Sample records for multiplex genotyping method

  1. Multiplex SNaPshot-a new simple and efficient CYP2D6 and ADRB1 genotyping method.

    PubMed

    Ben, Songtao; Cooper-DeHoff, Rhonda M; Flaten, Hanna K; Evero, Oghenero; Ferrara, Tracey M; Spritz, Richard A; Monte, Andrew A

    2016-04-23

    Reliable, inexpensive, high-throughput genotyping methods are required for clinical trials. Traditional assays require numerous enzyme digestions or are too expensive for large sample volumes. Our objective was to develop an inexpensive, efficient, and reliable assay for CYP2D6 and ADRB1 accounting for numerous polymorphisms including gene duplications. We utilized the multiplex SNaPshot® custom genotype method to genotype CYP2D6 and ADRB1. We compared the method to reference standards genotyped using the Taqman Copy Number Variant Assay followed by pyrosequencing quantification and determined assigned genotype concordance. We genotyped 119 subjects. Seven (5.9 %) were found to be CYP2D6 poor metabolizers (PMs), 18 (15.1 %) intermediate metabolizers (IMs), 89 (74.8 %) extensive metabolizers (EMs), and 5 (4.2 %) ultra-rapid metabolizers (UMs). We genotyped two variants in the β1-adrenoreceptor, rs1801253 (Gly389Arg) and rs1801252 (Ser49Gly). The Gly389Arg genotype is Gly/Gly 18 (15.1 %), Gly/Arg 58 (48.7 %), and Arg/Arg 43 (36.1 %). The Ser49Gly genotype is Ser/Ser 82 (68.9 %), Ser/Gly 32 (26.9), and Gly/Gly 5 (4.2 %). The multiplex SNaPshot method was concordant with genotypes in reference samples. The multiplex SNaPshot method allows for specific and accurate detection of CYP2D6 genotypes and ADRB1 genotypes and haplotypes. This platform is simple and efficient and suited for high throughput.

  2. Genotyping of Toxoplasma gondii isolates with 15 microsatellite markers in a single multiplex PCR assay.

    PubMed

    Ajzenberg, Daniel; Collinet, Frédéric; Mercier, Aurélien; Vignoles, Philippe; Dardé, Marie-Laure

    2010-12-01

    We developed an easy-to-use method for genotyping Toxoplasma gondii isolates in a single multiplex PCR assay with 15 microsatellite markers. This method was validated by testing 26 reference isolates that had been characterized with other sets of markers.

  3. Genotyping of Toxoplasma gondii Isolates with 15 Microsatellite Markers in a Single Multiplex PCR Assay ▿

    PubMed Central

    Ajzenberg, Daniel; Collinet, Frédéric; Mercier, Aurélien; Vignoles, Philippe; Dardé, Marie-Laure

    2010-01-01

    We developed an easy-to-use method for genotyping Toxoplasma gondii isolates in a single multiplex PCR assay with 15 microsatellite markers. This method was validated by testing 26 reference isolates that had been characterized with other sets of markers. PMID:20881166

  4. Thirtyfold multiplex genotyping of the p53 gene using solid phase capturable dideoxynucleotides and mass spectrometry.

    PubMed

    Kim, Sobin; Ulz, Michael E; Nguyen, Tuan; Li, Chi-Ming; Sato, Takaaki; Tycko, Benjamin; Ju, Jingyue

    2004-05-01

    A mass spectrometry (MS) based multiplex genotyping method using solid phase capturable (SPC) dideoxynucleotides and single base extension (SBE), named the SPC-SBE, has been developed for mutation detection. We report here the simultaneous genotyping of 30 potential point mutation sites in exons 5, 7, and 8 of the human p53 gene in one tube using the SPC-SBE method. The 30 mutation sites, including the most frequently mutated p53 codons, were chosen to explore the high multiplexing scope of the SPC-SBE method. Thirty primers specific to each potential mutation site were designed to yield SBE products with sufficient mass differences. This was achieved by tuning the mass of some primers using modified nucleotides. Genomic DNA was amplified by multiplex PCR to produce amplicons of the three p53 exons. The 30 primers were combined with the PCR products and biotinylated dideoxynucleotides for SBE to generate 3'-biotinylated extension DNA products. These products were then captured by streptavidin-coated magnetic beads, while the unextended primers and other components in the reaction were washed away. The pure extension DNA products were subsequently released from the solid phase and analyzed with MS. We simultaneously genotyped 30 potential mutation sites in the p53 gene from Wilms' tumor, head and neck tumor, and colorectal tumor. Both homozygous and heterozygous genotypes were accurately determined with digital resolution. This is the highest level of multiplex genotyping reported thus far using MS, indicating that the approach might be applicable to screening a repertoire of genotypes in candidate genes as potential disease markers.

  5. Enhanced capillary electrophoretic screening of Alzheimer based on direct apolipoprotein E genotyping and one-step multiplex PCR.

    PubMed

    Woo, Nain; Kim, Su-Kang; Sun, Yucheng; Kang, Seong Ho

    2018-01-01

    Human apolipoprotein E (ApoE) is associated with high cholesterol levels, coronary artery disease, and especially Alzheimer's disease. In this study, we developed an ApoE genotyping and one-step multiplex polymerase chain reaction (PCR) based-capillary electrophoresis (CE) method for the enhanced diagnosis of Alzheimer's. The primer mixture of ApoE genes enabled the performance of direct one-step multiplex PCR from whole blood without DNA purification. The combination of direct ApoE genotyping and one-step multiplex PCR minimized the risk of DNA loss or contamination due to the process of DNA purification. All amplified PCR products with different DNA lengths (112-, 253-, 308-, 444-, and 514-bp DNA) of the ApoE genes were analyzed within 2min by an extended voltage programming (VP)-based CE under the optimal conditions. The extended VP-based CE method was at least 120-180 times faster than conventional slab gel electrophoresis methods In particular, all amplified DNA fragments were detected in less than 10 PCR cycles using a laser-induced fluorescence detector. The detection limits of the ApoE genes were 6.4-62.0pM, which were approximately 100-100,000 times more sensitive than previous Alzheimer's diagnosis methods In addition, the combined one-step multiplex PCR and extended VP-based CE method was also successfully applied to the analysis of ApoE genotypes in Alzheimer's patients and normal samples and confirmed the distribution probability of allele frequencies. This combination of direct one-step multiplex PCR and an extended VP-based CE method should increase the diagnostic reliability of Alzheimer's with high sensitivity and short analysis time even with direct use of whole blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Apolipoprotein E genotyping by multiplex tetra-primer amplification refractory mutation system PCR in single reaction tube.

    PubMed

    Yang, Young Geun; Kim, Jong Yeol; Park, Su Jeong; Kim, Suhng Wook; Jeon, Ok-Hee; Kim, Doo-Sik

    2007-08-31

    Apolipoprotein E (APOE) plays a critical role in lipoprotein metabolism by binding to both low-density lipoprotein and APOE receptors. The APOE gene has three allelic forms, epsilon2, epsilon3, and epsilon4, which encode different isoforms of the APOE protein. In this study, we have developed a new genotyping method for APOE. Our multiplex tetra-primer amplification refractory mutation system (multiplex T-ARMS) polymerase chain reaction (PCR) was performed in a single reaction tube with six primers consisting of two common primers and two specific primers for each of two single nucleotide polymorphism (SNP) sites. We obtained definitive electropherograms that showed three (epsilon2/epsilon2, epsilon3/epsilon3, and epsilon4/epsilon4), four (epsilon2/epsilon3 and epsilon3/epsilon4), and five (epsilon2/epsilon4) amplicons by multiplex T-ARMS PCR in a single reaction tube. Multiplex T-ARMS PCR for APOE genotyping is a simple and accurate method that requires only a single PCR reaction, without any another treatments or expensive instrumentation, to simultaneously identify two sites of single nucleotide polymorphisms.

  7. A mass spectrometry-based multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification.

    PubMed

    Park, Jung Hun; Jang, Hyowon; Jung, Yun Kyung; Jung, Ye Lim; Shin, Inkyung; Cho, Dae-Yeon; Park, Hyun Gyu

    2017-05-15

    We herein describe a new mass spectrometry-based method for multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification (SDA) reaction. In this method, allele-specific ligation is first performed to discriminate base sequence variations at the SNP site within the PCR-amplified target DNA. The primary ligation probe is extended by a universal primer annealing site while the secondary ligation probe has base sequences as an overhang with a nicking enzyme recognition site and complementary mass marker sequence. The ligation probe pairs are ligated by DNA ligase only at specific allele in the target DNA and the resulting ligated product serves as a template to promote the SDA reaction using a universal primer. This process isothermally amplifies short DNA fragments, called mass markers, to be analyzed by mass spectrometry. By varying the sizes of the mass markers, we successfully demonstrated the multiplex SNP genotyping capability of this method by reliably identifying several BRCA mutations in a multiplex manner with mass spectrometry. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A multiplex method for detection of glucose-6-phosphate dehydrogenase (G6PD) gene mutations.

    PubMed

    Zhang, L; Yang, Y; Liu, R; Li, Q; Yang, F; Ma, L; Liu, H; Chen, X; Yang, Z; Cui, L; He, Y

    2015-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect caused by G6PD gene mutations. This study aimed to develop a cost-effective, multiplex, genotyping method for detecting common mutations in the G6PD gene. We used a SNaPshot approach to genotype multiple G6PD mutations that are common to human populations in South-East Asia. This assay is based on multiplex PCR coupled with primer extension reactions. Different G6PD gene mutations were determined by peak retention time and colors of the primer extension products. We designed PCR primers for multiplex amplification of the G6PD gene fragments and for primer extension reactions to genotype 11 G6PD mutations. DNA samples from a total of 120 unrelated G6PD-deficient individuals from the China-Myanmar border area were used to establish and validate this method. Direct sequencing of the PCR products demonstrated 100% concordance between the SNaPshot and the sequencing results. The SNaPshot method offers a specific and sensitive alternative for simultaneously interrogating multiple G6PD mutations. © 2015 John Wiley & Sons Ltd.

  9. Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay

    PubMed Central

    Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt

    2003-01-01

    We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378

  10. Multiplexed microsatellite recovery using massively parallel sequencing

    Treesearch

    T.N. Jennings; B.J. Knaus; T.D. Mullins; S.M. Haig; R.C. Cronn

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of...

  11. Approaches to genotyping individual miracidia of Schistosoma japonicum.

    PubMed

    Xiao, Ning; Remais, Justin V; Brindley, Paul J; Qiu, Dong-Chuan; Carlton, Elizabeth J; Li, Rong-Zhi; Lei, Yang; Blair, David

    2013-12-01

    Molecular genetic tools are needed to address questions as to the source and dynamics of transmission of the human blood fluke Schistosoma japonicum in regions where human infections have reemerged, and to characterize infrapopulations in individual hosts. The life stage that interests us as a target for collecting genotypic data is the miracidium, a very small larval stage that consequently yields very little DNA for analysis. Here, we report the successful development of a multiplex format permitting genotyping of 17 microsatellite loci in four sequential multiplex reactions using a single miracidium held on a Whatman Classic FTA indicating card. This approach was successful after short storage periods, but after long storage (>4 years), considerable difficulty was encountered in multiplex genotyping, necessitating the use of whole genome amplification (WGA) methods. WGA applied to cards stored for long periods of time resulted in sufficient DNA for accurate and repeatable genotyping. Trials and tests of these methods, as well as application to some field-collected samples, are reported, along with the discussion of the potential insights to be gained from such techniques. These include recognition of sibships among miracidia from a single host, and inference of the minimum number of worm pairs that might be present in a host.

  12. A set of plastid loci for use in multiplex fragment length genotyping for intraspecific variation in Pinus (Pinaceae)1

    PubMed Central

    Wofford, Austin M.; Finch, Kristen; Bigott, Adam; Willyard, Ann

    2014-01-01

    • Premise of the study: Recently released Pinus plastome sequences support characterization of 15 plastid simple sequence repeat (cpSSR) loci originally published for P. contorta and P. thunbergii. This allows selection of loci for single-tube PCR multiplexed genotyping in any subsection of the genus. • Methods: Unique placement of primers and primer conservation across the genus were investigated, and a set of six loci were selected for single-tube multiplexing. We compared interspecific variation between cpSSRs and nucleotide sequences of ycf1 and tested intraspecific variation for cpSSRs using 911 samples in the P. ponderosa species complex. • Results: The cpSSR loci contain mononucleotide and complex repeats with additional length variation in flanking regions. They are not located in hypervariable regions, and most primers are conserved across the genus. A single PCR per sample multiplexed for six loci yielded 45 alleles in 911 samples. • Discussion: The protocol allows efficient genotyping of many samples. The cpSSR loci are too variable for Pinus phylogenies but are useful for the study of genetic structure within and among populations. The multiplex method could easily be extended to other plant groups by choosing primers for cpSSR loci in a plastome alignment for the target group. PMID:25202625

  13. Comparison of three human papillomavirus DNA detection methods: Next generation sequencing, multiplex-PCR and nested-PCR followed by Sanger based sequencing.

    PubMed

    da Fonseca, Allex Jardim; Galvão, Renata Silva; Miranda, Angelica Espinosa; Ferreira, Luiz Carlos de Lima; Chen, Zigui

    2016-05-01

    To compare the diagnostic performance for HPV infection using three laboratorial techniques. Ninty-five cervicovaginal samples were randomly selected; each was tested for HPV DNA and genotypes using 3 methods in parallel: Multiplex-PCR, the Nested PCR followed by Sanger sequencing, and the Next_Gen Sequencing (NGS) with two assays (NGS-A1, NGS-A2). The study was approved by the Brazilian National IRB (CONEP protocol 16,800). The prevalence of HPV by the NGS assays was higher than that using the Multiplex-PCR (64.2% vs. 45.2%, respectively; P = 0.001) and the Nested-PCR (64.2% vs. 49.5%, respectively; P = 0.003). NGS also showed better performance in detecting high-risk HPV (HR-HPV) and HPV16. There was a weak interobservers agreement between the results of Multiplex-PCR and Nested-PCR in relation to NGS for the diagnosis of HPV infection, and a moderate correlation for HR-HPV detection. Both NGS assays showed a strong correlation for detection of HPVs (k = 0.86), HR-HPVs (k = 0.91), HPV16 (k = 0.92) and HPV18 (k = 0.91). NGS is more sensitive than the traditional Sanger sequencing and the Multiplex PCR to genotype HPVs, with promising ability to detect multiple infections, and may have the potential to establish an alternative method for the diagnosis and genotyping of HPV. © 2015 Wiley Periodicals, Inc.

  14. Approaches to genotyping individual miracidia of Schistosoma japonicum

    PubMed Central

    Xiao, Ning; Remais, Justin V.; Brindley, Paul J.; Qiu, Dong-chuan; Carlton, Elizabeth J.; Li, Rong-zhi; Lei, Yang; Blair, David

    2013-01-01

    Molecular genetic tools are needed to address questions as to the source and dynamics of transmission of the human blood fluke Schistosoma japonicum in regions where human infections have re-emerged, and to characterize infrapopulations in individual hosts. The life-stage that interests us as a target for collecting genotypic data is the miracidium, a very small larval stage that consequently yields very little DNA for analysis. Here, we report the successful development of a multiplex format permitting genotyping of 17 microsatellite loci in four sequential multiplex reactions using a single miracidium held on a Whatman Classic FTA indicating card. This approach was successful after short storage periods, but after long storage (>4 years) considerable difficulty was encountered in multiplex genotyping, necessitating the use of whole genome amplification (WGA) methods. WGA applied to cards stored for long periods of time resulted in sufficient DNA for accurate and repeatable genotyping. Trials and tests of these methods, as well as application to some field-collected samples, are reported, along with discussion of the potential insights to be gained from such techniques. These include recognition of sibships among miracidia from a single host, and inference of the minimum number of worm pairs that might be present in a host. PMID:24013341

  15. Warfarin genotyping in a single PCR reaction for microchip electrophoresis.

    PubMed

    Poe, Brian L; Haverstick, Doris M; Landers, James P

    2012-04-01

    Warfarin is the most commonly prescribed oral anticoagulant medication but also is the second leading cause of emergency room visits for adverse drug reactions. Genetic testing for warfarin sensitivity may reduce hospitalization rates, but prospective genotyping is impeded in part by the turnaround time and costs of genotyping. Microfluidics-based assays can reduce reagent consumption and analysis time; however, no current assay has integrated multiplexed allele-specific PCR for warfarin genotyping with electrophoretic microfluidics hardware. Ideally, such an assay would use a single PCR reaction and, without further processing, a single microchip electrophoresis (ME) run to determine the 3 single-nucleotide polymorphisms (SNPs) affecting warfarin sensitivity [i.e., CYP2C9 (cytochrome P450, family 2, subfamily C, polypeptide 9) *2, CYP2C9 *3, and the VKORC1 (vitamin K epoxide reductase complex 1) A/B haplotype]. We designed and optimized primers for a fully multiplexed assay to examine 3 biallelic SNPs with the tetraprimer amplification refractory mutation system (T-ARMS). The assay was developed with conventional PCR equipment and demonstrated for microfluidic infrared-mediated PCR. Genotypes were determined by ME on the basis of the pattern of PCR products. Thirty-five samples of human genomic DNA were analyzed with this multiplex T-ARMS assay, and 100% of the genotype determinations agreed with the results obtained by other validated methods. The sample population included several genotypes conferring warfarin sensitivity, with both homozygous and heterozygous genotypes for each SNP. Total analysis times for the PCR and ME were approximately 75 min (1-sample run) and 90 min (12-sample run). This multiplexed T-ARMS assay coupled with microfluidics hardware constitutes a promising avenue for an inexpensive and rapid platform for warfarin genotyping.

  16. Low-Cost Ultra-Wide Genotyping Using Roche/454 Pyrosequencing for Surveillance of HIV Drug Resistance

    PubMed Central

    Dudley, Dawn M.; Chin, Emily N.; Bimber, Benjamin N.; Sanabani, Sabri S.; Tarosso, Leandro F.; Costa, Priscilla R.; Sauer, Mariana M.; Kallas, Esper G.; O.’Connor, David H.

    2012-01-01

    Background Great efforts have been made to increase accessibility of HIV antiretroviral therapy (ART) in low and middle-income countries. The threat of wide-scale emergence of drug resistance could severely hamper ART scale-up efforts. Population-based surveillance of transmitted HIV drug resistance ensures the use of appropriate first-line regimens to maximize efficacy of ART programs where drug options are limited. However, traditional HIV genotyping is extremely expensive, providing a cost barrier to wide-scale and frequent HIV drug resistance surveillance. Methods/Results We have developed a low-cost laboratory-scale next-generation sequencing-based genotyping method to monitor drug resistance. We designed primers specifically to amplify protease and reverse transcriptase from Brazilian HIV subtypes and developed a multiplexing scheme using multiplex identifier tags to minimize cost while providing more robust data than traditional genotyping techniques. Using this approach, we characterized drug resistance from plasma in 81 HIV infected individuals collected in São Paulo, Brazil. We describe the complexities of analyzing next-generation sequencing data and present a simplified open-source workflow to analyze drug resistance data. From this data, we identified drug resistance mutations in 20% of treatment naïve individuals in our cohort, which is similar to frequencies identified using traditional genotyping in Brazilian patient samples. Conclusion The developed ultra-wide sequencing approach described here allows multiplexing of at least 48 patient samples per sequencing run, 4 times more than the current genotyping method. This method is also 4-fold more sensitive (5% minimal detection frequency vs. 20%) at a cost 3–5× less than the traditional Sanger-based genotyping method. Lastly, by using a benchtop next-generation sequencer (Roche/454 GS Junior), this approach can be more easily implemented in low-resource settings. This data provides proof-of-concept that next-generation HIV drug resistance genotyping is a feasible and low-cost alternative to current genotyping methods and may be particularly beneficial for in-country surveillance of transmitted drug resistance. PMID:22574170

  17. A novel multiplex pyrosequencing assay for genotyping functionally relevant CTLA-4 polymorphisms: potential applications in autoimmunity and cancer.

    PubMed

    Banelli, Barbara; Morabito, Anna; Laurent, Stefania; Piccioli, Patrizia; Dozin, Beatrice; Ghio, Massimo; Ascierto, Paolo Antonio; Monteghirfo, Stefano; Marasco, Antonella; Ottaviano, Vincenzo; Queirolo, Paola; Romani, Massimo; Pistillo, Maria Pia

    2014-08-01

    CTLA-4 expression/function can be affected by single nucleotide polymorphisms (SNPs) of CTLA-4 gene, which have been widely associated with susceptibility or progression to autoimmune diseases and cancer development. In this study, we analyzed six CTLA-4 SNPs (-1661A>G, -1577G>A, -658C>T, -319C>T, +49A>G, CT60G>A) in 197 DNA samples from 43 B-lymphoblastoid cell lines (B-LCLs), 40 systemic sclerosis (SSc) patients, 14 pre-analyzed melanoma patients and 100 Italian healthy subjects. Genotyping of -1661A>G, -1577G>A, -658C>T and CT60G>A was performed by newly developed multiplex pyrosequencing (PSQ) assays, whereas -319C>T and +49A>G by T-ARMS PCR and direct sequencing. Genotype/allele frequency were analyzed using χ(2) or Fisher exact test. Our study provides the first multiplex PSQ method that allows simultaneous genotyping of two CTLA-4 SNP pairs (i.e. -1661A>G/-658C>T and -1577G>A/CT60G>A) by two multiplex PSQ reactions. Herein, we show the CTLA-4 genotype distribution in the B-LCLs providing the first and best characterized cell line panel typed for functionally relevant CTLA-4 SNPs. We also report the significant association of the -1661A/G genotype, -1661 & -319 AC-GT diplotype and -319 & CT60 TG haplotype with susceptibility to SSc without Hashimoto's thyroiditis occurrence. Furthermore, we confirmed previous genotyping data referred to melanoma patients and provided new genotyping data for Italian healthy subjects. Copyright © 2014 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  18. Rapid multiplexed genotyping for hereditary thrombophilia by SELDI-TOF mass spectrometry.

    PubMed

    Yang, Shangbin; Xu, Lihui; Wu, Haifeng M

    2010-03-01

    Approximately 50% of patients with venous thromboembolism also present with hereditary predisposition. The most common genetic factors are single nucleotide polymorphisms (SNPs) of factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T. Genotyping these SNPs helps clinicians to correctly diagnose the disease and properly manage patients. In this study, we report a novel method using surface-enhanced laser desorption and ionization time of flight mass spectrometry to rapidly genotype, in a multiplex fashion, 3 SNPs that predispose patients to thrombosis. First, patient DNA samples were subjected to polymerase chain reaction to amplify and extend the DNA products with masses corresponding to specific genotypes. Polymerase chain reaction products were then applied to Q10 anionic protein chips, undergoing on-chip sample enrichment and clean-up. Finally, the genotypes of the SNPs were determined by surface-enhanced laser desorption and ionization time of flight mass spectrometry. This method offers a rapid turnaround time of less than 5 hours from sample collection to result reporting. The analytical accuracy of each SNP genotyping result has been confirmed by DNA sequencing. In addition, the genotype results produced by this method were validated by comparing them with results obtained by the approved method in the clinical reference laboratory. This novel method is fast, accurate, and reproducible, and thus provides an excellent platform to promote personalized medicine in the management of clotting disorders.

  19. Multiplex genotyping system for efficient inference of matrilineal genetic ancestry with continental resolution

    PubMed Central

    2011-01-01

    Background In recent years, phylogeographic studies have produced detailed knowledge on the worldwide distribution of mitochondrial DNA (mtDNA) variants, linking specific clades of the mtDNA phylogeny with certain geographic areas. However, a multiplex genotyping system for the detection of the mtDNA haplogroups of major continental distribution that would be desirable for efficient DNA-based bio-geographic ancestry testing in various applications is still missing. Results Three multiplex genotyping assays, based on single-base primer extension technology, were developed targeting a total of 36 coding-region mtDNA variants that together differentiate 43 matrilineal haplo-/paragroups. These include the major diagnostic haplogroups for Africa, Western Eurasia, Eastern Eurasia and Native America. The assays show high sensitivity with respect to the amount of template DNA: successful amplification could still be obtained when using as little as 4 pg of genomic DNA and the technology is suitable for medium-throughput analyses. Conclusions We introduce an efficient and sensitive multiplex genotyping system for bio-geographic ancestry inference from mtDNA that provides resolution on the continental level. The method can be applied in forensics, to aid tracing unknown suspects, as well as in population studies, genealogy and personal ancestry testing. For more complete inferences of overall bio-geographic ancestry from DNA, the mtDNA system provided here can be combined with multiplex systems for suitable autosomal and, in the case of males, Y-chromosomal ancestry-sensitive DNA markers. PMID:21429198

  20. Birth of correctly genotyped calves after multiplex marker detection from bovine embryo microblade biopsies.

    PubMed

    Peippo, Jaana; Viitala, Sirja; Virta, Jouni; Räty, Mervi; Tammiranta, Niina; Lamminen, Terttu; Aro, Johanna; Myllymäki, Hannu; Vilkki, Johanna

    2007-11-01

    We report a method for multiplex genotyping of bovine embryo microblade biopsies. We have tested the reliability of the method and the viability of the embryos in vitro and in vivo. Two polymorphic gene markers (GHR F279Y and PRLR S18N) associated with milk production traits and one marker for sex diagnosis (ZFX/ZFY) were genotyped simultaneously with a method that combines nested PCR and allelic discrimination. To test the accuracy of genotyping, in the first experiment the genotypes of 134 biopsies from in vitro produced embryos were compared to genotypes determined from the corresponding embryos after biopsy. The method proved to be highly accurate as only in three cases (two for PRLR S18N and one for GHR F279Y) out of 395 genotypes the genotype was in disagreement between the two samples. The viability of similarly biopsied embryos was tested in parallel: after 24-hr culture 94.6% of embryos recovered in vitro. In the second experiment, a total of 150 in vivo-produced embryos were biopsied on Day 7 and genotyped. After the genotyping results were obtained on Day 8, female embryos were selected for transfer. From a total of 57 selected embryos 43 were transferred individually and 14 as pairs. After single embryo transfers, 19 recipients became pregnant and after embryo transfers in pairs one became pregnant. The success of genotyping was tested with the genotypes of donors and bulls and also from the hair samples of born calves. All calves were females and of the same genotypes determined from the biopsy. (c) 2007 Wiley-Liss, Inc.

  1. Development of the first standardised panel of two new microsatellite multiplex PCRs for gilthead seabream (Sparus aurata L.).

    PubMed

    Lee-Montero, I; Navarro, A; Borrell, Y; García-Celdrán, M; Martín, N; Negrín-Báez, D; Blanco, G; Armero, E; Berbel, C; Zamorano, M J; Sánchez, J J; Estévez, A; Ramis, G; Manchado, M; Afonso, J M

    2013-08-01

    The high number of multiplex PCRs developed for gilthead seabream (Sparus aurata L.) from many different microsatellite markers does not allow comparison among populations. This highlights the need for developing a reproducible panel of markers, which can be used with safety and reliability by all users. In this study, the first standardised panel of two new microsatellite multiplex PCRs was developed for this species. Primers of 138 specific microsatellites from the genetic linkage map were redesigned and evaluated according to their genetic variability, allele size range and genotyping reliability. A protocol to identify and classify genotyping errors or potential errors was proposed to assess the reliability of each marker. Two new multiplex PCRs from the best assessed markers were designed with 11 markers in each, named SMsa1 and SMsa2 (SuperMultiplex Sparus aurata). Three broodstocks (59, 47 and 98 breeders) from different Spanish companies, and a sample of 80 offspring from each one, were analysed to validate the usefulness of these multiplexes in the parental assignation. It was possible to assign each offspring to a single parent pair (100% success) using the exclusion method with SMsa1 and/or SMsa2. In each genotyped a reference sample (Ref-sa) was used, and its DNA is available on request similar to the kits of bin set to genotype by genemapper (v.3.7) software (kit-SMsa1 and kit-SMsa2). This will be a robust and effective tool for pedigree analysis or characterisation of populations and will be proposed as an international panel for this species. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  2. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform

    PubMed Central

    Suyama, Yoshihisa; Matsuki, Yu

    2015-01-01

    Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing de novo single-nucleotide polymorphism discovery, and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities. PMID:26593239

  3. Multiplexed microsatellite recovery using massively parallel sequencing

    USGS Publications Warehouse

    Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C.

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5M (USD).

  4. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  5. Multiplex-Ready Technology for mid-throughput genotyping of molecular markers.

    PubMed

    Bonneau, Julien; Hayden, Matthew

    2014-01-01

    Screening molecular markers across large populations in breeding programs is generally time consuming and expensive. The Multiplex-Ready Technology (MRT) (Hayden et al., BMC genomics 9:80, 2008) was created to optimize polymorphism screening and genotyping using standardized PCR reaction conditions. The flexibility of this method maximizes the number of markers (up to 24 markers SSR or SNP, ideally small PCR product <500 bp and highly polymorphic) by using fluorescent dye (VIC, FAM, NED, and PET) and a semiautomated DNA fragment analyzer (ABI3730) capillary electrophoresis for large numbers of DNA samples (96 or 384 samples).

  6. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform

    USDA-ARS?s Scientific Manuscript database

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  7. High-throughput SNP genotyping for breeding applications in rice using the BeadXpress platform

    USDA-ARS?s Scientific Manuscript database

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  8. Development of multiplex microsatellite PCR panels for the seagrass Thalassia hemprichii (Hydrocharitaceae)1

    PubMed Central

    van Dijk, Kor-jent; Mellors, Jane; Waycott, Michelle

    2014-01-01

    • Premise of the study: New microsatellites were developed for the seagrass Thalassia hemprichii (Hydrocharitaceae), a long-lived seagrass species that is found throughout the shallow waters of tropical and subtropical Indo-West Pacific. Three multiplex PCR panels were designed utilizing new and previously developed markers, resulting in a toolkit for generating a 16-locus genotype. • Methods and Results: Through the use of microsatellite enrichment and next-generation sequencing, 16 new, validated, polymorphic microsatellite markers were isolated. Diversity was between two and four alleles per locus totaling 36 alleles. These markers, plus previously developed microsatellite markers for T. hemprichii and T. testudinum, were tested for suitability in multiplex PCR panels. • Conclusions: The generation of an easily replicated suite of multiplex panels of codominant molecular markers will allow for high-resolution and detailed genetic structure analysis and clonality assessment with minimal genotyping costs. We suggest the establishment of a T. hemprichii primer convention for the unification of future data sets. PMID:25383269

  9. A rapid and reliable PCR method for genotyping the ABO blood group.

    PubMed

    O'Keefe, D S; Dobrovic, A

    1993-01-01

    The ABO blood group has been used extensively as a marker in population studies, epidemiology, and forensic work. However, until the cloning of the gene, it was not possible to determine the genotype of group A and B individuals without recourse to family studies. We have developed a method to determine the ABO genotype directly from human DNA using multiplex PCR and restriction enzyme analysis. Two PCR fragments spanning positions 258 and 700 of the cDNA sequence are amplified. The site at position 258 allows us to differentiate the O allele from the A and B alleles. The site at position 700 allows us to distinguish the B allele from the A and O alleles. Analysis at the two sites thus allows us to distinguish the three alleles. The multiplex PCR product is digested separately with four enzymes, two for each of the sites. The pair of enzymes for each site cut in a reciprocal fashion. Whereas one enzyme for each site is theoretically sufficient for genotyping, the use of complementary pairs of enzymes prevents the assignment of a false genotype as a result of false negative or partial digestion. This method is fast and reliable, does not rely on probing of blots, and should be widely applicable.

  10. Analysis of LDLR mutations in familial hypercholesterolemia patients in Greece by use of the NanoChip microelectronic array technology.

    PubMed

    Laios, Eleftheria; Drogari, Euridiki

    2006-12-01

    Three mutations in the low density lipoprotein receptor (LDLR) gene account for 49% of familial hypercholesterolemia (FH) cases in Greece. We used the microelectronic array technology of the NanoChip Molecular Biology Workstation to develop a multiplex method to analyze these single-nucleotide polymorphisms (SNPs). Primer pairs amplified the region encompassing each SNP. The biotinylated PCR amplicon was electronically addressed to streptavidin-coated microarray sites. Allele-specific fluorescently labeled oligonucleotide reporters were designed and used for detection of wild-type and SNP sequences. Genotypes were compared to PCR-restriction fragment length polymorphism (PCR-RFLP). We developed three monoplex assays (1 SNP/site) and an optimized multiplex assay (3SNPs/site). We performed 92 Greece II, 100 Genoa, and 98 Afrikaner-2 NanoChip monoplex assays (addressed to duplicate sites and analyzed separately). Of the 580 monoplex genotypings (290 samples), 579 agreed with RFLP. Duplicate sites of one sample were not in agreement with each other. Of the 580 multiplex genotypings, 576 agreed with the monoplex results. Duplicate sites of three samples were not in agreement with each other, indicating requirement for repetition upon which discrepancies were resolved. The multiplex assay detects common LDLR mutations in Greek FH patients and can be extended to accommodate additional mutations.

  11. Simple, efficient, and cost-effective multiplex genotyping with matrix assisted laser desorption/ionization time-of-flight mass spectrometry of hemoglobin beta gene mutations.

    PubMed

    Thongnoppakhun, Wanna; Jiemsup, Surasak; Yongkiettrakul, Suganya; Kanjanakorn, Chompunut; Limwongse, Chanin; Wilairat, Prapon; Vanasant, Anusorn; Rungroj, Nanyawan; Yenchitsomanus, Pa-Thai

    2009-07-01

    A number of common mutations in the hemoglobin beta (HBB) gene cause beta-thalassemia, a monogenic disease with high prevalence in certain ethnic groups. As there are 30 HBB variants that cover more than 99.5% of HBB mutant alleles in the Thai population, an efficient and cost-effective screening method is required. Three panels of multiplex primer extensions, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were developed. The first panel simultaneously detected 21 of the most common HBB mutations, while the second panel screened nine additional mutations, plus seven of the first panel for confirmation; the third panel was used to confirm three HBB mutations, yielding a 9-Da mass difference that could not be clearly distinguished by the previous two panels. The protocol was both standardized using 40 samples of known genotypes and subsequently validated in 162 blind samples with 27 different genotypes (including a normal control), comprising heterozygous, compound heterozygous, and homozygous beta-thalassemia. Results were in complete agreement with those from the genotyping results, conducted using three different methods overall. The method developed here permitted the detection of mutations missed using a single genotyping procedure. The procedure should serve as the method of choice for HBB genotyping due to its accuracy, sensitivity, and cost-effectiveness, and can be applied to studies of other gene variants that are potential disease biomarkers.

  12. Optimizing complex phenotypes through model-guided multiplex genome engineering

    DOE PAGES

    Kuznetsov, Gleb; Goodman, Daniel B.; Filsinger, Gabriel T.; ...

    2017-05-25

    Here, we present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.ΔA. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.

  13. Optimizing complex phenotypes through model-guided multiplex genome engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Gleb; Goodman, Daniel B.; Filsinger, Gabriel T.

    Here, we present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.ΔA. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.

  14. Read count-based method for high-throughput allelic genotyping of transposable elements and structural variants.

    PubMed

    Kuhn, Alexandre; Ong, Yao Min; Quake, Stephen R; Burkholder, William F

    2015-07-08

    Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed. We describe a high-throughput method for genotyping transposable element insertions and other types of structural variants that can be assayed by breakpoint PCR. The method relies on next-generation sequencing of multiplex, site-specific PCR amplification products and read count-based genotype calls. We show that this method is flexible, efficient (it does not require rounds of optimization), cost-effective and highly accurate. This method can benefit a wide range of applications from the routine genotyping of animal and plant populations to the functional study of structural variants in humans.

  15. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples.

    PubMed

    Gautam, Rashi; Mijatovic-Rustempasic, Slavica; Esona, Mathew D; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8-100% sensitivity, 99.7-100% specificity, 85-95% efficiency and a limit of detection of 4-60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81-92% efficiency and limit of detection of 150-600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8-100% sensitivity, 100% specificity, 86-89% efficiency and a limit of detection of 12-400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82-90% efficiency and limit of detection of 120-4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains.

  16. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples

    PubMed Central

    Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8–100% sensitivity, 100% specificity, 86–89% efficiency and a limit of detection of 12–400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82–90% efficiency and limit of detection of 120–4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains. PMID:26839745

  17. Multiplex pyrosequencing assay using AdvISER-MH-PYRO algorithm: a case for rapid and cost-effective genotyping analysis of prostate cancer risk-associated SNPs.

    PubMed

    Ambroise, Jérôme; Butoescu, Valentina; Robert, Annie; Tombal, Bertrand; Gala, Jean-Luc

    2015-06-25

    Single Nucleotide Polymorphisms (SNPs) identified in Genome Wide Association Studies (GWAS) have generally moderate association with related complex diseases. Accordingly, Multilocus Genetic Risk Scores (MGRSs) have been computed in previous studies in order to assess the cumulative association of multiple SNPs. When several SNPs have to be genotyped for each patient, using successive uniplex pyrosequencing reactions increases analytical reagent expenses and Turnaround Time (TAT). While a set of several pyrosequencing primers could theoretically be used to analyze multiplex amplicons, this would generate overlapping primer-specific pyro-signals that are visually uninterpretable. In the current study, two multiplex assays were developed consisting of a quadruplex (n=4) and a quintuplex (n=5) polymerase chain reaction (PCR) each followed by multiplex pyrosequencing analysis. The aim was to reliably but rapidly genotype a set of prostate cancer-related SNPs (n=9). The nucleotide dispensation order was selected using SENATOR software. Multiplex pyro-signals were analyzed using the new AdvISER-MH-PYRO software based on a sparse representation of the signal. Using uniplex assays as gold standard, the concordance between multiplex and uniplex assays was assessed on DNA extracted from patient blood samples (n = 10). All genotypes (n=90) generated with the quadruplex and the quintuplex pyroquencing assays were perfectly (100 %) concordant with uniplex pyrosequencing. Using multiplex genotyping approach for analyzing a set of 90 patients allowed reducing TAT by approximately 75 % (i.e., from 2025 to 470 min) while reducing reagent consumption and cost by approximately 70 % (i.e., from ~229 US$ /patient to ~64 US$ /patient). This combination of quadruplex and quintuplex pyrosequencing and PCR assays enabled to reduce the amount of DNA required for multi-SNP analysis, and to lower the global TAT and costs of SNP genotyping while providing results as reliable as uniplex analysis. Using this combined multiplex approach also substantially reduced the production of waste material. These genotyping assays appear therefore to be biologically, economically and ecologically highly relevant, being worth to be integrated in genetic-based predictive strategies for better selecting patients at risk for prostate cancer. In addition, the same approach could now equally be transposed to other clinical/research applications relying on the computation of MGRS based on multi-SNP genotyping.

  18. Multiplex fluorescent PCR for noninvasive prenatal detection of fetal-derived paternally inherited diseases using circulatory fetal DNA in maternal plasma.

    PubMed

    Tang, Dong-ling; Li, Yan; Zhou, Xin; Li, Xia; Zheng, Fang

    2009-05-01

    To develop a fluorescent polymerase chain reaction (PCR) assay for the detection of circulating fetal DNA in maternal plasma and use the established multiplex in noninvasive prenatal genetic diagnosis and its further applications in forensic casework. The DNA template was extracted from 47 pregnant women and the whole blood samples from the stated biological fathers were used to detect genotype. Using multiplex fluorescent PCR at 16 different polymorphic short tandem repeat (STR) loci, maternal DNA extracted from plasma samples at early pregnancy, medium pregnancy and late pregnancy were used to detect genotype. Their husbands' DNA was also used for fetal genotype ascertainment. Multiplex fluorescent PCR with 16 polymorphic short tandem repeats revealed the presence of fetal DNA in all cases. Every pregnant women/husband pair was informative in at least 3 of 16 loci. The chances of detecting paternally inherited fetal alleles ranged from 66.67 to 94.12%. They are 66.67% in early pregnancy, 85.71% in medium pregnancy and 94.12% in late pregnancy. The accuracy of Multiplex PCR assay to detect fetal DNA was 100%. Circulating fetal DNA analysis can be used as a possible alternative tool in routine laboratory prenatal diagnosis in the near future; this highly polymorphic STR multiplex has greatly improved the chances of detecting paternally inherited fetal alleles compared with other fetal DNA detection systems that use fetus-derived Y sequences to detect only male fetal DNA in maternal plasma. Our proposed technique can be applied to both female and male fetuses, which provides a sensitive, accurate and efficient method for noninvasive prenatal genetic diagnosis and forensic casework.

  19. A Novel Multiplex HRM Assay to Detect Clopidogrel Resistance.

    PubMed

    Zhang, Lichen; Ma, Xiaowei; You, Guoling; Zhang, Xiaoqing; Fu, Qihua

    2017-11-22

    Clopidogrel is an antiplatelet medicine used to prevent blood clots in patients who have had a heart attack, stroke, or other symptoms. Variability in the clinical response to clopidogrel treatment has been attributed to genetic factors. In particular, five SNPs of rs4244285, rs4986893, rs12248560, rs662 and rs1045642 have been associated with resistance to clopidogrel therapy in Chinese population. This work involves the development of a multiplex high-resolution melting (HRM) assay to genotype all five of these loci in 2 tubes. Amplicons corresponding to distinct SNPs in a common tube were designed with the aid of uMelt prediction software to have different melting temperatures Tm by addition of a GC-rich tail to the 5' end of the certain primers. Two kinds of commercial methods, Digital Fluorescence Molecular Hybridization (DFMH) and Sanger sequencing, were used as a control. Three hundred sixteen DFMH pretested samples from consecutive acute coronary syndrome patients were used for a blinded study of multiplex HRM. The sensitivity of HRM was 100% and the specificity was 99.93% reflecting detection of variants other than the known resistance SNPs. Multiplex HRM is an effective closed-tube, highly accurate, fast, and inexpensive method for genotyping the 5 clopidogrel resistance associated SNPs.

  20. Development and application of a multiplex reverse-transcription polymerase chain reaction assay for screening a global collection of Citrus tristeza virus isolates.

    PubMed

    Roy, Avijit; Ananthakrishnan, G; Hartung, John S; Brlansky, R H

    2010-10-01

    The emerging diversity of Citrus tristeza virus (CTV) genotypes has complicated detection and diagnostic measures and prompted the search for new differentiation methods. To simplify the identification and differentiation of CTV genotypes, a multiplex reverse-transcription polymerase chain reaction (RT-PCR) technique for the screening of CTV isolates was developed. Variable regions within the open reading frame (ORF)-1a of diverse CTV genotypes were identified to develop first a simplex (S) and then a hexaplex (H) RT-PCR. CTV isolates have been grouped previously into five genotypes (namely, T3, T30, T36, VT, and B165) based on the nucleotide sequence comparisons and phylogenetic analyses. Nucleotide sequences from GenBank were used to design species and genotype-specific primers (GSPs). The GSPs were initially used for reliable detection of all CTV genotypes using S-RT-PCR. Furthermore, detection of all five recognized CTV genotypes was established using the H-RT-PCR. Six amplicons, one generic to all CTV isolates and one for each of the five recognized genotypes, were identified on the basis of their size and were confirmed by sequence analysis. In all, 175 CTV isolates from 29 citrus-growing countries were successfully analyzed by S- and H-RT-PCR. Of these, 97 isolates contained T36 genotypes, 95 contained T3 genotypes, 76 contained T30 genotypes, 71 contained VT genotypes, and 24 contained B165 genotype isolates. In total, 126 isolates contained mixed infections of 2 to 5 of the known CTV genotypes. Two of the CTV isolates could not be assigned to a known genotype. H-RT-PCR provides a sensitive, specific, reliable, and rapid way to screen for CTV genotypes compared with other methods for CTV genotype detection. Efficient identification of CTV genotypes will facilitate a better understanding of CTV isolates, including the possible interaction of different genotypes in causing or preventing diseases. The methods described can also be used in virus-free citrus propagation programs and in the development of CTV-resistant cultivars.

  1. [Detection of large deletions in X linked Alport syndrome using competitive multiplex fluorescence polymerase chain reaction].

    PubMed

    Wang, F; Zhang, Y Q; Ding, J; Yu, L X

    2017-10-18

    To evaluate the ability of multiplex competitive fluorescence polymerase chain reaction in detection of large deletion and duplication genotypes of X-linked Alport syndrome. Clinical diagnosis of X-linked Alport syndrome was based on either abnormal staining of type IV collagen α5 chain in the epidermal basement membrane alone or with abnormal staining of type IV collagen α5 chain in the glomerular basement membrane and Bowman's capsule/ultrastructural changes in the glomerular basement membrane typical of Alport syndrome. A total of 20 unrelated Chinese patients (13 males and 7 females) clinically diagnosed as X-linked Alport syndrome were included in the study. Their genotypes were unknown. Control subjects included a male patient with other renal disease and two patients who had large deletions in COL4A5 gene detected by multiplex ligation-dependent probe amplification. Genomic DNA was isolated from peripheral blood leukocytes in all the participants. Multiplex competitive fluorescence polymerase chain reaction was used to coamplify 53 exons of COL4A5 gene and four reference genes in a single reaction. When a deletion removed exon 1 of COL4A5 gene was identified, the same method was used to coamplify the first 4 exons of COL4A5 and COL4A6 genes, a promoter shared by COL4A5 and COL4A6 genes, and three reference genes in a single reaction. Any copy number loss suggested by this method was verified by electrophoresis of corresponding polymerase chain reaction amplified products or DNA sequencing to exclude possible DNA variations in the primer regions. Genotypes of two positive controls identified by multiplex competitive fluorescence polymerase chain reaction were consistent with those detected by multiplex ligation-dependent probe amplification. Deletions were identified in 6 of the 20 patients, including two large deletions removing the 5' part of both COL4A5 and COL4A6 genes with the breakpoint located in the second intron of COL4A6, two large deletions removing more than 30 exons of COL4A5 gene, one large deletion removing at least 1 exon of COL4A5 gene, and one small deletion involving 13 bps. No duplication was found. Our results show that multiplex competitive fluorescence polymerase chain reaction is a good alternative to classical techniques for large deletion genotyping in X-linked Alport syndrome.

  2. Rapid Genotyping of Single Nucleotide Polymorphisms Influencing Warfarin Drug Response by Surface-Enhanced Laser Desorption and Ionization Time-of-Flight (SELDI-TOF) Mass Spectrometry

    PubMed Central

    Yang, Shangbin; Xu, LiHui; Wu, Haifeng M.

    2010-01-01

    Warfarin exhibits significant interindividual variability in dosing requirements. Different drug responses are partly attributed to the single nucleotide polymorphisms (SNPs) that influence either drug action or drug metabolism. Rapid genotyping of these SNPs helps clinicians to choose appropriate initial doses to quickly achieve anticoagulation effects and to prevent complications. We report a novel application of surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the rapid genotyping of SNPs that impact warfarin efficacy. The SNPs were first amplified by PCR and then underwent single base extension to generate the specific SNP product. Next, genetic variants displaying different masses were bound to Q10 anionic proteinChips and then genotyped by using SELDI-TOF MS in a multiplex fashion. SELDI-TOF MS offered unique properties of on-chip sample enrichment and clean-ups, which streamlined the testing procedures and eliminated many tedious experimental steps required by the conventional MS-based method. The turn-around time for genotyping three known warfarin-related SNPs, CYP2C9*2, CYP2C9*3, and VKORC1 3673G>A by SELDI-TOF MS was less than 5 hours. The analytical accuracy of this method was confirmed both by bidirectional DNA sequencing and by comparing the genotype results (n = 189) obtained by SELDI-TOF MS to reports from a clinical reference laboratory. This new multiplex genotyping method provides an excellent clinical laboratory platform to promote personalized medicine in warfarin therapy. PMID:20075209

  3. Rapid genotyping of single nucleotide polymorphisms influencing warfarin drug response by surface-enhanced laser desorption and ionization time-of-flight (SELDI-TOF) mass spectrometry.

    PubMed

    Yang, Shangbin; Xu, LiHui; Wu, Haifeng M

    2010-03-01

    Warfarin exhibits significant interindividual variability in dosing requirements. Different drug responses are partly attributed to the single nucleotide polymorphisms (SNPs) that influence either drug action or drug metabolism. Rapid genotyping of these SNPs helps clinicians to choose appropriate initial doses to quickly achieve anticoagulation effects and to prevent complications. We report a novel application of surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the rapid genotyping of SNPs that impact warfarin efficacy. The SNPs were first amplified by PCR and then underwent single base extension to generate the specific SNP product. Next, genetic variants displaying different masses were bound to Q10 anionic proteinChips and then genotyped by using SELDI-TOF MS in a multiplex fashion. SELDI-TOF MS offered unique properties of on-chip sample enrichment and clean-ups, which streamlined the testing procedures and eliminated many tedious experimental steps required by the conventional MS-based method. The turn-around time for genotyping three known warfarin-related SNPs, CYP2C9*2, CYP2C9*3, and VKORC1 3673G>A by SELDI-TOF MS was less than 5 hours. The analytical accuracy of this method was confirmed both by bidirectional DNA sequencing and by comparing the genotype results (n = 189) obtained by SELDI-TOF MS to reports from a clinical reference laboratory. This new multiplex genotyping method provides an excellent clinical laboratory platform to promote personalized medicine in warfarin therapy.

  4. Simultaneous detection and differentiation of three genotypes of Brassica yellows virus by multiplex reverse transcription-polymerase chain reaction.

    PubMed

    Zhang, Xiaoyan; Peng, Yanmei; Wang, Ying; Zhang, Zongying; Li, Dawei; Yu, Jialin; Han, Chenggui

    2016-11-22

    Brassica yellows virus (BrYV), proposed to be a new polerovirus species, three distinct genotypes (BrYV-A, BrYV-B and BrYV-C) have been described. This study was to develop a simple, rapid, sensitive, cost-effective method for simultaneous detection and differentiation of three genotypes of BrYV. In this study, a multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed for simultaneous detection and differentiation of the three genotypes of BrYV. The three genotypes of BrYV and Tunip yellows virus (TuYV) could be differentiated simultaneously using six optimized specific oligonucleotide primers, including one universal primer for detecting BrYV, three BrYV genotype-specific primers, and a pair of primers for specific detection of TuYV. Primers were designed from conserved regions of each virus and their specificity was confirmed by sequencing PCR products. The mRT-PCR products were 278 bp for BrYV-A, 674 bp for BrYV-B, 505 bp for BrYV-C, and 205 bp for TuYV. Amplification of three target genotypes was optimized by increasing the PCR annealing temperatures to 62 °C. One to three fragments specific for the virus genotypes were simultaneously amplified from infected samples and identified by their specific molecular sizes in agarose gel electrophoresis. No specific products could be amplified from cDNAs of other viruses which could infect crucifer crops. Detection limits of the plasmids for multiplex PCR were 100 fg for BrYV-A and BrYV-B, 10 pg for BrYV-C, and 1 pg for TuYV, respectively. The mRT-PCR was applied successfully for detection of three BrYV genotypes from field samples collected in China. The simple, rapid, sensitive, and cost-effective mRT-PCR was developed successfully for detection and differentiation of the three genotypes of BrYV.

  5. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    PubMed Central

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome. PMID:24010766

  6. Rapid and inexpensive analysis of genetic variability in Arapaima gigas by PCR multiplex panel of eight microsatellites.

    PubMed

    Hamoy, I G; Santos, E J M; Santos, S E B

    2008-01-22

    The aim of the present study was the development of a multiplex genotyping panel of eight microsatellite markers of Arapaima gigas, previously described. Specific primer pairs were developed, each one of them marked with either FAM-6, HEX or NED. The amplification conditions using the new primers were standardized for a single reaction. The results obtained demonstrate high heterozygosity (average of 0.69) in a Lower Amazon population. The multiplex system described can thus be considered a fast, efficient and inexpensive method for the investigation of genetic variability in Arapaima populations.

  7. High-throughput, image-based screening of pooled genetic variant libraries

    PubMed Central

    Emanuel, George; Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2018-01-01

    Image-based, high-throughput screening of genetic perturbations will advance both biology and biotechnology. We report a high-throughput screening method that allows diverse genotypes and corresponding phenotypes to be imaged in numerous individual cells. We achieve genotyping by introducing barcoded genetic variants into cells and using massively multiplexed FISH to measure the barcodes. We demonstrated this method by screening mutants of the fluorescent protein YFAST, yielding brighter and more photostable YFAST variants. PMID:29083401

  8. Genotyping of Single Nucleotide Polymorphisms in DNA Isolated from Serum Using Sequenom MassARRAY Technology.

    PubMed

    Clendenen, Tess V; Rendleman, Justin; Ge, Wenzhen; Koenig, Karen L; Wirgin, Isaac; Currie, Diane; Shore, Roy E; Kirchhoff, Tomas; Zeleniuch-Jacquotte, Anne

    2015-01-01

    Large epidemiologic studies have the potential to make valuable contributions to the assessment of gene-environment interactions because they prospectively collected detailed exposure data. Some of these studies, however, have only serum or plasma samples as a low quantity source of DNA. We examined whether DNA isolated from serum can be used to reliably and accurately genotype single nucleotide polymorphisms (SNPs) using Sequenom multiplex SNP genotyping technology. We genotyped 81 SNPs using samples from 158 participants in the NYU Women's Health Study. Each participant had DNA from serum and at least one paired DNA sample isolated from a high quality source of DNA, i.e. clots and/or cell precipitates, for comparison. We observed that 60 of the 81 SNPs (74%) had high call frequencies (≥95%) using DNA from serum, only slightly lower than the 85% of SNPs with high call frequencies in DNA from clots or cell precipitates. Of the 57 SNPs with high call frequencies for serum, clot, and cell precipitate DNA, 54 (95%) had highly concordant (>98%) genotype calls across all three sample types. High purity was not a critical factor to successful genotyping. Our results suggest that this multiplex SNP genotyping method can be used reliably on DNA from serum in large-scale epidemiologic studies.

  9. Forensic SNP Genotyping with SNaPshot: Development of a Novel In-house SBE Multiplex SNP Assay.

    PubMed

    Zar, Mian Sahib; Shahid, Ahmad Ali; Shahzad, Muhammad Saqib; Shin, Kyoung-Jin; Lee, Hwan Young; Lee, Sang-Seob; Israr, Muhammad; Wiegand, Peter; Kulstein, Galina

    2018-04-10

    This study introduces a newly developed in-house SNaPshot single-base extension (SBE) multiplex assay for forensic single nucleotide polymorphism (SNP) genotyping of fresh and degraded samples. The assay was validated with fresh blood samples from four different populations. In addition, altogether 24 samples from skeletal remains were analyzed with the multiplex. Full SNP profiles could be obtained from 14 specimens, while ten remains showed partial SNP profiles. Minor allele frequencies (MAF) of bone samples and different populations were compared and used for association of skeletal remains with a certain population. The results reveal that the SNPs of the bone samples are genetically close to the Pathan population. The findings show that the new multiplex system can be utilized for SNP genotyping of degraded and forensic relevant skeletal material, enabling to provide additional investigative leads in criminal cases. © 2018 American Academy of Forensic Sciences.

  10. Inter-laboratory evaluation of the EUROFORGEN Global ancestry-informative SNP panel by massively parallel sequencing using the Ion PGM™.

    PubMed

    Eduardoff, M; Gross, T E; Santos, C; de la Puente, M; Ballard, D; Strobl, C; Børsting, C; Morling, N; Fusco, L; Hussing, C; Egyed, B; Souto, L; Uacyisrael, J; Syndercombe Court, D; Carracedo, Á; Lareu, M V; Schneider, P M; Parson, W; Phillips, C; Parson, W; Phillips, C

    2016-07-01

    The EUROFORGEN Global ancestry-informative SNP (AIM-SNPs) panel is a forensic multiplex of 128 markers designed to differentiate an individual's ancestry from amongst the five continental population groups of Africa, Europe, East Asia, Native America, and Oceania. A custom multiplex of AmpliSeq™ PCR primers was designed for the Global AIM-SNPs to perform massively parallel sequencing using the Ion PGM™ system. This study assessed individual SNP genotyping precision using the Ion PGM™, the forensic sensitivity of the multiplex using dilution series, degraded DNA plus simple mixtures, and the ancestry differentiation power of the final panel design, which required substitution of three original ancestry-informative SNPs with alternatives. Fourteen populations that had not been previously analyzed were genotyped using the custom multiplex and these studies allowed assessment of genotyping performance by comparison of data across five laboratories. Results indicate a low level of genotyping error can still occur from sequence misalignment caused by homopolymeric tracts close to the target SNP, despite careful scrutiny of candidate SNPs at the design stage. Such sequence misalignment required the exclusion of component SNP rs2080161 from the Global AIM-SNPs panel. However, the overall genotyping precision and sensitivity of this custom multiplex indicates the Ion PGM™ assay for the Global AIM-SNPs is highly suitable for forensic ancestry analysis with massively parallel sequencing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  12. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags.

    PubMed

    Wee, Eugene J H; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.

  13. A microsphere-based assay for mutation analysis of the biotinidase gene using dried blood spots

    PubMed Central

    Lindau-Shepard, Barbara; Janik, David K.; Pass, Kenneth A.

    2012-01-01

    Biotinidase deficiency is an autosomal recessive syndrome caused by defects in the biotinidase gene, the product of which affects biotin metabolism. Newborn screening (NBS) for biotinidase deficiency can identify affected infants prior to onset of symptoms; biotin supplementation can resolve or prevent the clinical features. In NBS, dry blood spots (DBS) are usually tested for biotinidase enzyme activity by colorimetric analysis. By taking advantage of the multiplexing capabilities of the Luminex platform, we have developed a microsphere-based array genotyping method for the simultaneous detection of six disease causing mutations in the biotinidase gene, thereby permitting a second tier of molecular analysis. Genomic DNA was extracted from 3.2 mm DBS. Biotinidase gene sequences, containing the mutations of interest, were amplified by multiplexed polymerase chain reaction, followed by multiplexed allele-specific primer extension using universally tagged genotyping primers. The products were then hybridized to anti-tag carrying xTAG microspheres and detected on the Luminex platform. Genotypes were verified by sequencing. Genotyping results of 22 known biotinidase deficient samples by our xTAG biotinidase assay was in concordance with the results obtained from DNA sequencing, for all 6 mutations used in our panel. These results indicate that genotyping by an xTAG microsphere-based array is accurate, flexible, and can be adapted for high-throughput. Since NBS for biotinidase deficiency is by enzymatic assay, less than optimal quality of the DBS itself can compromise enzyme activity, while the DNA from these samples mostly remains unaffected. This assay warrants evaluation as a viable complement to the biotinidase semi-quantitative colorimetric assay. PMID:27625817

  14. Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR.

    PubMed

    Watanabe, Masaru; Kawaguchi, Tomoya; Isa, Shun-Ichi; Ando, Masahiko; Tamiya, Akihiro; Kubo, Akihito; Saka, Hideo; Takeo, Sadanori; Adachi, Hirofumi; Tagawa, Tsutomu; Kawashima, Osamu; Yamashita, Motohiro; Kataoka, Kazuhiko; Ichinose, Yukito; Takeuchi, Yukiyasu; Watanabe, Katsuya; Matsumura, Akihide; Koh, Yasuhiro

    2017-07-01

    Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy. Here, we developed a multiplex picodroplet digital PCR (ddPCR) assay to detect 3 common EGFR mutations in 1 reaction. Serial-dilution experiments with genomic DNA harboring EGFR mutations revealed linear performance, with analytical sensitivity ~0.01% for each mutation. All 33 EGFR-activating mutations detected in formalin-fixed paraffin-embedded (FFPE) tissue samples by the conventional method were also detected by this multiplex assay. Owing to the higher sensitivity, an additional mutation (T790M; including an ultra-low-level mutation, <0.1%) was detected in the same reaction. Regression analysis of the duplex assay and multiplex assay showed a correlation coefficient (R 2 ) of 0.9986 for L858R, 0.9844 for an exon 19 deletion, and 0.9959 for T790M. Using ddPCR, we designed a multiplex ultrasensitive genotyping platform for 3 common EGFR mutations. Results of this proof-of-principle study on clinical samples indicate clinical utility of multiplex ddPCR for screening for multiple EGFR mutations concurrently with an ultra-rare pretreatment mutation (T790M). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Multicolor-based discrimination of 21 short tandem repeats and amelogenin using four fluorescent universal primers.

    PubMed

    Asari, Masaru; Okuda, Katsuhiro; Hoshina, Chisato; Omura, Tomohiro; Tasaki, Yoshikazu; Shiono, Hiroshi; Matsubara, Kazuo; Shimizu, Keiko

    2016-02-01

    The aim of this study was to develop a cost-effective genotyping method using high-quality DNA for human identification. A total of 21 short tandem repeats (STRs) and amelogenin were selected, and fluorescent fragments at 22 loci were simultaneously amplified in a single-tube reaction using locus-specific primers with 24-base universal tails and four fluorescent universal primers. Several nucleotide substitutions in universal tails and fluorescent universal primers enabled the detection of specific fluorescent fragments from the 22 loci. Multiplex polymerase chain reaction (PCR) produced intense FAM-, VIC-, NED-, and PET-labeled fragments ranging from 90 to 400 bp, and these fragments were discriminated using standard capillary electrophoretic analysis. The selected 22 loci were also analyzed using two commercial kits (the AmpFLSTR Identifiler Kit and the PowerPlex ESX 17 System), and results for two loci (D19S433 and D16S539) were discordant between these kits due to mutations at the primer binding sites. All genotypes from the 100 samples were determined using 2.5 ng of DNA by our method, and the expected alleles were completely recovered. Multiplex 22-locus genotyping using four fluorescent universal primers effectively reduces the costs to less than 20% of genotyping using commercial kits, and our method would be useful to detect silent alleles from commercial kit analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates.

    PubMed

    Baums, Christoph G; Schotte, Ulrich; Amtsberg, Gunter; Goethe, Ralph

    2004-05-20

    In this study we provide a protocol for genotyping Clostridium perfringens with a new multiplex PCR. This PCR enables reliable and specific detection of the toxin genes cpa, cpb, etx, iap, cpe and cpb2 from heat lysed bacterial suspensions. The efficiency of the protocol was demonstrated by typing C. perfringens reference strains and isolates from veterinary bacteriological routine diagnostic specimens.

  17. Optimization of ultrahigh-speed multiplex PCR for forensic analysis.

    PubMed

    Gibson-Daw, Georgiana; Crenshaw, Karin; McCord, Bruce

    2018-01-01

    In this paper, we demonstrate the design and optimization of an ultrafast PCR amplification technique, used with a seven-locus multiplex that is compatible with conventional capillary electrophoresis systems as well as newer microfluidic chip devices. The procedure involves the use of a high-speed polymerase and a rapid cycling protocol to permit multiplex PCR amplification of forensic short tandem repeat loci in 6.5 min. We describe the selection and optimization of master mix reagents such as enzyme, buffer, MgCl 2 , and dNTPs, as well as primer ratios, total volume, and cycle conditions, in order to get the best profile in the shortest time possible. Sensitivity and reproducibility studies are also described. The amplification process utilizes a small high-speed thermocycler and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The seven loci of the multiplex were taken from conventional STR genotyping kits and selected for their size and lack of overlap. Analysis was performed using conventional capillary electrophoresis and microfluidics with fluorescent detection. Overall, this technique provides a more rapid method for rapid sample screening of suspects and victims. Graphical abstract Rapid amplification of forensic DNA using high speed thermal cycling followed by capillary or microfluidic electrophoresis.

  18. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering.

    PubMed

    Wang, Harris H; Church, George M

    2011-01-01

    Engineering at the scale of whole genomes requires fundamentally new molecular biology tools. Recent advances in recombineering using synthetic oligonucleotides enable the rapid generation of mutants at high efficiency and specificity and can be implemented at the genome scale. With these techniques, libraries of mutants can be generated, from which individuals with functionally useful phenotypes can be isolated. Furthermore, populations of cells can be evolved in situ by directed evolution using complex pools of oligonucleotides. Here, we discuss ways to utilize these multiplexed genome engineering methods, with special emphasis on experimental design and implementation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs

    PubMed Central

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10−13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  20. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs.

    PubMed

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs.

  1. Simultaneous genotyping of single-nucleotide polymorphisms in alcoholism-related genes using duplex and triplex allele-specific PCR with two-step thermal cycles.

    PubMed

    Shirasu, Naoto; Kuroki, Masahide

    2014-01-01

    We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.

  2. Evaluation of a 13-loci STR multiplex system for Cannabis sativa genetic identification.

    PubMed

    Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David

    2016-05-01

    Marijuana (Cannabis sativa) is the most commonly used illicit substance in the USA. The development of a validated method using Cannabis short tandem repeats (STRs) could aid in the individualization of samples as well as serve as an intelligence tool to link multiple cases. For this purpose, a modified 13-loci STR multiplex method was optimized and evaluated according to ISFG and SWGDAM guidelines. A real-time PCR quantification method for C. sativa was developed and validated, and a sequenced allelic ladder was also designed to accurately genotype 199 C. sativa samples from 11 U.S. Customs and Border Protection seizures. Distinguishable DNA profiles were generated from 127 samples that yielded full STR profiles. Four duplicate genotypes within seizures were found. The combined power of discrimination of this multilocus system is 1 in 70 million. The sensitivity of the multiplex STR system is 0.25 ng of template DNA. None of the 13 STR markers cross-reacted with any of the studied species, except for Humulus lupulus (hops) which generated unspecific peaks. Phylogenetic analysis and case-to-case pairwise comparison of 11 cases using F st as genetic distance revealed the genetic association of four groups of cases. Moreover, due to their genetic similarity, a subset of samples (N = 97) was found to form a homogeneous population in Hardy-Weinberg and linkage equilibrium. The results of this research demonstrate the applicability of this 13-loci STR system in associating Cannabis cases for intelligence purposes.

  3. Rapid and simultaneous detection of Mycobacterium tuberculosis complex and Beijing/W genotype in sputum by an optimized DNA extraction protocol and a novel multiplex real-time PCR.

    PubMed

    Leung, Eric T Y; Zheng, L; Wong, Rity Y K; Chan, Edward W C; Au, T K; Chan, Raphael C Y; Lui, Grace; Lee, Nelson; Ip, Margaret

    2011-07-01

    Rapid diagnosis and genotyping of Mycobacterium tuberculosis by molecular methods are often limited by the amount and purity of DNA extracted from body fluids. In this study, we evaluated 12 DNA extraction methods and developed a highly sensitive protocol for mycobacterial DNA extraction directly from sputa using surface-coated magnetic particles. We have also developed a novel multiplex real-time PCR for simultaneous identification of M. tuberculosis complex and the Beijing/W genotype (a hypervirulent sublineage of M. tuberculosis) by using multiple fluorogenic probes targeting both the M. tuberculosis IS6110 and the Rv0927c-pstS3 intergenic region. With reference strains and clinical isolates, our real-time PCR accurately identified 20 non-Beijing/W and 20 Beijing/W M. tuberculosis strains from 17 different species of nontuberculosis Mycobacterium (NTM). Further assessment of our DNA extraction protocol and real-time PCR with 335 nonduplicate sputum specimens correctly identified all 74 M. tuberculosis culture-positive specimens. In addition, 15 culture-negative specimens from patients with confirmed tuberculosis were also identified. No cross-reactivity was detected with NTM specimens (n = 31). The detection limit of the assay is 10 M. tuberculosis bacilli, as determined by endpoint dilution analysis. In conclusion, an optimized DNA extraction protocol coupled with a novel multiprobe multiplex real-time PCR for the direct detection of M. tuberculosis, including Beijing/W M. tuberculosis, was found to confer high sensitivity and specificity. The combined procedure has the potential to compensate for the drawbacks of conventional mycobacterial culture in routine clinical laboratory setting, such as the lengthy incubation period and the limitation to viable organisms.

  4. Development of multiplex microsatellite PCR panels for the seagrass Thalassia hemprichii (Hydrocharitaceae).

    PubMed

    van Dijk, Kor-Jent; Mellors, Jane; Waycott, Michelle

    2014-11-01

    New microsatellites were developed for the seagrass Thalassia hemprichii (Hydrocharitaceae), a long-lived seagrass species that is found throughout the shallow waters of tropical and subtropical Indo-West Pacific. Three multiplex PCR panels were designed utilizing new and previously developed markers, resulting in a toolkit for generating a 16-locus genotype. • Through the use of microsatellite enrichment and next-generation sequencing, 16 new, validated, polymorphic microsatellite markers were isolated. Diversity was between two and four alleles per locus totaling 36 alleles. These markers, plus previously developed microsatellite markers for T. hemprichii and T. testudinum, were tested for suitability in multiplex PCR panels. • The generation of an easily replicated suite of multiplex panels of codominant molecular markers will allow for high-resolution and detailed genetic structure analysis and clonality assessment with minimal genotyping costs. We suggest the establishment of a T. hemprichii primer convention for the unification of future data sets.

  5. A new biosensor for noninvasive determination of fetal RHD status in maternal blood of RhD negative pregnant women.

    PubMed

    Dündar Yenilmez, Ebru; Kökbaş, Umut; Kartlaşmış, Kezban; Kayrın, Levent; Tuli, Abdullah

    2018-01-01

    Prenatal detection of the fetal RHD status can be useful in the management of RhD incompatibility to identify fetuses at risk of hemolytic disease. Hemolytic disease causes morbidity and mortality of the fetus in the neonatal period. The routine use of antenatal and postnatal anti-D prophylaxis has reduced the incidence of hemolytic disease of the fetus and newborn. This study describe the detection of fetal RhD antigens in blood of RhD negative pregnant women using a nanopolymer coated electrochemical biosensor for medical diagnosis. Cell free fetal DNA in maternal plasma was also used to genotyping fetal RHD status using multiplex real-time PCR. Twenty-six RhD negative pregnant women in different gestational ages were included in the study. RhD positive fetal antibodies detected with a developed biosensor in maternal blood of RhD negative mothers. The electrochemical measurements were performed on a PalmSens potentiostat, and corundum ceramic based screen printed gold electrode combined with the reference Ag/AgCl electrode, and the auxiliary Au/Pd (98/2%) electrode. Fetal RHD genotyping performed using fluorescence-based multiplex real-time PCR exons 5 and 7 of the RHD gene. The fetal RHD status of 26 RhD negative cases were detected 21 as RhD positive and 5 as RhD negative with electrochemical biosensor. Fetal RHD status confirmed with extracted fetal DNA in maternal plasma using multiplex real-time PCR RHD genotyping and by serological test after delivery. The new method for fetal RhD detection in early pregnancy is useful and can be carry out rapidly in clinical diagnosis. Using automated biosensors are reproducible, quick and results can be generated within a few minutes compared to noninvasive fetal RHD genotyping from maternal plasma with real-time PCR-based techniques. We suggest the biosensor techniques could become an alternative part of fetal RHD genotyping from maternal plasma as a prenatal screening in the management of RhD incompatibility.

  6. [The estimation of possibilities for the application of the laser capture microdissection technology for the molecular-genetic expert analysis (genotyping) of human chromosomal DNA].

    PubMed

    Ivanov, P L; Leonov, S N; Zemskova, E Iu

    2012-01-01

    The present study was designed to estimate the possibilities of application of the laser capture microdissection (LCM) technology for the molecular-genetic expert analysis (genotyping) of human chromosomal DNA. The experimental method employed for the purpose was the multiplex multilocus analysis of autosomal DNA polymorphism in the preparations of buccal epitheliocytes obtained by LCM. The key principles of the study were the application of physical methods for contrast enhancement of the micropreparations (such as phase-contrast microscopy and dark-field microscopy) and PCR-compatible cell lysis. Genotyping was carried out with the use of AmpFISTR Minifiler TM PCR Amplification Kits ("Applied Biosynthesis", USA). It was shown that the technique employed in the present study ensures reliable genotyping of human chromosomal DNA in the pooled preparations containing 10-20 dissected diploid cells each. This result fairly well agrees with the calculated sensitivity of the method. A few practical recommendations are offered.

  7. Efficient Genotyping of KRAS Mutant Non-Small Cell Lung Cancer Using a Multiplexed Droplet Digital PCR Approach.

    PubMed

    Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O'Brien, Mary; Turner, Nicholas C; Popat, Sanjay; Downward, Julian

    2015-01-01

    Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.

  8. Efficient Genotyping of KRAS Mutant Non-Small Cell Lung Cancer Using a Multiplexed Droplet Digital PCR Approach

    PubMed Central

    Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J.; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O’Brien, Mary; Turner, Nicholas C.; Popat, Sanjay; Downward, Julian

    2015-01-01

    Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma. PMID:26413866

  9. Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection

    PubMed Central

    KC, R.; Srivastava, A.; Wilkowski, J. M.; Richter, C. E.; Shavit, J. A.; Burke, D. T.; Bielas, S. L.

    2016-01-01

    CRISPR/Cas9 genome-editing has emerged as a powerful tool to create mutant alleles in model organisms. However, the precision with which these mutations are created has introduced a new set of complications for genotyping and colony management. Traditional gene-targeting approaches in many experimental organisms incorporated exogenous DNA and/or allele specific sequence that allow for genotyping strategies based on binary readout of PCR product amplification and size selection. In contrast, alleles created by non-homologous end-joining (NHEJ) repair of double-stranded DNA breaks generated by Cas9 are much less amenable to such strategies. Here we describe a novel genotyping strategy that is cost effective, sequence specific and allows for accurate and efficient multiplexing of small insertion-deletions and single-nucleotide variants characteristic of CRISPR/Cas9 edited alleles. We show that ligation detection reaction (LDR) can be used to generate products that are sequence specific and uniquely detected by product size and/or fluorescent tags. The method works independently of the model organism and will be useful for colony management as mutant alleles differing by a few nucleotides become more prevalent in experimental animal colonies. PMID:27557703

  10. Using Next Generation Sequencing for Multiplexed Trait-Linked Markers in Wheat

    PubMed Central

    Bernardo, Amy; Wang, Shan; St. Amand, Paul; Bai, Guihua

    2015-01-01

    With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat ( Triticum aestivum L.) that can be effectively used in marker-assisted selection (MAS) is still limited and SNP assays for MAS are usually uniplex. A shift from uniplex to multiplex assays will allow the simultaneous analysis of multiple markers and increase MAS efficiency. We designed 33 locus-specific markers from SNP or indel-based marker sequences that linked to 20 different quantitative trait loci (QTL) or genes of agronomic importance in wheat and analyzed the amplicon sequences using an Ion Torrent Proton Sequencer and a custom allele detection pipeline to determine the genotypes of 24 selected germplasm accessions. Among the 33 markers, 27 were successfully multiplexed and 23 had 100% SNP call rates. Results from analysis of "kompetitive allele-specific PCR" (KASP) and sequence tagged site (STS) markers developed from the same loci fully verified the genotype calls of 23 markers. The NGS-based multiplexed assay developed in this study is suitable for rapid and high-throughput screening of SNPs and some indel-based markers in wheat. PMID:26625271

  11. An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system.

    PubMed

    Zhu, Xiaoxiao; Xu, Yajie; Yu, Shanshan; Lu, Lu; Ding, Mingqin; Cheng, Jing; Song, Guoxu; Gao, Xing; Yao, Liangming; Fan, Dongdong; Meng, Shu; Zhang, Xuewen; Hu, Shengdi; Tian, Yong

    2014-09-19

    The rapid generation of various species and strains of laboratory animals using CRISPR/Cas9 technology has dramatically accelerated the interrogation of gene function in vivo. So far, the dominant approach for genotyping of genome-modified animals has been the T7E1 endonuclease cleavage assay. Here, we present a polyacrylamide gel electrophoresis-based (PAGE) method to genotype mice harboring different types of indel mutations. We developed 6 strains of genome-modified mice using CRISPR/Cas9 system, and utilized this approach to genotype mice from F0 to F2 generation, which included single and multiplexed genome-modified mice. We also determined the maximal detection sensitivity for detecting mosaic DNA using PAGE-based assay as 0.5%. We further applied PAGE-based genotyping approach to detect CRISPR/Cas9-mediated on- and off-target effect in human 293T and induced pluripotent stem cells (iPSCs). Thus, PAGE-based genotyping approach meets the rapidly increasing demand for genotyping of the fast-growing number of genome-modified animals and human cell lines created using CRISPR/Cas9 system or other nuclease systems such as TALEN or ZFN.

  12. An Efficient Genotyping Method for Genome-modified Animals and Human Cells Generated with CRISPR/Cas9 System

    PubMed Central

    Zhu, Xiaoxiao; Xu, Yajie; Yu, Shanshan; Lu, Lu; Ding, Mingqin; Cheng, Jing; Song, Guoxu; Gao, Xing; Yao, Liangming; Fan, Dongdong; Meng, Shu; Zhang, Xuewen; Hu, Shengdi; Tian, Yong

    2014-01-01

    The rapid generation of various species and strains of laboratory animals using CRISPR/Cas9 technology has dramatically accelerated the interrogation of gene function in vivo. So far, the dominant approach for genotyping of genome-modified animals has been the T7E1 endonuclease cleavage assay. Here, we present a polyacrylamide gel electrophoresis-based (PAGE) method to genotype mice harboring different types of indel mutations. We developed 6 strains of genome-modified mice using CRISPR/Cas9 system, and utilized this approach to genotype mice from F0 to F2 generation, which included single and multiplexed genome-modified mice. We also determined the maximal detection sensitivity for detecting mosaic DNA using PAGE-based assay as 0.5%. We further applied PAGE-based genotyping approach to detect CRISPR/Cas9-mediated on- and off-target effect in human 293T and induced pluripotent stem cells (iPSCs). Thus, PAGE-based genotyping approach meets the rapidly increasing demand for genotyping of the fast-growing number of genome-modified animals and human cell lines created using CRISPR/Cas9 system or other nuclease systems such as TALEN or ZFN. PMID:25236476

  13. Genetic Fingerprinting Using Microsatellite Markers in a Multiplex PCR Reaction: A Compilation of Methodological Approaches from Primer Design to Detection Systems.

    PubMed

    Krüger, Jacqueline; Schleinitz, Dorit

    2017-01-01

    Microsatellites are polymorphic DNA loci comprising repeated sequence motifs of two to five base pairs which are dispersed throughout the genome. Genotyping of microsatellites is a widely accepted tool for diagnostic and research purposes such as forensic investigations and parentage testing, but also in clinics (e.g. monitoring of bone marrow transplantation), as well as for the agriculture and food industries. The co-amplification of several short tandem repeat (STR) systems in a multiplex reaction with simultaneous detection helps to obtain more information from a DNA sample where its availability may be limited. Here, we introduce and describe this commonly used genotyping technique, providing an overview on available resources on STRs, multiplex design, and analysis.

  14. DASH-2: Flexible, Low-Cost, and High-Throughput SNP Genotyping by Dynamic Allele-Specific Hybridization on Membrane Arrays

    PubMed Central

    Jobs, Magnus; Howell, W. Mathias; Strömqvist, Linda; Mayr, Torsten; Brookes, Anthony J.

    2003-01-01

    Genotyping technologies need to be continually improved in terms of their flexibility, cost-efficiency, and throughput, to push forward genome variation analysis. To this end, we have leveraged the inherent simplicity of dynamic allele-specific hybridization (DASH) and coupled it to recent innovations of centrifugal arrays and iFRET. We have thereby created a new genotyping platform we term DASH-2, which we demonstrate and evaluate in this report. The system is highly flexible in many ways (any plate format, PCR multiplexing, serial and parallel array processing, spectral-multiplexing of hybridization probes), thus supporting a wide range of application scales and objectives. Precision is demonstrated to be in the range 99.8–100%, and assay costs are 0.05 USD or less per genotype assignment. DASH-2 thus provides a powerful new alternative for genotyping practice, which can be used without the need for expensive robotics support. PMID:12727908

  15. Impact of 6-month frozen storage of cervical specimens in alkaline buffer conditions on human papillomavirus genotyping.

    PubMed

    LaMere, Brandon J; Howell, Renee; Fetterman, Barbara; Shieh, Jen; Castle, Philip E

    2008-08-01

    The impact of 6-month storage of cervical specimens under alkaline conditions that occurs as the result of Hybrid Capture 2 testing on human papillomavirus (HPV) genotyping is not well documented. To examine this issue, 143 frozen hc2-positive specimens in specimen transport medium were selected at random from each of the following groups: specimens stored for 6 months, 4 months, and 2.5 months under alkaline pH (pH 12-13) and specimens stored 1 month at neutral pH (pH 6-7) as controls. Specimens were tested in a masked fashion for 20 HPV genotypes (HPV6, 11, 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73, and 82) using a prototype, research-use-only GP5+/6+ L1 consensus PCR method and multiplex hybridization using Luminex xMAP for detection of specific HPV genotypes One control specimen had missing test results. There were no statistical differences in the number of HPV genotypes detected, number of carcinogenic HPV genotypes detected, or in the signal strength among HPV-positive results across groups. Six-month frozen storage of cervical specimens at alkaline pH had little impact on testing for HPV genotypes among hc2-positive women using this HPV genotyping method.

  16. Multiplex-touchdown PCR assay for the detection and genotyping of Helicobacter pylori from artificially contaminated sheep milk.

    PubMed

    Quaglia, N C; Normanno, G; Dambrosio, A; Celano, G V; Parisi, A; Firinu, A; Buonavoglia, C

    2005-10-01

    Helicobacter pylori (Hp) is an organism commonly present worldwide in the human population, sometimes causing serious illnesses such as duodenal and gastric ulcers, adenocarcinoma of the stomach, and low-grade B-cell mucosa-associated lymphoid tissue lymphoma of the stomach. This article describes a multiplex-touchdown PCR method for the identification and genotyping (vacA-s1/m1, sl/m2, and s2/m2-and cagA genes) of Hp directly from sheep milk artificially contaminated with Hp strains from human gastric biopsies and with Hp ATCC 43504. The strains from humans carried sl/m2 cagA+ and s2/m2 cagA allelic combinations, while the ATCC strains carried an sl/ml cagA+ allelic combination. The technique showed a sensitivity of 15 CFU/ml for species identification and of 1,500 CFU/ml for the detection of genes encoding for VacA and CagA. It has proven to be specific and rapid, and the authors suggest that it be used as a rapid screening method to ensure that sheep milk is uncontaminated with this organism.

  17. SensiScreen® KRAS exon 2-sensitive simplex and multiplex real-time PCR-based assays for detection of KRAS exon 2 mutations

    PubMed Central

    Guldmann-Christensen, Mariann; Hauge Kyneb, Majbritt; Voogd, Kirsten; Andersen, Christina; Epistolio, Samantha; Merlo, Elisabetta; Yding Wolff, Tine; Hamilton-Dutoit, Stephen; Lorenzen, Jan; Christensen, Ulf Bech

    2017-01-01

    Activating mutations in codon 12 and codon 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) gene are implicated in the development of several human cancer types and influence their clinical evaluation, treatment and prognosis. Numerous different methods for KRAS genotyping are currently available displaying a wide range of sensitivities, time to answer and requirements for laboratory equipment and user skills. Here we present SensiScreen® KRAS exon 2 simplex and multiplex CE IVD assays, that use a novel real-time PCR-based method for KRAS mutation detection based on PentaBase’s proprietary DNA analogue technology and designed to work on standard real-time PCR instruments. By means of the included BaseBlocker™ technology, we show that SensiScreen® specifically amplifies the mutated alleles of interest with no or highly subdued amplification of the wild type allele. Furthermore, serial dilutions of mutant DNA in a wild type background demonstrate that all SensiScreen® assays display a limit of detection that falls within the range of 0.25–1%. Finally, in three different colorectal cancer patient populations, SensiScreen® assays confirmed the KRAS genotype previously determined by commonly used methods for KRAS mutation testing, and notably, in two of the populations, SensiScreen® identified additional mutant positive cases not detected by common methods. PMID:28636636

  18. Clinical implementation of integrated whole-genome copy number and mutation profiling for glioblastoma

    PubMed Central

    Ramkissoon, Shakti H.; Bi, Wenya Linda; Schumacher, Steven E.; Ramkissoon, Lori A.; Haidar, Sam; Knoff, David; Dubuc, Adrian; Brown, Loreal; Burns, Margot; Cryan, Jane B.; Abedalthagafi, Malak; Kang, Yun Jee; Schultz, Nikolaus; Reardon, David A.; Lee, Eudocia Q.; Rinne, Mikael L.; Norden, Andrew D.; Nayak, Lakshmi; Ruland, Sandra; Doherty, Lisa M.; LaFrankie, Debra C.; Horvath, Margaret; Aizer, Ayal A.; Russo, Andrea; Arvold, Nils D.; Claus, Elizabeth B.; Al-Mefty, Ossama; Johnson, Mark D.; Golby, Alexandra J.; Dunn, Ian F.; Chiocca, E. Antonio; Trippa, Lorenzo; Santagata, Sandro; Folkerth, Rebecca D.; Kantoff, Philip; Rollins, Barrett J.; Lindeman, Neal I.; Wen, Patrick Y.; Ligon, Azra H.; Beroukhim, Rameen; Alexander, Brian M.; Ligon, Keith L.

    2015-01-01

    Background Multidimensional genotyping of formalin-fixed paraffin-embedded (FFPE) samples has the potential to improve diagnostics and clinical trials for brain tumors, but prospective use in the clinical setting is not yet routine. We report our experience with implementing a multiplexed copy number and mutation-testing program in a diagnostic laboratory certified by the Clinical Laboratory Improvement Amendments. Methods We collected and analyzed clinical testing results from whole-genome array comparative genomic hybridization (OncoCopy) of 420 brain tumors, including 148 glioblastomas. Mass spectrometry–based mutation genotyping (OncoMap, 471 mutations) was performed on 86 glioblastomas. Results OncoCopy was successful in 99% of samples for which sufficient DNA was obtained (n = 415). All clinically relevant loci for glioblastomas were detected, including amplifications (EGFR, PDGFRA, MET) and deletions (EGFRvIII, PTEN, 1p/19q). Glioblastoma patients ≤40 years old had distinct profiles compared with patients >40 years. OncoMap testing reliably identified mutations in IDH1, TP53, and PTEN. Seventy-seven glioblastoma patients enrolled on trials, of whom 51% participated in targeted therapeutic trials where multiplex data informed eligibility or outcomes. Data integration identified patients with complete tumor suppressor inactivation, albeit rarely (5% of patients) due to lack of whole-gene coverage in OncoMap. Conclusions Combined use of multiplexed copy number and mutation detection from FFPE samples in the clinical setting can efficiently replace singleton tests for clinical diagnosis and prognosis in most settings. Our results support incorporation of these assays into clinical trials as integral biomarkers and their potential to impact interpretation of results. Limited tumor suppressor variant capture by targeted genotyping highlights the need for whole-gene sequencing in glioblastoma. PMID:25754088

  19. Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV.

    PubMed

    Mohammadi-Yeganeh, S; Paryan, M; Mirab Samiee, S; Kia, V; Rezvan, H

    2012-06-01

    Developed in 1991, nucleic acid sequence-based amplification (NASBA) has been introduced as a rapid molecular diagnostic technique, where it has been shown to give quicker results than PCR, and it can also be more sensitive. This paper describes the development of a molecular beacon-based multiplex NASBA assay for simultaneous detection of HIV-1 and HCV in plasma samples. A well-conserved region in the HIV-1 pol gene and 5'-NCR of HCV genome were used for primers and molecular beacon design. The performance features of HCV/HIV-1 multiplex NASBA assay including analytical sensitivity and specificity, clinical sensitivity and clinical specificity were evaluated. The analysis of scalar concentrations of the samples indicated that the limit of quantification of the assay was <1000 copies/ml for HIV-1 and <500 copies/ml for HCV with 95% confidence interval. Multiplex NASBA assay showed a 98% sensitivity and 100% specificity. The analytical specificity study with BLAST software demonstrated that the primers do not attach to any other sequences except for that of HIV-1 or HCV. The primers and molecular beacon probes detected all HCV genotypes and all major variants of HIV-1. This method may represent a relatively inexpensive isothermal method for detection of HIV-1/HCV co-infection in monitoring of patients.

  20. An innovative SNP genotyping method adapting to multiple platforms and throughputs.

    PubMed

    Long, Y M; Chao, W S; Ma, G J; Xu, S S; Qi, L L

    2017-03-01

    An innovative genotyping method designated as semi-thermal asymmetric reverse PCR (STARP) was developed for genotyping individual SNPs with improved accuracy, flexible throughputs, low operational costs, and high platform compatibility. Multiplex chip-based technology for genome-scale genotyping of single nucleotide polymorphisms (SNPs) has made great progress in the past two decades. However, PCR-based genotyping of individual SNPs still remains problematic in accuracy, throughput, simplicity, and/or operational costs as well as the compatibility with multiple platforms. Here, we report a novel SNP genotyping method designated semi-thermal asymmetric reverse PCR (STARP). In this method, genotyping assay was performed under unique PCR conditions using two universal priming element-adjustable primers (PEA-primers) and one group of three locus-specific primers: two asymmetrically modified allele-specific primers (AMAS-primers) and their common reverse primer. The two AMAS-primers each were substituted one base in different positions at their 3' regions to significantly increase the amplification specificity of the two alleles and tailed at 5' ends to provide priming sites for PEA-primers. The two PEA-primers were developed for common use in all genotyping assays to stringently target the PCR fragments generated by the two AMAS-primers with similar PCR efficiencies and for flexible detection using either gel-free fluorescence signals or gel-based size separation. The state-of-the-art primer design and unique PCR conditions endowed STARP with all the major advantages of high accuracy, flexible throughputs, simple assay design, low operational costs, and platform compatibility. In addition to SNPs, STARP can also be employed in genotyping of indels (insertion-deletion polymorphisms). As vast variations in DNA sequences are being unearthed by many genome sequencing projects and genotyping by sequencing, STARP will have wide applications across all biological organisms in agriculture, medicine, and forensics.

  1. Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis.

    PubMed

    Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand

    2009-07-01

    In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.

  2. Diversity of Salmonella isolates from central Florida surface waters.

    PubMed

    McEgan, Rachel; Chandler, Jeffrey C; Goodridge, Lawrence D; Danyluk, Michelle D

    2014-11-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608-3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Diversity of Salmonella Isolates from Central Florida Surface Waters

    PubMed Central

    McEgan, Rachel; Chandler, Jeffrey C.; Goodridge, Lawrence D.

    2014-01-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608–3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:−. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype. PMID:25172861

  4. [Multilocus genotyping of polymorphous STR-loci of chromosomal DNA in individual cells: technical difficulties].

    PubMed

    Ivanov, P L; Leonov, S N; Zemskova, E Iu; Kobylianskiĭ, A G; Dziubenko, E V

    2013-01-01

    This study was designed to estimate the effectiveness of special technical procedures for the enhancement of sensitivity of multiplex analysis of DNA, such as the use of low-plexity PCR systems and the whole genome preamplification technology, and the possibility of their application for the purpose of forensic medical genotyping of polymorphous STR-loci of chromosomal DNA in individual cells. The authors refused to use the imitation model (equivalent DNA dilutions) for the sake of obtaining the maximally informative data and chose to work with real preparations of solitary buccal epithelial cells isolated by the laser microdissection technique. It was shown that neither the use of the low-plexity multilocus PCR systems nor the whole genome pre-amplification technology makes possible reliable genotyping of STR-loci of chromosomal DNA in individual cells. The proposed techniques allow for DNA genotyping in preparations consisting of 10 diploid cells whereas the methods for reliable genotyping of STR-loci of chromosomal DNA in individual cells remains to be developed.

  5. [Application of multiplex PCR for the screening of genotyping system for the rare blood groups Fy(a-), s-,k-,Di(b-) and Js(b-)].

    PubMed

    Jiao, Wei; Xie, Li; Li, Hailan; Lan, Jiao; Mo, Zhuning; Yang, Ziji; Liu, Fei; Xiao, Ruiping; He, Yunlei; Ye, Luyi; Zhu, Ziyan

    2014-04-01

    To screen rare blood groups Fy(a-), s-, k-, Di(b-) and Js(b-) in an ethnic Zhuang population. Sequence-specific primers were designed based on single nucleotide polymorphism (SNP) sites of blood group antigens Fy(b) and s. A specific multiplex PCR system I was established. Multiplex PCR system II was applied to detect alleles antigens Di(b), k, Js(b)1910 and Js(b) 2019 at the same time. The two systems was were used to screen for rare blood group antigens in 4490 randomly selected healthy donors of Guangxi Zhuang ethnic origin. We successfully made the multiplex PCR system I. We detected the rare blood group antigens using the two PCR system. There are five Fy(a-), three s(-), two Di(b-) in 4490 Guangxi zhuang random samples. The multiplex PCR system I has achieved good accuracy and stability. With multiplex PCR systems I and II, 4490 samples were screened. Five Fy(a-), three s(-) and two Di(b-) samples were discovered. Multiplex PCR is an effective methods, which can be used for high throughput screening of rare blood groups. The rare blood types of Guangxi Zhuang ethnic origin obtained through the screening can provide valuable information for compatible blood transfusion. Through screening we obtained precious rare blood type materials which can be used to improve the capability of compatible infusion and reduce the transfusion reactions.

  6. Detecting and Genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Call, Douglas R.; Brockman, Fred J.; Chandler, Darrell P.

    2000-12-01

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification.more » The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFU ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.« less

  7. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Call, Douglas R.; Brockman, Fred J.; Chandler, Darrell P.

    2001-07-05

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification.more » The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFUs ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.« less

  8. Multiplex Allele-Specific Amplification from Whole Blood for Detecting Multiple Polymorphisms Simultaneously

    PubMed Central

    Zhu, Jianjie; Chen, Lanxin; Mao, Yong; Zhou, Huan

    2013-01-01

    Allele-specific amplification on the basis of polymerase chain reaction (PCR) has been widely used for single-nucleotide polymorphism (SNP) genotyping. However, the extraction of PCR-compatible genomic DNA from whole blood is usually required. This process is complicated and tedious, and is prone to cause cross-contamination between samples. To facilitate direct PCR amplification from whole blood without the extraction of genomic DNA, we optimized the pH value of PCR solution and the concentrations of magnesium ions and facilitator glycerol. Then, we developed multiplex allele-specific amplifications from whole blood and applied them to a case–control study. In this study, we successfully established triplex, five-plex, and eight-plex allele-specific amplifications from whole blood for determining the distribution of genotypes and alleles of 14 polymorphisms in 97 gastric cancer patients and 141 healthy controls. Statistical analysis results showed significant association of SNPs rs9344, rs1799931, and rs1800629 with the risk of gastric cancer. This method is accurate, time-saving, cost-effective, and easy-to-do, especially suitable for clinical prediction of disease susceptibility. PMID:23072573

  9. Detection of sexually transmitted infection and human papillomavirus in negative cytology by multiplex-PCR

    PubMed Central

    2010-01-01

    Background The aim of this study was to determine the prevalence of human papillomavirus (HPV) and 15 species that cause sexually transmitted infections (STIs) in negative cytology. In addition, we compared the diagnostic performance of multiplex polymerase chain reaction (PCR) with widely available techniques used to detect HPV. Methods We recruited 235 women of reproductive age who had negative cytology findings in a liquid-based cervical smear. STIs were identified by multiplex PCR, and HPV genotypes by multiplex PCR, hybrid capture 2, and DNA microaray; discordant results were analyzed by direct sequencing. Results Approximately 96.6% of patients with negative cytology results were positive for pathogens that cause STIs. The pathogens most frequently detected were Gardnerella vaginalis, Ureaplasma urealyticum. The incidence of HPV in negative cytology was 23.3%. Low-risk HPV infection was significantly correlated with Chalmaydia trachomatis, and high-risk HPV infection was significantly correlated with Group β streptococcus. The analytical sensitivities of the multiplex PCR and DNA microarray were higher than 80%, and the analytical specificity was nearly 100% for all tests. Conclusions Multiplex PCR yielded results that most of patients with negative cytology were positive for pathogens that cause STIs, and were more similar to that of DNA microarray, than that of hybrid capture 2 in terms of analytical sensitivity and prediction value of HPV infection. PMID:20920170

  10. Detection and Typing of Human Papilloma Viruses by Nested Multiplex Polymerase Chain Reaction Assay in Cervical Cancer

    PubMed Central

    Jalal Kiani, Seyed; Shatizadeh Malekshahi, Somayeh; Yousefi Ghalejoogh, Zohreh; Ghavvami, Nastaran; Shafiei Jandaghi, Nazanin Zahra; Shahsiah, Reza; Jahanzad, Isa; Yavarian, Jila

    2015-01-01

    Background: Cervical cancer is the leading cause of death from cancer in under-developed countries. Human papilloma virus (HPV) 16 and 18 are the most prevalent types associated with carcinogenesis in the cervix. Conventional Polymerase Chain Reaction (PCR), type-specific and consensus primer-based PCR followed by sequencing, Restriction Fragment Length Polymorphism (RFLP) or hybridization by specific probes are common methods for HPV detection and typing. In addition, some researchers have developed a multiplex PCR for simultaneous detection and typing of different HPVs. Objectives: The aim of the present study was to investigate the prevalence of HPV infection and its types in cervical Squamous Cell Carcinoma (SCC) using the Nested Multiplex PCR (NMPCR) assay. Patients and Methods: Sixty-six samples with histologically confirmed SCC were evaluated. Total DNA was isolated by phenol–chloroform extraction and ethanol precipitation. Nested multiplex PCR was performed with first-round PCR by GP-E6/E7 consensus primers for amplification of the genomic DNA of all known mucosal HPV genotypes and second-round PCR by type-specific multiplex PCR primer cocktails. Results: Human papilloma virus infection was detected in 78.8% of samples, with the highest prevalence of HPV 16 (60.6%) while concurrent infections with two types was detected in 10.6%. Conclusions: The NMPCR assay is more convenient and easy for analysis of results, which is important for fast diagnosis and patient management, in a type-specific manner. PMID:26865940

  11. Universal multiplex PCR and CE for quantification of SMN1/SMN2 genes in spinal muscular atrophy.

    PubMed

    Wang, Chun-Chi; Chang, Jan-Gowth; Jong, Yuh-Jyh; Wu, Shou-Mei

    2009-04-01

    We established a universal multiplex PCR and CE to calculate the copy number of survival motor neuron (SMN1 and SMN2) genes for clinical screening of spinal muscular atrophy (SMA). In this study, one universal fluorescent primer was designed and applied for multiplex PCR of SMN1, SMN2 and two internal standards (CYBB and KRIT1). These amplicons were separated by conformation sensitive CE. Mixture of hydroxyethyl cellulose and hydroxypropyl cellulose were used in this CE system. Our method provided the potential to separate two 390-bp PCR products that differ in a single nucleotide. Differentiation and quantification of SMN1 and SMN2 are essential for clinical screening of SMA patients and carriers. The DNA samples included 22 SMA patients, 45 parents of SMA patients (obligatory carriers) and 217 controls. For evaluating accuracy, those 284 samples were blind-analyzed by this method and denaturing high pressure liquid chromatography (DHPLC). Eight of the total samples showed different results. Among them, two samples were diagnosed as having only SMN2 gene by DHPLC, however, they contained both SMN1 and SMN2 by our method. They were further confirmed by DNA sequencing. Our method showed good agreement with the DNA sequencing. The multiplex ligation-dependent probe amplification (MLPA) was used for confirming the other five samples, and showed the same results with our CE method. For only one sample, our CE showed different results with MLPA and DNA sequencing. One out of 284 samples (0.35%) belonged to mismatching. Our method provided a better accurate method and convenient method for clinical genotyping of SMA disease.

  12. A novel enterovirus and parechovirus multiplex one-step real-time PCR-validation and clinical experience.

    PubMed

    Nielsen, Alex Christian Yde; Böttiger, Blenda; Midgley, Sofie Elisabeth; Nielsen, Lars Peter

    2013-11-01

    As the number of new enteroviruses and human parechoviruses seems ever growing, the necessity for updated diagnostics is relevant. We have updated an enterovirus assay and combined it with a previously published assay for human parechovirus resulting in a multiplex one-step RT-PCR assay. The multiplex assay was validated by analysing the sensitivity and specificity of the assay compared to the respective monoplex assays, and a good concordance was found. Furthermore, the enterovirus assay was able to detect 42 reference strains from all 4 species, and an additional 9 genotypes during panel testing and routine usage. During 15 months of routine use, from October 2008 to December 2009, we received and analysed 2187 samples (stool samples, cerebrospinal fluids, blood samples, respiratory samples and autopsy samples) were tested, from 1546 patients and detected enteroviruses and parechoviruses in 171 (8%) and 66 (3%) of the samples, respectively. 180 of the positive samples could be genotyped by PCR and sequencing and the most common genotypes found were human parechovirus type 3, echovirus 9, enterovirus 71, Coxsackievirus A16, and echovirus 25. During 2009 in Denmark, both enterovirus and human parechovirus type 3 had a similar seasonal pattern with a peak during the summer and autumn. Human parechovirus type 3 was almost invariably found in children less than 4 months of age. In conclusion, a multiplex assay was developed allowing simultaneous detection of 2 viruses, which can cause similar clinical symptoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effective application of multiple locus variable number of tandem repeats analysis to tracing Staphylococcus aureus in food-processing environment.

    PubMed

    Rešková, Z; Koreňová, J; Kuchta, T

    2014-04-01

    A total of 256 isolates of Staphylococcus aureus were isolated from 98 samples (34 swabs and 64 food samples) obtained from small or medium meat- and cheese-processing plants in Slovakia. The strains were genotypically characterized by multiple locus variable number of tandem repeats analysis (MLVA), involving multiplex polymerase chain reaction (PCR) with subsequent separation of the amplified DNA fragments by an automated flow-through gel electrophoresis. With the panel of isolates, MLVA produced 31 profile types, which was a sufficient discrimination to facilitate the description of spatial and temporal aspects of contamination. Further data on MLVA discrimination were obtained by typing a subpanel of strains by multiple locus sequence typing (MLST). MLVA coupled to automated electrophoresis proved to be an effective, comparatively fast and inexpensive method for tracing S. aureus contamination of food-processing factories. Subspecies genotyping of microbial contaminants in food-processing factories may facilitate identification of spatial and temporal aspects of the contamination. This may help to properly manage the process hygiene. With S. aureus, multiple locus variable number of tandem repeats analysis (MLVA) proved to be an effective method for the purpose, being sufficiently discriminative, yet comparatively fast and inexpensive. The application of automated flow-through gel electrophoresis to separation of DNA fragments produced by multiplex PCR helped to improve the accuracy and speed of the method. © 2013 The Society for Applied Microbiology.

  14. A universal array-based multiplexed test for cystic fibrosis carrier screening.

    PubMed

    Amos, Jean A; Bridge-Cook, Philippa; Ponek, Victor; Jarvis, Michael R

    2006-01-01

    Cystic fibrosis is a multisystem autosomal recessive disorder with high carrier frequencies in caucasians and significant, but lower, carrier frequencies in other ethnicities. Based on technology that allows high detection of mutations in caucasians and significant detection in other ethnic groups, the American College of Medical Genetics (ACMG) and American College of Obstetricians and Gynecologists (ACOG) have recommended pan-ethnic cystic fibrosis carrier screening for all reproductive couples. This paper discusses carrier screening using the Tag-It multiplex mutation platform and the Cystic Fibrosis Mutation Detection Kit. The Tag-It cystic fibrosis assay is a multiplexed genotyping assay that detects a panel of 40 cystic fibrosis transmembrane conductance regulator mutations including the 23 mutations recommended by the ACMG and ACOG for population screening. A total of 16 additional mutations detected by the Tag-It cystic fibrosis assay may also be common. The assay method is described in detail, and its performance in a genetics reference laboratory performing high-volume cystic fibrosis carrier screening is assessed.

  15. Multiplex pyrosequencing of InDel markers for forensic DNA analysis.

    PubMed

    Bus, Magdalena M; Karas, Ognjen; Allen, Marie

    2016-12-01

    The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator ® DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator ® DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof-of-principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost-effective alternative for some applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Detection of hepatitis C virus subtypes 6a, 6n, 6w and mixed infections using a modified multiplex real-time polymerase chain reaction protocol.

    PubMed

    Lee, Yuan-Ming; Chen, Yen-Ju; Lee, Cheng-Ming; Kuo, Lou-Hui; Wong, Wing-Wai; Chen, Yi-Ming Arthur

    2011-12-01

    In the past few years, many new subtypes in hepatitis C virus (HCV) genotype 6 have been identified. The aim of this study was to modify the multiplex real-time polymerase chain reaction (RT-PCR) protocol and use it to determine the HCV subtypes of a group of Taiwanese injection drug users (IDUs). We used 76 serum specimens collected in northern Taiwan in 2008. Multiplex RT-PCR was used for HCV subtyping among those serum samples having anti-HCV antibodies. Twenty cases were randomly selected for comparison with subtyping results from Inno-LiPa II tests and phylogenetic tree analysis using NS5B sequences. Multiplex RT-PCR assays showed that 60.5% (46/76) of IDUs had single HCV infection. Three out of 76 (3.9%) had double HCV infection (1b/6a, 2a/2b and 2b/6a). Besides this, 27.6% (21/76) had no HCV signal. One IDU had subtype 6n and two had subtype 6w infection. Inno-LiPa II tests misclassified all 6n and 6w cases as 1b subtype. Our modified multiplex RT-PCR protocol can be used to support molecular epidemiological studies and laboratory diagnoses of different HCV subtypes including genotype 6. Copyright © 2011. Published by Elsevier B.V.

  17. A LDR-PCR approach for multiplex polymorphisms genotyping of severely degraded DNA with fragment sizes <100 bp.

    PubMed

    Zhang, Zhen; Wang, Bao-Jie; Guan, Hong-Yu; Pang, Hao; Xuan, Jin-Feng

    2009-11-01

    Reducing amplicon sizes has become a major strategy for analyzing degraded DNA typical of forensic samples. However, amplicon sizes in current mini-short tandem repeat-polymerase chain reaction (PCR) and mini-sequencing assays are still not suitable for analysis of severely degraded DNA. In this study, we present a multiplex typing method that couples ligase detection reaction with PCR that can be used to identify single nucleotide polymorphisms and small-scale insertion/deletions in a sample of severely fragmented DNA. This method adopts thermostable ligation for allele discrimination and subsequent PCR for signal enhancement. In this study, four polymorphic loci were used to assess the ability of this technique to discriminate alleles in an artificially degraded sample of DNA with fragment sizes <100 bp. Our results showed clear allelic discrimination of single or multiple loci, suggesting that this method might aid in the analysis of extremely degraded samples in which allelic drop out of larger fragments is observed.

  18. Development and evaluation of a Quadruplex Taq Man real-time PCR assay for simultaneous detection of clinical isolates of Enterococcus faecalis, Enterococcus faecium and their vanA and vanB genotypes.

    PubMed

    Naserpour Farivar, Taghi; Najafipour, Reza; Johari, Pouran; Aslanimehr, Masoumeh; Peymani, Amir; Jahani Hashemi, Hoasan; Mirzaui, Baman

    2014-10-01

    We developed and evaluated the utility of a quadruplex Taqman real-time PCR assay that allows simultaneous identification of vancomycin-resistant genotypes and clinically relevant enterococci. The specificity of the assay was tested using reference strains of vancomycin-resistant and susceptible enterococci. In total, 193 clinical isolates were identified and subsequently genotyped using a Quadruplex Taqman real-time PCR assay and melting curve analysis. Representative Quadruplex Taqman real-time PCR amplification curve were obtained for Enterococcus faecium, Enterococcus faecalis, vanA-containing E. faecium, vanB-containing E. faecalis. Phenotypic and genotypic analysis of the isolates gave same results for 82 enterococcal isolates, while in 5 isolates, they were inconsistent. We had three mixed strains, which were detected by the TaqMan real-time PCR assay and could not be identified correctly using phenotypic methods. Vancomycin resistant enterococci (VRE) genotyping and identification of clinically relevant enterococci were rapidly and correctly performed using TaqMan real-time multiplex real-time PCR assay.

  19. Molecular method for the characterization of Coxiella burnetii from clinical and environmental samples: variability of genotypes in Spain

    PubMed Central

    2012-01-01

    Background Coxiella burnetii is a highly clonal microorganism which is difficult to culture, requiring BSL3 conditions for its propagation. This leads to a scarce availability of isolates worldwide. On the other hand, published methods of characterization have delineated up to 8 different genomic groups and 36 genotypes. However, all these methodologies, with the exception of one that exhibited limited discriminatory power (3 genotypes), rely on performing between 10 and 20 PCR amplifications or sequencing long fragments of DNA, which make their direct application to clinical samples impracticable and leads to a scarce accessibility of data on the circulation of C. burnetii genotypes. Results To assess the variability of this organism in Spain, we have developed a novel method that consists of a multiplex (8 targets) PCR and hybridization with specific probes that reproduce the previous classification of this organism into 8 genomic groups, and up to 16 genotypes. It allows for a direct characterization from clinical and environmental samples in a single run, which will help in the study of the different genotypes circulating in wild and domestic cycles as well as from sporadic human cases and outbreaks. The method has been validated with reference isolates. A high variability of C. burnetii has been found in Spain among 90 samples tested, detecting 10 different genotypes, being those adaA negative associated with acute Q fever cases presenting as fever of intermediate duration with liver involvement and with chronic cases. Genotypes infecting humans are also found in sheep, goats, rats, wild boar and ticks, and the only genotype found in cattle has never been found among our clinical samples. Conclusions This newly developed methodology has permitted to demonstrate that C. burnetii is highly variable in Spain. With the data presented here, cattle seem not to participate in the transmission of C. burnetii to humans in the samples studied, while sheep, goats, wild boar, rats and ticks share genotypes with the human population. PMID:22656068

  20. Rapid microfluidic analysis of a Y-STR multiplex for screening of forensic samples.

    PubMed

    Gibson-Daw, Georgiana; Albani, Patricia; Gassmann, Marcus; McCord, Bruce

    2017-02-01

    In this paper, we demonstrate a rapid analysis procedure for use with a small set of rapidly mutating Y chromosomal short tandem repeat (Y-STR) loci that combines both rapid polymerase chain reaction (PCR) and microfluidic separation elements. The procedure involves a high-speed polymerase and a rapid cycling protocol to permit PCR amplification in 16 min. The resultant amplified sample is next analysed using a short 1.8-cm microfluidic electrophoresis system that permits a four-locus Y-STR genotype to be produced in 80 s. The entire procedure takes less than 25 min from sample collection to result. This paper describes the rapid amplification protocol as well as studies of the reproducibility and sensitivity of the procedure and its optimisation. The amplification process utilises a small high-speed thermocycler, microfluidic device and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The four loci used for the multiplex were selected due to their rapid mutation rates and should proved useful in preliminary screening of samples and suspects. Overall, this technique provides a method for rapid sample screening of suspect and crime scene samples in forensic casework. Graphical abstract ᅟ.

  1. Use of Sequenom Sample ID Plus® SNP Genotyping in Identification of FFPE Tumor Samples

    PubMed Central

    Miller, Jessica K.; Buchner, Nicholas; Timms, Lee; Tam, Shirley; Luo, Xuemei; Brown, Andrew M. K.; Pasternack, Danielle; Bristow, Robert G.; Fraser, Michael; Boutros, Paul C.; McPherson, John D.

    2014-01-01

    Short tandem repeat (STR) analysis, such as the AmpFlSTR® Identifiler® Plus kit, is a standard, PCR-based human genotyping method used in the field of forensics. Misidentification of cell line and tissue DNA can be costly if not detected early; therefore it is necessary to have quality control measures such as STR profiling in place. A major issue in large-scale research studies involving archival formalin-fixed paraffin embedded (FFPE) tissues is that varying levels of DNA degradation can result in failure to correctly identify samples using STR genotyping. PCR amplification of STRs of several hundred base pairs is not always possible when DNA is degraded. The Sample ID Plus® panel from Sequenom allows for human DNA identification and authentication using SNP genotyping. In comparison to lengthy STR amplicons, this multiplexing PCR assay requires amplification of only 76–139 base pairs, and utilizes 47 SNPs to discriminate between individual samples. In this study, we evaluated both STR and SNP genotyping methods of sample identification, with a focus on paired FFPE tumor/normal DNA samples intended for next-generation sequencing (NGS). The ability to successfully validate the identity of FFPE samples can enable cost savings by reducing rework. PMID:24551080

  2. Use of Sequenom sample ID Plus® SNP genotyping in identification of FFPE tumor samples.

    PubMed

    Miller, Jessica K; Buchner, Nicholas; Timms, Lee; Tam, Shirley; Luo, Xuemei; Brown, Andrew M K; Pasternack, Danielle; Bristow, Robert G; Fraser, Michael; Boutros, Paul C; McPherson, John D

    2014-01-01

    Short tandem repeat (STR) analysis, such as the AmpFlSTR® Identifiler® Plus kit, is a standard, PCR-based human genotyping method used in the field of forensics. Misidentification of cell line and tissue DNA can be costly if not detected early; therefore it is necessary to have quality control measures such as STR profiling in place. A major issue in large-scale research studies involving archival formalin-fixed paraffin embedded (FFPE) tissues is that varying levels of DNA degradation can result in failure to correctly identify samples using STR genotyping. PCR amplification of STRs of several hundred base pairs is not always possible when DNA is degraded. The Sample ID Plus® panel from Sequenom allows for human DNA identification and authentication using SNP genotyping. In comparison to lengthy STR amplicons, this multiplexing PCR assay requires amplification of only 76-139 base pairs, and utilizes 47 SNPs to discriminate between individual samples. In this study, we evaluated both STR and SNP genotyping methods of sample identification, with a focus on paired FFPE tumor/normal DNA samples intended for next-generation sequencing (NGS). The ability to successfully validate the identity of FFPE samples can enable cost savings by reducing rework.

  3. Development of a Laboratory Project to Determine Human ABO Genotypes--Limitations Lead to Further Student Explorations

    ERIC Educational Resources Information Center

    Salerno, Theresa A.

    2009-01-01

    A multiplex allele-specific PCR analysis was developed to identify six "common" genotypes: AA, AO, BB, BO, OO, and AB. This project included a pre-laboratory exercise that provided active learning experiences and developed critical thinking skills. This laboratory resulted in many successful analyses, which were verified by student knowledge of…

  4. Semiquantitative Multiplexed Tandem PCR for Detection and Differentiation of Four Theileria orientalis Genotypes in Cattle

    PubMed Central

    Perera, Piyumali K.; Gasser, Robin B.; Firestone, Simon M.; Smith, Lee; Roeber, Florian

    2014-01-01

    Oriental theileriosis is an emerging, tick-borne disease of bovines in the Asia-Pacific region and is caused by one or more genotypes of the Theileria orientalis complex. This study aimed to establish and validate a multiplexed tandem PCR (MT-PCR) assay using three distinct markers (major piroplasm surface protein, 23-kDa piroplasm membrane protein, and the first internal transcribed spacer of nuclear DNA), for the simultaneous detection and semiquantification of four genotypes (Buffeli, Chitose, Ikeda, and type 5) of the T. orientalis complex. Analytical specificity, analytical sensitivity, and repeatability of the established MT-PCR assay were assessed in a series of experiments. Subsequently, the assay was evaluated using 200 genomic DNA samples collected from cattle from farms on which oriental theileriosis outbreaks had occurred, and 110 samples from a region where no outbreaks had been reported. The results showed the MT-PCR assay specifically and reproducibly detected the expected genotypes (i.e., genotypes Buffeli, Chitose, Ikeda, and type 5) of the T. orientalis complex, reliably differentiated them, and was able to detect as little as 1 fg of genomic DNA from each genotype. The diagnostic specificity and sensitivity of the MT-PCR were estimated at 94.0% and 98.8%, respectively. The MT-PCR assay established here is a practical and effective diagnostic tool for the four main genotypes of T. orientalis complex in Australia and should assist studies of the epidemiology and pathophysiology of oriental theileriosis in the Asia-Pacific region. PMID:25339402

  5. Duchenne Muscular Dystrophy and Becker Muscular Dystrophy Confirmed by Multiplex Ligation-Dependent Probe Amplification: Genotype-Phenotype Correlation in a Large Cohort.

    PubMed

    Vengalil, Seena; Preethish-Kumar, Veeramani; Polavarapu, Kiran; Mahadevappa, Manjunath; Sekar, Deepha; Purushottam, Meera; Thomas, Priya Treesa; Nashi, Saraswathi; Nalini, Atchayaram

    2017-01-01

    Studies of cases of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) confirmed by multiplex ligation-dependent probe amplification (MLPA) have determined the clinical characteristics, genotype, and relations between the reading frame and phenotype for different countries. This is the first such study from India. A retrospective genotype-phenotype analysis of 317 MLPA-confirmed patients with DMD or BMD who visited the neuromuscular clinic of a quaternary referral center in southern India. The 317 patients comprised 279 cases of DMD (88%), 32 of BMD (10.1%), and 6 of intermediate phenotype (1.9%). Deletions accounted for 91.8% of cases, with duplications causing the remaining 8.2%. There were 254 cases of DMD (91%) with deletions and 25 (9%) due to duplications, and 31 cases (96.8%) of BMD with deletions and 1 (3.2%) due to duplication. All six cases of intermediate type were due to deletions. The most-common mutation was a single-exon deletion. Deletions of six or fewer exons constituted 68.8% of cases. The deletion of exon 50 was the most common. The reading-frame rule held in 90% of DMD and 94% of BMD cases. A tendency toward a lower IQ and earlier wheelchair dependence was observed with distal exon deletions, though a significant correlation was not found. The reading-frame rule held in 90% to 94% of children, which is consistent with reports from other parts of the world. However, testing by MLPA is a limitation, and advanced sequencing methods including analysis of the structure of mutant dystrophin is needed for more-accurate assessments of the genotype-phenotype correlation.

  6. Evaluation of Two Highly-Multiplexed Custom Panels for Massively Parallel Semiconductor Sequencing on Paraffin DNA

    PubMed Central

    Kotoula, Vassiliki; Lyberopoulou, Aggeliki; Papadopoulou, Kyriaki; Charalambous, Elpida; Alexopoulou, Zoi; Gakou, Chryssa; Lakis, Sotiris; Tsolaki, Eleftheria; Lilakos, Konstantinos; Fountzilas, George

    2015-01-01

    Background—Aim Massively parallel sequencing (MPS) holds promise for expanding cancer translational research and diagnostics. As yet, it has been applied on paraffin DNA (FFPE) with commercially available highly multiplexed gene panels (100s of DNA targets), while custom panels of low multiplexing are used for re-sequencing. Here, we evaluated the performance of two highly multiplexed custom panels on FFPE DNA. Methods Two custom multiplex amplification panels (B, 373 amplicons; T, 286 amplicons) were coupled with semiconductor sequencing on DNA samples from FFPE breast tumors and matched peripheral blood samples (n samples: 316; n libraries: 332). The two panels shared 37% DNA targets (common or shifted amplicons). Panel performance was evaluated in paired sample groups and quartets of libraries, where possible. Results Amplicon read ratios yielded similar patterns per gene with the same panel in FFPE and blood samples; however, performance of common amplicons differed between panels (p<0.001). FFPE genotypes were compared for 1267 coding and non-coding variant replicates, 999 out of which (78.8%) were concordant in different paired sample combinations. Variant frequency was highly reproducible (Spearman’s rho 0.959). Repeatedly discordant variants were of high coverage / low frequency (p<0.001). Genotype concordance was (a) high, for intra-run duplicates with the same panel (mean±SD: 97.2±4.7, 95%CI: 94.8–99.7, p<0.001); (b) modest, when the same DNA was analyzed with different panels (mean±SD: 81.1±20.3, 95%CI: 66.1–95.1, p = 0.004); and (c) low, when different DNA samples from the same tumor were compared with the same panel (mean±SD: 59.9±24.0; 95%CI: 43.3–76.5; p = 0.282). Low coverage / low frequency variants were validated with Sanger sequencing even in samples with unfavourable DNA quality. Conclusions Custom MPS may yield novel information on genomic alterations, provided that data evaluation is adjusted to tumor tissue FFPE DNA. To this scope, eligibility of all amplicons along with variant coverage and frequency need to be assessed. PMID:26039550

  7. Association of ACE, FABP2 and GST genes polymorphism with essential hypertension risk among a North Indian population.

    PubMed

    Abbas, Shania; Raza, Syed Tasleem; Chandra, Anu; Rizvi, Saliha; Ahmed, Faisal; Eba, Ale; Mahdi, Farzana

    2015-01-01

    Hypertension has a multi-factorial background based on genetic and environmental interactive factors. ACE, FABP2 and GST genes have been suggested to be involved in the development of hypertension. However, the results have been inconsistent. The present study was carried out to investigate the association of ACE (rs4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism with essential HTN cases and controls. This study includes 138 essential hypertension (HTN) patients and 116 age-, sex- and ethnicity-matched control subjects. GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphisms were evaluated by multiplex PCR, ACE (rs4646994) gene polymorphisms by PCR and FABP2 (rs1799883) gene polymorphisms by PCR-RFLP method. Significant differences were obtained in the frequencies of ACE DD, II genotype (p = 0.006, 0.003), GSTT1 null, GSTM1 positive genotype (p = 0.048, 0.010) and FABP2 Ala54/Ala54 genotype (p = 0.049) between essential HTN cases and controls. It is concluded that ACE (rs 4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism are associated with HTN. Further investigation with a larger sample size may be required to validate this study.

  8. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species

    PubMed Central

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun

    2017-01-01

    ABSTRACT The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis (M. tuberculosis) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680, and (iv) simultaneously detect five clinically important NTM (M. avium, M. intracellulare, M. abscessus, M. massiliense, and M. kansasii) by targeting IS1311, DT1, mass_3210, and mkan_rs12360. An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 103 and 104 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis, M. tuberculosis Beijing genotype, and major NTM species. PMID:28659320

  9. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species.

    PubMed

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae

    2017-09-01

    The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis ( M. tuberculosis ) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680 , and (iv) simultaneously detect five clinically important NTM ( M. avium , M. intracellulare , M. abscessus , M. massiliense , and M. kansasii ) by targeting IS 1311 , DT1, mass_3210 , and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10 3 and 10 4 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis , M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.

  10. Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons.

    PubMed

    Kim, Eun Hye; Lee, Hwan Young; Yang, In Seok; Jung, Sang-Eun; Yang, Woo Ick; Shin, Kyoung-Jin

    2016-05-01

    The next-generation sequencing (NGS) method has been utilized to analyze short tandem repeat (STR) markers, which are routinely used for human identification purposes in the forensic field. Some researchers have demonstrated the successful application of the NGS system to STR typing, suggesting that NGS technology may be an alternative or additional method to overcome limitations of capillary electrophoresis (CE)-based STR profiling. However, there has been no available multiplex PCR system that is optimized for NGS analysis of forensic STR markers. Thus, we constructed a multiplex PCR system for the NGS analysis of 18 markers (13CODIS STRs, D2S1338, D19S433, Penta D, Penta E and amelogenin) by designing amplicons in the size range of 77-210 base pairs. Then, PCR products were generated from two single-sources, mixed samples and artificially degraded DNA samples using a multiplex PCR system, and were prepared for sequencing on the MiSeq system through construction of a subsequent barcoded library. By performing NGS and analyzing the data, we confirmed that the resultant STR genotypes were consistent with those of CE-based typing. Moreover, sequence variations were detected in targeted STR regions. Through the use of small-sized amplicons, the developed multiplex PCR system enables researchers to obtain successful STR profiles even from artificially degraded DNA as well as STR loci which are analyzed with large-sized amplicons in the CE-based commercial kits. In addition, successful profiles can be obtained from mixtures up to a 1:19 ratio. Consequently, the developed multiplex PCR system, which produces small size amplicons, can be successfully applied to STR NGS analysis of forensic casework samples such as mixtures and degraded DNA samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. The discrimination of d-tartrate positive and d-tartrate negative S. enterica subsp. enterica serovar Paratyphi B isolated in Malaysia by phenotypic and genotypic methods.

    PubMed

    Ahmad, Norazah; Hoon, Shirley Tang Gee; Ghani, Mohamed Kamel Abd; Tee, Koh Yin

    2012-06-01

    Serotyping is not sufficient to differentiate between Salmonella species that cause paratyphoid fever from the strains that cause milder gastroenteritis as these organisms share the same serotype Salmonella Paratyphi B (S. Paratyphi B). Strains causing paratyphoid fever do not ferment d-tartrate and this key feature was used in this study to determine the prevalence of these strains among the collection of S. Paratyphi B strains isolated from patients in Malaysia. A total of 105 isolates of S. Paratyphi B were discriminated into d-tartrate positive (dT+) and d-tartrate negative (dT) variants by two lead acetate test protocols and multiplex PCR. The lead acetate test protocol 1 differed from protocol 2 by a lower inoculum size and different incubation conditions while the multiplex PCR utilized 2 sets of primers targeting the ATG start codon of the gene STM3356. Lead acetate protocol 1 discriminated 97.1% of the isolates as S. Paratyphi B dT+ and 2.9% as dT while test protocol 2 discriminated all the isolates as S. Paratyphi B dT+. The multiplex PCR test identified all 105 isolates as S. Paratyphi B dT+ strains. The concordance of the lead acetate test relative to that of multiplex PCR was 97.7% and 100% for protocol 1 and 2 respectively. This study showed that S. Paratyphi B dT+ is a common causative agent of gastroenteritis in Malaysia while paratyphoid fever appears to be relatively uncommon. Multiplex PCR was shown to be a simpler, more rapid and reliable method to discriminate S. Paratyphi B than the phenotypic lead acetate test.

  12. Evaluation of a rapid single multiplex microsatellite-based assay for use in forensic genetic investigations in dogs.

    PubMed

    Clark, Leigh Anne; Famula, Thomas R; Murphy, Keith E

    2004-10-01

    To develop a set of microsatellite markers, composed of a minimal number of these markers, suitable for use in forensic genetic investigations in dogs. Blood, tissue, or buccal epithelial cells from 364 dogs of 85 breeds and mixed breeds and 19 animals from related species in the family Canidae. 61 tetranucleotide microsatellite markers were characterized on the basis of number and size of alleles, ease of genotyping, chromosomal location, and ability to be coamplified. The range in allele size, number of alleles, total heterozygosity, and fixation index for each marker were determined by use of genotype data from 383 dogs and related species. Polymorphism information content was calculated for several breeds of dogs. 7 microsatellite markers could be coamplified. These markers were labeled with fluorescent dyes, multiplexed into a single reaction, and optimized for resolution in a commercial genetic analyzer. The multiplex set was used to identify sires for 2 mixed litters. The test was not species specific; genotype information collected for wolves, coyotes, jackals, New Guinea singing dogs, and an African wild dog could not distinguish between these species. This set of 7 microsatellite markers is useful in forensic applications (ie, identification of dogs and determination of parentage) in closely related animals and is applicable to a wide range of species belonging to the family Canidae.

  13. Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP

    PubMed Central

    Heidar, Mohammad Mehdi; Khatami, Mehri

    2017-01-01

    Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase (eNOS) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies. PMID:29845071

  14. Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP.

    PubMed

    Heidar, Mohammad Mehdi; Khatami, Mehri

    2017-01-01

    Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase ( eNOS ) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies.

  15. MtDNA SNP multiplexes for efficient inference of matrilineal genetic ancestry within Oceania.

    PubMed

    Ballantyne, Kaye N; van Oven, Mannis; Ralf, Arwin; Stoneking, Mark; Mitchell, R John; van Oorschot, Roland A H; Kayser, Manfred

    2012-07-01

    Human mitochondrial DNA (mtDNA) is a convenient marker for tracing matrilineal bio-geographic ancestry and is widely applied in forensic, genealogical and anthropological studies. In forensic applications, DNA-based ancestry inference can be useful for finding unknown suspects by concentrating police investigations in cases where autosomal STR profiling was unable to provide a match, or can help provide clues in missing person identification. Although multiplexed mtDNA single nucleotide polymorphism (SNP) assays to infer matrilineal ancestry at a (near) continental level are already available, such tools are lacking for the Oceania region. Here, we have developed a hierarchical system of three SNaPshot multiplexes for genotyping 26 SNPs defining all major mtDNA haplogroups for Oceania (including Australia, Near Oceania and Remote Oceania). With this system, it was possible to conclusively assign 74% of Oceanian individuals to their Oceanian matrilineal ancestry in an established literature database (after correcting for obvious external admixture). Furthermore, in a set of 161 genotyped individuals collected in Australia, Papua New Guinea and Fiji, 87.6% were conclusively assigned an Oceanian matrilineal origin. For the remaining 12.4% of the genotyped samples either a Eurasian origin was detected indicating likely European admixture (1.9%), the identified haplogroups are shared between Oceania and S/SE-Asia (5%), or the SNPs applied did not allow a geographic inference to be assigned (5.6%). Sub-regional assignment within Oceania was possible for 32.9% of the individuals genotyped: 49.5% of Australians were assigned an Australian origin and 13.7% of the Papua New Guineans were assigned a Near Oceanian origin, although none of the Fijians could be assigned a specific Remote Oceanian origin. The low assignment rates of Near and Remote Oceania are explained by recent migrations from Asia via Near Oceania into Remote Oceania. Combining the mtDNA multiplexes for Oceania introduced here with those we developed earlier for all other continental regions, global matrilineal bio-geographic ancestry assignment from DNA is now achievable in a highly efficient way that is also suitable for applications with limited material such as forensic case work. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. OzPythonPlex: An optimised forensic STR multiplex assay set for the Australasian carpet python (Morelia spilota).

    PubMed

    Ciavaglia, Sherryn; Linacre, Adrian

    2018-05-01

    Reptile species, and in particular snakes, are protected by national and international agreements yet are commonly handled illegally. To aid in the enforcement of such legislation, we report on the development of three 11-plex assays from the genome of the carpet python to type 24 loci of tetra-nucleotide and penta-nucleotide repeat motifs (pure, compound and complex included). The loci range in size between 70 and 550 bp. Seventeen of the loci are newly characterised with the inclusion of seven previously developed loci to facilitate cross-comparison with previous carpet python genotyping studies. Assays were optimised in accordance with human forensic profiling kits using one nanogram template DNA. Three loci are included in all three of the multiplex reactions as quality assurance markers, to ensure sample identity and genotyping accuracy is maintained across the three profiling assays. Allelic ladders have been developed for the three assays to ensure consistent and precise allele designation. A DNA reference database of allele frequencies is presented based on 249 samples collected from throughout the species native range. A small number of validation tests are conducted to demonstrate the utility of these multiplex assays. We suggest further appropriate validation tests that should be conducted prior to the application of the multiplex assays in criminal investigations involving carpet pythons. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome.

    PubMed

    Bénit, Paule; Steffann, Julie; Lebon, Sophie; Chretien, Dominique; Kadhom, Noman; de Lonlay, Pascale; Goldenberg, Alice; Dumez, Yves; Dommergues, Marc; Rustin, Pierre; Munnich, Arnold; Rötig, Agnès

    2003-05-01

    Complex I deficiency, the most common cause of mitochondrial disorders, accounts for a variety of clinical symptoms and its genetic heterogeneity makes identification of the disease genes particularly tedious. Indeed, most of the 43 complex I subunits are encoded by nuclear genes, only seven of them being mitochondrially encoded. In order to offer urgent prenatal diagnosis, we have studied an inbred/multiplex family with complex I deficiency by using microsatellite DNA markers flanking the putative disease loci. Microsatellite DNA markers have allowed us to exclude the NDUFS7, NDUFS8, NDUFV1 and NDUFS1 genes and to find homozygosity at the NDUFS4 locus. Direct sequencing has led to identification of a homozygous splice acceptor site mutation in intron 1 of the NDUFS4 gene (IVS1nt -1, G-->A); this was not found in chorion villi of the ongoing pregnancy. We suggest that genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families helps to identify the disease-causing mutation. More generally, we suggest giving consideration to a more systematic microsatellite analysis of putative disease loci for identification of disease genes in inbred/multiplex families affected with genetically heterogeneous conditions.

  18. Merlin: Computer-Aided Oligonucleotide Design for Large Scale Genome Engineering with MAGE.

    PubMed

    Quintin, Michael; Ma, Natalie J; Ahmed, Samir; Bhatia, Swapnil; Lewis, Aaron; Isaacs, Farren J; Densmore, Douglas

    2016-06-17

    Genome engineering technologies now enable precise manipulation of organism genotype, but can be limited in scalability by their design requirements. Here we describe Merlin ( http://merlincad.org ), an open-source web-based tool to assist biologists in designing experiments using multiplex automated genome engineering (MAGE). Merlin provides methods to generate pools of single-stranded DNA oligonucleotides (oligos) for MAGE experiments by performing free energy calculation and BLAST scoring on a sliding window spanning the targeted site. These oligos are designed not only to improve recombination efficiency, but also to minimize off-target interactions. The application further assists experiment planning by reporting predicted allelic replacement rates after multiple MAGE cycles, and enables rapid result validation by generating primer sequences for multiplexed allele-specific colony PCR. Here we describe the Merlin oligo and primer design procedures and validate their functionality compared to OptMAGE by eliminating seven AvrII restriction sites from the Escherichia coli genome.

  19. Straightforward Inference of Ancestry and Admixture Proportions through Ancestry-Informative Insertion Deletion Multiplexing

    PubMed Central

    Pereira, Rui; Phillips, Christopher; Pinto, Nádia; Santos, Carla; dos Santos, Sidney Emanuel Batista; Amorim, António; Carracedo, Ángel; Gusmão, Leonor

    2012-01-01

    Ancestry-informative markers (AIMs) show high allele frequency divergence between different ancestral or geographically distant populations. These genetic markers are especially useful in inferring the likely ancestral origin of an individual or estimating the apportionment of ancestry components in admixed individuals or populations. The study of AIMs is of great interest in clinical genetics research, particularly to detect and correct for population substructure effects in case-control association studies, but also in population and forensic genetics studies. This work presents a set of 46 ancestry-informative insertion deletion polymorphisms selected to efficiently measure population admixture proportions of four different origins (African, European, East Asian and Native American). All markers are analyzed in short fragments (under 230 basepairs) through a single PCR followed by capillary electrophoresis (CE) allowing a very simple one tube PCR-to-CE approach. HGDP-CEPH diversity panel samples from the four groups, together with Oceanians, were genotyped to evaluate the efficiency of the assay in clustering populations from different continental origins and to establish reference databases. In addition, other populations from diverse geographic origins were tested using the HGDP-CEPH samples as reference data. The results revealed that the AIM-INDEL set developed is highly efficient at inferring the ancestry of individuals and provides good estimates of ancestry proportions at the population level. In conclusion, we have optimized the multiplexed genotyping of 46 AIM-INDELs in a simple and informative assay, enabling a more straightforward alternative to the commonly available AIM-SNP typing methods dependent on complex, multi-step protocols or implementation of large-scale genotyping technologies. PMID:22272242

  20. Metastatic EML4-ALK fusion detected by circulating DNA genotyping in an EGFR-mutated NSCLC patient and successful management by adding ALK inhibitors: a case report.

    PubMed

    Liang, Wenhua; He, Qihua; Chen, Ying; Chuai, Shaokun; Yin, Weiqiang; Wang, Wei; Peng, Guilin; Zhou, Caicun; He, Jianxing

    2016-02-05

    Rebiopsy is highly recommended to identify the mechanism of acquired resistance to EGFR-TKIs in advanced lung cancer. Recent advances in multiplex genotyping based on circulating tumor DNA (ctDNA) provide a strong and non-invasive alternative for detection of the resistance mechanism. Here we report a multiple metastatic NSCLC patient who was detected to have pure EGFR 19 exon deletion (negative for EML4-ALK and ROS1 in both IHC-based and sequencing assay) in the primary lesion and responded to first-line and second-line EGFR-TKI treatments (erlotinib then HY-15772). At 8 months, most lesions remained well controlled except for the liver metastases which presented dramatic progression. Considering the high risk of bleeding in rebiopsy of hepatic lesions, we conducted a multiplex genomic profiling with ctDNA. Results reported coexistence of EGFR mutation and EML4-ALK gene translocation in plasma which heavily indicated that ALK was the primary reason for progression of the liver lesions. This deduction was supported by the repeated response to ALK inhibitors (crizotinib then AP26113) of the hepatic metastases. This is the first report of the existence of ALK rearrangement in metastatic lesions in an EGFR mutated patient. It highlighted the feasibility and advantages of using ctDNA multiplex genotyping in identifying the heterogeneity across lesions and the resistance mechanism of targeted treatments.

  1. Prevalence of GBS serotype III and identification of a ST 17-like genotype from neonates with invasive diseases in Guangzhou, China.

    PubMed

    Liu, Junyan; Xu, Ruiru; Zhong, Huamin; Zhong, Yukui; Xie, Yongqiang; Li, Lin; Li, Bing; Chen, Dingqiang; Xu, Zhenbo

    2018-05-03

    The aim of this study is to understand the surveillance of Streptococcus agalactiae (GBS) serotype and genotype which help developing specific vaccine for GBS infection. The GBS serotype was determined by strep-B-Latex rapid agglutination method and multiplex PCR assay based on the differences among serotypes. Alleles and multilocus sequence types (MLST) were determined using the GBS MLST Web site. Four GBS serotypes (Ia, Ib, III, and V) were identified, with serotype III which was intimately associated with purulent meningitis and sepsis, as the dominance. In EOD cases, sepsis and pneumonia showed dominance, but purulent meningitis was dominant in LOD cases. Also, a new ST-17 like type which might be a clone derive from ST-17 and emerge among neonatal disease cases was identified. The prevalence of GBS serotype and genotype and their relation with GBS diseases guide the development of capsular polysaccharide vaccine. Copyright © 2018. Published by Elsevier Ltd.

  2. T null and M null genotypes of the glutathione S-transferase gene are risk factor for CAD independent of smoking

    PubMed Central

    Abu-Amero, Khaled K; Al-Boudari, Olayan M; Mohamed, Gamal H; Dzimiri, Nduna

    2006-01-01

    Background The association of the deletion in GSTT1 and GSTM1 genes with coronary artery disease (CAD) among smokers is controversial. In addition, no such investigation has previously been conducted among Arabs. Methods We genotyped 1054 CAD patients and 762 controls for GSTT1 and GSTM1 deletion by multiplex polymerase chain reaction. Both CAD and controls were Saudi Arabs. Results In the control group (n = 762), 82.3% had the T wild M wildgenotype, 9% had the Twild M null, 2.4% had the Tnull M wild and 6.3% had the Tnull M null genotype. Among the CAD group (n = 1054), 29.5% had the Twild M wild genotype, 26.6% (p < .001) had the Twild M null, 8.3% (p < .001) had the Tnull M wild and 35.6% (p < .001) had the Tnull M null genotype, indicating a significant association of the Twild M null, Tnull M wild and Tnull M null genotypes with CAD. Univariate analysis also showed that smoking, age, hypercholesterolemia and hypertriglyceridemia, diabetes mellitus, family history of CAD, hypertension and obesity are all associated with CAD, whereas gender and myocardial infarction are not. Binary logistic regression for smoking and genotypes indicated that only M null and Tnullare interacting with smoking. However, further subgroup analysis stratifying the data by smoking status suggested that genotype-smoking interactions have no effect on the development of CAD. Conclusion GSTT1 and GSTM1 null-genotypes are risk factor for CAD independent of genotype-smoking interaction. PMID:16620396

  3. A Multiplex PCR for the Simultaneous Detection and Genotyping of the Echinococcus granulosus Complex

    PubMed Central

    Boubaker, Ghalia; Macchiaroli, Natalia; Prada, Laura; Cucher, Marcela A.; Rosenzvit, Mara C.; Ziadinov, Iskender; Deplazes, Peter; Saarma, Urmas; Babba, Hamouda; Gottstein, Bruno; Spiliotis, Markus

    2013-01-01

    Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1–G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1–G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6–G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus. PMID:23350011

  4. A multiplex PCR for the simultaneous detection and genotyping of the Echinococcus granulosus complex.

    PubMed

    Boubaker, Ghalia; Macchiaroli, Natalia; Prada, Laura; Cucher, Marcela A; Rosenzvit, Mara C; Ziadinov, Iskender; Deplazes, Peter; Saarma, Urmas; Babba, Hamouda; Gottstein, Bruno; Spiliotis, Markus

    2013-01-01

    Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1-G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1-G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6-G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus.

  5. Haptoglobin gene polymorphisms and interleukin-6 and -8 levels in patients with sickle cell anemia

    PubMed Central

    Pierrot-Gallo, Bruna Spinella; Vicari, Perla; Matsuda, Sandra Satiko; Adegoke, Samuel Ademola; Mecabo, Grazielle; Figueiredo, Maria Stella

    2015-01-01

    Background Haptoglobin genotypes, and interleukin-6 and -8 participate in the pathophysiology of sickle cell anemia. The expression of cytokines is regulated by genetic mechanisms however the effect of haptoglobin polymorphisms on these cytokines is not fully understood. This study aimed to compare the frequency of haptoglobin genotypes and the interleukin-6 and -8 concentrations in sickle cell anemia patients and controls to investigate the association between haptoglobin genotypes and cytokine levels. Methods Sixty sickle cell anemia patients and 74 healthy individuals were analyzed. Haptoglobin genotypes were determined by multiplex polymerase chain reaction, and the interleukin-6 and -8 levels by enzyme linked immunosorbent assay. The association between haptoglobin genotypes and cytokines was investigated by statistical tests. Results Hp2-1 was the most common genotype in both the cases and controls while Hp1-1 was less frequent among sickle cell anemia patients. Interleukin-6 and -8 levels were higher in patients than controls (p-value <0.0001). There was no significant difference in interleukin-6 and -8 concentrations between the genotypes (p-value >0.05). A similar trend was observed among the controls. Conclusion Although, levels of interleukin-6 and -8 were higher in the sickle cell anemia patients, they appeared not to be related to the haptoglobin genotypes. Further investigations are necessary to identify factors responsible for increased secretion of the interleukin-6 and -8 pro-inflammatory cytokines in patients with sickle cell anemia. PMID:26408368

  6. Haplotype Analysis Discriminates Genetic Risk for DR3-Associated Endocrine Autoimmunity and Helps Define Extreme Risk for Addison’s Disease

    PubMed Central

    Baker, Peter R.; Baschal, Erin E.; Fain, Pam R.; Triolo, Taylor M.; Nanduri, Priyaanka; Siebert, Janet C.; Armstrong, Taylor K.; Babu, Sunanda R.; Rewers, Marian J.; Gottlieb, Peter A.; Barker, Jennifer M.; Eisenbarth, George S.

    2010-01-01

    Context: Multiple autoimmune disorders (e.g. Addison’s disease, type 1 diabetes, celiac disease) are associated with HLA-DR3, but it is likely that alleles of additional genes in linkage disequilibrium with HLA-DRB1 contribute to disease. Objective: The objective of the study was to characterize major histocompatability complex (MHC) haplotypes conferring extreme risk for autoimmune Addison’s disease (AD). Design, Setting, and Participants: Eighty-six 21-hydroxylase autoantibody-positive, nonautoimmune polyendocrine syndrome type 1, Caucasian individuals collected from 1992 to 2009 with clinical AD from 68 families (12 multiplex and 56 simplex) were genotyped for HLA-DRB1, HLA-DQB1, MICA, HLA-B, and HLA-A as well as high density MHC single-nucleotide polymorphism (SNP) analysis for 34. Main Outcome Measures: AD and genotype were measured. Result: Ninety-seven percent of the multiplex individuals had both HLA-DR3 and HLA-B8 vs. 60% of simplex AD patients (P = 9.72 × 10−4) and 13% of general population controls (P = 3.00 × 10−19). The genotype DR3/DR4 with B8 was present in 85% of AD multiplex patients, 24% of simplex patients, and 1.5% of control individuals (P = 4.92 × 10−191). The DR3-B8 haplotype of AD patients had HLA-A1 less often (47%) than controls (81%, P = 7.00 × 10−5) and type 1 diabetes patients (73%, P = 1.93 × 10−3). Analysis of 1228 SNPs across the MHC for individuals with AD revealed a shorter conserved haplotype (3.8) with the loss of the extended conserved 3.8.1 haplotype approximately halfway between HLA-B and HLA-A. Conclusion: Extreme risk for AD, especially in multiplex families, is associated with haplotypic DR3 variants, in particular a portion (3.8) but not all of the conserved 3.8.1 haplotype. PMID:20631027

  7. Genotyping the factor VIII intron 22 inversion locus using fluorescent in situ hybridization.

    PubMed

    Sheen, Campbell R; McDonald, Margaret A; George, Peter M; Smith, Mark P; Morris, Christine M

    2011-02-15

    The factor VIII intron 22 inversion is the most common cause of hemophilia A, accounting for approximately 40% of all severe cases of the disease. Southern hybridization and multiplex long distance PCR are the most commonly used techniques to detect the inversion in a diagnostic setting, although both have significant limitations. Here we describe our experience establishing a multicolor fluorescent in situ hybridization (FISH) based assay as an alternative to existing methods for genetic diagnosis of the inversion. Our assay was designed to apply three differentially labelled BAC DNA probes that when hybridized to interphase nuclei would exhibit signal patterns that are consistent with the normal or the inversion locus. When the FISH assay was applied to five normal and five inversion male samples, the correct genotype was assignable with p<0.001 for all samples. When applied to carrier female samples the assay could not assign a genotype to all female samples, probably due to a lower proportion of informative nuclei in female samples caused by the added complexity of a second X chromosome. Despite this complication, these pilot findings show that the assay performs favourably compared to the commonly used methods. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA.

    PubMed

    De Barba, M; Miquel, C; Lobréaux, S; Quenette, P Y; Swenson, J E; Taberlet, P

    2017-05-01

    Microsatellite markers have played a major role in ecological, evolutionary and conservation research during the past 20 years. However, technical constrains related to the use of capillary electrophoresis and a recent technological revolution that has impacted other marker types have brought to question the continued use of microsatellites for certain applications. We present a study for improving microsatellite genotyping in ecology using high-throughput sequencing (HTS). This approach entails selection of short markers suitable for HTS, sequencing PCR-amplified microsatellites on an Illumina platform and bioinformatic treatment of the sequence data to obtain multilocus genotypes. It takes advantage of the fact that HTS gives direct access to microsatellite sequences, allowing unambiguous allele identification and enabling automation of the genotyping process through bioinformatics. In addition, the massive parallel sequencing abilities expand the information content of single experimental runs far beyond capillary electrophoresis. We illustrated the method by genotyping brown bear samples amplified with a multiplex PCR of 13 new microsatellite markers and a sex marker. HTS of microsatellites provided accurate individual identification and parentage assignment and resulted in a significant improvement of genotyping success (84%) of faecal degraded DNA and costs reduction compared to capillary electrophoresis. The HTS approach holds vast potential for improving success, accuracy, efficiency and standardization of microsatellite genotyping in ecological and conservation applications, especially those that rely on profiling of low-quantity/quality DNA and on the construction of genetic databases. We discuss and give perspectives for the implementation of the method in the light of the challenges encountered in wildlife studies. © 2016 John Wiley & Sons Ltd.

  9. The effect of input DNA copy number on genotype call and characterising SNP markers in the humpback whale genome using a nanofluidic array.

    PubMed

    Bhat, Somanath; Polanowski, Andrea M; Double, Mike C; Jarman, Simon N; Emslie, Kerry R

    2012-01-01

    Recent advances in nanofluidic technologies have enabled the use of Integrated Fluidic Circuits (IFCs) for high-throughput Single Nucleotide Polymorphism (SNP) genotyping (GT). In this study, we implemented and validated a relatively low cost nanofluidic system for SNP-GT with and without Specific Target Amplification (STA). As proof of principle, we first validated the effect of input DNA copy number on genotype call rate using well characterised, digital PCR (dPCR) quantified human genomic DNA samples and then implemented the validated method to genotype 45 SNPs in the humpback whale, Megaptera novaeangliae, nuclear genome. When STA was not incorporated, for a homozygous human DNA sample, reaction chambers containing, on average 9 to 97 copies, showed 100% call rate and accuracy. Below 9 copies, the call rate decreased, and at one copy it was 40%. For a heterozygous human DNA sample, the call rate decreased from 100% to 21% when predicted copies per reaction chamber decreased from 38 copies to one copy. The tightness of genotype clusters on a scatter plot also decreased. In contrast, when the same samples were subjected to STA prior to genotyping a call rate and a call accuracy of 100% were achieved. Our results demonstrate that low input DNA copy number affects the quality of data generated, in particular for a heterozygous sample. Similar to human genomic DNA, a call rate and a call accuracy of 100% was achieved with whale genomic DNA samples following multiplex STA using either 15 or 45 SNP-GT assays. These calls were 100% concordant with their true genotypes determined by an independent method, suggesting that the nanofluidic system is a reliable platform for executing call rates with high accuracy and concordance in genomic sequences derived from biological tissue.

  10. 17 to 23: A novel complementary mini Y-STR panel to extend the Y-STR databases from 17 to 23 markers for forensic purposes.

    PubMed

    Núñez, Carolina; Baeta, Miriam; Ibarbia, Nerea; Ortueta, Urko; Jiménez-Moreno, Susana; Blazquez-Caeiro, José Luis; Builes, Juan José; Herrera, Rene J; Martínez-Jarreta, Begoña; de Pancorbo, Marian M

    2017-04-01

    A Y-STR multiplex system has been developed with the purpose of complementing the widely used 17 Y-STR haplotyping (AmpFlSTR Y Filer® PCR Amplification kit) routinely employed in forensic and population genetic studies. This new multiplex system includes six additional STR loci (DYS576, DYS481, DYS549, DYS533, DYS570, and DYS643) to reach the 23 Y-STR of the PowerPlex® Y23 System. In addition, this kit includes the DYS456 and DYS385 loci for traceability purposes. Male samples from 625 individuals from ten worldwide populations were genotyped, including three sample sets from populations previously published with the 17 Y-STR system to expand their current data. Validation studies demonstrated good performance of the panel set in terms of concordance, sensitivity, and stability in the presence of inhibitors and artificially degraded DNA. The results obtained for haplotype diversity and discrimination capacity with this multiplex system were considerably high, providing further evidences of the suitability of this novel Y-STR system for forensic purposes. Thus, the use of this multiplex for samples previously genotyped with 17 Y-STRs will be an efficient and low-cost alternative to complete the set of 23 Y-STRs and improve allele databases for population and forensic purposes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of a Commercial Multiplex PCR for Rapid Detection of Multi Drug Resistant Gram Negative Infections

    PubMed Central

    Chavada, Ruchir; Maley, Michael

    2015-01-01

    Introduction: Community and healthcare associated infections caused by multi-drug resistant gram negative organisms (MDR GN) represent a worldwide threat. Nucleic Acid Detection tests are becoming more common for their detection; however they can be expensive requiring specialised equipment and local expertise. This study was done to evaluate the utility of a commercial multiplex tandem (MT) PCR for detection of MDR GN. Methods: The study was done on stored laboratory MDR GN isolates from sterile and non-sterile specimens (n=126, out of stored 567 organisms). Laboratory validation of the MT PCR was done to evaluate sensitivity, specificity and agreement with the current phenotypic methods used in the laboratory. Amplicon sequencing was also done on selected isolates for assessing performance characteristics. Workflow and cost implications of the MT PCR were evaluated. Results: The sensitivity and specificity of the MT PCR were calculated to be 95% and 96.7% respectively. Agreement with the phenotypic methods was 80%. Major lack of agreement was seen in detection of AmpC beta lactamase in enterobacteriaceae and carbapenemase in non-fermenters. Agreement of the MT PCR with another multiplex PCR was found to be 87%. Amplicon sequencing confirmed the genotype detected by MT PCR in 94.2 % of cases tested. Time to result was faster for the MT PCR but cost per test was higher. Conclusion: This study shows that with carefully chosen targets for detection of resistance genes in MDR GN, rapid and efficient identification is possible. MT PCR was sensitive and specific and likely more accurate than phenotypic methods. PMID:26464612

  12. Forensic SNP genotyping with SNaPshot: Technical considerations for the development and optimization of multiplexed SNP assays.

    PubMed

    Fondevila, M; Børsting, C; Phillips, C; de la Puente, M; Consortium, Euroforen-NoE; Carracedo, A; Morling, N; Lareu, M V

    2017-01-01

    This review explores the key factors that influence the optimization, routine use, and profile interpretation of the SNaPshot single-base extension (SBE) system applied to forensic single-nucleotide polymorphism (SNP) genotyping. Despite being a mainly complimentary DNA genotyping technique to routine STR profiling, use of SNaPshot is an important part of the development of SNP sets for a wide range of forensic applications with these markers, from genotyping highly degraded DNA with very short amplicons to the introduction of SNPs to ascertain the ancestry and physical characteristics of an unidentified contact trace donor. However, this technology, as resourceful as it is, displays several features that depart from the usual STR genotyping far enough to demand a certain degree of expertise from the forensic analyst before tackling the complex casework on which SNaPshot application provides an advantage. In order to provide the basis for developing such expertise, we cover in this paper the most challenging aspects of the SNaPshot technology, focusing on the steps taken to design primer sets, optimize the PCR and single-base extension chemistries, and the important features of the peak patterns observed in typical forensic SNP profiles using SNaPshot. With that purpose in mind, we provide guidelines and troubleshooting for multiplex-SNaPshot-oriented primer design and the resulting capillary electrophoresis (CE) profile interpretation (covering the most commonly observed artifacts and expected departures from the ideal conditions). Copyright © 2017 Central Police University.

  13. Changing profile of rotavirus genotypes in Bangladesh, 2006–2012

    PubMed Central

    2013-01-01

    Background Rotavirus is the leading cause of severe diarrhea in infants and young children worldwide including Bangladesh. Unlike what was seen in high-income countries, the licensed rotavirus vaccines did not show high efficacy in Bangladeshi trials. We assessed rotavirus prevalence and genotypes in Bangladesh over six-year period to provide baseline information on the rotavirus burden and changing profile in the country. Methods This study was conducted from June 2006 to May 2012 in Matlab, Bangladesh. Group A rotaviruses were detected in stools collected from diarrhea patients by ELISA and genotyped using multiplex reverse transcription PCR followed by nucleotide sequencing. Results Of the 9678 stool samples, 20.3% were positive for rotavirus. The most predominant genotype was G1P[8] (22.4%), followed by G9P[8] (20.8%), G2P[4] (16.9%) and G12P[8] (10.4%). Mixed infections were detected in 14.2% of the samples. Emergence of an unusual strain, G9P[4] was documented during 2011–12. Several amino acid mismatches in the antigenic epitopes of VP7 and VP4 between Bangladeshi and the vaccine strains were identified. Conclusions Our study provides important information on rotavirus genotypes that should be considered for the selection and introduction of rotavirus vaccines in Bangladesh. PMID:23855423

  14. Amplification of human papillomavirus early genes for detection of nine genotypes in Venezuelan women.

    PubMed

    Michelli, Elvia; Téllez, Luis; Mendoza, José-Andrés; Noguera, María-Eugenia; Milano, Melisse; Vera, Reauben; Callejas, Diana

    2013-12-01

    Genotyping of human papillomavirus (HPV) by molecular methods may enhance assessment information for screening and following of cervical infection. In this study, cervical samples were obtained from 250 women, along with colposcopic and cytological evaluations. A Nested-PCR-Multiplex assay was used for HPV detection and genotyping for HPV E6/E7 early regions. Infection with HPV was detected in 26.0% of the samples, with 98.46% positive for at least one genotype. High-risk HPVs were identified in 98.44%. HPV18 infection was detected in 76.92% of samples and HPV16 in 36.92%, whether as individual or as multiple infections. These infections were seen more frequently in women under 35 years of age (64.7%). The Pap-smear examination showed that 16.92% (11/65) of the samples had cervical changes suggesting HPV infection, whereas the colposcopic evaluation was suggestive of HPV infection in 47.69% (31/65) of DNA-HPV positive samples. There was a high frequency of high-risk HPV genotypes, particularly HPV18, alone or in multiple-type infections. Colposcopy findings showed to have a high predictive value for the diagnosis of HPV infection. The results reflect that over 50% of HPV-positive patients had a normal colposcopy and/or cytology, highlighting the importance of including HPV testing along with genotype identification in routine gynecological evaluations.

  15. To Genotype or Phenotype for Personalized Medicine? CYP450 Drug Metabolizing Enzyme Genotype-Phenotype Concordance and Discordance in the Ecuadorian Population.

    PubMed

    De Andrés, Fernando; Terán, Santiago; Hernández, Francisco; Terán, Enrique; LLerena, Adrián

    2016-12-01

    Genetic variations within the cytochrome P450 (CYP450) superfamily of drug metabolizing enzymes confer substantial person-to-person and between-population differences in pharmacokinetics, and by extension, highly variable clinical effects of medicines. In this context, "personalized medicine," "precision medicine," and "stratified medicine" are related concepts attributed to what is essentially targeted therapeutics and companion diagnostics, aimed at improving safety and effectiveness of health interventions. We report here, to the best of our knowledge, the first comparative clinical pharmacogenomics study, in an Ecuadorian population sample, of five key CYP450s involved in drug metabolism: CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. In 139 unrelated, medication-free, and healthy Ecuadorian subjects, we measured the phenotypic activity of these drug metabolism pathways using the CEIBA multiplexed phenotyping cocktail. The subjects were genotyped for each CYP450 enzyme gene as well. Notably, based on the CYP450 metabolic phenotypes estimated by the genotype data, 0.75% and 3.10% of the subjects were genotypic poor metabolizers (gPMs) for CYP2C19 and CYP2D6, respectively. Additionally, on the other extreme, genotype-estimated ultrarapid metabolizer (gUMs) phenotype was represented by 15.79% of CYP2C19, and 5.43% of CYP2D6. There was, however, considerable discordance between directly measured phenotypes (mPMs and mUMs) and the above genotype-estimated enzyme phenotypes. For example, among individuals genotypically carrying enhanced activity alleles (gUMs), many showed a lower actual drug metabolism capacity than expected by their genotypes, even lower than individuals with reduced or no activity alleles. In conclusion, for personalized medicine in the Ecuadorian population, we recommend CYP450 multiplexed phenotyping, or genotyping and phenotyping in tandem, rather than CYP450 genotypic tests alone. Additionally, we recommend, in consideration of equity, ethical, and inclusive representation in global science, further precision medicine research and funding in support of neglected or understudied populations worldwide.

  16. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR.

    PubMed

    Zhong, Qun; Bhattacharya, Smiti; Kotsopoulos, Steven; Olson, Jeff; Taly, Valérie; Griffiths, Andrew D; Link, Darren R; Larson, Jonathan W

    2011-07-07

    Quantitative polymerase chain reactions (qPCR) based on real-time PCR constitute a powerful and sensitive method for the analysis of nucleic acids. However, in qPCR, the ability to multiplex targets using differently colored fluorescent probes is typically limited to 4-fold by the spectral overlap of the fluorophores. Furthermore, multiplexing qPCR assays requires expensive instrumentation and most often lengthy assay development cycles. Digital PCR (dPCR), which is based on the amplification of single target DNA molecules in many separate reactions, is an attractive alternative to qPCR. Here we report a novel and easy method for multiplexing dPCR in picolitre droplets within emulsions-generated and read out in microfluidic devices-that takes advantage of both the very high numbers of reactions possible within emulsions (>10(6)) as well as the high likelihood that the amplification of only a single target DNA molecule will initiate within each droplet. By varying the concentration of different fluorogenic probes of the same color, it is possible to identify the different probes on the basis of fluorescence intensity. Adding multiple colors increases the number of possible reactions geometrically, rather than linearly as with qPCR. Accurate and precise copy numbers of up to sixteen per cell were measured using a model system. A 5-plex assay for spinal muscular atrophy was demonstrated with just two fluorophores to simultaneously measure the copy number of two genes (SMN1 and SMN2) and to genotype a single nucleotide polymorphism (c.815A>G, SMN1). Results of a pilot study with SMA patients are presented. This journal is © The Royal Society of Chemistry 2011

  17. A genetic polymorphism in TOX3 is associated with survival of gastric cancer in a Chinese population.

    PubMed

    Zhang, Xiaojing; Zhu, Haixia; Wu, Xiaomin; Wang, Meilin; Gu, Dongying; Gong, Weida; Xu, Zhi; Tan, Yongfei; Gong, Yongling; Zhou, Jianwei; Tang, Cuiju; Tong, Na; Chen, Jinfei; Zhang, Zhengdong

    2013-01-01

    Recently, genetic polymorphism (rs3803662C>T) in TOX3 was reported to induce the risk of breast cancer. In this study, we hypothesized that rs3803662 could influence gastric cancer survival outcomes. With multiplex SNaPshot method, we genotyped TOX3 rs3803662 in 880 gastric patients with surgical resection. The association between genotype and survival outcomes was performed by the Kaplan-Meier method, Cox regression analysis models and the log-rank test. There was no association in the analyses of rs3803662 and survival of gastric cancer. However, the stratified analysis by histology showed that rs3803662 CT/TT genotype was associated with a significantly better survival for diffuse-type gastric cancer (log-rank p = 0.030, hazard ratio [HR]  = 0.67, 95% confidence interval [CI]  = 0.46-0.96), than the CC genotype. In addition, this favorable effect was especially obvious among gastric cancer patients with tumor size >5 cm, T3 and T4 depth of invasion, lymph node metastasis, no drinking, no distant metastasis, no chemotherapy and gastric cardia cancer. TOX3 rs3803662 might play an important role in the prognostic outcome and treatment of gastric cancer, especially perhaps further help in explaining the reduced risk of death associated with diffuse-type gastric cancer.

  18. Surveillance for Toxoplasma gondii in California mussels (Mytilus californianus) reveals transmission of atypical genotypes from land to sea.

    PubMed

    Shapiro, Karen; VanWormer, Elizabeth; Aguilar, Beatriz; Conrad, Patricia A

    2015-11-01

    Coastal habitat contamination with Toxoplasma gondii is a health risk to humans and marine wildlife, with infections documented in both nearshore and pelagic marine mammals. Due to lack of sensitive methods for detection of T. gondii in water, this study utilized an alternative surveillance approach for evaluating marine habitat contamination using wild mussels. The objectives of this study were to (i) validate sensitive molecular tools for T. gondii detection in mussels and (ii) apply optimized methods in a surveillance study to determine the prevalence and genotype(s) of T. gondii in mussels. Simplex polymerase chain reaction screening and multiplex genotyping assays were validated and then applied on 959 wild-caught mussels collected from central California. Thirteen mussels (1.4%) had detectable T. gondii DNA and the presence of T. gondii in mussels was significantly associated with proximity to freshwater run-off and collection during the wet season. Molecular characterization revealed alleles from T. gondii types I, II/III, X at the B1 locus, and a novel atypical B1 allele that was recently documented in T. gondii-infected carnivores from California. Findings demonstrate higher than previously reported T. gondii contamination of California coastlines, and describe novel strains of the parasite that further link terrestrial sources with marine contamination. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Detection of tuberculosis drug resistance: a comparison by Mycobacterium tuberculosis MLPA assay versus Genotype®MTBDRplus.

    PubMed

    Santos, Paula Fernanda Gonçalves Dos; Costa, Elis Regina Dalla; Ramalho, Daniela M; Rossetti, Maria Lucia; Barcellos, Regina Bones; Nunes, Luciana de Souza; Esteves, Leonardo Souza; Rodenbusch, Rodrigo; Anthony, Richard M; Bergval, Indra; Sengstake, Sarah; Viveiros, Miguel; Kritski, Afrânio; Oliveira, Martha M

    2017-06-01

    To cope with the emergence of multidrug-resistant tuberculosis (MDR-TB), new molecular methods that can routinely be used to screen for a wide range of drug resistance related genetic markers in the Mycobacterium tuberculosis genome are urgently needed. To evaluate the performance of multiplex ligaton-dependent probe amplification (MLPA) against Genotype® MTBDRplus to detect resistance to isoniazid (INHr) and rifampicin (RIFr). 96 culture isolates characterised for identification, drug susceptibility testing (DST) and sequencing of rpoB, katG, and inhA genes were evaluated by the MLPA and Genotype®MTBDRplus assays. With sequencing as a reference standard, sensitivity (SE) to detect INHr was 92.8% and 85.7%, and specificity (SP) was 100% and 97.5%, for MLPA and Genotype®MTBDRplus, respectively. In relation to RIFr, SE was 87.5% and 100%, and SP was 100% and 98.8%, respectively. Kappa value was identical between Genotype®MTBDRplus and MLPA compared with the standard DST and sequencing for detection of INHr [0.83 (0.75-0.91)] and RIFr [0.93 (0.88-0.98)]. Compared to Genotype®MTBDRplus, MLPA showed similar sensitivity to detect INH and RIF resistance. The results obtained by the MLPA and Genotype®MTBDRplus assays indicate that both molecular tests can be used for the rapid detection of drug-resistant TB with high accuracy. MLPA has the added value of providing information on the circulating M. tuberculosis lineages.

  20. One-Step Multiplex RT-qPCR Assay for the Detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp.) capripneumoniae.

    PubMed

    Settypalli, Tirumala Bharani Kumar; Lamien, Charles Euloge; Spergser, Joachim; Lelenta, Mamadou; Wade, Abel; Gelaye, Esayas; Loitsch, Angelika; Minoungou, Germaine; Thiaucourt, Francois; Diallo, Adama

    2016-01-01

    Respiratory infections, although showing common clinical symptoms like pneumonia, are caused by bacterial, viral or parasitic agents. These are often reported in sheep and goats populations and cause huge economic losses to the animal owners in developing countries. Detection of these diseases is routinely done using ELISA or microbiological methods which are being reinforced or replaced by molecular based detection methods including multiplex assays, where detection of different pathogens is carried out in a single reaction. In the present study, a one-step multiplex RT-qPCR assay was developed for simultaneous detection of Capripoxvirus (CaPV), Peste de petits ruminants virus (PPRV), Pasteurella multocida (PM) and Mycoplasma capricolum ssp. capripneumonia (Mccp) in pathological samples collected from small ruminants with respiratory disease symptoms. The test performed efficiently without any cross-amplification. The multiplex PCR efficiency was 98.31%, 95.48%, 102.77% and 91.46% whereas the singleplex efficiency was 93.43%, 98.82%, 102.55% and 92.0% for CaPV, PPRV, PM and Mccp, respectively. The correlation coefficient was greater than 0.99 for all the targets in both multiplex and singleplex. Based on cycle threshold values, intra and inter assay variability, ranged between the limits of 2%-4%, except for lower concentrations of Mccp. The detection limits at 95% confidence interval (CI) were 12, 163, 13 and 23 copies/reaction for CaPV, PPRV, PM and Mccp, respectively. The multiplex assay was able to detect CaPVs from all genotypes, PPRV from the four lineages, PM and Mccp without amplifying the other subspecies of mycoplasmas. The discriminating power of the assay was proven by accurate detection of the targeted pathogen (s) by screening 58 viral and bacterial isolates representing all four targeted pathogens. Furthermore, by screening 81 pathological samples collected from small ruminants showing respiratory disease symptoms, CaPV was detected in 17 samples, PPRV in 45, and PM in six samples. In addition, three samples showed a co-infection of PPRV and PM. Overall, the one-step multiplex RT-qPCR assay developed will be a valuable tool for rapid detection of individual and co-infections of the targeted pathogens with high specificity and sensitivity.

  1. Infections by Babesia caballi and Theileria equi in Jordanian equids: epidemiology and genetic diversity.

    PubMed

    Qablan, Moneeb A; Oborník, Miroslav; Petrželková, Klára J; Sloboda, Michal; Shudiefat, Mustafa F; Hořín, Petr; Lukeš, Julius; Modrý, David

    2013-08-01

    Microscopic diagnosis of equine piroplasmoses, caused by Theileria equi and Babesia caballi, is hindered by low parasitaemia during the latent phase of the infections. However, this constraint can be overcome by the application of PCR followed by sequencing. Out of 288 animals examined, the piroplasmid DNA was detected in 78 (27·1%). Multiplex PCR indicated that T. equi (18·8%) was more prevalent than B. caballi (7·3%), while mixed infections were conspicuously absent. Sequences of 69 PCR amplicons obtained by the 'catch-all' PCR were in concordance with those amplified by the multiplex strategy. Computed minimal adequate model analyses for both equine piroplasmid species separately showed a significant effect of host species and age in the case of T. equi, while in the B. caballi infections only the correlation with host sex was significant. Phylogenetic analyses inferred the occurrence of three genotypes of T. equi and B. caballi. Moreover, a novel genotype C of B. caballi was identified. The dendrogram based on obtained sequences of T. equi revealed possible speciation events. The infections with T. equi and B. caballi are enzootic in all ecozones of Jordan and different genotypes circulate wherever dense horse population exists.

  2. Validation of the multiplex ligation-dependent probe amplification assay and its application on the distribution study of the major alleles of 17 blood group systems in Chinese donors from Guangzhou.

    PubMed

    Ji, Yanli; Wen, Jizhi; Veldhuisen, Barbera; Haer-Wigman, Lonneke; Wang, Zhen; Lodén-van Straaten, Martin; Wei, Ling; Luo, Guangping; Fu, Yongshui; van der Schoot, C Ellen

    2017-02-01

    Genotyping platforms for common red blood cell (RBC) antigens have been successfully applied in Caucasian and black populations but not in Chinese populations. In this study, a genotyping assay based on multiplex ligation-dependent probe amplification (MLPA) technology was applied in a Chinese population to validate the MLPA probes. Subsequently, the comprehensive distribution of 17 blood group systems also was obtained. DNA samples from 200 Chinese donors were extracted and genotyped using the blood-MLPA assay. To confirm the MLPA results, a second independent genotyping assay (ID Core+) was conducted in 40 donors, and serological typing of 14 blood-group antigens was performed in 91 donors. In donors who had abnormal copy numbers of an allele (DI and GYPB) determined by MLPA, additional experiments were performed (polymerase chain reaction, sequencing, and flow cytometry analysis). The genotyping results obtained using the blood-MLPA and ID Core+ assays were consistent. Serological data were consistent with the genotyping results except for one donor who had a Lu(a-b-) phenotype. Of the 17 blood group systems, the distribution of the MNS, Duffy, Kidd, Diego, Yt, and Dombrock systems was polymorphic. The Mur and St a antigens of the MNS system were distributed with a frequency of 9% (18 of 200) and 2% (4 of 200), respectively. One donor with chimerism and one who carried a novel DI*02(A845V) allele, which predicts the depression of Di b antigen expression, were identified. The blood-MLPA assay could easily identify the common blood-group alleles and correctly predicted phenotype in the Chinese population. The Mur and St a antigens were distributed with high frequency in a Southern Chinese Han population. © 2016 AABB.

  3. Multiplex PCR To Identify Macrolide Resistance Determinants in Mannheimia haemolytica and Pasteurella multocida

    PubMed Central

    Rose, Simon; Desmolaize, Benoit; Jaju, Puneet; Wilhelm, Cornelia; Warrass, Ralf

    2012-01-01

    The bacterial pathogens Mannheimia haemolytica and Pasteurella multocida are major etiological agents in respiratory tract infections of cattle. Although these infections can generally be successfully treated with veterinary macrolide antibiotics, a few recent isolates have shown resistance to these drugs. Macrolide resistance in members of the family Pasteurellaceae is conferred by combinations of at least three genes: erm(42), which encodes a monomethyltransferase and confers a type I MLSB (macrolide, lincosamide, and streptogramin B) phenotype; msr(E), which encodes a macrolide efflux pump; and mph(E), which encodes a macrolide-inactivating phosphotransferase. Here, we describe a multiplex PCR assay that detects the presence of erm(42), msr(E), and mph(E) and differentiates between these genes. In addition, the assay distinguishes P. multocida from M. haemolytica by amplifying distinctive fragments of the 23S rRNA (rrl) genes. One rrl fragment acts as a general indicator of gammaproteobacterial species and confirms whether the PCR assay has functioned as intended on strains that are negative for erm(42), msr(E), and mph(E). The multiplex system has been tested on more than 40 selected isolates of P. multocida and M. haemolytica and correlated with MICs for the veterinary macrolides tulathromycin and tilmicosin, and the newer compounds gamithromycin and tildipirosin. The multiplex PCR system gives a rapid and robustly accurate determination of macrolide resistance genotypes and bacterial genus, matching results from microbiological methods and whole-genome sequencing. PMID:22564832

  4. Protocadherin α (PCDHA) as a novel susceptibility gene for autism

    PubMed Central

    Anitha, Ayyappan; Thanseem, Ismail; Nakamura, Kazuhiko; Yamada, Kazuo; Iwayama, Yoshimi; Toyota, Tomoko; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Tsujii, Masatsugu; Yoshikawa, Takeo; Mori, Norio

    2013-01-01

    Background Synaptic dysfunction has been shown to be involved in the pathogenesis of autism. We hypothesized that the protocadherin α gene cluster (PCDHA), which is involved in synaptic specificity and in serotonergic innervation of the brain, could be a suitable candidate gene for autism. Methods We examined 14 PCDHA single nucleotide polymorphisms (SNPs) for genetic association with autism in DNA samples of 3211 individuals (841 families, including 574 multiplex families) obtained from the Autism Genetic Resource Exchange. Results Five SNPs (rs251379, rs1119032, rs17119271, rs155806 and rs17119346) showed significant associations with autism. The strongest association (p < 0.001) was observed for rs1119032 (z score of risk allele G = 3.415) in multiplex families; SNP associations withstand multiple testing correction in multiplex families (p = 0.041). Haplotypes involving rs1119032 showed very strong associations with autism, withstanding multiple testing corrections. In quantitative transmission disequilibrium testing of multiplex families, the G allele of rs1119032 showed a significant association (p = 0.033) with scores on the Autism Diagnostic Interview–Revised (ADI-R)_D (early developmental abnormalities). We also found a significant difference in the distribution of ADI-R_A (social interaction) scores between the A/A, A/G and G/G genotypes of rs17119346 (p = 0.002). Limitations Our results should be replicated in an independent population and/or in samples of different racial backgrounds. Conclusion Our study provides strong genetic evidence of PCDHA as a potential candidate gene for autism. PMID:23031252

  5. Automation of complex assays: pharmacogenetics of warfarin dosing.

    PubMed

    Wu, Whei-Kuo; Hujsak, Paul G; Kureshy, Fareed

    2007-10-01

    AutoGenomics, Inc. (Carlsbad, CA, USA) have developed a multiplex microarray assay for genotyping both VKORC1 and CYP2C9 using the INFINITI(™) Analyzer. Multiple alleles in each DNA sample are analyzed by polymerase chain reaction amplification, followed by detection primer extension using the INFINITI Analyzer. The INFINITI Analyzer performs single-nucleotide polymorphism (SNP) analysis using universal oligonucleotides immobilized on the biochip. To genotype broader ethnic groups, genomic DNA from whole blood was tested for nine SNPs for VKORC1 and six for CYP2C9 genotypes. Information related to all 15 SNPs is needed to determine dosing of population of diverse ethnic origin. The INFINITI system provides genotyping information for same day dosing of warfarin.

  6. Single-cell high resolution melting analysis: A novel, generic, pre-implantation genetic diagnosis (PGD) method applied to cystic fibrosis (HRMA CF-PGD).

    PubMed

    Destouni, A; Poulou, M; Kakourou, G; Vrettou, C; Tzetis, M; Traeger-Synodinos, J; Kitsiou-Tzeli, S

    2016-03-01

    Institutions offering CF-PGD face the challenge of developing and optimizing single cell genotyping protocols that should cover for the extremely heterogeneous CF mutation spectrum. Here we report the development and successful clinical application of a generic CF-PGD protocol to facilitate direct detection of any CFTR nucleotide variation(s) by HRMA and simultaneous confirmation of diagnosis through haplotype analysis. A multiplex PCR was optimized supporting co-amplification of any CFTR exon-region, along with 6 closely linked STRs. Single cell genotypes were established through HRM analysis following melting of the 2nd round PCR products and were confirmed by STR haplotype analysis of the 1st PCR products. The protocol was validated pre-clinically, by testing 208 single lymphocytes, isolated from whole blood samples from 4 validation family trios. Fifteen PGD cycles were performed and 103 embryos were biopsied. In 15 clinical PGD cycles, genotypes were achieved in 88/93 (94.6%) embryo biopsy samples, of which 57/88 (64.8%) were deemed genetically suitable for embryo transfer. Amplification failed at all loci for 10/103 blastomeres biopsied from poor quality embryos. Six clinical pregnancies were achieved (2 twin, 4 singletons). PGD genotypes were confirmed following conventional amniocentesis or chorionic villus sampling in all achieved pregnancies. The single cell HRMA CF-PGD protocol described herein is a flexible, generic, low cost and robust genotyping method, which facilitates the analysis of any CFTR genotype combination. Single-cell HRMA can be beneficial to other clinical settings, for example the detection of single nucleotide variants in single cells derived from clinical tumor samples. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  7. Multiplexed precision genome editing with trackable genomic barcodes in yeast.

    PubMed

    Roy, Kevin R; Smith, Justin D; Vonesch, Sibylle C; Lin, Gen; Tu, Chelsea Szu; Lederer, Alex R; Chu, Angela; Suresh, Sundari; Nguyen, Michelle; Horecka, Joe; Tripathi, Ashutosh; Burnett, Wallace T; Morgan, Maddison A; Schulz, Julia; Orsley, Kevin M; Wei, Wu; Aiyar, Raeka S; Davis, Ronald W; Bankaitis, Vytas A; Haber, James E; Salit, Marc L; St Onge, Robert P; Steinmetz, Lars M

    2018-07-01

    Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess the phenotypic consequences of each perturbation. Here we describe a CRISPR-Cas9-based method for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC) in Saccharomyces cerevisiae. MAGESTIC uses array-synthesized guide-donor oligos for plasmid-based high-throughput editing and features genomic barcode integration to prevent plasmid barcode loss and to enable robust phenotyping. We demonstrate that editing efficiency can be increased more than fivefold by recruiting donor DNA to the site of breaks using the LexA-Fkh1p fusion protein. We performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy. MAGESTIC will be broadly useful to uncover the genetic basis of phenotypes in yeast.

  8. Glutathione S-transferase gene polymorphisms (GSTM1, GSTT1, and GSTP1) in Egyptian pediatric patients with sickle cell disease.

    PubMed

    Shiba, Hala Fathy; El-Ghamrawy, Mona Kamal; Shaheen, Iman Abd El-Mohsen; Ali, Rasha Abd El-Ghani; Mousa, Somaia Mohammed

    2014-01-01

    Sickle cell disease (SCD) complications are associated with oxidative stress. Glutathione S-transferases (GSTs) are a group of enzymes that protect against oxidative stress. The aims of this study was to evaluate the prevalence of GSTM1, GSTT1, and GSTP1 gene polymorphisms among homozygous sickle cell anemia patients and to investigate the possible association between the presence of these polymorphisms and SCD severity and complications. Genotyping the polymorphisms in GSTT1 and GSTM1 genes was performed using the multiplex polymerase chain reaction (PCR) method. The GSTP1 ILe105Val polymorphism was determined using PCR-restriction fragment length polymorphism. GSTM1 null genotype was significantly associated with increased risk of severe vaso-occlusive crises (VOC) (odds ratio  =  1.52, 95% confidence interval  =  0.42-5.56, P  =  0.005). We found no significant association between GST genotypes and frequency of sickle cell-related pain, transfusion frequency, disease severity, or hydroxyurea treatment. GSTM1 gene polymorphism may be associated with risk of severe VOC among Egyptian SCD patients.

  9. KRAS polymorphisms are associated with survival of CRC in Chinese population.

    PubMed

    Dai, Qiong; Wei, Hui Lian; Huang, Juan; Zhou, Tie Jun; Chai, Li; Yang, Zhi-Hui

    2016-04-01

    rs12245, rs12587, rs9266, rs1137282, rs61764370, and rs712 of KRAS oncogene are characterized in the 3'UTR. The study highlights the important role of these polymorphisms playing in the susceptibility, oxaliplatin-based chemotherapy sensitivity, progression, and prognosis of CRC. Improved multiplex ligation detection reaction (iMLDR) technique is used for genotyping. An unconditional logistic regression model was used to estimate the association of certain polymorphism and CRC risk. The Kaplan-Meier method, log-rank test, and Cox regression model were used to evaluate the effects of polymorphisms on survival analysis. Results demonstrated that TT genotype and T allele of rs712 were associated with the increased risk of CRC; the patients with GG genotype and G allele of rs61764370 had a shorter survival and a higher risk of relapse or metastasis of CRC. Our studies supported the conclusions that rs61764370 and rs712 polymorphisms of the KRAS are functional and it may play an important role in the development of CRC and oxaliplatin-based chemotherapy efficiency and prognosis of CRC.

  10. Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review.

    PubMed

    Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad

    2016-05-28

    The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process.

  11. Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review

    PubMed Central

    Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad

    2016-01-01

    The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process. PMID:27239109

  12. Technologies in the Whole-Genome Age: MALDI-TOF-Based Genotyping.

    PubMed

    Vogel, Nicolas; Schiebel, Katrin; Humeny, Andreas

    2009-01-01

    With the decipherment of the human genome, new questions have moved into the focus of today's research. One key aspect represents the discovery of DNA variations capable to influence gene transcription, RNA splicing, or regulating processes, and their link to pathology. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) is a powerful tool for the qualitative investigation and relative quantification of variations like single nucleotide polymorphisms, DNA methylation, microsatellite instability, or loss of heterozygosity. After its introduction into proteomics, efforts were made to adopt this technique to DNA analysis. Initially intended for peptide/protein analysis, it held several difficulties for application to nucleic acids. Today, MALDI-TOF-MS has reached worldwide acceptance and application in nucleic acid research, with a wide spectrum of methods being available. One of the most versatile approaches relies on primer extension to genotype single alleles, microsatellite repeat lengths or the methylation status of a given cytosine. Optimized methods comprising intelligent primer design and proper nucleotide selection for primer extension enabled multiplexing of reactions, rendering the analysis more economic due to parallel genotyping of several alleles in a single experiment. Laboratories equipped with MALDI-TOF-MS possess a universal technical platform for the analysis of a large variety of different molecules.

  13. Prevalence of Human Papillomavirus in Women from Mexico City

    PubMed Central

    López Rivera, María Guadalupe; Flores, Maria Olivia Medel; Villalba Magdaleno, José D'Artagnan; Sánchez Monroy, Virginia

    2012-01-01

    Introduction. Cervical cancer is the most common cancer among Mexican women. The goal of the present study was to determine the prevalence and distribution of HPV types in women from Mexico City. Methods. Our study was conducted in the Clinica de Especialidades de la Mujer de la Secretaría de la Defensa Nacional, Mexico. Random samples were taken from 929 healthy women requesting a cervical Papanicolaou examination. Detection and genotyping of HPV were performed by multiplex PCR, with the HPV4A ACE Screening kit (Seegene). Results. 85 of nine hundred twenty-nine women (9.1%) were infected with HPV. Of HPV-positive women, 99% and 1% had high- and low-risk HPV genotypes, respectively. The prevalence of the 16 high-risk (HR) HPV types that were screened was 43% : 42% (18) were HPV positive and 14% (16) were HPV positive, which includes coinfection. Multiple infections with different viral genotypes were detected in 10% of the positive cases. Abnormal cervical cytological results were found in only 15.3% of HPV-positive women, while 84.7% had normal cytological results. Conclusions. We found a similar prevalence of HPV to previous studies in Mexico. The heterogeneity of the HPV genotype distribution in Mexico is evident in this study, which found a high frequency of HPV HR genotypes, the majority of which were HPV 18. PMID:22811590

  14. AccuCopy quantification combined with pre-amplification of long-distance PCR for fast analysis of intron 22 inversion in haemophilia A.

    PubMed

    Ding, Qianlan; Wu, Xi; Lu, Yeling; Chen, Changming; Shen, Rui; Zhang, Xi; Jiang, Zhengwen; Wang, Xuefeng

    2016-07-01

    To develop a digitalized intron 22 inversion (Inv22) detection in patients with severe haemophilia A. The design included two tests: A genotyping test included two multiplex pre-amplification of LD-PCR (PLP) with two combinations of five primers to amplify wild-type and chimeric int22h alleles; a carrier mosaicism test was similar to the genotyping test except only amplification of chimeric int22h alleles by removing one primer from each of two combinations. AccuCopy detection was used to quantify PLP products. PLP product patterns in the genotyping test allowed identifying all known Inv22. Quantitative patterns accurately represented the product patterns. The results of 164 samples detected by the genotyping test were consistent with those obtained by LD-PCR detection. Limit of detection (LOD) of the carrier mosaicism test was at least 2% of heterozygous cells with Inv22. Performing the test in two obligate mothers with negative Inv22 from two sporadic pedigrees mosaic rates of blood and hair root of the mother from pedigree 1 were 8.3% and >20%, respectively and negative results were obtained in pedigree 2. AccuCopy quantification combined with PLP (AQ-PLP) method was confirmed to be rapid and reliable for genotyping Inv22 and highly sensitive to carrier mosaicism detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Genotyping and interpretation of STR-DNA: Low-template, mixtures and database matches-Twenty years of research and development.

    PubMed

    Gill, Peter; Haned, Hinda; Bleka, Oyvind; Hansson, Oskar; Dørum, Guro; Egeland, Thore

    2015-09-01

    The introduction of Short Tandem Repeat (STR) DNA was a revolution within a revolution that transformed forensic DNA profiling into a tool that could be used, for the first time, to create National DNA databases. This transformation would not have been possible without the concurrent development of fluorescent automated sequencers, combined with the ability to multiplex several loci together. Use of the polymerase chain reaction (PCR) increased the sensitivity of the method to enable the analysis of a handful of cells. The first multiplexes were simple: 'the quad', introduced by the defunct UK Forensic Science Service (FSS) in 1994, rapidly followed by a more discriminating 'six-plex' (Second Generation Multiplex) in 1995 that was used to create the world's first national DNA database. The success of the database rapidly outgrew the functionality of the original system - by the year 2000 a new multiplex of ten-loci was introduced to reduce the chance of adventitious matches. The technology was adopted world-wide, albeit with different loci. The political requirement to introduce pan-European databases encouraged standardisation - the development of European Standard Set (ESS) of markers comprising twelve-loci is the latest iteration. Although development has been impressive, the methods used to interpret evidence have lagged behind. For example, the theory to interpret complex DNA profiles (low-level mixtures), had been developed fifteen years ago, but only in the past year or so, are the concepts starting to be widely adopted. A plethora of different models (some commercial and others non-commercial) have appeared. This has led to a confusing 'debate' about the 'best' to use. The different models available are described along with their advantages and disadvantages. A section discusses the development of national DNA databases, along with details of an associated controversy to estimate the strength of evidence of matches. Current methodology is limited to searches of complete profiles - another example where the interpretation of matches has not kept pace with development of theory. STRs have also transformed the area of Disaster Victim Identification (DVI) which frequently requires kinship analysis. However, genotyping efficiency is complicated by complex, degraded DNA profiles. Finally, there is now a detailed understanding of the causes of stochastic effects that cause DNA profiles to exhibit the phenomena of drop-out and drop-in, along with artefacts such as stutters. The phenomena discussed include: heterozygote balance; stutter; degradation; the effect of decreasing quantities of DNA; the dilution effect. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Automated Genotyping of a Highly Informative Panel of 40 Short Insertion-Deletion Polymorphisms Resolved in Polyacrylamide Gels for Forensic Identification and Kinship Analysis

    PubMed Central

    Pena, Heloisa B.; Pena, Sérgio D. J.

    2012-01-01

    Objective Short insertion-deletion polymorphisms (indels) are the second most abundant form of genetic variations in humans after SNPs. Since indel alleles differ in size, they can be typed using the same methodological approaches and equipment currently utilized for microsatellite genotyping, which is already operational in forensic laboratories. We have previously shown that a panel of 40 carefully chosen indels has excellent potential for forensic identification, with combined probability of identity (match probability) of 7.09 × 10–17 for Europeans. Methods We describe the successful development of a multiplex system for genotyping the 40-indel panel in long thin denaturing polyacrylamide gels with silver staining. We also demonstrate that the system can be easily fully automated with a simple large scanner and commercial software. Results and Conclusion The great advantage of the new system of typing is its very low cost. The total price for laboratory equipment is less than EUR 10,000.-, and genotyping of an individual patient will cost less than EUR 10.- in supplies. Thus, the 40-indel panel described here and the newly developed ‘low-tech’ analysis platform represent useful new tools for forensic identification and kinship analysis in laboratories with limited budgets, especially in developing countries. PMID:22851937

  17. Genotyping and molecular characteristics of multidrug-resistant Mycobacterium tuberculosis isolates from China.

    PubMed

    Zhang, Zhijian; Lu, Jie; Liu, Min; Wang, Yufeng; Qu, Geping; Li, Hongxia; Wang, Jichun; Pang, Yu; Liu, Changting; Zhao, Yanlin

    2015-04-01

    The aim of this study was to explore the population structure of multidrug-resistant (MDR) tuberculosis strains and distribution of resistance-associated nucleotide alteration among the different genotype MDR strains in China. The genotypes of 376 MDR strain were analyzed by 15-loci MIRU-VNTR and RD105 deletion-targeted multiplex PCR (DTM-PCR) method. In addition, all the MDR isolates were sequenced for genetic mutations conferring rifampicin (rpoB) and isonizid resistance (katG, inhA and oxyR-ahpC). Among the 376 MDR isolates, 261 (69.4%) belonged to Beijing genotype, including 177 modern Beijing strains (67.8%) and 84 ancient Beijing (32.2%) strains. The percentages of streptomycin-resistant, kanamycin-resistant, pre-XDR and XDR TB in modern Beijing genotype were significantly lower than ancient genotype (P < 0.05). The Beijing MDR strains had significantly higher proportions of ofloxacin-resistant and pre-XDR isolates than non-Beijing strains (P < 0.01). In addition, the clustering rate of modern Beijing strains was significantly higher than that of ancient Beijing strains (46.3% vs. 11.9%, P < 0.01). 94.7% and 79.3% of MDR isolates harbored genetic mutations conferring rifampicin and isonizid resistance, respectively, and the most prevalent mutation was located in codon rpoB531 and katG315. In addition, the rpoB531 and katG mutation were more frequently observed among Beijing genotype strains than non-Beijing strains, while non-Beijing genotype showed stronger association with isolates lacking mutation in rifampicin resistance determination region (P < 0.05). Our findings demonstrated that ancient Beijing MDR strains were associated with drug resistance, while modern Beijing MDR strains were more likely to be clustered. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  18. Identification of species by multiplex analysis of variable-length sequences

    PubMed Central

    Pereira, Filipe; Carneiro, João; Matthiesen, Rune; van Asch, Barbara; Pinto, Nádia; Gusmão, Leonor; Amorim, António

    2010-01-01

    The quest for a universal and efficient method of identifying species has been a longstanding challenge in biology. Here, we show that accurate identification of species in all domains of life can be accomplished by multiplex analysis of variable-length sequences containing multiple insertion/deletion variants. The new method, called SPInDel, is able to discriminate 93.3% of eukaryotic species from 18 taxonomic groups. We also demonstrate that the identification of prokaryotic and viral species with numeric profiles of fragment lengths is generally straightforward. A computational platform is presented to facilitate the planning of projects and includes a large data set with nearly 1800 numeric profiles for species in all domains of life (1556 for eukaryotes, 105 for prokaryotes and 130 for viruses). Finally, a SPInDel profiling kit for discrimination of 10 mammalian species was successfully validated on highly processed food products with species mixtures and proved to be easily adaptable to multiple screening procedures routinely used in molecular biology laboratories. These results suggest that SPInDel is a reliable and cost-effective method for broad-spectrum species identification that is appropriate for use in suboptimal samples and is amenable to different high-throughput genotyping platforms without the need for DNA sequencing. PMID:20923781

  19. Natural immune responses against eight oncogenic human papillomaviruses in the ASCUS-LSIL triage study

    PubMed Central

    Wilson, Lauren E.; Pawlita, Michael; Castle, Phillip E.; Waterboer, Tim; Sahasrabuddhe, Vikrant; Gravitt, Patti E.; Schiffman, Mark; Wentzensen, Nicolas

    2014-01-01

    Only a subset of women with human papillomavirus (HPV) infections will become seropositive, and the factors influencing seroconversion are not well-understood. We used a multiplex serology assay in women with mildly abnormal cytology results to examine seroreactivity to oncogenic HPV genotypes. An unbiased subset of women in the atypical squamous cell of undetermined significance /low-grade squamous intraepithelial lesion Triage Study (ALTS) provided blood samples at trial enrollment for serological testing. A Luminex assay based on GST-L1 fusion proteins as antigens was used to test seroreactivity against eight carcinogenic HPV genotypes (16, 18, 31, 33, 35, 45, 52, 58). We analyzed the relationship between seroprevalence in women free of precancer (N=2464) and HPV DNA status, age, sexual behavior, and other HPV-related risk factors. The overall seroprevalence was 24.5% for HPV16 L1 and ~ 20% for 18L1 and 31L1. Among women free of precancer, seroprevalence peaked in women less than 29 years and decreased with age. Type-specific seroprevalence was associated with baseline DNA detection for HPV16 (OR= 1.36, 95%CI: 1.04–1.79) and HPV18 (OR= 2.31, 95%CI: 1.61–3.32), as well as for HPV52 and HPV58. Correlates of sexual exposure were associated with increased seroprevalence across most genotypes. Women who were current or former smokers were less likely to be seropositive for all eight of the tested oncogenic genotypes. The multiplex assay showed associations between seroprevalence and known risk factors for HPV infection across nearly all tested HPV genotypes but associations between DNA- and serostatus were weak, suggesting possible misclassification of the participants’ HPV serostatus. PMID:23588935

  20. Forensic and population genetic characteristics of 62 X chromosome SNPs revealed by multiplex PCR and MALDI-TOF mass spectrometry genotyping in 4 North Eurasian populations.

    PubMed

    Stepanov, Vadim; Vagaitseva, Ksenyia; Kharkov, Vladimir; Cherednichenko, Anastasia; Bocharova, Anna; Berezina, Galina; Svyatova, Gulnara

    2016-01-01

    X chromosome genetic markers are widely used in basic population genetic research as well as in forensic genetics. In this paper we analyze the genetic diversity of 62 X chromosome SNPs in 4 populations using multiplex genotyping based on multi-locus PCR and MALDI-TOF mass spectrometry, and report forensic and population genetic features of the panel of X-linked SNPs (XSNPid). Studied populations represent Siberian (Buryat and Khakas), North Asian (Khanty) and Central Asian (Kazakh) native people. Khanty, Khakas and Kazakh population demonstrate average gene diversity over 0.45. Only East Siberian Buryat population is characterized by lower average heterozygosity (0.436). AMOVA analysis of genetic structure reveals a relatively low but significant level of genetic differentiation in a group of 4 population studied (FST=0.023, p=0.0000). The XSNPid panel provides a very high discriminating power in each population. The combined probability of discrimination in females (PDf) for XSNPid panel ranged between populations from 0.99999999999999999999999982 in Khakas to 0.9999999999999999999999963 in Buryats. The combined discriminating power in males (PDm) varies from 0.999999999999999792 to 0.9999999999999999819. The developed multiplex set of X chromosome SNPs can be a useful tool for population genetic studies and for forensic identity and kinship testing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. [Efficiency of 27-plex single nucleotide polymorphism multiplex system for ancestry inference in different populations].

    PubMed

    Feng, Xing-Ling; Sun, Qi-Fan; Liu, Hong; Wei, Yi-Liang; DU, Wei-An; Li, Cai-Xia; Chen, Ling; Liu, Chao

    2016-04-20

    To validate the efficiency of 27-plex single nucleotide polymorphism (SNP) multiplex system for ancestry inference. The 27-plex SNP system was validated for its sensitivity and species specificity. A total of 533 samples were collected from African, Southern Chinese Han, China's ethic minorities (Yi, Hui, Miao, Tibet, and Uygur), European, Central Asian, Western Asian, Southern Asian, Southeast Asian and South American populations for clustering analysis of the genotypes by citing 3 representative continental ancestral groups [East Asia (CHB), Europe (CEU), and Africa (YRI)] from HapMap database. The system sensitivity is 0.125 ng. Twenty and six genotypes were detected in chimpanzee and monkeys, respectively. Except in rs10496971, no more products were found in other animals. The system was capable of differentiating intercontinental populations but not of distinguishing between East Asian and Southeast Asian population or between Southern Chinese Han population and Chinese Ethnic populations (Hui, Miao, Yi and Tibet). This system achieved a 100% accuracy for intercontinental population source inference for 46 blind test samples. 27-plex SNPs multiplex system has a high sensitivity and species specificity and can correctly differentiate the ancestry origins of individuals from African, European and East Asian for criminal case investigation. But this system is not capable of distinguishing subpopulation groups and more specific ancestry-informative markers are needed to improve its recognition of Southeast Asian and Chinese ethnic populations.

  2. The development and application of a multiplex short tandem repeat (STR) system for identifying subspecies, individuals and sex in tigers.

    PubMed

    Zou, Zheng-Ting; Uphyrkina, Olga V; Fomenko, Pavel; Luo, Shu-Jin

    2015-07-01

    Poaching and trans-boundary trafficking of tigers and body parts are threatening the world's last remaining wild tigers. Development of an efficient molecular genetic assay for tracing the origins of confiscated specimens will assist in law enforcement and wildlife forensics for this iconic flagship species. We developed a multiplex genotyping system "tigrisPlex" to simultaneously assess 22 short tandem repeat (STR, or microsatellite) loci and a gender-identifying SRY gene, all amplified in 4 reactions using as little as 1 ng of template DNA. With DNA samples used for between-run calibration, the system generates STR genotypes that are directly compatible with voucher tiger subspecies genetic profiles, hence making it possible to identify subspecies via bi-parentally inherited markers. We applied "tigrisPlex" to 12 confiscated specimens from Russia and identified 6 individuals (3 females and 3 males), each represented by duplicated samples and all designated as Amur tigers (Panthera tigris altaica) with high confidence. This STR multiplex system can serve as an effective and versatile approach for genetic profiling of both wild and captive tigers as well as confiscated tiger products, fulfilling various conservation needs for identifying the origins of tiger samples. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  3. Geographical distribution of Toxoplasma gondii genotypes in Asia: A link with neighboring continents.

    PubMed

    Chaichan, P; Mercier, A; Galal, L; Mahittikorn, A; Ariey, F; Morand, S; Boumédiène, F; Udonsom, R; Hamidovic, A; Murat, J B; Sukthana, Y; Dardé, M L

    2017-09-01

    Defining the pattern of genetic diversity of Toxoplasma gondii is important to understand its worldwide distribution. During the last decades, a large number of studies have been published on Toxoplasma genotypes circulating in Europe, in North and South America. Two continents are still largely unexplored, Africa and, to a less extent, Asia. In this last continent, an increasing number of publications reported genotypes circulating in diverse provinces of China, but very few data are available for other Asian countries. After a systematic database search, 47 papers related to T. gondii genotypes in Asia were analyzed. Genetic characterization of DNA was performed by microsatellite markers, or more usually by a multiplex PCR using 11 PCR-RFLP markers, allowing data comparison to draw a first global picture of the population structure of this parasite throughout Asia. Overall, 390 isolates or DNA extracts were completely typed by PCR-RFLP and/or microsatellite marker methods, revealing 36 different PCR-RFLP or equivalent microsatellite genotypes: 15 genotypes identified by a ToxoDB number and 21 atypical or unique genotypes. The most common genotype found in Asia is the genotype ToxoDB#9 (Chinese 1). The clonal types I, II and II variant, and III were also commonly found in Asia. The geographical distribution of these genotypes across Asia may reflect either a continuum with Europe for the western part of Asia (presence of Type II), or the circulation of strains through animal migration or human activities between Africa and the Southwestern part of Asia (Africa 1 genotype in Turkey or ToxoDB#20 both I Sri-Lanka and in Ethiopia or Egypt). Although there are some indications of a genetic population structure in Southeast Asian countries different from the rest of Asia, more studies in this tropical part of Asia will be necessary for a region which represent as well as Africa one of the missing links of the T. gondii genetic diversity. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Prevalence of human papillomavirus genotypes associated with cervical and breast cancers in iran.

    PubMed

    Hossein, Rassi; Behzad, Salehi; Tahar, Mohammadian; Azadeh, Nahavandi Araghi

    2013-12-01

    Cancer is a multi-step disease, and infection with a DNA virus could play a role in one or more of the steps in this pathogenic process. High-risk human papillomaviruses (HPV) are the causative agent of several cancers. In this study, we determined the prevalence and genotype distribution of HPV infection among Iranian patients with cervix lesions (CL) and breast cancer (BC). The study group consisted of postoperative tissues from patients diagnosed with cervix lesions and breast cancer. We analyzed 250 formalin-fixed, paraffin-embedded tissue blocks from 100 cervix lesions and 150 breast cancer samples. Verification of each cancer reported in a relative was sought through the pathology reports of the hospital records. Cervix lesions were collected from 100 patients with squamous metaplasia (SM, n=50), cervical intraepithelial neoplasia (CINI, n=18, CINII or III, n=8), and cervical carcinoma (CC, n=24). In this study we evaluated the prevalence of HPV by multiplex PCR in cervix lesions and breast cancer. For paraffin-embedded tissues, DNA extracted by the simple boiling method yielded higher proportions of successful gene amplification (99%) for b-actin gene. Overall prevalence of HPV infection was 6% in the SM group, 34.61% in the CIN group, 75% in the CC group, and 34.66% in the BC group. Furthermore, MY09/11 consensus PCR failed to detect 44 (55.69%) of all HPV infections and interestingly, the predominant genotype detected in all cancers was the oncogenic variant HPV16/18; about 34% of women aged 24 to 54 were infected with at least one type of HPV. Our results demonstrate that DNA derived from archival tissues that archived for less than 8 years could be used successfully for HPV genotyping by multiplex PCR. Infection with HPV was prevalent among Iranian women with CC and BC. The results indicate a likely causal role for high-risk HPV in CC and BC, and also offer the possibility of primary prevention of these cancers by vaccination against HPV in Iran.

  5. Developmental and internal validation of a novel 13 loci STR multiplex method for Cannabis sativa DNA profiling.

    PubMed

    Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David

    2017-05-01

    Marijuana (Cannabis sativa L.) is a plant cultivated and trafficked worldwide as a source of fiber (hemp), medicine, and intoxicant. The development of a validated method using molecular techniques such as short tandem repeats (STRs) could serve as an intelligence tool to link multiple cases by means of genetic individualization or association of cannabis samples. For this purpose, a 13 loci STR multiplex method was developed, optimized, and validated according to relevant ISFG and SWGDAM guidelines. The STR multiplex consists of 13 previously described C. sativa STR loci: ANUCS501, 9269, 4910, 5159, ANUCS305, 9043, B05, 1528, 3735, CS1, D02, C11, and H06. A sequenced allelic ladder consisting of 56 alleles was designed to accurately genotype 101 C. sativa samples from three seizures provided by a U.S. Customs and Border Protection crime lab. Using an optimal range of DNA (0.5-1.0ng), validation studies revealed well-balanced electropherograms (inter-locus balance range: 0.500-1.296), relatively balanced heterozygous peaks (mean peak height ratio of 0.83 across all loci) with minimal artifacts and stutter ratio (mean stutter of 0.021 across all loci). This multi-locus system is relatively sensitive (0.13ng of template DNA) with a combined power of discrimination of 1 in 55 million. The 13 STR panel was found to be species specific for C. sativa; however, non-specific peaks were produced with Humulus lupulus. The results of this research demonstrate the robustness and applicability of this 13 loci STR system for forensic DNA profiling of marijuana samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform

    USDA-ARS?s Scientific Manuscript database

    Next-generation sequencing (NGS) technologies are revolutionizing both medical and biological research through generation of massive SNP data sets for identifying heritable genome variation underlying key traits, from rare human diseases to important agronomic phenotypes in crop species. We evaluate...

  7. Using next generation sequencing for multiplexed trait-linked markers in wheat

    USDA-ARS?s Scientific Manuscript database

    With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat (Triticum aestivum L.) that can be effectively used...

  8. DNA Differential Diagnosis of Taeniasis and Cysticercosis by Multiplex PCR

    PubMed Central

    Yamasaki, Hiroshi; Allan, James C.; Sato, Marcello Otake; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Qiu, Dongchuan; Mamuti, Wulamu; Craig, Philip S.; Ito, Akira

    2004-01-01

    Multiplex PCR was established for differential diagnosis of taeniasis and cysticercosis, including their causative agents. For identification of the parasites, multiplex PCR with cytochrome c oxidase subunit 1 gene yielded evident differential products unique for Taenia saginata and Taenia asiatica and for American/African and Asian genotypes of Taenia solium with molecular sizes of 827, 269, 720, and 984 bp, respectively. In the PCR-based detection of tapeworm carriers using fecal samples, the diagnostic markers were detected from 7 of 14 and 4 of 9 T. solium carriers from Guatemala and Indonesia, respectively. Test sensitivity may have been reduced by the length of time (up to 12 years) that samples were stored and/or small sample volumes (ca. 30 to 50 mg). However, the diagnostic markers were detected by nested PCR in five worm carriers from Guatemalan cases that were found to be negative by multiplex PCR. It was noteworthy that a 720 bp-diagnostic marker was detected from a T. solium carrier who was egg-free, implying that it is possible to detect worm carriers and treat before mature gravid proglottids are discharged. In contrast to T. solium carriers, 827-bp markers were detected by multiplex PCR in all T. saginata carriers. The application of the multiplex PCR would be useful not only for surveillance of taeniasis and cysticercosis control but also for the molecular epidemiological survey of these cestode infections. PMID:14766815

  9. The molecular epidemiology of bovine rotaviruses circulating in Iran: a two-year study.

    PubMed

    Pourasgari, Farzaneh; Kaplon, Jérôme; Karimi-Naghlani, Shahla; Fremy, Céline; Otarod, Vahid; Ambert-Balay, Katia; Mirjalili, Ali; Pothier, Pierre

    2016-12-01

    Bovine group A rotavirus (bovine RVA) is recognized as a major cause of severe gastroenteritis in newborn calves. The purpose of this study was to estimate the prevalence and identify the genotypes of circulating bovine RVA in newborn diarrheic calves. Two hundred fifty-three stool samples of diarrheic calves up to 1 month old were collected from 42 industrial dairy farms in two Iranian provinces during March 2010 to February 2012. All collected samples were screened for the presence of bovine RVA by RT-PCR, and the G and P genotypes were determined by semi-nested multiplex RT-PCR assay. The results of RT-PCR indicated that 49.4 % (125 out of 253) of the samples were positive for bovine RVA. The G and P genotyping of a subset of positive samples (n = 85) by semi-nested multiplex RT-PCR revealed that G6 (55.3 %) and G10 (43.5 %) and P[5] (51.8 %) and P[11] (27 %) were the most prevalent G and P genotypes, respectively. G6P[5] was the dominant genotype (35.3 %), followed by G10P[5], G10P[11] and G6P[11], with prevalence rates of 16.5 %, 15.3 % and 10.6 %, respectively. Sequence analysis of 20 VP7 and four VP4 genes showed highest nucleotide sequence identity with the corresponding genes of strains RVA/Cow-tc/GBR/UK/1973/G6P7[5] and RVA/Cow-tc/USA/B223/XXXX/G10P[11]. The results of this study reveal the diversity of G and P genotypes in bovine RVA samples from diarrheic Iranian calves and expands our knowledge of bovine RVA infections in the Middle East. These results also highlight the importance of producing of an effective rotavirus vaccine and its inclusion in the national cattle immunization program.

  10. Molecular Evidence of Toxoplasma gondii, Neospora caninum, and Encephalitozoon cuniculi in Red Foxes ( Vulpes vulpes).

    PubMed

    Lukášová, Radka; Marková, Jiřina; Bártová, Eva; Murat, Jean-Benjamin; Sedlák, Kamil

    2018-05-07

    Toxoplasma gondii, Neospora caninum, and Encephalitozoon cuniculi are important infectious agents, with T. gondii and E. cuniculi having zoonotic potential. There are two main clonal lineages (types I and II) of T. gondii in Europe, but little is known about genotypes of T. gondii in wild animals. The aim of our study was molecular detection of these three pathogens in tissues of wild red foxes ( Vulpes vulpes) from the Czech Republic. Using PCR (B1 gene), we detected T. gondii in 10% of the animals that we tested ( n=100); N. caninum and E. cuniculi were not detected. The T. gondii samples were genotyped by single multiplex PCR assay with 15 microsatellite markers. Five samples were successfully genotyped as genotype II, a unique finding for T. gondii isolated from red foxes from the Czech Republic.

  11. The validation and utility of a quantitative one-step multiplex RT real-time PCR targeting Rotavirus A and Norovirus

    PubMed Central

    Dung, Tran Thi Ngoc; Phat, Voong Vinh; Nga, Tran Vu Thieu; My, Phan Vu Tra; Duy, Pham Thanh; Campbell, James I.; Thuy, Cao Thu; Hoang, Nguyen Van Minh; Van Minh, Pham; Le Phuc, Hoang; Tuyet, Pham Thi Ngoc; Vinh, Ha; Kien, Duong Thi Hue; Huy, Huynh Le Anh; Vinh, Nguyen Thanh; Nga, Tran Thi Thu; Hau, Nguyen Thi Thu; Chinh, Nguyen Tran; Thuong, Tang Chi; Tuan, Ha Manh; Simmons, Cameron; Farrar, Jeremy J.; Baker, Stephen

    2013-01-01

    Rotavirus (RoV) and Norovirus (NoV) are the main causes of viral gastroenteritis. Currently, there is no validated multiplex real-time PCR that can detect and quantify RoV and NoV simultaneously. The aim of the study was to develop, validate, and internally control a multiplex one-step RT real-time PCR to detect and quantify RoV and NoV in stool samples. PCR sensitivity was assessed by comparing amplification against the current gold standard, enzyme immunoassay (EIA), on stool samples from 94 individuals with diarrhea and 94 individuals without diarrhea. PCR detected 10% more RoV positive samples than EIA in stools samples from patients with diarrhea. PCR detected 23% more NoV genogroup II positive samples from individuals with diarrhea and 9% more from individuals without diarrhea than EIA, respectively. Genotyping of the PCR positive/EIA negative samples suggested the higher rate of PCR positivity, in comparison to EIA, was due to increased sensitivity, rather than nonspecific hybridization. Quantitation demonstrated that the viral loads of RoV and NoV in the stools of diarrheal patients were an order of magnitude greater than in individuals without diarrhea. This internally controlled real-time PCR method is robust, exhibits a high degree of reproducibility, and may have a greater utility and sensitivity than commercial EIA kits. PMID:23046990

  12. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

    PubMed Central

    Cura, Carolina I.; Duffy, Tomas; Lucero, Raúl H.; Bisio, Margarita; Péneau, Julie; Jimenez-Coello, Matilde; Calabuig, Eva; Gimenez, María J.; Valencia Ayala, Edward; Kjos, Sonia A.; Santalla, José; Mahaney, Susan M.; Cayo, Nelly M.; Nagel, Claudia; Barcán, Laura; Málaga Machaca, Edith S.; Acosta Viana, Karla Y.; Brutus, Laurent; Ocampo, Susana B.; Aznar, Christine; Cuba Cuba, Cesar A.; Gürtler, Ricardo E.; Ramsey, Janine M.; Ribeiro, Isabela; VandeBerg, John L.; Yadon, Zaida E.; Osuna, Antonio; Schijman, Alejandro G.

    2015-01-01

    Background Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI–TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). Methods/Principal Findings The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Conclusions/Significance Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production. PMID:25993316

  13. Prevalence of glutathione S-transferase gene deletions and their effect on sickle cell patients.

    PubMed

    Sanjay, Pandey; Mani, Mishra Rahasy; Sweta, Pandey; Vineet, Shah; Kumar, Ahuja Rajesh; Renu, Saxena

    2012-01-01

    Glutathione S-transferase gene deletions are known detoxification agents and cause oxidative damage. Due to the different pathophysiology of anemia in thalassemia and sickle cell disease, there are significant differences in the pathophysiology of iron overload and iron-related complications in these disorders. The aim of this study was to estimate the frequency of the GSTM1 and GSTT1 genotypes in sickle cell disease patients and their effect on iron status. Forty sickle cell anemia and sixty sickle ß-thalassemia patients and 100 controls were evaluated to determine the frequency of GST gene deletions. Complete blood counts were performed by an automated cell analyzer. Hemoglobin F, hemoglobin A, hemoglobin A2 and hemoglobin S were measured and diagnosis of patients was achieved by high performance liquid chromatography with DNA extraction by the phenol-chloroform method. The GST null genotype was determined using multiplex polymerase chain reaction and serum ferritin was measured using an ELISA kit. Statistical analysis was by EpiInfo and GraphPad statistics software. An increased frequency of the GSTT1 null genotype (p-value = 0.05) was seen in the patients. The mean serum ferritin level was higher in patients with the GST genotypes than in controls; this was statistically significant for all genotypes except GSTM1, however the higher levels of serum ferritin were due to blood transfusions in patients. GST deletions do not play a direct role in iron overload of sickle cell patients.

  14. Highly Sensitive Detection and Genotyping of HPV by PCR Multiplex and Luminex Technology in a Cohort of Colombian Women with Abnormal Cytology

    PubMed Central

    García, Dabeiba A; Cid-Arregui, Angel; Schmitt, Markus; Castillo, Marcos; Briceño, Ignacio; Aristizábal, Fabio A

    2011-01-01

    Cancer of the uterine cervix (CC) is the second most common cancer in women worldwide. In Colombia, CC is the second most frequent cancer among the entire women population and the first among women aged between 15 and 44 years, with an estimated incidence of 24.9 cases/100,000 inhabitants. The main risk factor is infection with one or more high-risk human papillomavirus (HPV) types. The aim of this study was to estimate the genotype-specific prevalence of human papillomavirus (HPV) DNA in patients with cervical pathology using the multiplex PCR and Luminex xMAP technology. In addition, we compared genotyping with Luminex xMAP and with Reverse Line Blot (RLB). A cohort of 160 patients participated in the study, of which 25.6% had no cervical lesions, 35% presented cervical intraepithelial neoplasia of grade I (CIN I), 10% CIN II, 20.6% CIN III and 8.8% CC. The most frequent viral types in all lesion grades were HPV16 and HPV18. Infections by a unique virus were less frequent (19.4%) than multiple infections (80.6%). Single infections were found in 22% of women with no cervical lesions, and in 14.3% of CIN I, 18.7% CIN II, 21.2% CIN III and 28.6% of CC. Multiple infections were observed in 78.0% of cervical samples with negative histopathologic diagnosis, and in 85.7% of CIN I, 81.2% CIN II, 78.8% CIN III and 71.4% CC. All samples analyzed with Luminex xMAP were HPV-positive, while we could detect HPV in only 48.8% of cases with RLB. Of the samples positive by both methods, there was a 67.2% correlation in the viral type(s) detected. In conclusion, Luminex suspension array showed a remarkably higher sensitivity compared with RLB. Multiple infections were unexpectedly common, being HPV types 16 and 18 the most prevalent in all histopathologic grades. PMID:21769306

  15. Development of genomic microsatellite multiplex PCR using dye-labeled universal primer and its validation in pedigree analysis of Pacific oyster ( Crassostrea gigas)

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Li, Qi; Song, Junlin; Yu, Hong

    2017-02-01

    There is an increasing requirement for traceability of aquaculture products, both for consumer protection and for food safety. There are high error rates in the conventional traceability systems depending on physical labels. Genetic traceability technique depending on DNA-based tracking system can overcome this problem. Genealogy information is essential for genetic traceability, and microsatellite DNA marker is a good choice for pedigree analysis. As increasing genotyping throughput of microsatellites, microsatellite multiplex PCR has become a fast and cost-effective technique. As a commercially important cultured aquatic species, Pacific oyster Crassostrea gigas has the highest global production. The objective of this study was to develop microsatellite multiplex PCR panels with dye-labeled universal primer for pedigree analysis in C. gigas, and these multiplex PCRs were validated using 12 full-sib families with known pedigrees. Here we developed six informative multiplex PCRs using 18 genomic microsatellites in C. gigas. Each multiplex panel contained a single universal primer M13(-21) used as a tail on each locus-specific forward primer and a single universal primer M13(-21) labeled with fluorophores. The polymorphisms of the markers were moderate, with an average of 10.3 alleles per locus and average polymorphic information content of 0.740. The observed heterozygosity per locus ranged from 0.492 to 0.822. Cervus simulations revealed that the six panels would still be of great value when massive families were analysed. Pedigree analysis of real offspring demonstrated that 100% of the offspring were unambiguously allocated to their parents when two multiplex PCRs were used. The six sets of multiplex PCRs can be an important tool for tracing cultured individuals, population genetic analysis, and selective breeding program in C. gigas.

  16. Multiplexed SNP typing of ancient DNA clarifies the origin of Andaman mtDNA haplogroups amongst South Asian tribal populations.

    PubMed

    Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J

    2006-12-20

    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups approximately 30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity.

  17. Multiplexed SNP Typing of Ancient DNA Clarifies the Origin of Andaman mtDNA Haplogroups amongst South Asian Tribal Populations

    PubMed Central

    Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J.

    2006-01-01

    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups ∼30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity. PMID:17218991

  18. Familial Kleine-Levin Syndrome: A Specific Entity?

    PubMed Central

    Nguyen, Quang Tuan Remy; Groos, Elisabeth; Leclair-Visonneau, Laurène; Monaca-Charley, Christelle; Rico, Tom; Farber, Neal; Mignot, Emmanuel; Arnulf, Isabelle

    2016-01-01

    Study Objectives: Kleine-Levin syndrome (KLS) is a rare, mostly sporadic disorder, characterized by intermittent episodes of hypersomnia plus cognitive and behavior disorders. Although its cause is unknown, multiplex families have been described. We contrasted the clinical and biological features of familial versus sporadic KLS. Methods: Two samples of patients with KLS from the United States and France (n = 260) were studied using clinical interviews and human leukocyte antigen (HLA) genotyping. A multiplex family contained two or more first- or second-degree affected relatives (familial cases). Results: Twenty-one patients from 10 multiplex families (siblings: n = 12, including two pairs of monozygotic twins; parent-child: n = 4; cousins: n = 2; uncle-nephews: n = 3) and 239 patients with sporadic KLS were identified, yielding to 4% multiplex families and 8% familial cases. The simplex and multiplex families did not differ for autoimmune, neurological, and psychiatric disorders. Age, sex ratio, ethnicity, HLA typing, karyotyping, disease course, frequency, and duration of KLS episodes did not differ between groups. Episodes were less frequent in familial versus sporadic KLS (2.3 ± 1.8/y versus 3.8 ± 3.7/y, P = 0.004). Menses triggered more frequently KLS onset in the nine girls with familial KLS (relative risk, RR = 4.12, P = 0.03), but not subsequent episodes. Familial cases had less disinhibited speech (RR = 3.44, P = 0.049), less combined hypophagia/hyperphagia (RR = 4.38, P = 0.006), more abrupt termination of episodes (RR = 1.45, P = 0.04) and less postepisode insomnia (RR = 2.16, P = 0.008). There was similar HLA DQB1 distribution in familial versus sporadic cases and no abnormal karyotypes. Conclusion: Familial KLS is mostly present in the same generation, and is clinically similar to but slightly less severe than sporadic KLS. Citation: Nguyen QT, Groos E, Leclair-Visonneau L, Monaca-Charley C, Rico T, Farber N, Mignot E, Arnulf I. Familial Kleine-Levin syndrome: a specific entity? SLEEP 2016;39(8):1535–1542. PMID:27253765

  19. Genetic polymorphisms of ADH1B, ADH1C and ALDH2 in Turkish alcoholics: lack of association with alcoholism and alcoholic cirrhosis.

    PubMed

    Vatansever, Sezgin; Tekin, Fatih; Salman, Esin; Altintoprak, Ender; Coskunol, Hakan; Akarca, Ulus Salih

    2015-05-17

    No data exists regarding the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) gene polymorphisms in Turkish alcoholic cirrhotics. We studied the polymorphisms of ADH1B, ADH1C and ALDH2 genes in alcoholic cirrhotics and compared the results with non-cirrhotic alcoholics and healthy volunteers. Overall, 237 subjects were included for the study: 156 alcoholic patients (78 cirrhotics, 78 non-cirrhotic alcoholics) and 81 healthy volunteers. Three different single-nucleotide-polymorphism genotyping methods were used. ADH1C genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism method. The identified ADH1C genotypes were named according to the presence or absence of the enzyme restriction sites. ADH1B (Arg47Hys) genotyping was performed using the allele specific primer extension method, and ALDH2 (Glu487Lys) genotyping was performed by a multiplex polymerase chain reaction using two allele-specific primer pairs. For ADH1B, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 97.4%, 94.9% and 99.4%, respectively. For ADH1C, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 47%, 36.3% and 45%, respectively. There was no statistical difference between the groups for ADH1B and ADH1C (p>0.05). All alcoholic and non-alcoholic subjects (100%) had the allele *1 for ALDH2. The obtained results for ADH1B, ADH1C, and ALDH gene polymorphisms in the present study are similar to the results of Caucasian studies. ADH1B and ADH1C genetic variations are not related to the development of alcoholism or susceptibility to alcoholic cirrhosis. ALDH2 gene has no genetic variation in the Turkish population.

  20. Improving mapping and SNP-calling performance in multiplexed targeted next-generation sequencing

    PubMed Central

    2012-01-01

    Background Compared to classical genotyping, targeted next-generation sequencing (tNGS) can be custom-designed to interrogate entire genomic regions of interest, in order to detect novel as well as known variants. To bring down the per-sample cost, one approach is to pool barcoded NGS libraries before sample enrichment. Still, we lack a complete understanding of how this multiplexed tNGS approach and the varying performance of the ever-evolving analytical tools can affect the quality of variant discovery. Therefore, we evaluated the impact of different software tools and analytical approaches on the discovery of single nucleotide polymorphisms (SNPs) in multiplexed tNGS data. To generate our own test model, we combined a sequence capture method with NGS in three experimental stages of increasing complexity (E. coli genes, multiplexed E. coli, and multiplexed HapMap BRCA1/2 regions). Results We successfully enriched barcoded NGS libraries instead of genomic DNA, achieving reproducible coverage profiles (Pearson correlation coefficients of up to 0.99) across multiplexed samples, with <10% strand bias. However, the SNP calling quality was substantially affected by the choice of tools and mapping strategy. With the aim of reducing computational requirements, we compared conventional whole-genome mapping and SNP-calling with a new faster approach: target-region mapping with subsequent ‘read-backmapping’ to the whole genome to reduce the false detection rate. Consequently, we developed a combined mapping pipeline, which includes standard tools (BWA, SAMtools, etc.), and tested it on public HiSeq2000 exome data from the 1000 Genomes Project. Our pipeline saved 12 hours of run time per Hiseq2000 exome sample and detected ~5% more SNPs than the conventional whole genome approach. This suggests that more potential novel SNPs may be discovered using both approaches than with just the conventional approach. Conclusions We recommend applying our general ‘two-step’ mapping approach for more efficient SNP discovery in tNGS. Our study has also shown the benefit of computing inter-sample SNP-concordances and inspecting read alignments in order to attain more confident results. PMID:22913592

  1. A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies.

    PubMed

    Galan, Maxime; Guivier, Emmanuel; Caraux, Gilles; Charbonnel, Nathalie; Cosson, Jean-François

    2010-05-11

    High-throughput sequencing technologies offer new perspectives for biomedical, agronomical and evolutionary research. Promising progresses now concern the application of these technologies to large-scale studies of genetic variation. Such studies require the genotyping of high numbers of samples. This is theoretically possible using 454 pyrosequencing, which generates billions of base pairs of sequence data. However several challenges arise: first in the attribution of each read produced to its original sample, and second, in bioinformatic analyses to distinguish true from artifactual sequence variation. This pilot study proposes a new application for the 454 GS FLX platform, allowing the individual genotyping of thousands of samples in one run. A probabilistic model has been developed to demonstrate the reliability of this method. DNA amplicons from 1,710 rodent samples were individually barcoded using a combination of tags located in forward and reverse primers. Amplicons consisted in 222 bp fragments corresponding to DRB exon 2, a highly polymorphic gene in mammals. A total of 221,789 reads were obtained, of which 153,349 were finally assigned to original samples. Rules based on a probabilistic model and a four-step procedure, were developed to validate sequences and provide a confidence level for each genotype. The method gave promising results, with the genotyping of DRB exon 2 sequences for 1,407 samples from 24 different rodent species and the sequencing of 392 variants in one half of a 454 run. Using replicates, we estimated that the reproducibility of genotyping reached 95%. This new approach is a promising alternative to classical methods involving electrophoresis-based techniques for variant separation and cloning-sequencing for sequence determination. The 454 system is less costly and time consuming and may enhance the reliability of genotypes obtained when high numbers of samples are studied. It opens up new perspectives for the study of evolutionary and functional genetics of highly polymorphic genes like major histocompatibility complex genes in vertebrates or loci regulating self-compatibility in plants. Important applications in biomedical research will include the detection of individual variation in disease susceptibility. Similarly, agronomy will benefit from this approach, through the study of genes implicated in productivity or disease susceptibility traits.

  2. COMPARISON OF THE TEMPORAL VARIABILITY OF ENTEROCOCCAL CLUSTERS IN IMPACTED STREAMS USING A MULTIPLEX POLYMERASE CHAIN REACTION PROCEDURE

    EPA Science Inventory

    Understanding how fecal indicator bacteria and/or fecal indicator genotypes vary over time is important to determine the sources of fecal contamination. Enterococcus is one of the two indicators recommended by the EPA to monitor freshwaters for fecal contamination. Along with E...

  3. Analysis of genetic and aflatoxin diversity among Aspergillus flavus isolates collected from sorghum seeds

    USDA-ARS?s Scientific Manuscript database

    A total of 34 A. flavus isolates were recovered from sorghum seeds sampled across five states in India. Our study included (1) species confirmation through PCR assay, (2) an aflatoxin cluster genotype assay using developed multiplex PCR, (3) quantification of total aflatoxin concentrations by the iC...

  4. High-Performance Multiplex SNP Analysis of Three Hemochromatosis-Related Mutations With Capillary Array Electrophoresis Microplates

    PubMed Central

    Medintz, Igor; Wong, Wendy W.; Berti, Lorenzo; Shiow, Lawrence; Tom, Jennifer; Scherer, James; Sensabaugh, George; Mathies, Richard A.

    2001-01-01

    An assay is described for high-throughput single nucleotide polymorphism (SNP) genotyping on a microfabricated capillary array electrophoresis (CAE) microchip. The assay targets the three common variants at the HFE locus associated with the genetic disease hereditary hemochromatosis (HHC). The assay employs allele-specific PCR (ASPCR) for the C282Y (845g->a), H63D (187c->g), and S65C (193a->t) variants using fluorescently-labeled energy-transfer (ET) allele-specific primers. Using a 96-channel radial CAE microplate, the labeled ASPCR products generated from 96 samples in a reference Caucasian population are simultaneously separated with single-base-pair resolution and genotyped in under 10 min. Detection is accomplished with a laser-excited rotary four-color fluorescence scanner. The allele-specific amplicons are differentiated on the basis of both their size and the color of the label emission. This study is the first demonstration of the combined use of ASPCR with ET primers and microfabricated radial CAE microplates to perform multiplex SNP analyses in a clinically relevant population. PMID:11230165

  5. Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene.

    PubMed

    Chun, Jong-Yoon; Kim, Kyoung-Joong; Hwang, In-Taek; Kim, Yun-Jee; Lee, Dae-Hoon; Lee, In-Kyoung; Kim, Jong-Kee

    2007-01-01

    Successful PCR starts with proper priming between an oligonucleotide primer and the template DNA. However, the inevitable risk of mismatched priming cannot be avoided in the currently used primer system, even though considerable time and effort are devoted to primer design and optimization of reaction conditions. Here, we report a novel dual priming oligonucleotide (DPO) which contains two separate priming regions joined by a polydeoxyinosine linker. The linker assumes a bubble-like structure which itself is not involved in priming, but rather delineates the boundary between the two parts of the primer. This structure results in two primer segments with distinct annealing properties: a longer 5'-segment that initiates stable priming, and a short 3'-segment that determines target-specific extension. This DPO-based system is a fundamental tool for blocking extension of non-specifically primed templates, and thereby generates consistently high PCR specificity even under less than optimal PCR conditions. The strength and utility of the DPO system are demonstrated here using multiplex PCR and SNP genotyping PCR.

  6. Blood grouping based on PCR methods and agarose gel electrophoresis.

    PubMed

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  7. A new design approach to MMI-based (de)multiplexers

    NASA Astrophysics Data System (ADS)

    Yueyu, Xiao; Sailing, He

    2004-09-01

    A novel design method of the wavelength (de)multiplexer is presented. The output spectral response of a (de)multiplexer is designed from the view of FIR filters. Avoiding laborious mathematic analysis, the (de)multiplexer is analyzed and designed in this explicit and simple method. A four channel (de)multiplexer based on multimode interference (MMI) is designed as an example. The result obtained agrees with that of the commonly used method, and is verified by a finite difference beam propagation method (FDBPM) simulation.

  8. The role of the GABRA2 polymorphism in multiplex alcohol dependence families with minimal comorbidity: within-family association and linkage analyses.

    PubMed

    Matthews, Abigail G; Hoffman, Eric K; Zezza, Nicholas; Stiffler, Scott; Hill, Shirley Y

    2007-09-01

    The genes encoding the gamma-aminobutyric acid(A) (GABA(A)) receptor have been the focus of several recent studies investigating the genetic etiology of alcohol dependence. Analyses of multiplex families found a particular gene, GABRA2, to be highly associated with alcohol dependence, using within-family association tests and other methods. Results were confirmed in three case-control studies. The objective of this study was to investigate the GABRA2 gene in another collection of multiplex families. Analyses were based on phenotypic and genotypic data available for 330 individuals from 65 bigenerational pedigrees with a total of 232 alcohol-dependent subjects. A proband pair of same-sex siblings meeting Diagnostic and Statistical Manual of Mental Disorders, Third Edition, criteria for alcohol dependence was required for entry of a family into the study. One member of the proband pair was identified while in treatment for alcohol dependence. Linkage and association of GABRA2 and alcohol dependence were evaluated using SIBPAL (a nonparametric linkage package) and both the Pedigree Disequilibrium Test and the Family-Based Association Test, respectively. We find no evidence of a relationship between GABRA2 and alcohol dependence. Linkage analyses exhibited no linkage using affected/affected, affected/unaffected, and unaffected/unaffected sib pairs (all p's < .13). There was no evidence of a within-family association (all p's > .39). Comorbidity may explain why our results differ from those in the literature. The presence of primary drug dependence and/or other psychiatric disorders is minimal in our pedigrees, although several of the other previously published multiplex family analyses exhibit a greater degree of comorbidity.

  9. Genotyping Applications for Transplantation and Transfusion Management: The Emory Experience.

    PubMed

    Fasano, Ross M; Sullivan, Harold Cliff; Bray, Robert A; Gebel, Howard M; Meyer, Erin K; Winkler, Annie M; Josephson, Cassandra D; Stowell, Sean R; Sandy Duncan, Alexander; Roback, John D

    2017-03-01

    Current genotyping methodologies for transplantation and transfusion management employ multiplex systems that allow for simultaneous detection of multiple HLA antigens, human platelet antigens, and red blood cell (RBC) antigens. The development of high-resolution, molecular HLA typing has led to improved outcomes in unrelated hematopoietic stem cell transplants by better identifying compatible alleles of the HLA-A, B, C, DRB1, and DQB1 antigens. In solid organ transplantation, the combination of high-resolution HLA typing with solid-phase antibody identification has proven of value for highly sensitized patients and has significantly reduced incompatible crossmatches at the time of organ allocation. This database-driven, combined HLA antigen/antibody testing has enabled routine implementation of "virtual crossmatching" and may even obviate the need for physical crossmatching. In addition, DNA-based testing for RBC antigens provides an alternative typing method that mitigates many of the limitations of hemagglutination-based phenotyping. Although RBC genotyping has utility in various transfusion settings, it has arguably been most useful for minimizing alloimmunization in the management of transfusion-dependent patients with sickle cell disease or thalassemia. The availability of high-throughput RBC genotyping for both individuals and large populations of donors, along with coordinated informatics systems to compare patients' antigen profiles with available antigen-negative and/or rare blood-typed donors, holds promise for improving the efficiency, reliability, and extent of RBC matching for this population.

  10. Lack of association between the glutathione-s-transferase genes (GSTT1 and GSTM1) and nasal polyposis.

    PubMed

    Arbag, Hamdi; Cora, Tulin; Acar, Hasan; Ozturk, Kayhan; Sari, Fatih; Ulusoy, Bulent

    2006-03-01

    To evaluate the glutation-S-transferase (GST) polymorphisms (GSTM1 and GSTT1) in nasal polyposis (NP). The study population consisted of 102 unrelated healthy individuals and 98 patients with NP (67 without asthma, 31 with asthma). Genotyping of the polymorphism in the GSTM1 and GSTT1 genes was performed using the multiplex polymerase chain reaction (PCR)-based method. GSTM1 and GSTT1 null-genotypes were found in 46.1% and 23.5% of the controls, and in 43.9% and 33.7% of the NP patients, respectively. These differences were not significant (for GSTM1 null odds ratio (OR) = 0.92; 95% confidence interval (CI) = 0.52-1.6 and for GSTT1, OR = 1.65; 95% CI = 0.89-3.07). Although no significant difference for combined GSTM1 and GSTT1 null genotypes between control (8.8%) and NP patients (17.3%) was found, there was a 2.16-fold increased proportion in the NP with the combined GSTM1-null and GSTT1-null genotype (OR = 2.16; 95% CI = 0.91-5.13). These results suggest that there is lack of association between GSTM1 and GSTT1 polymorphisms and NP. The GSTM1 or GSTT1 polymorphisms had also no relevant developing effect on NP patients without or with asthma.

  11. Prevalence of Null Genotypes of Glutathione S-Transferase T1 (GSTT1) and M1 (GSTM1) in Seven Iranian Populations

    PubMed Central

    NASSERI, Gholamreza; ZAHEDI, Tahereh; MOUSAVI-KAZEROONI, Fatemeh; SAADAT, Mostafa

    2015-01-01

    Background: Previous studies have revealed significant differences between populations for genotypic frequencies of glutathione S-transferase T1 (GSTT1) and M1 (GSTM1) polymorphisms. In order to find the frequency of the null genotypes of GSTM1 and GSTT1 in Iranian populations, the present study was carried out. Methods: The total study subjects consisted of 1340 unrelated healthy Muslims/Iranian. From these 297, 200, 123, 168, 152, 200, and 200 individuals from Tabriz (East Azerbaijan Province; belong to Azaris), Yasuj (Kohgiluyeh-va-Boyerahmad Province; belong to Lurs), Abarku (Yazd Province; belong to Persians), Zahedan (Sistan-va-Balouchestan Province; belong to Balouchis), Zahedan (Sistan-va-Balouchestan Province; belong to Sistanis), Kermanshah (Kermanshah Province; belong to Kurds), and Gorgan (Golestan Province; belong to Turkmen) respectively. The genotypes were detected by multiplex PCR. Results: The frequency of GSTM1 null genotype among Azaris, Lurs, Persians, Balouchis, Sistanis, Kurds, and Turkmen was 43.8, 50.0, 52.0, 50.0, 51.3, 56.0, and 53.0%, respectively. There was no significant difference between these populations for the genotypic distribution of the GSTM1 polymorphism (χ2=8.47, df=6, P=0.206). The frequency of GSTT1 null genotype among Azaris, Lurs, Persians, Balouchis, Sistanis, Kurds, and Turkmen was 18.2, 17.0, 29.3, 20.8, 17.8, 18.5, and 23.0%, respectively. There was very similarity between Azaris, Kurds and Lurs for the frequency of GSTT1 genotypes (χ2=0.17, df=2, P=0.916). Conclusion: By comparing the frequency of GSTT1 genotypes among Iranian populations, Caucasians and Asians, it is concluded that Azaris, Kurds and Lurs were similar to each other. Taken together, it is suggested that although Azaris are Turkish speaking belong to Caucasians. PMID:26811816

  12. Genetic relationships among strains of Xanthomonas fragariae based on random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus PCR data and generation of multiplexed PCR primers useful for the identification of this phytopathogen.

    PubMed Central

    Pooler, M R; Ritchie, D F; Hartung, J S

    1996-01-01

    Genetic relationships among 25 isolates of Xanthomonas fragariae from diverse geographic regions were determined by three PCR methods that rely on different amplification priming strategies: random amplified polymorphic DNA (RAPD) PCR, repetitive extragenic palindromic (REP) PCR, and enterobacterial repetitive intergenic consensus (ERIC) PCR. The results of these assays are mutually consistent and indicate that pathogenic strains are very closely related to each other. RAPD, ERIC, and REP PCR assays identified nine, four, and two genotypes, respectively, within X. fragariae isolates. A single nonpathogenic isolate of X. fragariae was not distinguishable by these methods. The results of the PCR assays were also fully confirmed by physiological tests. There was no correlation between DNA amplification product patterns and geographic sites of isolation, suggesting that this bacterium has spread largely through exchange of infected plant germ plasm. Sequences identified through the RAPD assays were used to develop three primer pairs for standard PCR assays to identify X. fragariae. In addition, we developed a stringent multiplexed PCR assay to identify X. fragariae by simultaneously using the three independently derived sets of primers specific for pathogenic strains of the bacteria. PMID:8795198

  13. Universal fluorescent multiplex PCR and capillary electrophoresis for evaluation of gene conversion between SMN1 and SMN2 in spinal muscular atrophy.

    PubMed

    Wang, Chun-Chi; Jong, Yuh-Jyh; Chang, Jan-Gowth; Chen, Yen-Ling; Wu, Shou-Mei

    2010-07-01

    We have developed a capillary electrophoresis (CE) method with universal fluorescent multiplex PCR to simultaneously detect the SMN1 and SMN2 genes in exons 7 and 8. Spinal muscular atrophy (SMA) is a very frequent inherited disease caused by the absence of the SMN1 gene in approximately 94% of patients. Those patients have deletion of the SMN1 gene or gene conversion between SMN1 and SMN2. However, most methods only focus on the analysis of whole gene deletion, and ignore gene conversion. Simultaneous quantification of SMN1 and SMN2 in exons 7 and 8 is a good strategy for estimating SMN1 deletion or SMN1 to SMN2 gene conversion. This study established a CE separation allowing differentiation of all copy ratios of SMN1 to SMN2 in exons 7 and 8. Among 212 detected individuals, there were 23 SMA patients, 45 carriers, and 144 normal subjects. Three individuals had different ratios of SMN1 to SMN2 in two exons, including an SMA patient having two SMN2 copies in exon 7 but one SMN1 copy in exon 8. This method could provide more information about SMN1 deletion or SMN1 to SMN2 gene conversion for SMA genotyping and diagnosis.

  14. Simultaneous Genotyping of the rs4762 and rs699 Polymorphisms in Angiotensinogen Gene and Correlation with Iranian CAD Patients with Novel Hexa-primer ARMS-PCR

    PubMed Central

    KHATAMI, Mehri; HEIDARI, Mohammad Mehdi; HADADZADEH, Mehdi; SCHEIBER-MOJDEHKAR, Barbara; BITARAF SANI, Morteza; HOUSHMAND, Massoud

    2017-01-01

    Background: A significant role of Renin-angiotensin system (RAS) genetic variants in the pathogenesis of essential hypertension and cardiovascular diseases has been proved. This study aimed to develop a new, fast and cheap method for the simultaneous detection of two missense single nucleotide polymorphisms (T207M or rs4762 and M268T orrs699) of angiotensinogen (AGT) in single-step Multiplex Hexa-Primer Amplification Refractory Mutation System - polymerase chain reaction (H-ARMS-PCR). Methods: In this case-control study, 148 patients with coronary artery disease (CAD) and 135 controls were included. The patients were referred to cardiac centers in Afshar Hospital (Yazd, Iran) from 2012 to 2015. Two sets of inner primer (for each SNP) and one set outer primer pairs were designed for genotyping of rs4762 and rs699 in single tube H-ARMS-PCR. Direct sequencing of all samples was also performed to assess the accuracy of this method. DNA sequencing method validated the results of single tube H-ARMS-PCR. Results: We found full accordance for genotype adscription by sequencing method. The frequency of the AGT T521 and C702 alleles was significantly higher in CAD patients than in the control group (OR: 0.551, 95% CI: 0.359–0.846, P=0.008 and OR: 0.629, 95% CI: 0.422–0.936, P=0.028, respectively). Conclusion: This is the first work describing a rapid, low-cost, high-throughput simultaneous detection of rs4762 and rs699 polymorphisms in AGT gene, used in large clinical studies. PMID:28828324

  15. Parallel gene analysis with allele-specific padlock probes and tag microarrays

    PubMed Central

    Banér, Johan; Isaksson, Anders; Waldenström, Erik; Jarvius, Jonas; Landegren, Ulf; Nilsson, Mats

    2003-01-01

    Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes. PMID:12930977

  16. Single nucleotide polymorphisms in common bean: their discovery and genotyping using a multiplex detection system

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...

  17. DNA cards: determinants of DNA yield and quality in collecting genetic samples for pharmacogenetic studies.

    PubMed

    Mas, Sergi; Crescenti, Anna; Gassó, Patricia; Vidal-Taboada, Jose M; Lafuente, Amalia

    2007-08-01

    As pharmacogenetic studies frequently require establishment of DNA banks containing large cohorts with multi-centric designs, inexpensive methods for collecting and storing high-quality DNA are needed. The aims of this study were two-fold: to compare the amount and quality of DNA obtained from two different DNA cards (IsoCode Cards or FTA Classic Cards, Whatman plc, Brentford, Middlesex, UK); and to evaluate the effects of time and storage temperature, as well as the influence of anticoagulant ethylenediaminetetraacetic acid on the DNA elution procedure. The samples were genotyped by several methods typically used in pharmacogenetic studies: multiplex PCR, PCR-restriction fragment length polymorphism, single nucleotide primer extension, and allelic discrimination assay. In addition, they were amplified by whole genome amplification to increase genomic DNA mass. Time, storage temperature and ethylenediaminetetraacetic acid had no significant effects on either DNA card. This study reveals the importance of drying blood spots prior to isolation to avoid haemoglobin interference. Moreover, our results demonstrate that re-isolation protocols could be applied to increase the amount of DNA recovered. The samples analysed were accurately genotyped with all the methods examined herein. In conclusion, our study shows that both DNA cards, IsoCode Cards and FTA Classic Cards, facilitate genetic and pharmacogenetic testing for routine clinical practice.

  18. Development and Validation of a Quantitative PCR Assay Using Multiplexed Hydrolysis Probes for Detection and Quantification of Theileria orientalis Isolates and Differentiation of Clinically Relevant Subtypes

    PubMed Central

    Bogema, D. R.; Deutscher, A. T.; Fell, S.; Collins, D.; Eamens, G. J.

    2015-01-01

    Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease. PMID:25588653

  19. Exploring the ancestry differentiation and inference capacity of the 28-plex AISNPs.

    PubMed

    Hao, Wei-Qi; Liu, Jing; Jiang, Li; Han, Jun-Ping; Wang, Ling; Li, Jiu-Ling; Ma, Quan; Liu, Chao; Wang, Hui-Jun; Li, Cai-Xia

    2018-06-07

    Inferring an unknown DNA's ancestry using a set of ancestry-informative single nucleotide polymorphisms (SNPs) in forensic science is useful to provide investigative leads. This is especially true when there is no DNA database match or specified suspect. Thus, a set of SNPs with highly robust and balanced differential power is strongly demanded in forensic science. In addition, it is also necessary to build a genotyping database for estimating the ancestry of an individual or an unknown DNA. For the differentiation of Africans, Europeans, East Asians, Native Americans, and Oceanians, the Global Nano set that includes just 31 SNPs was developed by de la Puente et al. Its ability for differentiation and balance was evaluated using the genotype data of the 1000 Genomes Phase III project and the Stanford University HGDP-CEPH. Just 402 samples were genotyped and analyzed as a reference set based on statistical methods. To validate the differentiating capacity using more samples, we developed a single-tube 28-plex SNP assay in which the SNPs were chosen from the 31 allelic loci of the Global AIMs Nano set. Three tri-allelic SNPs used to differentiate mixed-source DNA contribute little to population differentiation and were excluded here. Then, 998 individuals from 21 populations were typed, and these genotypes were combined with the genotype data obtained from 1000 Genomes Phase III and the Stanford University HGDP-CEPH (3090 total samples,43 populations) to estimate the power of this multiplex assay and build a database for the further inference of an individual or an unknown DNA sample in forensic practice.

  20. Genetic variation among Staphylococcus aureus strains from Norwegian bulk milk.

    PubMed

    Jørgensen, H J; Mørk, T; Caugant, D A; Kearns, A; Rørvik, L M

    2005-12-01

    Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex.

  1. Genetic Variation among Staphylococcus aureus Strains from Norwegian Bulk Milk

    PubMed Central

    Jørgensen, H. J.; Mørk, T.; Caugant, D. A.; Kearns, A.; Rørvik, L. M.

    2005-01-01

    Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex. PMID:16332822

  2. Development and evaluation of hexaplex PCR for rapid detection of methicillin, cadmium/zinc and antiseptic-resistant staphylococci, with simultaneous identification of PVL-positive and -negative Staphylococcus aureus and coagulase negative staphylococci.

    PubMed

    Panda, Sasmita; Kar, Sarita; Choudhury, Ranginee; Sharma, Savitri; Singh, Durg V

    2014-03-01

    We developed a multiplex PCR to detect the presence of methicillin- (mecA), cadmium/zinc-(czrC) and antiseptic-resistant (qacA/B) staphylococci and to identify Panton-Valentine leukocidin (PVL)-positive and -negative Staphylococcus aureus and coagulase-negative staphylococci (CoNS) from infected and healthy eyes. The assay was validated on 177 staphylococci comprising of 55 each of S. aureus and CoNS isolated from infected eyes and five S. aureus and 62 CoNS isolated from healthy eyes and nine direct ocular samples. Nine direct ocular samples for in situ testing consisted of corneal scrapings (4), conjunctiva swabs (2) and others (3). Multiplex PCR result was correlated with genotype data obtained with single PCR and dot-blot assay. The control strains that were positive in multiplex PCR for 16S rRNA, nuc, mecA, pvl, czrC and qacA/B genes were also positive in the dot-blot assay. The specificity of amplified genes obtained with reference strains was further confirmed by DNA sequencing. The single step-hexaplex PCR method can be used for rapid detection of mecA, nuc, pvl, czrC and qacA/B genes in staphylococci with simultaneous identification of PVL-positive and -negative S. aureus and CoNS from a variety of ocular samples. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. High-throughput typing method to identify a non-outbreak-involved Legionella pneumophila strain colonizing the entire water supply system in the town of Rennes, France.

    PubMed

    Sobral, D; Le Cann, P; Gerard, A; Jarraud, S; Lebeau, B; Loisy-Hamon, F; Vergnaud, G; Pourcel, C

    2011-10-01

    Two legionellosis outbreaks occurred in the city of Rennes, France, during the past decade, requiring in-depth monitoring of Legionella pneumophila in the water network and the cooling towers in the city. In order to characterize the resulting large collection of isolates, an automated low-cost typing method was developed. The multiplex capillary-based variable-number tandem repeat (VNTR) (multiple-locus VNTR analysis [MLVA]) assay requiring only one PCR amplification per isolate ensures a high level of discrimination and reduces hands-on and time requirements. In less than 2 days and using one 4-capillary apparatus, 217 environmental isolates collected between 2000 and 2009 and 5 clinical isolates obtained during outbreaks in 2000 and 2006 in Rennes were analyzed, and 15 different genotypes were identified. A large cluster of isolates with closely related genotypes and representing 77% of the population was composed exclusively of environmental isolates extracted from hot water supply systems. It was not responsible for the known Rennes epidemic cases, although strains showing a similar MLVA profile have regularly been involved in European outbreaks. The clinical isolates in Rennes had the same genotype as isolates contaminating a mall's cooling tower. This study further demonstrates that unknown environmental or genetic factors contribute to the pathogenicity of some strains. This work illustrates the potential of the high-throughput MLVA typing method to investigate the origin of legionellosis cases by allowing the systematic typing of any new isolate and inclusion of data in shared databases.

  4. Multiplex serology for common viral infections in feral pigs (Sus scrofa) in Hawaii between 2007 and 2010.

    PubMed

    Stephenson, Rachel J; Trible, Benjamin R; Wang, Yu; Kerrigan, Maureen A; Goldstein, Samuel M; Rowland, Raymond R R

    2015-01-01

    Multiplex serology was performed for the detection of total immunoglobulin (Ig) and IgM antibodies against porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and swine influenza virus (SIV) antigens in feral swine (Sus scrofa). Serum samples were collected from the islands of Oahu (292 pigs) and Hawaii (52 pigs) between 2007 and 2010. The highest antibody prevalence was to PCV2 (63%), followed by SIV (7.8%) and PRRSV (5.8%). Antigen-specific IgM was detected at a much lower prevalence. PCR amplification and sequence analysis of PCV2 in three IgM-positive samples identified PCV2b as the only genotype. While the prevalence of PCV2 and PRRSV remained similar between 2007 and 2010, the percentage of SIV-positive samples on Oahu increased from 2% to 19%. Our results demonstrate the utility of multiplex serology for pathogen surveillance in feral pig populations.

  5. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs)

    PubMed Central

    Qi, Xiaoquan; Bakht, Saleha; Devos, Katrien M.; Gale, Mike D.; Osbourn, Anne

    2001-01-01

    A flexible, non-gel-based single nucleotide polymorphism (SNP) detection method is described. The method adopts thermostable ligation for allele discrimination and rolling circle amplification (RCA) for signal enhancement. Clear allelic discrimination was achieved after staining of the final reaction mixtures with Cybr-Gold and visualisation by UV illumination. The use of a compatible buffer system for all enzymes allows the reaction to be initiated and detected in the same tube or microplate well, so that the experiment can be scaled up easily for high-throughput detection. Only a small amount of DNA (i.e. 50 ng) is required per assay, and use of carefully designed short padlock probes coupled with generic primers and probes make the SNP detection cost effective. Biallelic assay by hybridisation of the RCA products with fluorescence dye-labelled probes is demonstrated, indicating that ligation-RCA (L-RCA) has potential for multiplexed assays. PMID:11713336

  6. A cost-effective high-throughput metabarcoding approach powerful enough to genotype ~44 000 year-old rodent remains from Northern Africa.

    PubMed

    Guimaraes, S; Pruvost, M; Daligault, J; Stoetzel, E; Bennett, E A; Côté, N M-L; Nicolas, V; Lalis, A; Denys, C; Geigl, E-M; Grange, T

    2017-05-01

    We present a cost-effective metabarcoding approach, aMPlex Torrent, which relies on an improved multiplex PCR adapted to highly degraded DNA, combining barcoding and next-generation sequencing to simultaneously analyse many heterogeneous samples. We demonstrate the strength of these improvements by generating a phylochronology through the genotyping of ancient rodent remains from a Moroccan cave whose stratigraphy covers the last 120 000 years. Rodents are important for epidemiology, agronomy and ecological investigations and can act as bioindicators for human- and/or climate-induced environmental changes. Efficient and reliable genotyping of ancient rodent remains has the potential to deliver valuable phylogenetic and paleoecological information. The analysis of multiple ancient skeletal remains of very small size with poor DNA preservation, however, requires a sensitive high-throughput method to generate sufficient data. We show this approach to be particularly adapted at accessing this otherwise difficult taxonomic and genetic resource. As a highly scalable, lower cost and less labour-intensive alternative to targeted sequence capture approaches, we propose the aMPlex Torrent strategy to be a useful tool for the genetic analysis of multiple degraded samples in studies involving ecology, archaeology, conservation and evolutionary biology. © 2016 John Wiley & Sons Ltd.

  7. Detection and genotyping of Entamoeba histolytica, Entamoeba dispar, Giardia lamblia, and Cryptosporidium parvum by oligonucleotide microarray.

    PubMed

    Wang, Zheng; Vora, Gary J; Stenger, David A

    2004-07-01

    Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum are the most frequently identified protozoan parasites causing waterborne disease outbreaks. The morbidity and mortality associated with these intestinal parasitic infections warrant the development of rapid and accurate detection and genotyping methods to aid public health efforts aimed at preventing and controlling outbreaks. In this study, we describe the development of an oligonucleotide microarray capable of detecting and discriminating between E. histolytica, Entamoeba dispar, G. lamblia assemblages A and B, and C. parvum types 1 and 2 in a single assay. Unique hybridization patterns for each selected protozoan were generated by amplifying six to eight diagnostic sequences/organism by multiplex PCR; fluorescent labeling of the amplicons via primer extension; and subsequent hybridization to a set of genus-, species-, and subtype-specific covalently immobilized oligonucleotide probes. The profile-based specificity of this methodology not only permitted for the unequivocal identification of the six targeted species and subtypes, but also demonstrated its potential in identifying related species such as Cryptosporidium meleagridis and Cryptosporidium muris. In addition, sensitivity assays demonstrated lower detection limits of five trophozoites of G. lamblia. Taken together, the specificity and sensitivity of the microarray-based approach suggest that this methodology may provide a promising tool to detect and genotype protozoa from clinical and environmental samples.

  8. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples.

    PubMed

    Cura, Carolina I; Duffy, Tomas; Lucero, Raúl H; Bisio, Margarita; Péneau, Julie; Jimenez-Coello, Matilde; Calabuig, Eva; Gimenez, María J; Valencia Ayala, Edward; Kjos, Sonia A; Santalla, José; Mahaney, Susan M; Cayo, Nelly M; Nagel, Claudia; Barcán, Laura; Málaga Machaca, Edith S; Acosta Viana, Karla Y; Brutus, Laurent; Ocampo, Susana B; Aznar, Christine; Cuba Cuba, Cesar A; Gürtler, Ricardo E; Ramsey, Janine M; Ribeiro, Isabela; VandeBerg, John L; Yadon, Zaida E; Osuna, Antonio; Schijman, Alejandro G

    2015-05-01

    Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI-TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.

  9. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    PubMed

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  10. Rapid targeted somatic mutation analysis of solid tumors in routine clinical diagnostics.

    PubMed

    Magliacane, Gilda; Grassini, Greta; Bartocci, Paola; Francaviglia, Ilaria; Dal Cin, Elena; Barbieri, Gianluca; Arrigoni, Gianluigi; Pecciarini, Lorenza; Doglioni, Claudio; Cangi, Maria Giulia

    2015-10-13

    Tumor genotyping is an essential step in routine clinical practice and pathology laboratories face a major challenge in being able to provide rapid, sensitive and updated molecular tests. We developed a novel mass spectrometry multiplexed genotyping platform named PentaPanel to concurrently assess single nucleotide polymorphisms in 56 hotspots of the 5 most clinically relevant cancer genes, KRAS, NRAS, BRAF, EGFR and PIK3CA for a total of 221 detectable mutations. To both evaluate and validate the PentaPanel performance, we investigated 1025 tumor specimens of 6 different cancer types (carcinomas of colon, lung, breast, pancreas, and biliary tract, and melanomas), systematically addressing sensitivity, specificity, and reproducibility of our platform. Sanger sequencing was also performed for all the study samples. Our data showed that PentaPanel is a high throughput and robust tool, allowing genotyping for targeted therapy selection of 10 patients in the same run, with a practical turnaround time of 2 working days. Importantly, it was successfully used to interrogate different DNAs isolated from routinely processed specimens (formalin-fixed paraffin embedded, frozen, and cytological samples), covering all the requirements of clinical tests. In conclusion, the PentaPanel platform can provide an immediate, accurate and cost effective multiplex approach for clinically relevant gene mutation analysis in many solid tumors and its utility across many diseases can be particularly relevant in multiple clinical trials, including the new basket trial approach, aiming to identify appropriate targeted drug combination strategies.

  11. Association of GSTM1, GSTT1 and GSTP1 Ile105Val polymorphisms with clinical response to imatinib mesylate treatment among Malaysian chronic myeloid leukaemia patients.

    PubMed

    Makhtar, Siti Maziras; Husin, Azlan; Baba, Abdul Aziz; Ankathil, Ravindran

    2017-09-01

    The detoxifying activity of glutathione S-transferases (GST) enzymes not only protect cells from the adverse effects of xenobiotics, but also alters the effectiveness of drugs in cancer cells, resulting in toxicity or drug resistance. In this study, we aimed to evaluate the association of GSTM1, GSTT1 and GSTP1 Ile105Val polymorphisms with treatment response among Malaysian chronic myeloid leukaemia (CML) patients who everyday undergo 400 mg of imatinib mesylate (IM) therapy. Multiplex polymerase chain reaction (multiplex-PCR) was performed to detect GSTM1 and GSTT1 polymorphisms simultaneously and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was conducted to detect the GSTP1 Ile195Val polymorphism. On evaluating the association of the variant genotype with treatment outcome, heterozygous variant (AG) and homozygous variant (GG) of GSTP1 Ile105Val showed significantly a higher risk for the development of resistance to IM with OR: 1.951 (95% CI: 1.186-3.209, P = 0.009) and OR: 3.540 (95% CI: 1.305-9.606, P = 0.013), respectively. Likewise, GSTT1 null genotype was also associated with a significantly higher risk for the development of resistance to IM with OR = 1.664 (95% CI: 1.011-2.739, P = 0.045). Our results indicate the potential usefulness of GST polymorphism genotyping in predicting the IM treatment response among CML patients.

  12. Molecular analysis and association with clinical and laboratory manifestations in children with sickle cell anemia

    PubMed Central

    Camilo-Araújo, Roberta Faria; Amancio, Olga Maria Silverio; Figueiredo, Maria Stella; Cabanãs-Pedro, Ana Carolina; Braga, Josefina Aparecida Pellegrini

    2014-01-01

    Objectives To analyze the frequency of βS-globin haplotypes and alpha-thalassemia, and their influence on clinical manifestations and the hematological profile of children with sickle cell anemia. Method The frequency of βS-globin haplotypes and alpha-thalassemia and any association with clinical and laboratorial manifestations were determined in 117 sickle cell anemia children aged 3–71 months. The confirmation of hemoglobin SS and determination of the haplotypes were achieved by polymerase chain reaction-restriction fragment length polymorphism, and alpha-thalassemia genotyping was by multiplex polymerase chain reaction (single-tube multiplex-polymerase chain reaction). Results The genotype distribution of haplotypes was 43 (36.7%) Central African Republic/Benin, 41 (35.0%) Central African Republic/Central African Republic, 20 (17.0%) Rare/atypical, and 13 (11.1%) Benin/Benin. The frequency of the α3.7 deletion was 1.71% as homozygous (−α3.7/−α3.7) and 11.9% as heterozygous (−α3.7/αα). The only significant association in respect to haplotypes was related to the mean corpuscular volume. The presence of alpha-thalassemia was significantly associated to decreases in mean corpuscular volume, mean corpuscular hemoglobin and reticulocyte count and to an increase in the red blood cell count. There were no significant associations of βS-globin haplotypes and alpha-thalassemia with clinical manifestations. Conclusions In the study population, the frequency of alpha-thalassemia was similar to published data in Brazil with the Central African Republic haplotype being the most common, followed by the Benin haplotype. βS-globin haplotypes and interaction between alpha-thalassemia and sickle cell anemia did not influence fetal hemoglobin concentrations or the number of clinical manifestations. PMID:25305165

  13. Comparison between Urine and Cervical Samples for HPV DNA Detection and Typing in Young Women in Colombia.

    PubMed

    Cómbita, Alba Lucía; Gheit, Tarik; González, Paula; Puerto, Devi; Murillo, Raúl Hernando; Montoya, Luisa; Vorsters, Alex; Van Keer, Severien; Van Damme, Pierre; Tommasino, Massimo; Hernández-Suárez, Gustavo; Sánchez, Laura; Herrero, Rolando; Wiesner, Carolina

    2016-09-01

    Urine sampling for HPV DNA detection has been proposed as an effective method for monitoring the impact of HPV vaccination programs; however, conflicting results have been reported. The goal of this study was to evaluate the performance of optimized urine HPV DNA testing in women aged 19 to 25 years. Optimization process included the use of first void urine, immediate mixing of urine with DNA preservative, and the concentration of all HPV DNA, including cell-free DNA fragments. Urine and cervical samples were collected from 535 young women attending cervical screening at health centers from two Colombian cities. HPV DNA detection and genotyping was performed using an HPV type-specific multiplex genotyping assay, which combines multiplex polymerase chain reaction with bead-based Luminex technology. Concordance between HPV DNA detection in urine and cervical samples was determined using kappa statistics and McNemar tests. The accuracy of HPV DNA testing in urine samples was evaluated measuring sensitivity and specificity using as reference the results obtained from cervical samples. Statistical analysis was performed using STATA11.2 software. The findings revealed an overall HPV prevalence of 60.00% in cervical samples and 64.72% in urine samples, HPV-16 being the most frequent HPV type detected in both specimens. Moreover, our results indicate that detection of HPV DNA in first void urine provides similar results to those obtained with cervical samples and can be used to monitor HPV vaccination trials and programs as evidenced by the substantial concordance found for the detection of the four vaccine types. Cancer Prev Res; 9(9); 766-71. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome.

    PubMed

    Zhang, Kaihui; Liu, Shu; Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.

  15. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome

    PubMed Central

    Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis. PMID:26841067

  16. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725

  17. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR.

    PubMed

    Kannika, K; Pisuttharachai, D; Srisapoome, P; Wongtavatchai, J; Kondo, H; Hirono, I; Unajak, S; Areechon, N

    2017-06-01

    This study aimed to biotype Streptococcus agalactiae isolated from tilapia farms in Thailand based on molecular biotyping methods and to determine the correlation between the serotype and virulence of bacteria. In addition to a biotyping (serotyping) technique based on multiplex PCR of cps genes, in this study, we developed multiplex PCR typing of Group B streptococcus (GBS) virulence genes to examine three clusters of virulence genes and their correlation with the pathogenicity of S. agalactiae. The epidemiology of S. agalactiae in Thailand was analysed to provide bacterial genetic information towards a future rational vaccine strategy for tilapia culture systems. Streptococcus agalactiae were isolated from diseased tilapia from different areas of Thailand. A total of 124 S. agalactiae isolates were identified by phenotypic analysis and confirmed by 16S rRNA PCR. Bacterial genotyping was conducted based on (i) molecular serotyping of the capsular polysaccharide (cps) gene cluster and (ii) virulence gene profiling using multiplex PCR analysis of 14 virulence genes (lmb, scpB, pavA, cspA, spb1, cyl, bca, rib, fbsA, fbsB, cfb, hylB, bac and pbp1A/ponA). Only serotypes Ia and III were found in this study; serotype Ia lacks the lmb, scpB and spb1 genes, whereas serotype III lacks only the bac gene. Virulence tests in juvenile Nile tilapia demonstrated a correlation between the pathogenicity of the bacteria and their virulence gene profile, with serotype III showing higher virulence than serotype Ia. Epidemiological analysis showed an almost equal distribution in all regions of Thailand, except serotype III was found predominantly in the southern areas. Only two serotypes of S. agalactiae were isolated from diseased tilapia in Thailand. Serotype Ia showed fewer virulence genes and lower virulence than serotype III. Both serotypes showed a similar distribution throughout Thailand. We identified two major serotypes of S. agalactiae isolates associated with the outbreak in tilapia culture in Thailand. We developed multiplex PCR assays for 14 virulence genes, which may be used to predict the pathogenicity of the isolates and track future infections. Multiplex PCR typing of the GBS virulence genes was developed and might be further used to predict the pathogenicity of S. agalactiae. © 2017 The Society for Applied Microbiology.

  18. Post-Mortem Identification of a Fire Carbonized Body by STR Genotyping.

    PubMed

    Dumache, Raluca; Muresan, Camelia; Ciocan, Veronica; Rogobete, Alexandru F; Enache, Alexandra

    2016-10-01

    Identification of bodies of unknown identity that are victims of exposure to very high temperatures, resulting from fires, plane crashes, and terrorist attacks, represents one of the most difficult sides of forensic genetics, because of the advanced state of decomposition. The aim of this study was the identification of the carbonized cadaver of a fire victim through STR genotyping. We used blood samples obtained from the iliac artery during the autopsy examination as biological samples from the unidentified victim. After DNA isolation and quantification, we proceeded to its amplification using the multiplex PCR kit AmpFlSTR Identifiler. The DNA products were separated using an ABI 3500 genetic analyzer. Further analysis of the data was done using Gene Mapper ID-X version 1.4 software. In this case, it was possible to obtain a complete DNA profile from the biological samples. Due to the fact that the amelogenin gene presented two alleles, X and Y, we concluded that the victim was a man. We conclude that STR profiling of unidentified bodies (carbonized, decomposed) represents a powerful method of human identification in forensic medicine.

  19. PopAffiliator: online calculator for individual affiliation to a major population group based on 17 autosomal short tandem repeat genotype profile.

    PubMed

    Pereira, Luísa; Alshamali, Farida; Andreassen, Rune; Ballard, Ruth; Chantratita, Wasun; Cho, Nam Soo; Coudray, Clotilde; Dugoujon, Jean-Michel; Espinoza, Marta; González-Andrade, Fabricio; Hadi, Sibte; Immel, Uta-Dorothee; Marian, Catalin; Gonzalez-Martin, Antonio; Mertens, Gerhard; Parson, Walther; Perone, Carlos; Prieto, Lourdes; Takeshita, Haruo; Rangel Villalobos, Héctor; Zeng, Zhaoshu; Zhivotovsky, Lev; Camacho, Rui; Fonseca, Nuno A

    2011-09-01

    Because of their sensitivity and high level of discrimination, short tandem repeat (STR) maker systems are currently the method of choice in routine forensic casework and data banking, usually in multiplexes up to 15-17 loci. Constraints related to sample amount and quality, frequently encountered in forensic casework, will not allow to change this picture in the near future, notwithstanding the technological developments. In this study, we present a free online calculator named PopAffiliator ( http://cracs.fc.up.pt/popaffiliator ) for individual population affiliation in the three main population groups, Eurasian, East Asian and sub-Saharan African, based on genotype profiles for the common set of STRs used in forensics. This calculator performs affiliation based on a model constructed using machine learning techniques. The model was constructed using a data set of approximately fifteen thousand individuals collected for this work. The accuracy of individual population affiliation is approximately 86%, showing that the common set of STRs routinely used in forensics provide a considerable amount of information for population assignment, in addition to being excellent for individual identification.

  20. Allelic Prevalence of ABO Blood Group Genes in Iranian Azari Population

    PubMed Central

    Nojavan, Mohammad; Shamsasenjan, Karrim; Movassaghpour, Ali Akbar; Akbarzadehlaleh, Parvin; Torabi, Seyd Esmail; Ghojazadeh, Morteza

    2012-01-01

    Introduction ABO blood group system is the most important blood group in transfusion and has been widely used in population studies. Several molecular techniques for ABO allele’s detection are widely used for distinguishing various alleles of glycosyl transferase locus on chromosome 9. Methods 744 randomly selected samples from Azari donors of East Azerbaijan province (Iran) were examined using well-adjusted multiplex allele- specific PCR ABO genotyping technique. Results The results were consistent for all individuals. The ABO blood group genotype of 744 healthy Azari blood donors was: 25.8% AA/AO (2), 7.6% AO (1), 1.6% BB, 11.3% B0 (1), 10% AB, 9.3% 0(1)0(1) and 15.3%0(1)0(2). The highest genotype frequency belonged to O01/O02 genotype (15.3%) and the lowest frequency belonged to A101/A102 genotype (0.4%). Conclusions: The frequencies of ABO alleles didn’t show significant differences between East Azerbaijan province population and that of other areas of the country. Meanwhile, statistical analysis of frequencies of A and B alleles between East Azerbaijan province population and neighbor countries showed significant differences whereas the frequency of allele O between them did not show significant difference (P>0.05). Conclusions The frequencies of ABO alleles didn’t show significant differences between East Azerbaijan province population and that of other areas of the country. Meanwhile, statistical analysis of frequencies of A and B alleles between East Azerbaijan province population and neighbor countries showed significant differences whereas the frequency of allele O between them did not show significant difference (P>0.05). PMID:23678461

  1. Combined glutathione S transferase M1/T1 null genotypes is associated with type 2 diabetes mellitus

    PubMed Central

    POROJAN, MIHAI D.; BALA, CORNELIA; ILIES, ROXANA; CATANA, ANDREEA; POPP, RADU A.; DUMITRASCU, DAN L.

    2015-01-01

    Background Due to new genetic insights, a considerably large number of genes and polymorphic gene variants are screened and linked with the complex pathogenesis of type 2 diabetes (DM). Our study aimed to investigate the association between the two isoforms of the glutathione S-transferase genes (Glutathione S transferase isoemzyme type M1- GSTM1 and Glutathione S transferase isoemzyme type T1-GSTT1) and the prevalence of DM in the Northern Romanian population. Methods We conducted a cross-sectional, randomized, case-control study evaluating the frequency of GSTM1 and GSTT1 null alleles in patients diagnosed with DM. A total of 106 patients diagnosed with DM and 124 healthy controls were included in the study. GSTM1 and GSTT1 null alleles genotyping was carried out using Multiplex PCR amplification of relevant gene fragments, followed by gel electrophoresis analysis of the resulting amplicons. Results Molecular analysis did not reveal an increased frequency of the null GSTM1 and GSTT1 alleles (mutant genotypes) respectively in the DM group compared to controls (p=0.171, OR=1.444 CI=0.852–2.447; p=0.647, OR=0.854, CI=0.436–1.673). Nevertheless, the combined GSTM1/GSTT1 null genotypes were statistically significantly higher in DM patients compared to control subjects (p=0.0021, OR=0.313, CI=0.149–0.655) Conclusions The main finding of our study is that the combined, double GSTM1/GSTT1 null genotypes are to be considered among the polymorphic genetic risk factors for type 2 DM. PMID:26528065

  2. Diagnostic accuracy of high-risk HPV DNA genotyping for primary cervical cancer screening and triage of HPV-positive women, compared to cytology: preliminary results of the PIPAVIR study.

    PubMed

    Chatzistamatiou, Kimon; Moysiadis, Theodoros; Angelis, Eleftherios; Kaufmann, Andreas; Skenderi, Alkmini; Jansen-Duerr, Pidder; Lekka, Irini; Kilintzis, Vasilis; Angelidou, Stamatia; Katsiki, Evangelia; Hagemann, Ingke; Tsertanidou, Athena; Koch, Isabel; Boecher, Oliver; Soutschek, Erwin; Maglaveras, Nikolaos; Agorastos, Theodoros

    2017-05-01

    The purpose of the presented PIPAVIR (persistent infections with human papillomaviruses; http://www.pipavir.com ) subanalysis is to assess the performance of high-risk (hr) HPV-DNA genotyping as a method of primary cervical cancer screening and triage of HPV positive women to colposcopy compared to liquid-based cytology (LBC) in an urban female population. Women, aged 30-60, provided cervicovaginal samples at the Family-Planning Centre, Hippokratio Hospital of Thessaloniki, Greece, and the Department of Gynecology and Obstetrics in Mare Klinikum, Kiel, Germany. Cytology and HPV genotyping was performed using LBC and HPV Multiplex Genotyping (MPG), respectively. Women positive for cytology [atypical squamous cells of undetermined significance (ASC-US) or worse] or hrHPV were referred for colposcopy. Among 1723/1762 women included in the final analysis, hrHPV and HPV16/18 prevalence was 17.7 and 9.6%, respectively. Cytology was ASCUS or worse in 7.6%. Cervical Intraepithelial Neoplasia grade 2 or worse (CIN2+) was detected in 28 women (1.6%). Sensitivity of cytology (ASCUS or worse) and HPV DNA testing for the detection of CIN2+ was 50.0 and 100%, and specificity was 94.49 and 85.49%, respectively. The screening approach according to which only women positive for HPV16/18 and for hrHPV(non16/18) with ASCUS or worse were referred to colposcopy presented 78.57% sensitivity and 13.17% positive predictive value (PPV). HPV testing represents a more sensitive methodology for primary cervical cancer screening compared to cytology. For triage of HPV positive women to colposcopy, partial HPV genotyping offers better sensitivity than cytology, at the cost of higher number of colposcopies.

  3. Phenotype-genotype analysis of CYP2C19 in Colombian mestizo individuals

    PubMed Central

    Isaza, Carlos; Henao, Julieta; Martínez, José H Isaza; Arias, Juan C Sepúlveda; Beltrán, Leonardo

    2007-01-01

    Background Omeprazole is metabolized by the hepatic cytochrome P450 (CYP) 2C19 enzyme to 5-hydroxyomeprazole. CYP2C19 exhibits genetic polymorphisms responsible for the presence of poor metabolizers (PMs), intermediate metabolizers (IMs) and extensive metabolizers (EMs). The defective mutations of the enzyme and their frequencies change between different ethnic groups; however, the polymorphism of the CYP2C19 gene has not been studied in Colombian mestizos. The aim of this study was to evaluate the genotype and phenotype status of CYP2C19 in Colombian mestizos, in order to contribute to the use of appropriate strategies of drug therapy for this population. Methods 189 subjects were genotyped using the multiplex SNaPshot technique and a subgroup of 44 individuals received 20 mg of omeprazole followed by blood collection at 3 hours to determine the omeprazole hydroxylation index by HPLC. Results 83.6%, 15.3% and 1.1% of the subjects were genotyped as EMs, IMs and PMs, respectively. The frequencies of the CYP2C29*1 and CYP2C19*2 alleles were 91.3% and 8.7% respectively whereas the *3, *4, *5, *6 and *8 alleles were not found. No discrepancies were found between the genotype and phenotype of CYP2C19. Conclusion The frequency of poor metabolizers (1.1%) in the Colombian mestizos included in this study is similar to that in Bolivian mestizos (1%) but lower than in Mexican-Americans (3.2%), West Mexicans (6%), Caucasians (5%) and African Americans (5.4%). The results of this study will be useful for drug dosage recommendations in Colombian mestizos. PMID:17623107

  4. Rapid RHD Zygosity Determination Using Digital PCR.

    PubMed

    Sillence, Kelly A; Halawani, Amr J; Tounsi, Wajnat A; Clarke, Kirsty A; Kiernan, Michele; Madgett, Tracey E; Avent, Neil D

    2017-08-01

    Paternal zygosity testing is used for determining homo- or hemizygosity of RHD in pregnancies that are at a risk of hemolytic disease of the fetus and newborn. At present, this is achieved by using real-time PCR or the Rhesus box PCR, which can be difficult to interpret and unreliable, particularly for black African populations. DNA samples extracted from 53 blood donors were analyzed using 2 multiplex reactions for RHD -specific targets against a reference ( AGO1 ) 2 to determine gene dosage by digital PCR. Results were compared with serological data, and the correct genotype for 2 discordant results was determined by long-range PCR (LR-PCR), next-generation sequencing, and conventional Sanger sequencing. The results showed clear and reliable determination of RHD zygosity using digital PCR and revealed that 4 samples did not match the serologically predicted genotype. Sanger sequencing and long-range PCR followed by next-generation sequencing revealed that the correct genotypes for samples 729M and 351D, which were serologically typed as R 1 R 2 (DCe/DcE), were R 2 r' (DcE/dCe) for 729M and R 1 r″ (DCe/dcE), R 0 r y (Dce/dCE), or R Z r (DCE/dce) for 351D, in concordance with the digital PCR data. Digital PCR provides a highly accurate method to rapidly define blood group zygosity and has clinical application in the analysis of Rh phenotyped or genotyped samples. The vast majority of current blood group genotyping platforms are not designed to define zygosity, and thus, this technique may be used to define paternal RH zygosity in pregnancies that are at a risk of hemolytic disease of the fetus and newborn and can distinguish between homo- and hemizygous RHD -positive individuals. © 2017 American Association for Clinical Chemistry.

  5. Genetic polymorphisms in Plasmodium falciparum chloroquine resistance genes, pfcrt and pfmdr1, in North Sulawesi, Indonesia.

    PubMed

    Reteng, Patrick; Vrisca, Visia; Sukarno, Inka; Djarkoni, Ilham Habib; Kalangi, Jane Angela; Jacobs, George Eduardo; Runtuwene, Lucky Ronald; Eshita, Yuki; Maeda, Ryuichiro; Suzuki, Yutaka; Mongan, Arthur Elia; Warouw, Sarah Maria; Yamagishi, Junya; Tuda, Josef

    2017-04-04

    Malaria still poses one of the major threats to human health. Development of effective antimalarial drugs has decreased this threat; however, the emergence of drug-resistant Plasmodium falciparum, a cause of Malaria, is disconcerting. The antimalarial drug chloroquine has been effectively used, but resistant parasites have spread worldwide. Interestingly, the withdrawal of the drug reportedly leads to an increased population of susceptible parasites in some cases. We examined the prevalence of genomic polymorphisms in a malaria parasite P. falciparum, associated with resistance to an antimalarial drug chloroquine, after the withdrawal of the drug from Indonesia. Blood samples were collected from 95 malaria patients in North Sulawesi, Indonesia, in 2010. Parasite DNA was extracted and analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for pfcrt and pfmdr1. In parallel, multiplex amplicon sequencing for the same genes was carried out with Illumina MiSeq. Of the 59 cases diagnosed as P. falciparum infection by microscopy, PCR-RFLP analysis clearly identified the genotype 76T in pfcrt in 44 cases. Sequencing analysis validated the identified genotypes in the 44 cases and demonstrated that the haplotype in the surrounding genomic region was exclusively SVMNT. Results of pfmdr1 were successfully obtained for 51 samples, where the genotyping results obtained by the two methods were completely consistent. In pfmdr1, the 86Y mutant genotype was observed in 45 cases (88.2%). Our results suggest that the prevalence of the mutated genotypes remained dominant even 6 years after the withdrawal of chloroquine from this region. Diversified haplotype of the resistance-related locus, potentially involved in fitness costs, unauthorized usage of chloroquine, and/or a short post-withdrawal period may account for the observed high persistence of prevalence.

  6. Single Color Multiplexed ddPCR Copy Number Measurements and Single Nucleotide Variant Genotyping.

    PubMed

    Wood-Bouwens, Christina M; Ji, Hanlee P

    2018-01-01

    Droplet digital PCR (ddPCR) allows for accurate quantification of genetic events such as copy number variation and single nucleotide variants. Probe-based assays represent the current "gold-standard" for detection and quantification of these genetic events. Here, we introduce a cost-effective single color ddPCR assay that allows for single genome resolution quantification of copy number and single nucleotide variation.

  7. Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America.

    PubMed

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Lopes, João R S; Muller, Christiane; Almeida, Rodrigo P P

    2017-03-01

    Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.

  8. Multiplex Real-Time qPCR Assay for Simultaneous and Sensitive Detection of Phytoplasmas in Sesame Plants and Insect Vectors

    PubMed Central

    Ikten, Cengiz; Ustun, Rustem; Catal, Mursel; Yol, Engin; Uzun, Bulent

    2016-01-01

    Phyllody, a destructive and economically important disease worldwide caused by phytoplasma infections, is characterized by the abnormal development of floral structures into stunted leafy parts and contributes to serious losses in crop plants, including sesame (Sesamum indicum L.). Accurate identification, differentiation, and quantification of phyllody-causing phytoplasmas are essential for effective management of this plant disease and for selection of resistant sesame varieties. In this study, a diagnostic multiplex qPCR assay was developed using TaqMan® chemistry based on detection of the 16S ribosomal RNA gene of phytoplasmas and the 18S ribosomal gene of sesame. Phytoplasma and sesame specific primers and probes labeled with different fluorescent dyes were used for simultaneous amplification of 16SrII and 16SrIX phytoplasmas in a single tube. The multiplex real-time qPCR assay allowed accurate detection, differentiation, and quantification of 16SrII and 16SrIX groups in 109 sesame plant and 92 insect vector samples tested. The assay was found to have a detection sensitivity of 1.8 x 102 and 1.6 x 102 DNA copies for absolute quantification of 16SrII and 16SrIX group phytoplasmas, respectively. Relative quantification was effective and reliable for determination of phyllody phytoplasma DNA amounts normalized to sesame DNA in infected plant tissues. The development of this qPCR assay provides a method for the rapid measurement of infection loads to identify resistance levels of sesame genotypes against phyllody phytoplasma disease. PMID:27195795

  9. Development of a multiplex polymerase chain reaction-sequence-specific primer method for NKG2D and NKG2F single-nucleotide polymorphism typing using isothermal multiple displacement amplification products.

    PubMed

    Kaewmanee, M; Phoksawat, W; Romphruk, A; Romphruk, A V; Jumnainsong, A; Leelayuwat, C

    2013-06-01

    Natural killer group 2 member D (NKG2D) on immune effector cells recognizes multiple stress-inducible ligands. NKG2D single-nucleotide polymorphism (SNP) haplotypes were related to the levels of cytotoxic activity of peripheral blood mononuclear cells. Indeed, these polymorphisms were also located in NKG2F. Isothermal multiple displacement amplification (IMDA) is used for whole genome amplification (WGA) that can amplify very small genomic DNA templates into microgram with whole genome coverage. This is particularly useful in the cases of limited amount of valuable DNA samples requiring multi-locus genotyping. In this study, we evaluated the quality and applicability of IMDA to genetic studies in terms of sensitivity, efficiency of IMDA re-amplification and stability of IMDA products. The smallest amount of DNA to be effectively amplified by IMDA was 200 pg yielding final DNA of approximately 16 µg within 1.5 h. IMDA could be re-amplified only once (second round of amplification), and could be kept for 5 months at 4°C and more than a year at -20°C without loosing genome coverage. The amplified products were used successfully to setup a multiplex polymerase chain reaction-sequence-specific primer for SNP typing of the NKG2D/F genes. The NKG2D/F multiplex polymerase chain reaction (PCR) contained six PCR mixtures for detecting 10 selected SNPs, including 8 NKG2D/F SNP haplotypes and 2 additional NKG2D coding SNPs. This typing procedure will be applicable in both clinical and research laboratories. Thus, our data provide useful information and limitations for utilization of genome-wide amplification using IMDA and its application for multiplex NKG2D/F typing. © 2013 John Wiley & Sons Ltd.

  10. Accelerated Genome Engineering through Multiplexing

    PubMed Central

    Zhao, Huimin

    2015-01-01

    Throughout the biological sciences, the past fifteen years have seen a push towards the analysis and engineering of biological systems at the organism level. Given the complexity of even the simplest organisms, though, to elicit a phenotype of interest often requires genotypic manipulation of several loci. By traditional means, sequential editing of genomic targets requires a significant investment of time and labor, as the desired editing event typically occurs at a very low frequency against an overwhelming unedited background. In recent years, the development of a suite of new techniques has greatly increased editing efficiency, opening up the possibility for multiple editing events to occur in parallel. Termed as multiplexed genome engineering, this approach to genome editing has greatly expanded the scope of possible genome manipulations in diverse hosts, ranging from bacteria to human cells. The enabling technologies for multiplexed genome engineering include oligonucleotide-based and nuclease-based methodologies, and their application has led to the great breadth of successful examples described in this review. While many technical challenges remain, there also exists a multiplicity of opportunities in this rapidly expanding field. PMID:26394307

  11. CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants.

    PubMed

    Ma, Xingliang; Liu, Yao-Guang

    2016-07-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome targeting system has been applied to a variety of organisms, including plants. Compared to other genome-targeting technologies such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), the CRISPR/Cas9 system is easier to use and has much higher editing efficiency. In addition, multiple "single guide RNAs" (sgRNAs) with different target sequences can be designed to direct the Cas9 protein to multiple genomic sites for simultaneous multiplex editing. Here, we present a procedure for highly efficient multiplex genome targeting in monocot and dicot plants using a versatile and robust CRISPR/Cas9 vector system, emphasizing the construction of binary constructs with multiple sgRNA expression cassettes in one round of cloning using Golden Gate ligation. We also describe the genotyping of targeted mutations in transgenic plants by direct Sanger sequencing followed by decoding of superimposed sequencing chromatograms containing biallelic or heterozygous mutations using the Web-based tool DSDecode. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  12. Development and validation of the AmpFℓSTR® Identifiler® Direct PCR Amplification Kit: a multiplex assay for the direct amplification of single-source samples.

    PubMed

    Wang, Dennis Y; Chang, Chien-Wei; Lagacé, Robert E; Oldroyd, Nicola J; Hennessy, Lori K

    2011-07-01

    The AmpFℓSTR(®) Identifiler(®) Direct PCR Amplification Kit is a new short tandem repeat multiplex assay optimized to allow the direct amplification of single-source blood and buccal samples on FTA(®) card without the need for sample purification and quantification. This multiplex assay has been validated according to the FBI/National Standards and SWGDAM guidelines. Validation results revealed that slight variations in primer concentration, master mix component concentration, and thermal cycling parameters did not affect the performance of the chemistry. The assay's sensitivity was demonstrated by amplifying known amounts of white blood cells spotted onto FTA(®) cards, and the assay's specificity was verified by establishing minimal cross-reactivity with nonhuman DNA. No effect on the age of the sample stored on the FTA(®) substrate was observed and full concordance was established in the population study. These findings of the validation study support the use of the Identifiler(®) Direct Kit for forensic standards and database samples genotyping. © 2011 American Academy of Forensic Sciences.

  13. Next generation sequencing techniques in liquid biopsy: focus on non-small cell lung cancer patients.

    PubMed

    Malapelle, Umberto; Pisapia, Pasquale; Rocco, Danilo; Smeraglio, Riccardo; di Spirito, Maria; Bellevicine, Claudio; Troncone, Giancarlo

    2016-10-01

    The advent of genomic based personalized medicine has led to multiple advances in the molecular characterization of many tumor types, such as non-small cell lung cancer (NSCLC). NSCLC is diagnosed in most cases on small tissue samples that may be not always sufficient for EGFR mutational assessment to select patients for first and second generations' tyrosine kinase inhibitors (TKIs) therapy. In patients without tissue availability at presentation, the analysis of cell free DNA (cfDNA) derived from liquid biopsy samples, in particular from plasma, represent an established alternative to provide EGFR mutational testing for treatment decision making. In addition, a new paradigm for TKIs resistance management was recently approved by Food and Drug Administration, supporting the liquid biopsy based genotyping prior to tissue based genotyping for the detection of T790M mutation to select patients for third generation TKIs. In these settings, real time PCR (RT-PCR) and digital PCR 'targeted' methods, which detect known mutations by specific probes, have extensively been adopted. Taking into account the restricted reference range and the limited multiplexing power of these targeted methods, the performance of liquid biopsy analyses may be further improved by next generation sequencing (NGS). While most tissue based NGS genotyping is well established, liquid biopsy NGS application is challenging, requiring a careful validation of the whole process, from blood collection to variant calling. Here we review this evolving field, highlighting those methodological points that are crucial to accurately select NSCLC patients for TKIs treatment administration by NGS on cfDNA.

  14. Emerging Perils of Extended Spectrum β-Lactamase Producing Enterobacteriaceae Clinical Isolates in a Teaching Hospital of Nepal.

    PubMed

    Parajuli, Narayan Prasad; Maharjan, Pooja; Joshi, Govardhan; Khanal, Puspa Raj

    2016-01-01

    Introduction . Infections due to extended spectrum β -lactamase producing Enterobacteriaceae are on the rise. They pose serious public health problems due to their resistance to large number of antibiotics. However, little is known about the genotypes of ESBL from Nepal. Therefore, the study presents results of phenotypic and molecular characterization of ESBL producing Escherichia coli and Klebsiella spp. isolated from various clinical specimens in a tertiary care teaching hospital of Nepal. Methods . A total of 172 Enterobacteriaceae clinical isolates recovered from various clinical specimens were analyzed for their antibiotic susceptibility test. Detection of ESBLs was carried out using combination disk test and multiplex PCR for their genotypes (CTX-M, SHV, and TEM). Results . Out of 172 clinical isolates, 70 (40.6%) of them were found ESBL producers. The major source of ESBL producers was urinary tract samples and the highest ESBL production was observed in Escherichia coli (46.5%). Among ESBL genotypes, CTX-M (91.4%) was most predominant, followed by TEM (65.7%) and SHV (11.4%) in both of the isolates. Conclusions . High level of drug resistance and ESBL production was observed among the clinical isolates. There is a need for longitudinal and nationwide surveillance for drug resistance in clinical isolates and antimicrobial stewardship is necessary to guide the appropriate and judicious antibiotic use.

  15. Escherichia coli H-Genotyping PCR: a Complete and Practical Platform for Molecular H Typing.

    PubMed

    Banjo, Masaya; Iguchi, Atsushi; Seto, Kazuko; Kikuchi, Taisei; Harada, Tetsuya; Scheutz, Flemming; Iyoda, Sunao

    2018-06-01

    In Escherichia coli , more than 180 O groups and 53 H types have been recognized. The O:H serotyping of E. coli strains is an effective method for identifying strains with pathogenic potential and classifying them into clonal groups. In particular, the serotyping of Shiga toxin-producing E. coli (STEC) strains provides valuable information to evaluate the routes, sources, and prevalence of agents in outbreak investigations and surveillance. Here, we present a complete and practical PCR-based H-typing system, E. coli H-genotyping PCR, consisting of 10 multiplex PCR kits with 51 single PCR primer pairs. Primers were designed based on a detailed comparative analysis of sequences from all H-antigen (flagellin)-encoding genes, fliC and its homologs. The specificity of this system was confirmed by using all H type reference strains. Additionally, 362 serotyped wild strains were also used to evaluate its practicality. All 277 H-type-identified isolates gave PCR products that corresponded to the results of serological H typing. Moreover, 76 nonmotile and nine untypeable strains could be successfully subtyped into any H type by the PCR system. The E. coli H-genotyping PCR developed here allows broader, rapid, and low-cost subtyping of H types and will assist epidemiological studies as well as surveillance of pathogenic E. coli . Copyright © 2018 American Society for Microbiology.

  16. DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan.

    PubMed

    Asano, Kenji; Kobayashi, Akira; Tsuda, Shogo; Nishinaka, Mio; Tamiya, Seiji

    2012-06-01

    One of major objectives of crop breeding is conferring resistance to diseases and pests. However, large-scale phenotypic evaluation for many diseases and pests is difficult because strict controls are required to prevent their spread. Detection of disease resistance genes by using DNA markers may be an alternative approach to select potentially resistant accessions. Potato (Solanum tuberosum L.) breeders in Japan extensively use resistance gene H1, which confers nearly absolute resistance to potato cyst nematode (Globodera rostochiensis) pathotype Ro1, the only pathotype found in Japan. However, considering the possibility of accidental introduction of the other pathotypes, breeding of resistant varieties is an important strategy to prevent infestation by non-invading pathotypes in Japan. In this study, to evaluate the prevalence of resistance genes in Japanese genetic resources, we developed a multiplex PCR method that simultaneously detects 3 resistance genes, H1, Gpa2 and Gro1-4. We revealed that many Japanese varieties possess not only H1 but Gpa2, which are potentially resistant to other pathotypes of potato cyst nematode. On the other hand, no genotype was found to have the Gro1-4, indicating importance of introduction of varieties having Gro1-4. Our results demonstrate the applicability of DNA-marker assisted evaluation of resistant potato genotypes without phenotypic evaluation.

  17. DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan

    PubMed Central

    Asano, Kenji; Kobayashi, Akira; Tsuda, Shogo; Nishinaka, Mio; Tamiya, Seiji

    2012-01-01

    One of major objectives of crop breeding is conferring resistance to diseases and pests. However, large-scale phenotypic evaluation for many diseases and pests is difficult because strict controls are required to prevent their spread. Detection of disease resistance genes by using DNA markers may be an alternative approach to select potentially resistant accessions. Potato (Solanum tuberosum L.) breeders in Japan extensively use resistance gene H1, which confers nearly absolute resistance to potato cyst nematode (Globodera rostochiensis) pathotype Ro1, the only pathotype found in Japan. However, considering the possibility of accidental introduction of the other pathotypes, breeding of resistant varieties is an important strategy to prevent infestation by non-invading pathotypes in Japan. In this study, to evaluate the prevalence of resistance genes in Japanese genetic resources, we developed a multiplex PCR method that simultaneously detects 3 resistance genes, H1, Gpa2 and Gro1-4. We revealed that many Japanese varieties possess not only H1 but Gpa2, which are potentially resistant to other pathotypes of potato cyst nematode. On the other hand, no genotype was found to have the Gro1-4, indicating importance of introduction of varieties having Gro1-4. Our results demonstrate the applicability of DNA-marker assisted evaluation of resistant potato genotypes without phenotypic evaluation. PMID:23136525

  18. Genetic characterization and antimicrobial resistance of Staphylococcus aureus isolated from bovine milk in Tunisia.

    PubMed

    Ben Said, M; Abbassi, M S; Bianchini, V; Sghaier, S; Cremonesi, P; Romanò, A; Gualdi, V; Hassen, A; Luini, M V

    2016-12-01

    Staphylococcus aureus is a major agent of bovine mastitis in dairy herds, causing economic losses in dairy industry worldwide. In addition, milk and milk-products contaminated by Staph. aureus can cause harmful human diseases. The aim of this study was to characterize Staph. aureus strains isolated from dairy farms in Tunisia. Bulk tank milk (n = 32) and individual cow milk (n = 130) samples were collected during the period of 2013-2014. Forty-three Staph. aureus isolates were recovered and typed by spa typing, 16S-23S rRNA intergenic spacer (RS-PCR) and multiplex PCRs for 22 virulence genes. Antimicrobial resistance was also investigated with a disc diffusion test. A selected subsample of 22 strains was additionally genotyped by multilocus sequence typing. Seventeen spa types were recovered, and t2421 (n = 10), t521 (n = 6) and t2112 (n = 5) were the most common. Fourteen different RS-PCR genotypes grouped into 11 clusters were detected in our study, with predominance of the R VI genotype (n = 24). Eight sequence types were identified and Clonal Complex 97, corresponding to RS-PCR cluster R, was the most common (n = 10), followed by CC1 (n = 4), CC15 (n = 3) and other four accounting for one or two strains. Different combinations of virulence genes were reported, and enterotoxin genes were present in few strains (seh, n = 4; sea, n = 2; sea and seh, n = 2; sec and sel, n = 2). The majority of strains were resistant only to penicillin; only one strain was found to be multiresistant and no methicillin-resistant Staph. aureus was demonstrated. Our study reported the isolation of CC97 from bovine milk in Tunisia for the first time and confirmed the relevance of this lineage in intramammary infection in cows. This paper describes the characteristics of Staphylococcus aureus isolated from bulk tank and individual cow milk in Tunisia. All strains were genotyped by spa typing and RS-PCR, a method based on the amplification of the 16S-23S rRNA intergenic spacer region, and multiplex PCRs for 22 virulence genes. A selected subsample of strains was also genotyped by multilocus sequence typing. All strains were tested for antimicrobial resistance. Our study evidences a predominance of strains belonging to Clonal Complex 97. Methicillin-resistant strains were not detected, and overall low level of antimicrobial resistance was reported. © 2016 The Society for Applied Microbiology.

  19. Distribution of genetic variants of oxidative stress metabolism genes: Paraoxonase 1 (PON1) and Glutathione S-transferase (GSTM1/GSTT1) in a population from Southeastern Mexico.

    PubMed

    García-González, I; Mendoza-Alcocer, R; Pérez-Mendoza, G J; Rubí-Castellanos, R; González-Herrera, L

    2016-11-01

    Paraoxonase 1 (PON1) and glutathione S-transferases (GSTs) are involved in the biotransformation of xenobiotics. Variation in the enzyme concentration and activity suggests individual differences for the degree of protection against oxidative stress. This study analysed the distribution of SNPs Q192R, L55M (PON1) and variants in GSTM1 and GSTT1 genes in a population from Southeastern Mexico. One hundred and fifty-one Mexican Mestizo healthy volunteers were included. PON1 polymorphisms were determined by Taqman allele discrimination real time-PCR, whereas GSTM1 and GSTT1 genes were determined with a multiplex PCR-based method. All genotypes were in Hardy-Weinberg equilibrium, except for GSTM1. The genotypic distributions of Q192R and L55M were 22% QQ, 48% QR, 30% RR, 62% LL, 34% LM and 4% MM, respectively, whereas the allele frequencies were 0.46 (Q), 0.54 (R), 0.79 (L) and 0.21 (M). The most frequent haplotype was R/L (46.7%). It was found that 31% and 9% of the individuals had the GSTM1 and GSTT1 null genotype, respectively. The frequency of the combined null genotype GSTM1*0/GSTT1*0 was 4.64%. The results showed that the frequencies of polymorphisms of PON1, GSTM1 and GSTT1 in the Yucatán population differ to those observed in other ethnic groups and provide useful data for epidemiological studies.

  20. Genotyping applications for transplantation and transfusion management: The Emory Experience

    PubMed Central

    Fasano, Ross M.; Sullivan, Harold Cliff; Bray, Bob; Gebel, Howie; Meyer, Erin K.; Winkler, Annie M.; Josephson, Cassandra D.; Stowell, Sean R.; Duncan, Sandy; Roback, John D.

    2018-01-01

    Current genotyping methodologies for transplantation and transfusion management employ multiplex systems that allow for the simultaneous detection of multiple human leukocyte antigens (HLA), human platelet antigens (HPA) and red blood cell (RBC) antigens. The development of high resolution molecular HLA typing has led to improved outcomes of unrelated hematopoietic stem cell transplants by better identifying suitable donors typed at the allele level for HLA-A, B, C, DRB1 and DQB1 antigens. In solid organ transplantation, the combination of high resolution HLA typing along with solid-phase antibody identification and the calculated PRA have shown to be of specific benefit to highly sensitized patients, and have resulted in significant reductions of incompatible crossmatches at the time of organ allocation. This database-driven combined HLA antigen/antibody testing has promoted the routine implementation of the virtual crossmatch, in which an electronic crossmatch is performed, and perhaps even obviates the need for a physical crossmatch. Additionally, DNA-based testing for RBC antigens provides as an alternative typing method that mitigates many of the limitations of hemagglutination-based phenotyping. Although there are many applications of RBC genotyping in various transfusion settings, it has arguably been most useful in the management of transfusion-dependent patients with sickle cell disease (SCD) and thalassemia to minimize alloimmunization. The availability of high-throughput RBC genotyping for both patients and large populations of donors, along with coordinated informatics systems to link patients’ antigen needs with available antigen-negative and/or rare blood-typed donors, offer promise toward improving the efficiency, reliability, and extent of RBC matching for this population. PMID:28234571

  1. Interactions between UCP2 SNPs and telomere length exist in the absence of diabetes or pre-diabetes

    PubMed Central

    Zhou, Yuling; Simmons, David; Hambly, Brett D.; McLachlan, Craig S.

    2016-01-01

    Mitochondrial uncoupling protein 2 (UCP2) can affect oxidative stress levels. UCP2 polymorphisms are associated with leukocyte telomere length (LTL) in Type 2 Diabetes, which also induces considerable background oxidative stress. The effects of UCP2 polymorphisms on LTL in populations without diabetes have not been well described. Our aims are to evaluate the interaction between LTL and UCP2 polymorphisms in 950 subjects without diabetes. The monochrome multiplex quantitative PCR method was used to measure relative LTL. Taqman SNP genotyping assay was applied to genotypes for UCP2 rs659366 and rs660339. We found shorter LTL associated with increased age (P < 0.001) and triglyceride levels (P = 0.041). After adjustment for cardiovascular risk factors, rs659336 GG genotype carriers demonstrated a shorter LTL (1.257 ± 0.186), compared to GA carriers (1.288 ± 0.230, P = 0.022) and AA carriers (1.314 ± 0.253, P = 0.002). LTL was shorter in the CC rs660339 genotype (1.254 ± 0.187) compared to TT (1.297 ± 0.242, P = 0.007) and CT carriers (1.292 ± 0.229, P = 0.016). The T allele of rs660339 is associated with a longer LTL of approximately 0.04 compared to CC homozygotes. Thus, UCP2 rs659366 A allele and rs660339 T allele are both related to longer LTL in subjects without diabetes, independent of cardiovascular risk factors. PMID:27615599

  2. GSTT1 and GSTM1 gene polymorphisims in sarcoidosis.

    PubMed

    Coskun, Funda; Karkucak, Mutlu; Yilmaz, Dilber; Yakut, Tahsin; Uzaslan, Esra

    2016-10-07

    Sarcoidosis is a granulomatous disease of unknown cause, which affects all systems, especially the lungs and the lymphatic system. Genetic and environmental factors are held accountable for the etiology. Based on the general opinion, sarcoidosis develops after exposure to a specific environmental agent by genetically susceptible individuals.  The present study aimed to evaluate the disease susceptibility of the GSTT1 and GSTM1 gene polymorphisms in the patients with sarcoidosis. The present study included 78 patients; 38 patients with histopathologically verified sarcoidosis and 40 control subjects. Multiplex PCR method was used to determine the GSTT1 and GSTM1 gene polymorphisms. The genotype was determined based on the bands formed in the agarose gel electrophoresis. The statistical analysis was done using the chi-square test. The positive/negative genotype rates were 79%/21% and 53%/47%, respectively in the case group for the GSTT1 and GSTM1 gene polymorphisms, whereas the positive/negative genotype rates were 77%/23% and 55%/45% in the control group. There was no statistically significant difference in the positive and negative genotypes compared with the case group and the control group for the GSTT1 and GSTM1 gene polymorphisms (p > 0.05). The results from the present study suggest that there is not any association with the control group for the disease susceptibility of the GSTT1 and GSTM1 gene polymorphisms in patients with sarcoidosis, and this result should be supported by large-scale studies because of the limited number of cases in the present study.

  3. A Single Molecular Beacon Probe Is Sufficient for the Analysis of Multiple Nucleic Acid Sequences

    PubMed Central

    Gerasimova, Yulia V.; Hayson, Aaron; Ballantyne, Jack; Kolpashchikov, Dmitry M.

    2010-01-01

    Molecular beacon (MB) probes are dual-labeled hairpin-shaped oligodeoxyribonucleotides that are extensively used for real-time detection of specific RNA/DNA analytes. In the MB probe, the loop fragment is complementary to the analyte: therefore, a unique probe is required for the analysis of each new analyte sequence. The conjugation of an oligonucleotide with two dyes and subsequent purification procedures add to the cost of MB probes, thus reducing their application in multiplex formats. Here we demonstrate how one MB probe can be used for the analysis of an arbitrary nucleic acid. The approach takes advantage of two oligonucleotide adaptor strands, each of which contains a fragment complementary to the analyte and a fragment complementary to an MB probe. The presence of the analyte leads to association of MB probe and the two DNA strands in quadripartite complex. The MB probe fluorescently reports the formation of this complex. In this design, the MB does not bind the analyte directly; therefore, the MB sequence is independent of the analyte. In this study one universal MB probe was used to genotype three human polymorphic sites. This approach promises to reduce the cost of multiplex real-time assays and improve the accuracy of single-nucleotide polymorphism genotyping. PMID:20665615

  4. Genotypic characterisation of human papillomavirus infections among persons living with HIV infection; a case-control study in Kumasi, Ghana.

    PubMed

    Yar, Denis Dekugmen; Salifu, Samson Pandam; Darko, Samuel Nkansah; Annan, Augustina Angelina; Gyimah, Akosua Adumea; Buabeng, Kwame Ohene; Owusu-Dabo, Ellis

    2016-02-01

    The objective of this study is to describe the burden of human papillomavirus (HPV) infection among women living with HIV and non-infected women in Ghana. A case-control study was conducted involving 107 women living with HIV aged between 18 and 59 years (cases) and 100 non-HIV-infected apparently healthy women (controls) who were recruited from the Kumasi South Hospital, from July to December, 2014. Cervicovaginal swabs were taken from study participants to characterise 28 high- and low-risk HPV genotypes using a multiplex real-time PCR. The overall mean age for the participants was 40.10 ± 9.76 years. The prevalence of high-risk (hr)-HPV genotypes was significantly higher among the cases than the controls (77.4% vs. 41.6%, P < 0.0001). Overall, HPV 58 and 54 were the most predominant high-risk (18.8%) and low-risk (15.0%) genotypes detected. The two most common hr-HPV genotype isolates were 58 (18.8%) and 35 (15.9%) with 58 being the most prevalent among age group 35-44 years compared with hr-HPV 16, 18, 35 and 45, found predominantly among 18-34 age group. Significant variations exist in HPV genotypes among HIV-infected and uninfected women. © 2015 John Wiley & Sons Ltd.

  5. Construction of a primary DNA fingerprint database for cotton cultivars.

    PubMed

    Zhang, Y C; Kuang, M; Yang, W H; Xu, H X; Zhou, D Y; Wang, Y Q; Feng, X A; Su, C; Wang, F

    2013-06-13

    Forty core primers were used to construct a DNA fingerprint database of 132 cotton species based on multiplex fluorescence detection technology. A high first successful ratio of 99.04% was demonstrated with tetraplex polymerase chain reaction. Forty primer pairs amplified a total of 262 genotypes among 132 species, with an average of 6.55 per primer and values of polymorphism information content varying from 0.340 to 0.882. Conflicting DNA homozygous ratios were found in various species. The highest DNA homozygous ratio was found in landrace standard cultivars, which had an 81.46% DNA homozygous ratio. The lowest occurred in a group of 2010 leading cultivars with a homozygous ratio of 63.04%. Genetic diversity of the 132 species was briefly analyzed using unweighted pair-group method with arithmetic means.

  6. Detection of Rotavirus Genotypes in Korea 5 Years after the Introduction of Rotavirus Vaccines.

    PubMed

    Chung, Ju-Young; Kim, Min-Sung; Jung, Tae Woong; Kim, Seong Joon; Kang, Jin-Han; Han, Seung Beom; Kim, Sang Yong; Rhim, Jung Woo; Kim, Hwang-Min; Park, Jae Hong; Jo, Dae Sun; Ma, Sang Hyuk; Jeong, Hye-Sook; Cheon, Doo-Sung; Kim, Jong-Hyun

    2015-10-01

    Rotavirus (RV) is one of the most important viral etiologic agents of acute gastroenteritis (AGE) in children. Although effective RV vaccines (RVVs) are now used worldwide, novel genotypes and outbreaks resulting from rare genotype combinations have emerged. This study documented RV genotypes in a Korean population of children with AGE 5 yr after the introduction of RVV and assessed potential genotype differences based on vaccination status or vaccine type. Children less than 5-yr-old diagnosed with AGE between October 2012 and September 2013 admitted to 9 medical institutions from 8 provinces in Korea were prospectively enrolled. Stool samples were tested for RV by enzyme immunoassay and genotyped by multiplex reverse-transcription polymerase chain reaction. In 346 patients, 114 (32.9%) were RV-positive. Among them, 87 (76.3%) patients were infected with RV alone. Eighty-six of 114 RV-positive stool samples were successfully genotyped, and their combinations of genotypes were G1P[8] (36, 41.9%), G2P[4] (12, 14.0%), and G3P[8] (6, 7.0%). RV was detected in 27.8% of patients in the vaccinated group and 39.8% in the unvaccinated group (P=0.035). Vaccination history was available for 67 of 86 cases with successfully genotyped RV-positive stool samples; RotaTeq (20, 29.9%), Rotarix (7, 10.4%), unvaccinated (40, 59.7%). The incidence of RV AGE is lower in the RV-vaccinated group compared to the unvaccinated group with no evidence of substitution with unusual genotype combinations.

  7. A novel method for simultaneous Enterococcus species identification/typing and van genotyping by high resolution melt analysis.

    PubMed

    Gurtler, Volker; Grando, Danilla; Mayall, Barrie C; Wang, Jenny; Ghaly-Derias, Shahbano

    2012-09-01

    In order to develop a typing and identification method for van gene containing Enterococcus faecium, two multiplex PCR reactions were developed for use in HRM-PCR (High Resolution Melt-PCR): (i) vanA, vanB, vanC, vanC23 to detect van genes from different Enterococcus species; (ii) ISR (intergenic spacer region between the 16S and 23S rRNA genes) to detect all Enterococcus species and obtain species and isolate specific HRM curves. To test and validate the method three groups of isolates were tested: (i) 1672 Enterococcus species isolates from January 2009 to December 2009; (ii) 71 isolates previously identified and typed by PFGE (pulsed-field gel electrophoresis) and MLST (multi-locus sequence typing); and (iii) 18 of the isolates from (i) for which ISR sequencing was done. As well as successfully identifying 2 common genotypes by HRM from the Austin Hospital clinical isolates, this study analysed the sequences of all the vanB genes deposited in GenBank and developed a numerical classification scheme for the standardised naming of these vanB genotypes. The identification of Enterococcus faecalis from E. faecium was reliable and stable using ISR PCR. The typing of E. faecium by ISR PCR: (i) detected two variable peaks corresponding to different copy numbers of insertion sequences I and II corresponding to peak I and II respectively; (ii) produced 7 melt profiles for E. faecium with variable copy numbers of sequences I and II; (iii) demonstrated stability and instability of peak heights with equal frequency within the patient sample (36.4±4.5 days and 38.6±5.8 days respectively for 192 patients); (iv) detected ISR-HRM types with as much discrimination as PFGE and more than MLST; and (v) detected ISR-HRM types that differentiated some isolates that were identical by PFGE and MLST. In conjunction with the rapid and accurate van genotyping method described here, this ISR-HRM typing and identification method can be used as a stable identification and typing method with predictable instability based on recombination and concerted evolution of the rrn operon that will complement existing typing methods. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species.

    PubMed

    Gopaul, Krishna K; Sells, Jessica; Lee, Robin; Beckstrom-Sternberg, Stephen M; Foster, Jeffrey T; Whatmore, Adrian M

    2014-12-11

    The zoonosis brucellosis causes economically significant reproductive problems in livestock and potentially debilitating disease of humans. Although the causative agent, organisms from the genus Brucella, can be differentiated into a number of species based on phenotypic characteristics, there are also significant differences in genotype that are concordant with individual species. This paper describes the development of a five target multiplex assay to identify five terrestrial Brucella species using real-time polymerase chain reaction (PCR) and subsequent high resolution melt curve analysis. This technology offers a robust and cost effective alternative to previously described hydrolysis-probe Single Nucleotide Polymorphism (SNP)-based species defining assays. Through the use of Brucella whole genome sequencing five species defining SNPs were identified. Individual HRM assays were developed to these target these changes and, following optimisation of primer concentrations, it was possible to multiplex all five assays in a single tube. In a validation exercise using a panel of 135 Brucella strains of terrestrial and marine origin, it was possible to distinguish the five target species from the other species within this panel. The HRM multiplex offers a number of diagnostic advantages over previously described SNP-based typing approaches. Further, and uniquely for HRM, the successful multiplexing of five assays in a single tube allowing differentiation of five Brucella species in the diagnostic laboratory in a cost-effective and timely manner is described. However there are possible limitations to using this platform on DNA extractions direct from clinical material.

  9. Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung

    2016-10-01

    In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4  ×  4 LGSO crystals, each with a dimension of 3  ×  3  ×  20 mm3, and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.

  10. Analyses of Genotypes and Phenotypes of Ten Chinese Patients with Wolf-Hirschhorn Syndrome by Multiplex Ligation-dependent Probe Amplification and Array Comparative Genomic Hybridization

    PubMed Central

    Yang, Wen-Xu; Pan, Hong; Li, Lin; Wu, Hai-Rong; Wang, Song-Tao; Bao, Xin-Hua; Jiang, Yu-Wu; Qi, Yu

    2016-01-01

    Background: Wolf-Hirschhorn syndrome (WHS) is a contiguous gene syndrome that is typically caused by a deletion of the distal portion of the short arm of chromosome 4. However, there are few reports about the features of Chinese WHS patients. This study aimed to characterize the clinical and molecular cytogenetic features of Chinese WHS patients using the combination of multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (array CGH). Methods: Clinical information was collected from ten patients with WHS. Genomic DNA was extracted from the peripheral blood of the patients. The deletions were analyzed by MLPA and array CGH. Results: All patients exhibited the core clinical symptoms of WHS, including severe growth delay, a Greek warrior helmet facial appearance, differing degrees of intellectual disability, and epilepsy or electroencephalogram anomalies. The 4p deletions ranged from 2.62 Mb to 17.25 Mb in size and included LETM1, WHSC1, and FGFR3. Conclusions: The combined use of MLPA and array CGH is an effective and specific means to diagnose WHS and allows for the precise identification of the breakpoints and sizes of deletions. The deletion of genes in the WHS candidate region is closely correlated with the core WHS phenotype. PMID:26960370

  11. The Leiden Family Lab study on Social Anxiety Disorder: A multiplex, multigenerational family study on neurocognitive endophenotypes

    PubMed Central

    Harrewijn, Anita; Tissier, Renaud L.M.; van der Molen, Melle J.W.; van Steenbergen, Henk; van Vliet, Irene M.; Reichart, Catrien G.; Houwing‐Duistermaat, Jeanine J.; Slagboom, P. Eline; van der Wee, Nic J.A.; Westenberg, P. Michiel

    2018-01-01

    abstract Objectives Social anxiety disorder (SAD) is a serious and prevalent psychiatric condition, with a heritable component. However, little is known about the characteristics that are associated with the genetic component of SAD, the so‐called “endophenotypes”. These endophenotypes could advance our insight in the genetic susceptibility to SAD, as they are on the pathway from genotype to phenotype. The Leiden Family Lab study on Social Anxiety Disorder (LFLSAD) is the first multiplex, multigenerational study aimed to identify neurocognitive endophenotypes of social anxiety. Methods The LFLSAD is characterized by a multidisciplinary approach and encompasses a variety of measurements, including a clinical interview, functional and structural magnetic resonance imaging and an electroencephalography experiment. Participants are family members from 2 generations, from families genetically enriched for SAD. Results The sample (n = 132 participants, from 9 families) was characterized by a high prevalence of SAD, in both generations (prevalence (sub)clinical SAD: 38.3%). Furthermore, (sub)clinical SAD was positively related to self‐reported social anxiety, fear of negative evaluation, trait anxiety, behavioral inhibition, negative affect, and the level of depressive symptoms. Conclusions By the multidimensional character of the measurements and thorough characterization of the sample, the LFLSAD offers unique opportunities to investigate candidate neurocognitive endophenotypes of SAD. PMID:29700902

  12. Genotyping of alpha-thalassemia deletions using multiplex polymerase chain reactions and gold nanoparticle-filled capillary electrophoresis.

    PubMed

    Chen, Yen-Ling; Shih, Chi-Jen; Ferrance, Jerome; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei

    2009-02-13

    A gold nanoparticle-filled capillary electrophoresis method combined with three multiplex polymerase chain reactions (PCRs) was established for simultaneous diagnosis of five common alpha-thalassemia deletions, including the -alpha(3.7) deletion, -alpha(4.2) deletion, Southeast Asian (--(SEA)), Filipino (--(FIL)) and Thai (--(THAI)) deletions. Gold nanoparticles (GNPs) were used as a pseudostationary phase to improve the resolution between DNA fragments in a low-viscosity polymer. To achieve the best CE separation, several parameters were evaluated for optimizing the separation conditions, including the capillary coating, the concentrations of polymer sieving matrix, the sizes and concentrations of GNPs, the buffer concentrations, and the pH. The final CE method for separating a 200-base pair (bp) DNA ladder and alpha-thalassemia deletions used a DB-17 capillary, 0.6% poly(ethylene oxide) (PEO) prepared in a mixture of GNP(32nm) solution and glycine buffer (25mM, pH 9.0) (80:20, v/v) as the sieving matrix with 1microM YO-PRO-1 for fluorescence detection; the applied voltage was -10kV (detector at anode side) and the separation temperature was 25 degrees C. Under these optimal conditions, 15 DNA fragments with sizes ranging from 0.2kb to 3.0kb were resolved within 11.5min. The RSDs of migration times were less than 2.81%. A total of 21 patients with alpha-thalassemia deletions were analyzed using this method, and all results showed good agreement with those obtained by gel electrophoresis.

  13. Rapid identification of HPV 16 and 18 by multiplex nested PCR-immunochromatographic test.

    PubMed

    Kuo, Yung-Bin; Li, Yi-Shuan; Chan, Err-Cheng

    2015-02-01

    Human papillomavirus (HPV) types 16 and 18 are known to be high-risk viruses that cause cervical cancer. An HPV rapid testing kit that could help physicians to make early and more informed decisions regarding patient care is needed urgently but not yet available. This study aimed to develop a multiplex nested polymerase chain reaction-immunochromatographic test (PCR-ICT) for the rapid identification of HPV 16 and 18. A multiplex nested PCR was constructed to amplify the HPV 16 and 18 genotype-specific L1 gene fragments and followed by ICT which coated with antibodies to identify rapidly the different PCR products. The type-specific gene regions of high-risk HPV 16 and 18 could be amplified successfully by multiplex nested PCR at molecular sizes of approximately 99 and 101bp, respectively. The capture antibodies raised specifically against the moleculars labeled on the PCR products could be detected simultaneously both HPV 16 and 18 in one strip. Under optimal conditions, this PCR-ICT assay had the capability to detect HPV in a sample with as low as 100 copies of HPV viral DNA. The PCR-ICT system has the advantage of direct and simultaneous detection of two high-risk HPV 16 and 18 DNA targets in one sample, which suggested a significant potential of this assay for clinical application. Copyright © 2014. Published by Elsevier B.V.

  14. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.

    PubMed

    Shen, Lan; Hua, Yufeng; Fu, Yaping; Li, Jian; Liu, Qing; Jiao, Xiaozhen; Xin, Gaowei; Wang, Junjie; Wang, Xingchun; Yan, Changjie; Wang, Kejian

    2017-05-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease 9 (CRISPR/Cas9) system has emerged as a promising technology for specific genome editing in many species. Here we constructed one vector targeting eight agronomic genes in rice using the CRISPR/Cas9 multiplex genome editing system. By subsequent genetic transformation and DNA sequencing, we found that the eight target genes have high mutation efficiencies in the T 0 generation. Both heterozygous and homozygous mutations of all editing genes were obtained in T 0 plants. In addition, homozygous sextuple, septuple, and octuple mutants were identified. As the abundant genotypes in T 0 transgenic plants, various phenotypes related to the editing genes were observed. The findings demonstrate the potential of the CRISPR/Cas9 system for rapid introduction of genetic diversity during crop breeding.

  15. Pre-capture multiplexing improves efficiency and cost-effectiveness of targeted genomic enrichment.

    PubMed

    Shearer, A Eliot; Hildebrand, Michael S; Ravi, Harini; Joshi, Swati; Guiffre, Angelica C; Novak, Barbara; Happe, Scott; LeProust, Emily M; Smith, Richard J H

    2012-11-14

    Targeted genomic enrichment (TGE) is a widely used method for isolating and enriching specific genomic regions prior to massively parallel sequencing. To make effective use of sequencer output, barcoding and sample pooling (multiplexing) after TGE and prior to sequencing (post-capture multiplexing) has become routine. While previous reports have indicated that multiplexing prior to capture (pre-capture multiplexing) is feasible, no thorough examination of the effect of this method has been completed on a large number of samples. Here we compare standard post-capture TGE to two levels of pre-capture multiplexing: 12 or 16 samples per pool. We evaluated these methods using standard TGE metrics and determined the ability to identify several classes of genetic mutations in three sets of 96 samples, including 48 controls. Our overall goal was to maximize cost reduction and minimize experimental time while maintaining a high percentage of reads on target and a high depth of coverage at thresholds required for variant detection. We adapted the standard post-capture TGE method for pre-capture TGE with several protocol modifications, including redesign of blocking oligonucleotides and optimization of enzymatic and amplification steps. Pre-capture multiplexing reduced costs for TGE by at least 38% and significantly reduced hands-on time during the TGE protocol. We found that pre-capture multiplexing reduced capture efficiency by 23 or 31% for pre-capture pools of 12 and 16, respectively. However efficiency losses at this step can be compensated by reducing the number of simultaneously sequenced samples. Pre-capture multiplexing and post-capture TGE performed similarly with respect to variant detection of positive control mutations. In addition, we detected no instances of sample switching due to aberrant barcode identification. Pre-capture multiplexing improves efficiency of TGE experiments with respect to hands-on time and reagent use compared to standard post-capture TGE. A decrease in capture efficiency is observed when using pre-capture multiplexing; however, it does not negatively impact variant detection and can be accommodated by the experimental design.

  16. A catalogue of polymorphisms related to xenobiotic metabolism and cancer susceptibility.

    PubMed

    Gemignani, Federica; Landi, Stefano; Vivant, Franck; Zienolddiny, Shanbeh; Brennan, Paul; Canzian, Federico

    2002-08-01

    High-throughput genotyping technology of multiple genes based on large samples of cases and controls are likely to be important in identifying common genes which have a moderate effect on the development of specific diseases. We present here a comprehensive list of 313 known experimentally confirmed polymorphisms in 54 genes which are particularly relevant for metabolism of drugs, alcohol, tobacco, and other potential carcinogens. We have compiled a catalog with a standardized format that summarizes the genetic and biochemical properties of the selected polymorphisms. We have also confirmed or redesigned experimental conditions for simplex or multiplex PCR amplification of a subset of 168 SNPs of particular interest, which will provide the basis for the design of assays compatible with high-throughput genotyping.

  17. Diversity and clinical impact of Acinetobacter baumannii colonization and infection at a military medical center.

    PubMed

    Petersen, Kyle; Cannegieter, Suzanne C; van der Reijden, Tanny J; van Strijen, Beppie; You, David M; Babel, Britta S; Philip, Andrew I; Dijkshoorn, Lenie

    2011-01-01

    The epidemiology of Acinetobacter baumannii emerging in combat casualties is poorly understood. We analyzed 65 (54 nonreplicate) Acinetobacter isolates from 48 patients (46 hospitalized and 2 outpatient trainees entering the military) from October 2004 to October 2005 for genotypic similarities, time-space relatedness, and antibiotic susceptibility. Clinical and surveillance cultures were compared by amplified fragment length polymorphism (AFLP) genomic fingerprinting to each other and to strains of a reference database. Antibiotic susceptibility was determined, and multiplex PCR was performed for OXA-23-like, -24-like, -51-like, and -58-like carbapenemases. Records were reviewed for overlapping hospital stays of the most frequent genotypes, and risk ratios were calculated for any association of genotype with severity of Acute Physiology and Chronic Health Evaluation II (APACHE II) score or injury severity score (ISS) and previous antibiotic use. Nineteen genotypes were identified; two predominated, one consistent with an emerging novel international clone and the other unique to our database. Both predominant genotypes were carbapenem resistant, were present at another hospital before patients' admission to our facility, and were associated with higher APACHE II scores, higher ISSs, and previous carbapenem antibiotics in comparison with other genotypes. One predominated in wound and respiratory isolates, and the other predominated in wound and skin surveillance samples. Several other genotypes were identified as European clones I to III. Acinetobacter genotypes from recruits upon entry to the military, unlike those in hospitalized patients, did not include carbapenem-resistant genotypes. Acinetobacter species isolated from battlefield casualties are diverse, including genotypes belonging to European clones I to III. Two carbapenem-resistant genotypes were epidemic, one of which appeared to belong to a novel international clone.

  18. Optimization of the genotyping-by-sequencing strategy for population genomic analysis in conifers.

    PubMed

    Pan, Jin; Wang, Baosheng; Pei, Zhi-Yong; Zhao, Wei; Gao, Jie; Mao, Jian-Feng; Wang, Xiao-Ru

    2015-07-01

    Flexibility and low cost make genotyping-by-sequencing (GBS) an ideal tool for population genomic studies of nonmodel species. However, to utilize the potential of the method fully, many parameters affecting library quality and single nucleotide polymorphism (SNP) discovery require optimization, especially for conifer genomes with a high repetitive DNA content. In this study, we explored strategies for effective GBS analysis in pine species. We constructed GBS libraries using HpaII, PstI and EcoRI-MseI digestions with different multiplexing levels and examined the effect of restriction enzymes on library complexity and the impact of sequencing depth and size selection of restriction fragments on sequence coverage bias. We tested and compared UNEAK, Stacks and GATK pipelines for the GBS data, and then developed a reference-free SNP calling strategy for haploid pine genomes. Our GBS procedure proved to be effective in SNP discovery, producing 7000-11 000 and 14 751 SNPs within and among three pine species, respectively, from a PstI library. This investigation provides guidance for the design and analysis of GBS experiments, particularly for organisms for which genomic information is lacking. © 2014 John Wiley & Sons Ltd.

  19. Molecular detection of Toxoplasma gondii and Neospora caninum in birds from South Africa.

    PubMed

    Lukášová, Radka; Kobédová, Kateřina; Halajian, Ali; Bártová, Eva; Murat, Jean-Benjamin; Rampedi, Kgethedi Michael; Luus-Powell, Wilmien J

    2018-02-01

    There are not any records on the detection of Toxoplasma gondii and Neospora caninum in tissues of wild birds in the African continent. The aim of the study was to investigate the occurrence of DNA from these protozoan parasites in brain tissue samples collected in years 2014-2015 from 110 wild and domestic birds of 15 orders. Birds came mainly from the province of Limpopo (n=103); the other seven birds came from other five provinces of South Africa. Parasite DNAs were detected by PCR in animal brains. While all samples were negative for N. caninum, T. gondii DNA was detected in three (2.7%) birds: a Red-eyed Dove (Streptopelia semitorquata), a Laughing Dove (S. senegalensis) and a Southern-Yellow-billed Hornbill (Tockus leucomelas), all from Limpopo province. Positive samples were selected for genotyping by a 15 microsatellite markers method in a single multiplex PCR assay. Only the sample from the Red-eyed Dove was successfully genotyped and characterized as type II. This is the first detection of T. gondii in tissue of native African wild birds and the first study focusing on N. caninum in birds from South Africa. Copyright © 2017. Published by Elsevier B.V.

  20. Development of a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction assay for the differential diagnosis of Feline leukemia virus vaccine and wild strains.

    PubMed

    Ho, Chia-Fang; Chan, Kun-Wei; Yang, Wei-Cheng; Chiang, Yu-Chung; Chung, Yang-Tsung; Kuo, James; Wang, Chi-Young

    2014-07-01

    A multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) was developed for the differential diagnosis of Feline leukemia virus (FeLV) vaccine and wild-type strains based on a point mutation between the vaccine strain (S) and the wild-type strain (T) located in the p27 gene. This system was further upgraded to obtain a real-time ARMS RT-PCR (ARMS qRT-PCR) with a high-resolution melt analysis (HRMA) platform. The genotyping of various strains of FeLV was determined by comparing the HRMA curves with the defined wild-type FeLV (strain TW1), and the results were expressed as a percentage confidence. The detection limits of ARMS RT-PCR and ARMS qRT-PCR combined with HRMA were 100 and 1 copies of transcribed FeLV RNA per 0.5 ml of sample, respectively. No false-positive results were obtained with 6 unrelated pathogens and 1 feline cell line. Twelve FeLV Taiwan strains were correctly identified using ARMS qRT-PCR combined with HRMA. The genotypes of the strains matched the defined FeLV wild-type strain genotype with at least 91.17% confidence. A higher degree of sequence polymorphism was found throughout the p27 gene compared with the long terminal repeat region. In conclusion, the current study describes the phylogenetic relationship of the FeLV Taiwan strains and demonstrates that the developed ARMS RT-PCR assay is able to be used to detect the replication of a vaccine strain that has not been properly inactivated, thus acting as a safety check for the quality of FeLV vaccines.

  1. The Evolving Landscape of HIV Drug Resistance Diagnostics for Expanding Testing in Resource-Limited Settings.

    PubMed

    Inzaule, Seth C; Hamers, Ralph L; Paredes, Roger; Yang, Chunfu; Schuurman, Rob; Rinke de Wit, Tobias F

    2017-01-01

    Global scale-up of antiretroviral treatment has dramatically changed the prospects of HIV/AIDS disease, rendering life-long chronic care and treatment a reality for millions of HIV-infected patients. Affordable technologies to monitor antiretroviral treatment are needed to ensure long-term durability of limited available drug regimens. HIV drug resistance tests can complement existing strategies in optimizing clinical decision-making for patients with treatment failure, in addition to facilitating population-based surveillance of HIV drug resistance. This review assesses the current landscape of HIV drug resistance technologies and discusses the strengths and limitations of existing assays available for expanding testing in resource-limited settings. These include sequencing-based assays (Sanger sequencing assays and nextgeneration sequencing), point mutation assays, and genotype-free data-based prediction systems. Sanger assays are currently considered the gold standard genotyping technology, though only available at a limited number of resource-limited setting reference and regional laboratories, but high capital and test costs have limited their wide expansion. Point mutation assays present opportunities for simplified laboratory assays, but HIV genetic variability, extensive codon redundancy at or near the mutation target sites with limited multiplexing capability have restricted their utility. Next-generation sequencing, despite high costs, may have potential to reduce the testing cost significantly through multiplexing in high-throughput facilities, although the level of bioinformatics expertise required for data analysis is currently still complex and expensive and lacks standardization. Web-based genotype-free prediction systems may provide enhanced antiretroviral treatment decision-making without the need for laboratory testing, but require further clinical field evaluation and implementation scientific research in resource-limited settings.

  2. Microfluidic platform for multiplexed detection in single cells and methods thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meiye; Singh, Anup K.

    The present invention relates to a microfluidic device and platform configured to conduct multiplexed analysis within the device. In particular, the device allows multiple targets to be detected on a single-cell level. Also provided are methods of performing multiplexed analyses to detect one or more target nucleic acids, proteins, and post-translational modifications.

  3. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  4. Characterization of highly multiplexed monolithic PET / gamma camera detector modules.

    PubMed

    Pierce, L A; Pedemonte, S; DeWitt, D; MacDonald, L; Hunter, W C J; Van Leemput, K; Miyaoka, R

    2018-03-29

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A [Formula: see text] mm 3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with [Formula: see text] position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer-Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  5. Nuclear, chloroplast, and mitochondrial data of a US cannabis DNA database.

    PubMed

    Houston, Rachel; Birck, Matthew; LaRue, Bobby; Hughes-Stamm, Sheree; Gangitano, David

    2018-05-01

    As Cannabis sativa (marijuana) is a controlled substance in many parts of the world, the ability to track biogeographical origin of cannabis could provide law enforcement with investigative leads regarding its trade and distribution. Population substructure and inbreeding may cause cannabis plants to become more genetically related. This genetic relatedness can be helpful for intelligence purposes. Analysis of autosomal, chloroplast, and mitochondrial DNA allows for not only prediction of biogeographical origin of a plant but also discrimination between individual plants. A previously validated, 13-autosomal STR multiplex was used to genotype 510 samples. Samples were analyzed from four different sites: 21 seizures at the US-Mexico border, Northeastern Brazil, hemp seeds purchased in the US, and the Araucania area of Chile. In addition, a previously reported multi-loci system was modified and optimized to genotype five chloroplast and two mitochondrial markers. For this purpose, two methods were designed: a homopolymeric STR pentaplex and a SNP triplex with one chloroplast (Cscp001) marker shared by both methods for quality control. For successful mitochondrial and chloroplast typing, a novel real-time PCR quantitation method was developed and validated to accurately estimate the quantity of the chloroplast DNA (cpDNA) using a synthetic DNA standard. Moreover, a sequenced allelic ladder was also designed for accurate genotyping of the homopolymeric STR pentaplex. For autosomal typing, 356 unique profiles were generated from the 425 samples that yielded full STR profiles and 25 identical genotypes within seizures were observed. Phylogenetic analysis and case-to-case pairwise comparisons of 21 seizures at the US-Mexico border, using the Fixation Index (F ST ) as genetic distance, revealed the genetic association of nine seizures that formed a reference population. For mitochondrial and chloroplast typing, subsampling was performed, and 134 samples were genotyped. Complete haplotypes (STRs and SNPs) were observed for 127 samples. As expected, extensive haplotype sharing was observed; five distinguishable haplotypes were detected. In the reference population, the same haplotype was observed 39 times and two unique haplotypes were also detected. Haplotype sharing was observed between the US border seizures, Brazil, and Chile, while the hemp samples generated a distinct haplotype. Phylogenetic analysis of the four populations was performed, and results revealed that both autosomal and lineage markers could discern population substructure.

  6. Large Cohort Screening of G6PD Deficiency and the Mutational Spectrum in the Dongguan District in Southern China

    PubMed Central

    Ma, Keze; Li, Wenrui; Ma, Qiang; He, Xiaoguang; He, Yuejing; He, Ting; Lu, Xiaomei

    2015-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymatic disorder of the erythrocytes that affects 400 million people worldwide. We developed a PCR-reverse dot blot (RDB) assay to screen twenty genotypes of seventeen Chinese G6PD mutations and investigate the spectrum of G6PD deficiency mutations in Dongguan District, Guangdong Province, in southern China. Method The PCR-RDB assay consists of multiplex PCR amplification of seven fragments in the G6PD target sequence of wild-type and mutant genomic DNA samples followed by hybridization to a test strip containing allele-specific oligonucleotide probes. A total of 16,464 individuals were analyzed by a combination of phenotypic screening and genotypic detection using the PCR-RDB assay and DNA sequence analysis. Results The PCR-RDB assay had a detection rate of 98.1%, which was validated by direct sequencing in a blind study with 100% concordance. The G6PD deficiency incidence rate in Dongguan District is 4.08%. Thirty-two genotypes from 469 individuals were found. The two most common variants were c.1376G>T and c.1388G>A, followed by c.95A>G, c.871G>A, c.392G>T, and c.1024 C>T. In addition, two rare mutations (c.703C>A and c.406C>T) were detected by DNA sequencing analysis. In our study, 65 cases harbored the C1311T/IVS polymorphism and 67 cases were homozygote. Conclusion The PCR-RDB assay we established is a reliable and effective method for screening G6PD mutations in the Chinese population. Data on the spectrum of mutations in the Dongguan District is beneficial to the clinical diagnosis and prevention of G6PD deficiency. PMID:25775246

  7. Comparison of the performance in detection of HPV infections between the high-risk HPV genotyping real time PCR and the PCR-reverse dot blot assays.

    PubMed

    Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun

    2018-01-01

    A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.

  8. Metabolic Phase I (CYPs) and Phase II (GSTs) Gene Polymorphisms and Their Interaction with Environmental Factors in Nasopharyngeal Cancer from the Ethnic Population of Northeast India.

    PubMed

    Singh, Seram Anil; Ghosh, Sankar Kumar

    2017-09-26

    Multiple genetic and environmental factors and their interaction are believed to contribute in the pathogenesis of Nasopharyngeal Cancer (NPC). We investigate the role of Metabolic Phase I (CYPs) and Phase II (GSTs) gene polymorphisms, gene-gene and gene-environmental interaction in modulating the susceptibility to NPC in Northeast India. To determine the association of metabolic gene polymorphisms and environmental habits, 123 cases and 189 controls blood/swab samples were used for PCR and confirmed by Sanger sequencing. Analysis for GSTM1 and GSTT1 gene polymorphism was done by multiplex PCR. The T3801C in the 3'- flanking region of CYP1A1 gene was detected by PCR-RFLP method. The Logistic regression analysis was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI). The GSTM1 null genotype alone (OR = 2.76) was significantly associated with NPC risk (P < 0.0001). The combinations of GSTM1 null and GSTT1 null genotypes also higher, 3.77 fold (P < 0.0001), risk of NPC, while GSTM1 null genotype along with CYP1A1 T3801C TC + CC genotype had 3.22 (P = 0.001) fold risk. The most remarkable risk was seen among individual carrying GSTM1 null, GSTT1 null genotypes and CYP1A1 T3801C TC + CC genotypes (OR = 5.71, P = 0.001). Further; analyses demonstrate an enhanced risk of NPC in smoked meat (OR = 5.56, P < 0.0001) and fermented fish consumers (OR = 5.73, P < 0.0001) carrying GSTM1 null genotype. An elevated risk of NPC was noted in smokers (OR = 12.67, P < 0.0001) and chewers (OR = 5.68, P < 0.0001) with GSTM1 null genotype. However, smokers had the highest risk of NPC among individuals carrying GSTT1 null genotype (OR = 4.46, P = 0.001) or CYP1A1 T3801C TC + CC genotype (OR = 7.13, P < 0.0001). The association of null genotypes and mutations of metabolic neutralizing genes along with the environmental habits (tobacco smokers and chewers, smoke meat, fermented fishes) can be used as a possible biomarker for early detection and preventive measure of NPC.

  9. Identification of a synonymous polymorphism within the cytochrome P4502C9 gene that interferes with identification of the CYP2C9*2 allele.

    PubMed

    Womack, Edward P; Reynolds, Kristen K; Valdes, Roland; Linder, Mark W

    2007-10-01

    Cytochrome P450 2C9 (CYP4502C9) genotyping is useful in dosage adjustments for several critical drug therapies, including warfarin. Potential interference compromising these genotyping results could lead to inappropriate dose adjustments that may result in adverse drug reactions. During routine clinical CYP4502C9 genotyping using multiplex allele-specific primer extension, an ambiguous result was obtained for determination of the CYP2C9 430C>T substitution, which defines the CYP2C9*2 allele. In this one patient sample submitted for CYP2C9 genotyping, the ratio for the variant 430T allele signal to the total signal (C+T alleles) was 0.29. This is above the expected ratio to be classified as wild-type (<0.15) and below the minimum expected ratio (>0.3) when the genotype is heterozygous at the 430 position. The mean fluorescence intensity for the 430C allele was consistent with that observed in subjects who are heterozygous at this nucleotide position. However, the corresponding signal for the 430T allele indicated the absence of the CYP2C9*2 allele. This suggests the assay was not able to determine the correct nucleotide at position 430 for one of the two alleles in this patient. Subsequent sequencing to investigate the allele-specific primer extension failure revealed the presence of a rare C>T nucleotide substitution at position 429. We tested this subject's CYP2C9 genotype using AvaII restriction endonuclease digestion and found that this rare substitution causes false-positive identification of the CYP2C9*2 allele when using this method. We developed a DpnII endonuclease digestion assay to specifically detect the CYP2C9 429C>T substitution and tested 100 randomly selected samples obtained from unrelated individuals. The 429C>T polymorphism was not identified in this sample set, which indicates an allele frequency of less than 2.0% (95% confidence interval, 0.0-1.8%) in the general population. Despite the rarity of this polymorphism, it has important implications for the accuracy of assays using allele-specific primers and the Ava II restriction endonuclease, when it occurs, which are two common methods currently applied for detecting the presence of the CYP2C9*2 allele.

  10. The Association between KIF6 Single Nucleotide Polymorphism rs20455 and Serum Lipids in Filipino-American Women

    PubMed Central

    Ancheta, Irma B.; Battie, Cynthia A.; Ancheta, Christine V.; Volgman, Annabelle S.; Conley, Yvette

    2014-01-01

    The Trp719Arg allele of KIF6 rs20455, a putative risk factor for CHD especially in those with elevated low-density lipoprotein cholesterol (LDL-C), was investigated in Filipino-American women (FAW, n = 235) participating in health screenings in four cities. The rs20455 genotype of each subject was determined by a multiplex assay using a Luminex-OLA procedure. The risk allele Trp719Arg was present in 77% of the subjects. The genotype distribution was 23% Trp/Trp, 51% Arg/Trp, and 26% Arg/Arg. Genotype did not predict the presence of CHD risk factors. Moreover, LDL-C, HDL-C, and triglycerides mean values did not vary as a function of genotype. However, those with the Arg/Arg genotype on statin medication exhibited a significantly higher mean triglycerides level (P < 0.01). Approximately 60% of participants regardless of genotype exhibited LDL-C levels ≥100 mg/dL but were not taking medication. Approximately 43% of those with the Trp719Arg risk allele on statins exhibited elevated LDL-C levels. Our study suggests that the Trp719Arg allele of KIF 6 rs20455 is common among Filipino-American women; thus, even with borderline LDL-C levels would benefit from statin treatment. Secondly, many participants did not exhibit guideline recommended LDL-C levels including many who were on statin drugs. PMID:24587901

  11. Clinical Relevance of Multiple Single-Nucleotide Polymorphisms in Pneumocystis jirovecii Pneumonia: Development of a Multiplex PCR-Single-Base-Extension Methodology▿

    PubMed Central

    Esteves, F.; Gaspar, J.; De Sousa, B.; Antunes, F.; Mansinho, K.; Matos, O.

    2011-01-01

    Pneumocystis jirovecii pneumonia (PcP) is a major cause of respiratory illness in patients with AIDS. The identification of multiple single-nucleotide polymorphisms (SNPs) at three distinct P. jirovecii loci encoding dihydrofolate reductase (DHFR), mitochondrial large-subunit rRNA (mtLSU rRNA), and superoxide dismutase (SOD) was achieved using multiplex-PCR (MPCR) followed by direct sequencing and two single-base extension (SBE) techniques. Four SNPs (DHFR312, mt85, SOD215, and SOD110), correlated previously with parameters of disease, were amplified and genotyped simultaneously. The concordance of results between the standard sequencing technique (direct sequencing) and SBE analysis was 96.9% for the acrylamide gel electrophoresis and 98.4% for the capillary electrophoresis. The cross-genetic analysis established several statistical associations among the SNPs studied: mt85C-SOD110T, SOD110T-SOD215C, and SOD110C-SOD215T. These results were confirmed by cluster analysis. Data showed that among the isolates with low to moderate parasite burden, the highest percentages of DHFR312C, mt85C, SOD110T, and SOD215C were detected, whereas for high parasite burden cases the highest frequencies were observed among isolates with DHFR312T, mt85T, SOD110C, and SOD215T. The polymorphisms studied were shown to be suitable genetic targets potentially correlated with PcP clinical data that can be used as predictors of outcome in further studies to help clinical decision-making in the management of PcP. The MPCR/SBE protocol described for the first time in the present study was shown to be a rapid, highly accurate method for genotyping P. jirovecii SNPs encoded by different loci that could be used for epidemiological studies and as an additional procedure for the prognostic classification and diagnosis of PcP. PMID:21389160

  12. Clinical relevance of multiple single-nucleotide polymorphisms in Pneumocystis jirovecii Pneumonia: development of a multiplex PCR-single-base-extension methodology.

    PubMed

    Esteves, F; Gaspar, J; De Sousa, B; Antunes, F; Mansinho, K; Matos, O

    2011-05-01

    Pneumocystis jirovecii pneumonia (PcP) is a major cause of respiratory illness in patients with AIDS. The identification of multiple single-nucleotide polymorphisms (SNPs) at three distinct P. jirovecii loci encoding dihydrofolate reductase (DHFR), mitochondrial large-subunit rRNA (mtLSU rRNA), and superoxide dismutase (SOD) was achieved using multiplex-PCR (MPCR) followed by direct sequencing and two single-base extension (SBE) techniques. Four SNPs (DHFR312, mt85, SOD215, and SOD110), correlated previously with parameters of disease, were amplified and genotyped simultaneously. The concordance of results between the standard sequencing technique (direct sequencing) and SBE analysis was 96.9% for the acrylamide gel electrophoresis and 98.4% for the capillary electrophoresis. The cross-genetic analysis established several statistical associations among the SNPs studied: mt85C-SOD110T, SOD110T-SOD215C, and SOD110C-SOD215T. These results were confirmed by cluster analysis. Data showed that among the isolates with low to moderate parasite burden, the highest percentages of DHFR312C, mt85C, SOD110T, and SOD215C were detected, whereas for high parasite burden cases the highest frequencies were observed among isolates with DHFR312T, mt85T, SOD110C, and SOD215T. The polymorphisms studied were shown to be suitable genetic targets potentially correlated with PcP clinical data that can be used as predictors of outcome in further studies to help clinical decision-making in the management of PcP. The MPCR/SBE protocol described for the first time in the present study was shown to be a rapid, highly accurate method for genotyping P. jirovecii SNPs encoded by different loci that could be used for epidemiological studies and as an additional procedure for the prognostic classification and diagnosis of PcP.

  13. Inference of human continental origin and admixture proportions using a highly discriminative ancestry informative 41-SNP panel

    PubMed Central

    2013-01-01

    Background Accurate determination of genetic ancestry is of high interest for many areas such as biomedical research, personal genomics and forensics. It remains an important topic in genetic association studies, as it has been shown that population stratification, if not appropriately considered, can lead to false-positive and -negative results. While large association studies typically extract ancestry information from available genome-wide SNP genotypes, many important clinical data sets on rare phenotypes and historical collections assembled before the GWAS area are in need of a feasible method (i.e., ease of genotyping, small number of markers) to infer the geographic origin and potential admixture of the study subjects. Here we report on the development, application and limitations of a small, multiplexable ancestry informative marker (AIM) panel of SNPs (or AISNP) developed specifically for this purpose. Results Based on worldwide populations from the HGDP, a 41-AIM AISNP panel for multiplex application with the ABI SNPlex and a subset with 31 AIMs for the Sequenome iPLEX system were selected and found to be highly informative for inferring ancestry among the seven continental regions Africa, the Middle East, Europe, Central/South Asia, East Asia, the Americas and Oceania. The panel was found to be least informative for Eurasian populations, and additional AIMs for a higher resolution are suggested. A large reference set including over 4,000 subjects collected from 120 global populations was assembled to facilitate accurate ancestry determination. We show practical applications of this AIM panel, discuss its limitations for admixed individuals and suggest ways to incorporate ancestry information into genetic association studies. Conclusion We demonstrated the utility of a small AISNP panel specifically developed to discern global ancestry. We believe that it will find wide application because of its feasibility and potential for a wide range of applications. PMID:23815888

  14. Construction of a multiplex mutation hot spot PCR panel: the first step towards colorectal cancer genotyping on the GS Junior platform.

    PubMed

    Péterfia, Bálint; Kalmár, Alexandra; Patai, Árpád V; Csabai, István; Bodor, András; Micsik, Tamás; Wichmann, Barnabás; Egedi, Krisztina; Hollósi, Péter; Kovalszky, Ilona; Tulassay, Zsolt; Molnár, Béla

    2017-01-01

    Background: To support cancer therapy, development of low cost library preparation techniques for targeted next generation sequencing (NGS) is needed. In this study we designed and tested a PCR-based library preparation panel with limited target area for sequencing the top 12 somatic mutation hot spots in colorectal cancer on the GS Junior instrument. Materials and Methods: A multiplex PCR panel was designed to amplify regions of mutation hot spots in 12 selected genes ( APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53 ). Amplicons were sequenced on a GS Junior instrument using ligated and barcoded adaptors. Eight samples were sequenced in a single run. Colonic DNA samples (8 normal mucosa; 33 adenomas; 17 adenocarcinomas) as well as HT-29 and Caco-2 cell lines with known mutation profiles were analyzed. Variants found by the panel on APC, BRAF, KRAS and NRAS genes were validated by conventional sequencing. Results: In total, 34 kinds of mutations were detected including two novel mutations ( FBXW7 c.1740:C>G and SMAD4 c.413C>G) that have not been recorded in mutation databases, and one potential germline mutation ( APC ). The most frequently mutated genes were APC, TP53 and KRAS with 30%, 15% and 21% frequencies in adenomas and 29%, 53% and 29% frequencies in carcinomas, respectively. In cell lines, all the expected mutations were detected except for one located in a homopolymer region. According to re-sequencing results sensitivity and specificity was 100% and 92% respectively. Conclusions: Our NGS-based screening panel denotes a promising step towards low cost colorectal cancer genotyping on the GS Junior instrument. Despite the relatively low coverage, we discovered two novel mutations and obtained mutation frequencies comparable to literature data. Additionally, as an advantage, this panel requires less template DNA than sequence capture colon cancer panels currently available for the GS Junior instrument.

  15. A new OTDR based on probe frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Xuping

    2013-12-01

    Two signal multiplexing methods are proposed and experimentally demonstrated in optical time domain reflectometry (OTDR) for fault location of optical fiber transmission line to obtain high measurement efficiency. Probe signal multiplexing is individually obtained by phase modulation for generation of multi-frequency and time sequential frequency probe pulses. The backscattered Rayleigh light of the multiplexing probe signals is transferred to corresponding heterodyne intermediate frequency (IF) through heterodyning with the single frequency local oscillator (LO). Then the IFs are simultaneously acquired by use of a data acquisition card (DAQ) with sampling rate of 100Msps, and the obtained data are processed by digital band pass filtering (BPF), digital down conversion (DDC) and digital low pass filtering (BPF) procedure. For each probe frequency of the detected signals, the extraction of the time domain reflecting signal power is performed by parallel computing method. For a comprehensive performance comparison with conventional coherent OTDR on the probe frequency multiplexing methods, the potential for enhancement of dynamic range, spatial resolution and measurement time are analyzed and discussed. Experimental results show that by use of the probe frequency multiplexing method, the measurement efficiency of coherent OTDR can be enhanced by nearly 40 times.

  16. Association of GSTM1, GSTT1, GSTP1-ILE105VAL and ACE I/D polymorphisms with ankylosing spondylitis.

    PubMed

    İnal, Esra Erkol; Görükmez, Orhan; Eroğlu, Selma; Görükmez, Özlem; Solak, Özlem; Topak, Ali; Yakut, Tahsin

    2016-01-01

    Ankylosing spondylitis (AS) is a chronic inflammatory disease of unknown origin. The aim of this study is to clarify the relationships between susceptibility and severity of AS and GST-mu1 (GSTM1), GST-theta1 (GSTT1), GST-pi1 (GSTP1)-Ile105Val and angiotensin-converting enzyme (ACE) I/D polymorphisms in AS patients. One hundred thirty-eight AS patients and seventy-one healthy controls were enrolled in this study. Erythrocyte sedimentation rate and C-reactive protein (CRP) levels of the AS patients were recorded. The scores of the numeric rating scale (NRS) pain, the Bath Ankylosing Spondylitis Activity Index, the Bath Ankylosing Spondylitis Metrology Index and the Bath Ankylosing Spondylitis Functional Index were calculated. The genotypes distributions and allele frequencies of GSTM1, GSTT1, GSTP1-Ile105Val and ACE I/D polymorphisms were compared between patients and healthy controls. The Multiplex polymerase chain reaction (PCR) and the PCR-restriction fragment length polymorphism methods were used to detect the polymorphisms of ACE I/D, the GSTT1 and GSTM1 genes and the GSTP1-Ile105Val polymorphism, respectively. There were significantly higher levels of the GSTT1 null and the ACE II genotypes in AS patients compared to those in healthy controls (p = 0.002 and 0.005, respectively). We found significantly higher levels of CRP and the NRS pain scores in the patients with ACE ID or DD genotypes compared to those in the patients with ACE II genotypes (p = 0.005 and 0.035, respectively). The present results showed that genes involved in protection from oxidative stress and ACE gene may influence disease development and course in AS.

  17. Familial Kleine-Levin Syndrome: A Specific Entity?

    PubMed

    Nguyen, Quang Tuan Remy; Groos, Elisabeth; Leclair-Visonneau, Laurène; Monaca-Charley, Christelle; Rico, Tom; Farber, Neal; Mignot, Emmanuel; Arnulf, Isabelle

    2016-08-01

    Kleine-Levin syndrome (KLS) is a rare, mostly sporadic disorder, characterized by intermittent episodes of hypersomnia plus cognitive and behavior disorders. Although its cause is unknown, multiplex families have been described. We contrasted the clinical and biological features of familial versus sporadic KLS. Two samples of patients with KLS from the United States and France (n = 260) were studied using clinical interviews and human leukocyte antigen (HLA) genotyping. A multiplex family contained two or more first- or second-degree affected relatives (familial cases). Twenty-one patients from 10 multiplex families (siblings: n = 12, including two pairs of monozygotic twins; parent-child: n = 4; cousins: n = 2; uncle-nephews: n = 3) and 239 patients with sporadic KLS were identified, yielding to 4% multiplex families and 8% familial cases. The simplex and multiplex families did not differ for autoimmune, neurological, and psychiatric disorders. Age, sex ratio, ethnicity, HLA typing, karyotyping, disease course, frequency, and duration of KLS episodes did not differ between groups. Episodes were less frequent in familial versus sporadic KLS (2.3 ± 1.8/y versus 3.8 ± 3.7/y, P = 0.004). Menses triggered more frequently KLS onset in the nine girls with familial KLS (relative risk, RR = 4.12, P = 0.03), but not subsequent episodes. Familial cases had less disinhibited speech (RR = 3.44, P = 0.049), less combined hypophagia/hyperphagia (RR = 4.38, P = 0.006), more abrupt termination of episodes (RR = 1.45, P = 0.04) and less postepisode insomnia (RR = 2.16, P = 0.008). There was similar HLA DQB1 distribution in familial versus sporadic cases and no abnormal karyotypes. Familial KLS is mostly present in the same generation, and is clinically similar to but slightly less severe than sporadic KLS. © 2016 Associated Professional Sleep Societies, LLC.

  18. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families

    PubMed Central

    Ansari, Morad; Balasubramanian, Meena; Blyth, Moira; Brady, Angela F.; Clayton, Stephen; Cole, Trevor; Deshpande, Charu; Fitzgerald, Tomas W.; Foulds, Nicola; Francis, Richard; Gabriel, George; Gerety, Sebastian S.; Goodship, Judith; Hobson, Emma; Jones, Wendy D.; Joss, Shelagh; King, Daniel; Klena, Nikolai; Kumar, Ajith; Lees, Melissa; Lelliott, Chris; Lord, Jenny; McMullan, Dominic; O'Regan, Mary; Osio, Deborah; Piombo, Virginia; Prigmore, Elena; Rajan, Diana; Rosser, Elisabeth; Sifrim, Alejandro; Smith, Audrey; Swaminathan, Ganesh J.; Turnpenny, Peter; Whitworth, James; Wright, Caroline F.; Firth, Helen V.; Barrett, Jeffrey C.; Lo, Cecilia W.; FitzPatrick, David R.; Hurles, Matthew E.

    2018-01-01

    Discovery of most autosomal recessive disease genes has involved analysis of large, often consanguineous, multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of novel dominant causes of rare, genetically heterogenous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios 1,2. Here we analysed 4,125 families with diverse, rare, genetically heterogeneous developmental disorders and identified four novel autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (identifying probands with rare biallelic putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population, and (ii) the phenotypic similarity of patients with the same recessive candidate gene. This new paradigm promises to catalyse discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations, and those caused predominantly by compound heterozygous genotypes. PMID:26437029

  19. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families.

    PubMed

    Akawi, Nadia; McRae, Jeremy; Ansari, Morad; Balasubramanian, Meena; Blyth, Moira; Brady, Angela F; Clayton, Stephen; Cole, Trevor; Deshpande, Charu; Fitzgerald, Tomas W; Foulds, Nicola; Francis, Richard; Gabriel, George; Gerety, Sebastian S; Goodship, Judith; Hobson, Emma; Jones, Wendy D; Joss, Shelagh; King, Daniel; Klena, Nikolai; Kumar, Ajith; Lees, Melissa; Lelliott, Chris; Lord, Jenny; McMullan, Dominic; O'Regan, Mary; Osio, Deborah; Piombo, Virginia; Prigmore, Elena; Rajan, Diana; Rosser, Elisabeth; Sifrim, Alejandro; Smith, Audrey; Swaminathan, Ganesh J; Turnpenny, Peter; Whitworth, James; Wright, Caroline F; Firth, Helen V; Barrett, Jeffrey C; Lo, Cecilia W; FitzPatrick, David R; Hurles, Matthew E

    2015-11-01

    Discovery of most autosomal recessive disease-associated genes has involved analysis of large, often consanguineous multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of new dominant causes of rare, genetically heterogeneous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios. Here we analyzed 4,125 families with diverse, rare and genetically heterogeneous developmental disorders and identified four new autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (selecting probands with rare, biallelic and putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population and (ii) the phenotypic similarity of patients with recessive variants in the same candidate gene. This new paradigm promises to catalyze the discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations and those caused predominantly by compound heterozygous genotypes.

  20. SNPmplexViewer--toward a cost-effective traceability system

    PubMed Central

    2011-01-01

    Background Beef traceability has become mandatory in many regions of the world and is typically achieved through the use of unique numerical codes on ear tags and animal passports. DNA-based traceability uses the animal's own DNA code to identify it and the products derived from it. Using SNaPshot, a primer-extension-based method, a multiplex of 25 SNPs in a single reaction has been practiced for reducing the expense of genotyping a panel of SNPs useful for identity control. Findings To further decrease SNaPshot's cost, we introduced the Perl script SNPmplexViewer, which facilitates the analysis of trace files for reactions performed without the use of fluorescent size standards. SNPmplexViewer automatically aligns reference and target trace electropherograms, run with and without fluorescent size standards, respectively. SNPmplexViewer produces a modified target trace file containing a normalised trace in which the reference size standards are embedded. SNPmplexViewer also outputs aligned images of the two electropherograms together with a difference profile. Conclusions Modified trace files generated by SNPmplexViewer enable genotyping of SnaPshot reactions performed without fluorescent size standards, using common fragment-sizing software packages. SNPmplexViewer's normalised output may also improve the genotyping software's performance. Thus, SNPmplexViewer is a general free tool enabling the reduction of SNaPshot's cost as well as the fast viewing and comparing of trace electropherograms for fragment analysis. SNPmplexViewer is available at http://cowry.agri.huji.ac.il/cgi-bin/SNPmplexViewer.cgi. PMID:21600063

  1. A multiplexed system for quantitative comparisons of chromatin landscapes

    PubMed Central

    van Galen, Peter; Viny, Aaron D.; Ram, Oren; Ryan, Russell J.H.; Cotton, Matthew J.; Donohue, Laura; Sievers, Cem; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Carroll, Kaitlin M.; Cross, Michael B.; Levine, Ross L.; Bernstein, Bradley E.

    2015-01-01

    Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of P300, EZH2 or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions and drug treatments. PMID:26687680

  2. Common rs5918 (PlA1/A2) polymorphism in the ITGB3 gene and risk of coronary artery disease

    PubMed Central

    Heidari, Mohammad Mehdi; Soheilyfar, Sorour

    2016-01-01

    Introduction The T to C transition at nucleotide 1565 of the human glycoprotein IIIa (ITGB3) gene represents a genetic polymorphism (PlA1/A2) that can influence both platelet activation and aggregation and that has been associated with many types of disease. Here, we present a newly designed multiplex tetra-primer amplification refractory mutation system – polymerase chain reaction (T-ARMS-PCR) for genotyping a single nucleotide polymorphism (SNP) (dbSNP ID: rs5918) in the human ITGB3 gene. Material and methods We set up T-ARMS-PCR for the rs5918 SNP in a single-step PCR and the results were validated by the PCR-RFLP method in 132 coronary artery disease (CAD) patients and 122 unrelated healthy individuals. Results Full accordance was found for genotype determination by the PCR-RFLP method. The multiple logistic regression analysis showed a significant association of the rs5918 polymorphism and CAD according to dominant and recessive models (dominant model OR: 2.40, 95% CI: 1.33–4.35; p = 0.003, recessive model OR: 4.71, 95% CI: 1.32–16.80; p = 0.0067). Conclusions Our T-ARMS-PCR in comparison with RFLP and allele-specific PCR is more advantageous because this PCR method allows the evaluation of both the wild type and the mutant allele in the same tube. Our results suggest that the rs5918 (PlA1/A2) polymorphism in the ITGB3 gene may contribute to the susceptibility of sporadic Iranian coronary artery disease (CAD) patients. PMID:28905013

  3. Plasma signaling proteins in persons at genetic risk for Alzheimer disease: influence of APOE genotype.

    PubMed

    Ringman, John M; Elashoff, David; Geschwind, Daniel H; Welsh, Brian T; Gylys, Karen H; Lee, Cathy; Cummings, Jeffrey L; Cole, Greg M

    2012-06-01

    To study the effect of familial Alzheimer disease (FAD) mutations and APOE genotype on plasma signaling protein levels. Cross-sectional comparison of plasma levels of 77 proteins measured using multiplex immune assays. A tertiary referral dementia research center. Thirty-three persons from families harboring PSEN1 or APP mutations, aged 19 to 59 years. Protein levels were compared between FAD mutation carriers (MCs) and noncarriers (NCs) and among APOE genotype groups, using multiple linear regression models. Twenty-one participants were FAD MCs and 12 were NCs. Six had the APOE ε2/3, 6 had the ε3/4, and 21 had the ε3/3 genotype. Levels of 17 proteins differed among APOE genotype groups, and there were significant interactions between age and APOE genotype for 12 proteins. Plasma levels of apolipoprotein E and superoxide dismutase 1 were highest in the ε2 carriers, lowest in ε4 carriers, and intermediate in the ε3 carriers. Levels of multiple interleukins showed the opposite pattern and, among the ε4 carriers, demonstrated significant negative correlations with age. Although there were no significant differences between FAD MCs and NCs, there were interactions between mutation status and APOE genotype for 13 proteins. We found different patterns of inflammatory markers in young and middle-aged persons among APOE genotype groups. The APOE ε4 carriers had the lowest levels of apolipoprotein E. Young ε4 carriers have increased inflammatory markers that diminish with age. We demonstrated altered inflammatory responses in young and middle adulthood in ε4 carriers that may relate to AD risk later in life.

  4. [Multiplex PCR strategy for the simultaneous identification of Staphylococcus aureus and detection of staphylococcal enterotoxins in isolates from food poisoning outbreaks].

    PubMed

    Brizzio, Aníbal A; Tedeschi, Fabián A; Zalazar, Fabián E

    2013-01-01

    Staphylococcal food poisoning is the most frequent type of food poisoning around the world. Staphylococcus aureus enterotoxins cause significant loss of water in the intestinal lumen, followed by vomiting and diarrhea. To report a fast, reliable and inexpensive strategy based on multiplex PCR for the simultaneous identification of S. aureus and detection of five classical S. aureus enterotoxin genes ( sea, seb, sec, sed, see ) in Staphylococcus spp. strains isolated from food poisoning outbreaks. We analyzed isolates from 12 food poisoning outbreaks occurred in Santa Fe province (Argentina). Isolation and phenotypic characterization were carried out by standard procedures. Genotypic analysis was performed by multiplex PCR, using primers for nuc , sea-see and 16S rRNA genes simultaneously. Of all the strains tested, 58% were found to carry toxigenic genes. Sea and seb toxins were found at the same percentage (29%) while sec, sed and see genes were found in a lower and identical proportion (14%). We did not find more than one different type of S. aureus enterotoxin in the isolates analyzed. The multiplex PCR strategy designed in this work has enabled us to identify strains of S. aureus and detect -at the same time- their enterotoxigenic ability. At present, our efforts are devoted to the detection of genes encoding enterotoxins other than the classical ones, in order to know their impact on staphylococcal food poisoning, as well as to investigate their relevance to our country's public health.

  5. Molecular inversion probe assay.

    PubMed

    Absalan, Farnaz; Ronaghi, Mostafa

    2007-01-01

    We have described molecular inversion probe technologies for large-scale genetic analyses. This technique provides a comprehensive and powerful tool for the analysis of genetic variation and enables affordable, large-scale studies that will help uncover the genetic basis of complex disease and explain the individual variation in response to therapeutics. Major applications of the molecular inversion probes (MIP) technologies include targeted genotyping from focused regions to whole-genome studies, and allele quantification of genomic rearrangements. The MIP technology (used in the HapMap project) provides an efficient, scalable, and affordable way to score polymorphisms in case/control populations for genetic studies. The MIP technology provides the highest commercially available multiplexing levels and assay conversion rates for targeted genotyping. This enables more informative, genome-wide studies with either the functional (direct detection) approach or the indirect detection approach.

  6. Serotype- and virulence-associated gene profile of Streptococcus suis isolates from pig carcasses in Chiang Mai Province, Northern Thailand.

    PubMed

    Wongsawan, Kanruethai; Gottschalk, Marcelo; Tharavichitkul, Prasit

    2015-02-01

    In this present study, the serotype of 40 Streptococcus suis isolates from submaxillary glands of pig carcasses sold in wet markets in Chiang Mai Province, northern Thailand, was investigated. Eleven serotypes, including types 2, 3, 4, 5, 7, 8, 9, 17, 21, 22 and 31, were found in the isolates by a Multiplex PCR combined with serum agglutination. Of the eleven serotypes present, type 3 was the most prevalent, while types 2, 4, 5 and 21 were of primary interest due to their human isolate serotype. The mrp+/epf - /sly - genotype was found to be the most prevalent genotype. This study indicates the importance of effective control of human S. suis infection due to raw pork or pig carcass handling in northern Thailand.

  7. Multicarrier orthogonal spread-spectrum (MOSS) data communications

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2008-01-01

    Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.

  8. Relationship of the MTHFD1 (rs2236225), eNOS (rs1799983), CBS (rs2850144) and ACE (rs4343) gene polymorphisms in a population of Iranian pediatric patients with congenital heart defects.

    PubMed

    Khatami, Mehri; Ratki, Farzaneh Morteza; Tajfar, Saba; Akrami, Fatemeh

    2017-09-01

    Congenital heart defects are structural cardiovascular malformations that arise from abnormal formation of the heart or major blood vessels during the fetal period. To investigate the association of 4 single nucleotide polymorphisms (SNPs) in the MTHFD1, eNOS, CBS and ACE genes, we evaluated their relationship with CHD in Iranian patients. In this case-control study, a total of 102 children with CHD and 98 control children were enrolled. Four SNPs including MTHFD1 G1958A, eNOS G894T, CBS C-4673G and ACE A2350G were genotyped by PCR-SSCP, Multiplex ARMS PCR and PCR-RFLP methods and confirmed by direct sequencing. We genotyped 102 patients and 98 controls for four polymorphisms by statistically analysis. There were three SNPs including MTHFD1 G1958A, eNOS G894T and ACE A2350G which might increase the risk of CHD, but CBS C-4673G was not significantly different between patients and controls. (P = 0.017, P = 0.048, P = 0.025 and P = 0.081 respectively). The allele frequencies of three SNPs for MTHFD1 G1958A, eNOS G894T and ACE A2350G in CHD are higher than that in control. Our results show that there is a significant relationship between MTHFD1 G1958A, eNOS G894T and ACE A2350G polymorphisms with CHD. Therefore, The AA and GA genotypes of MTHFD1 G1958A, TT and GT genotypes of eNOS G894T and the AA and GA genotypes of ACE A2350G are susceptible factors for CHD and may increase the risk of CHD. Copyright © 2017. Published by Elsevier Taiwan.

  9. Polarization-multiplexing ghost imaging

    NASA Astrophysics Data System (ADS)

    Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu

    2018-03-01

    A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.

  10. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus

    PubMed Central

    2012-01-01

    Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough validation study. This method incorporates molecular biology techniques that are already well established in research and diagnostic laboratories, allowing for an easy introduction of this method into existing laboratories. Keywords: single nucleotide polymorphisms, genotyping, plant pathology, viruses, microbial forensics, Single base primer extension, SNaPshot Multiplex Kit PMID:22594601

  11. Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

    PubMed Central

    2011-01-01

    Background Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait.), the main conifer used for commercial plantation in southwestern Europe. Results We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species. Conclusions Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers. PMID:21767361

  12. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering.

    PubMed

    Garst, Andrew D; Bassalo, Marcelo C; Pines, Gur; Lynch, Sean A; Halweg-Edwards, Andrea L; Liu, Rongming; Liang, Liya; Wang, Zhiwen; Zeitoun, Ramsey; Alexander, William G; Gill, Ryan T

    2017-01-01

    Improvements in DNA synthesis and sequencing have underpinned comprehensive assessment of gene function in bacteria and eukaryotes. Genome-wide analyses require high-throughput methods to generate mutations and analyze their phenotypes, but approaches to date have been unable to efficiently link the effects of mutations in coding regions or promoter elements in a highly parallel fashion. We report that CRISPR-Cas9 gene editing in combination with massively parallel oligomer synthesis can enable trackable editing on a genome-wide scale. Our method, CRISPR-enabled trackable genome engineering (CREATE), links each guide RNA to homologous repair cassettes that both edit loci and function as barcodes to track genotype-phenotype relationships. We apply CREATE to site saturation mutagenesis for protein engineering, reconstruction of adaptive laboratory evolution experiments, and identification of stress tolerance and antibiotic resistance genes in bacteria. We provide preliminary evidence that CREATE will work in yeast. We also provide a webtool to design multiplex CREATE libraries.

  13. A multiplex PCR method for detection of Aspergillus spp. and Mycobacterium tuberculosis in BAL specimens.

    PubMed

    Amini, F; Kachuei, R; Noorbakhsh, F; Imani Fooladi, A A

    2015-06-01

    The aim of this study was the detection of Aspergillus species and Mycobacterium tuberculosis together in bronchoalveolar lavage (BAL) using of multiplex PCR. In this study, from September 2012 until June 2013, 100 bronchoalveolar lavage (BAL) specimens were collected from patients suspected of tuberculosis (TB). After the direct and culture test, multiplex PCR were utilized in order to diagnose Aspergillus species and M. tuberculosis. Phenol-chloroform manual method was used in order to extract DNA from these microorganisms. Aspergillus specific primers, M. tuberculosis designed primers and beta actin primers were used for multiplex PCR. In this study, by multiplex PCR method, Aspergillus species were identified in 12 samples (12%), positive samples in direct and culture test were respectively 11% and 10%. Sensitivity and specificity of this method in comparison to direct test were respectively 100% and 98.8%, also sensitivity and specificity of this method in comparison to culture test were respectively 100% and 97.7%. In this assay, M. tuberculosis was identified in 8 samples (8%). Mycobacterium-positive samples in molecular method, direct and culture test were respectively 6%, 5% and 7%. Sensitivity and specificity of PCR method in comparison to direct test were 80% and 97.8% also sensitivity and specificity of this method in comparison to culture test was 71.4% and 98.9%. In the present study, multiplex PCR method had higher sensitivity than direct and culture test in order to identify and detect Aspergillus, also this method had lower sensitivity for identification of M. tuberculosis, suggesting that the method of DNA extraction was not suitable. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Detection of common diarrhea-causing pathogens in Northern Taiwan by multiplex polymerase chain reaction.

    PubMed

    Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng

    2018-06-01

    Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians' orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs.

  15. Detection of common diarrhea-causing pathogens in Northern Taiwan by multiplex polymerase chain reaction

    PubMed Central

    Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng

    2018-01-01

    Abstract Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians’ orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs. PMID:29879060

  16. Microfluidic cartridges for DNA purification and genotyping processed in standard laboratory instruments

    NASA Astrophysics Data System (ADS)

    Focke, Maximilian; Mark, Daniel; Stumpf, Fabian; Müller, Martina; Roth, Günter; Zengerle, Roland; von Stetten, Felix

    2011-06-01

    Two microfluidic cartridges intended for upgrading standard laboratory instruments with automated liquid handling capability by use of centrifugal forces are presented. The first microfluidic cartridge enables purification of DNA from human whole blood and is operated in a standard laboratory centrifuge. The second microfluidic catridge enables genotyping of pathogens by geometrically multiplexed real-time PCR. It is operated in a slightly modified off-the-shelf thermal cycler. Both solutions aim at smart and cost-efficient ways to automate work flows in laboratories. The DNA purification cartridge automates all liquid handling steps starting from a lysed blood sample to PCR ready DNA. The cartridge contains two manually crushable glass ampoules with liquid reagents. The DNA yield extracted from a 32 μl blood sample is 192 +/- 30 ng which corresponds to 53 +/- 8% of a reference extraction. The genotyping cartridge is applied to analyse isolates of the multi-resistant Staphyloccus aureus (MRSA) by real-time PCR. The wells contain pre-stored dry reagents such as primers and probes. Evaluation of the system with 44 genotyping assays showed a 100% specificity and agreement with the reference assays in standard tubes. The lower limit of detection was well below 10 copies of DNA per reaction.

  17. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    PubMed

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.

  18. Prevalence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using multiplex polymerase chain reaction

    PubMed Central

    Latha, C.; Anu, C. J.; Ajaykumar, V. J.; Sunil, B.

    2017-01-01

    Aim: The objective of the study was to investigate the occurrence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using the multiplex polymerase chain reaction (PCR) method. Materials and Methods: The assay combined an enrichment step in tryptic soy broth with yeast extract formulated for the simultaneous growth of target pathogens, DNA isolation and multiplex PCR. A total of 1134 samples including beef (n=349), chicken (n=325), pork (n=310), chevon (n=50), and meat products (n=100) were collected from different parts of Kerala, India. All the samples were subjected to multiplex PCR analysis and culture-based detection for the four pathogens in parallel. Results: Overall occurrence of L. monocytogenes was 0.08 % by cultural method. However, no L. monocytogenes was obtained by multiplex PCR method. Yersinia enterocolitica was obtained from beef and pork samples. A high prevalence of S. aureus (46.7%) was found in all types of meat samples tested. None of the samples was positive for S. Typhimurium. Conclusion: Multiplex PCR assay used in this study can detect more than one pathogen simultaneously by amplifying more than one target gene in a single reaction, which can save time and labor cost. PMID:28919685

  19. The Leiden Family Lab study on Social Anxiety Disorder: A multiplex, multigenerational family study on neurocognitive endophenotypes.

    PubMed

    Bas-Hoogendam, Janna Marie; Harrewijn, Anita; Tissier, Renaud L M; van der Molen, Melle J W; van Steenbergen, Henk; van Vliet, Irene M; Reichart, Catrien G; Houwing-Duistermaat, Jeanine J; Slagboom, P Eline; van der Wee, Nic J A; Westenberg, P Michiel

    2018-06-01

    Social anxiety disorder (SAD) is a serious and prevalent psychiatric condition, with a heritable component. However, little is known about the characteristics that are associated with the genetic component of SAD, the so-called "endophenotypes". These endophenotypes could advance our insight in the genetic susceptibility to SAD, as they are on the pathway from genotype to phenotype. The Leiden Family Lab study on Social Anxiety Disorder (LFLSAD) is the first multiplex, multigenerational study aimed to identify neurocognitive endophenotypes of social anxiety. The LFLSAD is characterized by a multidisciplinary approach and encompasses a variety of measurements, including a clinical interview, functional and structural magnetic resonance imaging and an electroencephalography experiment. Participants are family members from 2 generations, from families genetically enriched for SAD. The sample (n = 132 participants, from 9 families) was characterized by a high prevalence of SAD, in both generations (prevalence (sub)clinical SAD: 38.3%). Furthermore, (sub)clinical SAD was positively related to self-reported social anxiety, fear of negative evaluation, trait anxiety, behavioral inhibition, negative affect, and the level of depressive symptoms. By the multidimensional character of the measurements and thorough characterization of the sample, the LFLSAD offers unique opportunities to investigate candidate neurocognitive endophenotypes of SAD. © 2018 The Authors International Journal of Methods in Psychiatric Research Published by John Wiley & Sons Ltd.

  20. Characterization of highly multiplexed monolithic PET / gamma camera detector modules

    NASA Astrophysics Data System (ADS)

    Pierce, L. A.; Pedemonte, S.; DeWitt, D.; MacDonald, L.; Hunter, W. C. J.; Van Leemput, K.; Miyaoka, R.

    2018-04-01

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A 50 × 50 × 10 mm3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer–Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  1. Pacifiplex: an ancestry-informative SNP panel centred on Australia and the Pacific region.

    PubMed

    Santos, Carla; Phillips, Christopher; Fondevila, Manuel; Daniel, Runa; van Oorschot, Roland A H; Burchard, Esteban G; Schanfield, Moses S; Souto, Luis; Uacyisrael, Jolame; Via, Marc; Carracedo, Ángel; Lareu, Maria V

    2016-01-01

    The analysis of human population variation is an area of considerable interest in the forensic, medical genetics and anthropological fields. Several forensic single nucleotide polymorphism (SNP) assays provide ancestry-informative genotypes in sensitive tests designed to work with limited DNA samples, including a 34-SNP multiplex differentiating African, European and East Asian ancestries. Although assays capable of differentiating Oceanian ancestry at a global scale have become available, this study describes markers compiled specifically for differentiation of Oceanian populations. A sensitive multiplex assay, termed Pacifiplex, was developed and optimized in a small-scale test applicable to forensic analyses. The Pacifiplex assay comprises 29 ancestry-informative marker SNPs (AIM-SNPs) selected to complement the 34-plex test, that in a combined set distinguish Africans, Europeans, East Asians and Oceanians. Nine Pacific region study populations were genotyped with both SNP assays, then compared to four reference population groups from the HGDP-CEPH human diversity panel. STRUCTURE analyses estimated population cluster membership proportions that aligned with the patterns of variation suggested for each study population's currently inferred demographic histories. Aboriginal Taiwanese and Philippine samples indicated high East Asian ancestry components, Papua New Guinean and Aboriginal Australians samples were predominantly Oceanian, while other populations displayed cluster patterns explained by the distribution of divergence amongst Melanesians, Polynesians and Micronesians. Genotype data from Pacifiplex and 34-plex tests is particularly well suited to analysis of Australian Aboriginal populations and when combined with Y and mitochondrial DNA variation will provide a powerful set of markers for ancestry inference applied to modern Australian demographic profiles. On a broader geographic scale, Pacifiplex adds highly informative data for inferring the ancestry of individuals from Oceanian populations. The sensitivity of Pacifiplex enabled successful genotyping of population samples from 50-year-old serum samples obtained from several Oceanian regions that would otherwise be unlikely to produce useful population data. This indicates tests primarily developed for forensic ancestry analysis also provide an important contribution to studies of populations where useful samples are in limited supply. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Assessing the performance of multiplexed tandem PCR for the diagnosis of pathogenic genotypes of Theileria orientalis using pooled blood samples from cattle.

    PubMed

    Gebrekidan, Hagos; Gasser, Robin B; Stevenson, Mark A; McGrath, Sean; Jabbar, Abdul

    2017-02-01

    Oriental theileriosis caused by multiple genotypes of Theileria orientalis is an important tick-borne disease of bovines. Here, we assessed the performance of an established multiplexed tandem PCR (MT-PCR) for the diagnosis of the two recognized, pathogenic genotypes (chitose and ikeda) of T. orientalis in cattle using pooled blood samples. We used a total of 265 cattle blood samples, which were divided into two groups according to previous MT-PCR results for individual samples. Samples in group 1 (n = 155) were from a herd with a relatively high prevalence of T. orientalis infection; and those in group 2 (n = 110) were from four herds with a low prevalence. For group 1, 31 and 15 batches of five- and ten-pooled samples (selected at random), respectively, were formed. For group 2, 22 and 11 batches of five- and ten-pooled samples (selected at random), respectively, were formed. DNAs from individual pooled samples in each batch and group were then tested by MT-PCR. For group 1, the apparent prevalences estimated using the 31 batches of five-pooled samples (97%) and 15 batches of ten-pooled samples (100%) were significantly higher compared with individual samples (75%). For group 2, higher apparent prevalences (9% and 36%) were also recorded for the 22 and 11 batches of pooled samples, respectively, compared with individual samples (7%). Overall, the average infection intensity recorded for the genotypes of chitose and ikeda were considerably lower in pooled compared with individual samples. The diagnostic specificities of MT-PCR were estimated at 95% and 94%, respectively, when batches of five- and ten-pooled samples were tested, and 94% for individual samples. The diagnostic sensitivity of this assay was estimated at 98% same for all individual, five- and ten-pooled samples. This study shows that screening batches of five- and ten-pooled blood samples from cattle herds are similar to those obtained for individual samples, and, importantly, that the reduced cost for the testing of pooled samples represents a considerable saving to herd managers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Genetic Diversity of Circulating Rotavirus Strains in Tanzania Prior to the Introduction of Vaccination

    PubMed Central

    Moyo, Sabrina J.; Blomberg, Bjørn; Hanevik, Kurt; Kommedal, Oyvind; Vainio, Kirsti; Maselle, Samuel Y.; Langeland, Nina

    2014-01-01

    Background Tanzania currently rolls out vaccination against rotavirus-diarrhea, a major cause of child illness and death. As the vaccine covers a limited number of rotavirus variants, this study describes the molecular epidemiology of rotavirus among children under two years in Dar es Salaam, Tanzania, prior to implementation of vaccination. Methods Stool specimens, demographic and clinical information, were collected from 690 children admitted to hospital due to diarrhea (cases) and 545 children without diarrhea (controls) during one year. Controls were inpatient or children attending child health clinics. Rotavirus antigen was detected using ELISA and positive samples were typed by multiplex semi-nested PCR and sequencing. Results The prevalence of rotavirus was higher in cases (32.5%) than in controls (7.7%, P<0.001). The most common G genotypes were G1 followed by G8, G12, and G4 in cases and G1, G12 and G8 in controls. The Tanzanian G1 variants displayed 94% similarity with the Rotarix vaccine G1 variant. The commonest P genotypes were P[8], P[4] and P[6], and the commonest G/P combination G1 P[8] (n = 123), G8 P[4] and G12 P[6]. Overall, rotavirus prevalence was higher in cool (23.9%) than hot months (17.1%) of the year (P = 0.012). We also observed significant seasonal variation of G genotypes. Rotavirus was most frequently found in the age group of four to six months. The prevalence of rotavirus in cases was lower in stunted children (28.9%) than in non-stunted children (40.1%, P = 0.003) and lower in HIV-infected (15.4%, 4/26) than in HIV-uninfected children (55.3%, 42/76, P<0.001). Conclusion This pre-vaccination study shows predominance of genotype G1 in Tanzania, which is phylogenetically distantly related to the vaccine strains. We confirm the emergence of genotype G8 and G12. Rotavirus infection and circulating genotypes showed seasonal variation. This study also suggests that rotavirus may not be an opportunistic pathogen in children infected with HIV. PMID:24844631

  4. Ghrelin Gene Variants Influence on Metabolic Syndrome Components in Aged Spanish Population

    PubMed Central

    Mora, Mireia; Adam, Victoria; Palomera, Elisabet; Blesa, Sebastian; Díaz, Gonzalo; Buquet, Xavier; Serra-Prat, Mateu; Martín-Escudero, Juan Carlos; Palanca, Ana; Chaves, Javier Felipe; Puig-Domingo, Manuel

    2015-01-01

    Background The role of genetic variations within the ghrelin gene on cardiometabolic profile and nutritional status is still not clear in humans, particularly in elderly people. Objectives We investigated six SNPs of the ghrelin gene and their relationship with metabolic syndrome (MS) components. Subjects and Methods 824 subjects (413 men/411 women, age 77.31±5.04) participating in the Mataró aging study (n = 310) and the Hortega study (n = 514) were analyzed. Anthropometric variables, ghrelin, lipids, glucose and blood pressure levels were measured, and distribution of SNPs -994CT (rs26312), -604GA (rs27647), -501AC (rs26802), R51Q (rs34911341), M72L (rs696217) and L90G (rs4684677) of the ghrelin gene evaluated. Genotypes were determined by multiplex PCR and SNaPshot minisequencing. MS (IDF criteria) was found in 54.9%. Results No association between any of the SNPs and levels of total fasting circulating ghrelin levels was found. C/A-A/A genotype of M72L was associated with increased risk of central obesity according to IDF criteria, while G/A-G/G genotypes of -604GA with reduced risk. A/A genotype of -501AC polymorphism was associated to decreased BMI. In relation to lipid profile, the same genotypes of -604GA were associated with increased total cholesterol and LDL-cholesterol and -501AC with reduced triglycerides. There were no associations with systolic or diastolic blood pressure levels or with hypertension, glucose levels or diabetes and ghrelin polymorphisms. However, G/G genotype of -604GA was associated with glucose >100 mg/dL. Haplotype analysis showed that only one haplotype is associated with increased risk of waist circumference and central obesity. The analysis of subjects by gender showed an important and different association of these polymorphisms regarding MS parameters. Conclusion Ghrelin gene variants -604GA, -501AC and M72L are associated with certain components of MS, in particular to BMI and lipid profile in elderly Spanish subjects. PMID:26375586

  5. A method of multiplex PCR for detection of field released Beauveria bassiana, a fungal entomopathogen applied for pest management in jute (Corchorus olitorius).

    PubMed

    Biswas, Chinmay; Dey, Piyali; Gotyal, B S; Satpathy, Subrata

    2015-04-01

    The fungal entomopathogen Beauveria bassiana is a promising biocontrol agent for many pests. Some B. bassiana strains have been found effective against jute pests. To monitor the survival of field released B. bassiana a rapid and efficient detection technique is essential. Conventional methods such as plating method or direct culture method which are based on cultivation on selective media followed by microscopy are time consuming and not so sensitive. PCR based methods are rapid, sensitive and reliable. A single primer PCR may fail to amplify some of the strains. However, multiplex PCR increases the possibility of detection as it uses multiple primers. Therefore, in the present investigation a multiplex PCR protocol was developed by multiplexing three primers SCA 14, SCA 15 and SCB 9 to detect field released B. bassiana strains from soil as well as foliage of jute field. Using our multiplex PCR protocol all the five B. bassiana strains could be detected from soil and three strains viz., ITCC 6063, ITCC 4563 and ITCC 4796 could be detected even from the crop foliage after 45 days of spray.

  6. Direct PCR - A rapid method for multiplexed detection of different serotypes of Salmonella in enriched pork meat samples.

    PubMed

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas; Quyen, Than Linh; Engelsmann, Pia; Wolff, Anders; Bang, Dang Duong

    2017-04-01

    Salmonellosis, an infectious disease caused by Salmonella spp., is one of the most common foodborne diseases. Isolation and identification of Salmonella by conventional bacterial culture method is time consuming. In response to the demand for rapid on line or at site detection of pathogens, in this study, we developed a multiplex Direct PCR method for rapid detection of different Salmonella serotypes directly from pork meat samples without any DNA purification steps. An inhibitor-resistant Phusion Pfu DNA polymerase was used to overcome PCR inhibition. Four pairs of primers including a pair of newly designed primers targeting Salmonella spp. at subtype level were incorporated in the multiplex Direct PCR. To maximize the efficiency of the Direct PCR, the ratio between sample and dilution buffer was optimized. The sensitivity and specificity of the multiplex Direct PCR were tested using naturally contaminated pork meat samples for detecting and subtyping of Salmonella spp. Conventional bacterial culture methods were used as reference to evaluate the performance of the multiplex Direct PCR. Relative accuracy, sensitivity and specificity of 98.8%; 97.6% and 100%, respectively, were achieved by the method. Application of the multiplex Direct PCR to detect Salmonella in pork meat at slaughter reduces the time of detection from 5 to 6 days by conventional bacterial culture and serotyping methods to 14 h (including 12 h enrichment time). Furthermore, the method poses a possibility of miniaturization and integration into a point-of-need Lab-on-a-chip system for rapid online pathogen detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells.

    PubMed

    Agasti, Sarit S; Liong, Monty; Peterson, Vanessa M; Lee, Hakho; Weissleder, Ralph

    2012-11-14

    DNA barcoding is an attractive technology, as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative, and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification, and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells.

  8. A multiplex microplatform for the detection of multiple DNA methylation events using gold-DNA affinity.

    PubMed

    Sina, Abu Ali Ibn; Foster, Matthew Thomas; Korbie, Darren; Carrascosa, Laura G; Shiddiky, Muhammad J A; Gao, Jing; Dey, Shuvashis; Trau, Matt

    2017-10-07

    We report a new multiplexed strategy for the electrochemical detection of regional DNA methylation across multiple regions. Using the sequence dependent affinity of bisulfite treated DNA towards gold surfaces, the method integrates the high sensitivity of a micro-fabricated multiplex device comprising a microarray of gold electrodes, with the powerful multiplexing capability of multiplex-PCR. The synergy of this combination enables the monitoring of the methylation changes across several genomic regions simultaneously from as low as 500 pg μl -1 of DNA with no sequencing requirement.

  9. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus.

    PubMed

    Rogers, Stephanie M; Payton, Mark; Allen, Robert W; Melcher, Ulrich; Carver, Jesse; Fletcher, Jacqueline

    2012-05-17

    The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough validation study. This method incorporates molecular biology techniques that are already well established in research and diagnostic laboratories, allowing for an easy introduction of this method into existing laboratories. single nucleotide polymorphisms, genotyping, plant pathology, viruses, microbial forensics, Single base primer extension, SNaPshot Multiplex Kit.

  10. The role of type III secretion system and lens material on adhesion of Pseudomonas aeruginosa to contact lenses.

    PubMed

    Shen, Elizabeth P; Tsay, Ruey-Yug; Chia, Jean-San; Wu, Semon; Lee, Jing-Wen; Hu, Fung-Rong

    2012-09-21

    To determine the distribution of invasive and cytotoxic genotypes among ocular isolates of P. aeruginosa and investigate the influence of the type III secretion system (T3SS) on adhesion to conventional, cosmetic, and silicone hydrogel contact lenses (CL). Clinical isolates from 2001 to 2010 were analyzed by multiplex PCR for exoS, exoU, and exoT genes. Bacterial adhesion to etafilcon, nelfilcon (gray colored), balafilcon, and galyfilcon CL with or without artificial tear fluid (ATF) incubation were compared. Surface characteristics were determined with scanning electron microscopy (SEM). Among 87 total isolates, 64 strains were from microbial keratitis cases. CL-related microbial keratitis (CLMK) isolates were mostly of the cytotoxic genotype (expressing exoU) (P = 0.002). No significant differences were found in bacterial adhesion to all types of CL between the genotypes under T3SS-inducing conditions. A trend for least bacterial adhesion of galyfilcon compared to the other CL was noted for both genotypes. Needle complex pscC mutants adhered less to all materials than the wild type (P < 0.05), indicating a role of the T3SS in contact lens adhesion. ATF-incubated CL had significantly more bacterial adhesion (P < 0.05). SEM showed most of the bacteria adhering on CL surfaces. CLMK isolates were mostly of cytotoxic genotype. Different genotypes did not significantly differ in its adhesion to various CL. T3SS and other adhesins are involved in bacteria-contact lens adhesion through complex interactions. Contact lens materials may also play an important role in the adherence of both genotypes of P. aeruginosa.

  11. Highly efficient volume hologram multiplexing in thick dye-doped jelly-like gelatin.

    PubMed

    Katarkevich, Vasili M; Rubinov, Anatoli N; Efendiev, Terlan Sh

    2014-08-01

    Dye-doped jelly-like gelatin is a thick-layer self-developing photosensitive medium that allows single and multiplexed volume phase holograms to be successfully recorded using pulsed laser radiation. In this Letter, we present a method for multiplexed recording of volume holograms in a dye-doped jelly-like gelatin, which provides significant increase in their diffraction efficiency. The method is based on the recovery of the photobleached dye molecule concentration in the hologram recording zone of gel, thanks to molecule diffusion from other unexposed gel areas. As an example, an optical recording of a multiplexed hologram consisting of three superimposed Bragg gratings with mean values of the diffraction efficiency and angular selectivity of ∼75% and ∼21', respectively, is demonstrated by using the proposed method.

  12. Percolation in real multiplex networks

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Radicchi, Filippo

    2016-12-01

    We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.

  13. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  14. Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing.

    PubMed

    Sha, Bei; Liu, Xuan; Ge, Xiao-Lu; Guo, Cheng-Shan

    2014-09-22

    A method for fast reconstruction of off-axis digital holograms based on digital multiplexing algorithm is proposed. Instead of the existed angular multiplexing (AM), the new method utilizes a spatial multiplexing (SM) algorithm, in which four off-axis holograms recorded in sequence are synthesized into one SM function through multiplying each hologram with a tilted plane wave and then adding them up. In comparison with the conventional methods, the SM algorithm simplifies two-dimensional (2-D) Fourier transforms (FTs) of four N*N arrays into a 1.25-D FTs of one N*N arrays. Experimental results demonstrate that, using the SM algorithm, the computational efficiency can be improved and the reconstructed wavefronts keep the same quality as those retrieved based on the existed AM method. This algorithm may be useful in design of a fast preview system of dynamic wavefront imaging in digital holography.

  15. Effective characterization of Salmonella Enteritidis by most probable number (MPN) followed by multiplex polymerase chain reaction (PCR) methods.

    PubMed

    Zappelini, Lincohn; Martone-Rocha, Solange; Dropa, Milena; Matté, Maria Helena; Tiba, Monique Ribeiro; Breternitz, Bruna Suellen; Razzolini, Maria Tereza Pepe

    2017-02-01

    Nontyphoidal Salmonella (NTS) is a relevant pathogen involved in gastroenteritis outbreaks worldwide. In this study, we determined the capacity to combine the most probable number (MPN) and multiplex polymerase chain reaction (PCR) methods to characterize the most important Salmonella serotypes in raw sewage. A total of 499 isolates were recovered from 27 raw sewage samples and screened using two previously described multiplex PCR methods. From those, 123 isolates were selected based on PCR banding pattern-identical or similar to Salmonella Enteritidis and Salmonella Typhimurium-and submitted to conventional serotyping. Results showed that both PCR assays correctly serotyped Salmonella Enteritidis, however, they presented ambiguous results for Salmonella Typhimurium identification. These data highlight that MPN and multiplex PCR can be useful methods to describe microbial quality in raw sewage and suggest two new PCR patterns for Salmonella Enteritidis identification.

  16. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction.

    PubMed

    Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana

    2015-08-18

    Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.

  17. Phylogenetic Analysis of Dengue Virus in Bangkalan, Madura Island, East Java Province, Indonesia.

    PubMed

    Sucipto, Teguh Hari; Kotaki, Tomohiro; Mulyatno, Kris Cahyo; Churrotin, Siti; Labiqah, Amaliah; Soegijanto, Soegeng; Kameoka, Masanori

    2018-01-01

    Dengue virus (DENV) infection is a major health issue in tropical and subtropical areas. Indonesia is one of the biggest dengue endemic countries in the world. In the present study, the phylogenetic analysis of DENV in Bangkalan, Madura Island, Indonesia, was performed in order to obtain a clearer understanding of its dynamics in this country. A total of 359 blood samples from dengue-suspected patients were collected between 2012 and 2014. Serotyping was conducted using a multiplex Reverse Transcriptase-Polymerase Chain Reaction and a phylogenetic analysis of E gene sequences was performed using the Bayesian Markov chain Monte Carlo (MCMC) method. 17 out of 359 blood samples (4.7%) were positive for the isolation of DENV. Serotyping and the phylogenetic analysis revealed the predominance of DENV-1 genotype I (9/17, 52.9%), followed by DENV-2 Cosmopolitan type (7/17, 41.2%) and DENV-3 genotype I (1/17, 5.9%) . DENV-4 was not isolated. The Madura Island isolates showed high nucleotide similarity to other Indonesian isolates, indicating frequent virus circulation in Indonesia. The results of the present study highlight the importance of continuous viral surveillance in dengue endemic areas in order to obtain a clearer understanding of the dynamics of DENV in Indonesia.

  18. Occurrence and genetic diversity of Arcobacter butzleri in an artisanal dairy plant in Italy.

    PubMed

    Giacometti, Federica; Lucchi, Alex; Manfreda, Gerardo; Florio, Daniela; Zanoni, Renato Giulio; Serraino, Andrea

    2013-11-01

    The present study aimed to investigate the presence, distribution, and persistence of Arcobacter spp. in an artisanal dairy plant and to test the isolates to determine their different genotypes in the processing plant and in foods. Samples were collected in an artisanal cheese factory on four occasions between October and December 2012. Food samples (raw milk, ricotta cheese, mozzarella cheese, and conditioning liquid), water samples, and environmental samples were analyzed by the culture method; isolates were identified by multiplex PCR and genotyped by pulsed-field gel electrophoresis (PFGE) analysis. Arcobacter butzleri was isolated from 29 out of 59 samples (46.6%), 22 of which were from environmental samples and 7 of which were from food samples. Cluster analysis divided the strains into 47 PFGE patterns: 14 PFGE clusters and 33 unique types. Our findings indicate that the plant harbored numerous A. butzleri pulsotypes and that the manual cleaning and sanitation in the studied dairy plant do not effectively remove Arcobacter. The recurrent isolation of A. butzleri suggests that the environmental conditions in the dairy plant constitute a good ecological niche for the colonization of this microorganism. In some cases, the presence of indistinguishable strains isolated from the same facilities on different sampling days showed that these strains were persistent in the processing environment.

  19. The NLRP3 rs10754558 Polymorphism Is Associated with the Occurrence and Prognosis of Coronary Artery Disease in the Chinese Han Population.

    PubMed

    Zhou, Dong; Wang, Xinhong; Chen, Tao; Wen, Wen; Liu, Yang; Wu, Yue; Yuan, Zuyi

    2016-01-01

    The objective of this study is to investigate the potential association of the NLRP3 rs10754558 and CARD8 rs2043211 polymorphisms with the occurrence and prognosis of CAD. Gene polymorphisms were analyzed using the ABI PRISM-Snapshot multiplex method in 515 CAD patients and 401 control subjects. The serum level of IL-1β was investigated by ELISA assays. The clinical endpoints were evaluated during a median follow-up period of 32 months. The NLRP3 rs10754558 gene polymorphism was significantly associated with the occurrence of CAD, while the CARD8 rs2043211 gene polymorphism was not involved. Patients carrying G allele of NLRP3 rs10754558 had more severe coronary artery stenosis. Multivariable analysis revealed a significant association of the G allele with major adverse cardiac event. The serum IL-1β concentrations in patients with GG genotype were significantly increased compared with those in the patients with CC genotype. Our findings for the first time show that the NLRP3 rs10754558 polymorphism is involved in the occurrence of CAD in the Chinese Han population; and G allele can effectively predict clinical outcome of CAD. The G allele susceptibility to CAD is maybe associated with the increased level of serum IL-1β.

  20. Methicillin-Susceptible Staphylococcus aureus Endocarditis Isolates Are Associated With Clonal Complex 30 Genotype and a Distinct Repertoire of Enterotoxins and Adhesins

    PubMed Central

    Nienaber, Juhsien J.C.; Sharma Kuinkel, Batu K.; Clarke-Pearson, Michael; Lamlertthon, Supaporn; Park, Lawrence; Rude, Thomas H.; Barriere, Steve; Woods, Christopher W.; Chu, Vivian H.; Marín, Mercedes; Bukovski, Suzana; Garcia, Patricia; Corey, G.Ralph; Korman, Tony; Doco-Lecompte, Thanh; Murdoch, David R.; Reller, L. Barth

    2011-01-01

    Background. Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. Methods. IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. Results. 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). Conclusions. MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study. PMID:21844296

  1. Defining the consequences of genetic variation on a proteome–wide scale

    PubMed Central

    Chick, Joel M.; Munger, Steven C.; Simecek, Petr; Huttlin, Edward L.; Choi, Kwangbom; Gatti, Daniel M.; Raghupathy, Narayanan; Svenson, Karen L.; Churchill, Gary A.; Gygi, Steven P.

    2016-01-01

    Genetic variation modulates protein expression through both transcriptional and post-transcriptional mechanisms. To characterize the consequences of natural genetic diversity on the proteome, here we combine a multiplexed, mass spectrometry-based method for protein quantification with an emerging outbred mouse model containing extensive genetic variation from eight inbred founder strains. By measuring genome-wide transcript and protein expression in livers from 192 Diversity outbred mice, we identify 2,866 protein quantitative trait loci (pQTL) with twice as many local as distant genetic variants. These data support distinct transcriptional and post-transcriptional models underlying the observed pQTL effects. Using a sensitive approach to mediation analysis, we often identified a second protein or transcript as the causal mediator of distant pQTL. Our analysis reveals an extensive network of direct protein–protein interactions. Finally, we show that local genotype can provide accurate predictions of protein abundance in an independent cohort of collaborative cross mice. PMID:27309819

  2. Serotype- and virulence-associated gene profile of Streptococcus suis isolates from pig carcasses in Chiang Mai Province, Northern Thailand

    PubMed Central

    WONGSAWAN, Kanruethai; GOTTSCHALK, Marcelo; THARAVICHITKUL, Prasit

    2014-01-01

    In this present study, the serotype of 40 Streptococcus suis isolates from submaxillary glands of pig carcasses sold in wet markets in Chiang Mai Province, northern Thailand, was investigated. Eleven serotypes, including types 2, 3, 4, 5, 7, 8, 9, 17, 21, 22 and 31, were found in the isolates by a Multiplex PCR combined with serum agglutination. Of the eleven serotypes present, type 3 was the most prevalent, while types 2, 4, 5 and 21 were of primary interest due to their human isolate serotype. The mrp+/epf − /sly − genotype was found to be the most prevalent genotype. This study indicates the importance of effective control of human S. suis infection due to raw pork or pig carcass handling in northern Thailand. PMID:25367105

  3. Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method

    NASA Astrophysics Data System (ADS)

    Nikitin, M. P.; Orlov, A. V.; Znoyko, S. L.; Bragina, V. A.; Gorshkov, B. G.; Ksenevich, T. I.; Cherkasov, V. R.; Nikitin, P. I.

    2018-08-01

    Unique properties of magnetic nanoparticles (MNP) have provided many breakthrough solutions for life science. The immense potential of MNP as labels in advanced immunoassays stems from the fact that they, unlike optical labels, can be easily detected inside 3D opaque porous biosensing structures or in colored mediums, manipulated by an external magnetic field, exhibit high stability and negligible background signal in biological samples, etc. In this research, the magnetic nanolabels and an original technique of their quantification by non-linear magnetization have permitted development of novel methods of multiplex biosensing. Several types of highly sensitive multi-channel readers that offer an extremely wide linear dynamic range are developed to count MNP in different recognition zones for quantitative concentration measurements of various analytes. Four approaches to multiplex biosensing based on MNP have been demonstrated in one-run tests based on several 3D porous structures; flat and micropillar microfluidic sensor chips; multi-line lateral flow strips and modular architecture of the strips, which is the first 3D multiplexing method that goes beyond the traditional planar techniques. Detection of cardio- and cancer markers, small molecules and oligonucleotides were used in the experiments. The analytical characteristics of the developed multiplex methods are on the level of the modern time-consuming laboratory techniques. The developed multiplex biosensing platforms are promising for medical and veterinary diagnostics, food inspection, environmental and security monitoring, etc.

  4. Multiplex Microsphere Immunoassays for the Detection of IgM and IgG to Arboviral Diseases

    PubMed Central

    Basile, Alison J.; Horiuchi, Kalanthe; Panella, Amanda J.; Laven, Janeen; Kosoy, Olga; Lanciotti, Robert S.; Venkateswaran, Neeraja; Biggerstaff, Brad J.

    2013-01-01

    Serodiagnosis of arthropod-borne viruses (arboviruses) at the Division of Vector-Borne Diseases, CDC, employs a combination of individual enzyme-linked immunosorbent assays and microsphere immunoassays (MIAs) to test for IgM and IgG, followed by confirmatory plaque-reduction neutralization tests. Based upon the geographic origin of a sample, it may be tested concurrently for multiple arboviruses, which can be a cumbersome task. The advent of multiplexing represents an opportunity to streamline these types of assays; however, because serologic cross-reactivity of the arboviral antigens often confounds results, it is of interest to employ data analysis methods that address this issue. Here, we constructed 13-virus multiplexed IgM and IgG MIAs that included internal and external controls, based upon the Luminex platform. Results from samples tested using these methods were analyzed using 8 different statistical schemes to identify the best way to classify the data. Geographic batteries were also devised to serve as a more practical diagnostic format, and further samples were tested using the abbreviated multiplexes. Comparative error rates for the classification schemes identified a specific boosting method based on logistic regression “Logitboost” as the classification method of choice. When the data from all samples tested were combined into one set, error rates from the multiplex IgM and IgG MIAs were <5% for all geographic batteries. This work represents both the most comprehensive, validated multiplexing method for arboviruses to date, and also the most systematic attempt to determine the most useful classification method for use with these types of serologic tests. PMID:24086608

  5. Development of Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Detection of Influenza A, B and Adenoviruses

    PubMed Central

    Nakhaie, Mohsen; Soleimanjahi, Hoorieh; Mollaie, Hamid Reza; Arabzadeh, Seyed Mohamad Ali

    2018-01-01

    Background and objective: Millions of people in developing countries lose their lives due to acute respiratory infections, such as Influenza A & B and Adeno viruses. Given the importance of rapid identification of the virus, in this study the researchers attempted to design a method that enables detection of influenza A, B, and adenoviruses, quickly and simultaneously. The Multiplex RT PCR method was the preferred method for the detection of influenza A, B, and adenoviruses in clinical specimens because it is rapid, sensitive, specific, and more cost-effective than alternative methods Methods: After collecting samples from patients with respiratory disease, virus genome was extracted, then Monoplex PCR was used on positive samples and Multiplex RT-PCR on clinical specimens. Finally, by comparing the bands of these samples, the type of virus in the clinical samples was determined. Results: Performing Multiplex RT-PCR on 50 samples of respiratory tract led to following results; flu A: 12.5%, fluB: 50%, adeno: 27.5%, negative: 7.5%, and 2.5% contamination. Conclusion: Reverse transcription-multiplex Polymerase Chain Reaction (PCR) technique, a rapid diagnostic tool, has potential for high-throughput testing. This method has a significant advantage, which provides simultaneous amplification of numerous viruses in a single reaction. This study concentrates on multiplex molecular technologies and their clinical application for the detection and quantification of respiratory pathogens. The improvement in diagnostic testing for viral respiratory pathogens effects patient management, and leads to more cost-effective delivery of care. It limits unnecessary antibiotic use and improves clinical management by use of suitable treatment. PMID:29731796

  6. Genetic diversity of Bacillus anthracis in Europe: genotyping methods in forensic and epidemiologic investigations.

    PubMed

    Derzelle, Sylviane; Thierry, Simon

    2013-09-01

    Bacillus anthracis, the etiological agent of anthrax, a zoonosis relatively common throughout the world, can be used as an agent of bioterrorism. In naturally occurring outbreaks and in criminal release of this pathogen, a fast and accurate diagnosis is crucial to an effective response. Microbiological forensics and epidemiologic investigations increasingly rely on molecular markers, such as polymorphisms in DNA sequence, to obtain reliable information regarding the identification or source of a suspicious strain. Over the past decade, significant research efforts have been undertaken to develop genotyping methods with increased power to differentiate B. anthracis strains. A growing number of DNA signatures have been identified and used to survey B. anthracis diversity in nature, leading to rapid advances in our understanding of the global population of this pathogen. This article provides an overview of the different phylogenetic subgroups distributed across the world, with a particular focus on Europe. Updated information on the anthrax situation in Europe is reported. A brief description of some of the work in progress in the work package 5.1 of the AniBioThreat project is also presented, including (1) the development of a robust typing tool based on a suspension array technology and multiplexed single nucleotide polymorphisms scoring and (2) the typing of a collection of DNA from European isolates exchanged between the partners of the project. The know-how acquired will contribute to improving the EU's ability to react rapidly when the identity and real origin of a strain need to be established.

  7. Development of a novel forensic STR multiplex for ancestry analysis and extended identity testing.

    PubMed

    Phillips, Chris; Fernandez-Formoso, Luis; Gelabert-Besada, Miguel; Garcia-Magariños, Manuel; Santos, Carla; Fondevila, Manuel; Carracedo, Angel; Lareu, Maria Victoria

    2013-04-01

    There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population-divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12-STR multiplex composed of ancestry informative marker STRs (AIM-STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM-SNPs: Snipper, to handle multiallele STR data using frequency-based training sets. We assessed the ability of the 12-plex AIM-STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM-SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multiplex Detection of Toxigenic Penicillium Species.

    PubMed

    Rodríguez, Alicia; Córdoba, Juan J; Rodríguez, Mar; Andrade, María J

    2017-01-01

    Multiplex PCR-based methods for simultaneous detection and quantification of different mycotoxin-producing Penicillia are useful tools to be used in food safety programs. These rapid and sensitive techniques allow taking corrective actions during food processing or storage for avoiding accumulation of mycotoxins in them. In this chapter, three multiplex PCR-based methods to detect at least patulin- and ochratoxin A-producing Penicillia are detailed. Two of them are different multiplex real-time PCR suitable for monitoring and quantifying toxigenic Penicillium using the nonspecific dye SYBR Green and specific hydrolysis probes (TaqMan). All of them successfully use the same target genes involved in the biosynthesis of such mycotoxins for designing primers and/or probes.

  9. Molecular Characterization of Streptococcus agalactiae Isolates From Pregnant and Non-Pregnant Women at Yazd University Hospital, Iran.

    PubMed

    Sadeh, Maryam; Firouzi, Roya; Derakhshandeh, Abdollah; Bagher Khalili, Mohammad; Kong, Fanrong; Kudinha, Timothy

    2016-02-01

    Streptococcus agalactiae (Group B streptococcus, GBS) that colonize the vaginas of pregnant women may occasionally cause neonatal infections. It is one of the most common causes of sepsis and meningitis in neonates and of invasive diseases in pregnant women. It can also cause infectious disease among immunocompromised individuals. The distribution of capsular serotypes and genotypes varies over time and by geographic era. The serotyping and genotyping data of GBS in Iranian pregnant and non-pregnant women seems very limited. The aim of this study was to investigate the GBS ‎molecular capsular serotype ‎and genotype distribution of pregnant and non-pregnant carrier ‎women at Yazd university hospital, in Iran.‎. In this cross-sectional study, a total of 100 GBS strains isolated from 237 pregnant and 413 non-pregnant women were investigated for molecular capsular serotypes and surface protein genes using the multiplex PCR assay. The Chi-square method was used for statistical analysis. Out of 650 samples, 100 (15.4%) were identified as GBS, with a predominance of capsular serotypes III (50%) [III-1 (49), III-3 (1)], followed by II (25%), Ia (12%), V (11%), and Ib (2%), which was similar with another study conducted in Tehran, Iran, but they had no serotype Ia in their report. The surface protein antigen genes distribution was rib (53%), epsilon (38%), alp2/3 (6%), and alpha-c (3%). The determination of serotype and surface proteins of GBS strains distribution would ‎be ‎relevant ‎for the future possible formulation of a GBS vaccine.

  10. Myeloperoxidase activity and its corresponding mRNA expression as well as gene polymorphism in the population living in the coal-burning endemic fluorosis area in Guizhou of China.

    PubMed

    Zhang, Ting; Shan, Ke-Ren; Tu, Xi; He, Yan; Pei, Jin-Jing; Guan, Zhi-Zhong

    2013-06-01

    The myeloperoxidase (MPO) activity and its corresponding mRNA expression as well as gene polymorphism were investigated in the population who live in the endemic fluorosis area. In the study, 150 people were selected from the coal-burning endemic fluorosis area and 150 normal persons from the non-fluorosis area in Guizhou province of China. The blood samples were collected from these people. The activity of MPO in the plasma was determined by spectrophotometer; the expression of MPO mRNA was measured by employing real-time polymerase chain reaction; DNAs were extracted from the leucocytes in blood and five SNP genotypes of MPO promoter gene detected by a multiplex genotyping method, adapter-ligation-mediated allele-specific amplification. The results showed that the MPO activity and its corresponding mRNA in blood were significantly increased in the population living in the area of fluorosis. The different genotype frequencies of MPO, including -1228G/A, -585T/C, -463G/A, and -163C/T, and the three haplotypes with higher frequencies, including -163C-463G-585T-1228G-1276T, -163C-463G-585T-1228G-1276C, and -163C-463G-585T-1228A-1276T, were significantly associated with fluorosis. The results indicated that the elevated activity of MPO induced by endemic fluorosis may be connected in mechanism to the stimulated expression of MPO mRNA and the changed gene polymorphism.

  11. Evaluation of single-nucleotide polymorphisms as internal controls in prenatal diagnosis of fetal blood groups.

    PubMed

    Doescher, Andrea; Petershofen, Eduard K; Wagner, Franz F; Schunter, Markus; Müller, Thomas H

    2013-02-01

    Determination of fetal blood groups in maternal plasma samples critically depends on adequate amplification of fetal DNA. We evaluated the routine inclusion of 52 single-nucleotide polymorphisms (SNPs) as internal reference in our polymerase chain reaction (PCR) settings to obtain a positive internal control for fetal DNA. DNA from 223 plasma samples of pregnant women was screened for RHD Exons 3, 4, 5, and 7 in a multiplex PCR including 52 SNPs divided into four primer pools. Amplicons were analyzed by single-base extension and the GeneScan method in a genetic analyzer. Results of D screening were compared to standard RHD genotyping of amniotic fluid or real-time PCR of fetal DNA from maternal plasma. The vast majority of all samples (97.8%) demonstrated differences in maternal and fetal SNP patterns when tested with four primer pools. These differences were not observed in less than 2.2% of the samples most probably due to an extraction failure for adequate amounts of fetal DNA. Comparison of the fetal genotypes with independent results did not reveal a single false-negative case among samples (n = 42) with positive internal control and negative fetal RHD typing. Coamplification of 52 SNPs with RHD-specific sequences for fetal blood group determination introduces a valid positive control for the amplification of fetal DNA to avoid false-negative results. This new approach does not require a paternal blood sample. It may also be applicable to other assays for fetal genotyping in maternal blood samples. © 2012 American Association of Blood Banks.

  12. Prevalence of Rotavirus Genotypes in Children Younger than 5 Years of Age before the Introduction of a Universal Rotavirus Vaccination Program: Report of Rotavirus Surveillance in Turkey

    PubMed Central

    Durmaz, Riza; Kalaycioglu, Atila Taner; Acar, Sumeyra; Bakkaloglu, Zekiye; Karagoz, Alper; Korukluoglu, Gulay; Ertek, Mustafa; Torunoglu, Mehmet Ali

    2014-01-01

    Background Group A rotaviruses are the most common causative agent of acute gastroenteritis among children less than 5 years of age throughout the world. This sentinel surveillance study was aimed to obtain baseline data on the rotavirus G and P genotypes across Turkey before the introduction of a universal rotavirus vaccination program. Methods Rotavirus antigen-positive samples were collected from 2102 children less than 5 years of age who attended hospitals participating in the Turkish Rotavirus Surveillance Network. Rotavirus antigen was detected in the laboratories of participating hospitals by commercial serological tests such as latex agglutination, immunochromatographic test or enzyme immunoassay. Rotavirus G and P genotypes were determined by reverse transcription polymerase chain reaction (RT-PCR) using consensus primers detecting the VP7 and VP4 genes, followed by semi-nested type-specific multiplex PCR. Results RT-PCR found rotavirus RNA in 1644 (78.2%) of the samples tested. The highest rate of rotavirus positivity (38.7%) was observed among children in the 13 to 24 month age group, followed by children in the age group of 25 to 36 months (28.3%). A total of eight different G types, six different P types, and 42 different G–P combinations were obtained. Four common G types (G1, G2, G3, and G9) and two common P types (P[8] and P[4]) accounted for 95.1% and 98.8% of the strains, respectively. G9P[8] was the most common G/P combination found in 40.5% of the strains followed by G1P[8] (21.6%), G2P[8] (9.3%), G2P[4] (6.5%), G3P[8] (3.5%), and finally, G4P[8] (3.4%). These six common genotypes included 83.7% of the strains tested in this study. The rate of uncommon genotypes was 14%. Conclusion The majority of the strains analyzed belonged to the G1–G4 and G9 genotypes, suggesting high coverage of current rotavirus vaccines. This study also demonstrates a dramatic increase in G9 genotype across the country. PMID:25437502

  13. Mumps-specific cross-neutralization by MMR vaccine-induced antibodies predicts protection against mumps virus infection.

    PubMed

    Gouma, Sigrid; Ten Hulscher, Hinke I; Schurink-van 't Klooster, Tessa M; de Melker, Hester E; Boland, Greet J; Kaaijk, Patricia; van Els, Cécile A C M; Koopmans, Marion P G; van Binnendijk, Rob S

    2016-07-29

    Similar to other recent mumps genotype G outbreaks worldwide, most mumps patients during the recent mumps genotype G outbreaks in the Netherlands had received 2 doses of measles, mumps and rubella (MMR) vaccine during childhood. Here, we investigate the capacity of vaccine-induced antibodies to neutralize wild type mumps virus strains, including mumps virus genotype G. In this study, we tested 105 pre-outbreak serum samples from students who had received 2 MMR vaccine doses and who had no mumps virus infection (n=76), symptomatic mumps virus infection (n=10) or asymptomatic mumps virus infection (n=19) during the mumps outbreaks. In all samples, mumps-specific IgG concentrations were measured by multiplex immunoassay and neutralization titers were measured against the Jeryl Lynn vaccine strain and against wild type genotype G and genotype D mumps virus strains. The correlation between mumps-specific IgG concentrations and neutralization titers against Jeryl Lynn was poor, which suggests that IgG concentrations do not adequately represent immunological protection against mumps virus infection by antibody neutralization. Pre-outbreak neutralization titers in infected persons were significantly lower against genotype G than against the vaccine strain. Furthermore, antibody neutralization of wild type mumps virus genotype G and genotype D was significantly reduced in pre-outbreak samples from infected persons as compared with non-infected persons. No statistically significant difference was found for the vaccine strain. The sensitivity/specificity ratio was largest for neutralization of the genotype G strain as compared with the genotype D strain and the vaccine strain. The reduced neutralization of wild type mumps virus strains in MMR vaccinated persons prior to infection indicates that pre-outbreak mumps virus neutralization is partly strain-specific and that neutralization differs between infected and non-infected persons. Therefore, we recommend the use of wild type mumps virus neutralization assays as preferred tool for surveillance of protection against mumps virus infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Molecular epidemiological investigation of Brucella melitensis circulating in Mongolia by MLVA16.

    PubMed

    Kang, Sung-Il; Her, Moon; Erdenebaataar, Janchivdorj; Vanaabaatar, Batbaatar; Cho, Hyorim; Sung, So-Ra; Lee, Jin Ju; Jung, Suk Chan; Park, Yong Ho; Kim, Ji-Yeon

    2017-02-01

    Mongolia has a high incidence of brucellosis in human and animals due to livestock husbandry. To investigate the genetic characteristics of Mongolian B. melitensis, an MLVA (multi-locus variable-number tandem-repeat analysis)-16 assay was performed with 94 B. melitensis isolates. They were identified as B. melitensis biovar (bv.) 1 (67), 3 (10) and Rev. 1 vaccine strains (17) using a classical biotyping and multiplex PCR. In genotyping, three human isolates were grouped at 2 genotypes with sheep isolates, and it implies that B. melitensis are cross-infected between human and livestock. In the parsimony analysis, Mongolian B. melitensis isolates had high genetic similarity with Chinese strains, likely due to the geographical proximity, clustered distinctively as compared with other foreign isolates. B. melitensis Rev. 1 vaccine strains were divided into 4 genotypes with 92% similarity. In the analysis of Rev.1 strains, the risk of mutation of vaccine strain might not be overlooked. Animal quarantines should be strengthened to prevent the spread of Brucella species among adjacent countries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Multiplex Immunoassay Profiling.

    PubMed

    Stephen, Laurie

    2017-01-01

    Multiplex immunoassays allow for the rapid profiling of biomarker proteins in biological fluids, using less sample and labor than single immunoassays. This chapter details the methods to develop and manufacture multiplex assays for the Luminex ® platform. Although assay development is not included here, the same methods can be used to covalently couple antibodies to the Luminex beads and to label antibodies for the screening of sandwich pairs, if needed. The assay optimization, detection of cross-reactivity, and minimizing antibody interactions and matrix interferences will be addressed.

  16. Development of a Multiplexed Bead-Based Suspension Array for the Detection and Discrimination of Pospiviroid Plant Pathogens

    PubMed Central

    van Brunschot, Sharon L.; Bergervoet, Jan H. W.; Pagendam, Daniel E.; de Weerdt, Marjanne; Geering, Andrew D. W.; Drenth, André; van der Vlugt, René A. A.

    2014-01-01

    Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies. PMID:24404188

  17. Identification of Malassezia species from pityriasis versicolor lesions with a new multiplex PCR method.

    PubMed

    Vuran, Emre; Karaarslan, Aydın; Karasartova, Djursun; Turegun, Buse; Sahin, Fikret

    2014-02-01

    Despite the fact that a range of molecular methods have been developed as tools for the diagnosis of Malassezia species, there are several drawbacks associated with them, such as inefficiency of differentiating all the species, high cost, and questionable reproducibility. In addition, most of the molecular methods require cultivation to enhance sensitivity. Therefore, alternative methods eliminating cultivation and capable of identifying species with high accuracy and reliability are needed. Herein, a multiplex polymerase chain reaction (PCR)-based method was especially developed for the detection of eleven Malassezia species. The multiplex PCR was standardized by incorporating a consensus forward primer, along with Malassezia species-specific reverse primers considering the sizes of the PCR products. In the method, the multiplex-PCR primer content is divided into three parts to circumvent the problem of increased nonspecific background resulting from the use of a large number of primers. DNA extraction protocol described by Harju and colleagues was modified using liquid nitrogen instead of -80 °C to break down the yeast membrane. By a modified extraction procedure followed by multiplex PCR and electrophoresis, the method enables identification and differentiation of Malassezia species from both of the samples obtained directly from skin and yeast colonies grown in culture. Fifty-five patients who were confirmed with pityriasis versicolor were enrolled in the study. Multiplex PCR detected and differentiated all 55 samples obtained directly from the patients' skin. However, 50 out of 55 samples yielded Malassezia colony in the culture. In addition, eight of 50 colonies were misdiagnosed or not completely differentiated by conventional methods based on the sequence analysis of eight colonies. The method is capable of identifying species with high accuracy and reliability. In addition, it is simple, quick, and cost-effective. More importantly, the method works efficiently for the diagnosis of Malassezia species obtained directly from patient samples.

  18. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients.

    PubMed

    Tat Trung, Ngo; Van Tong, Hoang; Lien, Tran Thi; Van Son, Trinh; Thanh Huyen, Tran Thi; Quyen, Dao Thanh; Hoan, Phan Quoc; Meyer, Christian G; Song, Le Huu

    2018-02-01

    For the identification of bacterial pathogens, blood culture is still the gold standard diagnostic method. However, several disadvantages apply to blood cultures, such as time and rather large volumes of blood sample required. We have previously established an optimised multiplex real-time PCR method in order to diagnose bloodstream infections. In the present study, we evaluated the diagnostic performance of this optimised multiplex RT-PCR in blood samples collected from 110 septicaemia patients enrolled at the 108 Military Central Hospital, Hanoi, Vietnam. Positive results were obtained by blood culture, the Light Cylcler-based SeptiFast ® assay and our multiplex RT-PCR in 35 (32%), 31 (28%), and 31 (28%) samples, respectively. Combined use of the three methods confirmed 50 (45.5%) positive cases of bloodstream infection, a rate significantly higher compared to the exclusive use of one of the three methods (P=0.052, 0.012 and 0.012, respectively). The sensitivity, specificity and area under the curve (AUC) of our assay were higher compared to that of the SeptiFast ® assay (77.4%, 86.1% and 0.8 vs. 67.7%, 82.3% and 0.73, respectively). Combined use of blood culture and multiplex RT-PCR assay showed a superior diagnostic performance, as the sensitivity, specificity, and AUC reached 83.3%, 100%, and 0.95, respectively. The concordance between blood culture and the multiplex RT-PCR assay was highest for Klebsiella pneumonia (100%), followed by Streptococcus spp. (77.8%), Escherichia coli (66.7%), Staphylococcus spp. (50%) and Salmonella spp. (50%). In addition, the use of the newly established multiplex RT-PCR assay increased the spectrum of identifiable agents (Acintobacter baumannii, 1/32; Proteus mirabilis, 1/32). The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Identification and Characterization of Imipenem-Resistant Klebsiella pneumoniae and Susceptible Klebsiella variicola Isolates Obtained from the Same Patient.

    PubMed

    Garza-Ramos, Ulises; Moreno-Dominguez, Stephania; Hernández-Castro, Rigoberto; Silva-Sanchez, Jesús; Barrios, Humberto; Reyna-Flores, Fernando; Sanchez-Perez, Alejandro; Carrillo-Casas, Erika M; Sanchez-León, María Carmen; Moncada-Barron, David

    2016-04-01

    Klebsiella variicola, a bacterium closely genetically related to Klebsiella pneumoniae, is commonly misidentified as K. pneumoniae by biochemical tests. To distinguish between the two bacteria, phylogenetic analysis of the rpoB gene and the identification of unique genes in both bacterial species by multiplex-polymerase chain reaction (PCR) provide the means to reliably identify and genotype K. variicola. In recent years, K. variicola has been described both as the cause of an intrahospital outbreak in a pediatric hospital, which resulted in sepsis in inpatients, and as a frequent cause of bloodstream infections. In the present study, K. pneumoniae and K. variicola were isolated from a unique patient displaying different antimicrobial susceptibility phenotypes and different genotypes of virulence determinants. Eight clinical isolates were obtained at different time intervals; all during a 5-month period. The isolates were identified as K. pneumoniae by an automated identification system. The clinical (biochemical test) and molecular (multiplex-PCR and rpoB gene) characterization identified imipenem resistance in the first six K. pneumoniae ST258 isolates, which encode the SHV-12 cephalosporinase and KPC-3 carbapenemase genes. The two last remaining isolates corresponded to susceptible K. variicola. The bacterial species showed a specific profile of virulence-associated determinants, specifically the fimA, fimH, and ecpRAB fimbrial-encoding genes identified only in K. pneumoniae isolates. However, the entb (enterobactin), mrkD (fimbrial adhesin), uge (epimerase), ureA (urease), and wabG (transferase) genes were shared between both bacterial species. Recent studies attribute a higher mortality rate to K. variicola than to K. pneumonia. This work highlights the identification of K. pneumoniae and the closely related K. variicola isolated from the same patient. The value of distinguishing between these two bacterial species is in their clinical significance, their different phenotypes and genotypes, and the fact that they can be isolated from the same patient.

  20. Genome-Wide Analysis Provides Evidence on the Genetic Relatedness of the Emergent Xylella fastidiosa Genotype in Italy to Isolates from Central America.

    PubMed

    Giampetruzzi, Annalisa; Saponari, Maria; Loconsole, Giuliana; Boscia, Donato; Savino, Vito Nicola; Almeida, Rodrigo P P; Zicca, Stefania; Landa, Blanca B; Chacón-Diaz, Carlos; Saldarelli, Pasquale

    2017-07-01

    Xylella fastidiosa is a plant-pathogenic bacterium recently introduced in Europe that is causing decline in olive trees in the South of Italy. Genetic studies have consistently shown that the bacterial genotype recovered from infected olive trees belongs to the sequence type ST53 within subspecies pauca. This genotype, ST53, has also been reported to occur in Costa Rica. The ancestry of ST53 was recently clarified, showing it contains alleles that are monophyletic with those of subsp. pauca in South America. To more robustly determine the phylogenetic placement of ST53 within X. fastidiosa, we performed a comparative analysis based on single nucleotide polymorphisms (SNPs) and the study of the pan-genome of the 27 currently public available whole genome sequences of X. fastidiosa. The resulting maximum-parsimony and maximum likelihood trees constructed using the SNPs and the pan-genome analysis are consistent with previously described X. fastidiosa taxonomy, distinguishing the subsp. fastidiosa, multiplex, pauca, sandyi, and morus. Within the subsp. pauca, the Italian and three Costa Rican isolates, all belonging to ST53, formed a compact phylotype in a clade divergent from the South American pauca isolates, also distinct from the recently described coffee isolate CFBP8072 imported into Europe from Ecuador. These findings were also supported by the gene characterization of a conjugative plasmid shared by all the four ST53 isolates. Furthermore, isolates of the ST53 clade possess an exclusive locus encoding a putative ATP-binding protein belonging to the family of histidine kinase-like ATPase gene, which is not present in isolates from the subspecies multiplex, sandyi, and pauca, but was detected in ST21 isolates of the subspecies fastidiosa from Costa Rica. The clustering and distinctiveness of the ST53 isolates supports the hypothesis of their common origin, and the limited genetic diversity among these isolates suggests this is an emerging clade within subsp. pauca.

  1. A Novel Universal Primer-Multiplex-PCR Method with Sequencing Gel Electrophoresis Analysis

    PubMed Central

    Huang, Kunlun; Zhang, Nan; Yuan, Yanfang; Shang, Ying; Luo, Yunbo

    2012-01-01

    In this study, a novel universal primer-multiplex-PCR (UP-M-PCR) method adding a universal primer (UP) in the multiplex PCR reaction system was described. A universal adapter was designed in the 5′-end of each specific primer pairs which matched with the specific DNA sequences for each template and also used as the universal primer (UP). PCR products were analyzed on sequencing gel electrophoresis (SGE) which had the advantage of exhibiting extraordinary resolution. This method overcame the disadvantages rooted deeply in conventional multiplex PCR such as complex manipulation, lower sensitivity, self-inhibition and amplification disparity resulting from different primers, and it got a high specificity and had a low detection limit of 0.1 ng for single kind of crops when screening the presence of genetically modified (GM) crops in mixture samples. The novel developed multiplex PCR assay with sequencing gel electrophoresis analysis will be useful in many fields, such as verifying the GM status of a sample irrespective of the crop and GM trait and so on. PMID:22272223

  2. Prevalence of Porphyromonas gingivalis four rag locus genotypes in patients of orthodontic gingivitis and periodontitis.

    PubMed

    Liu, Yi; Zhang, Yujie; Wang, Lili; Guo, Yang; Xiao, Shuiqing

    2013-01-01

    Porphyromonas gingivalis is considered as a major etiological agent in periodontal diseases and implied to result in gingival inflammation under orthodontic appliance. rag locus is a pathogenicity island found in Porphyromonas gingivalis. Four rag locus variants are different in pathogenicity of Porphyromonas gingivalis. Moreover, there are different racial and geographic differences in distribution of rag locus genotypes. In this study, we assessed the prevalence of Porphyromonas gingivalis and rag locus genotypes in 102 gingival crevicular fluid samples from 57 cases of gingivitis patients with orthodontic appliances, 25 cases of periodontitis patients and 20 cases of periodontally healthy people through a 16S rRNA-based PCR and a multiplex PCR. The correlations between Porphyromona.gingivalis/rag locus and clinical indices were analyzed. The prevalence of Porphyromonas gingivalis and rag locus genes in periodontitis group was the highest among three groups and higher in orthodontic gingivitis than healthy people (p<0.01). An obviously positive correlation was observed between the prevalence of Porphyromonas gingivalis/rag locus and gingival index. rag-3 and rag-4 were the predominant genotypes in the patients of orthodontic gingivitis and mild-to-moderate periodontitis in Shandong. Porphyromonas.gingivalis carrying rag-1 has the strong virulence and could be associated with severe periodontitis.

  3. Prevalence of Porphyromonas gingivalis Four rag Locus Genotypes in Patients of Orthodontic Gingivitis and Periodontitis

    PubMed Central

    Liu, Yi; Zhang, Yujie; Wang, Lili; Guo, Yang; Xiao, Shuiqing

    2013-01-01

    Porphyromonas gingivalis is considered as a major etiological agent in periodontal diseases and implied to result in gingival inflammation under orthodontic appliance. rag locus is a pathogenicity island found in Porphyromonas gingivalis. Four rag locus variants are different in pathogenicity of Porphyromonas gingivalis. Moreover, there are different racial and geographic differences in distribution of rag locus genotypes. In this study, we assessed the prevalence of Porphyromonas gingivalis and rag locus genotypes in 102 gingival crevicular fluid samples from 57 cases of gingivitis patients with orthodontic appliances, 25 cases of periodontitis patients and 20 cases of periodontally healthy people through a 16S rRNA-based PCR and a multiplex PCR. The correlations between Porphyromona.gingivalis/rag locus and clinical indices were analyzed. The prevalence of Porphyromonas gingivalis and rag locus genes in periodontitis group was the highest among three groups and higher in orthodontic gingivitis than healthy people (p<0.01). An obviously positive correlation was observed between the prevalence of Porphyromonas gingivalis/rag locus and gingival index. rag-3 and rag-4 were the predominant genotypes in the patients of orthodontic gingivitis and mild-to-moderate periodontitis in Shandong. Porphyromonas.gingivalis carrying rag-1 has the strong virulence and could be associated with severe periodontitis. PMID:23593379

  4. Genotype Reconstruction of Paternity in European Lobsters (Homarus gammarus).

    PubMed

    Ellis, Charlie D; Hodgson, David J; André, Carl; Sørdalen, Tonje K; Knutsen, Halvor; Griffiths, Amber G F

    2015-01-01

    Decapod crustaceans exhibit considerable variation in fertilisation strategies, ranging from pervasive single paternity to the near-ubiquitous presence of multiple paternity, and such knowledge of mating systems and behaviour are required for the informed management of commercially-exploited marine fisheries. We used genetic markers to assess the paternity of individual broods in the European lobster, Homarus gammarus, a species for which paternity structure is unknown. Using 13 multiplexed microsatellite loci, three of which are newly described in this study, we genotyped 10 eggs from each of 34 females collected from an Atlantic peninsula in the south-western United Kingdom. Single reconstructed paternal genotypes explained all observed progeny genotypes in each of the 34 egg clutches, and each clutch was fertilised by a different male. Simulations indicated that the probability of detecting multiple paternity was in excess of 95% if secondary sires account for at least a quarter of the brood, and in excess of 99% where additional sire success was approximately equal. Our results show that multiple paternal fertilisations are either absent, unusual, or highly skewed in favour of a single male among H. gammarus in this area. Potential mechanisms upholding single paternal fertilisation are discussed, along with the prospective utility of parentage assignments in evaluations of hatchery stocking and other fishery conservation approaches in light of this finding.

  5. Genotype-Phenotype Relationship in Patients and Relatives with SHOX Region Anomalies in the French Population.

    PubMed

    Auger, Julie; Baptiste, Amandine; Benabbad, Imane; Thierry, Gaëlle; Costa, Jean-Marc; Amouyal, Mélanie; Kottler, Marie-Laure; Leheup, Bruno; Touraine, Renaud; Schmitt, Sébastien; Lebrun, Marine; Cormier Daire, Valérie; Bonnefont, Jean-Paul; de Roux, Nicolas; Elie, Caroline; Rosilio, Myriam

    2016-01-01

    The aim of our study was to describe a large population with anomalies involving the SHOX region, responsible for idiopathic short stature and Léri-Weill dyschondrosteosis (LWD), and to identify a possible genotype/phenotype correlation. We performed a retrospective multicenter study on French subjects with a SHOX region anomaly diagnosed by multiplex ligation-dependent probe amplification or Sanger sequencing. Phenotypes were collected in each of the 7 genetic laboratories practicing this technique for SHOX analysis. Among 205 index cases and 100 related cases, 91.3% had LWD. For index cases, median age at evaluation was 11.7 (9.0; 15.9) years and mean height standard deviation score was -2.3 ± 1.1. A deletion of either SHOX or PAR1 or both was found in 74% of patients. Duplications and point mutations/indels affected 8 and 18% of the population, respectively. Genotype-phenotype correlation showed that deletions were more frequently associated with Madelung deformity and mesomelic shortening in girls, as well as with presence of radiologic anomalies, than duplications. Our results highlight genotype-phenotype relationships in the French population with a SHOX defect and provide new information showing that clinical expression is milder in cases of duplication compared to deletions. © 2016 S. Karger AG, Basel.

  6. Multiplex PCR Tests for Detection of Pathogens Associated with Gastroenteritis

    PubMed Central

    Zhang, Hongwei; Morrison, Scott; Tang, Yi-Wei

    2016-01-01

    Synopsis A wide range of enteric pathogens can cause infectious gastroenteritis. Conventional diagnostic algorithms including culture, biochemical identification, immunoassay and microscopic examination are time consuming and often lack sensitivity and specificity. Advances in molecular technology have as allowed its use as clinical diagnostic tools. Multiplex PCR based testing has made its way to gastroenterology diagnostic arena in recent years. In this article we present a review of recent laboratory developed multiplex PCR tests and current commercial multiplex gastrointestinal pathogen tests. We will focus on two FDA cleared commercial syndromic multiplex tests: Luminex xTAG GPP and Biofire FimArray GI test. These multiplex tests can detect and identify multiple enteric pathogens in one test and provide results within hours. Multiplex PCR tests have shown superior sensitivity to conventional methods for detection of most pathogens. The high negative predictive value of these multiplex tests has led to the suggestion that they be used as screening tools especially in outbreaks. Although the clinical utility and benefit of multiplex PCR test are to be further investigated, implementing these multiplex PCR tests in gastroenterology diagnostic algorithm has the potential to improve diagnosis of infectious gastroenteritis. PMID:26004652

  7. Bias-Corrected Targeted Next-Generation Sequencing for Rapid, Multiplexed Detection of Actionable Alterations in Cell-Free DNA from Advanced Lung Cancer Patients.

    PubMed

    Paweletz, Cloud P; Sacher, Adrian G; Raymond, Chris K; Alden, Ryan S; O'Connell, Allison; Mach, Stacy L; Kuang, Yanan; Gandhi, Leena; Kirschmeier, Paul; English, Jessie M; Lim, Lee P; Jänne, Pasi A; Oxnard, Geoffrey R

    2016-02-15

    Tumor genotyping is a powerful tool for guiding non-small cell lung cancer (NSCLC) care; however, comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). An NGS panel was developed targeting 11 driver oncogenes found in NSCLC. Targeted NGS was performed using a novel methodology that maximizes on-target reads, and minimizes artifact, and was validated on DNA dilutions derived from cell lines. Plasma NGS was then blindly performed on 48 patients with advanced, progressive NSCLC and a known tumor genotype, and explored in two patients with incomplete tumor genotyping. NGS could identify mutations present in DNA dilutions at ≥ 0.4% allelic frequency with 100% sensitivity/specificity. Plasma NGS detected a broad range of driver and resistance mutations, including ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification, with 100% specificity. Sensitivity was 77% across 62 known driver and resistance mutations from the 48 cases; in 29 cases with common EGFR and KRAS mutations, sensitivity was similar to droplet digital PCR. In two cases with incomplete tumor genotyping, plasma NGS rapidly identified a novel EGFR exon 19 deletion and a missed case of MET amplification. Blinded to tumor genotype, this plasma NGS approach detected a broad range of targetable genomic alterations in NSCLC with no false positives including complex mutations like rearrangements and unexpected resistance mutations such as EGFR C797S. Through use of widely available vacutainers and a desktop sequencing platform, this assay has the potential to be implemented broadly for patient care and translational research. ©2015 American Association for Cancer Research.

  8. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients

    PubMed Central

    Paweletz, Cloud P.; Sacher, Adrian G.; Raymond, Chris K.; Alden, Ryan S.; O'Connell, Allison; Mach, Stacy L.; Kuang, Yanan; Gandhi, Leena; Kirschmeier, Paul; English, Jessie M.; Lim, Lee P.; Jänne, Pasi A.; Oxnard, Geoffrey R.

    2015-01-01

    Purpose Tumor genotyping is a powerful tool for guiding non-small cell lung cancer (NSCLC) care, however comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). Experimental Design An NGS panel was developed targeting 11 driver oncogenes found in NSCLC. Targeted NGS was performed using a novel methodology that maximizes on-target reads, and minimizes artifact, and was validated on DNA dilutions derived from cell lines. Plasma NGS was then blindly performed on 48 patients with advanced, progressive NSCLC and a known tumor genotype, and explored in two patients with incomplete tumor genotyping. Results NGS could identify mutations present in DNA dilutions at ≥0.4% allelic frequency with 100% sensitivity/specificity. Plasma NGS detected a broad range of driver and resistance mutations, including ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification, with 100% specificity. Sensitivity was 77% across 62 known driver and resistance mutations from the 48 cases; in 29 cases with common EGFR and KRAS mutations, sensitivity was similar to droplet digital PCR. In two cases with incomplete tumor genotyping, plasma NGS rapidly identified a novel EGFR exon 19 deletion and a missed case of MET amplification. Conclusion Blinded to tumor genotype, this plasma NGS approach detected a broad range of targetable genomic alterations in NSCLC with no false positives including complex mutations like rearrangements and unexpected resistance mutations such as EGFR C797S. Through use of widely available vacutainers and a desktop sequencing platform, this assay has the potential to be implemented broadly for patient care and translational research. PMID:26459174

  9. Plasma Signaling Proteins in Persons at Genetic Risk for Alzheimer Disease

    PubMed Central

    Ringman, John M.; Elashoff, David; Geschwind, Daniel H.; Welsh, Brian T.; Gylys, Karen H.; Lee, Cathy; Cummings, Jeffrey L.; Cole, Greg M.

    2013-01-01

    Objective To study the effect of familial Alzheimer disease (FAD) mutations and APOE genotype on plasma signaling protein levels. Design Cross-sectional comparison of plasma levels of 77 proteins measured using multiplex immune assays. Setting A tertiary referral dementia research center. Participants Thirty-three persons from families harboring PSEN1 or APP mutations, aged 19 to 59 years. Main Outcome Measures Protein levels were compared between FAD mutation carriers (MCs) and non-carriers (NCs) and among APOE genotype groups, using multiple linear regression models. Results Twenty-one participants were FAD MCs and 12 were NCs. Six had the APOE ε2/3, 6 had the ε3/4, and 21 had the ε3/3 genotype. Levels of 17 proteins differed among APOE genotype groups, and there were significant interactions between age and APOE genotype for 12 proteins. Plasma levels of apolipoprotein E and superoxide dismutase 1 were highest in the ε2 carriers, lowest in ε4 carriers, and intermediate in the ε3 carriers. Levels of multiple interleukins showed the opposite pattern and, among the ε4 carriers, demonstrated significant negative correlations with age. Although there were no significant differences between FAD MCs and NCs, there were interactions between mutation status and APOE genotype for 13 proteins. Conclusions We found different patterns of inflammatory markers in young and middle-aged persons among APOE genotype groups. The APOE ε4 carriers had the lowest levels of apolipoprotein E. Young ε4 carriers have increased inflammatory markers that diminish with age. We demonstrated altered inflammatory responses in young and middle adulthood in ε4 carriers that may relate to AD risk later in life. PMID:22689192

  10. Novel multiplex qualitative detection using universal primer-multiplex-PCR combined with pyrosequencing.

    PubMed

    Shang, Ying; Xu, Wentao; Wang, Yong; Xu, Yuancong; Huang, Kunlun

    2017-12-15

    This study described a novel multiplex qualitative detection method using pyrosequencing. Based on the principle of the universal primer-multiplex-PCR, only one sequencing primer was employed to realize the detection of the multiple targets. Samples containing three genetically modified (GM) crops in different proportions were used to validate the method. The dNTP dispensing order was designed based on the product sequences. Only 12 rounds (ATCTGATCGACT) of dNTPs addition and, often, as few as three rounds (CAT) under ideal conditions, were required to detect the GM events qualitatively, and sensitivity was as low as 1% of a mixture. However, when considering a mixture, calculating signal values allowed the proportion of each GM to be estimated. Based on these results, we concluded that our novel method not only realized detection but also allowed semi-quantitative detection of individual events. Copyright © 2017. Published by Elsevier Ltd.

  11. Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.

    PubMed

    Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt

    2016-08-16

    Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.

  12. Millstone: software for multiplex microbial genome analysis and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.

    Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.

  13. Millstone: software for multiplex microbial genome analysis and engineering.

    PubMed

    Goodman, Daniel B; Kuznetsov, Gleb; Lajoie, Marc J; Ahern, Brian W; Napolitano, Michael G; Chen, Kevin Y; Chen, Changping; Church, George M

    2017-05-25

    Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. We describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.

  14. Millstone: software for multiplex microbial genome analysis and engineering

    DOE PAGES

    Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.; ...

    2017-05-25

    Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.

  15. G and P Genotyping of Human Rotavirus Isolated in a University Hospital in Korea: Implications for Nosocomial Infections

    PubMed Central

    Kim, Chang Ryul; Kilgore, Paul E; Choi, Tae Yeal

    2006-01-01

    To characterize rotavirus G and P genotypes circulating among infants and young children hospitalized with severe diarrhea in a university hospital in Gyeonggi province, Korea, and to examine any association of the genotypes and nosocomial infections, we genotyped 103 isolates of rotavirus by multiplex RT-PCR. In July 2001-June 2002, we found that globally common strains constituted 64.2% (G2P[4] 28.3%, G3P[8] 28.3%, G4P[8] 5.7%, and G1P[8] 1.9%), and the uncommon strain, G4P[6], constituted 26.4%. During July 2002-June 2003, the percentage of common strains decreased to 44.0% (G3P[8] 18.0%, G2P[4] 16.8%, and G1P[8] 10.0%), but G4P[6] increased to 36.0%. G9P[8] was identified in 10.0% of cases, and thus can be considered an emerging strain in Korea. Eight-eight percent of G4P[6] was isolated from newborn babies. Among the 103 patients, there was an evidence of nosocomial rotavirus infection in 23 children (22.3%). Of these, 19 (82.6%) were newborns infected with G4P[6] strains of rotavirus. Most of the children who acquired rotavirus infection nosocomially showed symptoms of diarrhea, vomiting, fever, poor sucking, or dehydration, regardless of the genotype. This study revealed that G4P[6] has been the major genotype causing nosocomial rotavirus infection in our hospital. PMID:17179673

  16. Multicenter evaluation of a commercial multiplex polymerase chain reaction test for screening plasma donations for parvovirus B19 DNA and hepatitis A virus RNA.

    PubMed

    Koppelman, Marco H G M; Cuijpers, H Theo M; Wessberg, Susanna; Valkeajärvi, Anne; Pichl, Lutz; Schottstedt, Volkmar; Saldanha, John

    2012-07-01

    Three European laboratories evaluated the TaqScreen DPX test (DPX test), a multiplex nucleic acid test assay for the simultaneous detection and quantitation of parvovirus B19 (B19V) DNA and the detection of hepatitis A virus (HAV) RNA. The 95% limit of detection of the test for B19V and HAV was determined using the respective WHO International Standards. The reproducibility of the test was evaluated by testing replicate samples of B19V at log 4.0 and 40 IU/mL and HAV at 5 IU/mL. The accuracy of the DPX test for B19V was evaluated by replicate testing of B19V samples containing log 3.0, log 4.0, and log 5.0 IU/mL. Panels of B19V Genotypes 1, 2, and 3 and HAV genotypes were evaluated. Cross-contamination was evaluated. For comparison of the DPX test and the established tests, the sites tested plasma samples in pools of either 96 or 480 donations. The mean 95% lower limits of detection of the three laboratories for B19V and HAV were 20.30 and 1.85 IU/mL. The test showed good reproducibility with the major part of the variance of the test being attributed to intermediate assay variation. The test showed great accuracy for B19V, especially at log 4.0 IU/mL. Spiking of test pools of 480 donations and manufacturing pools with log 4.0 IU/mL B19 DNA and 4 IU/mL HAV RNA showed that the DPX assay was robust. The test was able to detect the three genotypes of B19V and HAV genotypes. No cross-contamination was seen. Test results of routine samples correlated well with those of the established tests. The DPX test is a robust and sensitive test for the detection of B19V and HAV in plasma samples. The quantitative B19V results obtained with the test are accurate, and the test is able to detect all the known genotypes of B19V and HAV and fulfills all the European Pharmacopoeia and Food and Drug Administration requirements for a B19V and HAV test for screening of plasma donations and samples from plasma pools for manufacture. © 2012 American Association of Blood Banks.

  17. Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy

    PubMed Central

    Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B.; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S. Vasantha; Chandak, Giriraj Ratan

    2012-01-01

    Purpose Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3. PMID:22876130

  18. Genetic markers for detection of Escherichia coli K-12 harboring ampicillin-resistance plasmid from an industrial wastewater treatment effluent pond.

    PubMed

    Simões, G A R; Xavier, M A S; Oliveira, D A; Menezes, E V; Magalhães, S S G; Gandra, J A C D; Xavier, A R E O

    2016-06-17

    Biotechnology industries that use recombinant DNA technology are potential sources for release of genetically modified organisms to the environment. Antibiotic-resistance marker genes are commonly used for recombinant bacteria selection. One example is the marker gene coding for β-lactamase (bla) in plasmids found in Escherichia coli K-12. The aim of this study was to provide an approach to develop a molecular method for genetic marker detection in E. coli K-12 harboring bla genes from an industrial wastewater treatment effluent pond (IWTEP). For the detection of bla and Achromobacter lyticus protease I (api) genes in samples from IWTEP, we employed multiplex polymerase chain reaction (PCR) using E. coli K-12 genetic marker detection primers, previously described in the literature, and primers designed in our laboratory. The microbiological screening method resulted in 22 bacterial colony-forming units isolated from three different IWTEP harvesting points. The multiplex PCR amplicons showed that five isolates were positive for the bla gene marker and negative for the E. coli K-12 and api genes. The 16S rRNA regions of positive microorganisms carrying the bla gene were genotyped by the MicroSeq®500 system. The bacteria found were Escherichia spp (3/5), Chromobacterium spp (1/5), and Aeromonas spp (1/5). None of the 22 isolated microorganisms presented the molecular pattern of E. coli K-12 harboring the bla gene. The presence of microorganisms positive for the bla gene and negative for E. coli K-12 harboring bla genes at IWTEP suggests that the ampicillin resistance found in the isolated bacteria could be from microorganisms other than the E. coli K-12 strain harboring plasmid.

  19. Rapid and simple method by combining FTA™ card DNA extraction with two set multiplex PCR for simultaneous detection of non-O157 Shiga toxin-producing Escherichia coli strains and virulence genes in food samples.

    PubMed

    Kim, S A; Park, S H; Lee, S I; Ricke, S C

    2017-12-01

    The aim of this research was to optimize two multiplex polymerase chain reaction (PCR) assays that could simultaneously detect six non-O157 Shiga toxin-producing Escherichia coli (STEC) as well as the three virulence genes. We also investigated the potential of combining the FTA™ card-based DNA extraction with the multiplex PCR assays. Two multiplex PCR assays were optimized using six primer pairs for each non-O157 STEC serogroup and three primer pairs for virulence genes respectively. Each STEC strain specific primer pair only amplified 155, 238, 321, 438, 587 and 750 bp product for O26, O45, O103, O111, O121 and O145 respectively. Three virulence genes were successfully multiplexed: 375 bp for eae, 655 bp for stx1 and 477 bp for stx2. When two multiplex PCR assays were validated with ground beef samples, distinctive bands were also successfully produced. Since the two multiplex PCR examined here can be conducted under the same PCR conditions, the six non-O157 STEC and their virulence genes could be concurrently detected with one run on the thermocycler. In addition, all bands clearly appeared to be amplified by FTA card DNA extraction in the multiplex PCR assay from the ground beef sample, suggesting that an FTA card could be a viable sampling approach for rapid and simple DNA extraction to reduce time and labour and therefore may have practical use for the food industry. Two multiplex polymerase chain reaction (PCR) assays were optimized for discrimination of six non-O157 Shiga toxin-producing Escherichia coli (STEC) and identification of their major virulence genes within a single reaction, simultaneously. This study also determined the successful ability of the FTA™ card as an alternative to commercial DNA extraction method for conducting multiplex STEC PCR assays. The FTA™ card combined with multiplex PCR holds promise for the food industry by offering a simple and rapid DNA sample method for reducing time, cost and labour for detection of STEC in food and environmental samples. © 2017 The Society for Applied Microbiology.

  20. Microelectronic DNA assay for the detection of BRCA1 gene mutations

    NASA Technical Reports Server (NTRS)

    Chen, Hua; Han, Jie; Li, Jun; Meyyappan, Meyya

    2004-01-01

    Mutations in BRCA1 are characterized by predisposition to breast cancer, ovarian cancer and prostate cancer as well as colon cancer. Prognosis for this cancer survival depends upon the stage at which cancer is diagnosed. Reliable and rapid mutation detection is crucial for the early diagnosis and treatment. We developed an electronic assay for the detection of a representative single nucleotide polymorphism (SNP), deletion and insertion in BRCA1 gene by the microelectronics microarray instrumentation. The assay is rapid, and it takes 30 minutes for the immobilization of target DNA samples, hybridization, washing and readout. The assay is multiplexing since it is carried out at the same temperature and buffer conditions for each step. The assay is also highly specific, as the signal-to-noise ratio is much larger than recommended value (72.86 to 321.05 vs. 5) for homozygotes genotyping, and signal ratio close to the perfect value 1 for heterozygotes genotyping (1.04).

  1. Simultaneous determination of seven informative Y chromosome SNPs to differentiate East Asian, European, and African populations.

    PubMed

    Muro, Tomonori; Iida, Reiko; Fujihara, Junko; Yasuda, Toshihiro; Watanabe, Yukina; Imamura, Shinji; Nakamura, Hiroaki; Kimura-Kataoka, Kaori; Yuasa, Isao; Toga, Tomoko; Takeshita, Haruo

    2011-05-01

    Identification of the population origin of an individual is very useful for crime investigators who need to narrow down a suspect based on specimens left at a crime scene. Single nucleotide polymorphisms of the Y chromosome (Y-SNPs) are a class of markers of interest to forensic investigators because many of the markers indicate regional specificity, thus providing useful information about the geographic origin of a subject. We selected seven informative Y-SNPs (M168, M130, JST021355, M96, P126, P196, and P234) to differentiate the three major population groups (East Asian, European, and African) and used them to develop forensic application. SNP genotyping was carried out by multiplex PCR reaction and multiplex single base extension (MSBE) reaction followed by capillary electrophoresis of extension products. This method can be used to assign a haplogroup from both degraded male DNA samples and DNA samples containing a mixture of female and male DNA through PCR primers that generate small amplicons (less than about 150 bp) and are highly specific for targets on the Y chromosome. The allelic state of each marker was definitively determined from a total of 791 males from the three major population groups. As expected, samples from the three major population groups showed Y-haplogroups common in the region of provenance: Y haplogroups C, D, and O for East Asians; IJ and R1 for Europeans; and AB and E for Africans. Published by Elsevier Ireland Ltd.

  2. Developmental validation of a custom panel including 273 SNPs for forensic application using Ion Torrent PGM.

    PubMed

    Zhang, Suhua; Bian, Yingnan; Chen, Anqi; Zheng, Hancheng; Gao, Yuzhen; Hou, Yiping; Li, Chengtao

    2017-03-01

    Utilizing massively parallel sequencing (MPS) technology for SNP testing in forensic genetics is becoming attractive because of the shortcomings of STR markers, such as their high mutation rates and disadvantages associated with the current PCR-CE method as well as its limitations regarding multiplex capabilities. MPS offers the potential to genotype hundreds to thousands of SNPs from multiple samples in a single experimental run. In this study, we designed a customized SNP panel that includes 273 forensically relevant identity SNPs chosen from SNPforID, IISNP, and the HapMap database as well as previously related studies and evaluated the levels of genotyping precision, sequence coverage, sensitivity and SNP performance using the Ion Torrent PGM. In a concordant study of the custom MPS-SNP panel, only four MPS callings were missing due to coverage reads that were too low (<20), whereas the others were fully concordant with Sanger's sequencing results across the two control samples, that is, 9947A and 9948. The analyses indicated a balanced coverage among the included loci, with the exception of the 16 SNPs that were used to detect an inconsistent allele balance and/or lower coverage reads among 50 tested individuals from the Chinese HAN population and the above controls. With the exception of the 16 poorly performing SNPs, the sequence coverage obtained was extensive for the bulk of the SNPs, and only three Y-SNPs (rs16980601, rs11096432, rs3900) showed a mean coverage below 1000. Analyses of the dilution series of control DNA 9948 yielded reproducible results down to 1ng of DNA input. In addition, we provide an analysis tool for automated data quality control and genotyping checks, and we conclude that the SNP targets are polymorphic and independent in the Chinese HAN population. In summary, the evaluation of the sensitivity, accuracy and genotyping performance provides strong support for the application of MPS technology in forensic SNP analysis, and the assay offers a straightforward sample-to-genotype workflow that could be beneficial in forensic casework with respect to both individual identification and complex kinship issues. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Characterization of rotavirus infection in children with acute gastroenteritis in Bengo province, Northwestern Angola, prior to vaccine introduction

    PubMed Central

    Mirante, Maria Clara; Mendes, Cristina; Mayer, Carlos; Vaz Nery, Susana; Brito, Miguel

    2017-01-01

    Background Rotavirus group A (RVA) is considered the leading cause of pediatric diarrhea, responsible for the high burden of diarrheal diseases in sub-Saharan Africa. Despite recent studies, the existent data are scarce for some African countries like Angola, a country with one of the highest RVA-related death estimates. The aim of this study was to determine the RVA detection rate and circulating genotypes in children less than five years of age with acute gastroenteritis attended at the Bengo General Hospital in Caxito, Bengo province, Angola, before vaccine introduction. Methods Between September 2012 and December 2013, 342 fecal specimens were collected from children enrolled. Positive samples for RVA by immunochromatographic rapid test were G and P-typed by hemi-nested type-specific multiplex PCR, and subgrouped for the VP6 gene. VP4 and VP7 genes from a subset of samples were sequenced for phylogenetic analysis. Results During the study period, a high RVA detection rate was registered (25.1%, 86/342). The age group most affected by RVA infection includes children under 6 months of age (p<0.01). Vomiting was highly associated with RVA infection (72.1%; p<0.001). From the 86 RVA-positive samples, 72 (83.7%) were genotyped. The most prevalent genotype was G1P[8] (34/72; 47.2%), followed by the uncommon G1P[6] (21/72; 29.2%), and G2P[4] (9/72; 12.5%). Only two G-types were found: G1 (60/72; 83.3%) and G2 (11/72; 15.3%). Among the P-genotypes, P[8] was the most prevalent (34/72; 47.2%), followed by P[6] (22/72; 30.6%) and P[4] (9/72; 12.5%). In the phylogenetic trees, the identified G and P-types clustered tightly together and with reference sequences in specific monophyletic groups, with highly significant bootstrap values (≥92%). Conclusion This pre-vaccination study revealed, for the first time for Bengo province (Angola), the RVA genotype profile, including phylogenetic relationships, and a high RVA detection rate, supporting the immediate introduction of a RVA vaccine in the national immunization programme. PMID:28422995

  4. [A review of mixed gas detection system based on infrared spectroscopic technique].

    PubMed

    Dang, Jing-Min; Fu, Li; Yan, Zi-Hui; Zheng, Chuan-Tao; Chang, Yu-Chun; Chen, Chen; Wang, Yi-Din

    2014-10-01

    In order to provide the experiences and references to the researchers who are working on infrared (IR) mixed gas detection field. The proposed manuscript reviews two sections of the aforementioned field, including optical multiplexing structure and detection method. At present, the coherent light sources whose representative are quantum cascade laser (QCL) and inter-band cascade laser(ICL) become the mainstream light source in IR mixed gas detection, which replace the traditional non-coherent light source, such as IR radiation source and IR light emitting diode. In addition, the photon detector which has a super high detectivity and very short response time is gradually beyond thermal infrared detector, dominant in the field of infrared detector. The optical multiplexing structure is the key factor of IR mixed gas detection system, which consists of single light source multi-plexing detection structure and multi light source multiplexing detection structure. Particularly, single light source multiplexing detection structure is advantages of small volume and high integration, which make it a plausible candidate for the portable mixed gas detection system; Meanwhile, multi light source multiplexing detection structure is embodiment of time division multiplex, frequency division multiplexing and wavelength division multiplexing, and become the leading structure of the mixed gas detection system because of its wider spectral range, higher spectral resolution, etc. The detection method applied to IR mixed gas detection includes non-dispersive infrared (NDIR) spectroscopy, wavelength and frequency-modulation spectroscopy, cavity-enhanced spectroscopy and photoacoustic spectroscopy, etc. The IR mixed gas detection system designed by researchers after recognizing the whole sections of the proposed system, which play a significant role in industrial and agricultural production, environmental monitoring, and life science, etc.

  5. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

    PubMed Central

    Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.

    2015-01-01

    Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438

  6. Scout-MRM: Multiplexed Targeted Mass Spectrometry-Based Assay without Retention Time Scheduling Exemplified by Dickeya dadantii Proteomic Analysis during Plant Infection.

    PubMed

    Rougemont, Blandine; Bontemps Gallo, Sébastien; Ayciriex, Sophie; Carrière, Romain; Hondermarck, Hubert; Lacroix, Jean Marie; Le Blanc, J C Yves; Lemoine, Jérôme

    2017-02-07

    Targeted mass spectrometry of a surrogate peptide panel is a powerful method to study the dynamics of protein networks, but chromatographic time scheduling remains a major limitation for dissemination and implementation of robust and large multiplexed assays. We unveil a Multiple Reaction Monitoring method (Scout-MRM) where the use of spiked scout peptides triggers complex transition lists, regardless of the retention time of targeted surrogate peptides. The interest of Scout-MRM method regarding the retention time independency, multiplexing capability, reproducibility, and putative interest in facilitating method transfer was illustrated by a 782-peptide-plex relative assay targeting 445 proteins of the phytopathogen Dickeya dadantii during plant infection.

  7. Speckle noise suppression method in holographic display using time multiplexing

    NASA Astrophysics Data System (ADS)

    Liu, Su-Juan; Wang, Di; Li, Song-Jie; Wang, Qiong-Hua

    2017-06-01

    We propose a method to suppress the speckle noise in holographic display using time multiplexing. The diffractive optical elements (DOEs) and the subcomputer-generated holograms (sub-CGHs) are generated, respectively. The final image is reconstructed using time multiplexing of the subimages and the final subimages. Meanwhile, the speckle noise of the final image is suppressed by reducing the coherence of the reconstructed light and separating the adjacent image points in space. Compared with the pixel separation method, the experiments demonstrate that the proposed method suppresses the speckle noise effectively with less calculation burden and lower demand for frame rate of the spatial light modulator. In addition, with increases of the DOEs and the sub-CGHs, the speckle noise is further suppressed.

  8. Using long ssDNA polynucleotides to amplify STRs loci in degraded DNA samples

    PubMed Central

    Pérez Santángelo, Agustín; Corti Bielsa, Rodrigo M.; Sala, Andrea; Ginart, Santiago; Corach, Daniel

    2017-01-01

    Obtaining informative short tandem repeat (STR) profiles from degraded DNA samples is a challenging task usually undermined by locus or allele dropouts and peak-high imbalances observed in capillary electrophoresis (CE) electropherograms, especially for those markers with large amplicon sizes. We hereby show that the current STR assays may be greatly improved for the detection of genetic markers in degraded DNA samples by using long single stranded DNA polynucleotides (ssDNA polynucleotides) as surrogates for PCR primers. These long primers allow a closer annealing to the repeat sequences, thereby reducing the length of the template required for the amplification in fragmented DNA samples, while at the same time rendering amplicons of larger sizes suitable for multiplex assays. We also demonstrate that the annealing of long ssDNA polynucleotides does not need to be fully complementary in the 5’ region of the primers, thus allowing for the design of practically any long primer sequence for developing new multiplex assays. Furthermore, genotyping of intact DNA samples could also benefit from utilizing long primers since their close annealing to the target STR sequences may overcome wrong profiling generated by insertions/deletions present between the STR region and the annealing site of the primers. Additionally, long ssDNA polynucleotides might be utilized in multiplex PCR assays for other types of degraded or fragmented DNA, e.g. circulating, cell-free DNA (ccfDNA). PMID:29099837

  9. Optimizing and accelerating the assignation of lineages in Mycobacterium tuberculosis using novel alternative single-tube assays

    PubMed Central

    Carcelén, María; Abascal, Estefanía; Herranz, Marta; Santantón, Sheila; Zenteno, Roberto; Ruiz Serrano, María Jesús; Bouza, Emilio

    2017-01-01

    The assignation of lineages in Mycobacterium tuberculosis (MTB) provides valuable information for evolutionary and phylogeographic studies and makes for more accurate knowledge of the distribution of this pathogen worldwide. Differences in virulence have also been found for certain lineages. MTB isolates were initially assigned to lineages based on data obtained from genotyping techniques, such as spoligotyping or MIRU-VNTR analysis, some of which are more suitable for molecular epidemiology studies. However, since these methods are subject to a certain degree of homoplasy, other criteria have been chosen to assign lineages. These are based on targeting robust and specific SNPs for each lineage. Here, we propose two newly designed multiplex targeting methods—both of which are single-tube tests—to optimize the assignation of the six main lineages in MTB. The first method is based on ASO-PCR and offers an inexpensive and easy-to-implement assay for laboratories with limited resources. The other, which is based on SNaPshot, enables more refined standardized assignation of lineages for laboratories with better resources. Both methods performed well when assigning lineages from cultured isolates from a control panel, a test panel, and a problem panel from an unrelated population, Mexico, which included isolates in which standard genotyping was not able to classify lineages. Both tests were also able to assign lineages from stored isolates, without the need for subculture or purification of DNA, and even directly from clinical specimens with a medium-high bacilli burden. Our assays could broaden the contexts where information on lineages can be acquired, thus enabling us to quickly update data from retrospective collections and to merge data with those obtained at the time of diagnosis of a new TB case. PMID:29091913

  10. Identification of Forensically Important Calliphoridae and Sarcophagidae Species Collected in Korea Using SNaPshot Multiplex System Targeting the Cytochrome c Oxidase Subunit I Gene

    PubMed Central

    Park, Ji Hye

    2018-01-01

    Estimation of postmortem interval (PMI) is paramount in modern forensic investigation. After the disappearance of the early postmortem phenomena conventionally used to estimate PMI, entomologic evidence provides important indicators for PMI estimation. The age of the oldest fly larvae or pupae can be estimated to pinpoint the time of oviposition, which is considered the minimum PMI (PMImin). The development rate of insects is usually temperature dependent and species specific. Therefore, species identification is mandatory for PMImin estimation using entomological evidence. The classical morphological identification method cannot be applied when specimens are damaged or have not yet matured. To overcome this limitation, some investigators employ molecular identification using mitochondrial cytochrome c oxidase subunit I (COI) nucleotide sequences. The molecular identification method commonly uses Sanger's nucleotide sequencing and molecular phylogeny, which are complex and time consuming and constitute another obstacle for forensic investigators. In this study, instead of using conventional Sanger's nucleotide sequencing, single-nucleotide polymorphisms (SNPs) in the COI gene region, which are unique between fly species, were selected and targeted for single-base extension (SBE) technology. These SNPs were genotyped using a SNaPshot® kit. Eleven Calliphoridae and seven Sarcophagidae species were covered. To validate this genotyping, fly DNA samples (103 adults, 84 larvae, and 4 pupae) previously confirmed by DNA barcoding were used. This method worked quickly with minimal DNA, providing a potential alternative to conventional DNA barcoding. Consisting of only a few simple electropherogram peaks, the results were more straightforward compared with those of the conventional DNA barcoding produced by Sanger's nucleotide sequencing. PMID:29682531

  11. Two-dimensional simulation of holographic data storage medium for multiplexed recording.

    PubMed

    Toishi, Mitsuru; Takeda, Takahiro; Tanaka, Kenji; Tanaka, Tomiji; Fukumoto, Atsushi; Watanabe, Kenjiro

    2008-02-18

    In this paper, we propose a new analysis model for photopolymer recording processes that calculate the two-dimensional refractive index distribution of multiplexed holograms. For the simulation of the photopolymer medium, time evolution of monomer diffusion and polymerization need to be calculated simultaneously. The distribution of the refractive index inside the medium is induced by these processes. By evaluating the refractive index pattern on each layer, the diffraction beams from the multiplexed hologram can be read out by beam propagation method (BPM). This is the first paper to determine the diffraction beam from a multiplexed hologram in a simulated photopolymer medium process. We analyze the time response of the multiplexed hologram recording processes in the photopolymer, and estimate the degradation of diffraction efficiency with multiplexed recording. This work can greatly contribute to understanding the process of hologram recording.

  12. Optimal percolation on multiplex networks.

    PubMed

    Osat, Saeed; Faqeeh, Ali; Radicchi, Filippo

    2017-11-16

    Optimal percolation is the problem of finding the minimal set of nodes whose removal from a network fragments the system into non-extensive disconnected clusters. The solution to this problem is important for strategies of immunization in disease spreading, and influence maximization in opinion dynamics. Optimal percolation has received considerable attention in the context of isolated networks. However, its generalization to multiplex networks has not yet been considered. Here we show that approximating the solution of the optimal percolation problem on a multiplex network with solutions valid for single-layer networks extracted from the multiplex may have serious consequences in the characterization of the true robustness of the system. We reach this conclusion by extending many of the methods for finding approximate solutions of the optimal percolation problem from single-layer to multiplex networks, and performing a systematic analysis on synthetic and real-world multiplex networks.

  13. Transmission of multiplexed video signals in multimode optical fiber systems

    NASA Technical Reports Server (NTRS)

    White, Preston, III

    1988-01-01

    Kennedy Space Center has the need for economical transmission of two multiplexed video signals along multimode fiberoptic systems. These systems must span unusual distances and must meet RS-250B short-haul standards after reception. Bandwidth is a major problem and studies of the installed fibers, available LEDs and PINFETs led to the choice of 100 MHz as the upper limit for the system bandwidth. Optical multiplexing and digital transmission were deemed inappropriate. Three electrical multiplexing schemes were chosen for further study. Each of the multiplexing schemes included an FM stage to help meet the stringent S/N specification. Both FM and AM frequency division multiplexing methods were investigated theoretically and these results were validated with laboratory tests. The novel application of quadrature amplitude multiplexing was also considered. Frequency division multiplexing of two wideband FM video signal appears the most promising scheme although this application requires high power highly linear LED transmitters. Futher studies are necessary to determine if LEDs of appropriate quality exist and to better quantify performance of QAM in this application.

  14. A novel real-time duplex PCR assay for detecting penA and ponA genotypes in Neisseria gonorrhoeae: Comparison with phenotypes determined by the E-test.

    PubMed

    Vernel-Pauillac, Frédérique; Merien, Fabrice

    2006-12-01

    For many years, the pathogenic bacterium Neisseria gonorrhoeae, the etiologic agent of gonorrhea, was generally susceptible to penicillin, until the emergence of resistant strains. Well-characterized genetic variations in the penicillin resistance-determining region correlate with decreased susceptibility to penicillin. At least 5 genes (penA, penB, mtrR, ponA, and penC) are involved in the chromosomally mediated resistance to this antibiotic. To date, no development of multiplex PCR assays targeting a range of gonococcal genes and variations as a means of predicting antibiotic resistance has been reported. The aim of this study was to develop a duplex assay using DNA from isolated strains. We describe the development and evaluation on the LightCycler platform of a real-time duplex PCR assay (hybridization probe format) for rapid and specific detection of ponA and penA variations, predicting penicillin susceptibilities. The real-time duplex PCR assay successfully detected variations in ponA and penA genes by use of distinct melting temperatures from a total of 120 Neisseria gonorrhoeae isolates. Moreover, the variation profiles obtained with the real-time PCR and the melting analysis showed good correlation with the pattern of penicillin susceptibility generated with classical antibiograms. Nucleotide sequencing data were in complete agreement with multiplex assay results. The presented assay is suitable for the detection of chromosomally mediated resistant strains of Neisseria gonorrhoeae in genotyping studies and could be valuable in the effective antimicrobial strategy to gonococci.

  15. Homozygosity mapping on a single patient: identification of homozygous regions of recent common ancestry by using population data.

    PubMed

    Zhang, Lu; Yang, Wanling; Ying, Dingge; Cherny, Stacey S; Hildebrandt, Friedhelm; Sham, Pak Chung; Lau, Yu Lung

    2011-03-01

    Homozygosity mapping has played an important role in detecting recessive mutations using families of consanguineous marriages. However, detection of regions identical and homozygosity by descent (HBD) when family data are not available, or when relationships are unknown, is still a challenge. Making use of population data from high-density SNP genotyping may allow detection of regions HBD from recent common founders in singleton patients without genealogy information. We report a novel algorithm that detects such regions by estimating the population haplotype frequencies (HF) for an entire homozygous region. We also developed a simulation method to evaluate the probability of HBD and linkage to disease for a homozygous region by examining the best regions in unaffected controls from the host population. The method can be applied to diseases of Mendelian inheritance but can also be extended to complex diseases to detect rare founder mutations that affect a very small number of patients using either multiplex families or sporadic cases. Testing of the method on both real cases (singleton affected) and simulated data demonstrated its superb sensitivity and robustness under genetic heterogeneity. © 2011 Wiley-Liss, Inc.

  16. Enabling multiplexed testing of pooled donor cells through whole-genome sequencing.

    PubMed

    Chan, Yingleong; Chan, Ying Kai; Goodman, Daniel B; Guo, Xiaoge; Chavez, Alejandro; Lim, Elaine T; Church, George M

    2018-04-19

    We describe a method that enables the multiplex screening of a pool of many different donor cell lines. Our method accurately predicts each donor proportion from the pool without requiring the use of unique DNA barcodes as markers of donor identity. Instead, we take advantage of common single nucleotide polymorphisms, whole-genome sequencing, and an algorithm to calculate the proportions from the sequencing data. By testing using simulated and real data, we showed that our method robustly predicts the individual proportions from a mixed-pool of numerous donors, thus enabling the multiplexed testing of diverse donor cells en masse.More information is available at https://pgpresearch.med.harvard.edu/poolseq/.

  17. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry.

    PubMed

    Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.

  18. Hereditary hypophosphatemia in Norway: a retrospective population-based study of genotypes, phenotypes, and treatment complications

    PubMed Central

    Rafaelsen, Silje; Johansson, Stefan; Ræder, Helge; Bjerknes, Robert

    2015-01-01

    Objective Hereditary hypophosphatemias (HH) are rare monogenic conditions characterized by decreased renal tubular phosphate reabsorption. The aim of this study was to explore the prevalence, genotypes, phenotypic spectrum, treatment response, and complications of treatment in the Norwegian population of children with HH. Design Retrospective national cohort study. Methods Sanger sequencing and multiplex ligand-dependent probe amplification analysis of PHEX and Sanger sequencing of FGF23, DMP1, ENPP1KL, and FAM20C were performed to assess genotype in patients with HH with or without rickets in all pediatric hospital departments across Norway. Patients with hypercalcuria were screened for SLC34A3 mutations. In one family, exome sequencing was performed. Information from the patients' medical records was collected for the evaluation of phenotype. Results Twety-eight patients with HH (18 females and ten males) from 19 different families were identified. X-linked dominant hypophosphatemic rickets (XLHR) was confirmed in 21 children from 13 families. The total number of inhabitants in Norway aged 18 or below by 1st January 2010 was 1 109 156, giving an XLHR prevalence of ∼1 in 60 000 Norwegian children. FAM20C mutations were found in two brothers and SLC34A3 mutations in one patient. In XLHR, growth was compromised in spite of treatment with oral phosphate and active vitamin D compounds, with males tending to be more affected than females. Nephrocalcinosis tended to be slightly more common in patients starting treatment before 1 year of age, and was associated with higher average treatment doses of phosphate. However, none of these differences reached statistical significance. Conclusions We present the first national cohort of HH in children. The prevalence of XLHR seems to be lower in Norwegian children than reported earlier. PMID:26543054

  19. Large cohort screening of G6PD deficiency and the mutational spectrum in the Dongguan District in Southern China.

    PubMed

    Peng, Qi; Li, Siping; Ma, Keze; Li, Wenrui; Ma, Qiang; He, Xiaoguang; He, Yuejing; He, Ting; Lu, Xiaomei

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymatic disorder of the erythrocytes that affects 400 million people worldwide. We developed a PCR-reverse dot blot (RDB) assay to screen twenty genotypes of seventeen Chinese G6PD mutations and investigate the spectrum of G6PD deficiency mutations in Dongguan District, Guangdong Province, in southern China. The PCR-RDB assay consists of multiplex PCR amplification of seven fragments in the G6PD target sequence of wild-type and mutant genomic DNA samples followed by hybridization to a test strip containing allele-specific oligonucleotide probes. A total of 16,464 individuals were analyzed by a combination of phenotypic screening and genotypic detection using the PCR-RDB assay and DNA sequence analysis. The PCR-RDB assay had a detection rate of 98.1%, which was validated by direct sequencing in a blind study with 100% concordance. The G6PD deficiency incidence rate in Dongguan District is 4.08%. Thirty-two genotypes from 469 individuals were found. The two most common variants were c.1376G>T and c.1388G>A, followed by c.95A>G, c.871G>A, c.392G>T, and c.1024 C>T. In addition, two rare mutations (c.703C>A and c.406C>T) were detected by DNA sequencing analysis. In our study, 65 cases harbored the C1311T/IVS polymorphism and 67 cases were homozygote. The PCR-RDB assay we established is a reliable and effective method for screening G6PD mutations in the Chinese population. Data on the spectrum of mutations in the Dongguan District is beneficial to the clinical diagnosis and prevention of G6PD deficiency.

  20. Survey of Virulence Determinants among Vancomycin Resistant Enterococcus faecalis and Enterococcus faecium Isolated from Clinical Specimens of Hospitalized Patients of North west of Iran

    PubMed Central

    Sharifi, Yaeghob; Hasani, Alka; Ghotaslou, Reza; Varshochi, Mojtaba; Hasani, Akbar; Aghazadeh, Mohammad; Milani, Morteza

    2012-01-01

    Recent data indicates an increasing rate of vancomycin resistance in clinical enterococcal isolates worldwide. The nosocomial enterococci are likely to harbor virulence elements that increase their ability to colonize hospitalized patients. The aim of this study was to characterize virulence determinants in vancomycin-resistant enterococci (VRE) obtained from various clinical sources. During the years 2008 to 2010, a total of 48 VRE isolates were obtained from three University teaching hospitals in Northwest, Iran. Initially, phenotypic speciation was done and minimum inhibitory concentrations (MICs) of vancomycin were determined by agar dilution method and E-test. Then, species identification and resistance genotypes along with detection of virulence genes (asa1, esp, gelE, ace and cpd) of the isolates were performed by multiplex PCR. Thirty eight isolates were identified as vancomycin-resistant Enterococcus faecium (VREfm) and ten as E. faecalis (VREfs). Irrespective of the species, vanA gene (89.58%) was dominant and three phenotypically vancomycin susceptible E. faecium isolates carried the vanB gene. Among virulence genes investigated, the esp was found in 27(71%) VREfm strains, but did not in any VREfs. Other virulence determinants were highly detected in VREfs strains. Our data indicate a high prevalence of E. faecium harboring vancomycin resistance with vanA genotype and the two VRE species displayed different virulence genes. PMID:22582098

  1. Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm

    PubMed Central

    Luo, Minjie; Cui, Xiangfeng; Fredman, David; Brookes, Anthony J.; Azaro, Marco A.; Greenawalt, Danielle M.; Hu, Guohong; Wang, Hui-Yun; Tereshchenko, Irina V.; Lin, Yong; Shentu, Yue; Gao, Richeng; Shen, Li; Li, Honghua

    2009-01-01

    Background Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques. Methodology/Principal Findings Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype. Conclusions/Significance This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis. PMID:19384415

  2. Genetic linkage analysis using pooled DNA and infrared detection of tailed STRP primer patterns

    NASA Astrophysics Data System (ADS)

    Oetting, William S.; Wildenberg, Scott C.; King, Richard A.

    1996-04-01

    The mapping of a disease locus to a specific chromosomal region is an important step in the eventual isolation and analysis of a disease causing gene. Conventional mapping methods analyze large multiplex families and/or smaller nuclear families to find linkage between the disease and a chromosome marker that maps to a known chromosomal region. This analysis is time consuming and tedious, typically requiring the determination of 30,000 genotypes or more. For appropriate populations, we have instead utilized pooled DNA samples for gene mapping which greatly reduces the amount of time necessary for an initial chromosomal screen. This technique assumes a common founder for the disease locus of interest and searches for a region of a chromosome shared between affected individuals. Our analysis involves the PCR amplification of short tandem repeat polymorphisms (STRP) to detect these shared regions. In order to reduce the cost of genotyping, we have designed unlabeled tailed PCR primers which, when combined with a labeled universal primer, provides for an alternative to synthesizing custom labeled primers. The STRP pattern is visualized with an infrared fluorescence based automated DNA sequencer and the patterns quantitated by densitometric analysis of the allele pattern. Differences in the distribution of alleles between pools of affected and unaffected individuals, including a reduction in the number of alleles in the affected pool, indicate the sharing of a region of a chromosome. We have found this method effective for markers 10 - 15 cM away from the disease locus for a recessive genetic disease.

  3. Role of Poultry Meat in Sporadic Campylobacter Infections in Bosnia and Herzegovina: Laboratory-based Study

    PubMed Central

    Uzunović-Kamberović, Selma; Zorman, Tina; Heyndrickx, Marc; Smole Možina, Sonja

    2007-01-01

    Aim To investigate genetic diversity and specificity of Campylobacter jejuni and Campylobacter coli strains isolated from humans, retail poultry meat, and live farm chickens in Zenica-Doboj Canton, Bosnia and Herzegovina, and identify the role of poultry meat in sporadic Campylobacter infections. Methods We determined the type of Campylobacter species using standard microbiological methods and multiplex polymerase chain reaction (PCR), and performed pulsed field gel-electrophoresis (PFGE) and restriction fragment length polymorphism (RFLP) typing of the flaA gene to investigate genetic diversity among the isolates. Results We isolated C jejuni and C coli from 75 (5.2%) of 1453 samples of consecutive outpatients with sporadic diarrhea; from 51 (34.7%) of 147 samples of poultry meat; and from 15 out of 23 farm chicken samples. The proportion of C coli found among human (30.1%), poultry meat (56.9%), and farm chicken isolates (53.3%), was greater than the proportion of C jejuni. Fourteen and 24 PFGE genotypes were identified among 20 C coli and 37 C jejuni isolates, respectively. Identical PFGE genotypes were found in two cases of human and poultry meat isolates and two cases of poultry meat and farm chicken isolates. Conclusion Only a minority of human Campylobacter isolates shared identical PFGE type with poultry meat isolates. Although poultry is the source of a certain number of human infections, there may be other more important sources. Further research is required to identify the environmental reservoir of Campylobacter spp responsible for causing human disease and the reason for the high prevalence of C coli human infections in this region. PMID:18074419

  4. Highly Sensitive Detection of Isoniazid Heteroresistance in Mycobacterium tuberculosis by DeepMelt Assay.

    PubMed

    Liang, Bin; Tan, Yaoju; Li, Zi; Tian, Xueshan; Du, Chen; Li, Hui; Li, Guoli; Yao, Xiangyang; Wang, Zhongan; Xu, Ye; Li, Qingge

    2018-02-01

    Detection of heteroresistance of Mycobacterium tuberculosis remains challenging using current genotypic drug susceptibility testing methods. Here, we described a melting curve analysis-based approach, termed DeepMelt, that can detect less-abundant mutants through selective clamping of the wild type in mixed populations. The singleplex DeepMelt assay detected 0.01% katG S315T in 10 5 M. tuberculosis genomes/μl. The multiplex DeepMelt TB/INH detected 1% of mutant species in the four loci associated with isoniazid resistance in 10 4 M. tuberculosis genomes/μl. The DeepMelt TB/INH assay was tested on a panel of DNA extracted from 602 precharacterized clinical isolates. Using the 1% proportion method as the gold standard, the sensitivity was found to be increased from 93.6% (176/188, 95% confidence interval [CI] = 89.2 to 96.3%) to 95.7% (180/188, 95% CI = 91.8 to 97.8%) compared to the MeltPro TB/INH assay. Further evaluation of 109 smear-positive sputum specimens increased the sensitivity from 83.3% (20/24, 95% CI = 64.2 to 93.3%) to 91.7% (22/24, 95% CI = 74.2 to 97.7%). In both cases, the specificity remained nearly unchanged. All heteroresistant samples newly identified by the DeepMelt TB/INH assay were confirmed by DNA sequencing and even partially by digital PCR. The DeepMelt assay may fill the gap between current genotypic and phenotypic drug susceptibility testing for detecting drug-resistant tuberculosis patients. Copyright © 2018 American Society for Microbiology.

  5. Identification of possible genetic alterations in the breast cancer cell line MCF-7 using high-density SNP genotyping microarray

    PubMed Central

    Wang, Hui-Yun; Greenawalt, Danielle; Cui, Xiangfeng; Tereshchenko, Irina V; Luo, Minjie; Yang, Qifeng; Azaro, Marco A; Hu, Guohong; Chu, Yi; Li, James Y; Shen, Li; Lin, Yong; Zhang, Lianjun

    2009-01-01

    Context: Cancer cell lines are used extensively in various research. Knowledge of genetic alterations in these lines is important for understanding mechanisms underlying their biology. However, since paired normal tissues are usually unavailable for comparison, precisely determining genetic alterations in cancer cell lines is difficult. To address this issue, a highly efficient and reliable method is developed. Aims: Establishing a highly efficient and reliable experimental system for genetic profiling of cell lines. Materials and Methods: A widely used breast cancer cell line, MCF-7, was genetically profiled with 4,396 single nucleotide polymorphisms (SNPs) spanning 11 whole chromosomes and two other small regions using a newly developed high-throughput multiplex genotyping approach. Results: The fractions of homozygous SNPs in MCF-7 (13.3%) were significantly lower than those in the control cell line and in 24 normal human individuals (25.1% and 27.4%, respectively). Homozygous SNPs in MCF-7 were found in clusters. The sizes of these clusters were significantly larger than the expected based on random allelic combination. Fourteen such regions were found on chromosomes 1p, 1q, 2q, 6q, 13, 15q, 16q, 17q and 18p in MCF-7 and two in the small regions. Conclusions: These results are generally concordant with those obtained using different approaches but are better in defining their chromosomal positions. The used approach provides a reliable way to detecting possible genetic alterations in cancer cell lines without paired normal tissues. PMID:19439911

  6. Time multiplexing based extended depth of focus imaging.

    PubMed

    Ilovitsh, Asaf; Zalevsky, Zeev

    2016-01-01

    We propose to utilize the time multiplexing super resolution method to extend the depth of focus of an imaging system. In standard time multiplexing, the super resolution is achieved by generating duplication of the optical transfer function in the spectrum domain, by the use of moving gratings. While this improves the spatial resolution, it does not increase the depth of focus. By changing the gratings frequency and, by that changing the duplication positions, it is possible to obtain an extended depth of focus. The proposed method is presented analytically, demonstrated via numerical simulations and validated by a laboratory experiment.

  7. 78 FR 16513 - Application of Advances in Nucleic Acid and Protein Based Detection Methods to Multiplex...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Transfusion-Transmissible Agents and Blood Cell Antigens in Blood Donations; Public Workshop AGENCY: Food and... Methods to Multiplex Detection of Transfusion- Transmissible Agents and Blood Cell Antigens in Blood... and the use of these tests in blood donor screening and blood cell antigen typing. The public workshop...

  8. Performance and precision of double digestion RAD (ddRAD) genotyping in large multiplexed datasets of marine fish species.

    PubMed

    Maroso, F; Hillen, J E J; Pardo, B G; Gkagkavouzis, K; Coscia, I; Hermida, M; Franch, R; Hellemans, B; Van Houdt, J; Simionati, B; Taggart, J B; Nielsen, E E; Maes, G; Ciavaglia, S A; Webster, L M I; Volckaert, F A M; Martinez, P; Bargelloni, L; Ogden, R

    2018-06-01

    The development of Genotyping-By-Sequencing (GBS) technologies enables cost-effective analysis of large numbers of Single Nucleotide Polymorphisms (SNPs), especially in "non-model" species. Nevertheless, as such technologies enter a mature phase, biases and errors inherent to GBS are becoming evident. Here, we evaluated the performance of double digest Restriction enzyme Associated DNA (ddRAD) sequencing in SNP genotyping studies including high number of samples. Datasets of sequence data were generated from three marine teleost species (>5500 samples, >2.5 × 10 12 bases in total), using a standardized protocol. A common bioinformatics pipeline based on STACKS was established, with and without the use of a reference genome. We performed analyses throughout the production and analysis of ddRAD data in order to explore (i) the loss of information due to heterogeneous raw read number across samples; (ii) the discrepancy between expected and observed tag length and coverage; (iii) the performances of reference based vs. de novo approaches; (iv) the sources of potential genotyping errors of the library preparation/bioinformatics protocol, by comparing technical replicates. Our results showed use of a reference genome and a posteriori genotype correction improved genotyping precision. Individual read coverage was a key variable for reproducibility; variance in sequencing depth between loci in the same individual was also identified as an important factor and found to correlate to tag length. A comparison of downstream analysis carried out with ddRAD vs single SNP allele specific assay genotypes provided information about the levels of genotyping imprecision that can have a significant impact on allele frequency estimations and population assignment. The results and insights presented here will help to select and improve approaches to the analysis of large datasets based on RAD-like methodologies. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  9. Automated methods for multiplexed pathogen detection.

    PubMed

    Straub, Timothy M; Dockendorff, Brian P; Quiñonez-Díaz, Maria D; Valdez, Catherine O; Shutthanandan, Janani I; Tarasevich, Barbara J; Grate, Jay W; Bruckner-Lea, Cynthia J

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cycler where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides "live vs. dead" capabilities. However, sensitivity of the method will need to be improved for RNA analysis to replace PCR.

  10. Automated Methods for Multiplexed Pathogen Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Tim M.; Dockendorff, Brian P.; Quinonez-Diaz, Maria D.

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cyclermore » where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides ''live vs. dead'' capabilities. However, sensitivity of the method will need to be improved for RNA analysis to replace PCR.« less

  11. Multiplex PCR detection of waterborne intestinal protozoa: microsporidia, Cyclospora, and Cryptosporidium.

    PubMed

    Lee, Seung-Hyun; Joung, Migyo; Yoon, Sejoung; Choi, Kyoungjin; Park, Woo-Yoon; Yu, Jae-Ran

    2010-12-01

    Recently, emerging waterborne protozoa, such as microsporidia, Cyclospora, and Cryptosporidium, have become a challenge to human health worldwide. Rapid, simple, and economical detection methods for these major waterborne protozoa in environmental and clinical samples are necessary to control infection and improve public health. In the present study, we developed a multiplex PCR test that is able to detect all these 3 major waterborne protozoa at the same time. Detection limits of the multiplex PCR method ranged from 10(1) to 10(2) oocysts or spores. The primers for microsporidia or Cryptosporidium used in this study can detect both Enterocytozoon bieneusi and Encephalitozoon intestinalis, or both Cryptosporidium hominis and Cryptosporidium parvum, respectively. Restriction enzyme digestion of PCR products with BsaBI or BsiEI makes it possible to distinguish the 2 species of microsporidia or Cryptosporidium, respectively. This simple, rapid, and cost-effective multiplex PCR method will be useful for detecting outbreaks or sporadic cases of waterborne protozoa infections.

  12. Comparison of Conventional PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Arcobacter Species

    PubMed Central

    Wang, Xiaoyu; Seo, Dong Joo; Lee, Min Hwa

    2014-01-01

    This study aimed to develop a loop-mediated isothermal amplification (LAMP) method for the rapid detection of Arcobacter species. Specific primers targeting the 23S ribosomal RNA gene were used to detect Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. The specificity of the LAMP primer set was assessed using DNA samples from a panel of Arcobacter and Campylobacter species, and the sensitivity was determined using serial dilutions of Arcobacter species cultures. LAMP showed a 10- to 1,000-fold-higher sensitivity than multiplex PCR, with a detection limit of 2 to 20 CFU per reaction in vitro. Whereas multiplex PCR showed cross-reactivity with Campylobacter species, the LAMP method developed in this study was more sensitive and reliable than conventional PCR or multiplex PCR for the detection of Arcobacter species. PMID:24478488

  13. Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real-time polymerase chain reaction.

    PubMed

    Kim, Ji Yeun; Lee, Jung-Lim

    2014-10-01

    This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL⁻¹ in pure culture and seawater, and 10 CFU g⁻¹ in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry.

  14. Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real-time polymerase chain reaction

    PubMed Central

    Kim, Ji Yeun; Lee, Jung-Lim

    2014-01-01

    Background This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. Results The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL−1 in pure culture and seawater, and 10 CFU g−1 in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Conclusion Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24752974

  15. Design and fabrication of three-dimensional polymer mode multiplexer based on asymmetric waveguide couplers

    NASA Astrophysics Data System (ADS)

    He, Guobing; Gao, Yang; Xu, Yan; Ji, Lanting; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming; Wu, Yuanda

    2018-05-01

    A polymer mode multiplexer based on asymmetric couplers is theoretically designed and experimentally demonstrated. The proposed X-junction coupler is formed by waveguides overlapped with different crossing angles in the vertical direction. A beam propagation method is adopted to optimize the dimensional parameters of the mode multiplexer to convert LP01 mode of two lower waveguides to LP11a and LP21a mode of the upper waveguide. The ultraviolet lithography and wet chemical etching are used in the fabrication process. A conversion ratio over 98% for both LP11a and LP21a mode in the wavelength range from 1530 to 1570 nm are experimentally demonstrated. This mode multiplexer has potential in broadband mode-division multiplexing transmission systems.

  16. Optical encrypted holographic memory using triple random phase-encoded multiplexing in photorefractive LiNbO3:Fe crystal

    NASA Astrophysics Data System (ADS)

    Tang, Li-Chuan; Hu, Guang W.; Russell, Kendra L.; Chang, Chen S.; Chang, Chi Ching

    2000-10-01

    We propose a new holographic memory scheme based on random phase-encoded multiplexing in a photorefractive LiNbO3:Fe crystal. Experimental results show that rotating a diffuser placed as a random phase modulator in the path of the reference beam provides a simple yet effective method of increasing the holographic storage capabilities of the crystal. Combining this rotational multiplexing with angular multiplexing offers further advantages. Storage capabilities can be optimized by using a post-image random phase plate in the path of the object beam. The technique is applied to a triple phase-encoded optical security system that takes advantage of the high angular selectivity of the angular-rotational multiplexing components.

  17. Simultaneous Detection of Genetically Modified Organisms in a Mixture by Multiplex PCR-Chip Capillary Electrophoresis.

    PubMed

    Patwardhan, Supriya; Dasari, Srikanth; Bhagavatula, Krishna; Mueller, Steffen; Deepak, Saligrama Adavigowda; Ghosh, Sudip; Basak, Sanjay

    2015-01-01

    An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences.

  18. Dynamic multiplexed analysis method using ion mobility spectrometer

    DOEpatents

    Belov, Mikhail E [Richland, WA

    2010-05-18

    A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.

  19. Tetracycline resistance phenotypes and genotypes of coagulase-negative staphylococcal isolates from bubaline mastitis in Egypt

    PubMed Central

    El-Razik, K. A. Abd; Arafa, A. A.; Hedia, R. H.; Ibrahim, E. S.

    2017-01-01

    Aim:: This study was devoted to elucidate the tetracycline resistance of coagulase-negative staphylococci (CNS) derived from normal and subclinical mastitic (SCM) buffaloes’ milk in Egypt. Materials and Methods: :: A total of 81 milk samples from 46 normal buffalo milk samples and 35 SCM buffalo milk samples at private dairy farms of Egypt were used in this study. CNS were identified using phenotypic and molecular methods (polymerase chain reaction [PCR]). CNS isolates were tested for tetracycline resistance using routine methods and multiplex PCR targeting tetracycline (tet) resistance genes followed by sequencing of positive PCR products and phylogenetic analysis. Results:: Isolation and identification of 28 (34.5%) CNS from normal and SCM buffaloes’ milk, namely, Staphylococcus intermedius (39.2%), Staphylococcus xylosus (25.0%), Staphylococcus epidermidis (10.7%), Staphylococcus hominis (10.7%), and 3.5% to each of Staphylococcus sciuri, Staphylococcus hyicus, Staphylococcus lugdunensis, and Staphylococcus simulans. Using nested PCR, all the 28 CNS isolates revealed positive for 16srRNA gene specific for genus staphylococci and negative for thermonuclease (nuc) gene specific for Staphylococcus aureus species. The presence of tetracycline resistance-encoding genes (tetK, tetL, tetM, and tetO) was detected by multiplex PCR. All isolates were negative for tetL, M, and O genes while 14 (50%) CNS isolates were positive for tetK gene, namely, S. lugdunensis (100%), S. hominis (100%), S. epidermidis (66.6%), S. intermedius (45.4%), and S. xylosus (42.8%). Nucleotide sequencing of tetK gene followed by phylogenetic analysis showed the high homology between our CNS isolates genes of tetracycline resistance with S. aureus isolates including Egyptian ones. This proves the transfer of the tetracycline resistance encoding genes between coagulase-negative and coagulase positive Staphylococcus spp. Conclusion:: CNS isolates have distinguishingly high resistance to tetracycline. Abundant tetracycline usage for mastitis treatment leads to the spread of genetic resistance mechanisms inside CNS strains and among all Staphylococcus spp. Consequently, tetracycline is not effective anymore. PMID:28717325

  20. "New turns from old STaRs": enhancing the capabilities of forensic short tandem repeat analysis.

    PubMed

    Phillips, Christopher; Gelabert-Besada, Miguel; Fernandez-Formoso, Luis; García-Magariños, Manuel; Santos, Carla; Fondevila, Manuel; Ballard, David; Syndercombe Court, Denise; Carracedo, Angel; Lareu, Maria Victoria

    2014-11-01

    The field of research and development of forensic STR genotyping remains active, innovative, and focused on continuous improvements. A series of recent developments including the introduction of a sixth dye have brought expanded STR multiplex sizes while maintaining sensitivity to typical forensic DNA. New supplementary kits complimenting the core STRs have also helped improve analysis of challenging identification cases such as distant pairwise relationships in deficient pedigrees. This article gives an overview of several recent key developments in forensic STR analysis: availability of expanded core STR kits and supplementary STRs, short-amplicon mini-STRs offering practical options for highly degraded DNA, Y-STR enhancements made from the identification of rapidly mutating loci, and enhanced analysis of genetic ancestry by analyzing 32-STR profiles with a Bayesian forensic classifier originally developed for SNP population data. As well as providing scope for genotyping larger numbers of STRs optimized for forensic applications, the launch of compact next-generation sequencing systems provides considerable potential for genotyping the sizeable proportion of nucleotide variation existing in forensic STRs, which currently escapes detection with CE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Occurrence of the - -(SEA), - -(THAI) and - -(FIL) α-Thalassemia-1 Carriers from a 7-Year Study at Ramathibodi Hospital, Bangkok, Thailand.

    PubMed

    Pongjantharasatien, Kobkorn; Banyatsuppasin, Wansa; Pounsawat, Sonnarong; Jindadamrongwech, Sumalee

    2016-08-01

    α-Thalassemia (α-thal) is one of the most common genetic diseases in Thailand. Homozygosity of α-thal-1 (- -/- -) and compound heterozygosity of α-thal-1/α-thal-2 (- -/-α) leads to Hb Bart's (γ4) hydrops fetalis and Hb H (β4) disease, respectively. In order to better control and provide prevention of α-thal disease, the prevalence of α-thal-1 carriers and the types of genotypes in the Thai population should be known. A 7-year retrospective study, employing multiplex gap-polymerase chain reaction (gap-PCR) of 31,632 blood samples from Ramathibodi Hospital, Mahidol University, Bangkok, revealed an α-thal-1 carrier rate of 14.40% with the - -(SEA) (NG_000006.1: g.26264_45564del19301), - -(THAI) (NG_000006.1: g.10664_44164del33501) and - -(FIL) (NG_000006.1: g.11684_43534del31851) genotypes, constituting frequencies of 14.21, 0.18 and 0.01%, respectively. Although the - -(FIL) genotype is rare in the Thailand, its detection should be included in future α-thal screening programs.

  2. Molecular characterization of Theileria orientalis from cattle in Ethiopia.

    PubMed

    Gebrekidan, Hagos; Gasser, Robin B; Baneth, Gad; Yasur-Landau, Daniel; Nachum-Biala, Yaarit; Hailu, Asrat; Jabbar, Abdul

    2016-07-01

    This study reports the first molecular characterization of Theileria orientalis in local breeds of cattle in Ethiopia. A conventional PCR utilizing major piroplasm surface protein (MPSP) gene and an established multiplexed tandem PCR (MT-PCR) were used to characterize T. orientalis and to assess the infection intensity, respectively. Of 232 blood samples tested, T. orientalis DNA was detected in only 2.2% of samples using conventional PCR; two genotypes buffeli (1.3%; 3/232) and type 5 (0.9%; 2/232) of T. orientalis were detected. Phylogenetic analysis revealed that the buffeli MPSP sequences from Ethiopia were closely related to those reported from Kenya, Sri Lanka and Myanmar, and type 5 sequences from Ethiopia grouped with those from Korea, Japan, Vietnam and Thailand. A higher number of samples (3.9%; 9/232) were test-positive by MT-PCR and four genotypes (buffeli, chitose, ikeda and type 5) of T. orientalis were detected. The average intensity of infections with genotypes buffeli (DNA copy numbers 11,056) and type 5 (7508) were significantly higher (P<0.0001) than the pathogenic genotype ikeda (61 DNA copies). This first insight into T. orientalis from cattle in Ethiopia using MPSP gene provides a basis for future studies of T. orientalis in various agroclimatic zones and of the impact of oriental theilerosis on cattle in this and other countries of Africa. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. A Novel Strategy for Human Papillomavirus Detection and Genotyping with SybrGreen and Molecular Beacon Polymerase Chain Reaction

    PubMed Central

    Szuhai, Károly; Sandhaus, Emily; Kolkman-Uljee, Sandra M.; Lemaître, Marc; Truffert, Jean-Christophe; Dirks, Roeland W.; Tanke, Hans J.; Fleuren, Gert Jan; Schuuring, Ed; Raap, Anton K.

    2001-01-01

    Human papillomaviruses (HPVs) play an important role in the pathogenesis of cervical cancer. For identification of the large number of different HPV types found in (pre)malignant lesions, a robust methodology is needed that combines general HPV detection with HPV genotyping. We have developed for formaldehyde-fixed samples a strategy that, in a homogenous, real-time fluorescence polymerase chain reaction (PCR)-based assay, accomplishes general HPV detection by SybrGreen reporting of HPV-DNA amplicons, and genotyping of seven prevalent HPV types (HPV-6, -11, -16, -18, -31, -33, -45) by real-time molecular beacon PCR. The false-positive rate of the HPV SybrGreen-PCR was 4%, making it well suited as a prescreening, general HPV detection technology. The type specificity of the seven selected HPV molecular beacons was 100% and double infections were readily identified. The multiplexing capacity of the HPV molecular beacon PCR was analyzed and up to three differently labeled molecular beacons could be used in one PCR reaction without observing cross talk. The inherent quantitation capacities of real-time fluorescence PCR allowed the determination of average HPV copy number per cell. We conclude that the HPV SybrGreen-PCR in combination with the HPV molecular beacon PCR provides a robust, sensitive, and quantitative general HPV detection and genotyping methodology. PMID:11696426

  4. Targeted genotyping-by-sequencing permits cost-effective identification and discrimination of pasture grass species and cultivars.

    PubMed

    Pembleton, Luke W; Drayton, Michelle C; Bain, Melissa; Baillie, Rebecca C; Inch, Courtney; Spangenberg, German C; Wang, Junping; Forster, John W; Cogan, Noel O I

    2016-05-01

    A targeted amplicon-based genotyping-by-sequencing approach has permitted cost-effective and accurate discrimination between ryegrass species (perennial, Italian and inter-species hybrid), and identification of cultivars based on bulked samples. Perennial ryegrass and Italian ryegrass are the most important temperate forage species for global agriculture, and are represented in the commercial pasture seed market by numerous cultivars each composed of multiple highly heterozygous individuals. Previous studies have identified difficulties in the use of morphophysiological criteria to discriminate between these two closely related taxa. Recently, a highly multiplexed single nucleotide polymorphism (SNP)-based genotyping assay has been developed that permits accurate differentiation between both species and cultivars of ryegrasses at the genetic level. This assay has since been further developed into an amplicon-based genotyping-by-sequencing (GBS) approach implemented on a second-generation sequencing platform, allowing accelerated throughput and ca. sixfold reduction in cost. Using the GBS approach, 63 cultivars of perennial, Italian and interspecific hybrid ryegrasses, as well as intergeneric Festulolium hybrids, were genotyped. The genetic relationships between cultivars were interpreted in terms of known breeding histories and indistinct species boundaries within the Lolium genus, as well as suitability of current cultivar registration methodologies. An example of applicability to quality assurance and control (QA/QC) of seed purity is also described. Rapid, low-cost genotypic assays provide new opportunities for breeders to more fully explore genetic diversity within breeding programs, allowing the combination of novel unique genetic backgrounds. Such tools also offer the potential to more accurately define cultivar identities, allowing protection of varieties in the commercial market and supporting processes of cultivar accreditation and quality assurance.

  5. Validation of Genotyping-By-Sequencing Analysis in Populations of Tetraploid Alfalfa by 454 Sequencing

    PubMed Central

    Rocher, Solen; Jean, Martine; Castonguay, Yves; Belzile, François

    2015-01-01

    Genotyping-by-sequencing (GBS) is a relatively low-cost high throughput genotyping technology based on next generation sequencing and is applicable to orphan species with no reference genome. A combination of genome complexity reduction and multiplexing with DNA barcoding provides a simple and affordable way to resolve allelic variation between plant samples or populations. GBS was performed on ApeKI libraries using DNA from 48 genotypes each of two heterogeneous populations of tetraploid alfalfa (Medicago sativa spp. sativa): the synthetic cultivar Apica (ATF0) and a derived population (ATF5) obtained after five cycles of recurrent selection for superior tolerance to freezing (TF). Nearly 400 million reads were obtained from two lanes of an Illumina HiSeq 2000 sequencer and analyzed with the Universal Network-Enabled Analysis Kit (UNEAK) pipeline designed for species with no reference genome. Following the application of whole dataset-level filters, 11,694 single nucleotide polymorphism (SNP) loci were obtained. About 60% had a significant match on the Medicago truncatula syntenic genome. The accuracy of allelic ratios and genotype calls based on GBS data was directly assessed using 454 sequencing on a subset of SNP loci scored in eight plant samples. Sequencing depth in this study was not sufficient for accurate tetraploid allelic dosage, but reliable genotype calls based on diploid allelic dosage were obtained when using additional quality filtering. Principal Component Analysis of SNP loci in plant samples revealed that a small proportion (<5%) of the genetic variability assessed by GBS is able to differentiate ATF0 and ATF5. Our results confirm that analysis of GBS data using UNEAK is a reliable approach for genome-wide discovery of SNP loci in outcrossed polyploids. PMID:26115486

  6. Analytical Validation of a Personalized Medicine APOL1 Genotyping Assay for Nondiabetic Chronic Kidney Disease Risk Assessment.

    PubMed

    Zhang, Jinglan; Fedick, Anastasia; Wasserman, Stephanie; Zhao, Geping; Edelmann, Lisa; Bottinger, Erwin P; Kornreich, Ruth; Scott, Stuart A

    2016-03-01

    The incidence of chronic kidney disease (CKD) varies by ancestry, with African Americans (AA) having a threefold to fourfold higher rate than whites. Notably, two APOL1 alleles, termed G1 [c.(1072A>G; 1200T>G)] and G2 (c.1212_1217del6), are strongly associated with higher rates of nondiabetic CKD and an increased risk for hypertensive end-stage renal disease. This has prompted the opportunity to implement APOL1 testing to identify at-risk patients and modify other risk factors to reduce the progression of CKD to end-stage renal disease. We developed an APOL1 genotyping assay using multiplex allele-specific primer extension, and validated using 58 positive and negative controls. Genotyping results were completely concordant with Sanger sequencing, and both triplicate interrun and intrarun genotyping results were completely concordant. Multiethnic APOL1 allele frequencies were also determined by genotyping 7059 AA, Hispanic, and Asian individuals from the New York City metropolitan area. The AA, Hispanic, and Asian APOL1 G1 and G2 allele frequencies were 0.22 and 0.13, 0.037 and 0.025, and 0.013 and 0.004, respectively. Notably, approximately 14% of the AA population carried two risk alleles and are at increased risk for CKD, compared with <1% of the Hispanic and Asian populations. This novel APOL1 genotyping assay is robust and highly accurate, and represents one of the first personalized medicine clinical genetic tests for disease risk prediction. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. Thermally multiplexed polymerase chain reaction.

    PubMed

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  8. The robustness of multiplex networks under layer node-based attack

    PubMed Central

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-01-01

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology. PMID:27075870

  9. The robustness of multiplex networks under layer node-based attack.

    PubMed

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-04-14

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology.

  10. Projection multiplex recording of computer-synthesised one-dimensional Fourier holograms for holographic memory systems: mathematical and experimental modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betin, A Yu; Bobrinev, V I; Verenikina, N M

    A multiplex method of recording computer-synthesised one-dimensional Fourier holograms intended for holographic memory devices is proposed. The method potentially allows increasing the recording density in the previously proposed holographic memory system based on the computer synthesis and projection recording of data page holograms. (holographic memory)

  11. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry

    PubMed Central

    Ornatsky, Olga I.; Kinach, Robert; Bandura, Dmitry R.; Lou, Xudong; Tanner, Scott D.; Baranov, Vladimir I.; Nitz, Mark; Winnik, Mitchell A.

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping. PMID:19122859

  12. Failure of molecular diagnostics of a keratitis-inducing Acanthamoeba strain.

    PubMed

    Scheid, Patrick L; Balczun, Carsten

    2017-12-01

    An otherwise healthy 49-year-old female patient presented at the local hospital with severe keratitis in both inflamed eyes. She was a contact lens wearer and had no history of a corneal trauma. In our laboratory for medical parasitology Acanthamoebae were detected microscopically from the cornea scraping and from the fluid of the contact lens storage case after xenical culture and showed the typical cyst morphology of Acanthamoebae group II. The diagnosis of "Acanthamoeba keratitis" was established and successful therapy was provided. While the morphological microscopic method led to the correct diagnosis in this case, an in-house multiplex qPCR and a commercial qPCR showed false negative results regarding Acanthamoeba sp. The subsequent sequencing revealed the Acanthamoeba genotype T4. In the present case report, the inability to detect Acanthamoebae using qPCR only is presented. Therefore, we recommend the utilization of combined different assays for optimal diagnostic purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. De novo assembly and next-generation sequencing to analyse full-length gene variants from codon-barcoded libraries.

    PubMed

    Cho, Namjin; Hwang, Byungjin; Yoon, Jung-ki; Park, Sangun; Lee, Joongoo; Seo, Han Na; Lee, Jeewon; Huh, Sunghoon; Chung, Jinsoo; Bang, Duhee

    2015-09-21

    Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of complex genetic systems and unveiling structure and function of genetic pathways. Although high resolution mapping of en masse variant libraries renders molecular biologists to address genotype-phenotype relationships, long-read sequencing technology remains indispensable to assess functional relationship between mutations that lie far apart. Here, we introduce JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by combining a codon-based molecular barcoding strategy and de novo assembly of short-read data. We first validate JigsawSeq on small sub-pools and observed high precision and recall at various experimental settings. With extensive simulations, we then apply JigsawSeq to large-scale gene variant libraries to show that our method can be reliably scaled using next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional genomics and offer the opportunity to explore evolutionary trajectories of protein variants.

  14. Genotyping and clinical factors in pediatric diarrhea caused by rotaviruses: one-year surveillance in Surabaya, Indonesia.

    PubMed

    Sudarmo, Subijanto Marto; Shigemura, Katsumi; Athiyyah, Alpha Fardah; Osawa, Kayo; Wardana, Oktavian Prasetia; Darma, Andy; Ranuh, Reza; Raharjo, Dadik; Arakawa, Soichi; Fujisawa, Masato; Shirakawa, Toshiro

    2015-01-01

    Rotavirus infections are a major cause of diarrhea in children in both developed and developing countries. Rotavirus genetics, patient immunity, and environmental factors are thought to be related to the severity of acute diarrhea due to rotavirus in infants and young children. The objective of this study was to provide a correlation between rotavirus genotypes, clinical factors and degree of severity of acute diarrhea in children under 5 years old in Surabaya, Indonesia. A cross-sectional study was conducted in children aged 1-60 months with acute diarrhea hospitalized in Soetomo Hospital, Surabaya, Indonesia from April to December 2013. Rotavirus in stool specimens was identified by ELISA and genotyping (G-type and P-type) using multiplex reverse transcription PCR. Severity was measured using the Ruuska and Vesikari scoring system. The clinical factors were investigated included patient's age (months), hydration, antibiotic administration, nutritional state, co-bacterial infection and co-viral infection. A total of 88 children met the criteria; 80.7% were aged 6-24 months, watery diarrhea was the most common type (77.3%) and 73.6% of the subjects were co-infected with bacteria, of which pathogenic Escherichia coli was the most common (42.5%). The predominant VP7 genotyping (G-type) was G2 (31.8%) and that of VP4 genotyping (P-type) was P[4] (31.8%). The predominant rotavirus genotype was G2P[4] (19.3%); G1P[4] and G9P[4] were uncommon with a prevalence of 4.5%. There were significant differences between the common genotype and uncommon genotype with respect to the total severity score of diarrhea (p <0.05). G3, G4 and G9 were significantly correlated with severe diarrhea (p = 0.009) in multivariate analyses and with frequency of diarrhea (>10 times a day) (p = 0.045) in univariate analyses, but there was no significant correlation between P typing and severity of diarrhea. For combination genotyping of G and P, G2P[4] was significantly correlated with severe diarrhea in multivariate analyses (p = 0.029). There is a correlation between rotavirus genotype and severity of acute diarrhea in children. Genotype G2P[4] has the highest prevalence. G3, G4, G9 and G2P[4] combination genotype were found to be associated with severe diarrhea.

  15. Multiplex amplification of large sets of human exons.

    PubMed

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  16. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation.

    PubMed

    Kang, Hyun Min; Subramaniam, Meena; Targ, Sasha; Nguyen, Michelle; Maliskova, Lenka; McCarthy, Elizabeth; Wan, Eunice; Wong, Simon; Byrnes, Lauren; Lanata, Cristina M; Gate, Rachel E; Mostafavi, Sara; Marson, Alexander; Zaitlen, Noah; Criswell, Lindsey A; Ye, Chun Jimmie

    2018-01-01

    Droplet single-cell RNA-sequencing (dscRNA-seq) has enabled rapid, massively parallel profiling of transcriptomes. However, assessing differential expression across multiple individuals has been hampered by inefficient sample processing and technical batch effects. Here we describe a computational tool, demuxlet, that harnesses natural genetic variation to determine the sample identity of each droplet containing a single cell (singlet) and detect droplets containing two cells (doublets). These capabilities enable multiplexed dscRNA-seq experiments in which cells from unrelated individuals are pooled and captured at higher throughput than in standard workflows. Using simulated data, we show that 50 single-nucleotide polymorphisms (SNPs) per cell are sufficient to assign 97% of singlets and identify 92% of doublets in pools of up to 64 individuals. Given genotyping data for each of eight pooled samples, demuxlet correctly recovers the sample identity of >99% of singlets and identifies doublets at rates consistent with previous estimates. We apply demuxlet to assess cell-type-specific changes in gene expression in 8 pooled lupus patient samples treated with interferon (IFN)-β and perform eQTL analysis on 23 pooled samples.

  17. MULTIPLE-LOCUS VARIABLE-NUMBER TANDEM REPEAT ANALYSIS OF BRUCELLA ISOLATES FROM THAILAND.

    PubMed

    Kumkrong, Khurawan; Chankate, Phanita; Tonyoung, Wittawat; Intarapuk, Apiradee; Kerdsin, Anusak; Kalambaheti, Thareerat

    2017-01-01

    Brucellosis-induced abortion can result in significant economic loss to farm animals. Brucellosis can be transmitted to humans during slaughter of infected animals or via consumption of contaminated food products. Strain identification of Brucella isolates can reveal the route of transmission. Brucella strains were isolated from vaginal swabs of farm animal, cow milk and from human blood cultures. Multiplex PCR was used to identify Brucella species, and owing to high DNA homology among Brucella isolates, multiple-locus variable-number tandem repeat analysis (MLVA) based on the number of tandem repeats at 16 different genomic loci was used for strain identification. Multiplex PCR categorized the isolates into B. abortus (n = 7), B. melitensis (n = 37), B. suis (n = 3), and 5 of unknown Brucella spp. MLVA-16 clustering analysis differentiated the strains into various genotypes, with Brucella isolates from the same geographic region being closely related, and revealed that the Thai isolates were phylogenetically distinct from those in other countries, including within the Southeast Asian region. Thus, MLVA-16 typing has utility in epidemiological studies.

  18. Polarization-multiplexed plasmonic phase generation with distributed nanoslits.

    PubMed

    Lee, Seung-Yeol; Kim, Kyuho; Lee, Gun-Yeal; Lee, Byoungho

    2015-06-15

    Methods for multiplexing surface plasmon polaritons (SPPs) have been attracting much attention due to their potentials for plasmonic integrated systems, plasmonic holography, and optical tweezing. Here, using closely-distanced distributed nanoslits, we propose a method for generating polarization-multiplexed SPP phase profiles which can be applied for implementing general SPP phase distributions. Two independent types of SPP phase generation mechanisms - polarization-independent and polarization-reversible ones - are combined to generate fully arbitrary phase profiles for each optical handedness. As a simple verification of the proposed scheme, we experimentally demonstrate that the location of plasmonic focus can be arbitrary designed, and switched by the change of optical handedness.

  19. Allelic Prevalence of ABO Blood Group Genes in Iranian Azari Population.

    PubMed

    Nojavan, Mohammad; Shamsasenjan, Karrim; Movassaghpour, Ali Akbar; Akbarzadehlaleh, Parvin; Torabi, Seyd Esmail; Ghojazadeh, Morteza

    2012-01-01

    ABO blood group system is the most important blood group in transfusion and has been widely used in population studies. Several molecular techniques for ABO allele's detection are widely used for distinguishing various alleles of glycosyl transferase locus on chromosome 9. 744 randomly selected samples from Azari donors of East Azerbaijan province (Iran) were examined using well-adjusted multiplex allele- specific PCR ABO genotyping technique. The results were consistent for all individuals. The ABO blood group genotype of 744 healthy Azari blood donors was: 25.8% AA/AO (2), 7.6% AO (1), 1.6% BB, 11.3% B0 (1), 10% AB, 9.3% 0(1)0(1) and 15.3%0(1)0(2). The highest genotype frequency belonged to O01/O02 genotype (15.3%) and the lowest frequency belonged to A101/A102 genotype (0.4%). The frequencies of ABO alleles didn't show significant differences between East Azerbaijan province population and that of other areas of the country. Meanwhile, statistical analysis of frequencies of A and B alleles between East Azerbaijan province population and neighbor countries showed significant differences whereas the frequency of allele O between them did not show significant difference (P>0.05). The frequencies of ABO alleles didn't show significant differences between East Azerbaijan province population and that of other areas of the country. Meanwhile, statistical analysis of frequencies of A and B alleles between East Azerbaijan province population and neighbor countries showed significant differences whereas the frequency of allele O between them did not show significant difference (P>0.05).

  20. Analysis of DNA evidence recovered from epithelial cells in penile swabs.

    PubMed

    Drobnic, Katja

    2003-06-01

    In the rape case presented here, no semen, hair, or other biological evidence were left by the perpetuator at the crime scene or on the victim. The alleged assailant was arrested soon after the crime. A classical stain recovery technique using cotton swab moistened with sterile water was taken for recovering potential female epithelial cells and leukocytes deposited on the alleged assailant's penis during sexual assault. The organic method used for DNA extraction was quantified according to the slot-blot procedure and amplified at 9 and 15 polymorphic loci. Penile swab revealed a DNA profile of mixed origin. In addition to the suspect's DNA profile, DNA contribution from the victim was identified as a minor component in the mixture. Frequency of the profile resulted in a value of 5 x 10(-14) for the multiplex systems AmpFlSTR Plus and 2.5 x 10(-18) for the multiplex system PowerPlex 16, taking into account only non-overlapping alleles between the suspect and the victim from the minor component in the DNA mixture. Moreover, three additional alleles were observed at D21S11 locus by use of PowerPlex and STR SGM plus primers, which could not belong to the suspect. The victim's DNA profile showed the same three-banded genotype at this locus. The same pattern was detected when the victim's saliva or blood were used as reference samples. Our laboratory finding was consistent with the police report that the victim was a person with Down syndrome, a human genetic disease mainly resulting from trisomy (triplication) of the 21 chromosome.

  1. Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples.

    PubMed

    Didelot, Audrey; Kotsopoulos, Steve K; Lupo, Audrey; Pekin, Deniz; Li, Xinyu; Atochin, Ivan; Srinivasan, Preethi; Zhong, Qun; Olson, Jeff; Link, Darren R; Laurent-Puig, Pierre; Blons, Hélène; Hutchison, J Brian; Taly, Valerie

    2013-05-01

    Assessment of DNA integrity and quantity remains a bottleneck for high-throughput molecular genotyping technologies, including next-generation sequencing. In particular, DNA extracted from paraffin-embedded tissues, a major potential source of tumor DNA, varies widely in quality, leading to unpredictable sequencing data. We describe a picoliter droplet-based digital PCR method that enables simultaneous detection of DNA integrity and the quantity of amplifiable DNA. Using a multiplex assay, we detected 4 different target lengths (78, 159, 197, and 550 bp). Assays were validated with human genomic DNA fragmented to sizes of 170 bp to 3000 bp. The technique was validated with DNA quantities as low as 1 ng. We evaluated 12 DNA samples extracted from paraffin-embedded lung adenocarcinoma tissues. One sample contained no amplifiable DNA. The fractions of amplifiable DNA for the 11 other samples were between 0.05% and 10.1% for 78-bp fragments and ≤1% for longer fragments. Four samples were chosen for enrichment and next-generation sequencing. The quality of the sequencing data was in agreement with the results of the DNA-integrity test. Specifically, DNA with low integrity yielded sequencing results with lower levels of coverage and uniformity and had higher levels of false-positive variants. The development of DNA-quality assays will enable researchers to downselect samples or process more DNA to achieve reliable genome sequencing with the highest possible efficiency of cost and effort, as well as minimize the waste of precious samples. © 2013 American Association for Clinical Chemistry.

  2. Rapid and simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes by magnetic capture hybridization and multiplex real-time PCR.

    PubMed

    Carloni, Elisa; Rotundo, Luca; Brandi, Giorgio; Amagliani, Giulia

    2018-05-25

    The application of rapid, specific, and sensitive methods for pathogen detection and quantification is very advantageous in diagnosis of human pathogens in several applications, including food analysis. The aim of this study was the evaluation of a method for the multiplexed detection and quantification of three significant foodborne pathogenic species (Escherichia coli O157, Salmonella spp., and Listeria monocytogenes). The assay combines specific DNA extraction by multiplex magnetic capture hybridization (mMCH) with multiplex real-time PCR. The amplification assay showed linearity in the range 10 6 -10 genomic units (GU)/PCR for each co-amplified species. The sensitivity corresponded to 1 GU/PCR for E. coli O157 and L. monocytogenes, and 10 GU/PCR for Salmonella spp. The immobilization process and the hybrid capture of the MCH showed good efficiency and reproducibility for all targets, allowing the combination in equal amounts of the different nanoparticle types in mMCH. MCH and mMCH efficiencies were similar. The detection limit of the method was 10 CFU in samples with individual pathogens and 10 2  CFU in samples with combination of the three pathogens in unequal amounts (amount's differences of 2 or 3 log). In conclusion, this multiplex molecular platform can be applied to determine the presence of target species in food samples after culture enrichment. In this way, this method could be a time-saving and sensitive tool to be used in routine diagnosis.

  3. EFFECT OF DIFFERENT REGIONS OF AMPLIFIED 16S RDNA ON A PERFORMANCE OF A MULTIPLEXED, BEAD-BASED METHOD FOR ANALYSIS OF DNA SEQUENCES IN ENVIRONMENTAL SAMPLES.

    EPA Science Inventory

    Using a bead-based method for multiplexed analysis of community DNA, the dynamics of aquatic microbial communities can be assessed. Capture probes, specific for a genus or species of bacteria, are attached to the surface of uniquely labeled, microscopic polystyrene beads. Primers...

  4. Application of Multiplexed Replica Exchange Molecular Dynamics to the UNRES Force Field: Tests with alpha and alpha+beta Proteins.

    PubMed

    Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A

    2009-03-10

    The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster.

  5. Application of Multiplexed Replica Exchange Molecular Dynamics to the UNRES Force Field: Tests with α and α+β Proteins

    PubMed Central

    Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster. PMID:20161452

  6. Helicase dependent OnChip-amplification and its use in multiplex pathogen detection.

    PubMed

    Andresen, Dennie; von Nickisch-Rosenegk, Markus; Bier, Frank F

    2009-05-01

    The need for fast, specific and sensitive multiparametric detection methods is an ever growing demand in molecular diagnostics. Here we report on a newly developed method, the helicase dependent OnChip amplification (OnChip-HDA). This approach integrates the analysis and detection in one single reaction thus leading to time and cost savings in multiparametric analysis. HDA is an isothermal amplification method that is not depending on thermocycling as known from PCR due to the helicases' ability to unwind DNA double-strands. We have combined the HDA with microarray based detection, making it suitable for multiplex detection. As an example we used the OnChip HDA in single and multiplex amplifications for the detection of the two pathogens N. gonorrhoeae and S. aureus directly on surface bound primers. We have successfully shown the OnChip-HDA and applied it for single- and duplex-detection of the pathogens N. gonorrhoeae and S. aureus. We have developed a new method, the OnChip-HDA for the multiplex detection of pathogens. Its simplicity in reaction setup and potential for miniaturization and multiparametric analysis is advantageous for the integration in miniaturized Lab on Chip systems, e.g. needed in point of care diagnostics.

  7. Topological charge number multiplexing for JTC multiple-image encryption

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Shen, Xueju; Dou, Shuaifeng; Lin, Chao; Wang, Long

    2018-04-01

    We propose a method of topological charge number multiplexing based on the JTC encryption system to achieve multiple-image encryption. Using this method, multi-image can be encrypted into single ciphertext, and the original images can be recovered according to the authority level. The number of encrypted images is increased, moreover, the quality of decrypted images is improved. Results of computer simulation and initial experiment identify the validity of our proposed method.

  8. Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk.

    PubMed

    Northwood, Emma L; Elliott, Faye; Forman, David; Barrett, Jennifer H; Wilkie, Murray J V; Carey, Francis A; Steele, Robert J C; Wolf, Roland; Bishop, Timothy; Smith, Gillian

    2010-05-01

    We have earlier shown that diet and xenobiotic metabolizing enzyme genotypes influence colorectal cancer risk, and now investigate whether similar associations are seen in patients with premalignant colorectal adenomas (CRA), recruited during the pilot phase of the Scottish Bowel Screening Programme. Nineteen polymorphisms in 13 genes [cytochrome P450 (P450), glutathione S-transferase (GST), N-acetyl transferase, quinone reductase (NQ01) and microsomal epoxide hydrolase (EPHX1) genes] were genotyped using multiplex PCR or Taqman-based allelic discrimination assays and analyzed in conjunction with diet, assessed by food frequency questionnaire, in a case-control study [317 CRA cases (308 cases genotyped), 296 controls]. Findings significant at a nominal 5% level are reported. CRA risk was inversely associated with fruit (P=0.02, test for trend) and vegetable (P=0.001, test for trend) consumption. P450 CYP2C9*3 heterozygotes had reduced CRA risk compared with homozygotes for the reference allele [odds ratio (OR): 0.60; 95% confidence interval (CI): 0.36-0.99], whereas CYP2D6*4 homozygotes (OR: 2.72; 95% CI: 1.18-6.27) and GSTM1 'null' individuals (OR: 1.43; 95% CI: 1.04-1.98) were at increased risk. The protective effect of fruit consumption was confined to GSTP1 (Ala114Val) reference allele homozygotes (OR: 0.49; 95% CI: 0.34-0.71, P=0.03 for interaction). CRA risk was not associated with meat consumption, although a significant interaction between red meat consumption and EPHX1 (His139Arg) genotype was noted (P=0.02 for interaction). We report the novel associations between P450 genotype and CRA risk, and highlight the risk association with GSTM1 genotype, common to our CRA and cancer case-control series. In addition, we report a novel modifying influence of GSTP1 genotype on dietary chemoprevention. These novel findings require independent confirmation.

  9. Large object investigation by digital holography with effective spectrum multiplexing under single-exposure approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning, E-mail: coolboy006@sohu.com; Zhang, Yingying; Xie, Jun

    2014-10-13

    We present a method to investigate large object by digital holography with effective spectrum multiplexing under single-exposure approach. This method splits the original reference beam and redirects one of its branches as a second object beam. Through the modified Mach-Zehnder interferometer, the two object beams can illuminate different parts of the large object and create a spectrum multiplexed hologram onto the focal plane array of the charge-coupled device/complementary metal oxide semiconductor camera. After correct spectrum extraction and image reconstruction, the large object can be fully observed within only one single snap-shot. The flexibility and great performance make our method amore » very attractive and promising technique for large object investigation under common 632.8 nm illumination.« less

  10. Frequency-Modulated Continuous Flow Analysis Electrospray Ionization Mass Spectrometry (FM-CFA-ESI-MS) for Sample Multiplexing.

    PubMed

    Filla, Robert T; Schrell, Adrian M; Coulton, John B; Edwards, James L; Roper, Michael G

    2018-02-20

    A method for multiplexed sample analysis by mass spectrometry without the need for chemical tagging is presented. In this new method, each sample is pulsed at unique frequencies, mixed, and delivered to the mass spectrometer while maintaining a constant total flow rate. Reconstructed ion currents are then a time-dependent signal consisting of the sum of the ion currents from the various samples. Spectral deconvolution of each reconstructed ion current reveals the identity of each sample, encoded by its unique frequency, and its concentration encoded by the peak height in the frequency domain. This technique is different from other approaches that have been described, which have used modulation techniques to increase the signal-to-noise ratio of a single sample. As proof of concept of this new method, two samples containing up to 9 analytes were multiplexed. The linear dynamic range of the calibration curve was increased with extended acquisition times of the experiment and longer oscillation periods of the samples. Because of the combination of the samples, salt had little effect on the ability of this method to achieve relative quantitation. Continued development of this method is expected to allow for increased numbers of samples that can be multiplexed.

  11. Identification of spider-mite species and their endosymbionts using multiplex PCR.

    PubMed

    Zélé, Flore; Weill, Mylène; Magalhães, Sara

    2018-02-01

    Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.

  12. Screening DNA chip and event-specific multiplex PCR detection methods for biotech crops.

    PubMed

    Lee, Seong-Hun

    2014-11-01

    There are about 80 biotech crop events that have been approved by safety assessment in Korea. They have been controlled by genetically modified organism (GMO) and living modified organism (LMO) labeling systems. The DNA-based detection method has been used as an efficient scientific management tool. Recently, the multiplex polymerase chain reaction (PCR) and DNA chip have been developed as simultaneous detection methods for several biotech crops' events. The event-specific multiplex PCR method was developed to detect five biotech maize events: MIR604, Event 3272, LY 038, MON 88017 and DAS-59122-7. The specificity was confirmed and the sensitivity was 0.5%. The screening DNA chip was developed from four endogenous genes of soybean, maize, cotton and canola respectively along with two regulatory elements and seven genes: P35S, tNOS, pat, bar, epsps1, epsps2, pmi, cry1Ac and cry3B. The specificity was confirmed and the sensitivity was 0.5% for four crops' 12 events: one soybean, six maize, three cotton and two canola events. The multiplex PCR and DNA chip can be available for screening, gene-specific and event-specific analysis of biotech crops as efficient detection methods by saving on workload and time. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  13. A multiplex PCR for detection of six viruses in ducks.

    PubMed

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  14. Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye

    PubMed Central

    Ahberg, Christian D.; Manz, Andreas; Neuzil, Pavel

    2015-01-01

    Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio. PMID:26088868

  15. GSTM1 and GSTT1 Genes are Associated With DNA Damage of p53 Gene in Coke-oven Workers.

    PubMed

    He, Yuefeng; Qi, Jun; He, Fang; Zhang, Yongchang; Wang, Youlian; Zhang, Ruobing; Li, Gang

    2017-06-01

    This study investigated whether variations in GSTT1 and GSTM1 gene are associated with the DNA damage level of p53 gene. We quantified urinary 1-hydroxypyrene using high-performance liquid chromatography, and examined the DNA damage level of p53 gene by real-time quantitative PCR in 756 coke-oven workers. Multiplex PCR was used to detect the presence or absence of genes. DNA damage levels of p53 gene in the high exposure group and intermediate exposure group were significantly higher than that of p53 gene in the low exposure group (P < 0.01). In coke-oven workers, the DNA damage levels of subjects with non-null genotype in GSTT1 or GSTM1 gene were significantly higher than that of those with the null genotype (P < 0.01). GSTT1 and GSTM1 may modulate DNA damage levels of p53 gene when exposed to polycyclic aromatic hydrocarbons.

  16. The occurrence of Trichinella species in the cougar Puma concolor couguar from the state of Colorado and other regions of North and South America.

    PubMed

    Reichard, M V; Logan, K; Criffield, M; Thomas, J E; Paritte, J M; Messerly, D M; Interisano, M; Marucci, G; Pozio, E

    2017-05-01

    Trichinella species are zoonotic nematodes that infect wild carnivores and omnivores throughout the world. We examined the prevalence and species of Trichinella infections in cougars (Puma concolor couguar) from Colorado, United States. Tongues from cougars were examined by pepsin-HCl artificial digestion to detect Trichinella spp. larvae. The species or genotype of individual worms was identified by multiplex polymerase chain reaction (PCR). Trichinella spp. larvae were detected in 17 of 39 cougars (43.6% (28.7-59.5%)). Five of the cougars (12.8%) were infected with T. murrelli, 3 (7.7%) were infected with T. pseudospiralis, and 1 (2.6%) had Trichinella genotype T6. Trichinella spp. larvae from eight cougars were not identified at the species level, due to degraded DNA. The high prevalence of Trichinella spp. in cougars from Colorado and reports of the parasite in other populations of Puma spp. suggest that this large predator is a key mammalian reservoir.

  17. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    NASA Astrophysics Data System (ADS)

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-04-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

  18. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    PubMed Central

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-01-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level. PMID:28382928

  19. Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine

    PubMed Central

    Dias-Santagata, Dora; Akhavanfard, Sara; David, Serena S; Vernovsky, Kathy; Kuhlmann, Georgiana; Boisvert, Susan L; Stubbs, Hannah; McDermott, Ultan; Settleman, Jeffrey; Kwak, Eunice L; Clark, Jeffrey W; Isakoff, Steven J; Sequist, Lecia V; Engelman, Jeffrey A; Lynch, Thomas J; Haber, Daniel A; Louis, David N; Ellisen, Leif W; Borger, Darrell R; Iafrate, A John

    2010-01-01

    Targeted cancer therapy requires the rapid and accurate identification of genetic abnormalities predictive of therapeutic response. We sought to develop a high-throughput genotyping platform that would allow prospective patient selection to the best available therapies, and that could readily and inexpensively be adopted by most clinical laboratories. We developed a highly sensitive multiplexed clinical assay that performs very well with nucleic acid derived from formalin fixation and paraffin embedding (FFPE) tissue, and tests for 120 previously described mutations in 13 cancer genes. Genetic profiling of 250 primary tumours was consistent with the documented oncogene mutational spectrum and identified rare events in some cancer types. The assay is currently being used for clinical testing of tumour samples and contributing to cancer patient management. This work therefore establishes a platform for real-time targeted genotyping that can be widely adopted. We expect that efforts like this one will play an increasingly important role in cancer management. PMID:20432502

  20. Sex Genotyping of Archival Fixed and Immunolabeled Guinea Pig Cochleas.

    PubMed

    Depreux, Frédéric F; Czech, Lyubov; Whitlon, Donna S

    2018-03-26

    For decades, outbred guinea pigs (GP) have been used as research models. Various past research studies using guinea pigs used measures that, unknown at the time, may be sex-dependent, but from which today, archival tissues may be all that remain. We aimed to provide a protocol for sex-typing archival guinea pig tissue, whereby past experiments could be re-evaluated for sex effects. No PCR sex-genotyping protocols existed for GP. We found that published sequence of the GP Sry gene differed from that in two separate GP stocks. We used sequences from other species to deduce PCR primers for Sry. After developing a genomic DNA extraction for archival, fixed, decalcified, immunolabeled, guinea pig cochlear half-turns, we used a multiplex assay (Y-specific Sry; X-specific Dystrophin) to assign sex to tissue as old as 3 years. This procedure should allow reevaluation of prior guinea pig studies in various research areas for the effects of sex on experimental outcomes.

  1. Comparative evaluation of uniplex, nested, semi-nested, multiplex and nested multiplex PCR methods in the identification of microbial etiology of clinically suspected infectious endophthalmitis.

    PubMed

    Bharathi, Madasamy Jayahar; Murugan, Nandagopal; Rameshkumar, Gunasekaran; Ramakrishnan, Rengappa; Venugopal Reddy, Yerahaia Chinna; Shivkumar, Chandrasekar; Ramesh, Srinivasan

    2013-05-01

    This study is aimed to determine the utility of various polymerase chain reaction (PCR) methods in vitreous fluids (VFs) for detecting the infectious genomes in the diagnosis of infectious endophthalmitis in terms of sensitivity and specificity. This prospective and consecutive analysis included a total of 66 VFs that were submitted for the microbiological evaluation, which were obtained from 66 clinically diagnosed endophthalmitis patients presented between November 2010 and October 2011 at the tertiary eye care referral centre in South India. Part of the collected VFs were subjected to cultures and smears, and the remaining parts were utilized for five PCR methods: uniplex, nested, semi-nested, multiplex and nested multiplex after extracting DNA, using universal eubacterial and Propionibacterium acnes species-specific primer sets targeting 16S rRNA gene in all bacteria and P. acnes, and panfungal primers, targeting 28S rRNA gene in all fungi. Of the 66 VFs, five (7.5%) showed positive results in smears, 16 (24%) in cultures and 43 (65%) showed positive results in PCRs. Among the 43 positively amplified VFs, 10 (15%) were positive for P. acnes genome, one for panfungal genome and 42 (62%) for eubacterial genome (including 10 P. acnes positives). Among 42 eubacterial-positive VFs, 36 were positive by both uniplex (first round) and multiplex (first round) PCRs, while nested (second round) and nested multiplex (second round) PCRs produced positive results in 42 and 41 VFs, respectively. Of the 43 PCR-positive specimens, 16 (37%) had positive growth (15 bacterial and one fungal) in culture. Of 50 culture-negative specimens, 27 (54%) were showed positive amplification, of which 10 were amplified for both P. acnes and eubacterial genomes and the remaining 17 were for eubacterial genome alone. Nested PCRs are superior than uniplex and multiplex PCR. PCRs proved to be a powerful tool in the diagnosis of endophthalmitis, especially for detecting uncultured microbes.

  2. Multiplexed Post-Experimental Monoisotopic Mass Refinement ( m PE-MMR) to Increase Sensitivity and Accuracy in Peptide Identifications from Tandem Mass Spectra of Cofragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madar, Inamul Hasan; Ko, Seung-Ik; Kim, Hokeun

    Mass spectrometry (MS)-based proteomics, which uses high-resolution hybrid mass spectrometers such as the quadrupole-orbitrap mass spectrometer, can yield tens of thousands of tandem mass (MS/MS) spectra of high resolution during a routine bottom-up experiment. Despite being a fundamental and key step in MS-based proteomics, the accurate determination and assignment of precursor monoisotopic masses to the MS/MS spectra remains difficult. The difficulties stem from imperfect isotopic envelopes of precursor ions, inaccurate charge states for precursor ions, and cofragmentation. We describe a composite method of utilizing MS data to assign accurate monoisotopic masses to MS/MS spectra, including those subject to cofragmentation. Themore » method, “multiplexed post-experiment monoisotopic mass refinement” (mPE-MMR), consists of the following: multiplexing of precursor masses to assign multiple monoisotopic masses of cofragmented peptides to the corresponding multiplexed MS/MS spectra, multiplexing of charge states to assign correct charges to the precursor ions of MS/ MS spectra with no charge information, and mass correction for inaccurate monoisotopic peak picking. When combined with MS-GF+, a database search algorithm based on fragment mass difference, mPE-MMR effectively increases both sensitivity and accuracy in peptide identification from complex high-throughput proteomics data compared to conventional methods.« less

  3. Fuzzy-logic based strategy for validation of multiplex methods: example with qualitative GMO assays.

    PubMed

    Bellocchi, Gianni; Bertholet, Vincent; Hamels, Sandrine; Moens, W; Remacle, José; Van den Eede, Guy

    2010-02-01

    This paper illustrates the advantages that a fuzzy-based aggregation method could bring into the validation of a multiplex method for GMO detection (DualChip GMO kit, Eppendorf). Guidelines for validation of chemical, bio-chemical, pharmaceutical and genetic methods have been developed and ad hoc validation statistics are available and routinely used, for in-house and inter-laboratory testing, and decision-making. Fuzzy logic allows summarising the information obtained by independent validation statistics into one synthetic indicator of overall method performance. The microarray technology, introduced for simultaneous identification of multiple GMOs, poses specific validation issues (patterns of performance for a variety of GMOs at different concentrations). A fuzzy-based indicator for overall evaluation is illustrated in this paper, and applied to validation data for different genetically modified elements. Remarks were drawn on the analytical results. The fuzzy-logic based rules were shown to be applicable to improve interpretation of results and facilitate overall evaluation of the multiplex method.

  4. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reindl, W.; Deng, K.; Gladden, J.M.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation ofmore » the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.« less

  5. Rapid detection of coliforms in drinking water of Arak city using multiplex PCR method in comparison with the standard method of culture (Most Probably Number)

    PubMed Central

    Fatemeh, Dehghan; Reza, Zolfaghari Mohammad; Mohammad, Arjomandzadegan; Salomeh, Kalantari; Reza, Ahmari Gholam; Hossein, Sarmadian; Maryam, Sadrnia; Azam, Ahmadi; Mana, Shojapoor; Negin, Najarian; Reza, Kasravi Alii; Saeed, Falahat

    2014-01-01

    Objective To analyse molecular detection of coliforms and shorten the time of PCR. Methods Rapid detection of coliforms by amplification of lacZ and uidA genes in a multiplex PCR reaction was designed and performed in comparison with most probably number (MPN) method for 16 artificial and 101 field samples. The molecular method was also conducted on isolated coliforms from positive MPN samples; standard sample for verification of microbial method certificated reference material; isolated strains from certificated reference material and standard bacteria. The PCR and electrophoresis parameters were changed for reducing the operation time. Results Results of PCR for lacZ and uidA genes were similar in all of standard, operational and artificial samples and showed the 876 bp and 147 bp bands of lacZ and uidA genes by multiplex PCR. PCR results were confirmed by MPN culture method by sensitivity 86% (95% CI: 0.71-0.93). Also the total execution time, with a successful change of factors, was reduced to less than two and a half hour. Conclusions Multiplex PCR method with shortened operation time was used for the simultaneous detection of total coliforms and Escherichia coli in distribution system of Arak city. It's recommended to be used at least as an initial screening test, and then the positive samples could be randomly tested by MPN. PMID:25182727

  6. Shift-phase code multiplexing technique for holographic memories and optical interconnection

    NASA Astrophysics Data System (ADS)

    Honma, Satoshi; Muto, Shinzo; Okamoto, Atsushi

    2008-03-01

    Holographic technologies for optical memories and interconnection devices have been studied actively because of high storage capacity, many wiring patterns and high transmission rate. Among multiplexing techniques such as angular, phase code and wavelength-multiplexing, speckle multiplexing technique have gotten attention due to the simple optical setup having an adjustable random phase filter in only one direction. To keep simple construction and to suppress crosstalk among adjacent page data or wiring patterns for efficient holographic memories and interconnection, we have to consider about optimum randomness of the phase filter. The high randomness causes expanding an illumination area of reference beam on holographic media. On the other hands, the small randomness causes the crosstalk between adjacent hologram data. We have proposed the method of holographic multiplexing, shift-phase code multiplexing with a two-dimensional orthogonal matrix phase filter. A lot of orthogonal phase codes can be produced by shifting the phase filter in one direction. It is able to read and record the individual holograms with low crosstalk. We give the basic experimental result on holographic data multiplexing and consider the phase pattern of the filter to suppress the crosstalk between adjacent holograms sufficiently.

  7. Functional variability of glutathione S-transferases in Basque populations.

    PubMed

    Iorio, Andrea; Piacentini, Sara; Polimanti, Renato; De Angelis, Flavio; Calderon, Rosario; Fuciarelli, Maria

    2014-01-01

    Glutathione S-transferases (GSTs) are enzymes involved in Phase II reactions. They play a key role in cellular detoxification. Various studies have shown that genes coding for the GST are highly polymorphic and some of these variants are directly associated with a decrease of enzyme activity making individuals more susceptible to different clinical phenotypes. The aim of this study is to investigate the genetic variability of GST genes among human populations. We have focused our attention on the polymorphic variants of the GSTA1, GSTM1, GSTO1, GSTO2, GSTP1, GSTT1, and GSTT2B genes. These polymorphisms were analyzed in a whole sample of 151 individuals: 112 autochthonous Navarrese Basques, and 39 non-autochthonous Navarrese Basques. DNA extraction from plasma was performed by using the phenol:chloroform:isoamylic alcohol method. Genotyping of the gene polymorphisms was performed by PCR Multiplex and the PCR-RFLP method. We applied correspondence analysis and built frequency-maps to compare the genetic structure in worldwide populations. Our results were compared with data available on the Human Genome Diversity Project (HGDP) and on the 1,000 Genomes Project to obtain information on the functional variability of GSTs in Basques. Our data indicated that Basque communities showed a higher differentiation of certain functional GST variants (i.e., GSTM1-positive/null genotype, GSTP1*I105V, and GSTT2B*1/0) than other European and Mediterranean populations. This might account for epidemiological differences in the predisposition to diseases and drug response among Basques and could be used to design and interpret genetic association studies for this particular population. Copyright © 2014 Wiley Periodicals, Inc.

  8. Rapid and Accurate Diagnosis of Acute Pyogenic Meningitis Due to Streptococcus Pneumoniae, Haemophilus influenzae Type b and Neisseria meningitidis Using A Multiplex PCR Assay.

    PubMed

    Seth, Rajeev; Murthy, Peela Sree Ramchandra; Sistla, Sujatha; Subramanian, Mahadevan; Tamilarasu, Kadhiravan

    2017-09-01

    Acute bacterial meningitis is one of the major causes of morbidity and mortality in children and geriatric population, especially in developing countries. Methods of identification are standard culture and other phenotypic tests in many resource poor settings. To use molecular methods for the improvement of aetiological diagnosis of acute pyogenic meningitis in patients. CSF samples of 125 patients were included for the study. Gram staining and culture were performed according to standard procedures. Antigen was detected using commercial latex agglutination test kit. Multiplex PCR was performed using previously published primers and protocols. Fischer's exact test was used for finding association between presence of the disease and clinical/biochemical parameters, considering two tailed p<0.05 as statistically significant. Sensitivity, specificity, positive and negative predictive values were calculated using Graphpad QuicCalc software. A total of 39 cases (31.2%) were confirmed to be of acute pyogenic meningitis based on biochemical methods. Only 10/39 was positive for the three organisms tested. Multiplex PCR was able to detect one additional isolate each of Streptococcus pneumoniae and Haemophilus influenzae type b. When compared with multiplex PCR as the gold standard, culture and latex agglutination tests had same sensitivity (80%), specificity (100%), PPV (100%) and NPV (97.8%), whereas Gram stain had poor sensitivity (40%) and good specificity (95.6%). Detection rates were higher in multiplex PCR for the two organisms Streptococcus pneumoniae and Haemophilus influenzae type b. Multiplex PCR was more sensitive than culture or antigen detection, and employing this assay can significantly increase the speed and accuracy of identification of the pathogen.

  9. Genetics of Iranian Alpha-Thalassemia Patients: A Comprehensive Original Study.

    PubMed

    Keikhaei, Bijan; Slehi-Fard, Pejman; Shariati, Gholamreza; Khosravi, Abbas

    2018-04-07

    Alpha thalassemia is the most prevalent monogenic gene disorder in the world, especially in Mediterranean countries. In the current hematological phenotype of patients with different genotypes, the effects of missense mutations on the protein function and also stability were evaluated in a large cohort study. A total of 1,560 subjects were enrolled in the study and divided into two groups: 259 normal subjects; and 1301 alpha-thalassemia carriers. Genomic DNA was extracted and analyzed using ARMS PCR, Multiplex Gap, and direct sequencing. The effects of single nucleotide change on the protein function and stability were predicted by freely available databases of human polymorphisms. Sixty-three different genotypes were seen in the patients. The more prevalent was heterozygote form of -α3.7 (41.4%) followed by -α3.7 homozygote (11.6%) and -MED (3.8%). The significant differences were seen in mean hemoglobin level [F = 20.5, p < 0.001] between the Alpha-globin genotypes, when adjusted for gender. Moreover, 28 different mutations were found in our study. A significant relationship was seen between ethnicity and the alpha-globin mutation frequency χ 2 (df;8) = 38.36, p < 0.0001). Different genotypes could display as different phenotypes. The mutation frequency distributions in our region are different from those of other parts of Iran. Significant differences are seen in the spectrum of mutation frequency among various ethnicities. Finally, some missense mutations might not have considerable effect on the proteins, and they could be neutral mutations.

  10. Human Papillomavirus Genotyping Using an Automated Film-Based Chip Array

    PubMed Central

    Erali, Maria; Pattison, David C.; Wittwer, Carl T.; Petti, Cathy A.

    2009-01-01

    The INFINITI HPV-QUAD assay is a commercially available genotyping platform for human papillomavirus (HPV) that uses multiplex PCR, followed by automated processing for primer extension, hybridization, and detection. The analytical performance of the HPV-QUAD assay was evaluated using liquid cervical cytology specimens, and the results were compared with those results obtained using the digene High-Risk HPV hc2 Test (HC2). The specimen types included Surepath and PreservCyt transport media, as well as residual SurePath and HC2 transport media from the HC2 assay. The overall concordance of positive and negative results following the resolution of indeterminate and intermediate results was 83% among the 197 specimens tested. HC2 positive (+) and HPV-QUAD negative (−) results were noted in 24 specimens that were shown by real-time PCR and sequence analysis to contain no HPV, HPV types that were cross-reactive in the HC2 assay, or low virus levels. Conversely, HC2 (−) and HPV-QUAD (+) results were noted in four specimens and were subsequently attributed to cross-contamination. The most common HPV types to be identified in this study were HPV16, HPV18, HPV52/58, and HPV39/56. We show that the HPV-QUAD assay is a user friendly, automated system for the identification of distinct HPV genotypes. Based on its analytical performance, future studies with this platform are warranted to assess its clinical utility for HPV detection and genotyping. PMID:19644025

  11. Human papillomavirus genotyping using an automated film-based chip array.

    PubMed

    Erali, Maria; Pattison, David C; Wittwer, Carl T; Petti, Cathy A

    2009-09-01

    The INFINITI HPV-QUAD assay is a commercially available genotyping platform for human papillomavirus (HPV) that uses multiplex PCR, followed by automated processing for primer extension, hybridization, and detection. The analytical performance of the HPV-QUAD assay was evaluated using liquid cervical cytology specimens, and the results were compared with those results obtained using the digene High-Risk HPV hc2 Test (HC2). The specimen types included Surepath and PreservCyt transport media, as well as residual SurePath and HC2 transport media from the HC2 assay. The overall concordance of positive and negative results following the resolution of indeterminate and intermediate results was 83% among the 197 specimens tested. HC2 positive (+) and HPV-QUAD negative (-) results were noted in 24 specimens that were shown by real-time PCR and sequence analysis to contain no HPV, HPV types that were cross-reactive in the HC2 assay, or low virus levels. Conversely, HC2 (-) and HPV-QUAD (+) results were noted in four specimens and were subsequently attributed to cross-contamination. The most common HPV types to be identified in this study were HPV16, HPV18, HPV52/58, and HPV39/56. We show that the HPV-QUAD assay is a user friendly, automated system for the identification of distinct HPV genotypes. Based on its analytical performance, future studies with this platform are warranted to assess its clinical utility for HPV detection and genotyping.

  12. A genotyping system capable of simultaneously analyzing >1000 single nucleotide polymorphisms in a haploid genome.

    PubMed

    Wang, Hui-Yun; Luo, Minjie; Tereshchenko, Irina V; Frikker, Danielle M; Cui, Xiangfeng; Li, James Y; Hu, Guohong; Chu, Yi; Azaro, Marco A; Lin, Yong; Shen, Li; Yang, Qifeng; Kambouris, Manousos E; Gao, Richeng; Shih, Weichung; Li, Honghua

    2005-02-01

    A high-throughput genotyping system for scoring single nucleotide polymorphisms (SNPs) has been developed. With this system, >1000 SNPs can be analyzed in a single assay, with a sensitivity that allows the use of single haploid cells as starting material. In the multiplex polymorphic sequence amplification step, instead of attaching universal sequences to the amplicons, primers that are unlikely to have nonspecific and productive interactions are used. Genotypes of SNPs are then determined by using the widely accessible microarray technology and the simple single-base extension assay. Three SNP panels, each consisting of >1000 SNPs, were incorporated into this system. The system was used to analyze 24 human genomic DNA samples. With 5 ng of human genomic DNA, the average detection rate was 98.22% when single probes were used, and 96.71% could be detected by dual probes in different directions. When single sperm cells were used, 91.88% of the SNPs were detectable, which is comparable to the level that was reached when very few genetic markers were used. By using a dual-probe assay, the average genotyping accuracy was 99.96% for 5 ng of human genomic DNA and 99.95% for single sperm. This system may be used to significantly facilitate large-scale genetic analysis even if the amount of DNA template is very limited or even highly degraded as that obtained from paraffin-embedded cancer specimens, and to make many unpractical research projects highly realistic and affordable.

  13. Molecular identification and genotyping of Pseudomonas aeruginosa isolated from cystic fibrosis and non-cystic fibrosis patients with bronchiectasis.

    PubMed

    Eusebio, Nadia; Amorim, Adelina A; Gamboa, Fernanda; Araujo, Ricardo

    2015-03-01

    There is no standard methodology for the molecular identification and genotyping of Pseudomonas aeruginosa which are frequently isolated in bronchiectasis patients. Hence, the main goal of this work was to propose a methodology capable to simultaneously identify and genotype, in less than 6 h, clinical P. aeruginosa collected from cystic fibrosis (CF) and non-CF patients with bronchiectasis. Molecular analyses were conducted in clinical isolates by testing the newly colony-PCR strategy and SNaPaer assay. A total of 207 isolates of P. aeruginosa were collected from clinical samples. To assess the assay specificity, other Gram-negative non-aeruginosa bacteria, namely Pseudomonas and Burkholderia, were tested. The complete group of 23 markers included in the SNaPaer panel was observed exclusively in P. aeruginosa; more than 18 markers failed in other bacteria. A total of 43 SnaP profiles were obtained for clinical P. aeruginosa, being the profiles highly patient-specific. Six CF patients were colonized with P. aeruginosa isolates with very distinct SnaP profiles, particularly following adjustments on antibiotic therapy, thus suggesting changes on the dynamics and dominance of these bacteria. SnaPaer proved to be a good and reliable tool for identification and genotyping of clinical P. aeruginosa in a single-tube multiplex PCR. Combined with the proposed colony-PCR strategy, SnaPaer assay facilitates the molecular analysis of P. aeruginosa. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. An Evaluation of Quantitative PCR Assays (TaqMan® and SYBR Green) for the Detection of Babesia bigemina and Babesia bovis, and a Novel Fluorescent-ITS1-PCR Capillary Electrophoresis Method for Genotyping B. bovis Isolates

    PubMed Central

    Zhang, Bing; Sambono, Jacqueline L.; Morgan, Jess A. T.; Venus, Bronwyn; Rolls, Peter; Lew-Tabor, Ala E.

    2016-01-01

    Babesia spp. are tick-transmitted haemoparasites causing tick fever in cattle. In Australia, economic losses to the cattle industry from tick fever are estimated at AUD$26 Million per annum. If animals recover from these infections, they become immune carriers. Here we describe a novel multiplex TaqMan qPCR targeting cytochrome b genes for the identification of Babesia spp. The assay shows high sensitivity, specificity and reproducibility, and allows quantification of parasite DNA from Babesia bovis and B. bigemina compared to standard PCR assays. A previously published cytochrome b SYBR Green qPCR was also tested in this study, showing slightly higher sensitivity than the Taqman qPCRs but requires melting curve analysis post-PCR to confirm specificity. The SYBR Green assays were further evaluated using both diagnostic submissions and vaccinated cattle (at 7, 9, 11 and 14 days post-inoculation) showed that B. bigemina can be detected more frequently than B. bovis. Due to fewer circulating parasites, B. bovis detection in carrier animals requires higher DNA input. Preliminary data for a novel fluorescent PCR genotyping based on the Internal Transcribed Spacer 1 region to detect vaccine and field alleles of B. bovis are described. This assay is capable of detecting vaccine and novel field isolate alleles in a single sample. PMID:29056732

  15. Simulations and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems

    PubMed Central

    Luo, Yuan; Castro, Jose; Barton, Jennifer K.; Kostuk, Raymond K.; Barbastathis, George

    2010-01-01

    A new methodology describing the effects of aperiodic and multiplexed gratings in volume holographic imaging systems (VHIS) is presented. The aperiodic gratings are treated as an ensemble of localized planar gratings using coupled wave methods in conjunction with sequential and non-sequential ray-tracing techniques to accurately predict volumetric diffraction effects in VHIS. Our approach can be applied to aperiodic, multiplexed gratings and used to theoretically predict the performance of multiplexed volume holographic gratings within a volume hologram for VHIS. We present simulation and experimental results for the aperiodic and multiplexed imaging gratings formed in PQ-PMMA at 488nm and probed with a spherical wave at 633nm. Simulation results based on our approach that can be easily implemented in ray-tracing packages such as Zemax® are confirmed with experiments and show proof of consistency and usefulness of the proposed models. PMID:20940823

  16. Digital image compression for a 2f multiplexing optical setup

    NASA Astrophysics Data System (ADS)

    Vargas, J.; Amaya, D.; Rueda, E.

    2016-07-01

    In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.

  17. Translating pharmacodynamic biomarkers from bench to bedside: analytical validation and fit-for-purpose studies to qualify multiplex immunofluorescent assays for use on clinical core biopsy specimens.

    PubMed

    Marrero, Allison; Lawrence, Scott; Wilsker, Deborah; Voth, Andrea Regier; Kinders, Robert J

    2016-08-01

    Multiplex pharmacodynamic (PD) assays have the potential to increase sensitivity of biomarker-based reporting for new targeted agents, as well as revealing significantly more information about target and pathway activation than single-biomarker PD assays. Stringent methodology is required to ensure reliable and reproducible results. Common to all PD assays is the importance of reagent validation, assay and instrument calibration, and the determination of suitable response calibrators; however, multiplex assays, particularly those performed on paraffin specimens from tissue blocks, bring format-specific challenges adding a layer of complexity to assay development. We discuss existing multiplex approaches and the development of a multiplex immunofluorescence assay measuring DNA damage and DNA repair enzymes in response to anti-cancer therapeutics and describe how our novel method addresses known issues. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Simultaneous Genotype Calling and Haplotype Phasing Improves Genotype Accuracy and Reduces False-Positive Associations for Genome-wide Association Studies

    PubMed Central

    Browning, Brian L.; Yu, Zhaoxia

    2009-01-01

    We present a novel method for simultaneous genotype calling and haplotype-phase inference. Our method employs the computationally efficient BEAGLE haplotype-frequency model, which can be applied to large-scale studies with millions of markers and thousands of samples. We compare genotype calls made with our method to genotype calls made with the BIRDSEED, CHIAMO, GenCall, and ILLUMINUS genotype-calling methods, using genotype data from the Illumina 550K and Affymetrix 500K arrays. We show that our method has higher genotype-call accuracy and yields fewer uncalled genotypes than competing methods. We perform single-marker analysis of data from the Wellcome Trust Case Control Consortium bipolar disorder and type 2 diabetes studies. For bipolar disorder, the genotype calls in the original study yield 25 markers with apparent false-positive association with bipolar disorder at a p < 10−7 significance level, whereas genotype calls made with our method yield no associated markers at this significance threshold. Conversely, for markers with replicated association with type 2 diabetes, there is good concordance between genotype calls used in the original study and calls made by our method. Results from single-marker and haplotypic analysis of our method's genotype calls for the bipolar disorder study indicate that our method is highly effective at eliminating genotyping artifacts that cause false-positive associations in genome-wide association studies. Our new genotype-calling methods are implemented in the BEAGLE and BEAGLECALL software packages. PMID:19931040

  19. The decoding of majority-multiplexed signals by means of dyadic convolution

    NASA Astrophysics Data System (ADS)

    Losev, V. V.

    1980-09-01

    The maximum likelihood method can often not be used for the decoding of majority-multiplexed signals because of the large number of computations required. This paper describes a fast dyadic convolution transform which can be used to reduce the number of computations.

  20. Statistical approaches to developing a multiplex immunoassay for determining human exposure to environmental pathogens.

    EPA Science Inventory

    This paper describes the application and method performance parameters of a Luminex xMAP™ bead-based, multiplex immunoassay for measuring specific antibody responses in saliva samples (n=5438) to antigens of six common waterborne pathogens (Campylobacter jejuni, Helicobacter pylo...

  1. Association of manganese superoxide dismutase and glutathione S-transferases genotypes with myocardial infarction in patients with type 2 diabetes mellitus.

    PubMed

    Kariž, Stojan; Nikolajević Starčević, Jovana; Petrovič, Daniel

    2012-10-01

    In the present study we investigated the association between genetic polymorphisms with functional effects on redox regulation: Val16Ala of manganese superoxide dismutase (MnSOD), polymorphic deletions of glutathione S-transferases M1 (GSTM1) and T1 (GSTT1) and Ile105Val of glutathione S-transferase P1 (GSTP1) and myocardial infarction (MI) in a group of patients with type 2 diabetes mellitus. The study population consisted of 463 Caucasian subjects with type 2 diabetes mellitus of more than 10 years' duration: 206 patients with MI and 257 patients with no history of coronary artery disease (CAD). Genotypes were determined by polymerase chain reaction (PCR) with restriction fragment length polymorphism (RFLP) and with multiplex PCR. The genotype distributions of tested single nucleotide polymorphisms did not show significant difference between cases and controls. After adjustment for age, gender, smoking, BMI, duration of diabetes and lipid parameters carriers of GSTM1/GSTT1-null haplotype showed an increased risk for MI (OR=3.22, 95% CI 1.37-5.04, p=0.03). The GSTM1/GSTT1 haplotype might be a genetic risk factor for MI in patients with type 2 diabetes mellitus. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Genetic diversity of Aspergillus fumigatus in indoor hospital environments.

    PubMed

    Araujo, Ricardo; Amorim, António; Gusmão, Leonor

    2010-09-01

    Environmental isolates of Aspergillus fumigatus are less studied than those recovered from clinical sources. In the present study, the genetic diversity among such environmental isolates was assessed, as well as their dispersion ability and the acquisition of new strains in 19 medical units of the same hospital. A. fumigatus isolates were genotyped using a single multiplex PCR-based reaction with eight microsatellite markers and an insertion/deletion polymorphism. A total of 130 unique genotypes were found among a total of 250 A. fumigatus isolates. Genotypic diversity ranged from 0.86 to 1 in samples from hospital rooms, and there was no correlation between these samples and the presence of high-efficiency particulate air filters or any other air filtration system. Four of the six most prevalent A. fumigatus strains were recovered from water samples. The occurrence of microvariation was common among environmental isolates, which affected each of the microsatellite markers. The assessment of the genetic diversity of A. fumigatus is a useful tool for illustrating the presence or absence of specific clonal populations in a clinical setting. A. fumigatus populations were highly dynamic indoors, and new populations were found in just a few months. Due to the high indoor dispersion capability of A. fumigatus, more attention should be given to strains with increased pathogenic potential or reduced susceptibility to anti-fungal drugs.

  3. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection.

    PubMed

    Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria

    2003-12-15

    Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.

  4. Comparative Evaluation of Multiplex PCR and Routine Laboratory Phenotypic Methods for Detection of Carbapenemases among Gram Negative Bacilli.

    PubMed

    Solanki, Rachana; Vanjari, Lavanya; Subramanian, Sreevidya; B, Aparna; E, Nagapriyanka; Lakshmi, Vemu

    2014-12-01

    Carbapenem resistant pathogens cause infections associated with significant morbidity and mortality. This study evaluates the use of Multiplex PCR for rapid detection of carbapenemase genes among carbapenem resistant Gram negative bacteria in comparison with the existing phenotypic methods like modified Hodge test (MHT), combined disc test (CDT) and automated methods. A total of 100 Carbapenem resistant clinical isolates, [Escherichia coli (25), Klebsiella pneumoniae (35) P. aeruginosa (18) and Acinetobacter baumannii (22)] were screened for the presence of carbapenemases (bla NDM-1, bla VIM , blaIMP and blaKPC genes) by phenotype methods such as the modified Hodge test (MHT) and combined disc test (CDT) and the molecular methods such as Multiplex PCR. Seventy of the 100 isolates were MHT positive while, 65 isolates were positive by CDT. All the CDT positive isolates with EDTA and APB were Metallo betalactamase (MBL) and K. pneumoniae carbapenemase (KPC) producers respectively. bla NDM-1 was present as a lone gene in 44 isolates. In 14 isolates bla NDM-1 gene was present with blaKPC gene, and in one isolate bla NDM-1 gene was present with blaVIM , gene. Only one E. coli isolate had a lone blaKPC gene. We didn't find bla IMP gene in any of the isolates. Neither of the genes could be detected in 35 isolates. Accurate detection of the genes related with carbapenemase production by Molecular methods like Multiplex PCR overcome the limitations of the phenotypic methods and Automated systems.

  5. Multiplex cDNA quantification method that facilitates the standardization of gene expression data

    PubMed Central

    Gotoh, Osamu; Murakami, Yasufumi; Suyama, Akira

    2011-01-01

    Microarray-based gene expression measurement is one of the major methods for transcriptome analysis. However, current microarray data are substantially affected by microarray platforms and RNA references because of the microarray method can provide merely the relative amounts of gene expression levels. Therefore, valid comparisons of the microarray data require standardized platforms, internal and/or external controls and complicated normalizations. These requirements impose limitations on the extensive comparison of gene expression data. Here, we report an effective approach to removing the unfavorable limitations by measuring the absolute amounts of gene expression levels on common DNA microarrays. We have developed a multiplex cDNA quantification method called GEP-DEAN (Gene expression profiling by DCN-encoding-based analysis). The method was validated by using chemically synthesized DNA strands of known quantities and cDNA samples prepared from mouse liver, demonstrating that the absolute amounts of cDNA strands were successfully measured with a sensitivity of 18 zmol in a highly multiplexed manner in 7 h. PMID:21415008

  6. Internal validation of STRmix™ - A multi laboratory response to PCAST.

    PubMed

    Bright, Jo-Anne; Richards, Rebecca; Kruijver, Maarten; Kelly, Hannah; McGovern, Catherine; Magee, Alan; McWhorter, Andrew; Ciecko, Anne; Peck, Brian; Baumgartner, Chase; Buettner, Christina; McWilliams, Scott; McKenna, Claire; Gallacher, Colin; Mallinder, Ben; Wright, Darren; Johnson, Deven; Catella, Dorothy; Lien, Eugene; O'Connor, Craig; Duncan, George; Bundy, Jason; Echard, Jillian; Lowe, John; Stewart, Joshua; Corrado, Kathleen; Gentile, Sheila; Kaplan, Marla; Hassler, Michelle; McDonald, Naomi; Hulme, Paul; Oefelein, Rachel H; Montpetit, Shawn; Strong, Melissa; Noël, Sarah; Malsom, Simon; Myers, Steven; Welti, Susan; Moretti, Tamyra; McMahon, Teresa; Grill, Thomas; Kalafut, Tim; Greer-Ritzheimer, MaryMargaret; Beamer, Vickie; Taylor, Duncan A; Buckleton, John S

    2018-05-01

    We report a large compilation of the internal validations of the probabilistic genotyping software STRmix™. Thirty one laboratories contributed data resulting in 2825 mixtures comprising three to six donors and a wide range of multiplex, equipment, mixture proportions and templates. Previously reported trends in the LR were confirmed including less discriminatory LRs occurring both for donors and non-donors at low template (for the donor in question) and at high contributor number. We were unable to isolate an effect of allelic sharing. Any apparent effect appears to be largely confounded with increased contributor number. Copyright © 2018. Published by Elsevier B.V.

  7. A multiplex PCR system for 13 RM Y-STRs with separate amplification of two different repeat motif structures in DYF403S1a.

    PubMed

    Lee, Eun Young; Lee, Hwan Young; Kwon, So Yeun; Oh, Yu Na; Yang, Woo Ick; Shin, Kyoung-Jin

    2017-01-01

    In forensic science and human genetics, Y-chromosomal short tandem repeats (Y-STRs) have been used as very useful markers. Recently, more Y-STR markers have been analyzed to enhance the resolution power in haplotype analysis, and 13 rapidly mutating (RM) Y-STRs have been suggested as revolutionary tools that can widen Y-chromosomal application from paternal lineage differentiation to male individualization. We have constructed two multiplex PCR sets for the amplification of 13 RM Y-STRs, which yield small-sized amplicons (<400bp) and a more balanced PCR efficiency with minimum PCR cycling. In particular, with the developed multiplex PCR system, we could separate three copies of DYF403S1a into two copies of DYF403S1a and one of DYF403S1b1. This is because DYF403S1b1 possesses distinguishable sequences from DYF403S1a at both the front and rear flanking regions of the repeat motif; therefore, the locus could be separately amplified using sequence-specific primers. In addition, the other copy, defined as DYF403S1b by Ballantyne et al., was renamed DYF403S1b2 because of its similar flanking region sequence to DYF403S1b1. By redefining DYF403S1 with the developed multiplex system, all genotypes of four copies could be successfully typed and more diverse haplotypes were obtained. We analyzed haplotype distributions in 705 Korean males based on four different Y-STR subsets: Yfiler, PowerPlex Y23, Yfiler Plus, and RM Y-STRs. All haplotypes obtained from RM Y-STRs were the most diverse and showed strong discriminatory power in Korean population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Molecular Analysis-Based Genetic Characterization of a Cohort of Patients with Duchenne and Becker Muscular Dystrophy in Eastern China.

    PubMed

    Zhao, Hui-Hui; Sun, Xue-Ping; Shi, Ming-Chao; Yi, Yong-Xiang; Cheng, Hong; Wang, Xing-Xia; Xu, Qing-Cheng; Ma, Hong-Ming; Wu, Hao-Quan; Jin, Qing-Wen; Niu, Qi

    2018-04-05

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders caused by mutations in dystrophin gene. Multiplex polymerase chain reaction (multiplex PCR) and multiplex ligation-dependent probe amplification (MLPA) are the most common methods for detecting dystrophin gene mutations. This study aimed to contrast the two methods and discern the genetic characterization of patients with DMD/BMD in Eastern China. We collected 121 probands, 64 mothers of probands, and 15 fetuses in our study. The dystrophin gene was detected by multiplex PCR primarily in 28 probands, and MLPA was used in multiplex PCR-negative cases subsequently. The dystrophin gene of the remaining 93 probands and 62 female potential carriers was tested by MLPA directly. In fetuses, multiplex PCR and MLPA were performed on 4 fetuses and 10 fetuses, respectively. In addition, sequencing was also performed in 4 probands with negative MLPA. We found that 61.98% of the subjects had genetic mutations including deletions (50.41%) and duplications (11.57%). There were 43.75% of mothers as carriers of the mutation. In 15 fetuses, 2 out of 7 male fetuses were found to be unhealthy and 2 out of 8 female fetuses were found to be carriers. Exons 3-26 and 45-52 have the maximum frequency in mutation regions. In the frequency of exons individually, exon 47 and exon 50 were the most common in deleted regions and exons 5, 6, and 7 were found most frequently in duplicated regions. MLPA has better productivity and sensitivity than multiplex PCR. Prenatal diagnosis should be applied in DMD high-risk fetuses to reduce the disease incidence. Furthermore, it is the responsibility of physicians to inform female carriers the importance of prenatal diagnosis.

  9. Multiplex pyrosequencing method to determine CYP2C9*3, VKORC1*2, and CYP4F2*3 polymorphisms simultaneously: its application to a Korean population and comparisons with other ethnic groups.

    PubMed

    Kim, Kyoung-Ah; Song, Wan-Geun; Lee, Hae-Mi; Joo, Hyun-Jin; Park, Ji-Young

    2014-11-01

    Warfarin is an anticoagulant that is difficult to administer because of the wide variation in dose requirements to achieve a therapeutic effect. CYP2C9, VKROC1, and CYP4F2 play important roles in warfarin metabolism, and their genetic polymorphisms are related to the variability in dose determination. In this study we describe a new multiplex pyrosequencing method to identify CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and CYP4F2*3 (rs2108661) simultaneously. A multiplex pyrosequencing method to simultaneously detect CYP2C9*3, VKORC1*2, and CYP4F2*3 alleles was designed. We assessed the allele frequencies of the polymorphisms in 250 Korean subjects using the multiplex pyrosequencing method. The results showed 100 % concordance between single and multiplex pyrosequencing methods, and the polymorphisms identified by pyrosequencing were also validated with the direct sequencing method. The allele frequencies of these polymorphisms in this population were as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for CYP4F2*3. Although the allele frequencies of the CYP2C9*3 and VKROC1*2 were comparable to those in Japanese and Chinese populations, their frequencies in this Korean population differed from those in other ethnic groups; the CYP4F2*3 frequency was the highest among other ethnic populations including Chinese and Japanese populations. The pyrosequencing methods developed were rapid and reliable for detecting CYP2C9*3, VKORC1*2, and CYP4F2*3. Large ethnic differences in the frequency of these genetic polymorphisms were noted among ethnic groups. CYP4F2*3 exhibited its highest allele frequency among other ethnic populations compared to that in a Korean population.

  10. Molecular characterization of Mycobacterium tuberculosis complex (MTBC) isolated from cattle in northeast and northwest China.

    PubMed

    Du, Yanfen; Qi, Yingfang; Yu, Lu; Lin, Jingkai; Liu, Siguo; Ni, Hongbo; Pang, Hai; Liu, Huifang; Si, Wei; Zhao, Hailing; Wang, Chunlai

    2011-06-01

    We studied throat swabs and corresponding serum samples collected from 1067 protein purified derivative (PPD)-tuberculin skin test (TST) positive cattle from different regions of China. The 1067 throat swabs were inoculated onto modified Löwenstein-Jensen medium for the isolation and culture of Mycobacteria. Acid-fast bacilli were identified using traditional biochemical methods, polymerase chain reaction (PCR) amplification and multiplex PCR. They were distinguished as Mycobacterium tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM) strains. An indirect Enzyme-Linked Immunosorbent Assay (ELISA) was applied to detect specific antibodies against bovine TB (bTB). Correlations among the ELISA, bacteriology and TST were analyzed and compared. Spoligotyping and variable number tandem repeats-mycobacterial interspersed repetitive unit (VNTR-MIRU) analysis were used to genotype the MTBC. In total, 111 strains of Mycobacteria were cultured from the 1067 throat swab samples, including 43 stains of MTBC (14 strains of Mycobacterium bovis and 29 of Mycobacterium tuberculosis) and 68 strains of NTM. Thirty-eight MTBC strains and four NTM strains were isolated from 72 throat swab samples that the ELISA determined were antibody positive; five MTBC strains and 64 NTM strains were isolated from 995 throat swab samples that were antibody negative on the ELISA. The positive isolation rates of MTBC and NTM were 38.7% (43/111) and 61.3% (68/111), respectively. The concordance rate of cultured MTBC with a positive result on the indirect ELISA for antibody was 52.8% (38/72), which was much higher than the positive rate for TST (4.0%; 43/1067). Genotyping of the 43 strains of MTBC isolated, using spoligotyping and VNTR-MIRU, showed that the 43 isolates had 26 genotypes; 16 strains had a unique genotype. Two groups of six strains and two strains, respectively, showed the same spoligotyping pattern, and belonged to the Beijing family and Beijing-like family, respectively. Combined application of spoligotyping and VNTR-MIRU typing would improve the molecular epidemiological investigation and monitoring of the etiology of bTB in China. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Improvement of a predictive model in ovarian cancer patients submitted to platinum-based chemotherapy: implications of a GST activity profile.

    PubMed

    Pereira, Deolinda; Assis, Joana; Gomes, Mónica; Nogueira, Augusto; Medeiros, Rui

    2016-05-01

    The success of chemotherapy in ovarian cancer (OC) is directly associated with the broad variability in platinum response, with implications in patients survival. This heterogeneous response might result from inter-individual variations in the platinum-detoxification pathway due to the expression of glutathione-S-transferase (GST) enzymes. We hypothesized that GSTM1 and GSTT1 polymorphisms might have an impact as prognostic and predictive determinants for OC. We conducted a hospital-based study in a cohort of OC patients submitted to platinum-based chemotherapy. GSTM1 and GSTT1 genotypes were determined by multiplex PCR. GSTM1-null genotype patients presented a significantly longer 5-year survival and an improved time to progression when compared with GSTM1-wt genotype patients (log-rank test, P = 0.001 and P = 0.013, respectively). Multivariate Cox regression analysis indicates that the inclusion of genetic information regarding GSTM1 polymorphism increased the predictive ability of risk of death after OC platinum-based chemotherapy (c-index from 0.712 to 0.833). Namely, residual disease (HR, 4.90; P = 0.016) and GSTM1-wt genotype emerged as more important predictors of risk of death (HR, 2.29; P = 0.039; P = 0.036 after bootstrap). No similar effect on survival was observed regarding GSTT1 polymorphism, and there were no statistically significant differences between GSTM1 and GSTT1 genotypes and the assessed patients' clinical-pathological characteristics. GSTM1 polymorphism seems to have an impact in OC prognosis as it predicts a better response to platinum-based chemotherapy and hence an improved survival. The characterization of the GSTM1 genetic profile might be a useful molecular tool and a putative genetic marker for OC clinical outcome.

  12. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients

    PubMed Central

    2014-01-01

    Background Nosocomial candidaemia is associated with high mortality rates in critically ill paediatric patients; thus, the early detection and identification of the infectious agent is crucial for successful medical intervention. The PCR-based techniques have significantly increased the detection of Candida species in bloodstream infections. In this study, a multiplex nested PCR approach was developed for candidaemia detection in neonatal and paediatric intensive care patients. Methods DNA samples from the blood of 54 neonates and children hospitalised in intensive care units with suspected candidaemia were evaluated by multiplex nested PCR with specific primers designed to identify seven Candida species, and the results were compared with those obtained from blood cultures. Results The multiplex nested PCR had a detection limit of four Candida genomes/mL of blood for all Candida species. Blood cultures were positive in 14.8% of patients, whereas the multiplex nested PCR was positive in 24.0% of patients, including all culture-positive patients. The results obtained with the molecular technique were available within 24 hours, and the assay was able to identify Candida species with 100% of concordance with blood cultures. Additionally, the multiplex nested PCR detected dual candidaemia in three patients. Conclusions Our proposed PCR method may represent an effective tool for the detection and identification of Candida species in the context of candidaemia diagnosis in children, showing highly sensitive detection and the ability to identify the major species involved in this infection. PMID:25047415

  13. Development of an In-House Multiplex Nested RT-PCR Method for Detecting Acute HIV-1 Infection in High Risk Populations.

    PubMed

    Liu, Zhiying; Li, Wei; Xu, Meng; Sheng, Bo; Yang, Zixuan; Jiao, Yanmei; Zhang, Tong; Mou, Danlei; Chen, Dexi; Wu, Hao

    2015-01-01

    The detection of acute HIV infection (AHI) among high risk populations can help reduce secondary transmission of HIV. The nucleic acid testing (NAT) can shorten the test window period by up to 7-12 days. In this study, we describe an in-house NAT based on the multiplex nested RT-PCR method to detect the HIV RNA. We also evaluated it in a high risk cohort in Beijing. Four primer pairs were designed and evaluated for the detection of different HIV-1 subtypes in group M. Multiplex RT-PCR and nested PCR were performed. The sensitivity, specialty, primers compatibility among HIV subtypes were evaluated simultaneously. In an MSM cohort in Beijing during a 3-year period, a total of 11,808 blood samples that were negative by ELISA or indeterminate by Western blot were analyzed by this multiplex nested RT-PCR with pooling strategy. The multiplex nested RT-PCR was successfully applied for the detection of at least six HIV-1 subtypes. The sensitivity was 40 copies/ml and the specificity was 100%. A total of 29 people were tested HIV-1 positive with acute infection in a MSM cohort of Beijing during a 3 years period. This multiplex nested RT-PCR provides a useful tool for the rapid detection of acute HIV-1 infection. When used in combination with the 3(rd) generation ELISA, it can improve the detection rate of HIV infection, especially in the source limited regions.

  14. Optical delay encoding for fast timing and detector signal multiplexing in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford

    2015-08-15

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less

  15. Integrated analyses of proteins and their glycans in a magnetic bead-based multiplex assay format.

    PubMed

    Li, Danni; Chiu, Hanching; Chen, Jing; Zhang, Hui; Chan, Daniel W

    2013-01-01

    Well-annotated clinical samples are valuable resources for biomarker discovery and validation. Multiplex and integrated methods that simultaneously measure multiple analytes and generate integrated information about these analytes from a single measurement are desirable because these methods help conserve precious samples. We developed a magnetic bead-based system for multiplex and integrated glycoprotein quantification by immunoassays and glycan detection by lectin immunosorbent assays (LISAs). Magnetic beads coupled with antibodies were used for capturing proteins of interest. Biotinylated antibodies in combination with streptavidin-labeled phycoerythrin were used for protein quantification. In the LISAs, biotinylated detection antibodies were replaced by biotinylated lectins for glycan detection. Using tissue inhibitor of metallopeptidase 1 (TIMP-1), tissue plasminogen activator, membrane metallo-endopeptidase, and dipeptidyl peptidase-IV (DPP-4) as models, we found that the multiplex integrated system was comparable to single immunoassays in protein quantification and LISAs in glycan detection. The merits of this system were demonstrated when applied to well-annotated prostate cancer tissues for validation of biomarkers in aggressive prostate cancer. Because of the system's multiplex ability, we used only 300 ng of tissue protein for the integrated detection of glycans in these proteins. Fucosylated TIMP-1 and DPP-4 offered improved performance over the proteins in distinguishing aggressive and nonaggressive prostate cancer. The multiplex and integrated system conserves samples and is a useful tool for validation of glycoproteins and their glycoforms as biomarkers. © 2012 American Association for Clinical Chemistry

  16. A Multiplex Snapback Primer System for the Enrichment and Detection of JAK2 V617F and MPL W515L/K Mutations in Philadelphia-Negative Myeloproliferative Neoplasms

    PubMed Central

    Zhang, Yunqing; Zhang, Xinju; Xu, Xiao; Kang, Zhihua; Li, Shibao; Zhang, Chen; Su, Bing

    2014-01-01

    A multiplex snapback primer system was developed for the simultaneous detection of JAK2 V617F and MPL W515L/K mutations in Philadelphia chromosome- (Ph-) negative myeloproliferative neoplasms (MPNs). The multiplex system comprises two snapback versus limiting primer sets for JAK2 and MPL mutation enrichment and detection, respectively. Linear-After exponential (LATE) PCR strategy was employed for the primer design to maximize the amplification efficiency of the system. Low ionic strength buffer and rapid PCR protocol allowed for selective amplification of the mutant alleles. Amplification products were analyzed by melting curve analysis for mutation identification. The multiplex system archived 0.1% mutation load sensitivity and <5% coefficient of variation inter-/intra-assay reproducibility. 120 clinical samples were tested by the multiplex snapback primer assay, and verified with amplification refractory system (ARMS), quantitative PCR (qPCR) and Sanger sequencing method. The multiplex system, with a favored versatility, provided the molecular diagnosis of Ph-negative MPNs with a suitable implement and simplified the genetic test process. PMID:24729973

  17. Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses.

    PubMed

    Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping

    2018-06-01

    The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.

  18. Simultaneous measurement of absolute strain and differential strain based on fiber Bragg grating Fabry-Perot sensor

    NASA Astrophysics Data System (ADS)

    Wang, Kuiru; Wang, Bo; Yan, Binbin; Sang, Xinzhu; Yuan, Jinhui; Peng, Gang-Ding

    2013-10-01

    We present a fiber Bragg grating Fabry-Perot (FBG-FP) sensor using the fast Fourier transform (FFT) demodulation for measuring the absolute strain and differential strain simultaneously. The amplitude and phase characteristics of Fourier transform spectrum have been studied. The relation between the amplitude of Fourier spectrum and the differential strain has been presented. We fabricate the fiber grating FP cavity sensor, and carry out the experiment on the measurement of absolute strain and differential strain. Experimental results verify the demodulation method, and show that this sensor has a good accuracy in the scope of measurement. The demodulating method can expand the number of multiplexed sensors combining with wavelength division multiplexing and time division multiplexing.

  19. TiO2 Nanolayer-Enhanced Fluorescence for Simultaneous Multiplex Mycotoxin Detection by Aptamer Microarrays on a Porous Silicon Surface.

    PubMed

    Liu, Rui; Li, Wei; Cai, Tingting; Deng, Yang; Ding, Zhi; Liu, Yan; Zhu, Xuerui; Wang, Xin; Liu, Jie; Liang, Baowen; Zheng, Tiesong; Li, Jianlin

    2018-05-02

    A new aptamer microarray method on the TiO 2 -porous silicon (PSi) surface was developed to simultaneously screen multiplex mycotoxins. The TiO 2 nanolayer on the surface of PSi can enhance the fluorescence intensity 14 times than that of the thermally oxidized PSi. The aptamer fluorescence signal recovery principle was performed on the TiO 2 -PSi surface by hybridization duplex strand DNA from the mycotoxin aptamer and antiaptamer, respectively, labeled with fluorescence dye and quencher. The aptamer microarray can simultaneously screen for multiplex mycotoxins with a dynamic linear detection range of 0.1-10 ng/mL for ochratoxin A (OTA), 0.01-10 ng/mL for aflatoxins B 1 (AFB 1 ), and 0.001-10 ng/mL for fumonisin B 1 (FB 1 ) and limits of detection of 15.4, 1.48, and 0.21 pg/mL for OTA, AFB 1 , and FB 1 , respectively. The newly developed method shows good specificity and recovery rates. This method can provide a simple, sensitive, and cost-efficient platform for simultaneous screening of multiplex mycotoxins and can be easily expanded to the other aptamer-based protocol.

  20. Tetracycline resistance phenotypes and genotypes of coagulase-negative staphylococcal isolates from bubaline mastitis in Egypt.

    PubMed

    El-Razik, K A Abd; Arafa, A A; Hedia, R H; Ibrahim, E S

    2017-06-01

    This study was devoted to elucidate the tetracycline resistance of coagulase-negative staphylococci (CNS) derived from normal and subclinical mastitic (SCM) buffaloes' milk in Egypt. A total of 81 milk samples from 46 normal buffalo milk samples and 35 SCM buffalo milk samples at private dairy farms of Egypt were used in this study. CNS were identified using phenotypic and molecular methods (polymerase chain reaction [PCR]). CNS isolates were tested for tetracycline resistance using routine methods and multiplex PCR targeting tetracycline ( tet ) resistance genes followed by sequencing of positive PCR products and phylogenetic analysis. Isolation and identification of 28 (34.5%) CNS from normal and SCM buffaloes' milk, namely, Staphylococcus intermedius (39.2%), Staphylococcus xylosus (25.0%), Staphylococcus epidermidis (10.7%), Staphylococcus hominis (10.7%), and 3.5% to each of Staphylococcus sciuri , Staphylococcus hyicus , Staphylococcus lugdunensis , and Staphylococcus simulans . Using nested PCR, all the 28 CNS isolates revealed positive for 16srRNA gene specific for genus staphylococci and negative for thermonuclease ( nuc ) gene specific for Staphylococcus aureus species. The presence of tetracycline resistance-encoding genes ( tet K, tet L, tet M, and tet O) was detected by multiplex PCR. All isolates were negative for tet L, M, and O genes while 14 (50%) CNS isolates were positive for tet K gene, namely, S. lugdunensis (100%), S. hominis (100%), S. epidermidis (66.6%), S. intermedius (45.4%), and S. xylosus (42.8%). Nucleotide sequencing of tet K gene followed by phylogenetic analysis showed the high homology between our CNS isolates genes of tetracycline resistance with S. aureus isolates including Egyptian ones. This proves the transfer of the tetracycline resistance encoding genes between coagulase-negative and coagulase positive Staphylococcus spp. CNS isolates have distinguishingly high resistance to tetracycline. Abundant tetracycline usage for mastitis treatment leads to the spread of genetic resistance mechanisms inside CNS strains and among all Staphylococcus spp. Consequently, tetracycline is not effective anymore.

  1. Multiplex nucleic acid sequence-based amplification for simultaneous detection of several enteric viruses in model ready-to-eat foods.

    PubMed

    Jean, Julie; D'Souza, Doris H; Jaykus, Lee-Ann

    2004-11-01

    Human enteric viruses are currently recognized as one of the most important causes of food-borne disease. Implication of enteric viruses in food-borne outbreaks can be difficult to confirm due to the inadequacy of the detection methods available. In this study, a nucleic acid sequence-based amplification (NASBA) method was developed in a multiplex format for the specific, simultaneous, and rapid detection of epidemiologically relevant human enteric viruses. Three previously reported primer sets were used in a single reaction for the amplification of RNA target fragments of 474, 371, and 165 nucleotides for the detection of hepatitis A virus and genogroup I and genogroup II noroviruses, respectively. Amplicons were detected by agarose gel electrophoresis and confirmed by electrochemiluminescence and Northern hybridization. Endpoint detection sensitivity for the multiplex NASBA assay was approximately 10(-1) reverse transcription-PCR-detectable units (or PFU, as appropriate) per reaction. When representative ready-to-eat foods (deli sliced turkey and lettuce) were inoculated with various concentrations of each virus and processed for virus detection with the multiplex NASBA method, all three human enteric viruses were simultaneously detected at initial inoculum levels of 10(0) to 10(2) reverse transcription-PCR-detectable units (or PFU)/9 cm2 in both food commodities. The multiplex NASBA system provides rapid and simultaneous detection of clinically relevant food-borne viruses in a single reaction tube and may be a promising alternative to reverse transcription-PCR for the detection of viral contamination of foods.

  2. Development of a multiplex PCR assay for detection and discrimination of Theileria annulata and Theileria sergenti in cattle.

    PubMed

    Junlong, Liu; Li, Youquan; Liu, Aihong; Guan, Guiquan; Xie, Junren; Yin, Hong; Luo, Jianxun

    2015-07-01

    Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.

  3. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    PubMed

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  4. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    PubMed Central

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  5. A low-cost efficient multiplex PCR for prenatal sex determination in bovine fetus using free fetal DNA in maternal plasma.

    PubMed

    Davoudi, Arash; Seighalani, Ramin; Aleyasin, Seyed Ahmad; Tarang, Alireza; Salehi, Abdolreza Salehi; Tahmoressi, Farideh

    2012-04-01

    In order to establish a reliable non-invasive method for sex determination in a bovine fetus in a routine setting, the possibility of identifying specific sequence in the fetal X and Y-chromosomes has been evaluated in maternal plasma using conventional multiplex polymerase chain reaction (PCR) analysis. The aim of this study was to provide a rapid and reliable method for sexing bovine fetuses. In this experimental study, peripheral blood samples were taken from 38 pregnant heifers with 8 to 38 weeks of gestation. DNA template was extracted by phenol-chloroform method from 350 µl maternal plasma. Two primer pairs for bovine amelogenin gene (bAML) and BC1.2 were used to amplify fragments from X and Y chromosomes. A multiplex PCR reaction has been optimized for amplification of 467 bp and 341 bp fragments from X and Y bAML gene and a 190 bp fragment from BC1.2 related to Y chromosome. The 467 bp fragment was observed in all 38 samples. Both 341 and 190 bp fragments were detected only in 24 plasma samples from male calves. The sensitivity and specificity of test were 100% with no false negative or false positive results. The results showed that phenol-chloroform method is a simple and suitable method for isolation of fetal DNA in maternal plasma. The multiplex PCR method is an available non-invasive approach which is cost efficient and reliable for sexing bovine fetuses.

  6. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  7. A multiplex PCR for detection of Listeria monocytogenes and its lineages.

    PubMed

    Rawool, Deepak B; Doijad, Swapnil P; Poharkar, Krupali V; Negi, Mamta; Kale, Satyajit B; Malik, S V S; Kurkure, Nitin V; Chakraborty, Trinad; Barbuddhe, Sukhadeo B

    2016-11-01

    A novel multiplex PCR assay was developed to identify genus Listeria, and discriminate Listeria monocytogenes and its major lineages (LI, LII, LIII). This assay is a rapid and inexpensive subtyping method for screening and characterization of L. monocytogenes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Kneallhazia (=Thelohania) Solenopsae infection rate of Pseudacteon Curvatus flies determined by multiplex PCR

    USDA-ARS?s Scientific Manuscript database

    A multiplex PCR method was developed and utilized to determine the Kneallhazia solenopsae infection rate of individual Pseudacteon curvatus flies in north-central Florida. Among P. curvatus flies infected with K. solenopsae, two amplicons were produced, one of 800 nucleotides from the P. curvatus 1...

  9. A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYS

    EPA Science Inventory

    AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...

  10. Development of multiplex PCR assay for authentication of Cornu Cervi Pantotrichum in traditional Chinese medicine based on cytochrome b and C oxidase subunit 1 genes.

    PubMed

    Gao, Lijun; Xia, Wei; Ai, Jinxia; Li, Mingcheng; Yuan, Guanxin; Niu, Jiamu; Fu, Guilian; Zhang, Lihua

    2016-07-01

    This study describes a method for discriminating the true Cervus antlers from its counterfeits using multiplex PCR. Bioinformatics were carried out to design the specific alleles primers for mitochondrial (mt) cytochrome b (Cyt b) and cytochrome C oxidase subunit 1 (Cox 1) genes. The mt DNA and genomic DNA were extracted from Cervi Cornu Pantotrichum through the modified alkaline and the salt-extracting method in addition to its counterfeits, respectively. Sufficient DNA templates were extracted from all samples used in two methods, and joint fragments of 354 bp and 543 bp that were specifically amplified from both of true Cervus antlers served as a standard control. The data revealed that the multiplex PCR-based assays using two primer sets can be used for forensic and quantitative identification of original Cervus deer products from counterfeit antlers in a single step.

  11. Dual phase multiplex polymerase chain reaction

    DOEpatents

    Pemov, Alexander [Charlottesville, VA; Bavykin, Sergei [Darien, IL

    2008-10-07

    Highly specific and sensitive methods were developed for multiplex amplification of nucleic acids on supports such as microarrays. Based on a specific primer design, methods include five types of amplification that proceed in a reaction chamber simultaneously. These relate to four types of multiplex amplification of a target DNA on a solid support, directed by forward and reverse complex primers immobilized to the support and a fifth type--pseudo-monoplex polymerase chain reaction (PCR) of multiple targets in solution, directed by a single pair of unbound universal primers. The addition of the universal primers in the reaction mixture increases the yield over the traditional "bridge" amplification on a solid support by approximately ten times. Methods that provide multitarget amplification and detection of as little as 0.45-4.5.times.10.sup.-12 g (equivalent to 10.sup.2-10.sup.3 genomes) of a bacterial genomic DNA are disclosed.

  12. Genetic origin of α0-thalassemia (SEA deletion) in Southeast Asian populations and application to accurate prenatal diagnosis of Hb Bart's hydrops fetalis syndrome.

    PubMed

    Jomoui, Wittaya; Fucharoen, Goonnapa; Sanchaisuriya, Kanokwan; Charoenwijitkul, Patnaree; Maneesarn, Jitpanu; Xu, Xiangmin; Fucharoen, Supan

    2017-08-01

    α 0 -thalassemia of SEA deletion (- SEA ) is common among Southeast Asian and Chinese. Using haplotype and phylogenetic analyses, we examined the origin of this defect in Southeast Asian populations. Study was done on both normal and α 0 -thalassemia alleles in 3 ethnic groups including 96 Thai, 52 Laotian and 21 Cambodian. Five SNPs encompassing the (- SEA ) including (rs3760053 T>G), (rs1211375 A>C), (rs3918352 A>G), (rs1203974 A>G) and (rs11248914 C>T) were examined using high-resolution melting assays. It was found that 94.0% of Thai, 100% of Laotian and 100% of Cambodian α 0 -thalassemia alleles were linked to the same haplotype: the haplotype H4 (AAGC), representing an Asian specific origin. An G allele of the (rs3760053) was found to be in strong linkage disequilibrium with the α 0 -thalassemia allele in these populations. A multiplex PCR assay was developed to detect simultaneously the (- SEA ) allele and genotyping of a linked (rs3760053) to improve accuracy of prenatal diagnosis of α 0 -thalassemia. Application of this multiplex PCR assay for routine prenatal diagnosis of α 0 -thalassemia in 12 families revealed a 100% concordant result with conventional gap-PCR assay. Therefore, a single genetic origin is responsible for the spread and high prevalence of the (- SEA ) in the region. The multiplex PCR assay developed should provide a double-check PCR system for more accurate diagnosis and allow the monitoring of possible maternal contamination at prenatal diagnosis of this important genetic disorder.

  13. Forensic applicability of multi-allelic InDels with mononucleotide homopolymer structures.

    PubMed

    Zhang, Shu; Zhu, Qiang; Chen, Xiaogang; Zhao, Yuancun; Zhao, Xiaohong; Yang, Yiwen; Gao, Zehua; Fang, Ting; Wang, Yufang; Zhang, Ji

    2018-04-27

    Insertion/deletion polymorphisms (InDels), which possess the characteristics of low mutation rates and a short amplicon size, have been regarded as promising markers for forensic DNA analysis. InDels can be classified as bi-allelic or multi-allelic, depending on the number of alleles. Many studies have explored the use of bi-allelic InDels in forensic applications, such as individual identification and ancestry inference. However, multi-allelic InDels have received relatively little attention. In this study, InDels with 2-6 alleles and a minor allele frequency ≥0.01, in Chinese Southern Han (CHS), were retrieved from the 1000 Genomes Project Phase III. Based on the structural analysis of all retrieved InDels, 17 multi-allelic markers with mononucleotide homopolymer structures were selected and combined in one multiplex PCR reaction system. Sensitivity, species specificity and applicability in forensic case work of the multiplex were analyzed. A total of 218 unrelated individuals from a Chinese Han population were genotyped. The combined discriminatory power (CDP), the combined match probability (CMP) and the cumulative probability of exclusion (CPE) were 0.9999999999609, 3.91E-13 and 0.9956, respectively. The results demonstrated that this InDel multiplex panel was highly informative in the investigated population and most of the 26 populations of the 1000 Genomes Project. The data also suggested that multi-allelic InDel markers with monomeric base pair expansions are useful for forensic applications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Detection and Serotyping of Dengue Virus in Serum Samples by Multiplex Reverse Transcriptase PCR-Ligase Detection Reaction Assay▿ †

    PubMed Central

    Das, S.; Pingle, M. R.; Muñoz-Jordán, J.; Rundell, M. S.; Rondini, S.; Granger, K.; Chang, G.-J. J.; Kelly, E.; Spier, E. G.; Larone, D.; Spitzer, E.; Barany, F.; Golightly, L. M.

    2008-01-01

    The detection and successful typing of dengue virus (DENV) from patients with suspected dengue fever is important both for the diagnosis of the disease and for the implementation of epidemiologic control measures. A technique for the multiplex detection and typing of DENV serotypes 1 to 4 (DENV-1 to DENV-4) from clinical samples by PCR-ligase detection reaction (LDR) has been developed. A serotype-specific PCR amplifies the regions of genes C and E simultaneously. The two amplicons are targeted in a multiplex LDR, and the resultant fluorescently labeled ligation products are detected on a universal array. The assay was optimized using 38 DENV strains and was evaluated with 350 archived acute-phase serum samples. The sensitivity of the assay was 98.7%, and its specificity was 98.4%, relative to the results of real-time PCR. The detection threshold was 0.017 PFU for DENV-1, 0.004 PFU for DENV-2, 0.8 PFU for DENV-3, and 0.7 PFU for DENV-4. The assay is specific; it does not cross-react with the other flaviviruses tested (West Nile virus, St. Louis encephalitis virus, Japanese encephalitis virus, Kunjin virus, Murray Valley virus, Powassan virus, and yellow fever virus). All but 1 of 26 genotypic variants of DENV serotypes in a global DENV panel from different geographic regions were successfully identified. The PCR-LDR assay is a rapid, sensitive, specific, and high-throughput technique for the simultaneous detection of all four serotypes of DENV. PMID:18685000

  15. Detection of Staphylococcus aureus enterotoxigenic strains in bovine raw milk by reversed passive latex agglutination and multiplex polymerase chain reaction.

    PubMed

    Mansour, Asmaa Samy; Wagih, Gad El-Said; Morgan, Sabry D; Elhariri, Mahmoud; El-Shabrawy, Mona A; Abuelnaga, Azza S M; Elgabry, E A

    2017-08-01

    This review gives an outline of the assessment of enterotoxigenic Staphylococcus aureus tainting levels in raw milk from different sources in Egypt and characterization of enterotoxigenic strains utilizing a technique in light of PCR to identify genes coding for the production of staphylococcal enterotoxin (SE). The obtained data were compared with results from the application of the reversed passive latex. Multiplex PCR and reversed passive latex agglutination (RPLA) were used. A total of 141 samples of raw milk (cow's milk=33, buffalo's milk=58, and bulk tank milk=50) were investigated for S. aureus contamination and tested for enterotoxin genes presence and toxin production. S. aureus was detected in 23 (16.3%) samples phenotypically and genotypically by amplification of nuc gene. The S. aureus isolates were investigated for SEs genes ( sea to see ) by multiplex PCR and the toxin production by these isolates was screened by RPLA. SEs genes were detected in six isolates (26.1%) molecularly; see was the most observed gene where detected in all isolates, two isolates harbored seb , and two isolates harbored sec . According to RPLA, three isolates produced SEB and SEC. The study revealed the widespread of S. aureus strains caring genes coding for toxins. The real significance of the presence of these strains or its toxins in raw milk and their possible impact a potential hazard for staphylococcal food poisoning by raw milk consumption. Therefore, detection of enterotoxigenic S. aureus strains in raw milk is necessary for consumer safety.

  16. Simulation of path delay multiplexing-based Fourier transform spectrometer for fiber Bragg grating interrogation.

    PubMed

    Chelliah, Pandian; Sahoo, Trilochan; Singh, Sheela; Sujatha, Annie

    2015-10-20

    A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

  17. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  18. A 48 SNP set for grapevine cultivar identification

    PubMed Central

    2011-01-01

    Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP markers are bi-allelic, allele identification and genotype naming are extremely simple and genotypes obtained with different equipments and by different laboratories are always fully comparable. PMID:22060012

  19. Ghrelin Gene Variants Influence on Metabolic Syndrome Components in Aged Spanish Population.

    PubMed

    Mora, Mireia; Adam, Victoria; Palomera, Elisabet; Blesa, Sebastian; Díaz, Gonzalo; Buquet, Xavier; Serra-Prat, Mateu; Martín-Escudero, Juan Carlos; Palanca, Ana; Chaves, Javier Felipe; Puig-Domingo, Manuel

    2015-01-01

    The role of genetic variations within the ghrelin gene on cardiometabolic profile and nutritional status is still not clear in humans, particularly in elderly people. We investigated six SNPs of the ghrelin gene and their relationship with metabolic syndrome (MS) components. 824 subjects (413 men/411 women, age 77.31±5.04) participating in the Mataró aging study (n = 310) and the Hortega study (n = 514) were analyzed. Anthropometric variables, ghrelin, lipids, glucose and blood pressure levels were measured, and distribution of SNPs -994CT (rs26312), -604GA (rs27647), -501AC (rs26802), R51Q (rs34911341), M72L (rs696217) and L90G (rs4684677) of the ghrelin gene evaluated. Genotypes were determined by multiplex PCR and SNaPshot minisequencing. MS (IDF criteria) was found in 54.9%. No association between any of the SNPs and levels of total fasting circulating ghrelin levels was found. C/A-A/A genotype of M72L was associated with increased risk of central obesity according to IDF criteria, while G/A-G/G genotypes of -604GA with reduced risk. A/A genotype of -501AC polymorphism was associated to decreased BMI. In relation to lipid profile, the same genotypes of -604GA were associated with increased total cholesterol and LDL-cholesterol and -501AC with reduced triglycerides. There were no associations with systolic or diastolic blood pressure levels or with hypertension, glucose levels or diabetes and ghrelin polymorphisms. However, G/G genotype of -604GA was associated with glucose >100 mg/dL. Haplotype analysis showed that only one haplotype is associated with increased risk of waist circumference and central obesity. The analysis of subjects by gender showed an important and different association of these polymorphisms regarding MS parameters. Ghrelin gene variants -604GA, -501AC and M72L are associated with certain components of MS, in particular to BMI and lipid profile in elderly Spanish subjects.

  20. Copy number variations of GSTT1 and GSTM1, colorectal cancer risk and possible effect modification of cigarette smoking and menopausal hormone therapy.

    PubMed

    Rudolph, Anja; Hein, Rebecca; Hoffmeister, Michael; Försti, Asta; Hemminki, Kari; Risch, Angela; Brenner, Hermann; Chang-Claude, Jenny

    2012-09-01

    Copy number variations (CNVs) of the glutathione-S-transferase θ-1 (GSTT1) and glutathione-S-transferase μ-1 (GSTM1) gene loci can lead to complete lack of enzyme and have been associated with colorectal cancer (CRC) risk. As GSTs are involved in the detoxification of xenobiotics, CNVs may modify CRC risk associated with smoking exposure and menopausal hormone therapy (MHT) use. We investigated CRC risk associated with GSTT1 and GSTM1 CNVs and their interaction with smoking in 1,796 cases and 1,806 age-, sex- and residence-matched controls from a German population-based case-control study (DACHS). The interaction with MHT was assessed in the subset of 684 postmenopausal female cases and 681 controls. Trimodular genotypes (0/0, 1/0 and 1/1) were determined with relative quantification based on multiplex real-time polymerase chain reaction. The associations with CRC risk as well as possible effect modifications were evaluated using conditional logistic regression analysis. CNVs of GSTT1 and GSTM1 were not significantly associated with CRC risk. Compared to the 1/1 genotype, odds ratios (ORs) for the 0/1 genotype and the 0/0 genotype were 0.89 [95% confidence interval (CI): 0.77-1.04] and 0.97 (95% CI: 0.80-1.18) for GSTT1, and 0.99 (95% CI: 0.78-1.27) and 1.03 (95% CI: 0.81-1.31) for GSTM1. Compared to the non-null genotype, ORs for the null-genotype were 1.04 (95% CI: 0.87-1.23) for GSTT1 and 1.03 (95% CI: 0.91-1.18) for GSTM1. No significant interaction with smoking and MHT use was observed. Our study does not provide evidence for a strong association between CRC risk and CNVs of GSTT1 or GSTM1 or for an effect modification of smoking or MHT use. Copyright © 2012 UICC.

Top