheimer's disease. In these papers, evidence for association is mostly observed in multiplex families with Alzheimer's disease, whereas case–control samples of sporadic Alzheimer's disease are predominantly negative. Methods After sequencing VR22 in multiplex families with Alzheimer's disease linked to chromosome 10q21, we identified a novel non‐synonymous (Ser596Asn; rs4548513) single nucleotide polymorphism (SNP). This and four non‐coding SNPs were assessed in two independent samples of families with Alzheimer's disease, one with 1439 subjects from 437 multiplex families with Alzheimer's disease and the other with 489 subjects from 217 discordant sibships. Results A weak association with the Ser596Asn SNP in the multiplex sample, predominantly in families with late‐onset Alzheimer's disease (p = 0.02), was observed. However, this association does not seem to contribute substantially to the chromosome 10 Alzheimer's disease linkage signal that we and others have reported previously. No evidence was found of association with any of the four additional SNPs tested in the multiplex families with Alzheimer's disease. Finally, the Ser596Asn change was not associated with the risk for Alzheimer's disease in the independent discordant sibship sample. Conclusions This is the first study to report evidence of an association between a potentially functional, non‐synonymous SNP in VR22 and the risk for Alzheimer's disease. As the underlying effects are probably small, and are only seen in families with multiple affected members, the population‐wide significance of this finding remains to be determined. PMID:17209133

  20. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays.

    PubMed

    Panicker, Gitika; Call, Douglas R; Krug, Melissa J; Bej, Asim K

    2004-12-01

    This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50 degrees C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 10(2) to 10(3) CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers.

  1. Detection of Pathogenic Vibrio spp. in Shellfish by Using Multiplex PCR and DNA Microarrays

    PubMed Central

    Panicker, Gitika; Call, Douglas R.; Krug, Melissa J.; Bej, Asim K.

    2004-01-01

    This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50°C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 102 to 103 CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers. PMID:15574946

  2. Identification of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from burn patients by multiplex PCR.

    PubMed

    Montazeri, Effat Abbasi; Khosravi, Azar Dokht; Jolodar, Abbas; Ghaderpanah, Mozhgan; Azarpira, Samireh

    2015-05-01

    Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS) as important human pathogens are causes of nosocomial infections worldwide. Burn patients are at a higher risk of local and systemic infections with these microorganisms. A screening method for MRSA by using a multiplex polymerase chain reaction (PCR) targeting the 16S ribosomal RNA (rRNA), mecA, and nuc genes was developed. The aim of the present study was to investigate the potential of this PCR assay for the detection of MRSA strains in samples from burn patients. During an 11-month period, 230 isolates (53.11%) of Staphylococcus spp. were collected from burn patients. The isolates were identified as S. aureus by using standard culture and biochemical tests. DNA was extracted from bacterial colonies and multiplex PCR was used to detect MRSA and MRCoNS strains. Of the staphylococci isolates, 149 (64.9%) were identified as S. aureus and 81 (35.21%) were described as CoNS. Among the latter, 51 (62.97%) were reported to be MRCoNS. From the total S. aureus isolates, 132 (88.6%) were detected as MRSA and 17 (11.4%) were methicillin-susceptible S. aureus (MSSA). The presence of the mecA gene in all isolates was confirmed by using multiplex PCR as a gold standard method. This study presented a high MRSA rate in the region under investigation. The 16S rRNA-mecA-nuc multiplex PCR is a good tool for the rapid characterization of MRSA strains. This paper emphasizes the need for preventive measures and choosing effective antimicrobials against MRSA and MRCoNS infections in the burn units. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  3. Simultaneous detection of Theileria annulata and Theileria orientalis infections using recombinase polymerase amplification.

    PubMed

    Hassan, Muhammad Adeel; Liu, Junlong; Sajid, Muhammad Sohail; Rashid, Muhammad; Mahmood, Altaf; Abbas, Qamar; Guan, Guiquan; Yin, Hong; Luo, Jianxun

    2018-05-01

    Theileriosis is a disease of domesticated animals in tropical and subtropical countries and causes significant reductions in livestock productivity. The arid region of Punjab in Pakistan is notorious for the presence of the vector tick (Acari: Ixodidae) and tick-borne diseases, such as theileriosis and babesiosis. The distribution of Theileria annulata and T. orientalis in the Chakwal district of Punjab was determined by developing a multiplex recombinase polymerase amplification (RPA) assay as a scientific basis for formulating control strategies for bovine theileriosis. Specificity was evaluated using DNA from related piroplasm species, while analytical sensitivity was calculated using a long fragment of the enolase gene. A total of 188 blood samples were collected on FTA cards (Whatman ® ) from tick-infested asymptomatic breeds of cattle (Bos indicus, Bos taurus, and Bos indicus × Bos taurus) in the study district. Finally, infections with of T. annulata and T. orientalis were detected using the multiplex RPA and compared with the conventional multiplex polymerase chain reaction (PCR). The multiplex RPA specifically amplified 282-bp and 229-bp fragments of the enolase gene from T. annulata and T. orientalis and had no cross-reaction with other piroplasm species. It was determined that 45 (23.9%) and 5 (2.6%) out of 188 blood samples were positive for T. annulata and T. orientalis, respectively, when examined using RPA. Multiplex PCR detection indicated that 32 (17.0%) and 3 (1.6%) blood samples were positive for T. annulata and T. orientalis, respectively. In the present study, a specific RPA method was developed for simultaneous differentiation and detection of T. annulata and T. orientalis infections and used for the first time for the detection of the two bovine Theileria infections. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses.

    PubMed

    Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping

    2018-06-01

    The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.

  5. Cas9-based tools for targeted genome editing and transcriptional control.

    PubMed

    Xu, Tao; Li, Yongchao; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong

    2014-03-01

    Development of tools for targeted genome editing and regulation of gene expression has significantly expanded our ability to elucidate the mechanisms of interesting biological phenomena and to engineer desirable biological systems. Recent rapid progress in the study of a clustered, regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein system in bacteria has facilitated the development of newly facile and programmable platforms for genome editing and transcriptional control in a sequence-specific manner. The core RNA-guided Cas9 endonuclease in the type II CRISPR system has been harnessed to realize gene mutation and DNA deletion and insertion, as well as transcriptional activation and repression, with multiplex targeting ability, just by customizing 20-nucleotide RNA components. Here we describe the molecular basis of the type II CRISPR/Cas system and summarize applications and factors affecting its utilization in model organisms. We also discuss the advantages and disadvantages of Cas9-based tools in comparison with widely used customizable tools, such as Zinc finger nucleases and transcription activator-like effector nucleases.

  6. High-throughput microfluidics to control and measure signaling dynamics in single yeast cells

    PubMed Central

    Hansen, Anders S.; Hao, Nan; O'Shea, Erin K.

    2015-01-01

    Microfluidics coupled to quantitative time-lapse fluorescence microscopy is transforming our ability to control, measure, and understand signaling dynamics in single living cells. Here we describe a pipeline that incorporates multiplexed microfluidic cell culture, automated programmable fluid handling for cell perturbation, quantitative time-lapse microscopy, and computational analysis of time-lapse movies. We illustrate how this setup can be used to control the nuclear localization of the budding yeast transcription factor Msn2. Using this protocol, we generate oscillations of Msn2 localization and measure the dynamic gene expression response of individual genes in single cells. The protocol allows a single researcher to perform up to 20 different experiments in a single day, whilst collecting data for thousands of single cells. Compared to other protocols, the present protocol is relatively easy to adopt and higher-throughput. The protocol can be widely used to control and monitor single-cell signaling dynamics in other signal transduction systems in microorganisms. PMID:26158443

  7. Loss of function mutation in LARP7, chaperone of 7SK ncRNA, causes a syndrome of facial dysmorphism, intellectual disability, and primordial dwarfism.

    PubMed

    Alazami, Anas M; Al-Owain, Mohammad; Alzahrani, Fatema; Shuaib, Taghreed; Al-Shamrani, Hussain; Al-Falki, Yahya H; Al-Qahtani, Saleh M; Alsheddi, Tarfa; Colak, Dilek; Alkuraya, Fowzan S

    2012-10-01

    Primordial dwarfism (PD) is a clinically and genetically heterogeneous condition. Various molecular mechanisms are known to underlie the disease including impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA damage response, defective spliceosomal machinery, and abnormal replication licensing. Here, we describe a syndromic form of PD associated with severe intellectual disability and distinct facial features in a large multiplex Saudi family. Analysis reveals a novel underlying mechanism for PD involving depletion of 7SK, an abundant cellular noncoding RNA (ncRNA), due to mutation of its chaperone LARP7. We show that 7SK levels are tightly linked to LARP7 expression across cell lines, and that this chaperone is ubiquitously expressed in the mouse embryo. The 7SK is known to influence the expression of a wide array of genes through its inhibitory effect on the positive transcription elongation factor b (P-TEFb) as well as its competing role in HMGA1-mediated transcriptional regulation. This study documents a critical role played by ncRNA in human development and adds to the growing list of molecular mechanisms that, when perturbed, converge on the PD phenotype. © 2012 Wiley Periodicals, Inc.

  8. Effects of Reticuloendotheliosis Virus Infection on Cytokine Production in SPF Chickens

    PubMed Central

    Xue, Mei; Shi, Xingming; Zhao, Yan; Cui, Hongyu; Hu, Shunlei; Cui, Xianlan; Wang, Yunfeng

    2013-01-01

    Infection with reticuloendotheliosis virus (REV), a gammaretrovirus in the Retroviridae family, can result in immunosuppression and subsequent increased susceptibility to secondary infections. The effects of REV infection on expression of mRNA for cytokine genes in chickens have not been completely elucidated. In this study, using multiplex branched DNA (bDNA) technology, we identified molecular mediators that participated in the regulation of the immune response during REV infection in chickens. Cytokine and chemokine mRNA expression levels were evaluated in the peripheral blood mononuclear cells (PBMCs). Expression levels of interleukin (IL)-4, IL-10, IL-13 and tumor necrosis factor (TNF)-α were significantly up-regulated while interferon (IFN)-α, IFN-β, IFN-γ, IL-1β,IL-2, IL-3, IL-15, IL-17F, IL-18 and colony-stimulating factor (CSF)-1 were markedly decreased in PBMCs at all stages of infection. Compared with controls, REV infected chickens showed greater expression levels of IL-8 in PBMCs 21 and 28 days post infection. In addition, REV regulates host immunity as a suppressor of T cell proliferative responses. The results in this study will help us to understand the host immune response to virus pathogens. PMID:24358317

  9. Development and validation of a multiplex conventional PCR assay for simultaneous detection and grouping of porcine bocaviruses.

    PubMed

    Zheng, Xiaowen; Liu, Gaopeng; Opriessnig, Tanja; Wang, Zining; Yang, Zongqi; Jiang, Yonghou

    2016-10-01

    Porcine bocavirus (PBoV), a newly described porcine parvovirus, has received attention because it can be commonly identified in clinically affected pigs including pigs with post-weaning multisystemic wasting syndrome (PWMS) and pigs with diarrhea. In recent years, novel PBoVs have been identified and were classified into three genogroups, but the ability to detect and classify these novel PBoVs is not comprehensive to date. In this study, a multiplex conventional PCR assay for simultaneous detection and grouping of PBoVs was developed by screening combinations of mixed primer pairs followed by optimization of the PCR conditions. This method exclusively amplifies targeted fragments of 531bp from the VP1 gene of PBoV G1, 291bp from the NP1 gene of PBoV G2, and 384bp from the NP1/VP1 gene of PBoV G3. The assay has a detection limit of 1.0×10(3)copies/μL for PBoV G1 4.5×10(3) for PBoV G2 and 3.8×10(3) for PBoV G3 based on testing mixed purified plasmid constructs containing the specific viral target fragments. The performance of the multiplex PCR assay was comparable to that of the single PCRs which used the same primer pairs. Using the newly established multiplex PCR assay, 227 field samples including faeces, serum and tissue samples from pigs were investigated. All three PBoV genogroups were detected in the clinical samples with a detection rate of 1.3%, 2.6% and 12.3%, respectively for PBoV G1, G2 and G3. Additionally, coinfections with two or more PBoV were detected in 1.7% of the samples investigated. These results indicate the multiplex PCR assay is specific, sensitive and rapid, and can be used for the detection and differentiation of single and multiple infections of the three PBoV genogroups in pigs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse.

    PubMed

    Jurado, Juan; Prieto-Alamo, María-José; Madrid-Rísquez, José; Pueyo, Carmen

    2003-11-14

    This work provides the first absolute expression patterns of genes coding for all known components of both thioredoxin (Trx) and glutaredoxin (Grx) systems in mouse: Trx1, Trx2, Grx1, Grx2, TrxR1, TrxR2, thioredoxin/glutathione reductase, and glutathione reductase. We devised a novel assay that, combining the advantages of multiplex and real-time PCR, streamlines the quantitation of the actual mRNA copy numbers in whole-animal experiments. Quantitations reported establish differences among adult organs and embryonic stages, compare mRNA decay rates, explore the significance of alternative mRNA isoforms derived from TrxR1 and Grx2 genes, and examine the time-course expression upon superoxide stress promoted by paraquat. Collectively, these quantitations show: i) unique expression profiles for each transcript and mouse organ examined, yet with some general trends like the higher amounts of mRNA species coding for thioredoxins than those coding for the reductases that control their redox states and activities; ii) continuous expression during embryogenesis with outstanding up-regulations of Trx1 and TrxR1 mRNAs in specific temporal sequences; iii) drastic differences in mRNA stability, liver decay rates range from 2.8 h (thioredoxin/glutathione reductase) to >/= 35 h (Trx1 and Trx2), and directly correlate with mRNA steady-state values; iv) testis-specific differences in the amounts (relative to total isoforms) of transcripts yielding the mitochondrial Grx2a and 67-kDa TrxR1 variants; and v) coordinated up-regulation of TrxR1 and glutathione reductase mRNAs in response to superoxide stress in an organ-specific manner. Further insights into in vivo roles of these redox systems should be gained from more focused studies of the mechanisms underlying the vast differences reported here at the transcript level.

  11. Universal fluorescent multiplex PCR and capillary electrophoresis for evaluation of gene conversion between SMN1 and SMN2 in spinal muscular atrophy.

    PubMed

    Wang, Chun-Chi; Jong, Yuh-Jyh; Chang, Jan-Gowth; Chen, Yen-Ling; Wu, Shou-Mei

    2010-07-01

    We have developed a capillary electrophoresis (CE) method with universal fluorescent multiplex PCR to simultaneously detect the SMN1 and SMN2 genes in exons 7 and 8. Spinal muscular atrophy (SMA) is a very frequent inherited disease caused by the absence of the SMN1 gene in approximately 94% of patients. Those patients have deletion of the SMN1 gene or gene conversion between SMN1 and SMN2. However, most methods only focus on the analysis of whole gene deletion, and ignore gene conversion. Simultaneous quantification of SMN1 and SMN2 in exons 7 and 8 is a good strategy for estimating SMN1 deletion or SMN1 to SMN2 gene conversion. This study established a CE separation allowing differentiation of all copy ratios of SMN1 to SMN2 in exons 7 and 8. Among 212 detected individuals, there were 23 SMA patients, 45 carriers, and 144 normal subjects. Three individuals had different ratios of SMN1 to SMN2 in two exons, including an SMA patient having two SMN2 copies in exon 7 but one SMN1 copy in exon 8. This method could provide more information about SMN1 deletion or SMN1 to SMN2 gene conversion for SMA genotyping and diagnosis.

  12. Timothy grass pollen extract-induced gene expression and signalling pathways in airway epithelial cells.

    PubMed

    Röschmann, K I L; Luiten, S; Jonker, M J; Breit, T M; Fokkens, W J; Petersen, A; van Drunen, C M

    2011-06-01

    Grass pollen allergy is one of the most common allergies worldwide and airborne allergens are the major cause of allergic rhinitis. Airway epithelial cells (AECs) are the first to encounter and respond to aeroallergens and are therefore interesting targets for the development of new therapeutics. Our understanding of the epithelial contribution to immune responses is limited as most studies focus on only a few individual genes or proteins. To describe in detail the Timothy grass pollen extract (GPE)-induced gene expression in AECs. NCI-H292 cells were exposed to GPE for 24 h, and isolated RNA and cell culture supernatants were used for microarray analysis and multiplex ELISA, respectively. Eleven thousand and seven hundred fifty-eight transcripts were affected after exposure to GPE, with 141 genes up-regulated and 121 genes down-regulated by more than threefold. The gene ontology group cell communication was among the most prominent categories. Network analysis revealed that a substantial part of regulated genes are related to the cytokines IL-6, IL-8, IL-1A, and the transcription factor FOS. After analysing significantly regulated signalling pathways, we found, among others, epidermal growth factor receptor 1, IL-1, Notch-, and Wnt-related signalling members. Unexpectedly, we found Jagged to be down-regulated and an increased release of IL-12, in line with a more Th1-biased response induced by GPE. Our data show that the stimulation of AECs with GPE results in the induction of a broad response on RNA and protein level by which they are able to affect the initiation and regulation of local immune responses. Detailed understanding of GPE-induced genes and signalling pathways will allow us to better define the pathogenesis of the allergic response and to identify new targets for treatment. © 2011 Blackwell Publishing Ltd.

  13. CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi

    PubMed Central

    Peng, Duo; Kurup, Samarchith P.; Yao, Phil Y.; Minning, Todd A.

    2014-01-01

    ABSTRACT Trypanosoma cruzi is a protozoan parasite of humans and animals, affecting 10 to 20 million people and innumerable animals, primarily in the Americas. Despite being the largest cause of infection-induced heart disease worldwide, even among the neglected tropical diseases (NTDs) T. cruzi is considered one of the least well understood and understudied. The genetic complexity of T. cruzi as well as the limited set of efficient techniques for genome engineering contribute significantly to the relative lack of progress in and understanding of this pathogen. Here, we adapted the CRISPR-Cas9 system for the genetic engineering of T. cruzi, demonstrating rapid and efficient knockout of multiple endogenous genes, including essential genes. We observed that in the absence of a template, repair of the Cas9-induced double-stranded breaks (DSBs) in T. cruzi occurs exclusively by microhomology-mediated end joining (MMEJ) with various-sized deletions. When a template for DNA repair is provided, DSB repair by homologous recombination is achieved at an efficiency several orders of magnitude higher than that in the absence of CRISPR-Cas9-induced DSBs. We also demonstrate the high multiplexing capacity of CRISPR-Cas9 in T. cruzi by knocking down expression of an enzyme gene family consisting of 65 members, resulting in a significant reduction of enzymatic product with no apparent off-target mutations. Lastly, we show that Cas9 can mediate disruption of its own coding sequence, rescuing a growth defect in stable Cas9-expressing parasites. These results establish a powerful new tool for the analysis of gene functions in T. cruzi, enabling the study of essential genes and their functions and analysis of the many large families of related genes that occupy a substantial portion of the T. cruzi genome. PMID:25550322

  14. Multiplexed screening assay for mRNA combining nuclease protection with luminescent array detection.

    PubMed

    Martel, Ralph R; Botros, Ihab W; Rounseville, Matthew P; Hinton, James P; Staples, Robin R; Morales, David A; Farmer, John B; Seligmann, Bruce E

    2002-11-01

    The principles and performance are described for the ArrayPlate mRNA assay, a multiplexed mRNA assay for high-throughput and high-content screening and drug development. THP-1 monocytes grown and subjected to compound treatments in 96-well plates were subjected to a multiplexed nuclease protection assay in situ. The nuclease protection assay destroyed all cell-derived mRNA, but left intact stoichiometric amounts of 16 target-specific oligonucleotide probes. Upon transfer of processed cell lysates to a microplate that contained a 16-element oligonucleotide array at the bottom of each well, the various probe species were separated by immobilization at predefined elements of the array. Quantitative detection of array-bound probes was by enzyme-mediated chemiluminescence. A high-resolution charge-coupled device imager was used for the simultaneous readout of all 1536 array elements in a 96-well plate. For the measurement of 16 genes in samples of 25000 cells, the average standard deviation from well to well within a plate was 8.6% of signal intensity and was 10.8% from plate to plate. Assay response was linear and reproducibility was constant for all detected genes in samples ranging from 1000 to 50000 cells. When THP-1 monocytes were differentiated with phorbol ester and subsequently activated with bacterial lipopolysaccharide that contained different concentrations of dexamethasone, dose-dependent effects of dexamethasone on the mRNA levels of several genes were observed.

  15. Genetic screening for von Hippel-Lindau gene mutations in non-syndromic pheochromocytoma: low prevalence and false-positives or misdiagnosis indicate a need for caution.

    PubMed

    Eisenhofer, G; Vocke, C D; Elkahloun, A; Huynh, T-T; Prodanov, T; Lenders, J W M; Timmers, H J; Benhammou, J N; Linehan, W M; Pacak, K

    2012-05-01

    Genetic testing of tumor susceptibility genes is now recommended in most patients with pheochromocytoma or paraganglioma (PPGL), even in the absence of a syndromic presentation. Once a mutation is diagnosed there is rarely follow-up validation to assess the possibility of misdiagnosis. This study prospectively examined the prevalence of von Hippel-Lindau (VHL) gene mutations among 182 patients with non-syndromic PPGLs. Follow-up in positive cases included comparisons of biochemical and tumor gene expression data in 64 established VHL patients, with confirmatory genetic testing in cases with an atypical presentation. VHL mutations were detected by certified laboratory testing in 3 of the 182 patients with non-syndromic PPGLs. Two of the 3 had an unusual presentation of diffuse peritoneal metastases and substantial increases in plasma metanephrine, the metabolite of epinephrine. Tumor gene expression profiles in these 2 patients also differed markedly from those associated with established VHL syndrome. One patient was diagnosed with a partial deletion by Southern blot analysis and the other with a splice site mutation. Quantitative polymerase chain reaction, multiplex ligation-dependent probe amplification, and comparative genomic hybridization failed to confirm the partial deletion indicated by certified laboratory testing. Analysis of tumor DNA in the other patient with a splice site alteration indicated no loss of heterozygosity or second hit point mutation. In conclusion, VHL germline mutations represent a minor cause of non-syndromic PPGLs and misdiagnoses can occur. Caution should therefore be exercised in interpreting positive genetic test results as the cause of disease in patients with non-syndromic PPGLs. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Automated cell-type classification in intact tissues by single-cell molecular profiling

    PubMed Central

    2018-01-01

    A major challenge in biology is identifying distinct cell classes and mapping their interactions in vivo. Tissue-dissociative technologies enable deep single cell molecular profiling but do not provide spatial information. We developed a proximity ligation in situ hybridization technology (PLISH) with exceptional signal strength, specificity, and sensitivity in tissue. Multiplexed data sets can be acquired using barcoded probes and rapid label-image-erase cycles, with automated calculation of single cell profiles, enabling clustering and anatomical re-mapping of cells. We apply PLISH to expression profile ~2900 cells in intact mouse lung, which identifies and localizes known cell types, including rare ones. Unsupervised classification of the cells indicates differential expression of ‘housekeeping’ genes between cell types, and re-mapping of two sub-classes of Club cells highlights their segregated spatial domains in terminal airways. By enabling single cell profiling of various RNA species in situ, PLISH can impact many areas of basic and medical research. PMID:29319504

  17. Multiplexed and Microparticle-based Analyses: Quantitative Tools for the Large-Scale Analysis of Biological Systems

    PubMed Central

    Nolan, John P.; Mandy, Francis

    2008-01-01

    While the term flow cytometry refers to the measurement of cells, the approach of making sensitive multiparameter optical measurements in a flowing sample stream is a very general analytical approach. The past few years have seen an explosion in the application of flow cytometry technology for molecular analysis and measurements using micro-particles as solid supports. While microsphere-based molecular analyses using flow cytometry date back three decades, the need for highly parallel quantitative molecular measurements that has arisen from various genomic and proteomic advances has driven the development in particle encoding technology to enable highly multiplexed assays. Multiplexed particle-based immunoassays are now common place, and new assays to study genes, protein function, and molecular assembly. Numerous efforts are underway to extend the multiplexing capabilities of microparticle-based assays through new approaches to particle encoding and analyte reporting. The impact of these developments will be seen in the basic research and clinical laboratories, as well as in drug development. PMID:16604537

  18. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    PubMed

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  19. A microsphere-based assay for mutation analysis of the biotinidase gene using dried blood spots

    PubMed Central

    Lindau-Shepard, Barbara; Janik, David K.; Pass, Kenneth A.

    2012-01-01

    Biotinidase deficiency is an autosomal recessive syndrome caused by defects in the biotinidase gene, the product of which affects biotin metabolism. Newborn screening (NBS) for biotinidase deficiency can identify affected infants prior to onset of symptoms; biotin supplementation can resolve or prevent the clinical features. In NBS, dry blood spots (DBS) are usually tested for biotinidase enzyme activity by colorimetric analysis. By taking advantage of the multiplexing capabilities of the Luminex platform, we have developed a microsphere-based array genotyping method for the simultaneous detection of six disease causing mutations in the biotinidase gene, thereby permitting a second tier of molecular analysis. Genomic DNA was extracted from 3.2 mm DBS. Biotinidase gene sequences, containing the mutations of interest, were amplified by multiplexed polymerase chain reaction, followed by multiplexed allele-specific primer extension using universally tagged genotyping primers. The products were then hybridized to anti-tag carrying xTAG microspheres and detected on the Luminex platform. Genotypes were verified by sequencing. Genotyping results of 22 known biotinidase deficient samples by our xTAG biotinidase assay was in concordance with the results obtained from DNA sequencing, for all 6 mutations used in our panel. These results indicate that genotyping by an xTAG microsphere-based array is accurate, flexible, and can be adapted for high-throughput. Since NBS for biotinidase deficiency is by enzymatic assay, less than optimal quality of the DBS itself can compromise enzyme activity, while the DNA from these samples mostly remains unaffected. This assay warrants evaluation as a viable complement to the biotinidase semi-quantitative colorimetric assay. PMID:27625817

  20. Amniotic Fluid Protein Profiles of Intraamniotic Inflammatory Response to Ureaplasma spp. and Other Bacteria

    PubMed Central

    Kacerovsky, Marian; Celec, Peter; Vlkova, Barbora; Skogstrand, Kristin; Hougaard, David M.; Cobo, Teresa; Jacobsson, Bo

    2013-01-01

    Objective This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. Methods A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. Results The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. Conclusions The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria. PMID:23555967

  1. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.

    PubMed

    Kacerovsky, Marian; Celec, Peter; Vlkova, Barbora; Skogstrand, Kristin; Hougaard, David M; Cobo, Teresa; Jacobsson, Bo

    2013-01-01

    This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.

  2. Effects of fourth-order dispersion in very high-speed optical time-division multiplexed transmission.

    PubMed

    Capmany, J; Pastor, D; Sales, S; Ortega, B

    2002-06-01

    We present a closed-form expression for computation of the output pulse's rms time width in an optical fiber link with up to fourth-order dispersion (FOD) by use of an optical source with arbitrary linewidth and chirp parameters. We then specialize the expression to analyze the effect of FOD on the transmission of very high-speed linear optical time-division multiplexing systems. By suitable source chirping, FOD can be compensated for to an upper link-length limit above which other techniques must be employed. Finally, a design formula to estimate the maximum attainable bit rate limited by FOD as a function of the link length is also presented.

  3. A versatile system for rapid multiplex genome-edited CAR T cell generation

    PubMed Central

    Ren, Jiangtao; Zhang, Xuhua; Liu, Xiaojun; Fang, Chongyun; Jiang, Shuguang; June, Carl H.; Zhao, Yangbing

    2017-01-01

    The therapeutic potential of CRISPR system has already been demonstrated in many instances and begun to overlap with the rapidly expanding field of cancer immunotherapy, especially on the production of genetically modified T cell receptor or chimeric antigen receptor (CAR) T cells. Efficient genomic disruption of multiple gene loci to generate universal donor cells, as well as potent effector T cells resistant to multiple inhibitory pathways such as PD-1 and CTLA4 is an attractive strategy for cell therapy. In this study, we accomplished rapid and efficient multiplex genomic editing, and re-directing T cells with antigen specific CAR via a one-shot CRISPR protocol by incorporation of multiple gRNAs in a CAR lentiviral vector. High efficient double knockout of endogenous TCR and HLA class I could be easily achieved to generate allogeneic universal CAR T cells. We also generated Fas-resistant universal CAR T cells by triple gene disruption. Simultaneous gene editing of four gene loci using the one-shot CRISPR protocol to generate allogeneic universal T cells deficient of both PD1 and CTLA-4 was also attempted. PMID:28199983

  4. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-05

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fichorova, Raina N., E-mail: rfichorova@rics.bwh.harvard.edu; Mendonca, Kevin; Yamamoto, Hidemi S.

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascularmore » markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV + 2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P < 0.05), and decreased levels of TLR2 (P < 0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P < 0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. - Highlights: • A transcriptome nuclease protection assay assessed microbicides for vaginal safety. • Biomarkers were correlated with histopathology in paraffin-embedded rabbit tissues. • Compounds differed by effects on putative pathways of increased risk of HIV. • Nonsoxynol-9 caused inflammatory tissue damage involving TLR4 and IL-8. • An antiretroviral combination stimulated immune cells evidenced by SLC and CD4.« less

  6. The multidimensional perturbation value: a single metric to measure similarity and activity of treatments in high-throughput multidimensional screens.

    PubMed

    Hutz, Janna E; Nelson, Thomas; Wu, Hua; McAllister, Gregory; Moutsatsos, Ioannis; Jaeger, Savina A; Bandyopadhyay, Somnath; Nigsch, Florian; Cornett, Ben; Jenkins, Jeremy L; Selinger, Douglas W

    2013-04-01

    Screens using high-throughput, information-rich technologies such as microarrays, high-content screening (HCS), and next-generation sequencing (NGS) have become increasingly widespread. Compared with single-readout assays, these methods produce a more comprehensive picture of the effects of screened treatments. However, interpreting such multidimensional readouts is challenging. Univariate statistics such as t-tests and Z-factors cannot easily be applied to multidimensional profiles, leaving no obvious way to answer common screening questions such as "Is treatment X active in this assay?" and "Is treatment X different from (or equivalent to) treatment Y?" We have developed a simple, straightforward metric, the multidimensional perturbation value (mp-value), which can be used to answer these questions. Here, we demonstrate application of the mp-value to three data sets: a multiplexed gene expression screen of compounds and genomic reagents, a microarray-based gene expression screen of compounds, and an HCS compound screen. In all data sets, active treatments were successfully identified using the mp-value, and simulations and follow-up analyses supported the mp-value's statistical and biological validity. We believe the mp-value represents a promising way to simplify the analysis of multidimensional data while taking full advantage of its richness.

  7. Development and use of tuf gene-based primers for the multiplex PCR detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum in commercial dairy products.

    PubMed

    Sheu, Sen-Je; Hwang, Wen-zhe; Chen, Hsin-Chih; Chiang, Yu-Cheng; Tsen, Hau-Yang

    2009-01-01

    PCR primers specific for the detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum were designed based on the elongation factor Tu gene (tuf). The specificity of these four primer sets were confirmed by PCR with 88 bacterial strains of Lactobacillus, Enterococcus, Bifidobacterium, and other bacterial species. Results indicated that these primer sets generated predicted PCR products of 397, 230, 202, and 161 bp for L. acidophilus, L. delbrueckii, L. casei group, and B. longum, respectively. Bacterial species other than the target organisms tested did not generate false-positive results. When these four primer sets were combined for the simultaneous detection of the lactic acid bacteria (LAB) in fermented milk products including yogurt, the LAB species listed on the labels of these products could be identified without the preenrichment step. The identification limit for each LAB strain with this multiplex PCR method was N X 10(3) CFU/ml in milk samples. The results of our multiplex PCR method were confirmed by PCR assay using primers based on the 16S rDNA or the 16S-23S intergenic spacer region and by biochemical tests using the API 50 CHL kit. When this multiplex PCR method was used with the determination of counts of total viable LAB and bifidobacteria, the quality of commercial fermented milk products could be assured.

  8. A low-cost efficient multiplex PCR for prenatal sex determination in bovine fetus using free fetal DNA in maternal plasma.

    PubMed

    Davoudi, Arash; Seighalani, Ramin; Aleyasin, Seyed Ahmad; Tarang, Alireza; Salehi, Abdolreza Salehi; Tahmoressi, Farideh

    2012-04-01

    In order to establish a reliable non-invasive method for sex determination in a bovine fetus in a routine setting, the possibility of identifying specific sequence in the fetal X and Y-chromosomes has been evaluated in maternal plasma using conventional multiplex polymerase chain reaction (PCR) analysis. The aim of this study was to provide a rapid and reliable method for sexing bovine fetuses. In this experimental study, peripheral blood samples were taken from 38 pregnant heifers with 8 to 38 weeks of gestation. DNA template was extracted by phenol-chloroform method from 350 µl maternal plasma. Two primer pairs for bovine amelogenin gene (bAML) and BC1.2 were used to amplify fragments from X and Y chromosomes. A multiplex PCR reaction has been optimized for amplification of 467 bp and 341 bp fragments from X and Y bAML gene and a 190 bp fragment from BC1.2 related to Y chromosome. The 467 bp fragment was observed in all 38 samples. Both 341 and 190 bp fragments were detected only in 24 plasma samples from male calves. The sensitivity and specificity of test were 100% with no false negative or false positive results. The results showed that phenol-chloroform method is a simple and suitable method for isolation of fetal DNA in maternal plasma. The multiplex PCR method is an available non-invasive approach which is cost efficient and reliable for sexing bovine fetuses.

  9. Development and validation of a multiplex quantitative polymerase chain reaction assay for the detection of Mollicutes impurities in human cells, cultured under good manufacturing practice conditions, and following European Pharmacopoeia requirements and the International Conference on Harmonization guidelines.

    PubMed

    Vanni, Irene; Ugolotti, Elisabetta; Raso, Alessandro; Di Marco, Eddi; Melioli, Giovanni; Biassoni, Roberto

    2012-07-01

    The clinical applications of in vitro manipulated cultured cells and their precursors are often made use of in therapeutic trials. However, tissue cultures can be easily contaminated by the ubiquitous Mollicutes micro-organisms, which can cause various and severe alterations in cellular function. Thus methods able to detect and trace Mollicutes impurities contaminating cell cultures are required before starting any attempt to grow cells under good manufacturing practice (GMP) conditions. We developed a multiplex quantitative polymerase chain reaction (qPCR) assay specific for the 16S-23S rRNA intergenic spacer regions, for the Tuf and P1 cytoadhesin genes, able to detect contaminant Mollicutes species in a single tube reaction. The system was validated by analyzing different cell lines and the positive samples were confirmed by 16S and P1 cytoadhesin gene dideoxy sequencing. Our multiplex qPCR detection system was able to reach a sensitivity, specificity and robustness comparable with the culture and the indicator cell culture method, as required by the European Pharmacopoeia guidelines. We have developed a multiplex qPCR method, validated following International Conference on Harmonization (ICH) guidelines, as a qualitative limit test for impurities, assessing the validation characteristics of limit of detection and specificity. It also follows the European Pharmacopoeia guidelines and Food and Drug Administration (FDA) requirements.

  10. A multiplex PCR for detection of knockdown resistance mutations, V1016G and F1534C, in pyrethroid-resistant Aedes aegypti.

    PubMed

    Saingamsook, Jassada; Saeung, Atiporn; Yanola, Jintana; Lumjuan, Nongkran; Walton, Catherine; Somboon, Pradya

    2017-10-10

    Mutation of the voltage-gated sodium channel (VGSC) gene, or knockdown resistance (kdr) gene, is an important resistance mechanism of the dengue vector Aedes aegypti mosquitoes against pyrethroids. In many countries in Asia, a valine to glycine substitution (V1016G) and a phenylalanine to cysteine substitution (F1534C) are common in Ae. aegypti populations. The G1016 and C1534 allele frequencies have been increasing in recent years, and hence there is a need to have a simple and inexpensive tool to monitor the alleles in large scale. A multiplex PCR to detect V1016G and F1534C mutations has been developed in the current study. This study utilized primers from previous studies for detecting the mutation at position 1016 and newly designed primers to detect variants at position 1534. The PCR conditions were validated and compared with DNA sequencing using known kdr mutant laboratory strains and field collected mosquitoes. The efficacy of this method was also compared with allele-specific PCR (AS-PCR). The results of our multiplex PCR were in complete agreement with sequencing data and better than the AS-PCR. In addition, the efficiency of two non-toxic DNA staining dyes, Ultrapower™ and RedSafe™, were evaluated by comparing with ethidium bromide (EtBr) and the results were satisfactory. Our multiplex PCR method is highly reliable and useful for implementing vector surveillance in locations where the two alleles co-occur.

  11. The characterization of four gene expression analysis in circulating tumor cells made by Multiplex-PCR from the AdnaTest kit on the lab-on-a-chip Agilent DNA 1000 platform.

    PubMed

    Škereňová, Markéta; Mikulová, Veronika; Čapoun, Otakar; Zima, Tomáš

    2016-01-01

    Nowadays, on-a-chip capillary electrophoresis is a routine method for the detection of PCR fragments. The Agilent 2100 Bioanalyzer was one of the first commercial devices in this field. Our project was designed to study the characteristics of Agilent DNA 1000 kit in PCR fragment analysis as a part of circulating tumour cell (CTC) detection technique. Despite the common use of this kit a complex analysis of the results from a long-term project is still missing. A commercially available Agilent DNA 1000 kit was used as a final step in the CTC detection (AdnaTest) for the determination of the presence of PCR fragments generated by Multiplex PCR. Data from 30 prostate cancer patients obtained during two years of research were analyzed to determine the trueness and precision of the PCR fragment size determination. Additional experiments were performed to demonstrate the precision (repeatability, reproducibility) and robustness of PCR fragment concentration determination. The trueness and precision of the size determination was below 3% and 2% respectively. The repeatability of the concentration determination was below 15%. The difference in concentration determination increases when Multiplex-PCR/storage step is added between the two measurements of one sample. The characteristics established in our study are in concordance with the manufacturer's specifications established for a ladder as a sample. However, the concentration determination may vary depending on chip preparation, sample storage and concentration. The 15% variation of concentration determination repeatability was shown to be partly proportional and can be suppressed by proper normalization.

  12. Rapid Molecular Characterization of Acinetobacter baumannii Clones with rep-PCR and Evaluation of Carbapenemase Genes by New Multiplex PCR in Hospital District of Helsinki and Uusimaa

    PubMed Central

    Pasanen, Tanja; Koskela, Suvi; Mero, Sointu; Tarkka, Eveliina; Tissari, Päivi; Vaara, Martti; Kirveskari, Juha

    2014-01-01

    Multidrug-resistant Acinetobacter baumannii (MDRAB) is an increasing problem worldwide. Prevalence of carbapenem resistance in Acinetobacter spp. due to acquired carbapenemase genes is not known in Finland. The purpose of this study was to examine prevalence and clonal spread of multiresistant A. baumannii group species, and their carbapenemase genes. A total of 55 Acinetobacter isolates were evaluated with repetitive PCR (DiversiLab) to analyse clonality of isolates, in conjunction with antimicrobial susceptibility profile for ampicillin/sulbactam, colistin, imipenem, meropenem, rifampicin and tigecycline. In addition, a new real-time PCR assay, detecting most clinically important carbapenemase genes just in two multiplex reactions, was developed. The assay detects genes for KPC, VIM, IMP, GES-1/-10, OXA-48, NDM, GIM-1, SPM-1, IMI/NMC-A, SME, CMY-10, SFC-1, SIM-1, OXA-23-like, OXA-24/40-like, OXA-58 and ISAbaI-OXA-51-like junction, and allows confident detection of isolates harbouring acquired carbapenemase genes. There was a time-dependent, clonal spread of multiresistant A. baumannii strongly correlating with carbapenamase gene profile, at least in this geographically restricted study material. The new carbapenemase screening assay was able to detect all the genes correctly suggesting it might be suitable for epidemiologic screening purposes in clinical laboratories. PMID:24465749

  13. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  14. DNA Differential Diagnosis of Taeniasis and Cysticercosis by Multiplex PCR

    PubMed Central

    Yamasaki, Hiroshi; Allan, James C.; Sato, Marcello Otake; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Qiu, Dongchuan; Mamuti, Wulamu; Craig, Philip S.; Ito, Akira

    2004-01-01

    Multiplex PCR was established for differential diagnosis of taeniasis and cysticercosis, including their causative agents. For identification of the parasites, multiplex PCR with cytochrome c oxidase subunit 1 gene yielded evident differential products unique for Taenia saginata and Taenia asiatica and for American/African and Asian genotypes of Taenia solium with molecular sizes of 827, 269, 720, and 984 bp, respectively. In the PCR-based detection of tapeworm carriers using fecal samples, the diagnostic markers were detected from 7 of 14 and 4 of 9 T. solium carriers from Guatemala and Indonesia, respectively. Test sensitivity may have been reduced by the length of time (up to 12 years) that samples were stored and/or small sample volumes (ca. 30 to 50 mg). However, the diagnostic markers were detected by nested PCR in five worm carriers from Guatemalan cases that were found to be negative by multiplex PCR. It was noteworthy that a 720 bp-diagnostic marker was detected from a T. solium carrier who was egg-free, implying that it is possible to detect worm carriers and treat before mature gravid proglottids are discharged. In contrast to T. solium carriers, 827-bp markers were detected by multiplex PCR in all T. saginata carriers. The application of the multiplex PCR would be useful not only for surveillance of taeniasis and cysticercosis control but also for the molecular epidemiological survey of these cestode infections. PMID:14766815

  15. Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye

    PubMed Central

    Ahberg, Christian D.; Manz, Andreas; Neuzil, Pavel

    2015-01-01

    Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio. PMID:26088868

  16. Epidemiology of Epstein-Barr virus, cytomegalovirus, and Kaposi's sarcoma-associated herpesvirus infections in peripheral blood leukocytes revealed by a multiplex PCR assay.

    PubMed

    Nishiwaki, Morie; Fujimuro, Masahiro; Teishikata, Yasuhiro; Inoue, Hisanori; Sasajima, Hitoshi; Nakaso, Kazuhiro; Nakashima, Kenji; Sadanari, Hidetaka; Yamamoto, Tomohiro; Fujiwara, Yoshie; Ogawa, Naoki; Yokosawa, Hideyoshi

    2006-12-01

    A multiplex polymerase chain reaction (PCR) has been developed for the simultaneous detection of Epstein-Barr virus (EBV), cytomegalovirus (CMV), and Kaposi's sarcoma-associated herpesvirus (KSHV) in a clinical sample. Primers of multiplex PCR were designed to amplify specific regions of the EBV EBNA1, CMV IE2, and KSHV LANA genes. This multiplex PCR assay was found to have detection sensitivities of 1-10 copies of purified viral DNA cloned into the plasmid. To assess diagnostic and pre-clinical applications with this method, we utilized KSHV-positive primary effusion lymphoma (PEL) cells, EBV-positive Burkitt's lymphoma cells, CMV-infected fibroblast cells, and clinically prepared peripheral blood leukocytes (PBLs) that had been infected with viruses. We found that this multiplex PCR assay has high sensitivity and specificity for simultaneous detection of EBV, CMV, and KSHV genomes in a single amplification from a clinical material. Using this multiplex PCR assay, we investigated the prevalence of EBV, CMV, and KSHV in PBL samples from normal Japanese randomly selected. KSHV, EBV, and CMV genomes were detected in samples from 2 (0.2%), 377 (39.5%), and 27 (2.8%) of the 953 blood donors, respectively. Interestingly, both EBV and CMV genomes were detected in samples from all KSHV-positive donors. (c) 2006 Wiley-Liss, Inc.

  17. Molecular profiling of single circulating tumor cells from lung cancer patients.

    PubMed

    Park, Seung-Min; Wong, Dawson J; Ooi, Chin Chun; Kurtz, David M; Vermesh, Ophir; Aalipour, Amin; Suh, Susie; Pian, Kelsey L; Chabon, Jacob J; Lee, Sang Hun; Jamali, Mehran; Say, Carmen; Carter, Justin N; Lee, Luke P; Kuschner, Ware G; Schwartz, Erich J; Shrager, Joseph B; Neal, Joel W; Wakelee, Heather A; Diehn, Maximilian; Nair, Viswam S; Wang, Shan X; Gambhir, Sanjiv S

    2016-12-27

    Circulating tumor cells (CTCs) are established cancer biomarkers for the "liquid biopsy" of tumors. Molecular analysis of single CTCs, which recapitulate primary and metastatic tumor biology, remains challenging because current platforms have limited throughput, are expensive, and are not easily translatable to the clinic. Here, we report a massively parallel, multigene-profiling nanoplatform to compartmentalize and analyze hundreds of single CTCs. After high-efficiency magnetic collection of CTC from blood, a single-cell nanowell array performs CTC mutation profiling using modular gene panels. Using this approach, we demonstrated multigene expression profiling of individual CTCs from non-small-cell lung cancer (NSCLC) patients with remarkable sensitivity. Thus, we report a high-throughput, multiplexed strategy for single-cell mutation profiling of individual lung cancer CTCs toward minimally invasive cancer therapy prediction and disease monitoring.

  18. Urinary biomarkers in hexachloro-1:3-butadiene-induced acute kidney injury in the female Hanover Wistar rat; correlation of α-glutathione S-transferase, albumin and kidney injury molecule-1 with histopathology and gene expression.

    PubMed

    Swain, Aubrey; Turton, John; Scudamore, Cheryl L; Pereira, Ines; Viswanathan, Neeti; Smyth, Rosemary; Munday, Michael; McClure, Fiona; Gandhi, Mitul; Sondh, Surjit; York, Malcolm

    2011-05-01

    Hexachloro-1:3-butadiene (HCBD) causes kidney injury specific to the pars recta of the proximal tubule. In the present studies, injury to the nephron was characterized at 24 h following a single dose of HCBD, using a range of quantitative urinary measurements, renal histopathology and gene expression. Multiplexed renal biomarker measurements were performed using both the Meso Scale Discovery (MSD) and Rules Based Medicine platforms. In a second study, rats were treated with a single nephrotoxic dose of HCBD and the time course release of a range of traditional and newer urinary biomarkers was followed over a 25 day period. Urinary albumin (a marker of both proximal tubular function and glomerular integrity) and α-glutathione S-transferase (α-GST, a proximal tubular cell marker of cytoplasmic leakage) showed the largest fold change at 24 h (day 1) after dosing. Most other markers measured on either the MSD or RBM platforms peaked on day 1 or 2 post-dosing, whereas levels of kidney injury molecule-1 (KIM-1), a marker of tubular regeneration, peaked on day 3/4. Therefore, in rat proximal tubular nephrotoxicity, the measurement of urinary albumin, α-GST and KIM-1 is recommended as they potentially provide useful information about the function, degree of damage and repair of the proximal tubule. Gene expression data provided useful confirmatory information regarding exposure of the kidney and liver to HCBD, and the response of these tissues to HCBD in terms of metabolism, oxidative stress, inflammation, and regeneration and repair. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Changes in the transcriptional profile in response to overexpression of the osteopontin-c splice isoform in ovarian (OvCar-3) and prostate (PC-3) cancer cell lines

    PubMed Central

    2014-01-01

    Background Especially in human tumor cells, the osteopontin (OPN) primary transcript is subject to alternative splicing, generating three isoforms termed OPNa, OPNb and OPNc. We previously demonstrated that the OPNc splice variant activates several aspects of the progression of ovarian and prostate cancers. The goal of the present study was to develop cell line models to determine the impact of OPNc overexpression on main cancer signaling pathways and thus obtain insights into the mechanisms of OPNc pro-tumorigenic roles. Methods Human ovarian and prostate cancer cell lines, OvCar-3 and PC-3 cells, respectively, were stably transfected to overexpress OPNc. Transcriptomic profiling was performed on these cells and compared to controls, to identify OPNc overexpression-dependent changes in gene expression levels and pathways by qRT-PCR analyses. Results Among 84 genes tested by using a multiplex real-time PCR Cancer Pathway Array approach, 34 and 16, respectively, were differentially expressed between OvCar-3 and PC-3 OPNc-overexpressing cells in relation to control clones. Differentially expressed genes are included in all main hallmarks of cancer, and several interacting proteins have been identified using an interactome network analysis. Based on marked up-regulation of Vegfa transcript in response to OPNc overexpression, we partially validated the array data by demonstrating that conditioned medium (CM) secreted from OvCar-3 and PC-3 OPNc-overexpressing cells significantly induced endothelial cell adhesion, proliferation and migration, compared to CM secreted from control cells. Conclusions Overall, the present study elucidated transcriptional changes of OvCar-3 and PC-3 cancer cell lines in response to OPNc overexpression, which provides an assessment for predicting the molecular mechanisms by which this splice variant promotes tumor progression features. PMID:24928374

  20. Characterization of the Chromosome 1q41q42.12 region, and the Candidate Gene DISP1, in Patients with CDH

    PubMed Central

    Kantarci, Sibel; Ackerman, Kate G; Russell, Meaghan N; Longoni, Mauro; Sougnez, Carrie; Noonan, Kristin M; Hatchwell, Eli; Zhang, Xiaoyun; Vanmarcke, Rafael Pieretti; Anyane-Yeboa, Kwame; Dickman, Paul; Wilson, Jay; Donahoe, Patricia K; Pober, Barbara R

    2010-01-01

    Cytogenetic and molecular cytogenetic studies demonstrate association between congenital diaphragmatic hernia (CDH) and chromosome 1q41q42 deletions. In this study, we screened a large CDH cohort (N=179) for microdeletions in this interval by the multiplex ligation-dependent probe amplification (MLPA) technique, and also sequenced two candidate genes located therein, dispatched 1 (DISP1) and homo sapiens H2.0-like homeobox (HLX). MLPA analysis verified deletions of this region in two cases, an unreported patient with a 46,XY,del(1)(q41q42.13) karyotype and a previously reported patient with a Fryns syndrome phenotype [Kantarci et al., 2006]. HLX sequencing showed a novel but maternally inherited single nucleotide variant (c.27C>G) in a patient with isolated CDH, while DISP1 sequencing revealed a mosaic de novo heterozygous substitution (c.4412C>G; p.Ala1471Gly) in a male with a left-sided Bochdalek hernia plus multiple other anomalies. Pyrosequencing demonstrated the mutant allele was present in 43%, 12%, and 4.5% of the patient’s lymphoblastoid, peripheral blood lymphocytes, and saliva cells, respectively. We examined Disp1 expression at day E11.5 of mouse diaphragm formation and confirmed its presence in the pleuroperitoneal fold, as well as the nearby lung which also expresses Sonic hedgehog (Shh). Our report describes the first de novo DISP1 point mutation in a patient with complex CDH. Combining this finding with Disp1 embryonic mouse diaphragm and lung tissue expression, as well as previously reported human chromosome 1q41q42 aberrations in patients with CDH, suggests that DISP1 may warrant further consideration as a CDH candidate gene. PMID:20799323

  1. Detection of shigella in lettuce by the use of a rapid molecular assay with increased sensitivity

    PubMed Central

    Jiménez, Kenia Barrantes; McCoy², Clyde B.; Achí, Rosario

    2010-01-01

    A Multiplex Polymerase Chain Reaction (PCR) assay to be used as an alternative to the conventional culture method in detecting Shigella and enteroinvasive Escherichia coli (EIEC) virulence genes ipaH and ial in lettuce was developed. Efficacy and rapidity of the molecular method were determined as compared to the conventional culture. Lettuce samples were inoculated with different Shigella flexneri concentrations (from 10 CFU/ml to 107 CFU/ml). DNA was extracted directly from lettuce after inoculation (direct-PCR) and after an enrichment step (enrichment PCR). Multiplex PCR detection limit was 104CFU/ml, diagnostic sensitivity and specificity were 100% accurate. An internal amplification control (IAC) of 100 bp was used in order to avoid false negative results. This method produced results in 1 to 2 days while the conventional culture method required 5 to 6 days. Also, the culture method detection limit was 106 CFU/ml, diagnostic sensitivity was 53% and diagnostic specificity was 100%. In this study a Multiplex PCR method for detection of virulence genes in Shigella and EIEC was shown to be effective in terms of diagnostic sensitivity, detection limit and amount of time as compared to Shigella conventional culture. PMID:24031579

  2. Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time.

    PubMed

    Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu

    2011-09-01

    To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.

  3. Multiplex Real-Time PCR for Detection of Staphylococcus aureus, mecA and Panton-Valentine Leukocidin (PVL) Genes from Selective Enrichments from Animals and Retail Meat

    PubMed Central

    Velasco, Valeria; Sherwood, Julie S.; Rojas-García, Pedro P.; Logue, Catherine M.

    2014-01-01

    The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68–0.88 (from substantial to almost perfect agreement) and 0.29–0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0–0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using the standard culture method. PMID:24849624

  4. Multiplex real-time PCR for detection of Staphylococcus aureus, mecA and Panton-Valentine Leukocidin (PVL) genes from selective enrichments from animals and retail meat.

    PubMed

    Velasco, Valeria; Sherwood, Julie S; Rojas-García, Pedro P; Logue, Catherine M

    2014-01-01

    The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68-0.88 (from substantial to almost perfect agreement) and 0.29-0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0-0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using the standard culture method.

  5. Evaluation of Two Multiplex PCR-High-Resolution Melt Curve Analysis Methods for Differentiation of Campylobacter jejuni and Campylobacter coli Intraspecies.

    PubMed

    Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H; Chenu, Jeremy; Groves, Peter; Raidal, Shane; Ghorashi, Seyed Ali

    2018-03-01

    Campylobacter infection is a common cause of bacterial gastroenteritis in humans and remains a significant global public health issue. The capability of two multiplex PCR (mPCR)-high-resolution melt (HRM) curve analysis methods (i.e., mPCR1-HRM and mPCR2-HRM) to detect and differentiate 24 poultry isolates and three reference strains of Campylobacter jejuni and Campylobacter coli was investigated. Campylobacter jejuni and C. coli were successfully differentiated in both assays, but the differentiation power of mPCR2-HRM targeting the cadF gene was found superior to that of mPCR1-HRM targeting the gpsA gene or a hypothetical protein gene. However, higher intraspecies variation within C. coli and C. jejuni isolates was detected in mPCR1-HRM when compared with mPCR2-HRM. Both assays were rapid and required minimum interpretation skills for discrimination between and within Campylobacter species when using HRM curve analysis software.

  6. Identification of rare genetic variation of NLRP1 gene in familial multiple sclerosis.

    PubMed

    Maver, Ales; Lavtar, Polona; Ristić, Smiljana; Stopinšek, Sanja; Simčič, Saša; Hočevar, Keli; Sepčić, Juraj; Drulović, Jelena; Pekmezović, Tatjana; Novaković, Ivana; Alenka, Hodžić; Rudolf, Gorazd; Šega, Saša; Starčević-Čizmarević, Nada; Palandačić, Anja; Zamolo, Gordana; Kapović, Miljenko; Likar, Tina; Peterlin, Borut

    2017-06-16

    The genetic etiology and the contribution of rare genetic variation in multiple sclerosis (MS) has not yet been elucidated. Although familial forms of MS have been described, no convincing rare and penetrant variants have been reported to date. We aimed to characterize the contribution of rare genetic variation in familial and sporadic MS and have identified a family with two sibs affected by concomitant MS and malignant melanoma (MM). We performed whole exome sequencing in this primary family and 38 multiplex MS families and 44 sporadic MS cases and performed transcriptional and immunologic assessment of the identified variants. We identified a potentially causative homozygous missense variant in NLRP1 gene (Gly587Ser) in the primary family. Further possibly pathogenic NLRP1 variants were identified in the expanded cohort of patients. Stimulation of peripheral blood mononuclear cells from MS patients with putatively pathogenic NLRP1 variants showed an increase in IL-1B gene expression and active cytokine IL-1β production, as well as global activation of NLRP1-driven immunologic pathways. We report a novel familial association of MS and MM, and propose a possible underlying genetic basis in NLRP1 gene. Furthermore, we provide initial evidence of the broader implications of NLRP1-related pathway dysfunction in MS.

  7. Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor

    PubMed Central

    Huertas, César S.; Domínguez-Zotes, Santos; Lechuga, Laura M.

    2017-01-01

    Personalized medicine is a promising tool not only for prevention, screening and development of more efficient treatment strategies, but also for diminishing the side effects caused by current therapies. Deciphering gene regulation pathways provides a reliable prognostic analysis to elucidate the origin of grave diseases and facilitate the selection of the most adequate treatment for each individual. Alternative splicing of mRNA precursors is one of these gene regulation pathways and enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression constituting a relevant and innovative class of biomarker. Herein we report a highly selective and sensitive nanophotonic biosensor based on the direct monitoring of the aberrant alternative splicing of Fas gene. Unlike conventional methods, the nanobiosensor performs a real-time detection of the specific isoforms in the fM-pM range without any cDNA synthesis or PCR amplification requirements. The nanobiosensor has been proven isoform-specific with no crosshybridization, greatly minimizing detection biases. The demonstrated high sensitivity and specificity make our nanobiosensor ideal for examining significant tumor-associated expression shifts of alternatively spliced isoforms for the early and accurate theranostics of cancer. PMID:28120920

  8. Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor.

    PubMed

    Huertas, César S; Domínguez-Zotes, Santos; Lechuga, Laura M

    2017-01-25

    Personalized medicine is a promising tool not only for prevention, screening and development of more efficient treatment strategies, but also for diminishing the side effects caused by current therapies. Deciphering gene regulation pathways provides a reliable prognostic analysis to elucidate the origin of grave diseases and facilitate the selection of the most adequate treatment for each individual. Alternative splicing of mRNA precursors is one of these gene regulation pathways and enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression constituting a relevant and innovative class of biomarker. Herein we report a highly selective and sensitive nanophotonic biosensor based on the direct monitoring of the aberrant alternative splicing of Fas gene. Unlike conventional methods, the nanobiosensor performs a real-time detection of the specific isoforms in the fM-pM range without any cDNA synthesis or PCR amplification requirements. The nanobiosensor has been proven isoform-specific with no crosshybridization, greatly minimizing detection biases. The demonstrated high sensitivity and specificity make our nanobiosensor ideal for examining significant tumor-associated expression shifts of alternatively spliced isoforms for the early and accurate theranostics of cancer.

  9. Rapid genetic typing of diarrheagenic Escherichia coli using a two-tube modified molecular beacon based multiplex real-time PCR assay and its clinical application

    PubMed Central

    2014-01-01

    Background Diarrheagenic Escherichia coli (DEC), including Enterotoxigenic E.coli (ETEC), Enteroaggregative E.coli (EAEC), Enteropathogenic E.coli (EPEC), Enterohemolysin E.coli (EHEC) and Enteroinvasive E.coli (EIEC) causes diarrhea or hemolytic uremic syndromes among infants and travelers around the world. A rapid, reliable and repeatable method is urgent for identifying DEC so as to provide the reference for responding to diarrheal disease outbreak and the treatment of the diarrheal patients associated with DEC. Methods In this study, specific primers and modified molecular beacon probes of nine specific virulence genes, whose 5′end were added with homo tail sequence, were designed; and a two-tube modified molecular beacon based multiplex real–time PCR (rtPCR) assay for the identification of five Escherichia coli pathotypes, including ETEC, EAEC, EPEC, EHEC and EIEC was developed and optimized. Totally 102 bacterial strains, including 52 reference bacterial strains and 50 clinical strains were detected to confirm whether the target genes selected were specific. Then detection limits of the assay were tested. Lastly, the assay was applied to the detection of 11860 clinical samples to evaluate the specificity and sensitivity of the developed assay compared with the conventional PCR. Results The target genes were 100% specific as assessed on 102 bacterial strains since no cross-reactions were observed. The detection limits ranged from 88 CFU/mL (EHEC) to 880 CFU/mL (EPEC). Compared with the conventional PCR, the specificity and sensitivity of the multiplex rtPCR was 100% and over 99%, respectively. The coefficient of variation (CV) for each target gene ranged from 0.45% to 1.53%. 171 positive clinical samples were mostly identified as ETEC (n = 111, 64.9%) and EPEC (n = 38, 22.2%), which were the dominating pathotypes of DEC strains. Conclusion The developed multiplex rtPCR assay for the identification of DEC was high sensitive and specific and could be applied to the rapid identification of DEC in clinical and public health laboratories. PMID:25023669

  10. Impact of Gene Patents and Licensing Practices on Access to Genetic Testing for Hearing Loss

    PubMed Central

    Chandrasekharan, Subhashini; Fiffer, Melissa

    2011-01-01

    Genetic testing for heritable hearing loss involves a mix of patented and unpatented genes, mutations and testing methods. More than half of all hearing loss is linked to inherited mutations, and five genes are most commonly tested in the United States. There are no patents on three of these genes, but Athena Diagnostics holds exclusive licenses to test for a common mutation in the GJB2 gene associated with about 50% of all cases, as well as mutations in the MTRNR1 gene. This fragmented intellectual property landscape made hearing loss a useful case study for assessing whether patent rights in genetic testing can proliferate or overlap, and whether it is possible to gather the rights necessary to perform testing. Testing for hearing loss is widely available, primarily from academic medical centers. Based on literature reviews and interviews with researchers, research on the genetics of hearing loss has generally not been impeded by patents. There is no consistent evidence of a premium in testing prices attributable to patent status. Athena Diagnostics has, however, used its intellectual property to discourage other providers from offering some tests. There is no definitive answer about the suitability of current patenting and licensing of commonly tested genes because of continuing legal uncertainty about the extent of enforcement of patent rights. Clinicians have also expressed concerns that multiplex tests will be difficult to develop because of overlapping intellectual property and conflict with Athena’s sole provider business model. PMID:20393307

  11. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system.

    PubMed

    Gao, Shuliang; Tong, Yangyang; Wen, Zhiqiang; Zhu, Li; Ge, Mei; Chen, Daijie; Jiang, Yu; Yang, Sheng

    2016-08-01

    Yarrowia lipolytica is categorized as a generally recognized as safe (GRAS) organism and is a heavily documented, unconventional yeast that has been widely incorporated into multiple industrial fields to produce valuable biochemicals. This study describes the construction of a CRISPR-Cas9 system for genome editing in Y. lipolytica using a single plasmid (pCAS1yl or pCAS2yl) to transport Cas9 and relevant guide RNA expression cassettes, with or without donor DNA, to target genes. Two Cas9 target genes, TRP1 and PEX10, were repaired by non-homologous end-joining (NHEJ) or homologous recombination, with maximal efficiencies in Y. lipolytica of 85.6 % for the wild-type strain and 94.1 % for the ku70/ku80 double-deficient strain, within 4 days. Simultaneous double and triple multigene editing was achieved with pCAS1yl by NHEJ, with efficiencies of 36.7 or 19.3 %, respectively, and the pCASyl system was successfully expanded to different Y. lipolytica breeding strains. This timesaving method will enable and improve synthetic biology, metabolic engineering and functional genomic studies of Y. lipolytica.

  12. A multiplex PCR for detection of six viruses in ducks.

    PubMed

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  13. High Incidence of ACE/PAI-1 in Association to a Spectrum of Other Polymorphic Cardiovascular Genes Involving PBMCs Proinflammatory Cytokines in Hypertensive Hypercholesterolemic Patients: Reversibility with a Combination of ACE Inhibitor and Statin

    PubMed Central

    Mouawad, Charbel; Haddad, Katia; Hamoui, Samar; Azar, Albert; Fajloun, Ziad; Makdissy, Nehman

    2015-01-01

    Cardiovascular diseases (CVDs) are significantly high in the Lebanese population with the two most predominant forms being atherosclerosis and venous thrombosis. The purpose of our study was to assess the association of a spectrum of CVD related genes and combined state of hypertension hypercholesterolemia (HH) in unrelated Lebanese. Twelve polymorphisms were studied by multiplex PCR and reverse hybridization of DNA from 171 healthy individuals and 144 HH subjects. Two genes were significantly associated with HH: ACE (OR: 9.20, P<0.0001) and PAI-1 (OR: 2.29, P = 0.007), respectively with the occurrence of the risky alleles “Del” and “4G”. The frequencies of the Del and 4G alleles were found to be 0.98 and 0.90 in the HH group versus 0.84 and 0.79 in the healthy group, respectively. Serum ACE activity and PAI-I increased significantly with Del/Del and 4G/5G genotypes. The co-expression of Del/4G(+/+) was detected in 113 out of 171 (66.0%) controls and 125 out of 144 (86.8%) HH subjects. Del/4G(-/-) was detected in only 6 (3.5%) controls and undetected in the HH group. Three venous thrombosis related genes [FV(Leiden), MTHFR(A1298C) and FXIII(V34L)] were significantly related to the prominence of the co-expression of Del/4G(+/+). A range of 2 to 8 combined polymorphisms co-expressed per subject where 5 mutations were the most detected. In Del/4G(+/+) subjects, peripheral blood mononuclear cells (PBMCs) produced significant elevated levels of IFN-γ and TNF-α contrary to IL-10, and no variations occurred for IL-4. ACE inhibitor (ramipril) in combination with statin (atorvastatin) and not alone reversed significantly the situation. This first report from Lebanon sheds light on an additional genetic predisposition of a complex spectrum of genes involved in CVD and suggests that the most requested gene FVL by physicians may not be sufficient to diagnose eventual future problems that can occur in the cardiovascular system. Subjects expressing the double mutations (Del/4G) are at high risk for the onset of CVDs. PMID:25973747

  14. High Incidence of ACE/PAI-1 in Association to a Spectrum of Other Polymorphic Cardiovascular Genes Involving PBMCs Proinflammatory Cytokines in Hypertensive Hypercholesterolemic Patients: Reversibility with a Combination of ACE Inhibitor and Statin.

    PubMed

    AlBacha, Jeanne d'Arc; Khoury, Mira; Mouawad, Charbel; Haddad, Katia; Hamoui, Samar; Azar, Albert; Fajloun, Ziad; Makdissy, Nehman

    2015-01-01

    Cardiovascular diseases (CVDs) are significantly high in the Lebanese population with the two most predominant forms being atherosclerosis and venous thrombosis. The purpose of our study was to assess the association of a spectrum of CVD related genes and combined state of hypertension hypercholesterolemia (HH) in unrelated Lebanese. Twelve polymorphisms were studied by multiplex PCR and reverse hybridization of DNA from 171 healthy individuals and 144 HH subjects. Two genes were significantly associated with HH: ACE (OR: 9.20, P<0.0001) and PAI-1 (OR: 2.29, P = 0.007), respectively with the occurrence of the risky alleles "Del" and "4G". The frequencies of the Del and 4G alleles were found to be 0.98 and 0.90 in the HH group versus 0.84 and 0.79 in the healthy group, respectively. Serum ACE activity and PAI-I increased significantly with Del/Del and 4G/5G genotypes. The co-expression of Del/4G(+/+) was detected in 113 out of 171 (66.0%) controls and 125 out of 144 (86.8%) HH subjects. Del/4G(-/-) was detected in only 6 (3.5%) controls and undetected in the HH group. Three venous thrombosis related genes [FV(Leiden), MTHFR(A1298C) and FXIII(V34L)] were significantly related to the prominence of the co-expression of Del/4G(+/+). A range of 2 to 8 combined polymorphisms co-expressed per subject where 5 mutations were the most detected. In Del/4G(+/+) subjects, peripheral blood mononuclear cells (PBMCs) produced significant elevated levels of IFN-γ and TNF-α contrary to IL-10, and no variations occurred for IL-4. ACE inhibitor (ramipril) in combination with statin (atorvastatin) and not alone reversed significantly the situation. This first report from Lebanon sheds light on an additional genetic predisposition of a complex spectrum of genes involved in CVD and suggests that the most requested gene FVL by physicians may not be sufficient to diagnose eventual future problems that can occur in the cardiovascular system. Subjects expressing the double mutations (Del/4G) are at high risk for the onset of CVDs.

  15. WetLab-2: Tools for Conducting On-Orbit Quantitative Real-Time Gene Expression Analysis on ISS

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Schonfeld, Julie

    2014-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR system, the Cepheid SmartCycler and will fly it in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid ramp times and the ability to detect up to four separate fluorescent channels at one time enabling multiplex assays that can be used for normalization and to study multiple genes of interest in each module. The team is currently working with Cepheid to enable the downlink of data from the ISS to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project has adapted commercial technology to design a module that can lyse cells and extract RNA of sufficient quality and quantity for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. The WetLab-2 system is capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experiment parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Researchers will also be able to sample multigenerational changes in organisms. Finally, the system can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-7 in June 2015.

  16. Development of a multiplex methylation specific PCR suitable for (early) detection of non-small cell lung cancer

    PubMed Central

    Nawaz, Imran; Qiu, Xiaoming; Wu, Heng; Li, Yang; Fan, Yaguang; Hu, Li-Fu; Zhou, Qinghua; Ernberg, Ingemar

    2014-01-01

    Lung cancer is a worldwide health problem and a leading cause of cancer-related deaths. Silencing of potential tumor suppressor genes (TSGs) by aberrant promoter methylation is an early event in the initiation and development of cancer. Thus, methylated cancer type-specific TSGs in DNA can serve as useful biomarkers for early cancer detection. We have now developed a “Multiplex Methylation Specific PCR” (MMSP) assay for analysis of the methylation status of multiple potential TSGs by a single PCR reaction. This method will be useful for early diagnosis and treatment outcome studies of non-small cell lung cancer (NSCLC). Genome-wide CpG methylation and expression microarrays were performed on lung cancer tissues and matched distant non-cancerous tissues from three NSCLC patients from China. Thirty-eight potential TSGs were selected and analyzed by methylation PCR on bisulfite treated DNA. On the basis of sensitivity and specificity, six marker genes, HOXA9, TBX5, PITX2, CALCA, RASSF1A, and DLEC1, were selected to establish the MMSP assay. This assay was then used to analyze lung cancer tissues and matched distant non-cancerous tissues from 70 patients with NSCLC, as well as 24 patients with benign pulmonary lesion as controls. The sensitivity of the assay was 99% (69/70). HOXA9 and TBX5 were the 2 most sensitive marker genes: 87% (61/70) and 84% (59/70), respectively. RASSF1A and DLEC1 showed the highest specificity at 99% (69/70). Using the criterion of identifying at least any two methylated marker genes, 61/70 cancer samples were positive, corresponding to a sensitivity of 87% and a specificity of 94%. Early stage I or II NSCLC could even be detected with a 100% specificity and 86% sensitivity. In conclusion, MMSP has the potential to be developed into a population-based screening tool and can be useful for early diagnosis of NSCLC. It might also be suitable for monitoring treatment outcome and recurrence. PMID:24937636

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Joshua D.; Chen, Qiang; Mason, Hugh S.

    Abstract Key message nta-miR-398 is significantly up-regulated while nta-miR-428d is significantly down-regulated in tobacco after agroinfiltration AbstractMicroRNAs are a class of non-coding regulatory RNAs that can modulate development as well as alter innate antiviral defenses in plants. In this study we explored host changes at the microRNA level within tobacco (Nicotiana benthamiana) after expression of a recombinant anti-Ebola GP1 antibody through Agrobacterium tumefaciens agroinfiltration delivery. A multiplex nanoparticle-based cytometry assay tracked the host expression changes of 53 tobacco microRNAs. Our results revealed that the most abundant microRNAs in actively growing leaves corresponded to nanoparticle probes specific to nta-mir-6149 and nta-miR-168b.more » After agroinfiltration, probes targeting nta-mir-398 and nta-mir-482d were significantly altered in their respective expression levels and were further verified through RT-qPCR analysis. To our knowledge this study is the first to profile microRNA expression in tobacco after agroinfiltration using a multiplex nanoparticle approach.« less

  18. PCR Amplicon Prediction from Multiplex Degenerate Primer and Probe Sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S. N.

    2013-08-08

    Assessing primer specificity and predicting both desired and off-target amplification products is an essential step for robust PCR assay design. Code is described to predict potential polymerase chain reaction (PCR) amplicons in a large sequence database such as NCBI nt from either singleplex or a large multiplexed set of primers, allowing degenerate primer and probe bases, with target mismatch annotates amplicons with gene information automatically downloaded from NCBI, and optionally it can predict whether there are also TaqMan/Luminex probe matches within predicted amplicons.

  19. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. | Office of Cancer Genomics

    Cancer.gov

    The CRISPR-Cas9 system has revolutionized gene editing both at single genes and in multiplexed loss-of-function screens, thus enabling precise genome-scale identification of genes essential for proliferation and survival of cancer cells. However, previous studies have reported that a gene-independent antiproliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, thereby leading to false-positive results in copy number-amplified regions.

  20. Development and Validation of a Fluorescent Multiplexed Immunoassay for Measurement of Transgenic Proteins in Cotton (Gossypium hirsutum).

    PubMed

    Yeaman, Grant R; Paul, Sudakshina; Nahirna, Iryna; Wang, Yongcheng; Deffenbaugh, Andrew E; Liu, Zi Lucy; Glenn, Kevin C

    2016-06-22

    In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (β-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources.

  1. Development of a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction assay for the differential diagnosis of Feline leukemia virus vaccine and wild strains.

    PubMed

    Ho, Chia-Fang; Chan, Kun-Wei; Yang, Wei-Cheng; Chiang, Yu-Chung; Chung, Yang-Tsung; Kuo, James; Wang, Chi-Young

    2014-07-01

    A multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) was developed for the differential diagnosis of Feline leukemia virus (FeLV) vaccine and wild-type strains based on a point mutation between the vaccine strain (S) and the wild-type strain (T) located in the p27 gene. This system was further upgraded to obtain a real-time ARMS RT-PCR (ARMS qRT-PCR) with a high-resolution melt analysis (HRMA) platform. The genotyping of various strains of FeLV was determined by comparing the HRMA curves with the defined wild-type FeLV (strain TW1), and the results were expressed as a percentage confidence. The detection limits of ARMS RT-PCR and ARMS qRT-PCR combined with HRMA were 100 and 1 copies of transcribed FeLV RNA per 0.5 ml of sample, respectively. No false-positive results were obtained with 6 unrelated pathogens and 1 feline cell line. Twelve FeLV Taiwan strains were correctly identified using ARMS qRT-PCR combined with HRMA. The genotypes of the strains matched the defined FeLV wild-type strain genotype with at least 91.17% confidence. A higher degree of sequence polymorphism was found throughout the p27 gene compared with the long terminal repeat region. In conclusion, the current study describes the phylogenetic relationship of the FeLV Taiwan strains and demonstrates that the developed ARMS RT-PCR assay is able to be used to detect the replication of a vaccine strain that has not been properly inactivated, thus acting as a safety check for the quality of FeLV vaccines.

  2. Multiplex engineering of industrial yeast genomes using CRISPRm.

    PubMed

    Ryan, Owen W; Cate, Jamie H D

    2014-01-01

    Global demand has driven the use of industrial strains of the yeast Saccharomyces cerevisiae for large-scale production of biofuels and renewable chemicals. However, the genetic basis of desired domestication traits is poorly understood because robust genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-throughput, and multiplexed genome editing platform for industrial strains of S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR (CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evolution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools should therefore find use in many higher-order synthetic biology applications to accelerate improvements in industrial microorganisms.

  3. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.

    PubMed

    Guo, Lijun; Xu, Kun; Liu, Zhiyuan; Zhang, Cunfang; Xin, Ying; Zhang, Zhiying

    2015-06-01

    In addition to the advantages of scalable, affordable, and easy to engineer, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology is superior for multiplex targeting, which is laborious and inconvenient when achieved by cloning multiple gRNA expressing cassettes. Here, we report a simple CRISPR array assembling method which will facilitate multiplex targeting usage. First, the Streptococcus thermophilus CRISPR3/Cas locus was cloned. Second, different CRISPR arrays were assembled with different crRNA spacers. Transformation assays using different Escherichia coli strains demonstrated efficient plasmid DNA targeting, and we achieved targeting efficiency up to 95% with an assembled CRISPR array with three crRNA spacers. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A multiplexable TALE-based binary expression system for in vivo cellular interaction studies.

    PubMed

    Toegel, Markus; Azzam, Ghows; Lee, Eunice Y; Knapp, David J H F; Tan, Ying; Fa, Ming; Fulga, Tudor A

    2017-11-21

    Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.

  5. De Novo Assembly of a Transcriptome for Calanus finmarchicus (Crustacea, Copepoda) – The Dominant Zooplankter of the North Atlantic Ocean

    PubMed Central

    Lenz, Petra H.; Roncalli, Vittoria; Hassett, R. Patrick; Wu, Le-Shin; Cieslak, Matthew C.; Hartline, Daniel K.; Christie, Andrew E.

    2014-01-01

    Assessing the impact of global warming on the food web of the North Atlantic will require difficult-to-obtain physiological data on a key copepod crustacean, Calanus finmarchicus. The de novo transcriptome presented here represents a new resource for acquiring such data. It was produced from multiplexed gene libraries using RNA collected from six developmental stages: embryo, early nauplius (NI-II), late nauplius (NV-VI), early copepodite (CI-II), late copepodite (CV) and adult (CVI) female. Over 400,000,000 paired-end reads (100 base-pairs long) were sequenced on an Illumina instrument, and assembled into 206,041 contigs using Trinity software. Coverage was estimated to be at least 65%. A reference transcriptome comprising 96,090 unique components (“comps”) was annotated using Blast2GO. 40% of the comps had significant blast hits. 11% of the comps were successfully annotated with gene ontology (GO) terms. Expression of many comps was found to be near zero in one or more developmental stages suggesting that 35 to 48% of the transcriptome is “silent” at any given life stage. Transcripts involved in lipid biosynthesis pathways, critical for the C. finmarchicus life cycle, were identified and their expression pattern during development was examined. Relative expression of three transcripts suggests wax ester biosynthesis in late copepodites, but triacylglyceride biosynthesis in adult females. Two of these transcripts may be involved in the preparatory phase of diapause. A key environmental challenge for C. finmarchicus is the seasonal exposure to the dinoflagellate Alexandrium fundyense with high concentrations of saxitoxins, neurotoxins that block voltage-gated sodium channels. Multiple contigs encoding putative voltage-gated sodium channels were identified. They appeared to be the result of both alternate splicing and gene duplication. This is the first report of multiple NaV1 genes in a protostome. These data provide new insights into the transcriptome and physiology of this environmentally important zooplankter. PMID:24586345

  6. Utility of adenosine deaminase (ADA), PCR & thoracoscopy in differentiating tuberculous & non-tuberculous pleural effusion complicating chronic kidney disease.

    PubMed

    Kumar, Sravan; Agarwal, Ritesh; Bal, Amanjit; Sharma, Kusum; Singh, Navneet; Aggarwal, Ashutosh N; Verma, Indu; Rana, Satyawati V; Jha, Vivekanand

    2015-03-01

    Pleural effusion is a common occurrence in patients with late-stage chronic kidney disease (CKD). In developing countries, many effusions remain undiagnosed after pleural fluid analysis (PFA) and patients are empirically treated with antitubercular therapy. The aim of this study was to evaluate the role of adenosine deaminase (ADA), nucleic acid amplification tests (NAAT) and medical thoracoscopy in distinguishing tubercular and non-tubercular aetiologies in exudative pleural effusions complicating CKD. Consecutive stage 4 and 5 CKD patients with pleural effusions underwent PFA including ADA and PCR [65 kDa gene; multiplex (IS6110, protein antigen b, MPB64)]. Patients with exudative pleural effusion undiagnosed after PFA underwent medical thoracoscopy. All 107 patients underwent thoracocentesis with 45 and 62 patients diagnosed as transudative and exudative pleural effusions, respectively. Twenty six of the 62 patients underwent medical thoracoscopy. Tuberculous pleurisy was diagnosed in six while uraemic pleuritis was diagnosed in 20 subjects. The sensitivity and specificity of pleural fluid ADA, 65 kDa gene PCR, and multiplex PCR were 66.7 and 90 per cent, 100 and 50 per cent, and 100 and 100 per cent, respectively. Thoracoscopy was associated with five complications in three patients. Uraemia remains the most common cause of pleural effusion in CKD even in high TB prevalence country. Multiplex PCR and thoracoscopy are useful investigations in the diagnostic work-up of pleural effusions complicating CKD while the sensitivity and/or specificity of ADA and 65 kDa gene PCR is poor.

  7. Rapid detection of Shigella and enteroinvasive Escherichia coli in produce enrichments by a conventional multiplex PCR assay.

    PubMed

    Binet, Rachel; Deer, Deanne M; Uhlfelder, Samantha J

    2014-06-01

    Faster detection of contaminated foods can prevent adulterated foods from being consumed and minimize the risk of an outbreak of foodborne illness. A sensitive molecular detection method is especially important for Shigella because ingestion of as few as 10 of these bacterial pathogens can cause disease. The objectives of this study were to compare the ability of four DNA extraction methods to detect Shigella in six types of produce, post-enrichment, and to evaluate a new and rapid conventional multiplex assay that targets the Shigella ipaH, virB and mxiC virulence genes. This assay can detect less than two Shigella cells in pure culture, even when the pathogen is mixed with background microflora, and it can also differentiate natural Shigella strains from a control strain and eliminate false positive results due to accidental laboratory contamination. The four DNA extraction methods (boiling, PrepMan Ultra [Applied Biosystems], InstaGene Matrix [Bio-Rad], DNeasy Tissue kit [Qiagen]) detected 1.6 × 10(3)Shigella CFU/ml post-enrichment, requiring ∼18 doublings to one cell in 25 g of produce pre-enrichment. Lower sensitivity was obtained, depending on produce type and extraction method. The InstaGene Matrix was the most consistent and sensitive and the multiplex assay accurately detected Shigella in less than 90 min, outperforming, to the best of our knowledge, molecular assays currently in place for this pathogen. Published by Elsevier Ltd.

  8. Development and evaluation of hexaplex PCR for rapid detection of methicillin, cadmium/zinc and antiseptic-resistant staphylococci, with simultaneous identification of PVL-positive and -negative Staphylococcus aureus and coagulase negative staphylococci.

    PubMed

    Panda, Sasmita; Kar, Sarita; Choudhury, Ranginee; Sharma, Savitri; Singh, Durg V

    2014-03-01

    We developed a multiplex PCR to detect the presence of methicillin- (mecA), cadmium/zinc-(czrC) and antiseptic-resistant (qacA/B) staphylococci and to identify Panton-Valentine leukocidin (PVL)-positive and -negative Staphylococcus aureus and coagulase-negative staphylococci (CoNS) from infected and healthy eyes. The assay was validated on 177 staphylococci comprising of 55 each of S. aureus and CoNS isolated from infected eyes and five S. aureus and 62 CoNS isolated from healthy eyes and nine direct ocular samples. Nine direct ocular samples for in situ testing consisted of corneal scrapings (4), conjunctiva swabs (2) and others (3). Multiplex PCR result was correlated with genotype data obtained with single PCR and dot-blot assay. The control strains that were positive in multiplex PCR for 16S rRNA, nuc, mecA, pvl, czrC and qacA/B genes were also positive in the dot-blot assay. The specificity of amplified genes obtained with reference strains was further confirmed by DNA sequencing. The single step-hexaplex PCR method can be used for rapid detection of mecA, nuc, pvl, czrC and qacA/B genes in staphylococci with simultaneous identification of PVL-positive and -negative S. aureus and CoNS from a variety of ocular samples. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Coalitional game theory as a promising approach to identify candidate autism genes.

    PubMed

    Gupta, Anika; Sun, Min Woo; Paskov, Kelley Marie; Stockham, Nate Tyler; Jung, Jae-Yoon; Wall, Dennis Paul

    2018-01-01

    Despite mounting evidence for the strong role of genetics in the phenotypic manifestation of Autism Spectrum Disorder (ASD), the specific genes responsible for the variable forms of ASD remain undefined. ASD may be best explained by a combinatorial genetic model with varying epistatic interactions across many small effect mutations. Coalitional or cooperative game theory is a technique that studies the combined effects of groups of players, known as coalitions, seeking to identify players who tend to improve the performance--the relationship to a specific disease phenotype--of any coalition they join. This method has been previously shown to boost biologically informative signal in gene expression data but to-date has not been applied to the search for cooperative mutations among putative ASD genes. We describe our approach to highlight genes relevant to ASD using coalitional game theory on alteration data of 1,965 fully sequenced genomes from 756 multiplex families. Alterations were encoded into binary matrices for ASD (case) and unaffected (control) samples, indicating likely gene-disrupting, inherited mutations in altered genes. To determine individual gene contributions given an ASD phenotype, a "player" metric, referred to as the Shapley value, was calculated for each gene in the case and control cohorts. Sixty seven genes were found to have significantly elevated player scores and likely represent significant contributors to the genetic coordination underlying ASD. Using network and cross-study analysis, we found that these genes are involved in biological pathways known to be affected in the autism cases and that a subset directly interact with several genes known to have strong associations to autism. These findings suggest that coalitional game theory can be applied to large-scale genomic data to identify hidden yet influential players in complex polygenic disorders such as autism.

  10. Development of a Multiplex Real-Time PCR Assay with an Internal Amplification Control for the Detection of Total and Pathogenic Vibrio parahaemolyticus Bacteria in Oysters▿

    PubMed Central

    Nordstrom, Jessica L.; Vickery, Michael C. L.; Blackstone, George M.; Murray, Shelley L.; DePaola, Angelo

    2007-01-01

    Vibrio parahaemolyticus is an estuarine bacterium that is the leading cause of shellfish-associated cases of bacterial gastroenteritis in the United States. Our laboratory developed a real-time multiplex PCR assay for the simultaneous detection of the thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and thermostable-related hemolysin (trh) genes of V. parahaemolyticus. The tlh gene is a species-specific marker, while the tdh and trh genes are pathogenicity markers. An internal amplification control (IAC) was incorporated to ensure PCR integrity and eliminate false-negative reporting. The assay was tested for specificity against >150 strains representing eight bacterial species. Only V. parahaemolyticus strains possessing the appropriate target genes generated a fluorescent signal, except for a late tdh signal generated by three strains of V. hollisae. The multiplex assay detected <10 CFU/reaction of pathogenic V. parahaemolyticus in the presence of >104 CFU/reaction of total V. parahaemolyticus bacteria. The real-time PCR assay was utilized with a most-probable-number format, and its results were compared to standard V. parahaemolyticus isolation methodology during an environmental survey of Alaskan oysters. The IAC was occasionally inhibited by the oyster matrix, and this usually corresponded to negative results for V. parahaemolyticus targets. V. parahaemolyticus tlh, tdh, and trh were detected in 44, 44, and 52% of the oyster samples, respectively. V. parahaemolyticus was isolated from 33% of the samples, and tdh+ and trh+ strains were isolated from 19 and 26%, respectively. These results demonstrate the utility of the real-time PCR assay in environmental surveys and its possible application to outbreak investigations for the detection of total and pathogenic V. parahaemolyticus. PMID:17644647

  11. Quantum Dots for Molecular Pathology

    PubMed Central

    True, Lawrence D.; Gao, Xiaohu

    2007-01-01

    Assessing malignant tumors for expression of multiple biomarkers provides data that are critical for patient management. Quantum dot-conjugated probes to specific biomarkers are powerful tools that can be applied in a multiplex manner to single tissue sections of biopsies to measure expression levels of multiple biomarkers. PMID:17251330

  12. Mobile phone base station-emitted radiation does not induce phosphorylation of Hsp27.

    PubMed

    Hirose, H; Sakuma, N; Kaji, N; Nakayama, K; Inoue, K; Sekijima, M; Nojima, T; Miyakoshi, J

    2007-02-01

    An in vitro study focusing on the effects of low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields act to induce phosphorylation and overexpression of heat shock protein hsp27. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced activation or gene expression of hsp27 and other heat shock proteins (hsps). Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80 and 800 mW/kg for 2-48 h, and CW radiation at 80 mW/kg for 24 h. Human IMR-90 fibroblasts from fetal lungs were exposed to W-CDMA at 80 and 800 mW/kg for 2 or 28 h, and CW at 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the expression levels of phosphorylated hsp27 at serine 82 (hsp27[pS82]) were observed between the test groups exposed to W-CDMA or CW signal and the sham-exposed negative controls, as evaluated immediately after the exposure periods by bead-based multiplex assays. Moreover, no noticeable differences in the gene expression of hsps were observed between the test groups and the negative controls by DNA Chip analysis. Our results confirm that exposure to low-level RF field up to 800 mW/kg does not induce phosphorylation of hsp27 or expression of hsp gene family.

  13. Bacteriological and molecular studies of Clostridium perfringens infections in newly born calves.

    PubMed

    Selim, A M; Elhaig, M M; Zakaria, I; Ali, A

    2017-01-01

    Clostridium perfringens is considered one of the important causes of calf diarrhea. Two hundred and twenty-seven clinical samples from newly born and dead diarrheic calves were examined bacteriologically and by PCR. Bacterial culture identified C. perfringens in 168 of 227 samples. A total of 144 of these isolates were lecithinase positive, indicating C. perfringens Type A. In addition, 154 isolates were positive by alpha toxin encoding gene-PCR assay. This study showed high agreement between the results of bacteriology and multiplex PCR. The multiplex PCR typed all isolates that were typed as C. perfringens Type A through bacteriologic methods, but ten samples that were lecithinase negative were positive in the multiplex PCR. The study showed the highest occurrence of C. perfringens Type A isolations from calves during the winter and autumn compared with other seasons.

  14. Detection of pathogenic bacteria in shellfish using multiplex PCR followed by CovaLink NH microwell plate sandwich hybridization.

    PubMed

    Lee, Chi-Ying; Panicker, Gitika; Bej, Asim K

    2003-05-01

    Outbreak of diseases associated with consumption of raw shellfish especially oysters is a major concern to the seafood industry and public health agencies. A multiplex PCR amplification of targeted gene segments followed by DNA-DNA sandwich hybridization was optimized to detect the etiologic agents. First, a multiplex PCR amplification of hns, spvB, vvh, ctx and tl was developed enabling simultaneous detection of total Salmonella enterica serotype Typhimurium, Vibrio vulnificus, Vibrio cholerae and Vibrio parahaemolyticus from both pure cultures and seeded oysters. Amplicons were then subjected to a colorimetric CovaLink NH microwell plate sandwich hybridization using phosphorylated and biotinlylated oligonucleotide probes, the nucleotide sequences of which were located internal to the amplified DNA. The results from the hybridization with the multiplexed PCR amplified DNA exhibited a high signal/noise ratio ranging between 14.1 and 43.2 measured at 405 nm wavelength. The sensitivity of detection for each pathogen was 10(2) cells/g of oyster tissue homogenate. The results from this study showed that the combination of the multiplex PCR with a colorimetric microwell plate sandwich hybridization assay permits a specific, sensitive, and reproducible system for the detection of the microbial pathogens in shellfish, thereby improving the microbiological safety of shellfish to consumers.

  15. Multiplex PCR for the detection and differentiation of Vibrio parahaemolyticus strains using the groEL, tdh and trh genes.

    PubMed

    Hossain, Muhammad Tofazzal; Kim, Young-Ok; Kong, In-Soo

    2013-01-01

    Vibrio parahaemolyticus is a significant cause of human gastrointestinal disorders worldwide, transmitted primarily by ingestion of raw or undercooked contaminated seafood. In this study, a multiplex PCR assay for the detection and differentiation of V. parahaemolyticus strains was developed using primer sets for a species-specific marker, groEL, and two virulence markers, tdh and trh. Multiplex PCR conditions were standardised, and extracted genomic DNA of 70 V. parahaemolyticus strains was used for identification. The sensitivity and efficacy of this method were validated using artificially inoculated shellfish and seawater. The expected sizes of amplicons were 510 bp, 382 bp, and 171 bp for groEL, tdh and trh, respectively. PCR products were sufficiently different in size, and the detection limits of the multiplex PCR for groEL, tdh and trh were each 200 pg DNA. Specific detection and differentiation of virulent from non-virulent strains in shellfish homogenates and seawater was also possible after artificial inoculation with various V. parahaemolyticus strains. This newly developed multiplex PCR is a rapid assay for detection and differentiation of pathogenic V. parahaemolyticus strains, and could be used to prevent disease outbreaks and protect public health by helping the seafood industry maintain a safe shellfish supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A valveless rotary microfluidic device for multiplex point mutation identification based on ligation-rolling circle amplification.

    PubMed

    Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok

    2016-04-15

    Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Simultaneous mutation and copy number variation (CNV) detection by multiplex PCR-based GS-FLX sequencing.

    PubMed

    Goossens, Dirk; Moens, Lotte N; Nelis, Eva; Lenaerts, An-Sofie; Glassee, Wim; Kalbe, Andreas; Frey, Bruno; Kopal, Guido; De Jonghe, Peter; De Rijk, Peter; Del-Favero, Jurgen

    2009-03-01

    We evaluated multiplex PCR amplification as a front-end for high-throughput sequencing, to widen the applicability of massive parallel sequencers for the detailed analysis of complex genomes. Using multiplex PCR reactions, we sequenced the complete coding regions of seven genes implicated in peripheral neuropathies in 40 individuals on a GS-FLX genome sequencer (Roche). The resulting dataset showed highly specific and uniform amplification. Comparison of the GS-FLX sequencing data with the dataset generated by Sanger sequencing confirmed the detection of all variants present and proved the sensitivity of the method for mutation detection. In addition, we showed that we could exploit the multiplexed PCR amplicons to determine individual copy number variation (CNV), increasing the spectrum of detected variations to both genetic and genomic variants. We conclude that our straightforward procedure substantially expands the applicability of the massive parallel sequencers for sequencing projects of a moderate number of amplicons (50-500) with typical applications in resequencing exons in positional or functional candidate regions and molecular genetic diagnostics. 2008 Wiley-Liss, Inc.

  18. Detecting Gene Rearrangements in Patient Populations Through a 2-Step Diagnostic Test Comprised of Rapid IHC Enrichment Followed by Sensitive Next-Generation Sequencing

    PubMed Central

    Murphy, Danielle A.; Ely, Heather A.; Shoemaker, Robert; Boomer, Aaron; Culver, Brady P.; Hoskins, Ian; Haimes, Josh D.; Walters, Ryan D.; Fernandez, Diane; Stahl, Joshua A.; Lee, Jeeyun; Kim, Kyoung-Mee; Lamoureux, Jennifer

    2017-01-01

    Targeted therapy combined with companion diagnostics has led to the advancement of next-generation sequencing (NGS) for detection of molecular alterations. However, using a diagnostic test to identify patient populations with low prevalence molecular alterations, such as gene rearrangements, poses efficiency, and cost challenges. To address this, we have developed a 2-step diagnostic test to identify NTRK1, NTRK2, NTRK3, ROS1, and ALK rearrangements in formalin-fixed paraffin-embedded clinical specimens. This test is comprised of immunohistochemistry screening using a pan-receptor tyrosine kinase cocktail of antibodies to identify samples expressing TrkA (encoded by NTRK1), TrkB (encoded by NTRK2), TrkC (encoded by NTRK3), ROS1, and ALK followed by an RNA-based anchored multiplex polymerase chain reaction NGS assay. We demonstrate that the NGS assay is accurate and reproducible in identification of gene rearrangements. Furthermore, implementation of an RNA quality control metric to assess the presence of amplifiable nucleic acid input material enables a measure of confidence when an NGS result is negative for gene rearrangements. Finally, we demonstrate that performing a pan-receptor tyrosine kinase immunohistochemistry staining enriches detection of the patient population for gene rearrangements from 4% to 9% and has a 100% negative predictive value. Together, this 2-step assay is an efficient method for detection of gene rearrangements in both clinical testing and studies of archival formalin-fixed paraffin-embedded specimens. PMID:27028240

  19. Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes (VIM and IMP) in Pseudomonas aeruginosa strains producing MBL enzyme, isolated from patients with secondary immunodeficiency

    PubMed Central

    Shirani, Kiana; Ataei, Behrouz; Roshandel, Fardad

    2016-01-01

    Background: One of the most common causes of hospital-acquired secondary infections in hospitalized patients is Pseudomonas aeruginosa. The aim of this study is to evaluate the expression of IMP and VIM in Pseudomonas aeruginosa strains (carbapenem resistant and producer MBL enzyme) in patients with secondary immunodeficiency. Materials and Methods: In a cross sectional study, 96 patients with secondary immunodeficiency hospitalized in the Al-Zahra hospital were selected. Carbapenem resistant strains isolated and modified Hodge test was performed in order to confirm the presence of the metallo carbapenemase enzyme. Under the standard conditions they were sent to the central laboratory for investigating nosocomial infection Multiplex PCR. Results: Of 96 samples 28.1% were IMP positive, 5.2% VIM positive and 3.1% both VIM and IMP positive. The prevalence of multidrug resistance in the IMP and/or VIM negative samples was 29%, while all 5 VIM positive samples have had multidrug resistance. Also the prevalence of multi-drug resistance in IMP positive samples were 96.3% and in IMP and VIM positive samples were 100%. According to Fisher’s test, the prevalence of multi-drug resistance based on gene expression has significant difference (P < 0.001). Conclusion: Based on the results of this study it can be concluded that, a significant percentage of patients with secondary immunodeficiency that suffer nosocomial infections with multidrug resistance, especially Pseudomonas aeruginosa, are probably MBL-producing gene positive. Therefore the cause of infection should be considered in the hospital care system to identify their features, the presence of genes involved in the development of multi-drug resistance and antibiotic therapy. PMID:27563634

  20. Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes (VIM and IMP) in Pseudomonas aeruginosa strains producing MBL enzyme, isolated from patients with secondary immunodeficiency.

    PubMed

    Shirani, Kiana; Ataei, Behrouz; Roshandel, Fardad

    2016-01-01

    One of the most common causes of hospital-acquired secondary infections in hospitalized patients is Pseudomonas aeruginosa. The aim of this study is to evaluate the expression of IMP and VIM in Pseudomonas aeruginosa strains (carbapenem resistant and producer MBL enzyme) in patients with secondary immunodeficiency. In a cross sectional study, 96 patients with secondary immunodeficiency hospitalized in the Al-Zahra hospital were selected. Carbapenem resistant strains isolated and modified Hodge test was performed in order to confirm the presence of the metallo carbapenemase enzyme. Under the standard conditions they were sent to the central laboratory for investigating nosocomial infection Multiplex PCR. Of 96 samples 28.1% were IMP positive, 5.2% VIM positive and 3.1% both VIM and IMP positive. The prevalence of multidrug resistance in the IMP and/or VIM negative samples was 29%, while all 5 VIM positive samples have had multidrug resistance. Also the prevalence of multi-drug resistance in IMP positive samples were 96.3% and in IMP and VIM positive samples were 100%. According to Fisher's test, the prevalence of multi-drug resistance based on gene expression has significant difference (P < 0.001). Based on the results of this study it can be concluded that, a significant percentage of patients with secondary immunodeficiency that suffer nosocomial infections with multidrug resistance, especially Pseudomonas aeruginosa, are probably MBL-producing gene positive. Therefore the cause of infection should be considered in the hospital care system to identify their features, the presence of genes involved in the development of multi-drug resistance and antibiotic therapy.

  1. Detection of steroid 21-hydroxylase alleles using gene-specific PCR and a multiplexed ligation detection reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, D.J.; Barany, F.; Speiser, P.W.

    Steroid 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia, an inherited inability to synthesize cortisol that occurs in 1 in 10,000-15,000 births. Affected females are born with ambiguous genitalia, a condition that can be ameliorated by administering dexamethasone to the mother for most of gestation. Prenatal diagnosis is required for accurate treatment of affected females as well as for genetic counseling purposes. Approximately 95% of mutations causing this disorder result from recombinations between the gene encoding the 21-hydroxylase enzyme (CYP21) and a linked, highly homologous pseudogene (CYP21P). Approximately 20% of these mutations are gene deletions, and themore » remainder are gene conversions that transfer any of nine deleterious mutations from the CYP21P pseudogene to CYP21. We describe a methodology for genetic diagnosis of 21-hydroxylase deficiency that utilizes gene-specific PCR amplification in conjunction with thermostable DNA ligase to discriminate single nucleotide variations in a multiplexed ligation detection assay. The assay has been designed to be used with either fluorescent or radioactive detection of ligation products by electrophoresis on denaturing acrylamide gels and is readily adaptable for use in other disease systems. 30 refs., 5 figs.« less

  2. Molecular barcoding of venomous snakes and species-specific multiplex PCR assay to identify snake groups for which antivenom is available in Thailand.

    PubMed

    Supikamolseni, A; Ngaoburanawit, N; Sumontha, M; Chanhome, L; Suntrarachun, S; Peyachoknagul, S; Srikulnath, K

    2015-10-30

    DNA barcodes of mitochondrial COI and Cytb genes were constructed from 54 specimens of 16 species for species identification. Intra- and interspecific sequence divergence of the COI gene (10 times) was greater than that of the Cytb gene (4 times), which suggests that the former gene may be a better marker than the latter for species delimitation in snakes. The COI barcode cut-off scores differed by more than 3% between most species, and the minimum interspecific divergence was greater than the maximum intraspecific divergence. Clustering analysis indicated that most species fell into monophyletic clades. These results suggest that these species could be reliably differentiated using COI DNA barcodes. Moreover, a novel species-specific multiplex PCR assay was developed to distinguish between Naja spp, Ophiophagus hannah, Trimeresurus spp, Hydrophiinae, Daboia siamensis, Bungarus fasciatus, and Calloselasma rhodostoma. Antivenom for these species is produced and kept by the Thai Red Cross for clinical use. Our novel PCR assay could easily be applied to venom and saliva samples and could be used effectively for the rapid and accurate identification of species during forensic work, conservation study, and medical research.

  3. Bridging online and offline social networks: Multiplex analysis

    NASA Astrophysics Data System (ADS)

    Filiposka, Sonja; Gajduk, Andrej; Dimitrova, Tamara; Kocarev, Ljupco

    2017-04-01

    We show that three basic actor characteristics, namely normalized reciprocity, three cycles, and triplets, can be expressed using an unified framework that is based on computing the similarity index between two sets associated with the actor: the set of her/his friends and the set of those considering her/him as a friend. These metrics are extended to multiplex networks and then computed for two friendship networks generated by collecting data from two groups of undergraduate students. We found that in offline communication strong and weak ties are (almost) equally presented, while in online communication weak ties are dominant. Moreover, weak ties are much less reciprocal than strong ties. However, across different layers of the multiplex network reciprocities are preserved, while triads (measured with normalized three cycles and triplets) are not significant.

  4. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes.

    PubMed

    Minkenberg, Bastian; Xie, Kabin; Yang, Yinong

    2017-02-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system depends on a guide RNA (gRNA) to specify its target. By efficiently co-expressing multiple gRNAs that target different genomic sites, the polycistronic tRNA-gRNA gene (PTG) strategy enables multiplex gene editing in the family of closely related mitogen-activated protein kinase (MPK) genes in Oryza sativa (rice). In this study, we identified MPK1 and MPK6 (Arabidopsis AtMPK6 and AtMPK4 orthologs, respectively) as essential genes for rice development by finding the preservation of MPK functional alleles and normal phenotypes in CRISPR-edited mutants. The true knock-out mutants of MPK1 were severely dwarfed and sterile, and homozygous mpk1 seeds from heterozygous parents were defective in embryo development. By contrast, heterozygous mpk6 mutant plants completely failed to produce homozygous mpk6 seeds. In addition, the functional importance of specific MPK features could be evaluated by characterizing CRISPR-induced allelic variation in the conserved kinase domain of MPK6. By simultaneously targeting between two and eight genomic sites in the closely related MPK genes, we demonstrated 45-86% frequency of biallelic mutations and the successful creation of single, double and quadruple gene mutants. Indels and fragment deletion were both stably inherited to the next generations, and transgene-free mutants of rice MPK genes were readily obtained via genetic segregation, thereby eliminating any positional effects of transgene insertions. Taken together, our study reveals the essentiality of MPK1 and MPK6 in rice development, and enables the functional discovery of previously inaccessible genes or domains with phenotypes masked by lethality or redundancy. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  5. Expression of Shiga toxin 2 (Stx2) in highly virulent Stx-producing Escherichia coli (STEC) carrying different anti-terminator (q) genes.

    PubMed

    Olavesen, Kristoffer K; Lindstedt, Bjørn-Arne; Løbersli, Inger; Brandal, Lin T

    2016-08-01

    Shiga toxins (Stx) are key virulence factors of Shiga toxin-producing Escherichia coli (STEC) during development of haemolytic uremic syndrome (HUS). It has been suggested that not only specific stx2 subtypes, but also the amount of Stx2 expressed might be essential for STEC pathogenicity. We aimed to investigate if various anti-terminator (q) genes might influence the expression level of Stx2 in highly virulent STEC. A multiplex PCR detecting q933, q21, and qO111 was run on 20 stx2a-positive STEC strains, of which 18 were HUS associated serotypes (HAS) and two non-HAS. Relative expression of Stx2 mRNA was assessed for all strains, both in non-induced and induced (mitomycin C) state. The HAS STEC carried either q933 (n = 8), qO111 (n = 8), or both (n = 2). In basal state, no STEC strains showed higher expression of Stx2 mRNA than the calibrator EDL933 (non-sorbitol fermenting (NSF) O157:H7carrying q933). Variations among strains were not associated with different q genes present, but rather related to specific serogroups. In induced state, O104:H4 strains (q933) showed higher Stx2 mRNA level than EDL933, whereas sorbitol fermenting (SF) O157:H- (qO111) and O121:H? (q933) STEC showed levels comparable with EDL933. An association between the presence of q933 and higher Stx2 level was seen within some HAS, but not all. Interestingly, the O103:H25 STEC strains, responsible for a HUS outbreak in Norway, carried both q933 and qO111. However, the Stx2 mRNA level in these strains was significantly lower than EDL933 in both states, indicating that other factors than the level of Stx2 might explain the aggressiveness of these bacteria. The two non-HAS STEC did not carry any of the examined q genes. In induced state, these bacteria showed the lowest Stx2 mRNA level compared to EDL933. One of the non-HAS STEC was not induced by mitomycin C, suggesting that stx2a might be located on a defect bacteriophage. No association between specific q genes and Stx2 mRNA expression level was revealed in stx2a-positive HAS STEC. Our results suggest that other factor(s) than specific q genes might influence the level of Stx2 produced in highly virulent STEC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    PubMed

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources. Published by Elsevier Inc.

  7. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  8. Registry in a tube: multiplexed pools of retrievable parts for genetic design space exploration

    PubMed Central

    Woodruff, Lauren B. A.; Gorochowski, Thomas E.; Roehner, Nicholas; Densmore, Douglas; Gordon, D. Benjamin; Nicol, Robert

    2017-01-01

    Abstract Genetic designs can consist of dozens of genes and hundreds of genetic parts. After evaluating a design, it is desirable to implement changes without the cost and burden of starting the construction process from scratch. Here, we report a two-step process where a large design space is divided into deep pools of composite parts, from which individuals are retrieved and assembled to build a final construct. The pools are built via multiplexed assembly and sequenced using next-generation sequencing. Each pool consists of ∼20 Mb of up to 5000 unique and sequence-verified composite parts that are barcoded for retrieval by PCR. This approach is applied to a 16-gene nitrogen fixation pathway, which is broken into pools containing a total of 55 848 composite parts (71.0 Mb). The pools encompass an enormous design space (1043 possible 23 kb constructs), from which an algorithm-guided 192-member 4.5 Mb library is built. Next, all 1030 possible genetic circuits based on 10 repressors (NOR/NOT gates) are encoded in pools where each repressor is fused to all permutations of input promoters. These demonstrate that multiplexing can be applied to encompass entire design spaces from which individuals can be accessed and evaluated. PMID:28007941

  9. Accurate Sample Assignment in a Multiplexed, Ultrasensitive, High-Throughput Sequencing Assay for Minimal Residual Disease.

    PubMed

    Bartram, Jack; Mountjoy, Edward; Brooks, Tony; Hancock, Jeremy; Williamson, Helen; Wright, Gary; Moppett, John; Goulden, Nick; Hubank, Mike

    2016-07-01

    High-throughput sequencing (HTS) (next-generation sequencing) of the rearranged Ig and T-cell receptor genes promises to be less expensive and more sensitive than current methods of monitoring minimal residual disease (MRD) in patients with acute lymphoblastic leukemia. However, the adoption of new approaches by clinical laboratories requires careful evaluation of all potential sources of error and the development of strategies to ensure the highest accuracy. Timely and efficient clinical use of HTS platforms will depend on combining multiple samples (multiplexing) in each sequencing run. Here we examine the Ig heavy-chain gene HTS on the Illumina MiSeq platform for MRD. We identify errors associated with multiplexing that could potentially impact the accuracy of MRD analysis. We optimize a strategy that combines high-purity, sequence-optimized oligonucleotides, dual indexing, and an error-aware demultiplexing approach to minimize errors and maximize sensitivity. We present a probability-based, demultiplexing pipeline Error-Aware Demultiplexer that is suitable for all MiSeq strategies and accurately assigns samples to the correct identifier without excessive loss of data. Finally, using controls quantified by digital PCR, we show that HTS-MRD can accurately detect as few as 1 in 10(6) copies of specific leukemic MRD. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  10. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing

    PubMed Central

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A. Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E.

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence. PMID:26698853

  11. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE PAGES

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.; ...

    2014-01-01

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  12. Characteristics of Human Turbinate-Derived Mesenchymal Stem Cells Are Not Affected by Allergic Condition of Donor

    PubMed Central

    Hwang, Se Hwan; Cho, Hye Kyung; Park, Sang Hi; Lee, WeonSun; Lee, Hee Jin; Lee, Dong Chang; Park, Sun Hwa; Lim, Mi Hyun; Back, Sang A; Yun, Byeong Gon; Sun, Dong Il

    2015-01-01

    The characteristics of mesenchymal stem cells (MSCs) derived from human turbinates (hTMSCs) have not been investigated in allergic rhinitis. We evaluated the influence of allergic state of the donor on the characteristics, proliferation, and differentiation potential of hTMSCs, compared with hTMSCs derived from non-allergic patients. hTMSCs were isolated from five non-allergic and five allergic patients. The expression of toll-like receptors (TLRs) in hTMSCs was measured by FACS, and cell proliferation was measured using a cell counting kit. Cytokine secretion was analyzed using multiplex immunoassays. The osteogenic, chondrogenic, and adipogenic differentiation potentials of hTMSCs were evaluated by histology and gene expression analysis. In allergic patients, FACS analysis showed that TLR3 and TLR4 were more highly expressed on the surface of hTMSCs than TLR2 and TLR5. The proliferation of hTMSCs was not influenced by the presence of TLR priming. The expression of IL-6, IL-8, IL-12, IP-10, and RANTES was upregulated after the TLR4 priming. The differentiation potential of hTMSCs was not influenced by TLR priming. These characteristics of hTMSCs were similar to those of hTMSCs from non-allergic patients. We conclude that the allergic condition of the donor does not influence TLR expression, proliferation, or immunomodulatory potential of hTMSCs. PMID:26376485

  13. Multiplexed resequencing analysis to identify rare variants in pooled DNA with barcode indexing using next-generation sequencer.

    PubMed

    Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji

    2010-07-01

    We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.

  14. Analysis of autism susceptibility gene loci on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q in Finnish multiplex families.

    PubMed

    Auranen, M; Nieminen, T; Majuri, S; Vanhala, R; Peltonen, L; Järvelä, I

    2000-05-01

    The role of genetic factors in the etiology of the autistic spectrum of disorders has clearly been demonstrated. Ten chromosomal regions, on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q have potentially been linked to autism.1-8 We have analyzed these chromosomal regions in a total of 17 multiplex families with autism originating from the isolated Finnish population by pairwise linkage analysis and sib-pair analysis. Mild evidence for putative contribution was found only with the 1p chromosomal region in the susceptibility to autism. Our data suggest that additional gene loci exist for autism which will be detectable in and even restricted to the isolated Finnish population.

  15. Genetic diagnosis of Duchenne and Becker muscular dystrophy using multiplex ligation-dependent probe amplification in Rwandan patients.

    PubMed

    Uwineza, Annette; Hitayezu, Janvier; Murorunkwere, Seraphine; Ndinkabandi, Janvier; Kalala Malu, Celestin Kaputu; Caberg, Jean Hubert; Dideberg, Vinciane; Bours, Vincent; Mutesa, Leon

    2014-04-01

    Duchenne and Becker muscular dystrophies are the most common clinical forms of muscular dystrophies. They are genetically X-linked diseases caused by a mutation in the dystrophin (DMD) gene. A genetic diagnosis was carried out in six Rwandan patients presenting a phenotype of Duchenne and Becker muscular dystrophies and six asymptomatic female carrier relatives using multiplex ligation-dependent probe amplification (MLPA). Our results revealed deletion of the exons 48-51 in one patient, an inherited deletion of the exons 8-21 in two brothers and a de novo deletion of the exons 46-50 in the fourth patient. No copy number variation was found in two patients. Only one female carrier presented exon deletion in the DMD gene. This is the first cohort of genetic analysis in Rwandan patients affected by Duchenne and Becker muscular dystrophies. This report confirmed that MLPA assay can be easily implemented in low-income countries.

  16. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    PubMed

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  17. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary,; Bruce, R; Stubben, Christopher J

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  18. Multiplex growth rate phenotyping of synthetic mutants in selection to engineer glucose and xylose co-utilization in Escherichia coli.

    PubMed

    Groot, Joost; Cepress-Mclean, Sidney C; Robbins-Pianka, Adam; Knight, Rob; Gill, Ryan T

    2017-04-01

    Engineering the simultaneous consumption of glucose and xylose sugars is critical to enable the sustainable production of biofuels from lignocellulosic biomass. In most major industrial microorganisms glucose completely inhibits the uptake of xylose, limiting efficient sugar mixture conversion. In E. coli removal of the major glucose transporter PTS allows for glucose and xylose co-consumption but only after prolonged adaptation, which is an effective process but hard to control and prone to co-evolving undesired traits. Here we synthetically engineer mutants to target sugar co-consumption properties; we subject a PTS - mutant to a short adaptive step and subsequently either delete or overexpress key genes previously suggested to affect sugar consumption. Screening the co-consumption properties of these mutants individually is very laborious. We show we can evaluate sugar co-consumption properties in parallel by culturing the mutants in selection and applying a novel approach that computes mutant growth rates in selection using chromosomal barcode counts obtained from Next-Generation Sequencing. We validate this multiplex growth rate phenotyping approach with individual mutant pure cultures, identify new instances of mutants cross-feeding on metabolic byproducts, and, importantly, find that the rates of glucose and xylose co-consumption can be tuned by altering glucokinase expression in our PTS - background. Biotechnol. Bioeng. 2017;114: 885-893. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Three patients with Schaaf-Yang syndrome exhibiting arthrogryposis and endocrinological abnormalities.

    PubMed

    Enya, Takuji; Okamoto, Nobuhiko; Iba, Yoshinori; Miyazawa, Tomoki; Okada, Mitsuru; Ida, Shinobu; Naruto, Takuya; Imoto, Issei; Fujita, Atsushi; Miyake, Noriko; Matsumoto, Naomichi; Sugimoto, Keisuke; Takemura, Tsukasa

    2018-03-01

    MAGEL2 is the paternally expressed gene within Prader-Willi syndrome critical region at 15q11.2. We encountered three individuals in whom truncating mutations of MAGEL2 were identified. Patients 1 and 2, siblings born to healthy, non-consanguineous Japanese parents, showed generalized hypotonia, lethargy, severe respiratory difficulty, poor feeding, and multiple anomalies including arthrogryposis soon after birth. We carried out whole-exome sequencing, which detected a MAGEL2 mutation (c.1912C>T, p.Gln638*, heterozygous). The patients' father was heterozygous for the mutation. Patient 3 was a female infant, showed respiratory difficulty reflecting pulmonary hypoplasia, generalized hypotonia, feeding difficulty and multiple anomalies soon after birth. Targeted next-generation sequencing detected a novel heterozygous mutation in MAGEL2 (c.3131C>A, p.Ser1044*). This mutation was not found in the parents. MAGEL2 mutations, first reported to be the cause of the Prader-Willi like syndrome with autism by Schaaf et al. (2013) Nature Genetics, 45: 1405-1408 show the wide range of phenotypic spectrum from lethal arthrogryposis multiplex congenital to autism spectrum disorder (ASD) and mild intellectual disability (ID). Our results indicate that MAGEL2 mutations cause multiple congenital anomalies and intellectual disability accompanied by arthrogryposis multiplex congenita and various endocrinologic abnormalities, supporting that the view that clinical phenotypes of MAGEL2 mutations are variable. © 2018 Wiley Periodicals, Inc.

  20. Methylation profile analysis of DNA repair genes in hepatocellular carcinoma with MS-MLPA.

    PubMed

    Ozer, Ozge; Bilezikci, Banu; Aktas, Sema; Sahin, Feride I

    2013-12-01

    Hepatocellular carcinoma (HCC) is one of the rare tumors with well-defined risk factors. The multifactorial etiology of HCC can be explained by its complex molecular pathogenesis. In the current study, the methylation status of 7 genes involved in DNA repair mechanisms, namely MLH1, PMS2, MSH6, MSH2, MGMT, MSH3, and MLH3, was investigated in tumor samples from HCC patients, using the methylation-specific-multiplex ligated probe amplification method and the results were correlated with available clinical findings. The most common etiological factor in these cases was the presence of hepatitis B alone (47.2%). Among the 56 cases that were studied, promoter methylation was detected in at least one of the genes in 27 (48.2%) cases, only in 1 gene in 13 (23.2%) cases, and in >1 gene in 14 (25%) cases. Of the 7 genes investigated, methylation was most frequently observed in MSH3, in 14 (25%) cases. Methylation of at least 1 gene was significantly more frequent in patients with single tumors than multifocal tumors. There were significant differences regarding hepatitis B status, Child Class, tumor number, grade, and TNM stage in cases where PMS2 methylation was detected. Our results suggest that methylation of genes involved in mismatch repair may be responsible in the pathogenesis of HCC, and evaluating changes in multiple genes in these pathways simultaneously would be more informative. Despite being a robust and relatively inexpensive method, the methylation-specific-multiplex ligated probe amplification assay could be more extensively applied with improvements in the currently intricate data analysis component.

  1. Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis.

    PubMed

    Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand

    2009-07-01

    In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.

  2. Identification of deletions in children with congenital hypothyroidism and thyroid dysgenesis with the use of multiplex ligation-dependent probe amplification.

    PubMed

    Kumorowicz-Czoch, Malgorzata; Madetko-Talowska, Anna; Tylek-Lemanska, Dorota; Pietrzyk, Jacek J; Starzyk, Jerzy

    2015-01-01

    Thyroid dysgenesis (TD) is the most common cause of congenital hypothyroidism (CH). Important genetic factors possibly contributing to TD etiologies include mutations of thyroid transcription factors and TSHR-encoding genes. Our objective was to determine multiplex ligation-dependent probe amplification (MLPA) utility in detecting the copy number changes in patients with CH and TD. The study included 45 children from southeastern Poland selected via already established neonatal screening for CH. Genomic DNA was extracted from peripheral blood samples and used in MLPA analysis. Genetic variations were analyzed within selected fragments of the PAX8, FOXE1, NKX2-1, thyroid stimulating hormone receptor (TSHR), and TPO genes. Three heterozygous deletion types in probe hybridization regions were identified for the following genes: PAX8 (exon 7), TSHR (exon 2), and FOXE1 (exon 1). Monoallelic deletions were identified in 5/45 TD subjects. MLPA is a useful tool for copy number changes detection and might both improve and expand genetic analysis for CH and TD.

  3. Development of a multiplex PCR assay for the detection and differentiation of Burkholderia pseudomallei, Burkholderia mallei, Burkholderia thailandensis, and Burkholderia cepacia complex.

    PubMed

    Zakharova, Irina; Teteryatnikova, Natalya; Toporkov, Andrey; Viktorov, Dmitry

    2017-10-01

    Two species of Burkholderia pseudomallei complex (Bpc), B. pseudomallei and B. mallei, can cause severe life-threatening infections. Rapidly discerning individual species within the group and separating them from other opportunistic pathogens of the Burkholderia cepacia complex (Bcc) is essential to establish a correct diagnosis and for epidemiological surveillance. In this study, a multiplex PCR assay based on the detection of an individual set of chromosomal beta-lactamase genes for single-step identification and differentiation of B. pseudomallei, B. mallei, B. thailandensis, and Bcc was developed. Two pairs of primers specific to a distinct class of B metallo-beta-lactamase genes and a pair of primers specific to the oxacillin-hydrolyzing class D beta-lactamase gene were demonstrated to successfully discriminate species within Bpc and from Bcc. The assay sensitivity was 9561 genomic equivalents (GE) for B. pseudomallei, 7827 GE for B. mallei, 8749 GE for B. thailandensis and 6023 GE for B. cepacia. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis.

    PubMed

    Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang

    2017-08-15

    High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Performance of urinary and gene expression biomarkers in detecting the nephrotoxic effects of melamine and cyanuric acid following diverse scenarios of co-exposure

    PubMed Central

    Bandele, Omari; Camacho, Luísa; Ferguson, Martine; Reimschuessel, Renate; Stine, Cynthia; Black, Thomas; Olejnik, Nicholas; Keltner, Zachary; Scott, Michael; Gamboa da Costa, Gonçalo; Sprando, Robert

    2013-01-01

    Although standard nephrotoxicity assessments primarily detect impaired renal function, KIM-1, clusterin, NGAL, osteopontin and TIMP-1 were recently identified biomarkers proposed to indicate earlier perturbations in renal integrity. The recent adulteration of infant and pet food with melamine (MEL) and structurally-related compounds revealed that co-ingestion of MEL and cyanuric acid (CYA) could form melamine–cyanurate crystals which obstruct renal tubules and induce acute renal failure. This study concurrently evaluated the ability of multiplexed urinary biomarker immunoassays and biomarker gene expression analysis to detect nephrotoxicity in F344 rats co-administered 60 ppm each of MEL and CYA in feed or via gavage for 28 days. The biomarkers were also evaluated for the ability to differentiate the effects of the compounds when co-administered using diverse dosing schedules (i.e., consecutive vs. staggered gavage) and dosing matrixes (i.e., feed vs. gavage). Our results illustrate the ability of both methods to detect and differentiate the severity of adverse effects in the staggered and consecutive gavage groups at much lower doses than previously observed in animals co-exposed to the compounds in feed. We also demonstrate that these urinary biomarkers outperform traditional diagnostic methods and represent a powerful, non-invasive indicator of chemical-induced nephrotoxicity prior to the onset of renal dysfunction. PMID:23022069

  6. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan.

    PubMed

    Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko

    2016-11-01

    Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage.

    PubMed

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa; Ziola, Barry

    2015-02-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.

  8. Role of Plasmids in Lactobacillus brevis BSO 464 Hop Tolerance and Beer Spoilage

    PubMed Central

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa

    2014-01-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate. PMID:25501474

  9. Molecular analysis of globin gene expression in different thalassaemia disorders: individual variation of β(E) pre-mRNA splicing determine disease severity.

    PubMed

    Tubsuwan, Alisa; Munkongdee, Thongperm; Jearawiriyapaisarn, Natee; Boonchoy, Chanikarn; Winichagoon, Pranee; Fucharoen, Suthat; Svasti, Saovaros

    2011-09-01

    Thalassaemia is characterized by the reduced or absent production of globins in the haemoglobin molecule leading to imbalanced α-globin/non α-globin chains. HbE, the result of a G to A mutation in codon 26 of the HBB (β-globin) gene, activates a cryptic 5' splice site in codon 25 leading to a reduction of correctly spliced β(E) -globin (HBB:c.79G>A) mRNA and consequently β(+) -thalassaemia. A wide range of clinical severities in bothα- and β-thalassaemia syndromes, from nearly asymptomatic to transfusion-dependent, has been observed. The correlation between clinical heterogeneity in various genotypes of thalassaemia and the levels of globin gene expression and β(E) -globin pre-mRNA splicing were examined using multiplex quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) and allele-specific RT-qPCR. The α-globin/non α-globin mRNA ratio was demonstrated to be a good indicator for disease severity among different thalassaemia disorders. However, the α-globin/non α-globin mRNA ratio ranged widely in β-thalassaemia/HbE patients, with no significant difference between mild and severe phenotypes. Interestingly, the correctly to aberrantly spliced β(E) -globin mRNA ratio in 30% of mild β-thalassaemia/HbE patients was higher than that of the severe patients. The splicing process of β(E) -globin pre-mRNA differs among β-thalassaemia/HbE patients and serves as one of the modifying factors for disease severity. © 2011 Blackwell Publishing Ltd.

  10. Effect of cytomegalovirus and Epstein-Barr virus replication on intestinal mucosal gene expression and microbiome composition of HIV-infected and uninfected individuals.

    PubMed

    Gianella, Sara; Chaillon, Antoine; Mutlu, Ece A; Engen, Phillip A; Voigt, Robin M; Keshavarzian, Ali; Losurdo, John; Chakradeo, Prachi; Lada, Steven M; Nakazawa, Masato; Landay, Alan L

    2017-09-24

    HIV-infection is associated with dramatic changes in the intestinal mucosa. The impact of other viral pathogens is unclear. One hundred and eight (108) biopsies from left and right colon (n = 79) and terminal ileum (n = 29) were collected from 19 HIV-infected and 22 HIV-uninfected participants. Levels of cytomegalovirus (CMV) and Epstein-Barr virus (EBV) DNA were measured by droplet digital PCR. Mucosal gene expression was measured via multiplex-assay. Microbiome analysis was performed using bacterial 16S-rDNA-pyrosequencing. The effect of CMV and EBV replication on the microbiome composition and mRNA-expression of selected cytokines (IL-6, IFN-γ, IL-1β, CCL2, IL-8, and IFN-β1) was evaluated. Overall, CMV and EBV were detected in at least one intestinal site in 60.5 and 78.9% of participants, respectively. HIV-infected individuals demonstrated less detectable CMV (P = 0.04); CMV was more frequently detected in terminal ileum than colon (P = 0.04). Detectable EBV was more frequent among HIV-infected (P = 0.05) without differences by intestinal site. The number of operational taxonomic units did not differ by CMV or EBV detection status. Among HIV-infected participants, higher CMV was only associated with lower relative abundance of Actinobacteria in the ileum (P = 0.03). Presence of CMV was associated with upregulated expression of all selected cytokines in the ileum (all P = 0.02) and higher expression of IL-8 and IFN-β1 in the colon (all P < 0.05) of HIV-uninfected participants, but not among HIV-infected. EBV had no effect on cytokine expression or microbiome composition whatsoever. These results illustrate a complex interplay among HIV-infection, intestinal CMV replication, and mucosal gut environment, and highlight a possible modulatory effect of CMV on the microbial and immune homeostasis.

  11. Vancomycin modifies the expression of the agr system in multidrug-resistant Staphylococcus aureus clinical isolates

    PubMed Central

    Cázares-Domínguez, Vicenta; Ochoa, Sara A.; Cruz-Córdova, Ariadnna; Rodea, Gerardo E.; Escalona, Gerardo; Olivares, Alma L.; Olivares-Trejo, José de Jesús; Velázquez-Guadarrama, Norma; Xicohtencatl-Cortes, Juan

    2015-01-01

    Staphylococcus aureus is an opportunistic pathogen that colonizes human hosts and causes a wide variety of diseases. Two interacting regulatory systems called agr (accessory gene regulator) and sar (staphylococcal accessory regulator) are involved in the regulation of virulence factors. The aim of this study was to evaluate the effect of vancomycin on hld and spa gene expression during the exponential and post-exponential growth phases in multidrug-resistant (MDR) S. aureus. Methods: Antibiotic susceptibility was evaluated by the standard microdilution method. The phylogenetic profile was obtained by pulsed-field gel electrophoresis (PFGE). Polymorphisms of agr and SCCmec (staphylococcal cassette chromosome mec) were analyzed by multiplex polymerase chain reaction (PCR). The expression levels of hld and spa were analyzed by reverse transcription-PCR. An enzyme-linked immunosorbent assay (ELISA) was performed to detect protein A, and biofilm formation was analyzed via crystal violet staining. Results: In total, 60.60% (20/33) of S. aureus clinical isolates were MDR. Half (10/20) of the MDR S. aureus isolates were distributed in subcluster 10, with >90% similarity among them. In the isolates of this subcluster, a high prevalence (100%) for the agrII and the cassette SCCmec II polymorphisms was found. Our data showed significant increases in hld expression during the post-exponential phase in the presence and absence of vancomycin. Significant increases in spa expression, protein A production and biofilm formation were observed during the post-exponential phase when the MDR S. aureus isolates were challenged with vancomycin. Conclusion: The polymorphism agrII, which is associated with nosocomial isolates, was the most prevalent polymorphism in MDR S. aureus. Additionally, under our study conditions, vancomycin modified hld and spa expression in these clinical isolates. Therefore, vancomycin may regulate alternative systems that jointly participate in the regulation of these virulence factors. PMID:25999924

  12. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii.

    PubMed

    Lindsey, Rebecca L; Garcia-Toledo, L; Fasulo, D; Gladney, L M; Strockbine, N

    2017-09-01

    Escherichia coli, Escherichia albertii, and Escherichia fergusonii are closely related bacteria that can cause illness in humans, such as bacteremia, urinary tract infections and diarrhea. Current identification strategies for these three species vary in complexity and typically rely on the use of multiple phenotypic and genetic tests. To facilitate their rapid identification, we developed a multiplex PCR assay targeting conserved, species-specific genes. We used the Daydreamer™ (Pattern Genomics, USA) software platform to concurrently analyze whole genome sequence assemblies (WGS) from 150 Enterobacteriaceae genomes (107 E. coli, 5 Shigella spp., 21 E. albertii, 12 E. fergusonii and 5 other species) and design primers for the following species-specific regions: a 212bp region of the cyclic di-GMP regulator gene (cdgR, AW869_22935 from genome K-12 MG1655, CP014225) for E. coli/Shigella; a 393bp region of the DNA-binding transcriptional activator of cysteine biosynthesis gene (EAKF1_ch4033 from genome KF1, CP007025) for E. albertii; and a 575bp region of the palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase (EFER_0790 from genome ATCC 35469, CU928158) for E. fergusonii. We incorporated the species-specific primers into a conventional multiplex PCR assay and assessed its performance with a collection of 97 Enterobacteriaceae strains. The assay was 100% sensitive and specific for detecting the expected species and offers a quick and accurate strategy for identifying E. coli, E. albertii, and E. fergusonii in either a single reaction or by in silico PCR with sequence assemblies. Published by Elsevier B.V.

  13. Efficient screening of environmental isolates for Saccharomyces cerevisiae strains that are suitable for brewing.

    PubMed

    Fujihara, Hidehiko; Hino, Mika; Takashita, Hideharu; Kajiwara, Yasuhiro; Okamoto, Keiko; Furukawa, Kensuke

    2014-01-01

    We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.

  14. Genotypic and Antimicrobial Susceptibility of Carbapenem-resistant Acinetobacter baumannii: Analysis of ISAba Elements and blaOXA-23-like Genes Including a New Variant

    PubMed Central

    Bahador, Abbas; Raoofian, Reza; Pourakbari, Babak; Taheri, Mohammad; Hashemizadeh, Zahra; Hashemi, Farhad B.

    2015-01-01

    Carbapenem-resistant Acinetobacter baumannii (CR-AB) causes serious nosocomial infections, especially in ICU wards of hospitals, worldwide. Expression of blaOXA genes is the chief mechanism of conferring carbapenem resistance among CR-AB. Although some blaOXA genes have been studied among CR-AB isolates from Iran, their blaOXA-23-like genes have not been investigated. We used a multiplex-PCR to detect Ambler class A, B, and D carbapenemases of 85 isolates, and determined that 34 harbored blaOXA-23-like genes. Amplified fragment length polymorphism (AFLP) genotyping, followed by DNA sequencing of blaOXA-23-like amplicons of CR-AB from each AFLP group was used to characterize their blaOXA-23-like genes. We also assessed the antimicrobial susceptibility pattern of CR-AB isolates, and tested whether they harbored insertion sequences ISAba1 and ISAba4. Sequence comparison with reference strain A. baumannii (NCTC12156) revealed five types of mutations in blaOXA-23-like genes; including one novel variant and four mutants that were already reported from China and the USA. All of the blaOXA-23-like genes mutations were associated with increased minimum inhibitory concentrations (MICs) against imipenem. ISAba1 and ISAba4 sequences were detected upstream of blaOXA-23 genes in 19 and 7% of isolates, respectively. The isolation of CR-AB with new blaOXA-23 mutations including some that have been reported from the USA and China highlights CR-AB pervasive distribution, which underscores the importance of concerted national and global efforts to control the spread of CR-AB isolates worldwide. PMID:26617588

  15. Influence of Detection Methods in Characterizing Escherichia coli O157:H7 in Raw Goat Meat Using Conventional and Molecular Methods.

    PubMed

    Tabashsum, Zajeba; Nazneen, Mafruha; Ahsan, C R; Bari, M L; Yasmin, M

    2016-01-01

     Presence of Escherichia coli O157:H7 on fresh goat meat samples (n= 40) of Dhaka city was analyzed using conventional and molecular methods. A total of 86 presumptive E. coli O157:H7 colonies were isolated from 60% of the samples using selective agar plating method. After conventional biochemical assay followed by API 20E assay, only 11 isolates were found to be E. coli O157:H7. Further serological test identified only four isolates that has strong agglutination reaction against anti-H7 sensitized latex. The biochemically and serologically confirmed isolates were then screened for major virulence factors include eaeA, rfbE, fliC, stx1 and stx2 genes by PCR. PCR analysis of positive isolates showed, 10 isolates were eaeA and rfbE genes positive but fliC gene was only in six, indicating that these isolates were H7 positive with flagellum antigens which might not expressed or detected in serotyping tests. Multiplex PCR against eaeA, stx1 and stx2 genes of the isolates showed similar results as when done individually. These results revealed that only 7% of the primary presumptive E. coli O157:H7 was found to be stx producing E. coli O157:H7 and thus greatly influenced the detection of the pathogen in meat samples.

  16. Application of multiplex nested methylated specific PCR in early diagnosis of epithelial ovarian cancer.

    PubMed

    Wang, Bi; Yu, Lei; Yang, Guo-Zhen; Luo, Xin; Huang, Lin

    2015-01-01

    To explore the application of multiplex nested methylated specific polymerase chain reaction (PCR) in the early diagnosis of epithelial ovarian carcinoma (EOC). Serum and fresh tissue samples were collected from 114 EOC patients. RUNX3, TFPI2 and OPCML served as target genes. Methylation levels of tissues were assessed by multiplex nested methylated specific PCR, the results being compared with those for carcinoma antigen 125 (CA125). The serum free deoxyribose nucleic acid (DNA) methylation spectrum of EOC patients was completely contained in the DNA spectrum of cancer tissues, providing an accurate reflection of tumor DNA methylation conditions. Serum levels of CA125 and free DNA methylation in the EOC group were evidently higher than those in benign lesion and control groups (p<0.05). Patients with early EOC had markedly lower serum CA125 than those with advanced EOC (p<0.05), but there was no significant difference in free DNA methylation (p>0.05). The sensitivity, specificity and positive predicative value (PPV) of multiplex nested methylated specific PCR were significantly higher for detection of all patients and those with early EOC than those for CA125 (p<0.05). In the detection of patients with advanced EOC, the PPV of CA125 detection was obviously lower than that of multiplex nested methylated specific PCR (p>0.05), but there was no significant difference in sensitivity (p>0.05). Serum free DNA methylation can be used as a biological marker for EOC and multiplex nested methylated specific PCR should be considered for early diagnosis since it can accurately determine tumor methylation conditions.

  17. Design of multiplex calibrant plasmids, their use in GMO detection and the limit of their applicability for quantitative purposes owing to competition effects.

    PubMed

    Debode, Frédéric; Marien, Aline; Janssen, Eric; Berben, Gilbert

    2010-03-01

    Five double-target multiplex plasmids to be used as calibrants for GMO quantification were constructed. They were composed of two modified targets associated in tandem in the same plasmid: (1) a part of the soybean lectin gene and (2) a part of the transgenic construction of the GTS40-3-2 event. Modifications were performed in such a way that each target could be amplified with the same primers as those for the original target from which they were derived but such that each was specifically detected with an appropriate probe. Sequence modifications were done to keep the parameters of the new target as similar as possible to those of its original sequence. The plasmids were designed to be used either in separate reactions or in multiplex reactions. Evidence is given that with each of the five different plasmids used in separate wells as a calibrant for a different copy number, a calibration curve can be built. When the targets were amplified together (in multiplex) and at different concentrations inside the same well, the calibration curves showed that there was a competition effect between the targets and this limits the range of copy numbers for calibration over a maximum of 2 orders of magnitude. Another possible application of multiplex plasmids is discussed.

  18. Development of a Novel, Rapid Multiplex Polymerase Chain Reaction Assay for the Detection and Differentiation of Salmonella enterica Serovars Enteritidis and Typhimurium Using Ultra-Fast Convection Polymerase Chain Reaction.

    PubMed

    Kim, Tae-Hoon; Hwang, Hyun Jin; Kim, Jeong Hee

    2017-10-01

    Salmonella enterica serovars Enteritidis and Typhimurium are the most common causative agents of human nontyphoidal salmonellosis. The rapid detection and timely treatment of salmonellosis are important to increase the curative ratio and prevent spreading of the disease. In this study, we developed a rapid multiplex convection polymerase chain reaction (PCR) method to detect Salmonella spp. and differentiate Salmonella Enteritidis and Salmonella Typhimurium. We used the invA gene for Salmonella spp. detection. Salmonella Enteritidis-specific primers and Salmonella Typhimurium-specific primers were designed using the insertion element (IE) and spy genes, respectively. The primer set for Salmonella spp. detection clearly detected both Salmonella Enteritidis and Salmonella Typhimurium after a 21-min amplification reaction. Serovar-specific primer sets for Salmonella Enteritidis and Salmonella Typhimurium specifically detected each target species in a 21-min amplification reaction. We were able to detect Salmonella spp. at a single copy level in the singleplex mode. The limits of detection for Salmonella Enteritidis and Salmonella Typhimurium were 30 copies in both the singleplex and multiplex modes. The PCR run time could be reduced to 10.5 min/15 cycles. The multiplex convection PCR method developed in this study could detect the Salmonella spp. Salmonella Enteritidis and Salmonella Typhimurium in artificially contaminated milk with as few as 10 0 colony-forming unit/mL after 4-h enrichment. The PCR assay developed in this study provides a rapid, specific, and sensitive method for the detection of Salmonella spp. and the differentiation of Salmonella Enteritidis and Salmonella Typhimurium.

  19. Genetic markers for detection of Escherichia coli K-12 harboring ampicillin-resistance plasmid from an industrial wastewater treatment effluent pond.

    PubMed

    Simões, G A R; Xavier, M A S; Oliveira, D A; Menezes, E V; Magalhães, S S G; Gandra, J A C D; Xavier, A R E O

    2016-06-17

    Biotechnology industries that use recombinant DNA technology are potential sources for release of genetically modified organisms to the environment. Antibiotic-resistance marker genes are commonly used for recombinant bacteria selection. One example is the marker gene coding for β-lactamase (bla) in plasmids found in Escherichia coli K-12. The aim of this study was to provide an approach to develop a molecular method for genetic marker detection in E. coli K-12 harboring bla genes from an industrial wastewater treatment effluent pond (IWTEP). For the detection of bla and Achromobacter lyticus protease I (api) genes in samples from IWTEP, we employed multiplex polymerase chain reaction (PCR) using E. coli K-12 genetic marker detection primers, previously described in the literature, and primers designed in our laboratory. The microbiological screening method resulted in 22 bacterial colony-forming units isolated from three different IWTEP harvesting points. The multiplex PCR amplicons showed that five isolates were positive for the bla gene marker and negative for the E. coli K-12 and api genes. The 16S rRNA regions of positive microorganisms carrying the bla gene were genotyped by the MicroSeq®500 system. The bacteria found were Escherichia spp (3/5), Chromobacterium spp (1/5), and Aeromonas spp (1/5). None of the 22 isolated microorganisms presented the molecular pattern of E. coli K-12 harboring the bla gene. The presence of microorganisms positive for the bla gene and negative for E. coli K-12 harboring bla genes at IWTEP suggests that the ampicillin resistance found in the isolated bacteria could be from microorganisms other than the E. coli K-12 strain harboring plasmid.

  20. A GENOME-WIDE LINKAGE AND ASSOCIATION SCAN REVEALS NOVEL LOCI FOR AUTISM

    PubMed Central

    Weiss, Lauren A.; Arking, Dan E.

    2009-01-01

    Summary Although autism is a highly heritable neurodevelopmental disorder, attempts to identify specific susceptibility genes have thus far met with limited success 1. Genome-wide association studies (GWAS) using half a million or more markers, particularly those with very large sample sizes achieved through meta-analysis, have shown great success in mapping genes for other complex genetic traits (http://www.genome.gov/26525384). Consequently, we initiated a linkage and association mapping study using half a million genome-wide SNPs in a common set of 1,031 multiplex autism families (1,553 affected offspring). We identified regions of suggestive and significant linkage on chromosomes 6q27 and 20p13, respectively. Initial analysis did not yield genome-wide significant associations; however, genotyping of top hits in additional families revealed a SNP on chromosome 5p15 (between SEMA5A and TAS2R1) that was significantly associated with autism (P = 2 × 10−7). We also demonstrated that expression of SEMA5A is reduced in brains from autistic patients, further implicating SEMA5A as an autism susceptibility gene. The linkage regions reported here provide targets for rare variation screening while the discovery of a single novel association demonstrates the action of common variants. PMID:19812673

  1. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase

    PubMed Central

    Stepper, Peter; Kungulovski, Goran; Jurkowska, Renata Z.; Chandra, Tamir; Krueger, Felix; Reinhardt, Richard

    2017-01-01

    Abstract DNA methylation plays a critical role in the regulation and maintenance of cell-type specific transcriptional programs. Targeted epigenome editing is an emerging technology to specifically regulate cellular gene expression in order to modulate cell phenotypes or dissect the epigenetic mechanisms involved in their control. In this work, we employed a DNA methyltransferase Dnmt3a–Dnmt3L construct fused to the nuclease-inactivated dCas9 programmable targeting domain to introduce DNA methylation into the human genome specifically at the EpCAM, CXCR4 and TFRC gene promoters. We show that targeting of these loci with single gRNAs leads to efficient and widespread methylation of the promoters. Multiplexing of several guide RNAs does not increase the efficiency of methylation. Peaks of targeted methylation were observed around 25 bp upstream and 40 bp downstream of the PAM site, while 20–30 bp of the binding site itself are protected against methylation. Potent methylation is dependent on the multimerization of Dnmt3a/Dnmt3L complexes on the DNA. Furthermore, the introduced methylation causes transcriptional repression of the targeted genes. These new programmable epigenetic editors allow unprecedented control of the DNA methylation status in cells and will lead to further advances in the understanding of epigenetic signaling. PMID:27899645

  2. Genomic Alteration in Head and Neck Squamous Cell Carcinoma (HNSCC) Cell Lines Inferred from Karyotyping, Molecular Cytogenetics, and Array Comparative Genomic Hybridization

    PubMed Central

    Rerkarmnuaychoke, Budsaba; Suntronpong, Aorarat; Fu, Beiyuan; Bodhisuwan, Winai; Peyachoknagul, Surin; Yang, Fengtang; Koontongkaew, Sittichai; Srikulnath, Kornsorn

    2016-01-01

    Genomic alteration in head and neck squamous cell carcinoma (HNSCC) was studied in two cell line pairs (HN30-HN31 and HN4-HN12) using conventional C-banding, multiplex fluorescence in situ hybridization (M-FISH), and array comparative genomic hybridization (array CGH). HN30 and HN4 were derived from primary lesions in the pharynx and base of tongue, respectively, and HN31 and HN12 were derived from lymph-node metastatic lesions belonging to the same patients. Gain of chromosome 1, 7, and 11 were shared in almost all cell lines. Hierarchical clustering revealed that HN31 was closely related to HN4, which shared eight chromosome alteration cases. Large C-positive heterochromatins were found in the centromeric region of chromosome 9 in HN31 and HN4, which suggests complex structural amplification of the repetitive sequence. Array CGH revealed amplification of 7p22.3p11.2, 8q11.23q12.1, and 14q32.33 in all cell lines involved with tumorigenesis and inflammation genes. The amplification of 2p21 (SIX3), 11p15.5 (H19), and 11q21q22.3 (MAML2, PGR, TRPC6, and MMP family) regions, and deletion of 9p23 (PTPRD) and 16q23.1 (WWOX) regions were identified in HN31 and HN12. Interestingly, partial loss of PTPRD (9p23) and WWOX (16q23.1) genes was identified in HN31 and HN12, and the level of gene expression tended to be the down-regulation of PTPRD, with no detectable expression of the WWOX gene. This suggests that the scarcity of PTPRD and WWOX genes might have played an important role in progression of HNSCC, and could be considered as a target for cancer therapy or a biomarker in molecular pathology. PMID:27501229

  3. Deletion detection for diagnosis of Duchenne muscular dystrophy in the Japanese population--comparison between the polymerase chain reaction and the Southern blot analysis.

    PubMed

    Katayama, S; Takeshita, N; Yano, T; Ubagai, T; Qiu, X J; Katagiri, Y; Kubo, H; Hirakawa, S

    1993-06-01

    We compared the efficacy of the multiplex PCR with that of the cDNA analysis for detection of deletions of the DMD gene in the Japanese patients. Thirty males with DMD from 27 Japanese families were studied by the multiplex PCR, and 24 of them were also investigated by Southern blot analysis. We used five dystrophin cDNA probes for deletion analysis. A total of 19 regions were amplified by the PCR to detect deletions, 9 regions by the method of Chamberlain et al. and another 10 regions by the method of Beggs et al. Deletions were detected in 14 (52%) out of 27 DMD families by the PCR. Southern blot analysis detected deletions in 14 (64%) out of 22 families. Thirteen (93%) of the 14 DMD families with deletions detected by Southern blotting were also confirmed by the multiplex PCR. Provided care is taken in cases where the deletion is limited to a single exon, the multiplex PCR appears to be an efficient and useful alternative to conventional Southern blot analysis for detecting deletions during the prenatal and postnatal diagnosis of DMD.

  4. A Multiplex PCR for Simultaneous Detection of Three Zoonotic Parasites Ancylostoma ceylanicum, A. caninum, and Giardia lamblia Assemblage A

    PubMed Central

    Hu, Wei; Wu, Sheng; Yu, Xingang; Abullahi, Auwalu Yusuf; Song, Meiran; Tan, Liping; Wang, Zhen; Jiang, Biao; Li, Guoqing

    2015-01-01

    Ancylostoma ceylanicum, A. caninum, and Giardia lamblia assemblage A are common intestinal parasites of dogs and cats; they can also infect humans, causing parasitic zoonoses. In this study, a multiplex PCR method was developed for simultaneous identification and detection of those three zoonotic parasites. Three pairs of specific primers were designed based on ITS sequence of A. ceylanicum and A. caninum and TPI gene of G. lamblia available in the GenBank. The multiplex PCR reaction system was established by optimizing the reaction condition, and a series of tests on the sensitivity, specificity, and clinical application were also conducted. Results showed that three target fragments were amplified specifically; the detection limit was 10 eggs for both A. ceylanicum and A. caninum, 72 pg DNA for G. lamblia. Of 112 clinical fecal samples, 34.8% and 17.8% samples were positive for A. caninum and A. ceylanicum, respectively, while only 2.7% samples were positive for G. lamblia assemblage A. It is concluded that the established multiplex PCR assay is a convenient, rapid, cost-effective, and high-efficiency method for molecular detection and epidemiological investigation of three zoonotic parasites. PMID:26447336

  5. Luminex and other multiplex high throughput technologies for the identification of, and host response to, environmental triggers of type 1 diabetes.

    PubMed

    Purohit, Sharad; Sharma, Ashok; She, Jin-Xiong

    2015-01-01

    Complex interactions between a series of environmental factors and genes result in progression to clinical type 1 diabetes in genetically susceptible individuals. Despite several decades of research in the area, these interactions remain poorly understood. Several studies have yielded associations of certain foods, infections, and immunizations with the onset and progression of diabetes autoimmunity, but most findings are still inconclusive. Environmental triggers are difficult to identify mainly due to (i) large number and complex nature of environmental exposures, including bacteria, viruses, dietary factors, and environmental pollutants, (ii) reliance on low throughput technology, (iii) less efforts in quantifying host response, (iv) long silent period between the exposure and clinical onset of T1D which may lead to loss of the exposure fingerprints, and (v) limited sample sets. Recent development in multiplex technologies has enabled systematic evaluation of different classes of molecules or macroparticles in a high throughput manner. However, the use of multiplex assays in type 1 diabetes research is limited to cytokine assays. In this review, we will discuss the potential use of multiplex high throughput technologies in identification of environmental triggers and host response in type 1 diabetes.

  6. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer

    PubMed Central

    Rogers, Toni-Maree; Arnau, Gisela Mir; Ryland, Georgina L.; Huang, Stephen; Lira, Maruja E.; Emmanuel, Yvette; Perez, Omar D.; Irwin, Darryl; Fellowes, Andrew P.; Wong, Stephen Q.; Fox, Stephen B.

    2017-01-01

    ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-throughput transcriptome-based methods may provide a suitable alternative to FISH as they are compatible with multiplexing and diagnostic workflows. However, the concordance between these different methods compared with FISH has not been evaluated. In this study we compared the results from three transcriptome-based platforms (Nanostring Elements, Agena LungFusion panel and ThermoFisher NGS fusion panel) to those obtained from ALK, ROS1 and RET FISH on 51 clinical specimens. Overall agreement of results ranged from 86–96% depending on the platform used. While all platforms were highly sensitive, both the Agena panel and Thermo Fisher NGS fusion panel reported minor fusions that were not detectable by FISH. Our proof–of–principle study illustrates that transcriptome-based analyses are sensitive and robust methods for detecting actionable gene fusions in lung cancer and could provide a robust alternative to FISH testing in the diagnostic setting. PMID:28181564

  7. Analysis of X chromosome inactivation in autism spectrum disorders

    PubMed Central

    Gong, Xiaohong; Bacchelli, Elena; Blasi, Francesca; Toma, Claudio; Betancur, Catalina; Chaste, Pauline; Delorme, Richard; Durand, Christelle; Fauchereau, Fabien; Botros, Hany Goubran; Leboyer, Marion; Mouren-Simeoni, Marie-Christine; Nygren, Gudrun; Anckarsäter, Henrik; Rastam, Maria; Gillberg, I Carina; Gillberg, Christopher; Moreno-De-Luca, Daniel; Carone, Simona; Nummela, Ilona; Rossi, Mari; Battaglia, Agatino; Jarvela, Irma; Maestrini, Elena; Bourgeron, Thomas

    2008-01-01

    Autism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in the susceptibility to ASD by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes. PMID:18361425

  8. Analysis of X chromosome inactivation in autism spectrum disorders.

    PubMed

    Gong, Xiaohong; Bacchelli, Elena; Blasi, Francesca; Toma, Claudio; Betancur, Catalina; Chaste, Pauline; Delorme, Richard; Durand, Christelle M; Fauchereau, Fabien; Botros, Hany Goubran; Leboyer, Marion; Mouren-Simeoni, Marie-Christine; Nygren, Gudrun; Anckarsäter, Henrik; Rastam, Maria; Gillberg, I Carina; Gillberg, Christopher; Moreno-De-Luca, Daniel; Carone, Simona; Nummela, Ilona; Rossi, Mari; Battaglia, Agatino; Jarvela, Irma; Maestrini, Elena; Bourgeron, Thomas

    2008-09-05

    Autism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in ASD susceptibility by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (> or = 80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes. 2008 Wiley-Liss, Inc.

  9. New COL6A6 variant detected by whole-exome sequencing is linked to break points in intron 4 and 3′-UTR, deleting exon 5 of RHO, and causing adRP

    PubMed Central

    de Sousa Dias, Miguel; Hernan, Imma; Delás, Barbara; Pascual, Beatriz; Borràs, Emma; Gamundi, Maria José; Mañé, Begoña; Fernández-San José, Patricia; Ayuso, Carmen

    2015-01-01

    Purpose This study aimed to test a newly devised cost-effective multiplex PCR assay for the molecular diagnosis of autosomal dominant retinitis pigmentosa (adRP), as well as the use of whole-exome sequencing (WES) to detect disease-causing mutations in adRP. Methods Genomic DNA was extracted from peripheral blood lymphocytes of index patients with adRP and their affected and unaffected family members. We used a newly devised multiplex PCR assay capable of amplifying the genetic loci of RHO, PRPH2, RP1, PRPF3, PRPF8, PRPF31, IMPDH1, NRL, CRX, KLHL7, and NR2E3 to molecularly diagnose 18 index patients with adRP. We also performed WES in affected and unaffected members of four families with adRP in whom a disease-causing mutation was previously not found. Results We identified five previously reported mutations (p.Arg677X in the RP1 gene, p.Asp133Val and p.Arg195Leu in the PRPH2 gene, and p.Pro171Leu and p.Pro215Leu in the RHO gene) and one novel mutation (p.Val345Gly in the RHO gene) representing 33% detection of causative mutations in our adRP cohort. Comparative WES analysis showed a new variant (p.Gly103Arg in the COL6A6 gene) that segregated with the disease in one family with adRP. As this variant was linked with the RHO locus, we sequenced the complete RHO gene, which revealed a deletion in intron 4 that encompassed all of exon 5 and 28 bp of the 3′-untranslated region (UTR). Conclusions The novel multiplex PCR assay with next-generation sequencing (NGS) proved effective for detecting most of the adRP-causing mutations. A WES approach led to identification of a deletion in RHO through detection of a new linked variant in COL6A6. No pathogenic variants were identified in the remaining three families. Moreover, NGS and WES were inefficient for detecting the complete deletion of exon 5 in the RHO gene in one family with adRP. Carriers of this deletion showed variable clinical status, and two of these carriers had not previously been diagnosed with RP. PMID:26321861

  10. Population differences in host immune factors may influence survival of Gunnison's prairie dogs (Cynomys Gunnisoni) during plague outbreaks

    USGS Publications Warehouse

    Busch, Joseph D.; Van Andel, Roger; Cordova, Jennifer; Colman, Rebecca E.; Keim, Paul; Rocke, Tonie E.; Leid, Jeff G.; Van Pelt, William E.; Wagner, David M.

    2011-01-01

    Over the past 40 yr, epizootics of plague (Yersinia pestis) in northern Arizona have reduced populations of the Gunnison’s prairie dog (Cynomys gunnisoni), with the exception of a large population found in the Aubrey Valley (AV). To examine potential mechanisms accounting for their survival, we collected prairie dog serum samples in 2005–2006 from AV and a neighboring population near Seligman (SE), Arizona. We quantified gene expression at 58 diverse immune proteins using a multiplexed enzyme-linked immunosorbent assay panel. We found a subset of proteins important in coagulation and inflammation (tissue factor [TF], calbindin [Cal], and thrombopoietin [TPO]) and T-cell responses (CD40L and CD40) that were present in AV at levels two to eight times greater than SE. These results suggest that AV and SE animals might differ in their ability to mount an immune response.

  11. Keratin 17 null mice exhibit age- and strain-dependent alopecia.

    PubMed

    McGowan, Kevin M; Tong, Xuemei; Colucci-Guyon, Emma; Langa, Francina; Babinet, Charles; Coulombe, Pierre A

    2002-06-01

    Onset of type I keratin 17 (K17) synthesis marks the adoption of an appendageal fate within embryonic ectoderm, and its expression persists in specific cell types within mature hair, glands, and nail. We report that K17 null mice develop severe alopecia during the first week postbirth, correlating with hair fragility, alterations in follicular histology, and apoptosis in matrix cells. These alterations are incompletely penetrant and normalize starting with the first postnatal cycle. Absence of a hair phenotype correlates with a genetic strain-dependent compensation by related keratins, including K16. These findings reveal a crucial role for K17 in the structural integrity of the first hair produced and the survival of hair-producing cells. Given that identical inherited mutations in this gene can cause either pachyonychia congenita or steatocystoma multiplex, the features of this mouse model suggest that this clinical heterogeneity arises from a cell type-specific, genetically determined compensation by related keratins.

  12. System Vaccinology for the Evaluation of Influenza Vaccine Safety by Multiplex Gene Detection of Novel Biomarkers in a Preclinical Study and Batch Release Test

    PubMed Central

    Mizukami, Takuo; Momose, Haruka; Kuramitsu, Madoka; Takizawa, Kazuya; Araki, Kumiko; Furuhata, Keiko; Ishii, Ken J.; Hamaguchi, Isao; Yamaguchi, Kazunari

    2014-01-01

    Vaccines are beneficial and universal tools to prevent infectious disease. Thus, safety of vaccines is strictly evaluated in the preclinical phase of trials and every vaccine batch must be tested by the National Control Laboratories according to the guidelines published by each country. Despite many vaccine production platforms and methods, animal testing for safety evaluation is unchanged thus far. We recently developed a systems biological approach to vaccine safety evaluation where identification of specific biomarkers in a rat pre-clinical study evaluated the safety of vaccines for pandemic H5N1 influenza including Irf7, Lgals9, Lgalsbp3, Cxcl11, Timp1, Tap2, Psmb9, Psme1, Tapbp, C2, Csf1, Mx2, Zbp1, Ifrd1, Trafd1, Cxcl9, β2m, Npc1, Ngfr and Ifi47. The current study evaluated whether these 20 biomarkers could evaluate the safety, batch-to-batch and manufacturer-to-manufacturer consistency of seasonal trivalent influenza vaccine using a multiplex gene detection system. When we evaluated the influenza HA vaccine (HAv) from four different manufactures, the biomarker analysis correlated to findings from conventional animal use tests, such as abnormal toxicity test. In addition, sensitivity of toxicity detection and differences in HAvs were higher and more accurate than with conventional methods. Despite a slight decrease in body weight caused by HAv from manufacturer B that was not statistically significant, our results suggest that HAv from manufacturer B is significantly different than the other HAvs tested with regard to Lgals3bp, Tapbp, Lgals9, Irf7 and C2 gene expression in rat lungs. Using the biomarkers confirmed in this study, we predicted batch-to-batch consistency and safety of influenza vaccines within 2 days compared with the conventional safety test, which takes longer. These biomarkers will facilitate the future development of new influenza vaccines and provide an opportunity to develop in vitro methods of evaluating batch-to-batch consistency and vaccine safety as an alternative to animal testing. PMID:25010690

  13. Multiplex Real-Time PCR for Monitoring Heterobasidion annosum Colonization in Norway Spruce Clones That Differ in Disease Resistance

    PubMed Central

    Hietala, Ari M.; Eikenes, Morten; Kvaalen, Harald; Solheim, Halvor; Fossdal, Carl G.

    2003-01-01

    A multiplex real-time PCR assay was developed to monitor the dynamics of the Picea abies-Heterobasidion annosum pathosystem. Tissue cultures and 32-year-old trees with low or high resistance to this pathogen were used as the host material. Probes and primers were based on a laccase gene for the pathogen and a polyubiquitin gene for the host. The real-time PCR procedure was compared to an ergosterol-based quantification method in a tissue culture experiment, and there was a strong correlation (product moment correlation coefficient, 0.908) between the data sets. The multiplex real-time PCR procedure had higher resolution and sensitivity during the early stages of colonization and also could be used to monitor the host. In the tissue culture experiment, host DNA was degraded more rapidly in the clone with low resistance than in the clone with high resistance. In the field experiment, the lesions elicited were not strictly proportional to the area colonized by the pathogen. Fungal colonization was more restricted and localized in the lesion in the clone with high resistance, whereas in the clone with low resistance, the fungus could be detected until the visible end of the lesion. Thus, the real-time PCR assay gives better resolution than does the traditionally used lesion length measurement when screening host clones for resistance. PMID:12902224

  14. Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations.

    PubMed

    Zonta, Eleonora; Garlan, Fanny; Pécuchet, Nicolas; Perez-Toralla, Karla; Caen, Ouriel; Milbury, Coren; Didelot, Audrey; Fabre, Elizabeth; Blons, Hélène; Laurent-Puig, Pierre; Taly, Valérie

    2016-01-01

    In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients.

  15. Cerebellum volume in high-risk offspring from multiplex alcohol dependence families: Association with allelic variation in GABRA2 and BDNF

    PubMed Central

    Hill, Shirley Y.; Wang, Shuhui; Carter, Howard; Tessner, Kevin; Holmes, Brian; McDermott, Michael; Zezza, Nicholas; Stiffler, Scott

    2012-01-01

    Offspring from families with multiple cases of alcohol dependence have a greater likelihood of developing alcohol dependence (AD) and related substance use disorders. Greater susceptibility for developing these disorders may be related to structural differences in brain circuits that influence the salience of rewards or modify the efficiency of information processing and AD susceptibility. We examined the cerebellum of 71 adolescent/young adult high-risk (HR) offspring from families with multiple cases of alcohol dependence (multiplex families), and 60 low-risk (LR) controls with no family history of alcohol or drug dependence who were matched for age, gender, socioeconomic status and IQ, with attention given to possible effects of personal use of substances and maternal use during pregnancy. Magnetic resonance images were acquired on a General Electric 1.5-Tesla scanner and manually traced (BRAINS2) blind to clinical information. GABRA2 and BDNF variation were tested for their association with cerebellar volumes. High-risk offspring from multiplex AD families showed greater total volume of the cerebellum and total gray matter (GM), in comparison with LR controls. An interaction between allelic variation in GABRA2 and BDNF genes was associated with GM volumes, suggesting that inherited variation in these genes may promote early developmental differences in neuronal proliferation of the cerebellum. PMID:22047728

  16. Multiplex PCR for rapid diagnosis and differentiation of pox and pox-like diseases in dromedary Camels.

    PubMed

    Khalafalla, Abdelmalik I; Al-Busada, Khalid A; El-Sabagh, Ibrahim M

    2015-07-07

    Pox and pox-like diseases of camels are a group of exanthematous skin conditions that have become increasingly important economically. Three distinct viruses may cause them: camelpox virus (CMLV), camel parapox virus (CPPV) and camelus dromedary papilloma virus (CdPV). These diseases are often difficult to differentiate based on clinical presentation in disease outbreaks. Molecular methods such as PCR targeting species-specific genes have been developed and used to identify these diseases, but not simultaneously in a single tube. Recently, multiplex PCR has gained reputation as a convenient diagnostic method with cost-and timesaving benefits. In the present communication, we describe the development, optimization and validation of a multiplex PCR assay able to detect simultaneously the genome of the three viruses in one single test allowing for rapid and efficient molecular diagnosis. The assay was developed based on the evaluation and combination of published and new primer sets and was validated with viral genomic DNA extracted from known virus strains (n = 14) and DNA extracted from homogenized clinical skin specimens (n = 86). The assay detects correctly the target pathogens by amplification of targeted genes, even in case of co-infection. The method showed high sensitivity, and the specificity was confirmed by PCR-product sequencing. This assay provide rapid, sensitive and specific method for identifying three important viruses in specimens collected from dromedary camels with varying clinical presentations.

  17. Registry in a tube: multiplexed pools of retrievable parts for genetic design space exploration.

    PubMed

    Woodruff, Lauren B A; Gorochowski, Thomas E; Roehner, Nicholas; Mikkelsen, Tarjei S; Densmore, Douglas; Gordon, D Benjamin; Nicol, Robert; Voigt, Christopher A

    2017-02-17

    Genetic designs can consist of dozens of genes and hundreds of genetic parts. After evaluating a design, it is desirable to implement changes without the cost and burden of starting the construction process from scratch. Here, we report a two-step process where a large design space is divided into deep pools of composite parts, from which individuals are retrieved and assembled to build a final construct. The pools are built via multiplexed assembly and sequenced using next-generation sequencing. Each pool consists of ∼20 Mb of up to 5000 unique and sequence-verified composite parts that are barcoded for retrieval by PCR. This approach is applied to a 16-gene nitrogen fixation pathway, which is broken into pools containing a total of 55 848 composite parts (71.0 Mb). The pools encompass an enormous design space (1043 possible 23 kb constructs), from which an algorithm-guided 192-member 4.5 Mb library is built. Next, all 1030 possible genetic circuits based on 10 repressors (NOR/NOT gates) are encoded in pools where each repressor is fused to all permutations of input promoters. These demonstrate that multiplexing can be applied to encompass entire design spaces from which individuals can be accessed and evaluated. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Genome editing in Kluyveromyces and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid.

    PubMed

    Juergens, Hannes; Varela, Javier A; Gorter de Vries, Arthur R; Perli, Thomas; Gast, Veronica J M; Gyurchev, Nikola Y; Rajkumar, Arun S; Mans, Robert; Pronk, Jack T; Morrissey, John P; Daran, Jean-Marc G

    2018-05-01

    While CRISPR-Cas9-mediated genome editing has transformed yeast research, current plasmids and cassettes for Cas9 and guide-RNA expression are species specific. CRISPR tools that function in multiple yeast species could contribute to the intensifying research on non-conventional yeasts. A plasmid carrying a pangenomic origin of replication and two constitutive expression cassettes for Cas9 and ribozyme-flanked gRNAs was constructed. Its functionality was tested by analyzing inactivation of the ADE2 gene in four yeast species. In two Kluyveromyces species, near-perfect targeting (≥96%) and homologous repair (HR) were observed in at least 24% of transformants. In two Ogataea species, Ade- mutants were not observed directly after transformation, but prolonged incubation of transformed cells resulted in targeting efficiencies of 9% to 63% mediated by non-homologous end joining (NHEJ). In an Ogataea parapolymorpha ku80 mutant, deletion of OpADE2 mediated by HR was achieved, albeit at low efficiencies (<1%). Furthermore the expression of a dual polycistronic gRNA array enabled simultaneous interruption of OpADE2 and OpYNR1 demonstrating flexibility of ribozyme-flanked gRNA design for multiplexing. While prevalence of NHEJ prevented HR-mediated editing in Ogataea, such targeted editing was possible in Kluyveromyces. This broad-host-range CRISPR/gRNA system may contribute to exploration of Cas9-mediated genome editing in other Saccharomycotina yeasts.

  19. Evaluation of Two Highly-Multiplexed Custom Panels for Massively Parallel Semiconductor Sequencing on Paraffin DNA

    PubMed Central

    Kotoula, Vassiliki; Lyberopoulou, Aggeliki; Papadopoulou, Kyriaki; Charalambous, Elpida; Alexopoulou, Zoi; Gakou, Chryssa; Lakis, Sotiris; Tsolaki, Eleftheria; Lilakos, Konstantinos; Fountzilas, George

    2015-01-01

    Background—Aim Massively parallel sequencing (MPS) holds promise for expanding cancer translational research and diagnostics. As yet, it has been applied on paraffin DNA (FFPE) with commercially available highly multiplexed gene panels (100s of DNA targets), while custom panels of low multiplexing are used for re-sequencing. Here, we evaluated the performance of two highly multiplexed custom panels on FFPE DNA. Methods Two custom multiplex amplification panels (B, 373 amplicons; T, 286 amplicons) were coupled with semiconductor sequencing on DNA samples from FFPE breast tumors and matched peripheral blood samples (n samples: 316; n libraries: 332). The two panels shared 37% DNA targets (common or shifted amplicons). Panel performance was evaluated in paired sample groups and quartets of libraries, where possible. Results Amplicon read ratios yielded similar patterns per gene with the same panel in FFPE and blood samples; however, performance of common amplicons differed between panels (p<0.001). FFPE genotypes were compared for 1267 coding and non-coding variant replicates, 999 out of which (78.8%) were concordant in different paired sample combinations. Variant frequency was highly reproducible (Spearman’s rho 0.959). Repeatedly discordant variants were of high coverage / low frequency (p<0.001). Genotype concordance was (a) high, for intra-run duplicates with the same panel (mean±SD: 97.2±4.7, 95%CI: 94.8–99.7, p<0.001); (b) modest, when the same DNA was analyzed with different panels (mean±SD: 81.1±20.3, 95%CI: 66.1–95.1, p = 0.004); and (c) low, when different DNA samples from the same tumor were compared with the same panel (mean±SD: 59.9±24.0; 95%CI: 43.3–76.5; p = 0.282). Low coverage / low frequency variants were validated with Sanger sequencing even in samples with unfavourable DNA quality. Conclusions Custom MPS may yield novel information on genomic alterations, provided that data evaluation is adjusted to tumor tissue FFPE DNA. To this scope, eligibility of all amplicons along with variant coverage and frequency need to be assessed. PMID:26039550

  20. Clinical Validation of Multiplex Real-Time PCR Assays for Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Theodore, M. Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L.; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J. Matthew; Messonnier, Nancy E.; Mayer, Leonard W.

    2012-01-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays. PMID:22170919

  1. Clinical validation of multiplex real-time PCR assays for detection of bacterial meningitis pathogens.

    PubMed

    Wang, Xin; Theodore, M Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J Matthew; Messonnier, Nancy E; Mayer, Leonard W

    2012-03-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays.

  2. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    PubMed

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-07

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.

  3. Identification and characterisation of mutations associated with von Willebrand disease in a Turkish patient cohort

    PubMed Central

    Hampshire, Daniel J.; Abuzenadah, Adel M.; Cartwright, Ashley; Al-Shammari, Nawal S.; Coyle, Rachael E.; Eckert, Michaela; Al-Buhairan, Ahlam M.; Messenger, Sarah L.; Budde, Ulrich; Gürsel, Türkiz; Ingerslev, Jørgen; Peake, Ian R.; Goodeve, Anne C.

    2014-01-01

    Summary Several cohort studies have investigated the molecular basis of von Willebrand disease (VWD); however these have mostly focused on European and North American populations. This study aimed to investigate mutation spectrum in 26 index cases (IC) from Turkey diagnosed with all three VWD types, the majority (73%) with parents who were knowingly related. IC were screened for mutations using multiplex ligation-dependent probe amplification and analysis of all von Willebrand factor gene (VWF) exons and exon/intron boundaries. Selected missense mutations were expressed in vitro. Candidate VWF mutations were identified in 25 of 26 IC and included propeptide missense mutations in four IC (two resulting in type 1 and two in recessive 2A), all influencing VWF expression in vitro. Four missense mutations, a nonsense mutation and a small in-frame insertion resulting in type 2A were also identified. Of 15 type 3 VWD IC, 13 were homozygous and two compound heterozygous for 14 candidate mutations predicted to result in lack of expression and two propeptide missense changes. Identification of intronic breakpoints of an exon 17–18 deletion suggested that the mutation resulted from non-homologous end joining. This study provides further insight into the pathogenesis of VWD in a population with a high degree of consanguineous partnerships. PMID:23702511

  4. Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America.

    PubMed

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Lopes, João R S; Muller, Christiane; Almeida, Rodrigo P P

    2017-03-01

    Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.

  5. Comprehensive analysis of MGMT promoter methylation: correlation with MGMT expression and clinical response in GBM.

    PubMed

    Shah, Nameeta; Lin, Biaoyang; Sibenaller, Zita; Ryken, Timothy; Lee, Hwahyung; Yoon, Jae-Geun; Rostad, Steven; Foltz, Greg

    2011-01-07

    O⁶-methylguanine DNA-methyltransferase (MGMT) promoter methylation has been identified as a potential prognostic marker for glioblastoma patients. The relationship between the exact site of promoter methylation and its effect on gene silencing, and the patient's subsequent response to therapy, is still being defined. The aim of this study was to comprehensively characterize cytosine-guanine (CpG) dinucleotide methylation across the entire MGMT promoter and to correlate individual CpG site methylation patterns to mRNA expression, protein expression, and progression-free survival. To best identify the specific MGMT promoter region most predictive of gene silencing and response to therapy, we determined the methylation status of all 97 CpG sites in the MGMT promoter in tumor samples from 70 GBM patients using quantitative bisulfite sequencing. We next identified the CpG site specific and regional methylation patterns most predictive of gene silencing and improved progression-free survival. Using this data, we propose a new classification scheme utilizing methylation data from across the entire promoter and show that an analysis based on this approach, which we call 3R classification, is predictive of progression-free survival (HR  = 5.23, 95% CI [2.089-13.097], p<0.0001). To adapt this approach to the clinical setting, we used a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) test based on the 3R classification and show that this test is both feasible in the clinical setting and predictive of progression free survival (HR  = 3.076, 95% CI [1.301-7.27], p = 0.007). We discuss the potential advantages of a test based on this promoter-wide analysis and compare it to the commonly used methylation-specific PCR test. Further prospective validation of these two methods in a large independent patient cohort will be needed to confirm the added value of promoter wide analysis of MGMT methylation in the clinical setting.

  6. Comprehensive Analysis of MGMT Promoter Methylation: Correlation with MGMT Expression and Clinical Response in GBM

    PubMed Central

    Shah, Nameeta; Lin, Biaoyang; Sibenaller, Zita; Ryken, Timothy; Lee, Hwahyung; Yoon, Jae-Geun; Rostad, Steven; Foltz, Greg

    2011-01-01

    O6-methylguanine DNA-methyltransferase (MGMT) promoter methylation has been identified as a potential prognostic marker for glioblastoma patients. The relationship between the exact site of promoter methylation and its effect on gene silencing, and the patient's subsequent response to therapy, is still being defined. The aim of this study was to comprehensively characterize cytosine-guanine (CpG) dinucleotide methylation across the entire MGMT promoter and to correlate individual CpG site methylation patterns to mRNA expression, protein expression, and progression-free survival. To best identify the specific MGMT promoter region most predictive of gene silencing and response to therapy, we determined the methylation status of all 97 CpG sites in the MGMT promoter in tumor samples from 70 GBM patients using quantitative bisulfite sequencing. We next identified the CpG site specific and regional methylation patterns most predictive of gene silencing and improved progression-free survival. Using this data, we propose a new classification scheme utilizing methylation data from across the entire promoter and show that an analysis based on this approach, which we call 3R classification, is predictive of progression-free survival (HR  = 5.23, 95% CI [2.089–13.097], p<0.0001). To adapt this approach to the clinical setting, we used a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) test based on the 3R classification and show that this test is both feasible in the clinical setting and predictive of progression free survival (HR  = 3.076, 95% CI [1.301–7.27], p = 0.007). We discuss the potential advantages of a test based on this promoter-wide analysis and compare it to the commonly used methylation-specific PCR test. Further prospective validation of these two methods in a large independent patient cohort will be needed to confirm the added value of promoter wide analysis of MGMT methylation in the clinical setting. PMID:21249131

  7. Use of a Hierarchical Oligonucleotide Primer Extension Approach for Multiplexed Relative Abundance Analysis of Methanogens in Anaerobic Digestion Systems

    PubMed Central

    Chuang, Hui-Ping; Hsu, Mao-Hsuan; Chen, Wei-Yu

    2013-01-01

    In this study, we established a rapid multiplex method to detect the relative abundances of amplified 16S rRNA genes from known cultivatable methanogens at hierarchical specificities in anaerobic digestion systems treating industrial wastewater and sewage sludge. The method was based on the hierarchical oligonucleotide primer extension (HOPE) technique and combined with a set of 27 primers designed to target the total archaeal populations and methanogens from 22 genera within 4 taxonomic orders. After optimization for their specificities and detection sensitivity under the conditions of multiple single-nucleotide primer extension reactions, the HOPE approach was applied to analyze the methanogens in 19 consortium samples from 7 anaerobic treatment systems (i.e., 513 reactions). Among the samples, the methanogen populations detected with order-level primers accounted for >77.2% of the PCR-amplified 16S rRNA genes detected using an Archaea-specific primer. The archaeal communities typically consisted of 2 to 7 known methanogen genera within the Methanobacteriales, Methanomicrobiales, and Methanosarcinales and displayed population dynamic and spatial distributions in anaerobic reactor operations. Principal component analysis of the HOPE data further showed that the methanogen communities could be clustered into 3 distinctive groups, in accordance with the distribution of the Methanosaeta, Methanolinea, and Methanomethylovorans, respectively. This finding suggested that in addition to acetotrophic and hydrogenotrophic methanogens, the methylotrophic methanogens might play a key role in the anaerobic treatment of industrial wastewater. Overall, the results demonstrated that the HOPE approach is a specific, rapid, and multiplexing platform to determine the relative abundances of targeted methanogens in PCR-amplified 16S rRNA gene products. PMID:24077716

  8. Log-PCR: a new tool for immediate and cost-effective diagnosis of up to 85% of dystrophin gene mutations.

    PubMed

    Trimarco, Amelia; Torella, Annalaura; Piluso, Giulio; Maria Ventriglia, Vega; Politano, Luisa; Nigro, Vincenzo

    2008-06-01

    Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the dystrophin gene. Despite the progress in the technologies of mutation detection, the disease of one third of patients escapes molecular definition because the labor and expense involved has precluded analyzing the entire gene. Novel techniques with higher detection rates, such as multiplex ligation-dependent probe amplification and multiplex amplifiable probe hybridization, have been introduced. We approached the challenge of multiplexing by modifying the PCR chemistry. We set up a rapid protocol that analyzes all dystrophin exons and flanking introns (57.5 kb). We grouped exons according to their effect on the reading frame and ran 2 PCR reactions for DMD mutations and 2 reactions for BMD mutations under the same conditions. The PCR products are evenly spaced logarithmically on the gel (Log-PCR) in an order that reproduces their chromosomal locations. This strategy enables both simultaneous mapping of all the mutation borders and distinguishing between DMD and BMD. As a proof of principle, we reexamined samples from 506 patients who had received a DMD or BMD diagnosis. We observed gross rearrangements in 428 of the patients (84.6%; 74.5% deletions and 10.1% duplications). We also recognized a much broader spectrum of mutations and identified 14.6% additional cases. This study is the first exhaustive investigation of this subject and has made possible the development of a cost-effective test for diagnosing a larger proportion of cases. The benefit of this approach may allow more focused efforts for discovering small or deep-intronic mutations among the few remaining undiagnosed cases. The same protocol can be extended to set up Log-PCRs for other high-throughput applications.

  9. Evaluation of a Multiplex PCR Assay for the Identification of Salmonella Serovars Enteritidis and Typhimurium Using Retail and Abattoir Samples.

    PubMed

    Ogunremi, Dele; Nadin-Davis, Susan; Dupras, Andrée Ann; Márquez, Imelda Gálvan; Omidi, Katayoun; Pope, Louise; Devenish, John; Burke, Teresa; Allain, Ray; Leclair, Daniel

    2017-02-01

    A multiplex PCR was developed to identify the two most common serovars of Salmonella causing foodborne illness in Canada, namely, serovars Enteritidis and Typhimurium. The PCR was designed to amplify DNA fragments from four Salmonella genes, namely, invA gene (211-bp fragment), iroB gene (309-bp fragment), Typhimurium STM 4497 (523-bp fragment), and Enteritidis SE147228 (612-bp fragment). In addition, a 1,026-bp ribosomal DNA (rDNA) fragment universally present in bacterial species was included in the assay as an internal control fragment. The detection rate of the PCR was 100% among Salmonella Enteritidis (n = 92) and Salmonella Typhimurium (n = 33) isolates. All tested Salmonella isolates (n = 194) were successfully identified based on the amplification of at least one Salmonella -specific DNA fragment. None of the four Salmonella DNA amplicons were detected in any of the non- Salmonella isolates (n = 126), indicating an exclusivity rate of 100%. When applied to crude extracts of 2,001 field isolates of Salmonella obtained during the course of a national microbiological baseline study in broiler chickens and chicken products sampled from abattoir and retail outlets, 163 isolates, or 8.1%, tested positive for Salmonella Enteritidis and another 80 isolates, or 4.0%, tested as Salmonella Typhimurium. All isolates identified by serological testing as Salmonella Enteritidis in the microbiological study were also identified by using the multiplex PCR. The new test can be used to identify or confirm pure isolates of the two serovars and is also amenable for integration into existing culture procedures for accurate detection of Salmonella colonies.

  10. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers.

    PubMed

    Zhou, Lei; Wang, Rui; Yao, Chi; Li, Xiaomin; Wang, Chengli; Zhang, Xiaoyan; Xu, Congjian; Zeng, Aijun; Zhao, Dongyuan; Zhang, Fan

    2015-04-24

    The identification of potential diagnostic markers and target molecules among the plethora of tumour oncoproteins for cancer diagnosis requires facile technology that is capable of quantitatively analysing multiple biomarkers in tumour cells and tissues. Diagnostic and prognostic classifications of human tumours are currently based on the western blotting and single-colour immunohistochemical methods that are not suitable for multiplexed detection. Herein, we report a general and novel method to prepare single-band upconversion nanoparticles with different colours. The expression levels of three biomarkers in breast cancer cells were determined using single-band upconversion nanoparticles, western blotting and immunohistochemical technologies with excellent correlation. Significantly, the application of antibody-conjugated single-band upconversion nanoparticle molecular profiling technology can achieve the multiplexed simultaneous in situ biodetection of biomarkers in breast cancer cells and tissue specimens and produce more accurate results for the simultaneous quantification of proteins present at low levels compared with classical immunohistochemical technology.

  11. Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.

    PubMed

    Pollock, Samuel B; Hu, Amy; Mou, Yun; Martinko, Alexander J; Julien, Olivier; Hornsby, Michael; Ploder, Lynda; Adams, Jarrett J; Geng, Huimin; Müschen, Markus; Sidhu, Sachdev S; Moffat, Jason; Wells, James A

    2018-03-13

    Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states. Copyright © 2018 the Author(s). Published by PNAS.

  12. Piglet colibacillosis diagnosis based on multiplex polymerase chain reaction and immunohistochemistry of paraffin-embedded tissues

    PubMed Central

    de Andrade, Caroline P.; Machado, Verônica S. L.; Bianchi, Matheus V.; Rolim, Veronica M.; Cruz, Raquel A. S.; Driemeier, David

    2018-01-01

    Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in pigs, referred to as colibacillosis. The aim of this study was to optimize multiplex polymerase chain reaction (PCR) and immunohistochemistry (IHC) analyses of paraffin-embedded material to detect pathogenic E. coli strains causing colibacillosis in pigs. Multiplex PCR was optimized for fimbriae (F18, F4, F6, F5, and F41) and toxins (types A and B heat-stable toxins [STaP and STb], heat-labile toxin [LT], and type 2 Shiga toxin [STx2e]), and IHC was optimized for an anti-E. coli polyclonal antibody. Samples (132) from pigs received between 2006 and 2014 with clinical and histopathological diagnoses of colibacillosis were analyzed. E. coli was detected by IHC in 78.7%, and at least one virulence factor gene was detected in 71.2%. Pathogenic strains of ETEC with at least one fimbria and one toxin were detected in 40% of the samples in multiplex PCR. The most frequent virulence types were F18-STaP (7.5%), F18-STaP-STb (5.7%), and F4-STaP (3.8%). A statistically significant association was noted between virulence factors F4, F18, STaP, and STb and positive immunostaining results. Colibacillosis diagnosis through multiplex PCR and IHC of paraffin-embedded tissues is a practical approach, as samples can be fixed and stored for long periods before analysis. PMID:28693311

  13. Detection of Escherichia coli and Associated β-Lactamases Genes from Diabetic Foot Ulcers by Multiplex PCR and Molecular Modeling and Docking of SHV-1, TEM-1, and OXA-1 β-Lactamases with Clindamycin and Piperacillin-Tazobactam

    PubMed Central

    Shahi, Shailesh K.; Singh, Vinay K.; Kumar, Ashok

    2013-01-01

    Diabetic foot ulcer (DFU) is a common and devastating complication in diabetes. Antimicrobial resistance mediated by extended-spectrum β-lactamases (ESBLs) production by bacteria is considered to be a major threat for foot amputation. The present study deals with the detection of Escherichia coli and the prevalence of bla TEM, bla SHV and bla OXA genes directly from biopsy and swab of foot ulcers of diabetic patients. In total, 116 DFU patients were screened, of which 42 suffering with severe DFUs were selected for this study. Altogether 16 E. coli strains were successfully isolated from biopsy and/or swab samples of 15 (35.71%) patients. ESBL production was noted in 12 (75%) strains. Amplification of β-lactamase genes by multiplex PCR showed the presence of bla CTX-M like genes in 10 strains, bla TEM and bla OXA in 9 strains each, and bla SHV in 8 of the total 16 strains of E. coli. Out of the ten antibiotics tested, E. coli strains were found to be resistant to ampicillin (75%), cefoxitin (56.25%), cefazolin (50%), meropenem (37.5%), cefoperazone (25%), cefepime (31.25%), ceftazidime (56.25%), and cefotaxime (68.75%) but all showed sensitivity (100%) to clindamycin and piperacillin-tazobactam. 3D models of the most prevalent variants of β-lactamases namely TEM-1, SHV-1, OXA-1, and ESBL namely CTX-M-15 were predicted and docking was performed with clindamycin and piperacillin-tazobactam to reveal the molecular basis of drug sensitivity. Docking showed the best docking score with significant interactions, forming hydrogen bond, Van der Waals and polar level interaction with active site residues. Findings of the present study may provide useful insights for the development of new antibiotic drugs and may also prevent ESBLs-mediated resistance problem in DFU. The novel multiplex PCR assay designed in this study may be routinely used in clinical diagnostics of E. coli and associated bla TEM, bla SHV, and bla OXA like genes. PMID:23861873

  14. BRCA1 and BRCA2 gene variants and nonsyndromic cleft lip/palate.

    PubMed

    Rodriguez, Nicholas; Maili, Lorena; Chiquet, Brett T; Blanton, Susan H; Hecht, Jacqueline T; Letra, Ariadne

    2018-06-19

    Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a debilitating condition that not only affects the individual, but the entire family. The purpose of this study was to investigate the association of BRCA1 and BRCA2 genes with NSCL/P. Twelve polymorphisms in/nearby BRCA1 and BRCA2 were genotyped using Taqman chemistry. Our data set consisted of 3,473 individuals including 2,191 nonHispanic white (NHW) individuals (from 151 multiplex and 348 simplex families) and 1,282 Hispanic individuals (from 92 multiplex and 216 simplex families). Data analysis was performed using Family-Based Association Test (FBAT), stratified by ethnicity and family history of NSCL/P. Nominal associations were found between NSCL/P and BRCA1 in Hispanics and BRCA2 in NHW and Hispanics (p < .05). Significant haplotype associations were found between NSCL/P and both BRCA1 and BRCA2 (p ≤ .004). Our results suggest a modest association between BRCA1 and BRCA2 and NSCL/P. Further studies in additional populations and functional studies are needed to elucidate the role of these genes in developmental processes and signaling pathways contributing to NSCL/P. © 2018 Wiley Periodicals, Inc.

  15. Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells

    NASA Astrophysics Data System (ADS)

    Wu, Yafeng; Han, Jianyu; Xue, Peng; Xu, Rong; Kang, Yuejun

    2015-01-01

    MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of them is able to monitor miRNA levels expressed in living cancer cells in a real-time fashion. Some fluorescennt biosensors developed recently from carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO), and carbon nanoparticles, have been successfully used for assaying miRNA in vitro; however the preparation processes are often expensive, complicated and time-consuming, which have motivated the research on other substitute and novel materials. Herein we present a novel sensing strategy based on peptide nucleic acid (PNA) probes labeled with fluorophores and conjugated with an NMOF vehicle to monitor multiplexed miRNAs in living cancer cells. The NMOF works as a fluorescence quencher of the labelled PNA that is firmly bound with the metal center. In the presence of a target miRNA, PNA is hybridized and released from the NMOF leading to the recovery of fluorescence. This miRNA sensor not only enables the quantitative and highly specific detection of multiplexed miRNAs in living cancer cells, but it also allows the precise and in situ monitoring of the spatiotemporal changes of miRNA expression.MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of them is able to monitor miRNA levels expressed in living cancer cells in a real-time fashion. Some fluorescennt biosensors developed recently from carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO), and carbon nanoparticles, have been successfully used for assaying miRNA in vitro; however the preparation processes are often expensive, complicated and time-consuming, which have motivated the research on other substitute and novel materials. Herein we present a novel sensing strategy based on peptide nucleic acid (PNA) probes labeled with fluorophores and conjugated with an NMOF vehicle to monitor multiplexed miRNAs in living cancer cells. The NMOF works as a fluorescence quencher of the labelled PNA that is firmly bound with the metal center. In the presence of a target miRNA, PNA is hybridized and released from the NMOF leading to the recovery of fluorescence. This miRNA sensor not only enables the quantitative and highly specific detection of multiplexed miRNAs in living cancer cells, but it also allows the precise and in situ monitoring of the spatiotemporal changes of miRNA expression. Electronic supplementary information (ESI) available: Extra figures and tables. See DOI: 10.1039/c4nr05447d

  16. Analysis of shared homozygosity regions in Saudi siblings with attention deficit hyperactivity disorder

    PubMed Central

    Al Yemni, Eman A.A.; Alnaemi, Faten M.; Abebe, Dejene; Al-Abdulaziz, Basma S.; Al Mubarak, Bashayer R.; Ghaziuddin, Mohammad; Al Tassan, Nada A.

    2017-01-01

    Aim Genetic and clinical complexities are common features of most psychiatric illnesses that pose a major obstacle in risk-gene identification. Attention deficit hyperactivity disorder (ADHD) is the most prevalent child-onset psychiatric illness, with high heritability. Over the past decade, numerous genetic studies utilizing various approaches, such as genome-wide association, candidate-gene association, and linkage analysis, have identified a multitude of candidate loci/genes. However, such studies have yielded diverse findings that are rarely reproduced, indicating that other genetic determinants have not been discovered yet. In this study, we carried out sib-pair analysis on seven multiplex families with ADHD from Saudi Arabia. We aimed to identify the candidate chromosomal regions and genes linked to the disease. Patients and methods A total of 41 individuals from multiplex families were analyzed for shared regions of homozygosity. Genes within these regions were prioritized according to their potential relevance to ADHD. Results We identified multiple genomic regions spanning different chromosomes to be shared among affected members of each family; these included chromosomes 3, 5, 6, 7, 8, 9, 10, 13, 17, and 18. We also found specific regions on chromosomes 8 and 17 to be shared between affected individuals from more than one family. Among the genes present in the regions reported here were involved in neurotransmission (GRM3, SIGMAR1, CHAT, and SLC18A3) and members of the HLA gene family (HLA-A, HLA-DPA1, and MICC). Conclusion The candidate regions identified in this study highlight the genetic diversity of ADHD. Upon further investigation, these loci may reveal candidate genes that enclose variants associated with ADHD. Although most ADHD studies were conducted in other populations, our study provides insight from an understudied, ethnically interesting population. PMID:28452824

  17. Analysis of shared homozygosity regions in Saudi siblings with attention deficit hyperactivity disorder.

    PubMed

    Shinwari, Jameela M A; Al Yemni, Eman A A; Alnaemi, Faten M; Abebe, Dejene; Al-Abdulaziz, Basma S; Al Mubarak, Bashayer R; Ghaziuddin, Mohammad; Al Tassan, Nada A

    2017-08-01

    Genetic and clinical complexities are common features of most psychiatric illnesses that pose a major obstacle in risk-gene identification. Attention deficit hyperactivity disorder (ADHD) is the most prevalent child-onset psychiatric illness, with high heritability. Over the past decade, numerous genetic studies utilizing various approaches, such as genome-wide association, candidate-gene association, and linkage analysis, have identified a multitude of candidate loci/genes. However, such studies have yielded diverse findings that are rarely reproduced, indicating that other genetic determinants have not been discovered yet. In this study, we carried out sib-pair analysis on seven multiplex families with ADHD from Saudi Arabia. We aimed to identify the candidate chromosomal regions and genes linked to the disease. A total of 41 individuals from multiplex families were analyzed for shared regions of homozygosity. Genes within these regions were prioritized according to their potential relevance to ADHD. We identified multiple genomic regions spanning different chromosomes to be shared among affected members of each family; these included chromosomes 3, 5, 6, 7, 8, 9, 10, 13, 17, and 18. We also found specific regions on chromosomes 8 and 17 to be shared between affected individuals from more than one family. Among the genes present in the regions reported here were involved in neurotransmission (GRM3, SIGMAR1, CHAT, and SLC18A3) and members of the HLA gene family (HLA-A, HLA-DPA1, and MICC). The candidate regions identified in this study highlight the genetic diversity of ADHD. Upon further investigation, these loci may reveal candidate genes that enclose variants associated with ADHD. Although most ADHD studies were conducted in other populations, our study provides insight from an understudied, ethnically interesting population.

  18. Development of a multiplex allele-specific primer PCR assay for simultaneous detection of QoI and CAA fungicide resistance alleles in Plasmopara viticola populations.

    PubMed

    Aoki, Yoshinao; Hada, Yosuke; Suzuki, Shunji

    2013-02-01

    DNA-based diagnosis has become a common tool for the evaluation of fungicide resistance in obligate phytopathogenic fungus Plasmopara viticola. A multiplex allele-specific primer PCR assay has been developed for the rapid detection of fungicide resistance in P. viticola populations. With this assay, a glycine-to-alanine substitution at codon 143 of the P. viticola cytochrome b gene, which conferred QoI fungicide resistance, and a glycine-to-serine substitution at codon 1105 of the P. viticola cellulose synthase gene PvCesA3, which conferred CAA fungicide resistance, were detected simultaneously. It is suggested that the present assay is a reliable tool for the rapid and simultaneous detection of QoI and CAA fungicide resistance alleles in P. viticola populations. The assay required only 2 h from the sampling of symptoms to the detection of resistance alleles to both fungicides. Copyright © 2012 Society of Chemical Industry.

  19. Ultra-fast DNA-based multiplex convection PCR method for meat species identification with possible on-site applications.

    PubMed

    Song, Kyung-Young; Hwang, Hyun Jin; Kim, Jeong Hee

    2017-08-15

    The aim of this study was to develop an ultra-fast molecular detection method for meat identification using convection Palm polymerase chain reaction (PCR). The mitochondrial cytochrome b (Cyt b) gene was used as a target gene. Amplicon size was designed to be different for beef, lamb, and pork. When these primer sets were used, each species-specific set specifically detected the target meat species in singleplex and multiplex modes in a 24min PCR run. The detection limit was 1pg of DNA for each meat species. The convection PCR method could detect as low as 1% of meat adulteration. The stability of the assay was confirmed using thermal processed meats. We also showed that direct PCR can be successfully performed with mixed meats and food samples. These results suggest that the developed assay may be useful in the authentication of meats and meat products in laboratory and rapid on-site applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction.

    PubMed

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2013-04-08

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Inhibition of mTOR's Catalytic Site by PKI-587 Is a Promising Therapeutic Option for Gastroenteropancreatic Neuroendocrine Tumor Disease

    PubMed Central

    Freitag, Helma; Christen, Friederike; Lewens, Florentine; Grass, Irina; Briest, Franziska; Iwaszkiewicz, Sara; Siegmund, Britta; Grabowski, Patricia

    2017-01-01

    Background The characteristic clinical heterogeneity and mostly slow-growing behavior of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) cause problems in finding appropriate treatments. Thus, the current therapy options are not satisfactory. PKI-587 is a highly potent, novel dual inhibitor of PI3K and mTORC1/C2. Aim We assessed the effects of PKI-587 in different GEP-NEN tumor models, including the poorly differentiated cell line LCC-18, and compared them with those of the established mTORC1 inhibitor everolimus. Methods We treated BON, QGP-1, KRJ-I, and LCC-18 cell lines with increasing concentrations of the inhibitor PKI-587, and compared the results with those of everolimus and DMSO. We assessed the impact of the treatments on viability (WST-1 assay), on apoptotic processes (caspase 3/7 assay, JC-1), and on cell cycle regulation (flow cytometry). We determined alterations in signaling mediators by phosphor-specific Western blot analysis and conducted multiplexed gene expression analysis (nCounter® technology). Results In all cell lines, PKI-587 dose-dependently inhibited proliferation, whereas everolimus was less effective. Treatment with PKI-587 led to cell cycle arrest and induction of apoptosis and successfully suppressed activity of the direct mTORC1 target 4E-BP1, a crucial factor for tumor genesis only partially inhibited by everolimus. Gene expression analyses revealed relevant changes of RAS, MAPK, STAT, and PI3K pathway genes after treatment. Treatment-dependent and cell line-characteristic effects on AKT/Rb/E2F signaling regarding cell cycle control and apoptosis are extensively discussed in this paper. Conclusion PI3K/mTOR dual targeting is a promising new therapeutic approach in neuroendocrine tumor disease that should be evaluated in further clinical trials. PMID:27513674

  2. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures

    PubMed Central

    Knierim, Ellen; Hirata, Hiromi; Wolf, Nicole I.; Morales-Gonzalez, Susanne; Schottmann, Gudrun; Tanaka, Yu; Rudnik-Schöneborn, Sabine; Orgeur, Mickael; Zerres, Klaus; Vogt, Stefanie; van Riesen, Anne; Gill, Esther; Seifert, Franziska; Zwirner, Angelika; Kirschner, Janbernd; Goebel, Hans Hilmar; Hübner, Christoph; Stricker, Sigmar; Meierhofer, David; Stenzel, Werner; Schuelke, Markus

    2016-01-01

    Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system. PMID:26924529

  3. The use of multiplexed MRM for the discovery of biomarkers to differentiate iron-deficiency anemia from anemia of inflammation.

    PubMed

    Domanski, Dominik; Cohen Freue, Gabriela V; Sojo, Luis; Kuzyk, Michael A; Ratkay, Leslie; Parker, Carol E; Goldberg, Y Paul; Borchers, Christoph H

    2012-06-27

    In this study we demonstrate the use of a multiplexed MRM-based assay to distinguish among normal (NL) and iron-metabolism disorder mouse models, particularly, iron-deficiency anemia (IDA), inflammation (INFL), and inflammation and anemia (INFL+IDA). Our initial panel of potential biomarkers was based on the analysis of 14 proteins expressed by candidate genes involved in iron transport and metabolism. Based on this study, we were able to identify a panel of 8 biomarker proteins: apolipoprotein A4 (APO4), transferrin, transferrin receptor 1, ceruloplasmin, haptoglobin, lactoferrin, hemopexin, and matrix metalloproteinase-8 (MMP8) that clearly distinguish among the normal and disease models. Within this set of proteins, transferrin showed the best individual classification accuracy over all samples (72%) and within the NL group (94%). Compared to the best single-protein biomarker, transferrin, the use of the composite 8-protein biomarker panel improved the classification accuracy from 94% to 100% in the NL group, from 50% to 72% in the INFL group, from 66% to 96% in the IDA group, and from 79% to 83% in the INFL+IDA group. Based on these findings, validation of the utility of this potentially important biomarker panel in human samples in an effort to differentiate IDA, inflammation, and combinations thereof, is now warranted. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. IB-11PSEUDO-PROGRESSION (PsdPg) IS A HARBINGER OF A MORE EFFECTIVE ANTI-TUMOR RESPONSE

    PubMed Central

    Sturla, Lisa; Donahue, John; Machan, Jason; Delamonte, Suzanne; Jeyapalan, Suriya

    2014-01-01

    BACKGROUND: PsdPg is the increased contrast enhancement, high choline/creatine ratio and increased perfusion observed in the residual tumor bed of high-grade glioma patients after completion of temozolomide/radiation. It resolves within 3-6 months and incidence ranges from 10 - 31%. Though correlated with longer patient survival, its pathological basis is unclear. We used a cytokine/chemokine focused approach to compare the tumor microenvironment in pre- and post-treatment tumor tissue from patients with PsdPg to patients with true progression (TP). METHODS: We obtained pre-treatment formalin fixed paraffin embedded (FFPE) tissue from 35 GBM patients and post-treatment FFPE tissue from five patients with PsdPg and TP. A quantitative PCR array and custom Quantigene 2.0 multiplex was used to quantify gene expression corresponding to major cytokines/chemokines. An 18-gene signature was used to determine the macrophage polarization score (cumulative M2-associated cytokine expression - cumulative M1-associated cytokine expression). Immunohistochemistry (IHC) was used to confirm significantly different targets at the protein level. RESULTS: IHC revealed 7-fold higher B-cell infiltration in TP patients as compared to patients with PsdPg (p = 0.003). Macrophage and T-cell infiltration were not significantly different between the two groups. Nevertheless, the cytokines associated with macrophage polarization indicated pro-tumorigenic (M2) polarization in TP patients while PsdPg patients exhibited classical anti-tumorigenic (M1) polarization. TP patients had a 10-fold higher M2 score (p = 0.03) compared to PsdPg patients. The M1 score of tissue from PsdPg patients post-treatment was 25-fold higher than their pre-treatment tissue (p = 0.01). Analysis of a 7-gene signature associated with natural killer (NK) cell recruitment and activation showed a 8-fold higher expression in pre-treatment tissue from PsdPg patients compared to TP patients (p = 0.009) suggesting that NK cells, which are mediators of anti-tumor immunity, play an important role in pseudo-progression. CONCLUSIONS: These data suggest a more effective anti-tumor immune response in PsdPg patients, which may explain their longer overall survival.

  5. Investigation of FANCA gene in Fanconi anaemia patients in Iran

    PubMed Central

    Saffar Moghadam, Ali Akbar; Mahjoubi, Frouzandeh; Reisi, Nahid; Vosough, Parvaneh

    2016-01-01

    Background & objectives: Fanconi anaemia (FA) is a syndrome with a predisposition to bone marrow failure, congenital anomalies and malignancies. It is characterized by cellular hypersensitivity to cross-linking agents such as mitomycin C (MMC). In the present study, a new approach was selected to investigate FANCA (Fanconi anaemia complementation group A) gene in patients clinically diagnosed with cellular hypersensitivity to DNA cross-linking agent MMC. Methods: Chromosomal breakage analysis was performed to prove the diagnosis of Fanconi anaemia in 318 families. Of these, 70 families had a positive result. Forty families agreed to molecular genetic testing. In total, there were 27 patients with unknown complementary types. Genomic DNA was extracted and total RNA was isolated from fresh whole blood of the patients. The first-strand cDNA was synthesized and the cDNA of each patient was then tested with 21 pairs of overlapping primers. High resolution melting curve analysis was used to screen FANCA, and LinReg software version 1.7 was utilized for analysis of expression. Results: In total, six sequence alterations were identified, which included two stop codons, two frames-shift mutations, one large deletion and one amino acid exchange. FANCA expression was downregulated in patients who had sequence alterations. Interpretation & conclusions: The results of the present study show that high resolution melting (HRM) curve analysis may be useful in the detection of sequence alteration. It is simpler and more costeffective than the multiplex ligation-dependent probe amplification (MLPA) procedure. PMID:27121516

  6. Investigation of FANCA gene in Fanconi anaemia patients in Iran.

    PubMed

    Moghadam, Ali Akbar Saffar; Mahjoubi, Frouzandeh; Reisi, Nahid; Vosough, Parvaneh

    2016-02-01

    Fanconi anaemia (FA) is a syndrome with a predisposition to bone marrow failure, congenital anomalies and malignancies. It is characterized by cellular hypersensitivity to cross-linking agents such as mitomycin C (MMC). In the present study, a new approach was selected to investigate FANCA (Fanconi anaemia complementation group A) gene in patients clinically diagnosed with cellular hypersensitivity to DNA cross-linking agent MMC. Chromosomal breakage analysis was performed to prove the diagnosis of Fanconi anaemia in 318 families. Of these, 70 families had a positive result. Forty families agreed to molecular genetic testing. In total, there were 27 patients with unknown complementary types. Genomic DNA was extracted and total RNA was isolated from fresh whole blood of the patients. The first-strand cDNA was synthesized and the cDNA of each patient was then tested with 21 pairs of overlapping primers. High resolution melting curve analysis was used to screen FANCA, and LinReg software version 1.7 was utilized for analysis of expression. In total, six sequence alterations were identified, which included two stop codons, two frames-shift mutations, one large deletion and one amino acid exchange. FANCA expression was downregulated in patients who had sequence alterations. The results of the present study show that high resolution melting (HRM) curve analysis may be useful in the detection of sequence alteration. It is simpler and more cost-effective than the multiplex ligation-dependent probe amplification (MLPA) procedure.

  7. Tissue-specific regulation of sirtuin and nicotinamide adenine dinucleotide biosynthetic pathways identified in C57Bl/6 mice in response to high-fat feeding.

    PubMed

    Drew, Janice E; Farquharson, Andrew J; Horgan, Graham W; Williams, Lynda M

    2016-11-01

    The sirtuin (SIRT)/nicotinamide adenine dinucleotide (NAD) system is implicated in development of type 2 diabetes (T2D) and diet-induced obesity, a major risk factor for T2D. Mechanistic links have not yet been defined. SIRT/NAD system gene expression and NAD/NADH levels were measured in liver, white adipose tissue (WAT) and skeletal muscle from mice fed either a low-fat diet or high-fat diet (HFD) for 3 days up to 16 weeks. An in-house custom-designed multiplex gene expression assay assessed all 7 mouse SIRTs (SIRT1-7) and 16 enzymes involved in conversion of tryptophan, niacin, nicotinamide riboside and metabolic precursors to NAD. Significantly altered transcription was correlated with body weight, fat mass, plasma lipids and hormones. Regulation of the SIRT/NAD system was associated with early (SIRT4, SIRT7, NAPRT1 and NMNAT2) and late phases (NMNAT3, NMRK2, ABCA1 and CD38) of glucose intolerance. TDO2 and NNMT were identified as markers of HFD consumption. Altered regulation of the SIRT/NAD system in response to HFD was prominent in liver compared with WAT or muscle. Multiple components of the SIRTs and NAD biosynthetic enzymes network respond to consumption of dietary fat. Novel molecular targets identified above could direct strategies for dietary/therapeutic interventions to limit metabolic dysfunction and development of T2D. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Opposing actions of Arx and Pax4 in endocrine pancreas development

    PubMed Central

    Collombat, Patrick; Mansouri, Ahmed; Hecksher-Sørensen, Jacob; Serup, Palle; Krull, Jens; Gradwohl, Gerard; Gruss, Peter

    2003-01-01

    Genes encoding homeodomain-containing proteins potentially involved in endocrine pancreas development were isolated by combined in silico and nested-PCR approaches. One such transcription factor, Arx, exhibits Ngn3-dependent expression throughout endocrine pancreas development in α, β-precursor, and δ cells. We have used gene targeting in mouse embryonic stem cells to generate Arx loss-of-function mice. Arx-deficient animals are born at the expected Mendelian frequency, but develop early-onset hypoglycemia, dehydration, and weakness, and die 2 d after birth. Immunohistological analysis of pancreas from Arx mutants reveals an early-onset loss of mature endocrine α cells with a concomitant increase in β-and δ-cell numbers, whereas islet morphology remains intact. Our study indicates a requirement of Arx for α-cell fate acquisition and a repressive action on β-and δ-cell destiny, which is exactly the opposite of the action of Pax4 in endocrine commitment. Using multiplex reverse transcriptase PCR (RT-PCR), we demonstrate an accumulation of Pax4 and Arx transcripts in Arx and Pax4 mutant mice, respectively. We propose that the antagonistic functions of Arx and Pax4 for proper islet cell specification are related to the pancreatic levels of the respective transcripts. PMID:14561778

  9. Opposing actions of Arx and Pax4 in endocrine pancreas development.

    PubMed

    Collombat, Patrick; Mansouri, Ahmed; Hecksher-Sorensen, Jacob; Serup, Palle; Krull, Jens; Gradwohl, Gerard; Gruss, Peter

    2003-10-15

    Genes encoding homeodomain-containing proteins potentially involved in endocrine pancreas development were isolated by combined in silico and nested-PCR approaches. One such transcription factor, Arx, exhibits Ngn3-dependent expression throughout endocrine pancreas development in alpha, beta-precursor, and delta cells. We have used gene targeting in mouse embryonic stem cells to generate Arx loss-of-function mice. Arx-deficient animals are born at the expected Mendelian frequency, but develop early-onset hypoglycemia, dehydration, and weakness, and die 2 d after birth. Immunohistological analysis of pancreas from Arx mutants reveals an early-onset loss of mature endocrine alpha cells with a concomitant increase in beta-and delta-cell numbers, whereas islet morphology remains intact. Our study indicates a requirement of Arx for alpha-cell fate acquisition and a repressive action on beta-and delta-cell destiny, which is exactly the opposite of the action of Pax4 in endocrine commitment. Using multiplex reverse transcriptase PCR (RT-PCR), we demonstrate an accumulation of Pax4 and Arx transcripts in Arx and Pax4 mutant mice, respectively. We propose that the antagonistic functions of Arx and Pax4 for proper islet cell specification are related to the pancreatic levels of the respective transcripts.

  10. Edible bird’s nest attenuates procoagulation effects of high-fat diet in rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Hou, Zhiping

    2015-01-01

    Edible bird’s nest (EBN) is popular in Asia, and has long been used traditionally as a supplement. There are, however, limited evidence-based studies on its efficacy. EBN has been reported to improve dyslipidemia, which is closely linked to hypercoagulation states. In the present study, the effects of EBN on high-fat diet- (HFD-) induced coagulation in rats were evaluated. Rats were fed for 12 weeks with HFD alone or in combination with simvastatin or EBN. Food intake was estimated, and weight measurements were made during the experimental period. After sacrifice, serum oxidized low-density lipoprotein (oxLDL), adiponectin, leptin, von willibrand factor, prostacyclin, thromboxane and lipid profile, and whole blood coagulation indices (bleeding time, prothrombin time, activated partial thromboplastin time, red blood count count, and platelet count) were estimated. Furthermore, hepatic expression of coagulation-related genes was evaluated using multiplex polymerase chain reaction. The results indicated that EBN could attenuate HFD-induced hypercholesterolemia and coagulation similar to simvastatin, partly through transcriptional regulation of coagulation-related genes. The results suggested that EBN has the potential for lowering the risk of cardiovascular disease-related hypercoagulation due to hypercholesterolemia. PMID:26251574

  11. Type I and II Diabetic Adipose-Derived Stem Cells Respond In Vitro to Dehydrated Human Amnion/Chorion Membrane Allograft Treatment by Increasing Proliferation, Migration, and Altering Cytokine Secretion

    PubMed Central

    Massee, Michelle; Chinn, Kathryn; Lim, Jeremy J.; Godwin, Lisa; Young, Conan S.; Koob, Thomas J.

    2016-01-01

    Objective: Human amniotic membranes have been shown to be effective for healing diabetic foot ulcers clinically and to regulate stem cell activity in vitro and in vivo; however, diabetic stem cells may be impaired as a sequela of the disease. In this study, dehydrated human amnion/chorion membrane (dHACM) allografts (EpiFix®; MiMedx Group) were evaluated for their ability to regulate diabetic stem cells in vitro. Approach: Human adipose-derived stem cells (ADSCs) from normal, type I diabetic, and type II diabetic donors were treated with soluble extracts of dHACM and evaluated for proliferation after 3 days by DNA assay, chemotactic migration after 1 day by transwell assay, cytokine secretion after 3 days by multiplex ELISA, and gene expression after 5 days by reverse transcription–polymerase chain reaction. Results: Although diabetic ADSCs demonstrated decreased responses compared to normal ADSCs, dHACM treatment stimulated diabetic ADSCs to proliferate after 3 days and enhanced migration over 24 h, similar to normal ADSCs. dHACM-treated diabetic ADSCs modulated secretion of soluble signals, including regulators of inflammation, angiogenesis, and healing. All ADSCs evaluated also responded to dHACM treatment with altered expression of immunomodulatory genes, including interleukins (IL)-1α, IL-1β, and IL-1RA. Innovation: This is the first reported case demonstrating that diabetic ADSCs respond to novel amniotic membrane therapies, specifically treatment with dHACM. Conclusion: dHACM stimulated diabetic ADSCs to migrate, proliferate, and alter cytokine expression suggesting that, despite their diabetic origin, ADSCs may respond to dHACM to accelerate diabetic wound healing. PMID:26862462

  12. Type I and II Diabetic Adipose-Derived Stem Cells Respond In Vitro to Dehydrated Human Amnion/Chorion Membrane Allograft Treatment by Increasing Proliferation, Migration, and Altering Cytokine Secretion.

    PubMed

    Massee, Michelle; Chinn, Kathryn; Lim, Jeremy J; Godwin, Lisa; Young, Conan S; Koob, Thomas J

    2016-02-01

    Objective: Human amniotic membranes have been shown to be effective for healing diabetic foot ulcers clinically and to regulate stem cell activity in vitro and in vivo ; however, diabetic stem cells may be impaired as a sequela of the disease. In this study, dehydrated human amnion/chorion membrane (dHACM) allografts (EpiFix ® ; MiMedx Group) were evaluated for their ability to regulate diabetic stem cells in vitro . Approach: Human adipose-derived stem cells (ADSCs) from normal, type I diabetic, and type II diabetic donors were treated with soluble extracts of dHACM and evaluated for proliferation after 3 days by DNA assay, chemotactic migration after 1 day by transwell assay, cytokine secretion after 3 days by multiplex ELISA, and gene expression after 5 days by reverse transcription-polymerase chain reaction. Results: Although diabetic ADSCs demonstrated decreased responses compared to normal ADSCs, dHACM treatment stimulated diabetic ADSCs to proliferate after 3 days and enhanced migration over 24 h, similar to normal ADSCs. dHACM-treated diabetic ADSCs modulated secretion of soluble signals, including regulators of inflammation, angiogenesis, and healing. All ADSCs evaluated also responded to dHACM treatment with altered expression of immunomodulatory genes, including interleukins (IL)-1α, IL-1β, and IL-1RA. Innovation: This is the first reported case demonstrating that diabetic ADSCs respond to novel amniotic membrane therapies, specifically treatment with dHACM. Conclusion: dHACM stimulated diabetic ADSCs to migrate, proliferate, and alter cytokine expression suggesting that, despite their diabetic origin, ADSCs may respond to dHACM to accelerate diabetic wound healing.

  13. Whole genome sequencing of an African American family highlights toll like receptor 6 variants in Kawasaki disease susceptibility.

    PubMed

    Kim, Jihoon; Shimizu, Chisato; Kingsmore, Stephen F; Veeraraghavan, Narayanan; Levy, Eric; Ribeiro Dos Santos, Andre M; Yang, Hai; Flatley, Jay; Hoang, Long Truong; Hibberd, Martin L; Tremoulet, Adriana H; Harismendy, Olivier; Ohno-Machado, Lucila; Burns, Jane C

    2017-01-01

    Kawasaki disease (KD) is the most common acquired pediatric heart disease. We analyzed Whole Genome Sequences (WGS) from a 6-member African American family in which KD affected two of four children. We sought rare, potentially causative genotypes by sequentially applying the following WGS filters: sequence quality scores, inheritance model (recessive homozygous and compound heterozygous), predicted deleteriousness, allele frequency, genes in KD-associated pathways or with significant associations in published KD genome-wide association studies (GWAS), and with differential expression in KD blood transcriptomes. Biologically plausible genotypes were identified in twelve variants in six genes in the two affected children. The affected siblings were compound heterozygous for the rare variants p.Leu194Pro and p.Arg247Lys in Toll-like receptor 6 (TLR6), which affect TLR6 signaling. The affected children were also homozygous for three common, linked (r2 = 1) intronic single nucleotide variants (SNVs) in TLR6 (rs56245262, rs56083757 and rs7669329), that have previously shown association with KD in cohorts of European descent. Using transcriptome data from pre-treatment whole blood of KD subjects (n = 146), expression quantitative trait loci (eQTL) analyses were performed. Subjects homozygous for the intronic risk allele (A allele of TLR6 rs56245262) had differential expression of Interleukin-6 (IL-6) as a function of genotype (p = 0.0007) and a higher erythrocyte sedimentation rate at diagnosis. TLR6 plays an important role in pathogen-associated molecular pattern recognition, and sequence variations may affect binding affinities that in turn influence KD susceptibility. This integrative genomic approach illustrates how the analysis of WGS in multiplex families with a complex genetic disease allows examination of both the common disease-common variant and common disease-rare variant hypotheses.

  14. Phenotypic and molecular characterization of 5 novel CTX-M enzymes carried by Klebsiella pneumoniae and Escherichia coli.

    PubMed

    Cheng, Jun; Ye, Ying; Wang, Ying-ying; Li, Hui; Li, Xu; Li, Jia-bin

    2008-02-01

    The aim of the present study was to study the phenotypic and molecular characterization of 5 novel CTX-M-beta-1actamases carried by 5 Klebsiella pneumoniae isolates and 3 Escherichia coli isolates collected from 4 hospitals in Hefei, China. The purified PCR products were ligated with pGEM-Teasy vectors, expressed, and sequenced. The complete genes of the CTX-M-beta-lactamases were ligated with the pHSG398 vector to express prokaryotic recombinant proteins. Plasmids were extracted by rapid alkaline lysis protocol, and the PCR method was performed to determine whether the prokaryotic expression was successful or not. Antimicrobial susceptibility was tested and the phenotypes of transformants were determined according to criteria recommended by the Clinical and Laboratory Standards Institute. The kinetic parameters of enzymes were confirmed. The isoelectric points (pI) were determined by isoelectric focusing assay. Pulsed-field gel electrophoresis and plasmid profiling were performed. The PCR products had 1101 nucleotides and were determined as CTX-M-46, CTX-M-47, CTX-M-48, CTX-M-49, and CTX-M-50. All strains were resistant to cefotaxime, but most of them were susceptible or intermediate to ceftazidime. The phenotypes of novel enzymes were determined as extended-spectrum-beta-lactamases (ESBL). Penicillin G, cephalothin, cefuroxime, and cefotaxime were determined to good substrates, whereas ceftazidime hydrolysis was not detected. The pI of the 5 novel CTX-M-beta-lactamases were 8.0. CTX-M-derivatives could be the multiplex genesis in our area. This is the first report of these 5 novel plasmid-mediated CTX-M ESBL produced from China in the world. Molecular typing reveals notably different origin in genes encoding different CTX-M variants of 8 strains.

  15. High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wenwan

    2003-01-01

    Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in thismore » manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.« less

  16. Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 Cells by a Multiplex CRISPR/Cas9 Strategy Results in Glycoproteins without Plant-Specific Glycans

    PubMed Central

    Mercx, Sébastien; Smargiasso, Nicolas; Chaumont, François; De Pauw, Edwin; Boutry, Marc; Navarre, Catherine

    2017-01-01

    Plants or plant cells can be used to produce pharmacological glycoproteins such as antibodies or vaccines. However these proteins carry N-glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose], which can greatly impact the immunogenicity, allergenicity, or activity of the protein. Two enzymes are responsible for the addition of plant-specific glycans: β(1,2)-xylosyltransferase (XylT) and α(1,3)-fucosyltransferase (FucT). Our aim consisted of knocking-out two XylT genes and four FucT genes (12 alleles altogether) in Nicotiana tabacum BY-2 suspension cells using CRISPR/Cas9. Three XylT and six FucT sgRNAs were designed to target conserved regions. After transformation of N. tabacum BY-2 cells with genes coding for sgRNAs, Cas9, and a selectable marker (bar), transgenic lines were obtained and their extracellular as well as intracellular protein complements were analyzed by Western blotting using antibodies recognizing β(1,2)-xylose and α(1,3)-fucose. Three lines showed a strong reduction of β(1,2)-xylose and α(1,3)-fucose, while two lines were completely devoid of them, indicating complete gene inactivation. The absence of these carbohydrates was confirmed by mass spectrometry analysis of the extracellular proteins. PCR amplification and sequencing of the targeted region indicated small INDEL and/or deletions between the target sites. The KO lines did not show any particular morphology and grew as the wild-type. One KO line was transformed with genes encoding a human IgG2 antibody. The IgG2 expression level was as high as in a control transformant which had not been glycoengineered. The IgG glycosylation profile determined by mass spectrometry confirmed that no β(1,2)-xylose or α(1,3)-fucose were present on the glycosylation moiety and that the dominant glycoform was the GnGn structure. These data represent an important step toward humanizing the glycosylation of pharmacological proteins expressed in N. tabacum BY-2 cells. PMID:28396675

  17. Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 Cells by a Multiplex CRISPR/Cas9 Strategy Results in Glycoproteins without Plant-Specific Glycans.

    PubMed

    Mercx, Sébastien; Smargiasso, Nicolas; Chaumont, François; De Pauw, Edwin; Boutry, Marc; Navarre, Catherine

    2017-01-01

    Plants or plant cells can be used to produce pharmacological glycoproteins such as antibodies or vaccines. However these proteins carry N -glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose], which can greatly impact the immunogenicity, allergenicity, or activity of the protein. Two enzymes are responsible for the addition of plant-specific glycans: β(1,2)-xylosyltransferase (XylT) and α(1,3)-fucosyltransferase (FucT). Our aim consisted of knocking-out two XylT genes and four FucT genes (12 alleles altogether) in Nicotiana tabacum BY-2 suspension cells using CRISPR/Cas9. Three XylT and six FucT sgRNAs were designed to target conserved regions. After transformation of N. tabacum BY-2 cells with genes coding for sgRNAs, Cas9, and a selectable marker ( bar ), transgenic lines were obtained and their extracellular as well as intracellular protein complements were analyzed by Western blotting using antibodies recognizing β(1,2)-xylose and α(1,3)-fucose. Three lines showed a strong reduction of β(1,2)-xylose and α(1,3)-fucose, while two lines were completely devoid of them, indicating complete gene inactivation. The absence of these carbohydrates was confirmed by mass spectrometry analysis of the extracellular proteins. PCR amplification and sequencing of the targeted region indicated small INDEL and/or deletions between the target sites. The KO lines did not show any particular morphology and grew as the wild-type. One KO line was transformed with genes encoding a human IgG2 antibody. The IgG2 expression level was as high as in a control transformant which had not been glycoengineered. The IgG glycosylation profile determined by mass spectrometry confirmed that no β(1,2)-xylose or α(1,3)-fucose were present on the glycosylation moiety and that the dominant glycoform was the GnGn structure. These data represent an important step toward humanizing the glycosylation of pharmacological proteins expressed in N. tabacum BY-2 cells.

  18. Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia.

    PubMed

    Chassaing, N; Causse, A; Vigouroux, A; Delahaye, A; Alessandri, J-L; Boespflug-Tanguy, O; Boute-Benejean, O; Dollfus, H; Duban-Bedu, B; Gilbert-Dussardier, B; Giuliano, F; Gonzales, M; Holder-Espinasse, M; Isidor, B; Jacquemont, M-L; Lacombe, D; Martin-Coignard, D; Mathieu-Dramard, M; Odent, S; Picone, O; Pinson, L; Quelin, C; Sigaudy, S; Toutain, A; Thauvin-Robinet, C; Kaplan, Josseline; Calvas, Patrick

    2014-10-01

    Anophthalmia and microphthalmia (AM) are the most severe malformations of the eye, corresponding respectively to reduced size or absent ocular globe. Wide genetic heterogeneity has been reported and different genes have been demonstrated to be causative of syndromic and non-syndromic forms of AM. We screened seven AM genes [GDF6 (growth differentiation factor 6), FOXE3 (forkhead box E3), OTX2 (orthodenticle protein homolog 2), PAX6 (paired box 6), RAX (retina and anterior neural fold homeobox), SOX2 (SRY sex determining region Y-box 2), and VSX2 (visual system homeobox 2 gene)] in a cohort of 150 patients with isolated or syndromic AM. The causative genetic defect was identified in 21% of the patients (32/150). Point mutations were identified by direct sequencing of these genes in 25 patients (13 in SOX2, 4 in RAX, 3 in OTX2, 2 in FOXE3, 1 in VSX2, 1 in PAX6, and 1 in GDF6). In addition eight gene deletions (five SOX2, two OTX2 and one RAX) were identified using a semi-quantitative multiplex polymerase chain reaction (PCR) [quantitative multiplex PCR amplification of short fluorescent fragments (QMPSF)]. The causative genetic defect was identified in 21% of the patients. This result contributes to our knowledge of the molecular basis of AM, and will facilitate accurate genetic counselling. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Isolation and characterization of Salmonella Enteritidis and Salmonella Typhimurium from chicken meat in Egypt.

    PubMed

    Tarabees, Reda; Elsayed, Mohamed S A; Shawish, Reyad; Basiouni, Shereen; Shehata, Awad A

    2017-04-30

    Salmonella enterica serovars Enteritidis and Typhimurium represent the major serovars associated with human salmonellosis. Contamination of meat products with these serovars is considered the main source of infection. In this study, 100 raw chicken meat samples were investigated for the presence of Salmonella spp., which were subsequently identified based on biochemical and serological tests as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) profile. Furthermore, the isolated serovars were examined using multiplex polymerase chain reaction (PCR) for the presence of virulence genes suspected to have a role in infection. S. Enteritidis was isolated from two samples (2%), while S. Typhimurium was isolated from three samples (3%) of chicken meat. Of the 17 examined virulence genes using multiplex PCR, the sitC, sopB, sifA, lpfC, spaN, sipB, invA, spiA, and msgA genes were detected in S. Enteritidis. However, the sitC, iroN, sopB, sifA, lpfC, spaN, sipB, invA, and tolC genes were successfully amplified in S. Typhimurium. The detection of S. Enteritidis and S. Typhimurium in meat, even at low incidence, has important implications. In addition, the data presented here is the first attempt to identify a wide range of virulence genes in Egyptian Salmonella isolates recovered from meat products. A strict public health and food safety regime is urgently needed in order to decrease the human health hazard risk associated with salmonellosis.

  20. Screening for circulating RAS/RAF mutations by multiplex digital PCR.

    PubMed

    Andersen, Rikke Fredslund; Jakobsen, Anders

    2016-07-01

    Recent years have shown a large interest in the application of liquid biopsies in cancer management. Circulating tumor DNA (ctDNA) has been investigated for potential use in treatment selection, monitoring of treatment response, and early detection of recurrence. Advances have been hampered by technical challenges primarily due to the low levels of ctDNA in patients with localized disease and in patients responding to therapy. The approach presented here is a multiplex digital PCR method of screening for 31 mutations in the KRAS, NRAS, BRAF, and PIK3CA genes in the plasma. The upper level of the limit of blank, which defines the specificity of the multiplexes, was 0.006%-0.06%. Mutations found by multiplex analyses were identified and quantified by duplex analyses. The method was tested on samples from cholangiocarcinoma patients with known tumor mutational status. Mutations found in the tumor were also found in plasma samples in all cases with analyses for all other mutations being negative. There was a perfect agreement as to wild type status in tumor and plasma. The method combines a high sensitivity with the ability to analyze for several mutations at a time and could be a step towards routine clinical application of liquid biopsies. Copyright © 2016 Elsevier B.V. All rights reserved.

Top