Sample records for multiplex pathogen detection

  1. Multiplex PCR Tests for Detection of Pathogens Associated with Gastroenteritis

    PubMed Central

    Zhang, Hongwei; Morrison, Scott; Tang, Yi-Wei

    2016-01-01

    Synopsis A wide range of enteric pathogens can cause infectious gastroenteritis. Conventional diagnostic algorithms including culture, biochemical identification, immunoassay and microscopic examination are time consuming and often lack sensitivity and specificity. Advances in molecular technology have as allowed its use as clinical diagnostic tools. Multiplex PCR based testing has made its way to gastroenterology diagnostic arena in recent years. In this article we present a review of recent laboratory developed multiplex PCR tests and current commercial multiplex gastrointestinal pathogen tests. We will focus on two FDA cleared commercial syndromic multiplex tests: Luminex xTAG GPP and Biofire FimArray GI test. These multiplex tests can detect and identify multiple enteric pathogens in one test and provide results within hours. Multiplex PCR tests have shown superior sensitivity to conventional methods for detection of most pathogens. The high negative predictive value of these multiplex tests has led to the suggestion that they be used as screening tools especially in outbreaks. Although the clinical utility and benefit of multiplex PCR test are to be further investigated, implementing these multiplex PCR tests in gastroenterology diagnostic algorithm has the potential to improve diagnosis of infectious gastroenteritis. PMID:26004652

  2. Detection of common diarrhea-causing pathogens in Northern Taiwan by multiplex polymerase chain reaction.

    PubMed

    Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng

    2018-06-01

    Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians' orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs.

  3. Detection of common diarrhea-causing pathogens in Northern Taiwan by multiplex polymerase chain reaction

    PubMed Central

    Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng

    2018-01-01

    Abstract Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians’ orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs. PMID:29879060

  4. Automated methods for multiplexed pathogen detection.

    PubMed

    Straub, Timothy M; Dockendorff, Brian P; Quiñonez-Díaz, Maria D; Valdez, Catherine O; Shutthanandan, Janani I; Tarasevich, Barbara J; Grate, Jay W; Bruckner-Lea, Cynthia J

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cycler where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides "live vs. dead" capabilities. However, sensitivity of the method will need to be improved for RNA analysis to replace PCR.

  5. Automated Methods for Multiplexed Pathogen Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Tim M.; Dockendorff, Brian P.; Quinonez-Diaz, Maria D.

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cyclermore » where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides ''live vs. dead'' capabilities. However, sensitivity of the method will need to be improved for RNA analysis to replace PCR.« less

  6. Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains.

    PubMed

    He, Peiyan; Chen, Zhongwen; Luo, Jianyong; Wang, Henghui; Yan, Yong; Chen, Lixia; Gao, Wenjie

    2014-01-01

    Foodborne disease caused by pathogenic Vibrio parahaemolyticus has become a serious public health problem in many countries. Rapid diagnosis and the identification of pathogenic V. parahaemolyticus are very important in the context of public health. In this study, an EvaGreen-based multiplex real-time PCR assay was established for the detection of pathogenic V. parahaemolyticus. This assay targeted three genetic markers of V. parahaemolyticus (species-specific gene toxR and virulence genes tdh and trh). The assay could unambiguously identify pathogenic V. parahaemolyticus with a minimum detection limit of 1.4 pg genomic DNA per reaction (concentration giving a positive multiplex real-time PCR result in 95% of samples). The specificity of the assay was evaluated using 72 strains of V. parahaemolyticus and other bacteria. A validation of the assay with clinical samples confirmed its sensitivity and specificity. Our data suggest the newly established multiplex real-time PCR assay is practical, cost-effective, specific, sensitive and capable of high-throughput detection of pathogenic V. parahaemolyticus. Copyright © 2014. Published by Elsevier Ltd.

  7. xMAP Technology: Applications in Detection of Pathogens

    PubMed Central

    Reslova, Nikol; Michna, Veronika; Kasny, Martin; Mikel, Pavel; Kralik, Petr

    2017-01-01

    xMAP technology is applicable for high-throughput, multiplex and simultaneous detection of different analytes within a single complex sample. xMAP multiplex assays are currently available in various nucleic acid and immunoassay formats, enabling simultaneous detection and typing of pathogenic viruses, bacteria, parasites and fungi and also antigen or antibody interception. As an open architecture platform, the xMAP technology is beneficial to end users and therefore it is used in various pharmaceutical, clinical and research laboratories. The main aim of this review is to summarize the latest findings and applications in the field of pathogen detection using microsphere-based multiplex assays. PMID:28179899

  8. Multiplex detection of agricultural pathogens

    DOEpatents

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  9. Multiplex detection of agricultural pathogens

    DOEpatents

    McBride, Mary Teresa; Slezak, Thomas Richard; Messenger, Sharon Lee

    2010-09-14

    Described are kits and methods useful for detection of seven agricultural pathogens (BPSV; BHV; BVD; FMDV; BTV; SVD; and VESV) in a sample. Genomic sequence information from 7 agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  10. Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.

    PubMed

    Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt

    2016-08-16

    Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.

  11. Helicase dependent OnChip-amplification and its use in multiplex pathogen detection.

    PubMed

    Andresen, Dennie; von Nickisch-Rosenegk, Markus; Bier, Frank F

    2009-05-01

    The need for fast, specific and sensitive multiparametric detection methods is an ever growing demand in molecular diagnostics. Here we report on a newly developed method, the helicase dependent OnChip amplification (OnChip-HDA). This approach integrates the analysis and detection in one single reaction thus leading to time and cost savings in multiparametric analysis. HDA is an isothermal amplification method that is not depending on thermocycling as known from PCR due to the helicases' ability to unwind DNA double-strands. We have combined the HDA with microarray based detection, making it suitable for multiplex detection. As an example we used the OnChip HDA in single and multiplex amplifications for the detection of the two pathogens N. gonorrhoeae and S. aureus directly on surface bound primers. We have successfully shown the OnChip-HDA and applied it for single- and duplex-detection of the pathogens N. gonorrhoeae and S. aureus. We have developed a new method, the OnChip-HDA for the multiplex detection of pathogens. Its simplicity in reaction setup and potential for miniaturization and multiparametric analysis is advantageous for the integration in miniaturized Lab on Chip systems, e.g. needed in point of care diagnostics.

  12. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection.

    PubMed

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C; Ye, Bang-Ce

    2013-10-07

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL(-1). We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step 'turn on' pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens.

  13. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection

    PubMed Central

    Zuo, Peng; Dominguez, Delfina C.; Ye, Bang-Ce

    2014-01-01

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL−1. We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step ‘turn on’ pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens. PMID:23929394

  14. Impact of Aerosol Dust on xMAP Multiplex Detection of Different Class Pathogens

    PubMed Central

    Kleymenov, Denis A.; Gushchin, Vladimir A.; Gintsburg, Alexander L.; Tkachuk, Artem P.

    2017-01-01

    Environmental or city-scale bioaerosol surveillance can provide additional value for biodefense and public health. Efficient bioaerosol monitoring should rely on multiplex systems capable of detecting a wide range of biologically hazardous components potentially present in air (bacteria, viruses, toxins and allergens). xMAP technology from LuminexTM allows multiplex bead-based detection of antigens or nucleic acids, but its use for simultaneous detection of different classes of pathogens (bacteria, virus, toxin) is questionable. Another problem is the detection of pathogens in complex matrices, e.g., in the presence of dust. In the this research, we developed the model xMAP multiplex test-system aiRDeTeX 1.0, which enables detection of influenza A virus, Adenovirus type 6 Salmonella typhimurium, and cholera toxin B subunit representing RNA virus, DNA virus, gram-negative bacteria and toxin respectively as model organisms of biologically hazardous components potentially present in or spreadable through the air. We have extensively studied the effect of matrix solution (PBS, distilled water), environmental dust and ultrasound treatment for monoplex and multiplex detection efficiency of individual targets. All targets were efficiently detectable in PBS and in the presence of dust. Ultrasound does not improve the detection except for bacterial LPS. PMID:29238328

  15. Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices

    DOE PAGES

    Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.; ...

    2016-09-23

    Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less

  16. Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.

    Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less

  17. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix® RT-PCR.

    PubMed

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was below 4 h, which is expected to significantly improve diagnostics for atypical pneumonia-associated bacterial pathogens. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  18. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification.

    PubMed

    Janse, Ingmar; Hamidjaja, Raditijo A; Bok, Jasper M; van Rotterdam, Bart J

    2010-12-08

    Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum.

  19. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification

    PubMed Central

    2010-01-01

    Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum PMID:21143837

  20. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays.

    PubMed

    Panicker, Gitika; Call, Douglas R; Krug, Melissa J; Bej, Asim K

    2004-12-01

    This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50 degrees C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 10(2) to 10(3) CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers.

  1. Detection of Pathogenic Vibrio spp. in Shellfish by Using Multiplex PCR and DNA Microarrays

    PubMed Central

    Panicker, Gitika; Call, Douglas R.; Krug, Melissa J.; Bej, Asim K.

    2004-01-01

    This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50°C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 102 to 103 CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers. PMID:15574946

  2. Multiplex PCR for simultaneous identification of E. coli O157:H7, Salmonella spp. and L. monocytogenes in food.

    PubMed

    Nguyen, Thuy Trang; Van Giau, Vo; Vo, Tuong Kha

    2016-12-01

    The rapid detection of pathogens in food is becoming increasingly critical for ensuring the safety of consumers, since the majority of food-borne illnesses and deaths are caused by pathogenic bacteria. Hence, rapid, sensitive, inexpensive and convenient approaches to detect food-borne pathogenic bacteria is essential in controlling food safety. In this study, a multiplex PCR assay for the rapid and simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes was established. The invA, stx and hlyA genes specifically amplified DNA fragments of 284, 404 and 510 bp from Salmonella spp., L. monocytogenes and E. coli O157:H7, respectively. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity of the multiplex PCR were performed by testing different strains. The multiplex PCR assay was able to specifically simultaneously detect ten colony-forming unit/mL of each pathogen in artificially inoculated samples after enrichment for 12 h. The whole process took less than 24 h to complete, indicating that the assay is suitable for reliable and rapid identification of these three food-borne pathogens, which could be suitable in microbial epidemiology investigation.

  3. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary,; Bruce, R; Stubben, Christopher J

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  4. Multiplex detection of respiratory pathogens

    DOEpatents

    McBride, Mary [Brentwood, CA; Slezak, Thomas [Livermore, CA; Birch, James M [Albany, CA

    2012-07-31

    Described are kits and methods useful for detection of respiratory pathogens (influenza A (including subtyping capability for H1, H3, H5 and H7 subtypes) influenza B, parainfluenza (type 2), respiratory syncytial virus, and adenovirus) in a sample. Genomic sequence information from the respiratory pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  5. Rapid and simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes by magnetic capture hybridization and multiplex real-time PCR.

    PubMed

    Carloni, Elisa; Rotundo, Luca; Brandi, Giorgio; Amagliani, Giulia

    2018-05-25

    The application of rapid, specific, and sensitive methods for pathogen detection and quantification is very advantageous in diagnosis of human pathogens in several applications, including food analysis. The aim of this study was the evaluation of a method for the multiplexed detection and quantification of three significant foodborne pathogenic species (Escherichia coli O157, Salmonella spp., and Listeria monocytogenes). The assay combines specific DNA extraction by multiplex magnetic capture hybridization (mMCH) with multiplex real-time PCR. The amplification assay showed linearity in the range 10 6 -10 genomic units (GU)/PCR for each co-amplified species. The sensitivity corresponded to 1 GU/PCR for E. coli O157 and L. monocytogenes, and 10 GU/PCR for Salmonella spp. The immobilization process and the hybrid capture of the MCH showed good efficiency and reproducibility for all targets, allowing the combination in equal amounts of the different nanoparticle types in mMCH. MCH and mMCH efficiencies were similar. The detection limit of the method was 10 CFU in samples with individual pathogens and 10 2  CFU in samples with combination of the three pathogens in unequal amounts (amount's differences of 2 or 3 log). In conclusion, this multiplex molecular platform can be applied to determine the presence of target species in food samples after culture enrichment. In this way, this method could be a time-saving and sensitive tool to be used in routine diagnosis.

  6. Detection of pathogenic bacteria in shellfish using multiplex PCR followed by CovaLink NH microwell plate sandwich hybridization.

    PubMed

    Lee, Chi-Ying; Panicker, Gitika; Bej, Asim K

    2003-05-01

    Outbreak of diseases associated with consumption of raw shellfish especially oysters is a major concern to the seafood industry and public health agencies. A multiplex PCR amplification of targeted gene segments followed by DNA-DNA sandwich hybridization was optimized to detect the etiologic agents. First, a multiplex PCR amplification of hns, spvB, vvh, ctx and tl was developed enabling simultaneous detection of total Salmonella enterica serotype Typhimurium, Vibrio vulnificus, Vibrio cholerae and Vibrio parahaemolyticus from both pure cultures and seeded oysters. Amplicons were then subjected to a colorimetric CovaLink NH microwell plate sandwich hybridization using phosphorylated and biotinlylated oligonucleotide probes, the nucleotide sequences of which were located internal to the amplified DNA. The results from the hybridization with the multiplexed PCR amplified DNA exhibited a high signal/noise ratio ranging between 14.1 and 43.2 measured at 405 nm wavelength. The sensitivity of detection for each pathogen was 10(2) cells/g of oyster tissue homogenate. The results from this study showed that the combination of the multiplex PCR with a colorimetric microwell plate sandwich hybridization assay permits a specific, sensitive, and reproducible system for the detection of the microbial pathogens in shellfish, thereby improving the microbiological safety of shellfish to consumers.

  7. Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Ji-Eun; Jeong, Yoon; Lee, Kwan Hong; Hwang, Jangsun; Hong, Jongwook; Park, Hansoo; Choi, Jonghoon

    2016-01-01

    Many countries categorize the causative agents of severe infectious diseases as high-risk pathogens. Given their extreme infectivity and potential to be used as biological weapons, a rapid and sensitive method for detection of high-risk pathogens (e.g., Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Vaccinia virus) is highly desirable. Here, we report the construction of a novel detection platform comprising two units: (1) magnetic beads separately conjugated with multiple capturing antibodies against four different high-risk pathogens for simple and rapid isolation, and (2) genetically engineered apoferritin nanoparticles conjugated with multiple quantum dots and detection antibodies against four different high-risk pathogens for signal amplification. For each high-risk pathogen, we demonstrated at least 10-fold increase in sensitivity compared to traditional lateral flow devices that utilize enzyme-based detection methods. Multiplexed detection of high-risk pathogens in a sample was also successful by using the nanoconstructs harboring the dye molecules with fluorescence at different wavelengths. We ultimately envision the use of this novel nanoprobe detection platform in future applications that require highly sensitive on-site detection of high-risk pathogens.

  8. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert

    2018-01-01

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology. PMID:29425124

  9. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens.

    PubMed

    Higgins, Owen; Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert; Smith, Terry J

    2018-02-09

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae , Neisseria meningitidis and Haemophilus influenzae . Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae , N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.

  10. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, R P; Langlois, R G; Nasarabadi, S

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flowmore » cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.« less

  11. An integrated passive micromixer-magnetic separation-capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level.

    PubMed

    Jung, Jae Hwan; Kim, Gha-Young; Seo, Tae Seok

    2011-10-21

    Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (∼10(4)) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  12. Exploring target-specific primer extension in combination with a bead-based suspension array for multiplexed detection and typing using Streptococcus suis as a model pathogen

    PubMed Central

    van der Wal, Fimme J.; Achterberg, René P.; van Solt-Smits, Conny; Bergervoet, Jan H. W.; de Weerdt, Marjanne; Wisselink, Henk J.

    2017-01-01

    We investigated the feasibility of an assay based on target-specific primer extension, combined with a suspension array, for the multiplexed detection and typing of a veterinary pathogen in animal samples, using Streptococcus suis as a model pathogen. A procedure was established for simultaneous detection of 6 S. suis targets in pig tonsil samples (i.e., 4 genes associated with serotype 1, 2, 7, or 9, the generic S. suis glutamate dehydrogenase gene [gdh], and the gene encoding the extracellular protein factor [epf]). The procedure was set up as a combination of protocols: DNA isolation from porcine tonsils, a multiplex PCR, a multiplex target-specific primer extension, and finally a suspension array as the readout. The resulting assay was compared with a panel of conventional PCR assays. The proposed multiplex assay can correctly identify the serotype of isolates and is capable of simultaneous detection of multiple targets in porcine tonsillar samples. The assay is not as sensitive as the current conventional PCR assays, but with the correct sampling strategy, the assay can be useful for screening pig herds to establish which S. suis serotypes are circulating in a pig population. PMID:28980519

  13. Synovial fluid multiplex PCR is superior to culture for detection of low-virulent pathogens causing periprosthetic joint infection.

    PubMed

    Morgenstern, Christian; Cabric, Sabrina; Perka, Carsten; Trampuz, Andrej; Renz, Nora

    2018-02-01

    Analysis of joint aspirate is the standard preoperative investigation for diagnosis of periprosthetic joint infection (PJI). We compared the diagnostic performance of culture and multiplex polymerase chain reaction (PCR) of synovial fluid for diagnosis of PJI. Patients in whom aspiration of the prosthetic hip or knee joint was performed before revision arthroplasty were prospectively included. The performance of synovial fluid culture and multiplex PCR was compared by McNemar's chi-squared test. A total of 142 patients were included, 82 with knee and 60 with hip prosthesis. PJI was diagnosed in 77 patients (54%) and aseptic failure in 65 patients (46%). The sensitivity of synovial fluid culture and PCR was 52% and 60%, respectively, showing concordant results in 116 patients (82%). In patients with PJI, PCR missed 6 high-virulent pathogens (S. aureus, streptococci, E. faecalis, E. coli) which grew in synovial fluid culture, whereas synovial fluid culture missed 12 pathogens detected by multiplex PCR, predominantly low-virulent pathogens (Cutibacterium acnes and coagulase-negative staphylococci). In patients with aseptic failure, PCR detected 6 low-virulent organisms (predominantly C. acnes). While the overall performance of synovial fluid PCR was comparable to culture, PCR was superior for detection of low-virulent bacteria such as Cutibacterium spp. and coagulase-negative staphylococci. In addition, synovial fluid culture required several days for growth, whereas multiplex PCR provided results within 5hours in an automated manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Simultaneous Detection of Four Foodborne Viruses in Food Samples Using a One-Step Multiplex Reverse Transcription PCR.

    PubMed

    Lee, Shin-Young; Kim, Mi-Ju; Kim, Hyun-Joong; Jeong, KwangCheol Casey; Kim, Hae-Yeong

    2018-02-28

    A one-step multiplex reverse transcription PCR (RT-PCR) method comprising six primer sets (for the detection of norovirus GI and GII, hepatitis A virus, rotavirus, and astrovirus) was developed to simultaneously detect four kinds of pathogenic viruses. The size of the PCR products for norovirus GI and GII, hepatitis A virus (VP3/VP1 and P2A regions), rotavirus, and astrovirus were 330, 164, 244, 198, 629, and 449 bp, respectively. The RT-PCR with the six primer sets showed specificity for the pathogenic viruses. The detection limit of the developed multiplex RT-PCR, as evaluated using serially diluted viral RNAs, was comparable to that of one-step single RT-PCR. Moreover, this multiplex RT-PCR was evaluated using food samples such as water, oysters, lettuce, and vegetable product. These food samples were artificially spiked with the four kinds of viruses in diverse combinations, and the spiked viruses in all food samples were detected successfully.

  15. Simultaneous Detection of 13 Key Bacterial Respiratory Pathogens by Combination of Multiplex PCR and Capillary Electrophoresis.

    PubMed

    Jiang, Lu Xi; Ren, Hong Yu; Zhou, Hai Jian; Zhao, Si Hong; Hou, Bo Yan; Yan, Jian Ping; Qin, Tian; Chen, Yu

    2017-08-01

    Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebacterium diphtheriae, and Streptococcus pyogenes. Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 152 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. This study revealed that the MPCE assay is a rapid, reliable, and high-throughput method with high specificity and sensitivity. This assay has great potential in the molecular epidemiological survey of respiratory pathogens. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  16. One-Step Multiplex RT-qPCR Assay for the Detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp.) capripneumoniae.

    PubMed

    Settypalli, Tirumala Bharani Kumar; Lamien, Charles Euloge; Spergser, Joachim; Lelenta, Mamadou; Wade, Abel; Gelaye, Esayas; Loitsch, Angelika; Minoungou, Germaine; Thiaucourt, Francois; Diallo, Adama

    2016-01-01

    Respiratory infections, although showing common clinical symptoms like pneumonia, are caused by bacterial, viral or parasitic agents. These are often reported in sheep and goats populations and cause huge economic losses to the animal owners in developing countries. Detection of these diseases is routinely done using ELISA or microbiological methods which are being reinforced or replaced by molecular based detection methods including multiplex assays, where detection of different pathogens is carried out in a single reaction. In the present study, a one-step multiplex RT-qPCR assay was developed for simultaneous detection of Capripoxvirus (CaPV), Peste de petits ruminants virus (PPRV), Pasteurella multocida (PM) and Mycoplasma capricolum ssp. capripneumonia (Mccp) in pathological samples collected from small ruminants with respiratory disease symptoms. The test performed efficiently without any cross-amplification. The multiplex PCR efficiency was 98.31%, 95.48%, 102.77% and 91.46% whereas the singleplex efficiency was 93.43%, 98.82%, 102.55% and 92.0% for CaPV, PPRV, PM and Mccp, respectively. The correlation coefficient was greater than 0.99 for all the targets in both multiplex and singleplex. Based on cycle threshold values, intra and inter assay variability, ranged between the limits of 2%-4%, except for lower concentrations of Mccp. The detection limits at 95% confidence interval (CI) were 12, 163, 13 and 23 copies/reaction for CaPV, PPRV, PM and Mccp, respectively. The multiplex assay was able to detect CaPVs from all genotypes, PPRV from the four lineages, PM and Mccp without amplifying the other subspecies of mycoplasmas. The discriminating power of the assay was proven by accurate detection of the targeted pathogen (s) by screening 58 viral and bacterial isolates representing all four targeted pathogens. Furthermore, by screening 81 pathological samples collected from small ruminants showing respiratory disease symptoms, CaPV was detected in 17 samples, PPRV in 45, and PM in six samples. In addition, three samples showed a co-infection of PPRV and PM. Overall, the one-step multiplex RT-qPCR assay developed will be a valuable tool for rapid detection of individual and co-infections of the targeted pathogens with high specificity and sensitivity.

  17. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.

    PubMed

    Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R

    2015-10-01

    Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.

  18. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis.

    PubMed

    Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C

    2017-06-01

    For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4  CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Detection of sexually transmitted infection and human papillomavirus in negative cytology by multiplex-PCR

    PubMed Central

    2010-01-01

    Background The aim of this study was to determine the prevalence of human papillomavirus (HPV) and 15 species that cause sexually transmitted infections (STIs) in negative cytology. In addition, we compared the diagnostic performance of multiplex polymerase chain reaction (PCR) with widely available techniques used to detect HPV. Methods We recruited 235 women of reproductive age who had negative cytology findings in a liquid-based cervical smear. STIs were identified by multiplex PCR, and HPV genotypes by multiplex PCR, hybrid capture 2, and DNA microaray; discordant results were analyzed by direct sequencing. Results Approximately 96.6% of patients with negative cytology results were positive for pathogens that cause STIs. The pathogens most frequently detected were Gardnerella vaginalis, Ureaplasma urealyticum. The incidence of HPV in negative cytology was 23.3%. Low-risk HPV infection was significantly correlated with Chalmaydia trachomatis, and high-risk HPV infection was significantly correlated with Group β streptococcus. The analytical sensitivities of the multiplex PCR and DNA microarray were higher than 80%, and the analytical specificity was nearly 100% for all tests. Conclusions Multiplex PCR yielded results that most of patients with negative cytology were positive for pathogens that cause STIs, and were more similar to that of DNA microarray, than that of hybrid capture 2 in terms of analytical sensitivity and prediction value of HPV infection. PMID:20920170

  20. [Do Multiplex PCR techniques displace classical cultures in microbiology?].

    PubMed

    Auckenthaler, Raymond; Risch, Martin

    2015-02-01

    Multiplex PCR technologies progressively find their way in clinical microbiology. This technique allows the simultaneous amplification of multiple DNA targets in a single test run for the identification of pathogens up to the species level. Various pathogens of infectious diseases can be detected by a symptom-oriented approach clearly and quickly with high reliability. Essentially multiplex PCR panels are available for clarification of gastrointestinal, respiratory, sexually transmitted infections and meningitis. Today's offer from industry, university hospitals and large private laboratories of Switzerland is tabulated and commented.

  1. Detection of Gastrointestinal Pathogens from Stool Samples on Hemoccult Cards by Multiplex PCR.

    PubMed

    Alberer, Martin; Schlenker, Nicklas; Bauer, Malkin; Helfrich, Kerstin; Mengele, Carolin; Löscher, Thomas; Nothdurft, Hans Dieter; Bretzel, Gisela; Beissner, Marcus

    2017-01-01

    Purpose . Up to 30% of international travelers are affected by travelers' diarrhea (TD). Reliable data on the etiology of TD is lacking. Sufficient laboratory capacity at travel destinations is often unavailable and transporting conventional stool samples to the home country is inconvenient. We evaluated the use of Hemoccult cards for stool sampling combined with a multiplex PCR for the detection of model viral, bacterial, and protozoal TD pathogens. Methods . Following the creation of serial dilutions for each model pathogen, last positive dilution steps (LPDs) and thereof calculated last positive sample concentrations (LPCs) were compared between conventional stool samples and card samples. Furthermore, card samples were tested after a prolonged time interval simulating storage during a travel duration of up to 6 weeks. Results . The LPDs/LPCs were comparable to testing of conventional stool samples. After storage on Hemoccult cards, the recovery rate was 97.6% for C. jejuni , 100% for E . histolytica , 97.6% for norovirus GI, and 100% for GII. Detection of expected pathogens was possible at weekly intervals up to 42 days. Conclusion . Stool samples on Hemoccult cards stored at room temperature can be used in combination with a multiplex PCR as a reliable tool for testing of TD pathogens.

  2. Prevalence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using multiplex polymerase chain reaction

    PubMed Central

    Latha, C.; Anu, C. J.; Ajaykumar, V. J.; Sunil, B.

    2017-01-01

    Aim: The objective of the study was to investigate the occurrence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using the multiplex polymerase chain reaction (PCR) method. Materials and Methods: The assay combined an enrichment step in tryptic soy broth with yeast extract formulated for the simultaneous growth of target pathogens, DNA isolation and multiplex PCR. A total of 1134 samples including beef (n=349), chicken (n=325), pork (n=310), chevon (n=50), and meat products (n=100) were collected from different parts of Kerala, India. All the samples were subjected to multiplex PCR analysis and culture-based detection for the four pathogens in parallel. Results: Overall occurrence of L. monocytogenes was 0.08 % by cultural method. However, no L. monocytogenes was obtained by multiplex PCR method. Yersinia enterocolitica was obtained from beef and pork samples. A high prevalence of S. aureus (46.7%) was found in all types of meat samples tested. None of the samples was positive for S. Typhimurium. Conclusion: Multiplex PCR assay used in this study can detect more than one pathogen simultaneously by amplifying more than one target gene in a single reaction, which can save time and labor cost. PMID:28919685

  3. Multiplex Polymerase Chain Reaction for Detection of Gastrointestinal Pathogens in Migrant Workers in Qatar.

    PubMed

    Humphrey, John M; Ranbhise, Sanjay; Ibrahim, Emad; Al-Romaihi, Hamad E; Farag, Elmoubasher; Abu-Raddad, Laith J; Glesby, Marshall J

    2016-12-07

    The causes of infectious diarrhea among the migrant worker population in Qatar are not well understood. We conducted a prospective observational study to understand the demographic and clinical characteristics and infectious causes of diarrhea among migrant workers in Doha, Qatar. A total of 126 male workers presenting to the Qatar Red Crescent Worker's Health Center outpatient clinic or emergency department were studied over a 5-month period in 2015-2016. Epidemiologic surveys were administered to all subjects and the prevalence of 22 different stool pathogens was determined using multiplex polymerase chain reaction (PCR) (FilmArray ® Gastrointestinal PCR). A target pathogen was identified in 62.7% of subjects. Enteropathogenic Escherichia coli was the most prevalent pathogen and was detected in 24.6% of subjects, followed by Salmonella (22.2%), enteroaggregative E. coli (15.1%), Giardia lamblia (9.5%), and enterotoxigenic E. coli (8.7%). Multiple pathogens were identified in 49.3% of positive stool samples. In a multivariable analysis, the presence of a heart rate ≥ 90 (adjusted odds ratio [OR] = 3.7, 95% confidence interval [CI] = 1.4-10.0) and > 5 fecal leukocytes/high-power field (adjusted OR = 2.8, 95% CI = 1.2-7.0) were significant predictors of detecting an acute inflammatory pathogen by PCR. Use of multiplex PCR enabled the detection of gastrointestinal pathogens in a high proportion of cases, illustrating the utility of this diagnostic tool in epidemiologic studies of infectious diarrhea. © The American Society of Tropical Medicine and Hygiene.

  4. Development of a chip-based multiplexed immunoassay using liposomal nanovesicles and its application in the detection of pathogens causing female lower genital tract infections.

    PubMed

    Su, Wen-Hsiang; Ho, Tien-Yu; Tsou, Tsung-Shan; Lee, Wen-Ling; Wang, Kuan-Chin; Yu, Yuan-Yi; Chen, Tien-Jui; Tan, Chia-Hsuan; Kuo, Cheng-Deng; Chen, Chien-Sheng; Wang, Peng-Hui

    2013-03-01

    Cervicovaginitis is a highly prevalent disease that is a burden on healthcare globally. Immediate and adequate treatment can eradicate the infection and block subsequent complications. The feasibility of achip-based multiplexed immunoassay using liposomal nanovesicles was tested. A multiplexed immunoassay chip containing five antibodies for five pathogens (Chlamydia trachomatis, Escherichia coli, Neisseria gonorrhoeae, Streptococcus agalactiae, and Candida albicans) was established and tested. Four patients with spiking of candidiasis were enrolled. The difference between positive and negative readings was evaluated using the paired Student t test. The detection threshold of Candida in this microarray was 100,000 CFU/mL in a vaginal sample, and the time required for the whole procedure was 3 hours. The testing of the four patients showed 100% for both sensitivity and specificity. This microarray chip was a rapid, easy, inexpensive and sensitive tool for detecting female lower genital tract Candida infection in a one-time vaginal sampling process, although the data on the four other pathogens were still unavailable. A larger population study is encouraged to test the validity of this multiplexed immunoassay chip. Copyright © 2013. Published by Elsevier B.V.

  5. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  6. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  7. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  8. Multiplex identification of sepsis-causing Gram-negative pathogens from the plasma of infected blood.

    PubMed

    Chung, Boram; Park, Chulmin; Cho, Sung-Yeon; Shin, Juyoun; Shin, Sun; Yim, Seon-Hee; Lee, Dong-Gun; Chung, Yeun-Jung

    2018-02-01

    Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram-negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX-M group 1 to identify the ESBL producing Gram-negative pathogens. All six target-specific peaks were clearly separated without any non-specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram-negative clinical isolates, all of them were successfully identified without any non-specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis-causing, drug-resistant Gram-negative pathogens and also the major ESBL producing Gram-negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram-negative pathogens for sepsis patients, which is very crucial for better treatment outcomes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A SIMPLE AND EFFECTIVE MULTIPLEX PCR TECHNIQUE FOR DETECTING HUMAN PATHOGENIC TAENIA EGGS IN HOUSEFLIES.

    PubMed

    Pornruseetriratn, Siritavee; Maipanich, Wanna; Sa-nguankiat, Surapol; Pubampen, Somchit; Poodeepiyasawat, Akkarin; Thaenkham, Urusa

    2017-01-01

    Taenia solium, T. saginata, and T. asiatica are cestode pathogens causing taeniasis in humans. Houseflies can transfer Taenia eggs to food. However, houseflies are thought to carry only small numbers of Taenia eggs, sometimes fewer than 10. Although several PCR-based methods have been developed to detect Taenia DNA, these require more than 10 eggs for adequate detection. We developed a multiplex PCR method with high specificity for the discrimination among the eggs of the three Taenia species, T. solium, T. saginata, and T. asiatica, using 18S ribosomal DNA (rDNA) as a genetic marker. This technique was found to be highly sensitive, capable of identifying the Taenia species from only one egg. This multiplex PCR technique using 18S rDNA specific primers should be suitable to diagnose Taenia eggs.

  10. Design and Construction of a Single-Tube, LATE-PCR, Multiplex Endpoint Assay with Lights-On/Lights-Off Probes for the Detection of Pathogens Associated with Sepsis

    PubMed Central

    Carver-Brown, Rachel K.; Reis, Arthur H.; Rice, Lisa M.; Czajka, John W.; Wangh, Lawrence J.

    2012-01-01

    Aims. The goal of this study was to construct a single tube molecular diagnostic multiplex assay for the detection of microbial pathogens commonly associated with septicemia, using LATE-PCR and Lights-On/Lights-Off probe technology. Methods and Results. The assay described here identified pathogens associated with sepsis by amplification and analysis of the 16S ribosomal DNA gene sequence for bacteria and specific gene sequences for fungi. A sequence from an unidentified gene in Lactococcus lactis subsp. cremoris served as a positive control for assay function. LATE-PCR was used to generate single-stranded amplicons that were then analyzed at endpoint over a wide temperature range in a specific fluorescent color. Each bacterial target was identified by its pattern of hybridization to Lights-On/Lights-Off probes derived from molecular beacons. Complex mixtures of targets were also detected. Conclusions. All microbial targets were identified in samples containing low starting copy numbers of pathogen genomic DNA, both as individual targets and in complex mixtures. Significance and Impact of the Study. This assay uses new technology to achieve an advance in the field of molecular diagnostics: a single-tube multiplex assay for identification of pathogens commonly associated with sepsis. PMID:23326668

  11. Detection of Gastrointestinal Pathogens from Stool Samples on Hemoccult Cards by Multiplex PCR

    PubMed Central

    Schlenker, Nicklas; Bauer, Malkin; Helfrich, Kerstin; Mengele, Carolin; Löscher, Thomas; Nothdurft, Hans Dieter; Bretzel, Gisela; Beissner, Marcus

    2017-01-01

    Purpose. Up to 30% of international travelers are affected by travelers' diarrhea (TD). Reliable data on the etiology of TD is lacking. Sufficient laboratory capacity at travel destinations is often unavailable and transporting conventional stool samples to the home country is inconvenient. We evaluated the use of Hemoccult cards for stool sampling combined with a multiplex PCR for the detection of model viral, bacterial, and protozoal TD pathogens. Methods. Following the creation of serial dilutions for each model pathogen, last positive dilution steps (LPDs) and thereof calculated last positive sample concentrations (LPCs) were compared between conventional stool samples and card samples. Furthermore, card samples were tested after a prolonged time interval simulating storage during a travel duration of up to 6 weeks. Results. The LPDs/LPCs were comparable to testing of conventional stool samples. After storage on Hemoccult cards, the recovery rate was 97.6% for C. jejuni, 100% for E. histolytica, 97.6% for norovirus GI, and 100% for GII. Detection of expected pathogens was possible at weekly intervals up to 42 days. Conclusion. Stool samples on Hemoccult cards stored at room temperature can be used in combination with a multiplex PCR as a reliable tool for testing of TD pathogens. PMID:28408937

  12. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food.

    PubMed

    Lee, Nari; Kwon, Kyung Yoon; Oh, Su Kyung; Chang, Hyun-Joo; Chun, Hyang Sook; Choi, Sung-Wook

    2014-07-01

    A multiplex polymerase chain reaction (PCR) assay was developed for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in various Korean ready-to-eat foods. The six specific primer pairs for multiplex PCR were selected based on the O157 antigen (rfbE) gene of E. coli O157:H7, the DNA gyrase subunit B (gyrB) gene of B. cereus, the toxin regulatory protein (toxR) gene of V. parahaemolyticus, the invasion protein A (invA) gene of Salmonella spp., the hemolysin (hly) gene of L. monocytogenes, and the thermonuclease (nuc) gene of S. aureus. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity assays for multiplex primer pairs were investigated by testing different strains. When this multiplex PCR assay was applied to evaluate the validity of detecting six foodborne pathogens in artificially inoculated several ready-to-eat food samples, the assay was able to specifically simultaneously detect as few as 1 colony-forming unit/mL of each pathogen after enrichment for 12 h. Their presence in naturally contaminated samples also indicates that the developed multiplex PCR assay is an effective and informative supplement for practical use.

  13. Direct PCR - A rapid method for multiplexed detection of different serotypes of Salmonella in enriched pork meat samples.

    PubMed

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas; Quyen, Than Linh; Engelsmann, Pia; Wolff, Anders; Bang, Dang Duong

    2017-04-01

    Salmonellosis, an infectious disease caused by Salmonella spp., is one of the most common foodborne diseases. Isolation and identification of Salmonella by conventional bacterial culture method is time consuming. In response to the demand for rapid on line or at site detection of pathogens, in this study, we developed a multiplex Direct PCR method for rapid detection of different Salmonella serotypes directly from pork meat samples without any DNA purification steps. An inhibitor-resistant Phusion Pfu DNA polymerase was used to overcome PCR inhibition. Four pairs of primers including a pair of newly designed primers targeting Salmonella spp. at subtype level were incorporated in the multiplex Direct PCR. To maximize the efficiency of the Direct PCR, the ratio between sample and dilution buffer was optimized. The sensitivity and specificity of the multiplex Direct PCR were tested using naturally contaminated pork meat samples for detecting and subtyping of Salmonella spp. Conventional bacterial culture methods were used as reference to evaluate the performance of the multiplex Direct PCR. Relative accuracy, sensitivity and specificity of 98.8%; 97.6% and 100%, respectively, were achieved by the method. Application of the multiplex Direct PCR to detect Salmonella in pork meat at slaughter reduces the time of detection from 5 to 6 days by conventional bacterial culture and serotyping methods to 14 h (including 12 h enrichment time). Furthermore, the method poses a possibility of miniaturization and integration into a point-of-need Lab-on-a-chip system for rapid online pathogen detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Portable Microfluidic Integrated Plasmonic Platform for Pathogen Detection

    PubMed Central

    Tokel, Onur; Yildiz, Umit Hakan; Inci, Fatih; Durmus, Naside Gozde; Ekiz, Okan Oner; Turker, Burak; Cetin, Can; Rao, Shruthi; Sridhar, Kaushik; Natarajan, Nalini; Shafiee, Hadi; Dana, Aykutlu; Demirci, Utkan

    2015-01-01

    Timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods, such as enzyme linked immunosorbent assay (ELISA), culturing or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments, which are not adaptable to point-of-care (POC) needs at resource-constrained as well as primary care settings. Therefore, there is an unmet need to develop simple, rapid, and accurate methods for detection of pathogens at the POC. Here, we present a portable, multiplex, inexpensive microfluidic-integrated surface plasmon resonance (SPR) platform that detects and quantifies bacteria, i.e., Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) rapidly. The platform presented reliable capture and detection of E. coli at concentrations ranging from ~105 to 3.2 × 107 CFUs/mL in phosphate buffered saline (PBS) and peritoneal dialysis (PD) fluid. The multiplexing and specificity capability of the platform was also tested with S. aureus samples. The presented platform technology could potentially be applicable to capture and detect other pathogens at the POC and primary care settings. PMID:25801042

  15. [Investigation of bacterial and viral etiology in community acquired central nervous system infections with molecular methods].

    PubMed

    Kahraman, Hasip; Tünger, Alper; Şenol, Şebnem; Gazi, Hörü; Avcı, Meltem; Örmen, Bahar; Türker, Nesrin; Atalay, Sabri; Köse, Şükran; Ulusoy, Sercan; Işıkgöz Taşbakan, Meltem; Sipahi, Oğuz Reşat; Yamazhan, Tansu; Gülay, Zeynep; Alp Çavuş, Sema; Pullukçu, Hüsnü

    2017-07-01

    In this multicenter prospective cohort study, it was aimed to evaluate the bacterial and viral etiology in community-acquired central nervous system infections by standart bacteriological culture and multiplex polymerase chain reaction (PCR) methods. Patients hospitalized with central nervous system infections between April 2012 and February 2014 were enrolled in the study. Demographic and clinical information of the patients were collected prospectively. Cerebrospinal fluid (CSF) samples of the patients were examined by standart bacteriological culture methods, bacterial multiplex PCR (Seeplex meningitis-B ACE Detection (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Listeria monocytogenes, Group B streptococci) and viral multiplex PCR (Seeplex meningitis-V1 ACE Detection kits herpes simplex virus-1 (HSV1), herpes simplex virus-2 (HSV2), varicella zoster virus (VZV), cytomegalovirus (CMV), Epstein Barr virus (EBV) and human herpes virus 6 (HHV6)) (Seeplex meningitis-V2 ACE Detection kit (enteroviruses)). Patients were classified as purulent meningitis, aseptic meningitis and encephalitis according to their clinical, CSF (leukocyte level, predominant cell type, protein and glucose (blood/CSF) levels) and cranial imaging results. Patients who were infected with a pathogen other than the detection of the kit or diagnosed as chronic meningitis and other diseases during the follow up, were excluded from the study. A total of 79 patients (28 female, 51 male, aged 42.1 ± 18.5) fulfilled the study inclusion criteria. A total of 46 patients were classified in purulent meningitis group whereas 33 were in aseptic meningitis/encephalitis group. Pathogens were detected by multiplex PCR in 41 patients. CSF cultures were positive in 10 (21.7%) patients (nine S.pneumoniae, one H.influenzae) and PCR were positive for 27 (58.6%) patients in purulent meningitis group. In this group one type of bacteria were detected in 18 patients (14 S.pneumoniae, two N.meningitidis, one H.influenzae, one L.monocytogenes). Besides, it is noteworthy that multiple pathogens were detected such as bacteria-virus combination in eight patients and two different bacteria in one patient. In the aseptic meningitis/encephalitis group, pathogens were detected in 14 out of 33 patients; single type of viruses in 11 patients (seven enterovirus, two HSV1, one HSV2, one VZV) and two different viruses were determined in three patients. These data suggest that multiplex PCR methods may increase the isolation rate of pathogens in central nervous system infections. Existence of mixed pathogen growth is remarkable in our study. Further studies are needed for the clinical relevance of this result.

  16. Prevalence of Trichomonas vaginalis in Women Visiting 2 Obstetrics and Gynecology Clinics in Daegu, South Korea.

    PubMed

    Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Lee, Won-Myung; Kong, Hyun-Hee; Lee, Won-Ki; Lee, Sang-Eun; Lee, Won-Ja; Chung, Dong-Il; Hong, Yeonchul

    2016-02-01

    This study explored epidemiological trends in trichomoniasis in Daegu, South Korea. Wet mount microscopy, PCR, and multiplex PCR were used to test for Trichomonas vaginalis in vaginal swab samples obtained from 621 women visiting 2 clinics in Daegu. Of the 621 women tested, microscopy detected T. vaginalis in 4 (0.6%) patients, PCR detected T. vaginalis in 19 (3.0%) patients, and multiplex PCR detected T. vaginalis in 12 (1.9%) patients. Testing via PCR demonstrated high sensitivity and high negative predictive value for T. vaginalis. Among the 19 women who tested positive for T. vaginalis according to PCR, 94.7% (18/19) reported vaginal signs and symptoms. Notably, more than 50% of T. vaginalis infections occurred in females younger than 30 years old, and 58% were unmarried. Multiplex PCR, which simultaneously detects pathogens from various sexually transmitted infections, revealed that 91.7% (11/12) of patients were infected with 2 or more pathogens. Mycoplasma hominis was the most prevalent co-infection pathogen with T. vaginalis, followed by Ureaplasma urealyticum and Chlamydia trachomatis. Our results indicate that PCR and multiplex PCR are the most sensitive tools for T. vaginalis diagnosis, rather than microscopy which has been routinely used to detect T. vaginalis infections in South Korea. Therefore, clinicians should take note of the high prevalence of T. vaginalis infections among adolescent and young women in order to prevent persistent infection and transmission of this disease.

  17. Development of a multiplex PCR assay for rapid and simultaneous detection of four genera of fish pathogenic bacteria.

    PubMed

    Zhang, D F; Zhang, Q Q; Li, A H

    2014-11-01

    Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This mPCR assay provides a rapid, specific and sensitive tool for the detection or identification of common fish pathogenic bacteria in aquaculture practice. © 2014 The Society for Applied Microbiology.

  18. Rapid, sensitive, and simultaneous detection of three foodborne pathogens using magnetic nanobead-based immunoseparation and quantum dot-based multiplex immunoassay.

    PubMed

    Wang, Hong; Li, Yanbin; Wang, Andrew; Slavik, Michael

    2011-12-01

    Losses caused by foodborne diseases are enormous in terms of human life, illness, medical costs, and food product recalls. Rapid detection of multiple bacterial pathogens in foods is extremely important to ensure food safety. The objective of this research was to develop a multiplex immunoassay by integrating magnetic nanobeads (MNBs) for immunoseparation with quantum dots (QDs) as fluorescent labels for rapid, sensitive, and simultaneous detection of three major pathogenic bacteria, Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes, in food products. In this research, both streptavidin-conjugated MNBs (30- and 150-nm diameter) and QDs (530-, 580-, and 620-nm emission wavelength) were separately coated with biotinylated anti-Salmonella, anti-E. coli, and anti-Listeria antibodies. The immuno-MNBs were mixed with a food sample to capture the three target bacteria. After being magnetically separated from the sample, the MNB-cell conjugates were mixed with the immuno-QDs to form the MNB-cell-QD complexes, and unattached QDs were removed. The fluorescence intensity of the MNB-cell-QD complexes was measured at wavelengths of 530, 580, and 620 nm to determine the populations of Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes, respectively. This multiplex immunoassay simultaneously detected Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes at levels as low as 20 to 50 CFU/ml in food samples in less than 2 h without enrichment. The change in fluorescence intensity was linearly correlated (R(2) > 0.96) with the logarithmic value of bacterial level in the range of 10 to 10(3) CFU/ml. More than 85% of the three target pathogens could be simultaneously separated from food samples. The multiplex immunoassay could be expanded to detect more target pathogens, depending on the availability of specific antibodies and QDs with different emission wavelengths.

  19. Single-Tube Multiplexed Molecular Detection of Endemic Porcine Viruses in Combination with Background Screening for Transboundary Diseases

    PubMed Central

    Wernike, Kerstin; Hoffmann, Bernd

    2013-01-01

    Detection of several pathogens with multiplexed real-time quantitative PCR (qPCR) assays in a one-step setup allows the simultaneous detection of two endemic porcine and four different selected transboundary viruses. Reverse transcription (RT)-qPCR systems for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), two of the most economically important pathogens of swine worldwide, were combined with a screening system for diseases notifiable to the World Organization of Animal Health, namely, classical and African swine fever, foot-and-mouth disease, and Aujeszky's disease. Background screening was implemented using the identical fluorophore for all four different RT-qPCR assays. The novel multiplex RT-qPCR system was validated with a large panel of different body fluids and tissues from pigs and other animal species. Both reference samples and clinical specimens were used for a complete evaluation. It could be demonstrated that a highly sensitive and specific parallel detection of the different viruses was possible. The assays for the notifiable diseases were even not affected by the simultaneous amplification of very high loads of PRRSV- and PCV2-specific sequences. The novel broad-spectrum multiplex assay allows in a unique form the routine investigation for endemic porcine pathogens with exclusion diagnostics of the most important transboundary diseases in samples from pigs with unspecific clinical signs, such as fever or hemorrhages. The new system could significantly improve early detection of the most important notifiable diseases of swine and could lead to a new approach in syndromic surveillance. PMID:23303496

  20. Multiplex Molecular Panels for Diagnosis of Gastrointestinal Infection: Performance, Result Interpretation, and Cost-Effectiveness.

    PubMed

    Binnicker, Matthew J

    2015-12-01

    Gastrointestinal disease is a major cause of morbidity and mortality worldwide, especially among young children and immunocompromised patients. Diarrhea may result from infection with a variety of microbial pathogens, including bacteria, viruses, or parasites. Historically, the diagnosis of infectious diarrhea has been made using microscopy, antigen tests, culture, and real-time PCR. A combination of these traditional tests is often required due to the inability to distinguish between infectious etiologies based on the clinical presentation alone. Recently, several multiplex molecular assays have been developed for the detection of gastrointestinal pathogens directly from clinical stool samples. These panels allow for the detection and identification of up to 20 pathogens in as little as 1 h. This review will focus on the multiplex molecular panels that have received clearance from the FDA for the diagnosis of diarrheal disease and will highlight issues related to test performance, result interpretation, and cost-effectiveness of these new molecular diagnostic tools.

  1. Massively multiplexed microbial identification using resequencing DNA microarrays for outbreak investigation

    NASA Astrophysics Data System (ADS)

    Leski, T. A.; Ansumana, R.; Jimmy, D. H.; Bangura, U.; Malanoski, A. P.; Lin, B.; Stenger, D. A.

    2011-06-01

    Multiplexed microbial diagnostic assays are a promising method for detection and identification of pathogens causing syndromes characterized by nonspecific symptoms in which traditional differential diagnosis is difficult. Also such assays can play an important role in outbreak investigations and environmental screening for intentional or accidental release of biothreat agents, which requires simultaneous testing for hundreds of potential pathogens. The resequencing pathogen microarray (RPM) is an emerging technological platform, relying on a combination of massively multiplex PCR and high-density DNA microarrays for rapid detection and high-resolution identification of hundreds of infectious agents simultaneously. The RPM diagnostic system was deployed in Sierra Leone, West Africa in collaboration with Njala University and Mercy Hospital Research Laboratory located in Bo. We used the RPM-Flu microarray designed for broad-range detection of human respiratory pathogens, to investigate a suspected outbreak of avian influenza in a number of poultry farms in which significant mortality of chickens was observed. The microarray results were additionally confirmed by influenza specific real-time PCR. The results of the study excluded the possibility that the outbreak was caused by influenza, but implicated Klebsiella pneumoniae as a possible pathogen. The outcome of this feasibility study confirms that application of broad-spectrum detection platforms for outbreak investigation in low-resource locations is possible and allows for rapid discovery of the responsible agents, even in cases when different agents are suspected. This strategy enables quick and cost effective detection of low probability events such as outbreak of a rare disease or intentional release of a biothreat agent.

  2. Multiplexed Molecular Diagnostics for Respiratory, Gastrointestinal, and Central Nervous System Infections.

    PubMed

    Hanson, Kimberly E; Couturier, Marc Roger

    2016-11-15

    The development and implementation of highly multiplexed molecular diagnostic tests have allowed clinical microbiology laboratories to more rapidly and sensitively detect a variety of pathogens directly in clinical specimens. Current US Food and Drug Administration-approved multiplex panels target multiple different organisms simultaneously and can identify the most common pathogens implicated in respiratory viral, gastrointestinal, or central nervous system infections. This review summarizes the test characteristics of available assays, highlights the advantages and limitations of multiplex technology for infectious diseases, and discusses potential utilization of these new tests in clinical practice. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  3. An Integrated Quantum Dot Barcode Smartphone Optical Device for Wireless Multiplexed Diagnosis of Infected Patients

    NASA Astrophysics Data System (ADS)

    Ming, Kevin

    Integrating mobile-cellular devices with multiplex molecular diagnostics can potentially provide the most powerful platform for tracking, managing and preventing the transmission of infectious diseases. With over 6.9 billion subscriptions globally, handheld mobile-cellular devices can be programmed to spatially map, temporally track, and transmit information on infections over wide geographical space and boundaries. Current cell phone diagnostic technologies have poor limit of detection, dynamic range, and cannot detect multiple pathogen targets simultaneously, limiting their utility to single infections with high load. Here we combined recent advances in quantum dot barcode technology for molecular detection with smartphones to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. We validated our device using a variety of synthetic genomic targets for the respiratory virus and blood-borne pathogens, and demonstrated that it could detect clinical samples after simple amplification. More importantly, we confirmed that the device is capable of detecting patients infected with a single or multiple infectious pathogens (e.g., HIV and hepatitis B) in a single test. This device advances the capacity for global surveillance of infectious diseases and has the potential to accelerate knowledge exchange-transfer of emerging or exigent disease threats with healthcare and military organizations in real-time.

  4. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    USDA-ARS?s Scientific Manuscript database

    Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...

  5. Surface plasmon resonance imaging for label-free detection of foodborne pathogens and toxins

    USDA-ARS?s Scientific Manuscript database

    More rapid and efficient detection methods for foodborne pathogenic bacteria and toxins are needed to address the long assay time and limitations in multiplex capacity. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multi...

  6. Pathogen Identification by Multiplex LightMix Real-Time PCR Assay in Patients with Meningitis and Culture-Negative Cerebrospinal Fluid Specimens

    PubMed Central

    Wagner, Karoline; Springer, Burkard; Pires, Valeria P.

    2017-01-01

    ABSTRACT Acute bacterial meningitis is a medical emergency, and delays in initiating effective antimicrobial therapy result in increased morbidity and mortality. Culture-based methods, thus far considered the “gold standard” for identifying bacterial microorganisms, require 24 to 48 h to provide a diagnosis. In addition, antimicrobial therapy is often started prior to clinical sample collection, thereby decreasing the probability of confirming the bacterial pathogen by culture-based methods. To enable a fast and accurate detection of the most important bacterial pathogens causing meningitis, namely, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Streptococcus agalactiae, and Listeria monocytogenes, we evaluated a commercially available multiplex LightMix real-time PCR (RT-PCR) in 220 cerebrospinal fluid (CSF) specimens. The majority of CSF samples were collected by lumbar puncture, but we also included some CSF samples from patients with symptoms of meningitis from the neurology department that were recovered from shunts. CSF samples were analyzed by multiplex RT-PCR enabling a first diagnosis within a few hours after sample arrival at our institute. In contrast, bacterial identification took between 24 and 48 h by culture. Overall, a high agreement of bacterial identification between culture and multiplex RT-PCR was observed (99%). Moreover, multiplex RT-PCR enabled the detection of pathogens, S. pneumoniae (n = 2), S. agalactiae (n = 1), and N. meningitidis (n = 1), in four culture-negative samples. As a complement to classical bacteriological CSF culture, the LightMix RT-PCR assay proved to be valuable by improving the rapidity and accuracy of the diagnosis of bacterial meningitis. PMID:29237781

  7. Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level.

    PubMed

    Zhu, Zhi; Zhang, Wenhua; Leng, Xuefei; Zhang, Mingxia; Guan, Zhichao; Lu, Jiangquan; Yang, Chaoyong James

    2012-10-21

    Genetic alternations can serve as highly specific biomarkers to distinguish fatal bacteria or cancer cells from their normal counterparts. However, these mutations normally exist in very rare amount in the presence of a large excess of non-mutated analogs. Taking the notorious pathogen E. coli O157:H7 as the target analyte, we have developed an agarose droplet-based microfluidic ePCR method for highly sensitive, specific and quantitative detection of rare pathogens in the high background of normal bacteria. Massively parallel singleplex and multiplex PCR at the single-cell level in agarose droplets have been successfully established. Moreover, we challenged the system with rare pathogen detection and realized the sensitive and quantitative analysis of a single E. coli O157:H7 cell in the high background of 100,000 excess normal K12 cells. For the first time, we demonstrated rare pathogen detection through agarose droplet microfluidic ePCR. Such a multiplex single-cell agarose droplet amplification method enables ultra-high throughput and multi-parameter genetic analysis of large population of cells at the single-cell level to uncover the stochastic variations in biological systems.

  8. A novel, multiplex, real-time PCR-based approach for the detection of the commonly occurring pathogenic fungi and bacteria.

    PubMed

    Horváth, Ádám; Pető, Zoltán; Urbán, Edit; Vágvölgyi, Csaba; Somogyvári, Ferenc

    2013-12-23

    Polymerase chain reaction (PCR)-based techniques are widely used to identify fungal and bacterial infections. There have been numerous reports of different, new, real-time PCR-based pathogen identification methods although the clinical practicability of such techniques is not yet fully clarified.The present study focuses on a novel, multiplex, real-time PCR-based pathogen identification system developed for rapid differentiation of the commonly occurring bacterial and fungal causative pathogens of bloodstream infections. A multiplex, real-time PCR approach is introduced for the detection and differentiation of fungi, Gram-positive (G+) and Gram-negative (G-) bacteria. The Gram classification is performed with the specific fluorescence resonance energy transfer (FRET) probes recommended for LightCycler capillary real-time PCR. The novelty of our system is the use of a non-specific SYBR Green dye instead of labelled anchor probes or primers, to excite the acceptor dyes on the FRET probes. In conjunction with this, the use of an intercalating dye allows the detection of fungal amplicons.With the novel pathogen detection system, fungi, G + and G- bacteria in the same reaction tube can be differentiated within an hour after the DNA preparation via the melting temperatures of the amplicons and probes in the same tube. This modified FRET technique is specific and more rapid than the gold-standard culture-based methods. The fact that fungi, G + and G- bacteria were successfully identified in the same tube within an hour after the DNA preparation permits rapid and early evidence-based management of bloodstream infections in clinical practice.

  9. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti.

    PubMed

    Chan, Kamfai; Marras, Salvatore A E; Parveen, Nikhat

    2013-12-20

    The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients' blood samples. Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study can detect three tick-borne pathogens simultaneously in an accurate manner.

  10. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti

    PubMed Central

    2013-01-01

    Background The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. Results In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients’ blood samples. Conclusion Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study can detect three tick-borne pathogens simultaneously in an accurate manner. PMID:24359556

  11. Optimized MOL-PCR for Characterization of Microbial Pathogens.

    PubMed

    Wuyts, Véronique; Roosens, Nancy H C; Bertrand, Sophie; Marchal, Kathleen; De Keersmaecker, Sigrid C J

    2016-01-06

    Characterization of microbial pathogens is necessary for surveillance, outbreak detection, and tracing of outbreak sources. This unit describes a multiplex oligonucleotide ligation-PCR (MOL-PCR) optimized for characterization of microbial pathogens. With MOL-PCR, different types of markers, like unique sequences, single-nucleotide polymorphisms (SNPs) and indels, can be simultaneously analyzed in one assay. This assay consists of a multiplex ligation for detection of the markers, a singleplex PCR for signal amplification, and hybridization to MagPlex-TAG beads for readout on a Luminex platform after fluorescent staining. The current protocol describes the MOL-PCR, as well as methods for DNA isolation, probe design, and data interpretation and it is based on an optimized MOL-PCR assay for subtyping of Salmonella Typhimurium. Copyright © 2016 John Wiley & Sons, Inc.

  12. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection.

    PubMed

    Lau, Han Yih; Botella, Jose R

    2017-01-01

    Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR) is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.

  13. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection

    PubMed Central

    Lau, Han Yih; Botella, Jose R.

    2017-01-01

    Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR) is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail. PMID:29375588

  14. The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay

    PubMed Central

    Garrido-Bailón, Encarna; Higes, Mariano; Martínez-Salvador, Amparo; Antúnez, Karina; Botías, Cristina; Meana, Aránzazu; Prieto, Lourdes; Martín-Hernández, Raquel

    2013-01-01

    The microorganisms Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius are the three most important pathogens that affect honeybee brood. The aim of the present study was to evaluate the prevalence of these pathogens in honeybee colonies and to elucidate their role in the honeybee colony losses in Spain. In order to get it, a multiplex polymerase chain reaction (PCR) assay was developed to simultaneously amplify the16S ribosomal ribonucleic acid (rRNA) gene of P. larvae and M. plutonius, and the 5.8S rRNA gene of A. apis. The multiplex PCR assay provides a quick and specific tool that successfully detected the three infectious pathogens (P. larvae, M. plutonius and A. apis) in brood and adult honeybee samples without the need for microbiological culture. This technique was then used to evaluate the prevalence of these pathogens in Spanish honeybee colonies in 2006 and 2007, revealing our results a low prevalence of these pathogens in most of the geographic areas studied. PMID:23919248

  15. Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses.

    PubMed

    Iraola, Gregorio; Hernández, Martín; Calleros, Lucía; Paolicchi, Fernando; Silveyra, Silvia; Velilla, Alejandra; Carretto, Luis; Rodríguez, Eliana; Pérez, Ruben

    2012-12-01

    Campylobacter (C.) fetus (epsilonproteobacteria) is an important veterinary pathogen. This species is currently divided into C. fetus subspecies (subsp.) fetus (Cff) and C. fetus subsp. venerealis (Cfv). Cfv is the causative agent of bovine genital Campylobacteriosis, an infectious disease that leads to severe reproductive problems in cattle worldwide. Cff is a more general pathogen that causes reproductive problems mainly in sheep although cattle can also be affected. Here we describe a multiplex PCR method to detect C. fetus and differentiate between subspecies in a single step. The assay was standardized using cultured strains and successfully used to analyze the abomasal liquid of aborted bovine fetuses without any pre-enrichment step. Results of our assay were completely consistent with those of traditional bacteriological diagnostic methods. Furthermore, the multiplex PCR technique we developed may be easily adopted by any molecular diagnostic laboratory as a complementary tool for detecting C. fetus subspecies and obtaining epidemiological information about abortion events in cattle.

  16. Development of Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Detection of Influenza A, B and Adenoviruses

    PubMed Central

    Nakhaie, Mohsen; Soleimanjahi, Hoorieh; Mollaie, Hamid Reza; Arabzadeh, Seyed Mohamad Ali

    2018-01-01

    Background and objective: Millions of people in developing countries lose their lives due to acute respiratory infections, such as Influenza A & B and Adeno viruses. Given the importance of rapid identification of the virus, in this study the researchers attempted to design a method that enables detection of influenza A, B, and adenoviruses, quickly and simultaneously. The Multiplex RT PCR method was the preferred method for the detection of influenza A, B, and adenoviruses in clinical specimens because it is rapid, sensitive, specific, and more cost-effective than alternative methods Methods: After collecting samples from patients with respiratory disease, virus genome was extracted, then Monoplex PCR was used on positive samples and Multiplex RT-PCR on clinical specimens. Finally, by comparing the bands of these samples, the type of virus in the clinical samples was determined. Results: Performing Multiplex RT-PCR on 50 samples of respiratory tract led to following results; flu A: 12.5%, fluB: 50%, adeno: 27.5%, negative: 7.5%, and 2.5% contamination. Conclusion: Reverse transcription-multiplex Polymerase Chain Reaction (PCR) technique, a rapid diagnostic tool, has potential for high-throughput testing. This method has a significant advantage, which provides simultaneous amplification of numerous viruses in a single reaction. This study concentrates on multiplex molecular technologies and their clinical application for the detection and quantification of respiratory pathogens. The improvement in diagnostic testing for viral respiratory pathogens effects patient management, and leads to more cost-effective delivery of care. It limits unnecessary antibiotic use and improves clinical management by use of suitable treatment. PMID:29731796

  17. Rapid detection of Shigella and enteroinvasive Escherichia coli in produce enrichments by a conventional multiplex PCR assay.

    PubMed

    Binet, Rachel; Deer, Deanne M; Uhlfelder, Samantha J

    2014-06-01

    Faster detection of contaminated foods can prevent adulterated foods from being consumed and minimize the risk of an outbreak of foodborne illness. A sensitive molecular detection method is especially important for Shigella because ingestion of as few as 10 of these bacterial pathogens can cause disease. The objectives of this study were to compare the ability of four DNA extraction methods to detect Shigella in six types of produce, post-enrichment, and to evaluate a new and rapid conventional multiplex assay that targets the Shigella ipaH, virB and mxiC virulence genes. This assay can detect less than two Shigella cells in pure culture, even when the pathogen is mixed with background microflora, and it can also differentiate natural Shigella strains from a control strain and eliminate false positive results due to accidental laboratory contamination. The four DNA extraction methods (boiling, PrepMan Ultra [Applied Biosystems], InstaGene Matrix [Bio-Rad], DNeasy Tissue kit [Qiagen]) detected 1.6 × 10(3)Shigella CFU/ml post-enrichment, requiring ∼18 doublings to one cell in 25 g of produce pre-enrichment. Lower sensitivity was obtained, depending on produce type and extraction method. The InstaGene Matrix was the most consistent and sensitive and the multiplex assay accurately detected Shigella in less than 90 min, outperforming, to the best of our knowledge, molecular assays currently in place for this pathogen. Published by Elsevier Ltd.

  18. Multiplex detection of pathogen biomarkers in human blood, serum, and saliva using silicon photonic microring resonators

    NASA Astrophysics Data System (ADS)

    Estrada, I. A.; Burlingame, R. W.; Wang, A. P.; Chawla, K.; Grove, T.; Wang, J.; Southern, S. O.; Iqbal, M.; Gunn, L. C.; Gleeson, M. A.

    2015-05-01

    Genalyte has developed a multiplex silicon photonic chip diagnostics platform (MaverickTM) for rapid detection of up to 32 biological analytes from a drop of sample in just 10 to 20 minutes. The chips are manufactured with waveguides adjacent to ring resonators, and probed with a continuously variable wavelength laser. A shift in the resonant wavelength as mass binds above the ring resonators is measured and is directly proportional to the amount of bound macromolecules. We present here the ability to multiplex the detection of hemorrhagic fever antigens in whole blood, serum, and saliva in a 16 minute assay. Our proof of concept testing of a multiplex antigencapture chip has the ability to detect Zaire Ebola (ZEBOV) recombinant soluble glycoprotein (rsGP), Marburg virus (MARV) Angola recombinant glycoprotein (rGP) and dengue nonstructural protein I (NS1). In parallel, detection of 2 malaria antigens has proven successful, but has yet to be incorporated into multiplex with the others. Each assay performs with sensitivity ranging from 1.6 ng/ml to 39 ng/ml depending on the antigen detected, and with minimal cross-reactivity.

  19. Comparison of NxTAG Respiratory Pathogen Panel and Anyplex II RV16 Tests for Multiplex Detection of Respiratory Pathogens in Hospitalized Children

    PubMed Central

    Brotons, Pedro; Henares, Desiree; Latorre, Irene; Cepillo, Antonio; Launes, Cristian

    2016-01-01

    Multiplex molecular techniques can detect a diversity of respiratory viruses and bacteria that cause childhood acute respiratory infection rapidly and conveniently. However, currently available techniques show high variation in performance. We sought to compare the diagnostic accuracy of the novel multiplex NxTAG respiratory pathogen panel (RPP) RUO test versus a routine multiplex Anyplex II RV16 assay in respiratory specimens collected from children <18 years of age hospitalized with nonspecific symptoms of acute lower respiratory infection. Parallel testing was performed on nasopharyngeal aspirates prospectively collected at referral Children's Hospital Sant Joan de Déu (Barcelona, Spain) between June and November 2015. Agreement values between the two tests and kappa coefficients were assessed. Bidirectional sequencing was performed for the resolution of discordant results. A total of 319 samples were analyzed by both techniques. A total of 268 (84.0%) of them yielded concordant results. Positive percent agreement values ranged from 83.3 to 100%, while the negative percent agreement was more than 99% for all targets except for enterovirus/rhinovirus (EV/RV; 94.4%). Kappa coefficients ranged from 0.83 to 1.00. Discrepancy analysis confirmed 66.0% of NxTAG RPP RUO results. A total of 260 viruses were detected, with EV/RV (n = 105, 40.4%) being the most prevalent target. Viral coinfections were found in 44 (14.2%) samples. In addition, NxTAG RPP RUO detected single bacterial and mixed viral-bacterial infections in seven samples. NxTAG RPP RUO showed high positive and negative agreement with Anyplex II RV16 for main viruses that cause acute respiratory infections in children, coupled with an additional capability to detect some respiratory bacteria. PMID:27629904

  20. Piglet colibacillosis diagnosis based on multiplex polymerase chain reaction and immunohistochemistry of paraffin-embedded tissues

    PubMed Central

    de Andrade, Caroline P.; Machado, Verônica S. L.; Bianchi, Matheus V.; Rolim, Veronica M.; Cruz, Raquel A. S.; Driemeier, David

    2018-01-01

    Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in pigs, referred to as colibacillosis. The aim of this study was to optimize multiplex polymerase chain reaction (PCR) and immunohistochemistry (IHC) analyses of paraffin-embedded material to detect pathogenic E. coli strains causing colibacillosis in pigs. Multiplex PCR was optimized for fimbriae (F18, F4, F6, F5, and F41) and toxins (types A and B heat-stable toxins [STaP and STb], heat-labile toxin [LT], and type 2 Shiga toxin [STx2e]), and IHC was optimized for an anti-E. coli polyclonal antibody. Samples (132) from pigs received between 2006 and 2014 with clinical and histopathological diagnoses of colibacillosis were analyzed. E. coli was detected by IHC in 78.7%, and at least one virulence factor gene was detected in 71.2%. Pathogenic strains of ETEC with at least one fimbria and one toxin were detected in 40% of the samples in multiplex PCR. The most frequent virulence types were F18-STaP (7.5%), F18-STaP-STb (5.7%), and F4-STaP (3.8%). A statistically significant association was noted between virulence factors F4, F18, STaP, and STb and positive immunostaining results. Colibacillosis diagnosis through multiplex PCR and IHC of paraffin-embedded tissues is a practical approach, as samples can be fixed and stored for long periods before analysis. PMID:28693311

  1. Development of a multiplex microsphere immunoassay for the quantitation of salivary antibody responses to selected waterborne pathogens

    EPA Science Inventory

    Saliva has an important advantage over serum as a medium for antibody detection due to non-invasive sampling, which is critical for community-based epidemiological surveys. The development of a Luminex multiplex immunoassay for measurement of salivary IgG and IgA responses to pot...

  2. The increasing application of multiplex nucleic acid detection tests to the diagnosis of syndromic infections.

    PubMed

    Gray, J; Coupland, L J

    2014-01-01

    On 14 January 2013, the US Food and Drug Administration (FDA) announced permission for a multiplex nucleic acid test, the xTAG® Gastrointestinal Pathogen Panel (GPP) (Luminex Corporation, USA), which simultaneously detects 11 common viral, bacterial and parasitic causes of infectious gastroenteritis, to be marketed in the USA. This announcement reflects the current move towards the development and commercialization of detection technologies based on nucleic acid amplification techniques for diagnosis of syndromic infections. We discuss the limitations and advantages of nucleic acid amplification techniques and the recent advances in Conformité Européene - in-vitro diagnostic (CE-IVD)-approved multiplex real-time PCR kits for the simultaneous detection of multiple targets within the clinical diagnostics market.

  3. Multiplex polymerase chain reaction assay for the detection of minute virus of mice and mouse parvovirus infections in laboratory mice.

    PubMed

    Wang, K W; Chueh, L L; Wang, M H; Huang, Y T; Fang, B H; Chang, C Y; Fang, M C; Chou, J Y; Hsieh, S C; Wan, C H

    2013-04-01

    Mouse parvoviruses are among the most prevalent infectious pathogens in contemporary mouse colonies. To improve the efficiency of routine screening for mouse parvovirus infections, a multiplex polymerase chain reaction (PCR) assay targeting the VP gene was developed. The assay detected minute virus of mice (MVM), mouse parvovirus (MPV) and a mouse housekeeping gene (α-actin) and was able to specifically detect MVM and MPV at levels as low as 50 copies. Co-infection with the two viruses with up to 200-fold differences in viral concentrations can easily be detected. The multiplex PCR assay developed here could be a useful tool for monitoring mouse health and the viral contamination of biological materials.

  4. High throughput, multiplexed pathogen detection authenticates plague waves in medieval Venice, Italy.

    PubMed

    Tran, Thi-Nguyen-Ny; Signoli, Michel; Fozzati, Luigi; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel

    2011-03-10

    Historical records suggest that multiple burial sites from the 14th-16th centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics. High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype. These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century.

  5. [Combined G-banded karyotyping and multiplex ligation-dependent probe amplification for the detection of chromosomal abnormalities in fetuses with congenital heart defects].

    PubMed

    Liu, Yang; Xie, Jiansheng; Geng, Qian; Xu, Zhiyong; Wu, Weiqin; Luo, Fuwei; Li, Suli; Wang, Qin; Chen, Wubin; Tan, Hongxi; Zhang, Hu

    2017-02-10

    To assess the value of G-banded karyotyping in combination with multiplex ligation-dependent probe amplification (MLPA) as a tool for the detection of chromosomal abnormalities in fetuses with congenital heart defects. The combined method was used to analyze 104 fetuses with heart malformations identified by ultrasonography. Abnormal findings were confirmed with chromosomal microarray analysis (CMA). Nineteen (18%) fetuses were found to harbor chromosomal aberrations by G-banded karyotyping and MLPA. For 93 cases, CMA has detected abnormalities in 14 cases including 10 pathogenic copy number variations (CNVs) and 4 CNVs of uncertain significance (VOUS). MLPA was able to detect all of the pathogenic CNVs and 1 VOUS CNV. Combined use of G-banded karyotyping and MLPA is a rapid, low-cost and effective method to detect chromosomal abnormalities in fetuses with various heart malformations.

  6. Detection of Multiple Pathogens in Serum Using Silica-Encapsulated Nanotags in a Surface-Enhanced Raman Scattering-Based Immunoassay.

    PubMed

    Neng, Jing; Li, Yina; Driscoll, Ashley J; Wilson, William C; Johnson, Patrick A

    2018-06-06

    A robust immunoassay based on surface-enhanced Raman scattering (SERS) has been developed to simultaneously detect trace quantities of multiple pathogenic antigens from West Nile virus, Rift Valley fever virus, and Yersinia pestis in fetal bovine serum. Antigens were detected by capture with silica-encapsulated nanotags and magnetic nanoparticles conjugated with polyclonal antibodies. The magnetic pull-down resulted in aggregation of the immune complexes, and the silica-encapsulated nanotags provided distinct spectra corresponding to each antigen captured. The limit of detection was ∼10 pg/mL in 20% fetal bovine serum, a significant improvement over previous studies in terms of sensitivity, level of multiplexing, and medium complexity. This highly sensitive multiplex immunoassay platform provides a promising method to detect various antigens directly in crude serum samples without the tedious process of sample preparation, which is desirable for on-site diagnostic testing and real-time disease monitoring.

  7. APDS: the autonomous pathogen detection system.

    PubMed

    Hindson, Benjamin J; Makarewicz, Anthony J; Setlur, Ujwal S; Henderer, Bruce D; McBride, Mary T; Dzenitis, John M

    2005-04-15

    We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic acid-based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for 7 days in a major U.S. transportation hub is reported.

  8. Development of a Multiplex Real-Time PCR Assay with an Internal Amplification Control for the Detection of Total and Pathogenic Vibrio parahaemolyticus Bacteria in Oysters▿

    PubMed Central

    Nordstrom, Jessica L.; Vickery, Michael C. L.; Blackstone, George M.; Murray, Shelley L.; DePaola, Angelo

    2007-01-01

    Vibrio parahaemolyticus is an estuarine bacterium that is the leading cause of shellfish-associated cases of bacterial gastroenteritis in the United States. Our laboratory developed a real-time multiplex PCR assay for the simultaneous detection of the thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and thermostable-related hemolysin (trh) genes of V. parahaemolyticus. The tlh gene is a species-specific marker, while the tdh and trh genes are pathogenicity markers. An internal amplification control (IAC) was incorporated to ensure PCR integrity and eliminate false-negative reporting. The assay was tested for specificity against >150 strains representing eight bacterial species. Only V. parahaemolyticus strains possessing the appropriate target genes generated a fluorescent signal, except for a late tdh signal generated by three strains of V. hollisae. The multiplex assay detected <10 CFU/reaction of pathogenic V. parahaemolyticus in the presence of >104 CFU/reaction of total V. parahaemolyticus bacteria. The real-time PCR assay was utilized with a most-probable-number format, and its results were compared to standard V. parahaemolyticus isolation methodology during an environmental survey of Alaskan oysters. The IAC was occasionally inhibited by the oyster matrix, and this usually corresponded to negative results for V. parahaemolyticus targets. V. parahaemolyticus tlh, tdh, and trh were detected in 44, 44, and 52% of the oyster samples, respectively. V. parahaemolyticus was isolated from 33% of the samples, and tdh+ and trh+ strains were isolated from 19 and 26%, respectively. These results demonstrate the utility of the real-time PCR assay in environmental surveys and its possible application to outbreak investigations for the detection of total and pathogenic V. parahaemolyticus. PMID:17644647

  9. Combination of microbiological culture and multiplex PCR increases the range of vaginal microorganisms identified in cervical cancer patients at high risk for bacterial vaginosis and vaginitis.

    PubMed

    Schmidt, Katarzyna; Cybulski, Zefiryn; Roszak, Andrzej; Grabiec, Alicja; Talaga, Zofia; Urbański, Bartosz; Odważna, Joanna; Wojciechowicz, Jacek

    2015-05-01

    Bacterial vaginosis (BV) and vaginitis in cervical cancer patients might becaused by mixed aerobic, anaerobic, and atypical bacteria. Since genital tract infections can be complicated, early and accurate identification of causal pathogens is vital. The purpose of this study was i) to determinate if currently used aerobic culture methods are sufficiently sensitive to identify pathogens that can appear in the cervix of women after cancer treatment; ii) to investigate if molecular methods can improve the diagnostic process of BV and vaginitis, as well as broaden the range of detectable pathogens that would otherwise be difficult to cultivate. A one-year hospital-based study was conducted in 2011/2012. Cervical swabs from 130 patients were examined by microbiological culture and multiplex PCR. Swab samples were positive for 107 and 93 women by microbiological culture and multiplex PCR, respectively The most common bacteria isolated from culture were: Escherichia coli, Enterococcus faecalis, Streptococcus agalactiae, and Staphylococcus aureus, and using the molecular technique were: Gardnerella vaginalis, Bacteroides fragilis, Ureoplasma ureoliticum/parvum, Mobiluncus curtisii and Atopobium vaginae. Multiplex PCR might contribute to the diagnosis of genital tract infections and it broadens the number of detectable microorganisms responsible for BV. Combination of these two methods may become the basis for standardized diagnosis of BV and vaginitis.

  10. Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophoresis with genetic algorithm-support vector regression optimization.

    PubMed

    Li, Yongxin; Li, Yuanqian; Zheng, Bo; Qu, Lingli; Li, Can

    2009-06-08

    A rapid and sensitive method based on microchip capillary electrophoresis with condition optimization of genetic algorithm-support vector regression (GA-SVR) was developed and applied to simultaneous analysis of multiplex PCR products of four foodborne pathogenic bacteria. Four pairs of oligonucleotide primers were designed to exclusively amplify the targeted gene of Vibrio parahemolyticus, Salmonella, Escherichia coli (E. coli) O157:H7, Shigella and the quadruplex PCR parameters were optimized. At the same time, GA-SVR was employed to optimize the separation conditions of DNA fragments in microchip capillary electrophoresis. The proposed method was applied to simultaneously detect the multiplex PCR products of four foodborne pathogenic bacteria under the optimal conditions within 8 min. The levels of detection were as low as 1.2 x 10(2) CFU mL(-1) of Vibrio parahemolyticus, 2.9 x 10(2) CFU mL(-1) of Salmonella, 8.7 x 10(1) CFU mL(-1) of E. coli O157:H7 and 5.2 x 10(1) CFU mL(-1) of Shigella, respectively. The relative standard deviation of migration time was in the range of 0.74-2.09%. The results demonstrated that the good resolution and less analytical time were achieved due to the application of the multivariate strategy. This study offers an efficient alternative to routine foodborne pathogenic bacteria detection in a fast, reliable, and sensitive way.

  11. Detection of Neisseria meningitidis in cerebrospinal fluid using a multiplex PCR and the Luminex detection technology.

    PubMed

    Møller, Jens Kjølseth

    2012-01-01

    Rapid clinical and laboratory diagnoses are the foundation for a successful management of serious infections with Neisseria meningitidis. A species-specific multiplex polymerase chain reaction (PCR) coupled with fluidic microarrays using microbeads (the Luminex xMAP™ Technology) can detect pathogens most frequently found in the cerebrospinal fluid of patients. The Luminex suspension array system uniquely combines flow cytometry, microspheres, laser technology, digital signal processing, and traditional chemistry. In this method, the reaction is carried out in one vessel, in which distinctly color-coded bead sets, each conjugated with a different specific nucleic acid reactant, are hybridized with the PCR products, and a reporter molecule is used to quantify the interaction. The flow-based Luminex array reader identifies each reaction (bead set) after excitation by a red classification laser. Reporter signals from each reaction are simultaneously quantified by fluorescence generated by a green reporter laser. This nonculture, multiplex assay may prove to be an important tool for optimal laboratory diagnosis, not only of meningococcal meningitis, but also of meningitis caused by other bacterial or viral pathogens.

  12. High Throughput, Multiplexed Pathogen Detection Authenticates Plague Waves in Medieval Venice, Italy

    PubMed Central

    Tran, Thi-Nguyen-Ny; Signoli, Michel; Fozzati, Luigi; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel

    2011-01-01

    Background Historical records suggest that multiple burial sites from the 14th–16th centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics. Methodology/Principal Findings High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype. Conclusions These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century. PMID:21423736

  13. Multiplexed Lateral Flow Test for Detection and Differentiation of Cronobacter sakazakii Serotypes O1 and O2

    PubMed Central

    Scharinger, Eva J.; Dietrich, Richard; Wittwer, Tobias; Märtlbauer, Erwin; Schauer, Kristina

    2017-01-01

    The ubiquitous and opportunistic pathogen Cronobacter sakazakii is responsible for severe meningitis, sepsis, and necrotizing enterocolitis in neonates and infants associated with ingestion of contaminated powdered infant formula (PIF). The current ISO method for isolation and detection of Cronobacter spp. is laborious, time-consuming and expensive. In this study, a multiplexed lateral flow test strip was developed to rapidly detect and simultaneously serotype O1 and O2 C. sakazakii serotypes. The assay is based on two monoclonal antibodies (MAb) that specifically bind to the lipopolysaccharides (LPS) of these pathogens. The test strip provides results very quickly; C. sakazakii could be detected in pure culture within 15 min with a sensitivity of 107 CFU/ml. After non-selective enrichment for 18 h as low as one Cronobacter cell per g PIF could be detected. Moreover, the established lateral flow assay (LFA) offers excellent specificity showing no cross-reactivity with other C. sakazakii serotypes, Cronobacter species or Enterobacteriaceae tested. These characteristics, together with several advantages such as speed, simplicity in performance, low analysis cost, and no requirement of specialized skills or sophisticated equipment make the developed multiplexed LFA suitable for reliable detection and serotyping of C. sakazakii serotypes O1 and O2. PMID:28979257

  14. Multiplexed Lateral Flow Test for Detection and Differentiation of Cronobacter sakazakii Serotypes O1 and O2.

    PubMed

    Scharinger, Eva J; Dietrich, Richard; Wittwer, Tobias; Märtlbauer, Erwin; Schauer, Kristina

    2017-01-01

    The ubiquitous and opportunistic pathogen Cronobacter sakazakii is responsible for severe meningitis, sepsis, and necrotizing enterocolitis in neonates and infants associated with ingestion of contaminated powdered infant formula (PIF). The current ISO method for isolation and detection of Cronobacter spp. is laborious, time-consuming and expensive. In this study, a multiplexed lateral flow test strip was developed to rapidly detect and simultaneously serotype O1 and O2 C. sakazakii serotypes. The assay is based on two monoclonal antibodies (MAb) that specifically bind to the lipopolysaccharides (LPS) of these pathogens. The test strip provides results very quickly; C. sakazakii could be detected in pure culture within 15 min with a sensitivity of 10 7 CFU/ml. After non-selective enrichment for 18 h as low as one Cronobacter cell per g PIF could be detected. Moreover, the established lateral flow assay (LFA) offers excellent specificity showing no cross-reactivity with other C. sakazakii serotypes, Cronobacter species or Enterobacteriaceae tested. These characteristics, together with several advantages such as speed, simplicity in performance, low analysis cost, and no requirement of specialized skills or sophisticated equipment make the developed multiplexed LFA suitable for reliable detection and serotyping of C. sakazakii serotypes O1 and O2.

  15. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S E; .Ortiz, J I; Tammero, L

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. Thismore » article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.« less

  16. Rapid Multiplex PCR Assay To Identify Respiratory Viral Pathogens: Moving Forward Diagnosing The Common Cold

    PubMed Central

    Gordon, Sarah M; Elegino-Steffens, Diane U; Agee, Willie; Barnhill, Jason; Hsue, Gunther

    2013-01-01

    Upper respiratory tract infections (URIs) can be a serious burden to the healthcare system. The majority of URIs are viral in etiology, but definitive diagnosis can prove difficult due to frequently overlapping clinical presentations of viral and bacterial infections, and the variable sensitivity, and lengthy turn-around time of viral culture. We tested new automated nested multiplex PCR technology, the FilmArray® system, in the TAMC department of clinical investigations, to determine the feasibility of replacing the standard viral culture with a rapid turn-around system. We conducted a feasibility study using a single-blinded comparison study, comparing PCR results with archived viral culture results from a convenience sample of cryopreserved archived nasopharyngeal swabs from acutely ill ED patients who presented with complaints of URI symptoms. A total of 61 archived samples were processed. Viral culture had previously identified 31 positive specimens from these samples. The automated nested multiplex PCR detected 38 positive samples. In total, PCR was 94.5% concordant with the previously positive viral culture results. However, PCR was only 63.4% concordant with the negative viral culture results, owing to PCR detection of 11 additional viral pathogens not recovered on viral culture. The average time to process a sample was 75 minutes. We determined that an automated nested multiplex PCR is a feasible alternative to viral culture in an acute clinical setting. We were able to detect at least 94.5% as many viral pathogens as viral culture is able to identify, with a faster turn-around time. PMID:24052914

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsia, Chu Chieh; Chizhikov, Vladimir E.; Yang, Amy X.

    Hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus type-1 (HIV-1) are transfusion-transmitted human pathogens that have a major impact on blood safety and public health worldwide. We developed a microarray multiplex assay for the simultaneous detection and discrimination of these three viruses. The microarray consists of 16 oligonucleotide probes, immobilized on a silylated glass slide. Amplicons from multiplex PCR were labeled with Cy-5 and hybridized to the microarray. The assay detected 1 International Unit (IU), 10 IU, 20 IU of HBV, HCV, and HIV-1, respectively, in a single multiplex reaction. The assay also detected and discriminatedmore » the presence of two or three of these viruses in a single sample. Our data represent a proof-of-concept for the possible use of highly sensitive multiplex microarray assay to screen and confirm the presence of these viruses in blood donors and patients.« less

  18. Application of a multiplex immunoassay for detection of salivary antibody responses to selected potentially waterborne pathogens

    EPA Science Inventory

    Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Pathogen-specific antibodies in saliva can be used as bioindicators of recent or ongoing infection. Because collection of saliva is easy and painless, i...

  19. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection.

    PubMed

    Kurt, Hasan; Yüce, Meral; Hussain, Babar; Budak, Hikmet

    2016-07-15

    In this report, a dual-excitation sensing method was developed using aptamer-functionalized quantum dots and upconverting nanoparticles, exhibiting Stokes and anti-Stokes type excitation profiles, respectively. Conjugation of the aptamer-functionalized luminescent nanoparticles with the magnetic beads, comprising short DNA sequences that were partially complementary to the aptamer sequences, enabled facile separation of the analyte-free conjugates for fluorescent measurement. UV-Visible spectroscopy, Circular Dichroism spectroscopy, Dynamic Light Scattering and Polyacrylamide Gel Electrophoresis techniques were used to characterize the aptamer probes developed. The target-specific luminescent conjugates were applied for multiplex detection of model food pathogens, Salmonella typhimurium, and Staphylococcus aureus, in which the fluorescent emission spectra were obtained under UV excitation at 325nm for quantum dots and NIR excitation at 980nm for upconverting nanoparticles, respectively. The dual-excitation strategy was aimed to minimize cross-talk between the luminescent signals for multiplexed detection, and yielded limit of detection values of 16 and 28cfumL(-1) for Staphylococcus aureus, and Salmonella typhimurium, respectively. By employing a greater number of quantum dots and upconverting nanoparticles with non-overlapping fluorescent emissions, the proposed methodology might be exploited further to detect several analytes, simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Molecular testing for viral and bacterial enteric pathogens: gold standard for viruses, but don't let culture go just yet?

    PubMed

    Bloomfield, Maxim G; Balm, Michelle N D; Blackmore, Timothy K

    2015-04-01

    Contemporary diagnostic microbiology is increasingly adopting molecular methods as front line tests for a variety of samples. This trend holds true for detection of enteric pathogens (EP), where nucleic acid amplification tests (NAAT) for viruses are well established as the gold standard, and an increasing number of commercial multi-target assays are now available for bacteria and parasites. NAAT have significant sensitivity and turnaround time advantages over traditional methods, potentially returning same-day results. Multiplex panels offer an attractive 'one-stop shop' that may provide workflow and cost advantages to laboratories processing large sample volumes. However, there are a number of issues which need consideration. Reflex culture is required for antibiotic susceptibility testing and strain typing when needed for food safety and other epidemiological investigations. Surveillance systems will need to allow for differences in disease incidence due to the enhanced sensitivity of NAAT. Laboratories should be mindful of local epidemiology when selecting which pathogens to include in multiplex panels, and be thoughtful regarding which pathogens will not be detected. Multiplex panels may not be appropriate in certain situations, such as hospital-onset diarrhoea, where Clostridium difficile testing might be all that is required, and laboratories may wish to retain the flexibility to run single tests in such situations. The clinical impact of rapid results is also likely to be relatively minor, as infective diarrhoea is a self-limiting illness in the majority of cases. Laboratories will require strategies to assist users in the interpretation of the results produced by NAAT, particularly where pathogens are detected at low levels with uncertain clinical significance. These caveats aside, faecal NAAT are increasingly being used and introduce a new era of diagnosis of gastrointestinal infection.

  1. Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels.

    PubMed

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-03-18

    A highly sensitive and specific multiplex method for the simultaneous detection of three pathogenic bacteria was fabricated using multicolor upconversion nanoparticles (UCNPs) as luminescence labels coupled with aptamers as the molecular recognition elements. Multicolor UCNPs were synthesized via doping with various rare-earth ions to obtain well-separated emission peaks. The aptamer sequences were selected using the systematic evolution of ligands by exponential enrichment (SELEX) strategy for Staphylococcus aureus, Vibrio parahemolyticus, and Salmonella typhimurium. When applied in this method, aptamers can be used for the specific recognition of the bacteria from complex mixtures, including those found in real food matrixes. Aptamers and multicolor UCNPs were employed to selectively capture and simultaneously quantify the three target bacteria on the basis of the independent peaks. Under optimal conditions, the correlation between the concentration of three bacteria and the luminescence signal was found to be linear from 50-10(6) cfu mL(-1). Improved by the magnetic separation and concentration effect of Fe3O4 magnetic nanoparticles, the limits of detection of the developed method were found to be 25, 10, and 15 cfu mL(-1) for S. aureus, V. parahemolyticus, and S. typhimurium, respectively. The capability of the bioassay in real food samples was also investigated, and the results were consistent with experimental results obtained from plate-counting methods. This proposed method for the detection of various pathogenic bacteria based on multicolor UCNPs has great potential in the application of food safety and multiplex nanosensors.

  2. Multiplex PCR detection of problematic pathogens of clinically heterogeneous bacterial vaginosis in Bulgarian women

    PubMed

    Tosheva-Daskalova, Konstantsa; Strateva, Tanya Vasileva; Mitov, Ivan Gergov; Gergova, Raina Tzvetanova

    2017-11-13

    Background/aim: This study aimed to investigate the correlation between the prevalence of problematic pathogens and the clinical status of women with bacterial vaginosis (BV). Materials and methods: Gardnerella vaginalis, Atopobium vaginae, and Mobiluncus spp. were detected using a multiplex PCR assay, and their role in the infection of Bulgarian women with clinically heterogeneous BV was evaluated. Results: The predominant BV-associated pathogen identified was G. vaginalis with an incidence of 98.39%, followed by A. vaginae (68.05%) and Mobiluncus spp. at 17.01%. The coexistence of A. vaginae and G. vaginalis was more common in women with discharge (in 72.04%) and in patients with chronic recurrent BV than among asymptomatic or newly diagnosed BV cases (P < 0.05). Mobiluncus spp. was detected mostly in coinfections, in association with Trichomonas vaginalis. The coinfections were predominantly related to recurrent BV and with complications (P < 0.05). Conclusion: This is the first study about the correlation between problematic pathogens and clinically heterogeneous BV in Bulgarian women. High frequency of infection with key BV-related pathogens was observed in childbearing women. The incidence was shown to often correlate with coexistent T. vaginalis, with severity of infection, and with complicated and recurrent BV after unsuccessful treatments. Screening should be considered in reproductive health programs.

  3. Development of a Multiplex PCR Method to Detect Fungal Pathogens for Quarantine on Exported Cacti

    PubMed Central

    Cho, Hyun ji; Hong, Seong Won; Kim, Hyun-ju; Kwak, Youn-Sig

    2016-01-01

    Major diseases in grafted cacti have been reported and Fusarium oxysporum, Bipolaris cactivora, Phytophthora spp. and Collectotrichum spp. are known as causal pathogens. These pathogens can lead to plant death after infection. Therefore, some European countries have quarantined imported cacti that are infected with specific fungal pathogens. Consequently, we developed PCR detection methods to identify four quarantined fungal pathogens and reduce export rejection rates of Korean grafted cacti. The pathogen specific primer sets F.oF-F.oR, B.CF-B.CR, P.nF-P.nR, and P.cF-P.CR were tested for F. oxysporum, B. cactivora, P. nicotinae, and P. cactorum, respectively. The F.oF-F.oR primer set was designed from the Fusarium ITS region; the B.CF-B.CR and P.nF-P.nR primers respectively from Bipolaris and Phytophthora ITS1; and the P.cF-P.CR primer set from the Ypt1protein gene region. The quarantine fungal pathogen primer pairs were amplified to the specific number of base pairs in each of the following fungal pathogens: 210-bp (F. oxysporum), 510-bp (B. cactivora), 313-bp (P. nicotinae), and 447-bp (P. cactorum). The detection limit for the mono- and multiplex PCR primer sets was 0.1 ng of template DNA under in vitro conditions. Therefore, each primer set successfully diagnosed contamination of quarantine pathogens in export grafted cacti. Consequently, our methodology is a viable tool to screen contamination of the fungal pathogen in exported grafted cacti. PMID:26889115

  4. Clinical Relevance of Pathogens Detected by Multiplex PCR in Blood of Very-Low-Birth Weight Infants with Suspected Sepsis - Multicentre Study of the German Neonatal Network.

    PubMed

    Tröger, Birte; Härtel, Christoph; Buer, Jan; Dördelmann, Michael; Felderhoff-Müser, Ursula; Höhn, Thomas; Hepping, Nico; Hillebrand, Georg; Kribs, Angela; Marissen, Janina; Olbertz, Dirk; Rath, Peter-Michael; Schmidtke, Susanne; Siegel, Jens; Herting, Egbert; Göpel, Wolfgang; Steinmann, Joerg; Stein, Anja

    2016-01-01

    In the German Neonatal Network (GNN) 10% of very-low-birth weight infants (VLBWI) suffer from blood-culture confirmed sepsis, while 30% of VLBWI develop clinical sepsis. Diagnosis of sepsis is a difficult task leading to potential over-treatment with antibiotics. This study aims to investigate whether the results of blood multiplex-PCR (SeptiFast®) for common sepsis pathogens are relevant for clinical decision making when sepsis is suspected in VLBWI. We performed a prospective, multi-centre study within the GNN including 133 VLBWI with 214 episodes of suspected late onset sepsis (LOS). In patients with suspected sepsis a multiplex-PCR (LightCycler SeptiFast MGRADE-test®) was performed from 100 μl EDTA blood in addition to center-specific laboratory biomarkers. The attending neonatologist documented whether the PCR-result, which was available after 24 to 48 hrs, had an impact on the choice of antibiotic drugs and duration of therapy. PCR was positive in 110/214 episodes (51%) and blood culture (BC) was positive in 55 episodes (26%). Both methods yielded predominantly coagulase-negative staphylococci (CoNS) followed by Escherichia coli and Staphylococcus aureus. In 214 BC-PCR paired samples concordant results were documented in 126 episodes (59%; n = 32 were concordant pathogen positive results, n = 94 were negative in both methods). In 65 episodes (30%) we found positive PCR results but negative BCs, with CoNS being identified in 43 (66%) of these samples. Multiplex-PCR results influenced clinical decision making in 30% of episodes, specifically in 18% for the choice of antimicrobial therapy and in 22% for the duration of antimicrobial therapy. Multiplex-PCR results had a moderate impact on clinical management in about one third of LOS-episodes. The main advantage of multiplex-PCR was the rapid detection of pathogens from micro-volume blood samples. In VLBWI limitations include risk of contamination, lack of resistance testing and high costs. The high rate of positive PCR results in episodes of negative BC might lead to overtreatment of infants which is associated with risk of mortality, antibiotic resistance, fungal sepsis and NEC.

  5. Zika Virus and Chikungunya Virus CoInfections: A Series of Three Cases from a Single Center in Ecuador

    PubMed Central

    Zambrano, Hector; Waggoner, Jesse J.; Almeida, Cristina; Rivera, Lisette; Benjamin, Juan Quintana; Pinsky, Benjamin A.

    2016-01-01

    Zika virus (ZIKV) and chikungunya virus (CHIKV) cocirculate throughout much of the tropical Western Hemisphere; however, few cases of coinfection with these two pathogens have been reported. Herein, we describe three cases of ZIKV–CHIKV coinfection detected at a single center in Ecuador: a patient who developed symptoms on postoperative day 5 from an orthopedic procedure, a woman who had traveled to Ecuador for fertility treatment, and a woman who was admitted for Guillain–Barré syndrome and had ZIKV and CHIKV detected in serum and cerebrospinal fluid. All cases were diagnosed using a multiplex real-time reverse transcription polymerase chain reaction, and ZIKV viremia was detected as late as 16 days after symptom onset. These cases demonstrate the varied clinical presentation of ZIKV–CHIKV coinfections as well as the importance of multiplexed arboviral testing for these pathogens. PMID:27402518

  6. Zika Virus and Chikungunya Virus CoInfections: A Series of Three Cases from a Single Center in Ecuador.

    PubMed

    Zambrano, Hector; Waggoner, Jesse J; Almeida, Cristina; Rivera, Lisette; Benjamin, Juan Quintana; Pinsky, Benjamin A

    2016-10-05

    Zika virus (ZIKV) and chikungunya virus (CHIKV) cocirculate throughout much of the tropical Western Hemisphere; however, few cases of coinfection with these two pathogens have been reported. Herein, we describe three cases of ZIKV-CHIKV coinfection detected at a single center in Ecuador: a patient who developed symptoms on postoperative day 5 from an orthopedic procedure, a woman who had traveled to Ecuador for fertility treatment, and a woman who was admitted for Guillain-Barré syndrome and had ZIKV and CHIKV detected in serum and cerebrospinal fluid. All cases were diagnosed using a multiplex real-time reverse transcription polymerase chain reaction, and ZIKV viremia was detected as late as 16 days after symptom onset. These cases demonstrate the varied clinical presentation of ZIKV-CHIKV coinfections as well as the importance of multiplexed arboviral testing for these pathogens. © The American Society of Tropical Medicine and Hygiene.

  7. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    PubMed

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Portable pathogen detection system

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  9. Performance of automated multiplex PCR using sonication fluid for diagnosis of periprosthetic joint infection: a prospective cohort.

    PubMed

    Renz, Nora; Feihl, Susanne; Cabric, Sabrina; Trampuz, Andrej

    2017-12-01

    Sonication of explanted prostheses improved the microbiological diagnosis of periprosthetic joint infections (PJI). We evaluated the performance of automated multiplex polymerase chain reaction (PCR) using sonication fluid for the microbiological diagnosis of PJI. In a prospective cohort using uniform definition criteria for PJI, explanted joint prostheses were investigated by sonication and the resulting sonication fluid was analyzed by culture and multiplex PCR. McNemar's Chi-squared test was used to compare the performance of diagnostic tests. Among 111 patients, PJI was diagnosed in 78 (70%) and aseptic failure in 33 (30%). For the diagnosis of PJI, the sensitivity and specificity of periprosthetic tissue culture was 51 and 100%, of sonication fluid culture 58 and 100%, and of sonication fluid PCR 51 and 94%, respectively. Among 70 microorganisms, periprosthetic tissue culture grew 52 (74%), sonication fluid culture grew 50 (71%) and sonication fluid PCR detected 37 pathogens (53%). If only organisms are considered, for which primers are included in the test panel, PCR detected 37 of 58 pathogens (64%). The sonication fluid PCR missed 19 pathogens (predominantly oral streptococci and anaerobes), whereas 7 additional microorganisms were detected only by PCR (including Cutibacterium spp. and coagulase-negative staphylococci). The performance of multiplex PCR using sonication fluid is comparable to culture of periprosthetic tissue or sonication fluid. The advantages of PCR are short processing time (< 5 h) and fully automated procedure. However, culture technique is still needed due to the low sensitivity and the need of comprehensive susceptibility testing. Modification of primers or inclusion of additional ones may improve the performance of PCR, especially of low-virulent organisms.

  10. Detection of Pneumonia Associated Pathogens Using a Prototype Multiplexed Pneumonia Test in Hospitalized Patients with Severe Pneumonia

    PubMed Central

    Schulte, Berit; Eickmeyer, Holm; Heininger, Alexandra; Juretzek, Stephanie; Karrasch, Matthias; Denis, Olivier; Roisin, Sandrine; Pletz, Mathias W.; Klein, Matthias; Barth, Sandra; Lüdke, Gerd H.; Thews, Anne; Torres, Antoni; Cillóniz, Catia; Straube, Eberhard; Autenrieth, Ingo B.; Keller, Peter M.

    2014-01-01

    Severe pneumonia remains an important cause of morbidity and mortality. Polymerase chain reaction (PCR) has been shown to be more sensitive than current standard microbiological methods – particularly in patients with prior antibiotic treatment – and therefore, may improve the accuracy of microbiological diagnosis for hospitalized patients with pneumonia. Conventional detection techniques and multiplex PCR for 14 typical bacterial pneumonia-associated pathogens were performed on respiratory samples collected from adult hospitalized patients enrolled in a prospective multi-center study. Patients were enrolled from March until September 2012. A total of 739 fresh, native samples were eligible for analysis, of which 75 were sputa, 421 aspirates, and 234 bronchial lavages. 276 pathogens were detected by microbiology for which a valid PCR result was generated (positive or negative detection result by Curetis prototype system). Among these, 120 were identified by the prototype assay, 50 pathogens were not detected. Overall performance of the prototype for pathogen identification was 70.6% sensitivity (95% confidence interval (CI) lower bound: 63.3%, upper bound: 76.9%) and 95.2% specificity (95% CI lower bound: 94.6%, upper bound: 95.7%). Based on the study results, device cut-off settings were adjusted for future series production. The overall performance with the settings of the CE series production devices was 78.7% sensitivity (95% CI lower bound: 72.1%) and 96.6% specificity (95% CI lower bound: 96.1%). Time to result was 5.2 hours (median) for the prototype test and 43.5 h for standard-of-care. The Pneumonia Application provides a rapid and moderately sensitive assay for the detection of pneumonia-causing pathogens with minimal hands-on time. Trial Registration Deutsches Register Klinischer Studien (DRKS) DRKS00005684 PMID:25397673

  11. Detection of enteropathogens associated with travelers’ diarrhea using a multiplex Luminex-based assay performed on stool samples smeared on Whatman FTA Elute cards

    PubMed Central

    Lalani, Tahaniyat; Tisdale, Michele D; Maguire, Jason D; Wongsrichanalai, Chansuda; Riddle, Mark S; Tribble, David R

    2015-01-01

    We evaluated the limits of detection (LoD) for an 11-plex PCR-Luminex assay performed on Whatman FTA Elute cards smeared with stool containing pathogens associated with travelers’ diarrhea. LoDs ranged between 102-105 CFU, PFU or cysts/g for most pathogens except Cryptosporidium. Campylobacter and norovirus LoD increased with prolonged storage of cards. PMID:26072151

  12. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection.

    PubMed

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong

    2017-04-15

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Microtiter plate-based antibody microarrays for bacteria and toxins

    USDA-ARS?s Scientific Manuscript database

    Research has focused on the development of rapid biosensor-based, high-throughput, and multiplexed detection of pathogenic bacteria in foods. Specifically, antibody microarrays in 96-well microtiter plates have been generated for the purpose of selective detection of Shiga toxin-producing E. coli (...

  14. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles

    USDA-ARS?s Scientific Manuscript database

    A highly sensitive immunoassay based on surface-enhanced Raman scattering (SERS) spectroscopy has been developed for multiplex detection of surface envelope and capsid antigens of the viral zoonotic pathogens West Nile virus (WNV) and Rift Valley fever virus (RVFV). Detection was mediated by antibo...

  15. Multiplex PCR for the detection and differentiation of Vibrio parahaemolyticus strains using the groEL, tdh and trh genes.

    PubMed

    Hossain, Muhammad Tofazzal; Kim, Young-Ok; Kong, In-Soo

    2013-01-01

    Vibrio parahaemolyticus is a significant cause of human gastrointestinal disorders worldwide, transmitted primarily by ingestion of raw or undercooked contaminated seafood. In this study, a multiplex PCR assay for the detection and differentiation of V. parahaemolyticus strains was developed using primer sets for a species-specific marker, groEL, and two virulence markers, tdh and trh. Multiplex PCR conditions were standardised, and extracted genomic DNA of 70 V. parahaemolyticus strains was used for identification. The sensitivity and efficacy of this method were validated using artificially inoculated shellfish and seawater. The expected sizes of amplicons were 510 bp, 382 bp, and 171 bp for groEL, tdh and trh, respectively. PCR products were sufficiently different in size, and the detection limits of the multiplex PCR for groEL, tdh and trh were each 200 pg DNA. Specific detection and differentiation of virulent from non-virulent strains in shellfish homogenates and seawater was also possible after artificial inoculation with various V. parahaemolyticus strains. This newly developed multiplex PCR is a rapid assay for detection and differentiation of pathogenic V. parahaemolyticus strains, and could be used to prevent disease outbreaks and protect public health by helping the seafood industry maintain a safe shellfish supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Simultaneous detection of antibodies to five Actinobacillus pleuropneumoniae serovars using bead-based multiplex analysis.

    PubMed

    Berger, Sanne Schou; Lauritsen, Klara Tølbøll; Boas, Ulrik; Lind, Peter; Andresen, Lars Ole

    2017-11-01

    We developed and made a preliminary validation of a bead-based multiplexed immunoassay for simultaneous detection of porcine serum antibodies to Actinobacillus pleuropneumoniae serovars 1, 2, 6, 7, and 12. Magnetic fluorescent beads were coupled with A. pleuropneumoniae antigens and tested with a panel of serum samples from experimentally infected pigs and with serum samples from uninfected and naturally infected pigs. The multiplex assay was compared to in-house ELISAs and complement fixation (CF) tests, which have been used for decades as tools for herd classification in the Danish Specific Pathogen Free system. Assay specificities and sensitivities as well as the corresponding cutoff values were determined using receiver operating characteristic (ROC) curve analysis, and the A. pleuropneumoniae multiplex assay showed good correlation with the in-house ELISAs and CF tests with areas under ROC curves ≥ 0.988. Benefits of multiplexed assays compared to ELISAs and CF tests include reduced serum sample volumes needed for analysis, less labor, and shorter assay time.

  17. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element

    PubMed Central

    Haudenshield, James S.; Song, Jeong Y.; Hartman, Glen L.

    2017-01-01

    Phytophthora root rot of soybean [Glycine max (L.) Merr.] is caused by the oomycete Phytophthora sojae (Kaufm. & Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospores which subsequently germinate to release motile, infectious zoospores. Molecular assays detecting DNA of P. sojae are useful in disease diagnostics, and for determining the presence of the organism in host tissues, soils, and runoff or ponded water from potentially infested fields. Such assays as published have utilized ITS sequences from the nuclear ribosomal RNA genes in conventional PCR or dye-binding quantitative PCR (Q-PCR) but are not amenable to multiplexing, and some of these assays did not utilize control strategies for type I or type II errors. In this study, we describe primers and a bifunctional probe with specificity to a gypsy-like retroelement in the P. sojae genome to create a fluorogenic 5’-exonuclease linear hydrolysis assay, with a multiplexed internal control reaction detecting an exogenous target to validate negative calls, and with uracil-deglycosylase-mediated protection against carryover contamination. The assay specifically detected 13 different P. sojae isolates, and excluded 17 other Phytophthora species along with 20 non-Phytophthora fungal and oomycete species pathogenic on soybean. A diagnostic limit of detection of 34 fg total P. sojae DNA was observed in serial dilutions, equivalent to 0.3 genome, and a practical detection sensitivity of four zoospores per sample was achieved, despite losses during DNA extraction. PMID:28441441

  18. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCRmore » amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.« less

  19. A multiplex PCR/LDR assay for simultaneous detection and identification of the NIAID category B bacterial food and water-borne pathogens.

    PubMed

    Rundell, Mark S; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H; Spitzer, Eric D; Golightly, Linnie; Barany, Francis

    2014-06-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/ligation detection reaction (LDR) assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay were assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91% to 100% (median 100%) depending on the species. For the majority of organisms, the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples, the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  1. Centrifugal sedimentation immunoassays for multiplexed detection of enteric bacteria in ground water

    PubMed Central

    Litvinov, Julia; Moen, Scott T.; Koh, Chung-Yan; Singh, Anup K.

    2016-01-01

    Waterborne pathogens pose significant threat to the global population and early detection plays an important role both in making drinking water safe, as well as in diagnostics and treatment of water-borne diseases. We present an innovative centrifugal sedimentation immunoassay platform for detection of bacterial pathogens in water. Our approach is based on binding of pathogens to antibody-functionalized capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk. Beads at the distal end of the disk are imaged to quantify the fluorescence and determine the bacterial concentration. Our platform is fast (20 min), can detect as few as ∼10 bacteria with minimal sample preparation, and can detect multiple pathogens simultaneously. The platform was used to detect a panel of enteric bacteria (Escherichia coli, Salmonella typhimurium, Shigella, Listeria, and Campylobacter) spiked in tap and ground water samples. PMID:26858815

  2. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  3. Development of a multiplex PCR assay for detection and discrimination of Theileria annulata and Theileria sergenti in cattle.

    PubMed

    Junlong, Liu; Li, Youquan; Liu, Aihong; Guan, Guiquan; Xie, Junren; Yin, Hong; Luo, Jianxun

    2015-07-01

    Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.

  4. Multiplex quantification of Escherichia coli, Salmonella typhi and Vibrio cholera with three DNA targets in single reaction assay.

    PubMed

    Jangampalli Adi, Pradeepkiran; Naidu, Jagadish R; Matcha, Bhaskar

    2017-09-01

    Escherichia coli (E. coli), Salmonella typhi and Vibrio cholera harmful pathogens, which causes various diseases in humans. Rapid diagnosis of bacterial infection is an important for patient management and appropriate therapy during the early phase of the bacterial infected diseases. Among the existing techniques for identifying pathogens were less sensitive and time-consuming processes. In the present study total, 48 clinical 31 blood and 17 urine samples of patients suspected with the infections were collected from SVRR Hospital and used to detect the pathogens. Multiplex polymerase chain reaction (PCR) assay was set to design for the identification of Escherichia coli, Salmonella typhi and Vibrio cholera from the different clinical samples. Rapid diagnosis of Escherichia coli (E. coli), Salmonella and Vibrio cholera pathogens can be done with simultaneously in a single multiplex PCR assay by using specific primers with adjusted PCR conditions. Through this approach, the results represented with out of 31 blood samples 1-15 shows the positive with E. coli and remaining 14 only 11 were correlated with multiplex results of Vibrio cholera, remaining the urine samples all are positive with 17 samples correlate with the Salmonella typhi. Through the high specificity benefits of excellent sensitivity, with high resolution and reproducibility. This method of results proved and illustrates the best potential system for diagnosing the infectious disease with modern trendy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. An improved method to simultaneously detect Salmonella enteritidis, Escherichia coli O157 and Listeria monocytogenes in ground black pepper using multiplex real-time PCR

    USDA-ARS?s Scientific Manuscript database

    Introduction: The three common foodborne pathogens implicated in foodborne outbreaks are Salmonella spp., Escherichia coli O157:H7 and Listeria monocytogenes. Hence, it is important to identify these pathogens in contaminated foods so that they can be eliminated from the marketplace. At present, the...

  6. A nested multiplex polymerase chain reaction assay for the differential identification of three zooanthroponotic chlamydial strains in porcine swab samples.

    PubMed

    Li, Yingguo; Wang, Yu; Nie, Fuping; Xiao, Jinwen; Wang, Guoming; Yuan, Ling; Li, Zhengguo

    2011-07-01

    Porcine chlamydial infection is an enzootic infectious disease caused by multiple members of the family Chlamydiaceae (e.g. Chlamydophila abortus, Chlamydia suis, and Chlamydophila pneumoniae). Rapid and accurate differentiation of these pathogens is critical in the control and prevention of disease. The aim of the current study was to develop a nested multiplex polymerase chain reaction (nmPCR) assay to simultaneously detect the 3 chlamydial pathogens in clinical samples. In the first round of the nmPCR, 1 pair of family-specific primers were used to amplify the 1,100 base pair (bp) fragment of chlamydial ompA gene. In the second round of the nmPCR, 4 inner primers were designed for Ch. abortus, C. suis, and Ch. pneumoniae. Each pathogen produced a specific amplicon with a size of 340 bp, 526 bp, and 267 bp respectively. The assay was sensitive and specific for detecting target pathogens in both cell cultures and clinical specimens. The results, incorporated with the improved rapid DNA extraction protocol, suggest that the nmPCR could be a promising assay for differential identification of different chlamydial strains in pigs.

  7. Detection of enteropathogens associated with travelers' diarrhea using a multiplex Luminex-based assay performed on stool samples smeared on Whatman FTA Elute cards.

    PubMed

    Lalani, Tahaniyat; Tisdale, Michele D; Maguire, Jason D; Wongsrichanalai, Chansuda; Riddle, Mark S; Tribble, David R

    2015-09-01

    We evaluated the limits of detection (LoD) for an 11-plex PCR-Luminex assay performed on Whatman(™) FTA Elute cards smeared with stool containing pathogens associated with travelers' diarrhea. LoDs ranged from 10(2) to 10(5)CFU, PFU, or cysts/g for most pathogens except Cryptosporidium. Campylobacter and norovirus LoDs increased with prolonged storage of cards. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. How Well Does Physician Selection of Microbiologic Tests Identify Clostridium difficile and other Pathogens in Paediatric Diarrhoea? Insights Using Multiplex PCR-Based Detection

    PubMed Central

    Stockmann, Chris; Rogatcheva, Margarita; Harrel, Brian; Vaughn, Mike; Crisp, Rob; Poritz, Mark; Thatcher, Stephanie; Korgenski, Ernest K; Barney, Trenda; Daly, Judy; Pavia, Andrew T

    2014-01-01

    The objective of this study was to compare the aetiologic yield of standard of care microbiologic testing ordered by physicians with that of a multiplex PCR platform. Stool specimens obtained from children and young adults with gastrointestinal illness were evaluated by standard laboratory methods and a developmental version of the FilmArray Gastrointestinal Diagnostic System (FilmArray GI Panel), a rapid multiplex PCR platform that detects 23 bacterial, viral, and protozoal agents. Results were classified according to the microbiologic tests requested by the treating physician. A median of 3 (range 1-10) microbiologic tests were performed by the clinical laboratory during 378 unique diarrhoeal episodes. A potential aetiologic agent was identified in 46% of stool specimens by standard laboratory methods and in 65% of specimens tested using the FilmArray GI Panel (P<0.001). For those patients who only had Clostridium difficile testing requested, an alternative pathogen was identified in 29% of cases with the FilmArray GI Panel. Notably, 11 (12%) cases of norovirus were identified among children who only had testing for C. difficile ordered. Among those who had C. difficile testing ordered in combination with other tests, an additional pathogen was identified in 57% of stool specimens with the FilmArray GI Panel. For patients who had no C. difficile testing performed, the FilmArray GI Panel identified a pathogen in 63% of cases, including C. difficile in 8%. Physician-specified laboratory testing may miss important diarrhoeal pathogens. Additionally, standard laboratory testing is likely to underestimate co-infections with multiple infectious diarrhoeagenic agents. PMID:25599941

  9. The detection and differentiation of canine respiratory pathogens using oligonucleotide microarrays.

    PubMed

    Wang, Lih-Chiann; Kuo, Ya-Ting; Chueh, Ling-Ling; Huang, Dean; Lin, Jiunn-Horng

    2017-05-01

    Canine respiratory diseases are commonly seen in dogs along with co-infections with multiple respiratory pathogens, including viruses and bacteria. Virus infections in even vaccinated dogs were also reported. The clinical signs caused by different respiratory etiological agents are similar, which makes differential diagnosis imperative. An oligonucleotide microarray system was developed in this study. The wild type and vaccine strains of canine distemper virus (CDV), influenza virus, canine herpesvirus (CHV), Bordetella bronchiseptica and Mycoplasma cynos were detected and differentiated simultaneously on a microarray chip. The detection limit is 10, 10, 100, 50 and 50 copy numbers for CDV, influenza virus, CHV, B. bronchiseptica and M. cynos, respectively. The clinical test results of nasal swab samples showed that the microarray had remarkably better efficacy than the multiplex PCR-agarose gel method. The positive detection rate of microarray and agarose gel was 59.0% (n=33) and 41.1% (n=23) among the 56 samples, respectively. CDV vaccine strain and pathogen co-infections were further demonstrated by the microarray but not by the multiplex PCR-agarose gel. The oligonucleotide microarray provides a highly efficient diagnosis alternative that could be applied to clinical usage, greatly assisting in disease therapy and control. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. FilmArray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection

    PubMed Central

    Poritz, Mark A.; Blaschke, Anne J.; Byington, Carrie L.; Meyers, Lindsay; Nilsson, Kody; Jones, David E.; Thatcher, Stephanie A.; Robbins, Thomas; Lingenfelter, Beth; Amiott, Elizabeth; Herbener, Amy; Daly, Judy; Dobrowolski, Steven F.; Teng, David H. -F.; Ririe, Kirk M.

    2011-01-01

    The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the “FilmArray”, which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon. PMID:22039434

  11. Multiplex polymerase chain reaction assay developed to diagnose adult bacterial meningitis in Taiwan.

    PubMed

    Lee, Chi-Tsung; Hsiao, Kuang-Ming; Chen, Jin-Cherng; Su, Cheng-Chuan

    2015-11-01

    Acute bacterial meningitis causes high morbidity and mortality; the associated clinical symptoms often are insensitive or non-specific; and the pathogenic bacteria are geographically diverse. Clinical diagnosis requires a rapid and accurate methodology. This study aimed to develop a new multiplex polymerase chain reaction (mPCR) assay to detect simultaneously six major bacteria that cause adult bacterial meningitis in Taiwan: Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii. Species-specific primers for the six bacteria were developed using reference strains. The specificities of the mPCRs for these bacteria were validated, and the sensitivities were evaluated via serial dilutions. The mPCR assay specifically detected all of the six pathogens, particularly with sensitivities of 12 colony forming units (CFU)/mL, 90 CFU/mL, and 390 CFU/mL for E. coli, S. pneumoniae, and K. pneumoniae, respectively. This mPCR assay is a rapid and specific tool to detect the six major bacterial pathogens that cause acute adult meningitis in Taiwan, particularly sensitive for detecting E. coli, S. pneumoniae, and K. pneumoniae. The assay may facilitate early diagnosis and guidance for antimicrobial therapy for adult patients with this deadly disease in Taiwan. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  12. Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids

    PubMed Central

    Pazos-Perez, Nicolas; Pazos, Elena; Catala, Carme; Mir-Simon, Bernat; Gómez-de Pedro, Sara; Sagales, Juan; Villanueva, Carlos; Vila, Jordi; Soriano, Alex; García de Abajo, F. Javier; Alvarez-Puebla, Ramon A.

    2016-01-01

    Efficient treatments in bacterial infections require the fast and accurate recognition of pathogens, with concentrations as low as one per milliliter in the case of septicemia. Detecting and quantifying bacteria in such low concentrations is challenging and typically demands cultures of large samples of blood (~1 milliliter) extending over 24–72 hours. This delay seriously compromises the health of patients. Here we demonstrate a fast microorganism optical detection system for the exhaustive identification and quantification of pathogens in volumes of biofluids with clinical relevance (~1 milliliter) in minutes. We drive each type of bacteria to accumulate antibody functionalized SERS-labelled silver nanoparticles. Particle aggregation on the bacteria membranes renders dense arrays of inter-particle gaps in which the Raman signal is exponentially amplified by several orders of magnitude relative to the dispersed particles. This enables a multiplex identification of the microorganisms through the molecule-specific spectral fingerprints. PMID:27364357

  13. Development of a novel hexa-plex PCR method for identification and serotyping of Salmonella species.

    PubMed

    Li, Ruichao; Wang, Yang; Shen, Jianzhong; Wu, Congming

    2014-01-01

    Salmonella is one of the most important foodborne pathogens, which causes a huge economic burden worldwide. To detect Salmonella rapidly is very meaningful in preventing salmonellosis and decreasing economic losses. Currently, isolation of Salmonella is confirmed by biochemical and serobased serotyping methods, which are time consuming, labor intensive, and complicated. To solve this problem, a hexa-plex polymerase chain reaction (PCR) method was developed using comparative genomics analysis and multiplex PCR technology to detect Salmonella and Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Agona, Salmonella Choleraesuis, and Salmonella Pullorum simultaneously. The accuracy of this method was tested by a collection of 142 Salmonella. Furthermore, the strategy described in this article to mine serovar-specific fragments for Salmonella could be used to find specific fragments for other Salmonella serotypes and bacteria. The combination of this strategy and multiplex PCR is promising in the rapid identification of foodborne pathogens.

  14. Solution-based circuits enable rapid and multiplexed pathogen detection.

    PubMed

    Lam, Brian; Das, Jagotamoy; Holmes, Richard D; Live, Ludovic; Sage, Andrew; Sargent, Edward H; Kelley, Shana O

    2013-01-01

    Electronic readout of markers of disease provides compelling simplicity, sensitivity and specificity in the detection of small panels of biomarkers in clinical samples; however, the most important emerging tests for disease, such as infectious disease speciation and antibiotic-resistance profiling, will need to interrogate samples for many dozens of biomarkers. Electronic readout of large panels of markers has been hampered by the difficulty of addressing large arrays of electrode-based sensors on inexpensive platforms. Here we report a new concept--solution-based circuits formed on chip--that makes highly multiplexed electrochemical sensing feasible on passive chips. The solution-based circuits switch the information-carrying signal readout channels and eliminate all measurable crosstalk from adjacent, biomolecule-specific microsensors. We build chips that feature this advance and prove that they analyse unpurified samples successfully, and accurately classify pathogens at clinically relevant concentrations. We also show that signature molecules can be accurately read 2  minutes after sample introduction.

  15. Centrifugal sedimentation immunoassays for multiplexed detection of enteric bacteria in ground water

    DOE PAGES

    Litvinov, Julia; Moen, Scott T.; Koh, Chung-Yan; ...

    2016-01-01

    Water-born pathogens pose significant threat to the global population and early detection plays an important role both in making drinking water safe, as well as in diagnostics and treatment of water-borne diseases. We present an innovative centrifugal microfluidic platform (SpinDx) for detection of bacterial pathogens using bead-based immunoassays. Our approach is based on binding of pathogens to antibody-functionalized capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by fluorescence microscopy. Our platform is fast (20 min), sensitive (10 3 CFU/mL), requires minimal sample preparation, and can detect multiple pathogens simultaneously with sensitivitymore » similar to that required by the EPA. We demonstrate detection of a panel of enteric bacteria (Escherichia coli, Salmonella typhimurium, Shigella, Listeria, and Campylobacter) at concentrations as low as 10 3 CFU/mL or 30 bacteria per reaction.« less

  16. Multiplex molecular testing for management of infectious gastroenteritis in a hospital setting: a comparative diagnostic and clinical utility study.

    PubMed

    Halligan, E; Edgeworth, J; Bisnauthsing, K; Bible, J; Cliff, P; Aarons, E; Klein, J; Patel, A; Goldenberg, S

    2014-08-01

    Laboratory diagnosis and clinical management of inpatients with diarrhoea is complex and time consuming. Tests are often requested sequentially and undertaken in different laboratories. This causes prolonged unnecessary presumptive isolation of patients, because most cases are non-infectious. A molecular multiplex test (Luminex(®) Gastrointestinal Pathogen Panel (GPP)) was compared with conventional testing over 8 months to determine diagnostic accuracy, turnaround times, laboratory costs, use of isolation facilities and user acceptability. A total of 262 (12%) patients had a pathogen detected by conventional methods compared with 483 (22.1%) by GPP. Most additional cases were detected in patients developing symptoms in the first 4 days of admission. Additional cases were detected because of presumed improved diagnostic sensitivity but also because clinicians had not requested the correct pathogen. Turnaround time (41.8 h) was faster than bacterial culture (66.5 h) and parasite investigation (66.5 h) but slower than conventional testing for Clostridium difficile (17.3 h) and viruses (27 h). The test could allow simplified requesting by clinicians and a consolidated laboratory workflow, reducing the overall number of specimens received by the laboratory. A total of 154 isolation days were saved at an estimated cost of £30 800. Consumables and labour were estimated at £150 641 compared with £63 431 for conventional testing. Multiplex molecular testing using a panel of targets allowed enhanced detection and a consolidated laboratory workflow. This is likely to be of greater benefit to cases that present within the first 4 days of hospital admission. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  17. A Multiplex PCR/LDR Assay for Simultaneous Detection and Identification of the NIAID Category B Bacterial Food and Water-borne Pathogens

    PubMed Central

    Rundell, Mark S.; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H.; Spitzer, Eric D.; Golightly, Linnie; Barany, Francis

    2014-01-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/LDR assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay was assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91 to 100% (median 100%) depending on the species. For the majority of organisms the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. PMID:24709368

  18. A TaqMan-Based Multiplex qPCR Assay and DNA Extraction Method for Phylotype IIB Sequevars 1&2 (Select Agent) Strains of Ralstonia solanacearum

    PubMed Central

    Stulberg, Michael J.; Huang, Qi

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum. PMID:26426354

  19. Analysis of sensitivity and rapid hybridization of a multiplexed Microbial Detection Microarray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thissen, James B.; McLoughlin, Kevin; Gardner, Shea

    Microarrays have proven to be useful in rapid detection of many viruses and bacteria. Pathogen detection microarrays have been used to diagnose viral and bacterial infections in clinical samples and to evaluate the safety of biological drug materials. A multiplexed version of the Lawrence Livermore Microbial Detection Array (LLMDA) was developed and evaluated with minimum detectable concentrations for pure unamplified DNA viruses, along with mixtures of viral and bacterial DNA subjected to different whole genome amplification protocols. In addition the performance of the array was tested when hybridization time was reduced from 17 h to 1 h. The LLMDA wasmore » able to detect unamplified vaccinia virus DNA at a concentration of 14 fM, or 100,000 genome copies in 12 μL of sample. With amplification, positive identification was made with only 100 genome copies of input material. When tested against human stool samples from patients with acute gastroenteritis, the microarray detected common gastroenteritis viral and bacterial infections such as rotavirus and E. coli. Accurate detection was found but with a 4-fold drop in sensitivity for a 1 h compared to a 17 h hybridization. The array detected 2 ng (equivalent concentration of 15.6 fM) of labeled DNA from a virus with 1 h hybridization without any amplification, and was able to identify the components of a mixture of viruses and bacteria at species and in some cases strain level resolution. Sensitivity improved by three orders of magnitude with random whole genome amplification prior to hybridization; for instance, the array detected a DNA virus with only 20 fg or 100 genome copies as input. This multiplexed microarray is an efficient tool to analyze clinical and environmental samples for the presence of multiple viral and bacterial pathogens rapidly.« less

  20. Analysis of sensitivity and rapid hybridization of a multiplexed Microbial Detection Microarray

    DOE PAGES

    Thissen, James B.; McLoughlin, Kevin; Gardner, Shea; ...

    2014-06-01

    Microarrays have proven to be useful in rapid detection of many viruses and bacteria. Pathogen detection microarrays have been used to diagnose viral and bacterial infections in clinical samples and to evaluate the safety of biological drug materials. A multiplexed version of the Lawrence Livermore Microbial Detection Array (LLMDA) was developed and evaluated with minimum detectable concentrations for pure unamplified DNA viruses, along with mixtures of viral and bacterial DNA subjected to different whole genome amplification protocols. In addition the performance of the array was tested when hybridization time was reduced from 17 h to 1 h. The LLMDA wasmore » able to detect unamplified vaccinia virus DNA at a concentration of 14 fM, or 100,000 genome copies in 12 μL of sample. With amplification, positive identification was made with only 100 genome copies of input material. When tested against human stool samples from patients with acute gastroenteritis, the microarray detected common gastroenteritis viral and bacterial infections such as rotavirus and E. coli. Accurate detection was found but with a 4-fold drop in sensitivity for a 1 h compared to a 17 h hybridization. The array detected 2 ng (equivalent concentration of 15.6 fM) of labeled DNA from a virus with 1 h hybridization without any amplification, and was able to identify the components of a mixture of viruses and bacteria at species and in some cases strain level resolution. Sensitivity improved by three orders of magnitude with random whole genome amplification prior to hybridization; for instance, the array detected a DNA virus with only 20 fg or 100 genome copies as input. This multiplexed microarray is an efficient tool to analyze clinical and environmental samples for the presence of multiple viral and bacterial pathogens rapidly.« less

  1. Detection systems for carbapenemase gene identification should include the SME serine carbapenemase.

    PubMed

    Bush, Karen; Pannell, Megan; Lock, John L; Queenan, Anne Marie; Jorgensen, James H; Lee, Ryan M; Lewis, James S; Jarrett, Deidre

    2013-01-01

    Carbapenemase detection has become a major problem in hospitals that encounter outbreaks of infections caused by carbapenem-resistant Gram-negative bacteria. Rapid detection systems have been reported using multiplex PCR analyses and DNA microarray assays. Major carbapenemases that are detected by these systems include the KPC and OXA serine carbapenemases, and the IMP, VIM and NDM families of metallo-β-lactamases. However, increasing numbers of the SME serine carbapenemase are being reported from Serratia marcescens, especially from North and South America. These organisms differ from many of the other carbapenemase-producing pathogens in that they are generally susceptible to the expanded-spectrum cephalosporins ceftazidime and cefepime while retaining resistance to almost all other β-lactam antibiotics. Thus, multiplex PCR assays or DNA microarray testing of carbapenem-resistant S. marcescens isolates should include analyses for production of the SME carbapenemase. Confirmation of the presence of this enzyme may provide reassurance that oxyimino-cephalosporins can be considered for treatment of infections caused by these carbapenem-resistant pathogens. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  2. Preparation of armored RNA as a control for multiplex real-time reverse transcription-PCR detection of influenza virus and severe acute respiratory syndrome coronavirus.

    PubMed

    Yu, Xin-Fen; Pan, Jing-Cao; Ye, Rong; Xiang, Hai-Qing; Kou, Yu; Huang, Zhi-Cheng

    2008-03-01

    The common respiratory viruses, including influenza A, influenza B, and newly emerging severe acute respiratory syndrome (SARS) viruses, may cause similar clinical symptoms. Therefore, differential diagnosis of these virus pathogens is frequently required for single clinical samples. In addition, there is an urgent need for noninfectious and stable RNA standards and controls for multivirus detection. In this study, reverse transcription-PCR (RT-PCR) targeting of the RNAs of influenza A and influenza B viruses and SARS coronavirus was performed, and the resulting products were spliced into a fragment which was packaged into armored RNA for use as a noninfectious, quantifiable synthetic substitute. Furthermore, in the present study we developed a multiplex real-time RT-PCR assay in which the armored RNA was used as an external positive control and the three RNA viruses could be detected simultaneously in a single reaction mix. The detection limit of the multiplex real-time PCR was 10 copies/microl of armored RNA.

  3. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    PubMed

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  4. Fully integrated multiplexed lab-on-a-card assay for enteric pathogens

    NASA Astrophysics Data System (ADS)

    Weigl, B. H.; Gerdes, J.; Tarr, P.; Yager, P.; Dillman, L.; Peck, R.; Ramachandran, S.; Lemba, M.; Kokoris, M.; Nabavi, M.; Battrell, F.; Hoekstra, D.; Klein, E. J.; Denno, D. M.

    2006-01-01

    Under this NIH-funded project, we are developing a lab-on-a-card platform to identify enteric bacterial pathogens in patients presenting with acute diarrhea, with special reference to infections that might be encountered in developing countries. Component functions that are integrated on this platform include on-chip immunocapture of live or whole pathogens, multiplexed nucleic acid amplification and on-chip detection, sample processing to support direct use of clinical specimens, and dry reagent storage and handling. All microfluidic functions are contained on the lab card. This new diagnostic test will be able to rapidly identify and differentiate Shigella dysenteriae serotype 1, Shigella toxin-producing Escherichia coli, E. coli 0157, Campylobacter jejuni, and Salmonella and Shigella species. This presentation will report on progress to date on sample and bacteria processing methodologies, identification and validation of capture antibodies and strategy for organism immunocapture, identification and validation of specific polymerase chain reaction (PCR) primer sequences for over 200 clinical isolates of enteric pathogens, and implementation of on-chip nucleic acid extraction for a subset of those pathogens.

  5. Development and Comparison of Two Assay Formats for Parallel Detection of Four Biothreat Pathogens by Using Suspension Microarrays

    PubMed Central

    Janse, Ingmar; Bok, Jasper M.; Hamidjaja, Raditijo A.; Hodemaekers, Hennie M.; van Rotterdam, Bart J.

    2012-01-01

    Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics. PMID:22355407

  6. Development and comparison of two assay formats for parallel detection of four biothreat pathogens by using suspension microarrays.

    PubMed

    Janse, Ingmar; Bok, Jasper M; Hamidjaja, Raditijo A; Hodemaekers, Hennie M; van Rotterdam, Bart J

    2012-01-01

    Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics.

  7. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli.

    PubMed

    Li, Baoguang; Liu, Huanli; Wang, Weimin

    2017-11-09

    Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, are responsible for numerous foodborne outbreaks annually worldwide. E. coli O157:H7, as well as pathogenic non-O157:H7 STECs, can cause life-threating complications, such as bloody diarrhea (hemolytic colitis) and hemolytic-uremic syndrome (HUS). Previously, we developed a real-time PCR assay to detect E. coli O157:H7 in foods by targeting a unique putative fimbriae protein Z3276. To extend the detection spectrum of the assay, we report a multiplex real-time PCR assay to specifically detect E. coli O157:H7 and screen for non-O157 STEC by targeting Z3276 and Shiga toxin genes (stx1 and stx2). Also, an internal amplification control (IAC) was incorporated into the assay to monitor the amplification efficiency. The multiplex real-time PCR assay was developed using the Life Technology ABI 7500 System platform and the standard chemistry. The optimal amplification mixture of the assay contains 12.5 μl of 2 × Universal Master Mix (Life Technology), 200 nM forward and reverse primers, appropriate concentrations of four probes [(Z3276 (80 nM), stx1 (80 nM), stx2 (20 nM), and IAC (40 nM)], 2 μl of template DNA, and water (to make up to 25 μl in total volume). The amplification conditions of the assay were set as follows: activation of TaqMan at 95 °C for 10 min, then 40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 60 s. The multiplex assay was optimized for amplification conditions. The limit of detection (LOD) for the multiplex assay was determined to be 200 fg of bacterial DNA, which is equivalent to 40 CFU per reaction which is similar to the LOD generated in single targeted PCRs. Inclusivity and exclusivity determinants were performed with 196 bacterial strains. All E. coli O157:H7 (n = 135) were detected as positive and all STEC strains (n = 33) were positive for stx1, or stx2, or stx1 and stx2 (Table 1). No cross reactivity was detected with Salmonella enterica, Shigella strains, or any other pathogenic strains tested. A multiplex real-time PCR assay that can rapidly and simultaneously detect E. coli O157:H7 and screen for non-O157 STEC strains has been developed and assessed for efficacy. The inclusivity and exclusivity tests demonstrated high sensitivity and specificity of the multiplex real-time PCR assay. In addition, this multiplex assay was shown to be effective for the detection of E. coli O157:H7 from two common food matrices, beef and spinach, and may be applied for detection of E. coli O157:H7 and screening for non-O157 STEC strains from other food matrices as well.

  8. Multiplex cytokine profiling with highly pathogenic material: use of formalin solution in luminex analysis.

    PubMed

    Dowall, Stuart D; Graham, Victoria A; Tipton, Thomas R W; Hewson, Roger

    2009-08-31

    Work with highly pathogenic material mandates the use of biological containment facilities, involving microbiological safety cabinets and specialist laboratory engineering structures typified by containment level 3 (CL3) and CL4 laboratories. Consequences of working in high containment are the practical difficulties associated with containing specialist assays and equipment often essential for experimental analyses. In an era of increased interest in biodefence pathogens and emerging diseases, immunological analysis has developed rapidly alongside traditional techniques in virology and molecular biology. For example, in order to maximise the use of small sample volumes, multiplexing has become a more popular and widespread approach to quantify multiple analytes simultaneously, such as cytokines and chemokines. The luminex microsphere system allows for the detection of many cytokines and chemokines in a single sample, but the detection method of using aligned lasers and fluidics means that samples often have to be analysed in low containment facilities. In order to perform cytokine analysis in materials from high containment (CL3 and CL4 laboratories), we have developed an appropriate inactivation methodology after staining steps, which although results in a reduction of median fluorescent intensity, produces statistically comparable outcomes when judged against non-inactivated samples. This methodology thus extends the use of luminex technology for material that contains highly pathogenic biological agents.

  9. Design and fabricate multi channel microfluidic mold on top of glass slide using SU-8

    NASA Astrophysics Data System (ADS)

    Azman, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. A.; Hashim, U.

    2017-09-01

    Microfluidic is the study of fluid in microscale. Microfluidics provides miniaturized fluidic networks for processing and analyzing liquids in the nanoliter to milliliter range. Microfluidic device comprises of some essential segments or structure that are micromixer, microchannel and microchamber. The SU-8 mold is known as the most used technique in microfluidic fabrication due to the characteristic of very gooey polymer that can be spread over a thickness. In this study, in order to reduce the fabrication cost, the development and fabrication of SU-8 mold is replace by using a glass plate instead of silicon wafer which is used in the previous research. We designed a microfluidic chip for use with an IDE sensors to conduct multiplex detection of multiple channels. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The multi-channel microfluidic chip was designed, including the fluid outlet and inlet. A multi-channel microfluidic chip was used for pathogen detection. This paper sum up the fabrication of lab SU-8 mold using glass slide.

  10. Diagnostic Performance of a Multiplex PCR assay for meningitis in an HIV-infected population in Uganda

    PubMed Central

    Rhein, Joshua; Bahr, Nathan C; Hemmert, Andrew C; Cloud, Joann L; Bellamkonda, Satya; Oswald, Cody; Lo, Eric; Nabeta, Henry; Kiggundu, Reuben; Akampurira, Andrew; Musubire, Abdu; Williams, Darlisha; Meya, David B; Boulware, David R

    2015-01-01

    Meningitis remains a worldwide problem, and rapid diagnosis is essential to optimize survival. We evaluated the utility of a multiplex PCR test in differentiating possible etiologies of meningitis. Cerebrospinal fluid (CSF) from 69 HIV-infected Ugandan adults with meningitis was collected at diagnosis (n=51) and among persons with cryptococcal meningitis during therapeutic lumbar punctures (n=68). Cryopreserved CSF specimens were analyzed with BioFire FilmArray® Meningitis/Encephalitis panel, which targets 17 pathogens. The panel detected Cryptococcus in the CSF of patients diagnosed with a first-episode of cryptococcal meningitis by fungal culture with 100% sensitivity and specificity, and differentiated between fungal relapse and paradoxical immune reconstitution inflammatory syndrome in recurrent episodes. A negative FilmArray result was predictive of CSF sterility on follow-up lumbar punctures for cryptococcal meningitis. EBV was frequently detected in this immunosuppressed population (n=45). Other pathogens detected included: CMV (n=2), VZV (n=2), HHV-6 (n=1), and Streptococcus pneumoniae (n=1). The FilmArray Meningitis/Encephalitis panel offers a promising platform for rapid meningitis diagnosis. PMID:26711635

  11. Electrokinetic Stringency Control in Self-Assembled Monolayer-based Biosensors for Multiplex Urinary Tract Infection Diagnosis

    PubMed Central

    Liu, Tingting; Sin, Mandy L. Y.; Pyne, Jeff D.; Gau, Vincent; Liao, Joseph C.; Wong, Pak Kin

    2013-01-01

    Rapid detection of bacterial pathogens is critical toward judicious management of infectious diseases. Herein, we demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis. The in situ electrokinetic stringency control technique generates Joule heating induced temperature rise and electrothermal fluid motion directly on the sensor to improve its performance for detecting bacterial 16S rRNA, a phylogenetic biomarker. The dependence of the hybridization efficiency reveals that in situ electrokinetic stringency control is capable of discriminating single-base mismatches. With electrokinetic stringency control, the background noise due to the matrix effects of clinical urine samples can be reduced by 60%. The applicability of the system is demonstrated by multiplex detection of three uropathogenic clinical isolates with similar 16S rRNA sequences. The results demonstrate that electrokinetic stringency control can significantly improve the signal-to-noise ratio of the biosensor for multiplex urinary tract infection diagnosis. PMID:23891989

  12. Clinical Validation of Multiplex Real-Time PCR Assays for Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Theodore, M. Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L.; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J. Matthew; Messonnier, Nancy E.; Mayer, Leonard W.

    2012-01-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays. PMID:22170919

  13. Clinical validation of multiplex real-time PCR assays for detection of bacterial meningitis pathogens.

    PubMed

    Wang, Xin; Theodore, M Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J Matthew; Messonnier, Nancy E; Mayer, Leonard W

    2012-03-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays.

  14. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    PubMed

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-07

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.

  15. Detection and Differentiation of Lyme Spirochetes and Other Tick-Borne Pathogens from Blood Using Real-Time PCR with Molecular Beacons.

    PubMed

    Schlachter, Samantha; Chan, Kamfai; Marras, Salvatore A E; Parveen, Nikhat

    2017-01-01

    Real-time PCR assays have recently been implemented in diagnostics for many bacterial pathogens, allowing rapid and accurate detection, which ultimately results in improved clinical intervention. Here, we describe a sensitive method of detection for three common tick-borne pathogens Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti since coinfections with these pathogens have started occurring with increasing frequency over the last several years in both North America and Europe. A shared geographic region, the same tick vectors, and similar transmission cycle all favor simultaneous transmission of these three tick-borne pathogens. Furthermore, early symptoms of the diseases are often similar and somewhat nonspecific leading to poor clinical identification. The multiplex real-time PCR assay we describe here utilizes gene-specific primers, molecular beacon probes tagged with different fluorophores, and optimized PCR conditions to detect even small amounts of specific pathogen DNA without interference. Application of this detection method will offer better diagnostics for acute and persistent infection compared to the two-tier serological tests that are currently approved in North America and Europe, which do not necessarily detect active infection.

  16. A Novel Multiplex PCR Discriminates Bacillus anthracis and Its Genetically Related Strains from Other Bacillus cereus Group Species

    PubMed Central

    Ogawa, Hirohito; Fujikura, Daisuke; Ohnuma, Miyuki; Ohnishi, Naomi; Hang'ombe, Bernard M.; Mimuro, Hitomi; Ezaki, Takayuki; Mweene, Aaron S.; Higashi, Hideaki

    2015-01-01

    Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis. PMID:25774512

  17. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations

    PubMed Central

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases. PMID:25628612

  18. Thermally multiplexed polymerase chain reaction.

    PubMed

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  19. Development of a Multiplexed Bead-Based Suspension Array for the Detection and Discrimination of Pospiviroid Plant Pathogens

    PubMed Central

    van Brunschot, Sharon L.; Bergervoet, Jan H. W.; Pagendam, Daniel E.; de Weerdt, Marjanne; Geering, Andrew D. W.; Drenth, André; van der Vlugt, René A. A.

    2014-01-01

    Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies. PMID:24404188

  20. Fundamentals, achievements and challenges in the electrochemical sensing of pathogens.

    PubMed

    Monzó, Javier; Insua, Ignacio; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2015-11-07

    Electrochemical sensors are powerful tools widely used in industrial, environmental and medical applications. The versatility of electrochemical methods allows for the investigation of chemical composition in real time and in situ. Electrochemical detection of specific biological molecules is a powerful means for detecting disease-related markers. In the last 10 years, highly-sensitive and specific methods have been developed to detect waterborne and foodborne pathogens. In this review, we classify the different electrochemical techniques used for the qualitative and quantitative detection of pathogens. The robustness of electrochemical methods allows for accurate detection even in heterogeneous and impure samples. We present a fundamental description of the three major electrochemical sensing methods used in the detection of pathogens and the advantages and disadvantages of each of these methods. In each section, we highlight recent breakthroughs, including the utilisation of microfluidics, immunomagnetic separation and multiplexing for the detection of multiple pathogens in a single device. We also include recent studies describing new strategies for the design of future immunosensing systems and protocols. The high sensitivity and selectivity, together with the portability and the cost-effectiveness of the instrumentation, enhances the demand for further development in the electrochemical detection of microbes.

  1. A novel multiplex PCR for the simultaneous detection of Salmonella enterica and Shigella species.

    PubMed

    Radhika, M; Saugata, Majumder; Murali, H S; Batra, H V

    2014-01-01

    Salmonella enterica and Shigella species are commonly associated with food and water borne infections leading to gastrointestinal diseases. The present work was undertaken to develop a sensitive and reliable PCR based detection system for simultaneous detection of Salmonella enterica and Shigella at species level. For this the conserved regions of specific genes namely ipaH1, ipaH, wbgZ, wzy and invA were targeted for detection of Shigella genus, S. flexneri, S. sonnei, S. boydii and Salmonella enterica respectively along with an internal amplification control (IAC). The results showed that twenty Salmonella and eleven Shigella spp., were accurately identified by the assay without showing non-specificity against closely related other Enterobacteriaceae organisms and also against other pathogens. Further evaluation of multiplex PCR was undertaken on 50 natural samples of chicken, eggs and poultry litter and results compared with conventional culture isolation and identification procedure. The multiplex PCR identified the presence of Salmonella and Shigella strains with a short pre-enrichment step of 5 h in peptone water and the same samples were processed by conventional procedures for comparison. Therefore, this reported multiplex PCR can serve as an alternative to the tedious time-consuming procedure of culture and identification in food safety laboratories.

  2. Occurrence of Vibrio parahaemolyticus and Vibrio vulnificus in retail raw oysters from the eastern coast of Thailand.

    PubMed

    Changchai, Nuttawee; Saunjit, Sudarat

    2014-05-01

    Occurrence, population density and virulence of Vibrio parahaemolyticus and V. vulnificus in 240 retail raw oysters collected monthly between March 2010 and February 2011 from Ang Sila coast, Chon Buri Province, Thailand were determined using most probable number (MPN) multiplex PCR. Multiplex PCR detected V. parahaemolyticus in 219 raw oyster samples, of which 29 samples contained the virulence tdh. MPN values for V. parahaemolyticus and pathogenic strains in most samples ranged from 10 to 10(2) and from 3 to 10 MPN/g, respectively. The presence of V. vulnificus was found in 53 oyster samples in amounts between 10 and 10(2) MPN/g. Of 1,087 V. parahaemolyticus isolates, 14 and 2 isolates carried tdh and virulence trh, respectively but none with both genes. However, none of the presumptive isolates was shown to be V. vulnificus. The detection of pathogenic V. parahaemolyticus and V. vulnificus in raw oysters has rendered high awareness of risk in consumption of raw or undercooked oysters.

  3. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus

    PubMed Central

    Das, Sanchita; Rundell, Mark S.; Mirza, Aashiq H.; Pingle, Maneesh R.; Shigyo, Kristi; Garrison, Aura R.; Paragas, Jason; Smith, Scott K.; Olson, Victoria A.; Larone, Davise H.; Spitzer, Eric D.; Barany, Francis; Golightly, Linnie M.

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398

  4. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    PubMed

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  5. Microbial Diagnostic Microarrays for the Detection and Typing of Food- and Water-Borne (Bacterial) Pathogens

    PubMed Central

    Kostić, Tanja; Sessitsch, Angela

    2011-01-01

    Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples. PMID:27605332

  6. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.

    PubMed

    Hsieh, Kuangwen; Ferguson, B Scott; Eisenstein, Michael; Plaxco, Kevin W; Soh, H Tom

    2015-04-21

    The capacity to achieve rapid, sensitive, specific, quantitative, and multiplexed genetic detection of pathogens via a robust, portable, point-of-care platform could transform many diagnostic applications. And while contemporary technologies have yet to effectively achieve this goal, the advent of microfluidics provides a potentially viable approach to this end by enabling the integration of sophisticated multistep biochemical assays (e.g., sample preparation, genetic amplification, and quantitative detection) in a monolithic, portable device from relatively small biological samples. Integrated electrochemical sensors offer a particularly promising solution to genetic detection because they do not require optical instrumentation and are readily compatible with both integrated circuit and microfluidic technologies. Nevertheless, the development of generalizable microfluidic electrochemical platforms that integrate sample preparation and amplification as well as quantitative and multiplexed detection remains a challenging and unsolved technical problem. Recognizing this unmet need, we have developed a series of microfluidic electrochemical DNA sensors that have progressively evolved to encompass each of these critical functionalities. For DNA detection, our platforms employ label-free, single-step, and sequence-specific electrochemical DNA (E-DNA) sensors, in which an electrode-bound, redox-reporter-modified DNA "probe" generates a current change after undergoing a hybridization-induced conformational change. After successfully integrating E-DNA sensors into a microfluidic chip format, we subsequently incorporated on-chip genetic amplification techniques including polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) to enable genetic detection at clinically relevant target concentrations. To maximize the potential point-of-care utility of our platforms, we have further integrated sample preparation via immunomagnetic separation, which allowed the detection of influenza virus directly from throat swabs and developed strategies for the multiplexed detection of related bacterial strains from the blood of septic mice. Finally, we developed an alternative electrochemical detection platform based on real-time LAMP, which not is only capable of detecting across a broad dynamic range of target concentrations, but also greatly simplifies quantitative measurement of nucleic acids. These efforts represent considerable progress toward the development of a true sample-in-answer-out platform for genetic detection of pathogens at the point of care. Given the many advantages of these systems, and the growing interest and innovative contributions from researchers in this field, we are optimistic that iterations of these systems will arrive in clinical settings in the foreseeable future.

  7. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei.

    PubMed

    Janse, Ingmar; Hamidjaja, Raditijo A; Hendriks, Amber C A; van Rotterdam, Bart J

    2013-02-14

    Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.

  8. A TaqMan-based multiplex qPCR assay and DNA extraction method for phylotype IIB sequevars 1&2 (select agent) strains of Ralstonia solanacearum

    DOE PAGES

    Stulberg, Michael J.; Huang, Qi

    2015-10-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regionsmore » of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Moreover, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.« less

  9. Multiplex real-time PCR detection and differentiation of Colletotrichum species infecting soybean

    USDA-ARS?s Scientific Manuscript database

    Colletotrichum species are fungal plant pathogens of worldwide significance. We isolated Colletotrichum species from soybean [Glycine max (L.) Merr.] with anthracnose symptoms in the U.S. states of Alabama, Arkansas, Illinois, Mississippi, and North Dakota from 2009 to 2013. Thirty-five strains from...

  10. Quantitation of Marek's disease and chicken anemia viruses in organs of experimentally infected chickens and commercial chickens by multiplex real-time PCR.

    PubMed

    Davidson, Irit; Raibshtein, I; Al-Touri, A

    2013-06-01

    The worldwide distribution of chicken anemia virus (CAV) and Marek's disease virus (MDV) is well documented. In addition to their economic significance in single- or dual-virus infections, the two viruses can often accompany various other pathogens and affect poultry health either directly, by causing tumors, anemia, and delayed growth, or indirectly, by aggravating other diseases, as a result of their immunosuppressive effects. After a decade of employing the molecular diagnosis of those viruses, which replaced conventional virus isolation, we present the development of a real-time multiplex PCR for the simultaneous detection of both viruses. The real-time PCRs for MDV and for CAV alone are more sensitive than the respective end-point PCRs. In addition, the multiplex real-time shows a similar sensitivity when compared to the single real-time PCR for each virus. The newly developed real-time multiplex PCR is of importance in terms of the diagnosis and detection of low copies of each virus, MDV and CAV in single- and in multiple-virus infections, and its applicability will be further evaluated.

  11. A Multiplexed Diagnostic Platform for Point-of-Care Pathogen Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, J F; Letant, S E; Adams, K L

    2008-02-04

    We developed an automated point-of-care diagnostic instrument that is capable of analyzing nasal swab samples for the presence of respiratory diseases. This robust instrument, called FluIDx, performs autonomous multiplexed RT-PCR reactions that are analyzed by microsphere xMAP technology. We evaluated the performance of FluIDx, in comparison rapid tests specific for influenza and respiratory syncytial virus, in a clinical study performed at the UC Davis Medical Center. The clinical study included samples positive for RSV (n = 71), influenza A (n = 16), influenza B (n = 4), adenovirus (n = 5), parainfluenza virus (n = 2), and 44 negative samples,more » according to a composite reference method. FluIDx and the rapid tests detected 85.9% and 62.0% of the RSV positive samples, respectively. Similar sensitivities were recorded for the influenza B samples; whereas the influenza A samples were poorly detected, likely due to the utilization of an influenza A signature that did not accurately match currently circulating influenza A strains. Data for all pathogens were compiled and indicate that FluIDx is more sensitive than the rapid tests, detecting 74.2% (95% C.I. of 64.7-81.9%) of the positive samples in comparison to 53.6% (95% C.I. of 43.7-63.2%) for the rapid tests. The higher sensitivity of FluIDx was partially offset by a lower specificity, 77.3% versus 100.0%. Overall, these data suggest automated flow-through PCR-based instruments that perform multiplexed assays can successfully screen clinical samples for infectious diseases.« less

  12. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay

    PubMed Central

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-01-01

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 104 CFU mL−1 or 105 CFU mL−1 for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R2) of 0.916–0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water. PMID:26884128

  13. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay.

    PubMed

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-02-17

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 10(4) CFU mL(-1) or 10(5) CFU mL(-1) for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R(2)) of 0.916-0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥ 80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water.

  14. High-performance single cell genetic analysis using microfluidic emulsion generator arrays.

    PubMed

    Zeng, Yong; Novak, Richard; Shuga, Joe; Smith, Martyn T; Mathies, Richard A

    2010-04-15

    High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Microfabricated emulsion generator array (MEGA) devices containing 4, 32, and 96 channels are developed to confer a flexible capability of generating up to 3.4 x 10(6) nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed and the beads are pooled and rapidly analyzed by multicolor flow cytometry. Using Escherichia coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1/10(5). This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations.

  15. High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays

    PubMed Central

    Zeng, Yong; Novak, Richard; Shuga, Joe; Smith, Martyn T.; Mathies, Richard A.

    2010-01-01

    High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex PCR. Microfabricated emulsion generator array (MEGA) devices containing 4, 32 and 96 channels are developed to confer a flexible capability of generating up to 3.4 × 106 nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed, the beads are pooled and rapidly analyzed by multi-color flow cytometry. Using E. coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1:105. This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations. PMID:20192178

  16. SERS based immuno-microwell arrays for multiplexed detection of foodborne pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Hankus, Mikella E.; Cullum, Brian M.

    2009-05-01

    A novel surface enhanced Raman scattering (SERS)-based immuno-microwell array has been developed for multiplexed detection of foodborne pathogenic bacteria. The immuno-microwell array was prepared by immobilizing the optical addressable immunomagnetic beads (IMB) into the microwell array on one end of a fiber optic bundle. The IMBs, magnetic beads coated with specific antibody to specific bacteria, were used for immunomagnetic separation (IMS) of corresponding bacteria. The magnetic separation by the homemade magnetic separation system was evaluated in terms of the influences of several important parameters including the beads concentration, the sample volume and the separation time. IMS separation efficiency of the model bacteria E.coli O157:H7 was 63% in 3 minutes. The microwell array was fabricated on hydrofluoric acid etched end of a fiber optic bundle containing 30,000 fiber elements. After being coated with silver, the microwell array was used as a uniform SERS substrate with the relative standard deviation of the SERS enhancement across the microwell array < 2% and the enhancement factor as high as 2.18 x 107. The antibody modified microwell array was prepared for bacteria immobilization into the microwell array, which was characterized by a sandwich immunoassay. To demonstrate the potential of multiplexed SERS detection with the immuno-microwell array, the SERS spectra of different Raman dye labeled magnetic beads as well as mixtures were measured on the mircrowell array. In bead mixture, different beads were identified by the characteristic SERS bands of the corresponding Raman label.

  17. Rapid multiplex PCR and Real-Time TaqMan PCR assays for detection of Salmonella enterica and the highly virulent serovars Choleraesuis and Paratyphi C

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica is a human pathogen with over 2,500 serovars characterized. S. enterica serovars Choleraesuis (Cs) and Paratyphi C (Pc) are two globally distributed serovars. We have developed a rapid molecular typing method to detect Cs and Pc in food samples by using a comparative genomics ap...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stulberg, Michael J.; Huang, Qi

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regionsmore » of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Moreover, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.« less

  19. Evaluation of a shortened QIAsymphony DNA extraction protocol for stool samples using a multiplex real-time PCR for the detection of enteric pathogens.

    PubMed

    van Zanten, E; Wisselink, G J; Stoll, S; Alvarez, R; Kooistra-Smid, A M D

    2011-02-01

    A shortened DNA extraction protocol for the QIAsymphony SP was evaluated by quantitative and qualitative comparison of real-time PCR results of 150 co-extracted stool samples. The average ∆Cycle threshold value for positive pathogenic targets was 0.28 Ct. A consensus of 96.91%, with a correlation coefficient of 0.9880 was recorded. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. MT-PCR panel detection of canine parvovirus (CPV-2): Vaccine and wild-type CPV-2 can be difficult to differentiate in canine diagnostic fecal samples.

    PubMed

    Meggiolaro, Maira N; Ly, Anna; Rysnik-Steck, Benjamin; Silva, Carolina; Zhang, Joshua; Higgins, Damien P; Muscatello, Gary; Norris, Jacqueline M; Krockenberger, Mark; Šlapeta, Jan

    2017-06-01

    Canine parvovirus (CPV-2) remains an important cause of devastating enteritis in young dogs. It can be successfully prevented with live attenuated CPV-2 vaccines when given at the appropriate age and in the absence of maternal antibody interference. Rapid diagnosis of parvoviral enteritis in young dogs is essential to ensuring suitable barrier nursing protocols within veterinary hospitals. The current diagnostic trend is to use multiplexed PCR panels to detect an array of pathogens commonly responsible for diarrhea in dogs. The multiplexed PCR assays do not distinguish wild from vaccine CPV-2. They are highly sensitive and detect even a low level of virus shedding, such as those caused by the CPV-2 vaccine. The aim of this study was to identify the CPV-2 subtypes detected in diagnostic specimens and rule out occult shedding of CPV-2 vaccine strains. For a total of 21 samples that tested positive for CPV-2 in a small animal fecal pathogens diagnostic multiplexed tandem PCR (MT-PCR) panel during 2014-2016 we partially characterized the VP2 gene of CPV-2. Vaccine CPV-2 strain, wild type CPV-2a subtypes and vaccine-like CPV-2b subtypes were detected. High copy number was indicative of wild-type CPV-2a presence, but presence of vaccine-like CPV-2b had a variable copy number in fecal samples. A yardstick approach to a copy number or C t -value to discriminate vaccine strain from a wild type virus of CPV-2 can be, in some cases, potentially misleading. Therefore, discriminating vaccine strain from a wild type subtype of CPV-2 remains ambitious. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of multiplex polymerase chain reaction assay for simultaneous detection of clostero-, badna- and mandari-viruses along with huanglongbing bacterium in citrus trees.

    PubMed

    Meena, Ram Prasnna; Baranwal, V K

    2016-09-01

    Citrus trees harbor a large number of viral and bacterial pathogens. Citrus yellow vein clearing virus (CYVCV), Indian citrus ringspot virus (ICRSV), Citrus yellow mosaic virus (CYMV), Citrus tristeza virus (CTV) and a bacterium, Candidatus Liberibacter asiaticus (CLa) associated with huanglongbing (HLB) disease, the most prevalent pathogens in citrus orchards of different regions in India and are responsible for debilitating citriculture. For detection of these viral and bacterial pathogens a quick, sensitive and cost effective detection method is required. With this objective a multiplex polymerase chain reaction (mPCR) assay was developed for simultaneous detection of four viruses and a bacterium in citrus. Several sets of primers were designed for each virus based on the retrieved reference sequences from the GenBank. A primer pair published previously was used for greening bacterium. Each pair of primers was evaluated for their sensitivity and differentiation by simplex and mPCR. The constant amplified products were identified on the basis of molecular size in mPCR and were compared with standard PCR. The amplicons were cloned and results were confirmed with sequencing analysis. The mPCR assay was validated using naturally infected field samples for one or more citrus viruses and the huanglongbing bacterium. The mPCR assay developed here will aid in the production of virus free planting materials and rapid indexing for certification of citrus budwood programme. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Rapid and Accurate Diagnosis of Acute Pyogenic Meningitis Due to Streptococcus Pneumoniae, Haemophilus influenzae Type b and Neisseria meningitidis Using A Multiplex PCR Assay.

    PubMed

    Seth, Rajeev; Murthy, Peela Sree Ramchandra; Sistla, Sujatha; Subramanian, Mahadevan; Tamilarasu, Kadhiravan

    2017-09-01

    Acute bacterial meningitis is one of the major causes of morbidity and mortality in children and geriatric population, especially in developing countries. Methods of identification are standard culture and other phenotypic tests in many resource poor settings. To use molecular methods for the improvement of aetiological diagnosis of acute pyogenic meningitis in patients. CSF samples of 125 patients were included for the study. Gram staining and culture were performed according to standard procedures. Antigen was detected using commercial latex agglutination test kit. Multiplex PCR was performed using previously published primers and protocols. Fischer's exact test was used for finding association between presence of the disease and clinical/biochemical parameters, considering two tailed p<0.05 as statistically significant. Sensitivity, specificity, positive and negative predictive values were calculated using Graphpad QuicCalc software. A total of 39 cases (31.2%) were confirmed to be of acute pyogenic meningitis based on biochemical methods. Only 10/39 was positive for the three organisms tested. Multiplex PCR was able to detect one additional isolate each of Streptococcus pneumoniae and Haemophilus influenzae type b. When compared with multiplex PCR as the gold standard, culture and latex agglutination tests had same sensitivity (80%), specificity (100%), PPV (100%) and NPV (97.8%), whereas Gram stain had poor sensitivity (40%) and good specificity (95.6%). Detection rates were higher in multiplex PCR for the two organisms Streptococcus pneumoniae and Haemophilus influenzae type b. Multiplex PCR was more sensitive than culture or antigen detection, and employing this assay can significantly increase the speed and accuracy of identification of the pathogen.

  3. Simultaneous detection of multiple lower genital tract pathogens by an impedimetric immunochip.

    PubMed

    Chiriacò, Maria Serena; Primiceri, Elisabetta; De Feo, Francesco; Montanaro, Alessandro; Monteduro, Anna Grazia; Tinelli, Andrea; Megha, Marcella; Carati, Davide; Maruccio, Giuseppe

    2016-05-15

    Lower genital tract infections caused by both sexually and not-sexually transmitted pathogens in women are a key public health priority worldwide, especially in developing countries. Since standard analyses are time-consuming, appropriate therapeutic intervention is often neglected or delayed. Lab-on-chips and biosensors open new perspectives and offer innovative tools to simplify the diagnosis by medical staff, especially in countries with inadequate resources. Here we report a biosensing platform based on Electrochemical Impedance Spectroscopy (EIS) that allows multiplexed detection of Candida albicans, Streptococcus agalactiae and Chlamydia trachomatis with a single biochip, enabling a quick screening thanks to the presence of different immobilized antibodies, each specific for one of the different target pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nucleic acid detection system and method for detecting influenza

    DOEpatents

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  5. Simultaneous detection of viruses and Toxoplasma gondii in cerebrospinal fluid specimens by multiplex polymerase chain reaction-based reverse hybridization assay.

    PubMed

    Del Prete, Raffaele; Di Taranto, Anna Maria; Lipsi, Maria Rosaria; Natalicchio, Maria Iole; Antonetti, Raffaele; Miragliotta, Giuseppe

    2009-04-01

    The lack of rapidity and the low sensitivity and specificity of traditional laboratory methods limits their usefulness in the laboratory diagnosis of viral central nervous system (CNS) infections. This study describes the use of a commercially available multiplex polymerase chain reaction (mPCR)-based reverse hybridization assay (RHA) for the simultaneous detection of the genomes of 8 viruses and Toxoplasma gondii in cerebrospinal fluids (CSF) from 181 patients suspected of having viral meningitis. Twenty-two/181 (12.15%) CSF samples resulted positive by mPCR. Eighteen/22 were positive for 1 viral pathogen, whereas a dual infection was detected in 4/22 samples. Epstein-Barr virus (EBV) was the most commonly detected virus (6/22), followed by herpes simplex virus type-1 (HSV-1) (5/22) and -2 (HSV-2) (4/22). Cytomegalovirus (CMV), human herpesvirus-6 (HHV-6), and Epstein-Barr virus (EBV) were detected in 1 specimen each. Two CSF samples were co-infected by HSV-1/HSV-2, 1 sample by HHV-6/T. gondii, and 1 sample by EBV/EV, respectively. Our data support the usefulness of mPCR as a rapid molecular method for the simultaneous detection of major viral pathogens and T. gondii in aseptic meningitis also to allow the earlier application of specific antiviral therapy.

  6. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction.

    PubMed

    Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming

    2013-07-17

    A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Richard; Branch, Darren; Edwards, Thayne

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  8. Detection of Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, and Powassan Virus in Ticks by a Multiplex Real-Time Reverse Transcription-PCR Assay

    PubMed Central

    Tagliafierro, Teresa; Cucura, D. Moses; Rochlin, Ilia; Sameroff, Stephen; Lipkin, W. Ian

    2017-01-01

    ABSTRACT Ixodes scapularis ticks are implicated in transmission of Anaplasma phagocytophilum, Borrelia burgdorferi, Borrelia miyamotoi, Babesia microti, and Powassan virus. We describe the establishment and implementation of the first multiplex real-time PCR assay with the capability to simultaneously detect and differentiate all five pathogens in a single reaction. The application of this assay for analysis of ticks at sites in New York and Connecticut revealed a high prevalence of B. microti in ticks from Suffolk County, NY. These findings are consistent with reports of a higher incidence of babesiosis from clinicians managing the care of patients with tick-borne diseases in this region. IMPORTANCE The understanding of pathogen prevalence is an important factor in the determination of human risks for tick-borne diseases and can help guide diagnosis and treatment. The implementation of our assay addresses a critical need in surveillance of tick-borne diseases, through generation of a comprehensive assessment of pathogen prevalence in I. scapularis. Our finding of a high frequency of ticks infected with Babesia microti in Suffolk County, NY, implicates this agent as a probable frequent cause of non-Lyme tick-borne disease in this area. PMID:28435891

  9. Detection of Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, and Powassan Virus in Ticks by a Multiplex Real-Time Reverse Transcription-PCR Assay.

    PubMed

    Tokarz, Rafal; Tagliafierro, Teresa; Cucura, D Moses; Rochlin, Ilia; Sameroff, Stephen; Lipkin, W Ian

    2017-01-01

    Ixodes scapularis ticks are implicated in transmission of Anaplasma phagocytophilum , Borrelia burgdorferi , Borrelia miyamotoi , Babesia microti , and Powassan virus. We describe the establishment and implementation of the first multiplex real-time PCR assay with the capability to simultaneously detect and differentiate all five pathogens in a single reaction. The application of this assay for analysis of ticks at sites in New York and Connecticut revealed a high prevalence of B. microti in ticks from Suffolk County, NY. These findings are consistent with reports of a higher incidence of babesiosis from clinicians managing the care of patients with tick-borne diseases in this region. IMPORTANCE The understanding of pathogen prevalence is an important factor in the determination of human risks for tick-borne diseases and can help guide diagnosis and treatment. The implementation of our assay addresses a critical need in surveillance of tick-borne diseases, through generation of a comprehensive assessment of pathogen prevalence in I. scapularis . Our finding of a high frequency of ticks infected with Babesia microti in Suffolk County, NY, implicates this agent as a probable frequent cause of non-Lyme tick-borne disease in this area.

  10. A single-step polymerase chain reaction for simultaneous detection and differentiation of nontypeable and serotypeable Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae.

    PubMed

    Kunthalert, Duangkamol; Henghiranyawong, Kritsada; Sistayanarain, Anchalee; Khoothiam, Krissana

    2013-02-01

    The critically high prevalence of bacterial otitis media worldwide has prompted a proper disease management. While vaccine development for otitis media is promising, the reliable and effective methods for diagnosis of such etiologic agents are of importance. We developed a multiplex polymerase chain reaction assay for simultaneous detection and differentiation of nontypeable and serotypeable Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae. Five primer pairs targeting genes fumarate reductase (H. influenzae), outer membrane protein B (M. catarrhalis), major autolysin (S. pneumoniae), capsulation-associated BexA protein (all encapsulated H. influenzae) and 16S rRNA were incorporated in this single-step PCR. Validation of the multiplex PCR was also performed on clinical isolates. The developed multiplex PCR was highly specific, enabling the detection of the target pathogens in a specific manner, either individually or as a mixture of all target organisms. The assay was also found to be sensitive with the lowest detection limit of 1 ng of bacterial DNA. When applied to clinical isolates from diverse specimen sources, the multiplex PCR developed in this study correctly identified each microorganism individually or in a combination of two or more target organisms. All results matched with conventional culture identification. In addition, the ability of such assay to differentiate H. influenzae encapsulation from the study clinical isolates was 100%. Our multiplex PCR provides a rapid and accurate diagnostic tool for detection of the 4 target organisms. Such assay would serve as a useful tool for clinicians and epidemiologists in their efforts to the proper treatment and disease management caused by these organisms. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Multiplex serology for common viral infections in feral pigs (Sus scrofa) in Hawaii between 2007 and 2010.

    PubMed

    Stephenson, Rachel J; Trible, Benjamin R; Wang, Yu; Kerrigan, Maureen A; Goldstein, Samuel M; Rowland, Raymond R R

    2015-01-01

    Multiplex serology was performed for the detection of total immunoglobulin (Ig) and IgM antibodies against porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and swine influenza virus (SIV) antigens in feral swine (Sus scrofa). Serum samples were collected from the islands of Oahu (292 pigs) and Hawaii (52 pigs) between 2007 and 2010. The highest antibody prevalence was to PCV2 (63%), followed by SIV (7.8%) and PRRSV (5.8%). Antigen-specific IgM was detected at a much lower prevalence. PCR amplification and sequence analysis of PCV2 in three IgM-positive samples identified PCV2b as the only genotype. While the prevalence of PCV2 and PRRSV remained similar between 2007 and 2010, the percentage of SIV-positive samples on Oahu increased from 2% to 19%. Our results demonstrate the utility of multiplex serology for pathogen surveillance in feral pig populations.

  12. Evaluation of the Luminex xTAG Respiratory Viral Panel FAST v2 assay for detection of multiple respiratory viral pathogens in nasal and throat swabs in Vietnam

    PubMed Central

    Thi Ty Hang, Vu; Thi Han Ny, Nguyen; My Phuc, Tran; Thi Thanh Tam, Pham; Thao Huong, Dang; Dang Trung Nghia, Ho; Tran Anh Vu, Nguyen; Thi Hong Phuong, Pham; Van Xang, Nguyen; Dong, Nguyen; Nhu Hiep, Pham; Van Hung, Nguyen; Tinh Hien, Tran; Rabaa, Maia; Thwaites, Guy E.; Baker, Stephen; Van Tan, Le; van Doorn, H.Rogier

    2018-01-01

    Background: Acute respiratory infections (ARI) are among the leading causes of hospitalization in children ≤5 years old. Rapid diagnostics of viral pathogens is essential to avoid unnecessary antibiotic treatment, thereby slowing down antibiotic-resistance. We evaluated the diagnostic performance of the Luminex xTAG Respiratory Viral Panel FAST v2 against viral specific PCR as reference assays for ARI in Vietnam. Methods: Four hundred and forty two nose and throat swabs were collected in viral transport medium, and were tested with Luminex xTAG Respiratory Viral Panel FAST v2. Multiplex RT-PCR and single RT-PCR were used as references.    Results: Overall, sensitivity of the Luminex against reference assays was 91.8%, 95% CI 88.1-94.7 (270/294), whilst 112/6336 (1.8%, 95% CI, 1.4-2.1) of pathogens were detected by the Luminex, but not by reference assays. Frequency of pathogens detected by Luminex and reference assays was 379 and 292, respectively. The diagnostic yield was 66.7% (295/442, 95%CI 62.1-71.1%) for the Luminex assay and 54.1% (239/442, 95% CI, 49.3-58.8%) for reference assays. The Luminex kit had higher yields for all viruses except influenza B virus, respiratory syncytial virus, and human bocavirus. High agreements between both methods [mean (range): 0.91 (0.83-1.00)] were found for 10/15 viral agents. Conclusions: The Luminex assay is a high throughput multiplex platform for rapid detection of common viral pathogens causing ARI. Although the current high cost may prevent Luminex assays from being widely used, especially in limited resource settings where ARI are felt most, its introduction in clinical diagnostics may help reduce unnecessary use of antibiotic prescription. PMID:29503874

  13. High-throughput biosensors for multiplexed foodborne pathogen detection

    USDA-ARS?s Scientific Manuscript database

    Incidental contamination of foods by harmful bacteria (such as E. coli and Salmonella) and the toxins that they produce is a serious threat to public health and the economy in the United States. The presence of such bacteri and toxins in foods must be rapidly determined at various stages of food pr...

  14. Multiplex PCR assay for the detection and quantification of Campylobacter spp., Escherichia coli O157:H7, and Salmonella serotypes in water samples

    USDA-ARS?s Scientific Manuscript database

    Three pathogens, Campylobacter, Salmonella, and Shiga toxin producing Escherichia coli (STEC), are leading causes of bacterial gastroenteritis in the United States and worldwide. For example, Campylobacter species are responsible for 17% of all hospitalizations related to illness, and although Campy...

  15. One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees.

    PubMed

    Malandraki, Ioanna; Varveri, Christina; Olmos, Antonio; Vassilakos, Nikon

    2015-03-01

    A one-step multiplex real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan chemistry was developed for the simultaneous detection of Pear blister canker viroid and Apple scar skin viroid along with universal detection of phytoplasmas, in pome trees. Total nucleic acids (TNAs) extraction was performed according to a modified CTAB protocol. Primers and TaqMan MGB probes for specific detection of the two viroids were designed in this study, whereas for phytoplasma detection published universal primers and probe were used, with the difference that the later was modified to carry a MGB quencher. The pathogens were detected simultaneously in 10-fold serial dilutions of TNAs from infected plant material into TNAs of healthy plant up to dilutions 10(-5) for viroids and 10(-4) for phytoplasmas. The multiplex real-time assay was at least 10 times more sensitive than conventional protocols for viroid and phytoplasma detection. Simultaneous detection of the three targets was achieved in composite samples at least up to a ratio of 1:100 triple-infected to healthy tissue, demonstrating that the developed assay has the potential to be used for rapid and massive screening of viroids and phytoplasmas of pome fruit trees in the frame of certification schemes and surveys. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Multiplex Real-Time PCR for Monitoring Heterobasidion annosum Colonization in Norway Spruce Clones That Differ in Disease Resistance

    PubMed Central

    Hietala, Ari M.; Eikenes, Morten; Kvaalen, Harald; Solheim, Halvor; Fossdal, Carl G.

    2003-01-01

    A multiplex real-time PCR assay was developed to monitor the dynamics of the Picea abies-Heterobasidion annosum pathosystem. Tissue cultures and 32-year-old trees with low or high resistance to this pathogen were used as the host material. Probes and primers were based on a laccase gene for the pathogen and a polyubiquitin gene for the host. The real-time PCR procedure was compared to an ergosterol-based quantification method in a tissue culture experiment, and there was a strong correlation (product moment correlation coefficient, 0.908) between the data sets. The multiplex real-time PCR procedure had higher resolution and sensitivity during the early stages of colonization and also could be used to monitor the host. In the tissue culture experiment, host DNA was degraded more rapidly in the clone with low resistance than in the clone with high resistance. In the field experiment, the lesions elicited were not strictly proportional to the area colonized by the pathogen. Fungal colonization was more restricted and localized in the lesion in the clone with high resistance, whereas in the clone with low resistance, the fungus could be detected until the visible end of the lesion. Thus, the real-time PCR assay gives better resolution than does the traditionally used lesion length measurement when screening host clones for resistance. PMID:12902224

  17. Combining Forces - The Use of Landsat TM Satellite Imagery, Soil Parameter Information, and Multiplex PCR to Detect Coccidioides immitis Growth Sites in Kern County, California

    PubMed Central

    Lauer, Antje; Talamantes, Jorge; Castañón Olivares, Laura Rosío; Medina, Luis Jaime; Baal, Joe Daryl Hugo; Casimiro, Kayla; Shroff, Natasha; Emery, Kirt W.

    2014-01-01

    Coccidioidomycosis is a fungal disease acquired through the inhalation of spores of Coccidioides spp., which afflicts primarily humans and other mammals. It is endemic to areas in the southwestern United States, including the San Joaquin Valley portion of Kern County, California, our region of interest (ROI). Recently, incidence of coccidioidomycosis, also known as valley fever, has increased significantly, and several factors including climate change have been suggested as possible drivers for this observation. Up to date details about the ecological niche of C. immitis have escaped full characterization. In our project, we chose a three-step approach to investigate this niche: 1) We examined Landsat-5-Thematic-Mapper multispectral images of our ROI by using training pixels at a 750 m×750 m section of Sharktooth Hill, a site confirmed to be a C. immitis growth site, to implement a Maximum Likelihood Classification scheme to map out the locations that could be suitable to support the growth of the pathogen; 2) We used the websoilsurvey database of the US Department of Agriculture to obtain soil parameter data; and 3) We investigated soil samples from 23 sites around Bakersfield, California using a multiplex Polymerase Chain Reaction (PCR) based method to detect the pathogen. Our results indicated that a combination of satellite imagery, soil type information, and multiplex PCR are powerful tools to predict and identify growth sites of C. immitis. This approach can be used as a basis for systematic sampling and investigation of soils to detect Coccidioides spp. PMID:25380290

  18. Statistical approaches to developing a multiplex immunoassay for determining human exposure to environmental pathogens.

    EPA Science Inventory

    This paper describes the application and method performance parameters of a Luminex xMAP™ bead-based, multiplex immunoassay for measuring specific antibody responses in saliva samples (n=5438) to antigens of six common waterborne pathogens (Campylobacter jejuni, Helicobacter pylo...

  19. Use of multiplex PCR based molecular diagnostics in diagnosis of suspected CNS infections in tertiary care setting-A retrospective study.

    PubMed

    Javali, Mahendra; Acharya, Purushottam; Mehta, Aneesh; John, Aju Abraham; Mahale, Rohan; Srinivasa, R

    2017-10-01

    CNS infections like meningitis and encephalitis pose enormous healthcare challenges due to mortality, sequelae and socioeconomic burden. In tertiary setting, clinical, microbiological, cytological and radiological investigations are not distinctive enough for diagnosing microbial etiology. Molecular diagnostics is filling this gap. We evaluated the clinical impact of a commercially available multiplex molecular diagnostic system - SES for diagnosing suspected CNS infections. This study was conducted in our tertiary level Neurology ICU. 110 patients admitted during Nov-2010 to April-2014 were included. CSF samples of patients clinically suspected of having CNS infections were subjected to routine investigation in our laboratory and SES test at XCyton Diagnostics. We studied the impact of SES in diagnosis of CNS infections and its efficacy in helping therapeutic management. SES showed detection rate of 42.18% and clinical specificity of 100%. It had 10 times higher detection rate than conventional tests. Streptococcus pneumoniae and Mycobacterium tuberculosis were two top bacterial pathogens. VZV was most detected viral pathogen. SES results elicited changes in therapy in both positive and negative cases. We observed superior patient outcomes as measured by GCS scale. 75% and 82.14% of the patients positive and negative on SES respectively, recovered fully. Detecting causative organism and ruling out infectious etiology remain the most critical aspect for management and prognosis of patients with suspected CNS infections. In this study, we observed higher detection rate of pathogens, target specific escalation and evidence based de-escalation of antimicrobials using SES. Institution of appropriate therapy helped reduce unnecessary use of antimicrobials. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Two Multiplex Real-Time PCR Assays to Detect and Differentiate Acinetobacter baumannii and Non- baumannii Acinetobacter spp. Carrying blaNDM, blaOXA-23-Like, blaOXA-40-Like, blaOXA-51-Like, and blaOXA-58-Like Genes

    PubMed Central

    Yang, Qiu; Rui, Yongyu

    2016-01-01

    Nosocomial infections caused by Acinetobacter spp. resistant to carbapenems are increasingly reported worldwide. Carbapenem-resistant Acinetobacter (CRA) is becoming a serious concern with increasing patient morbidity, mortality, and lengths of hospital stay. Therefore, the rapid detection of CRA is essential for epidemiological surveillance. Polymerase chain reaction (PCR) has been extensively used for the rapid identification of most pathogens. In this study, we have developed two multiplex real-time PCR assays to detect and differentiate A. baumannii and non-A. baumannii Acinetobacter spp, and common carbapenemase genes, including blaNDM, blaOXA-23-like, blaOXA-40-like, blaOXA-51-like, and blaOXA-58-like. We demonstrate the potential utility of these assays for the direct detection of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA in clinical specimens. Primers were specifically designed, and two multiplex real-time PCR assays were developed: multiplex real-time PCR assay1 for the detection of Acinetobacter baumannii 16S–23S rRNA internal transcribed spacer sequence, the Acinetobacter recA gene, and class-B-metalloenzyme-encoding gene blaNDM; and multiplex real-time PCR assay2 to detect class-D-oxacillinase-encoding genes (blaOXA-23-like, blaOXA-40-like, blaOXA-51-like,and blaOXA-58-like). The assays were performed on an ABI Prism 7500 FAST Real-Time PCR System. CRA isolates were used to compare the assays with conventional PCR and sequencing. Known amounts of CRA cells were added to sputum and fecal specimens and used to test the multiplex real-time PCR assays. The results for target and nontarget amplification showed that the multiplex real-time PCR assays were specific, the limit of detection for each target was 10 copies per 20 μL reaction volume, the assays were linear over six log dilutions of the target genes (r2 > 0.99), and the Ct values of the coefficients of variation for intra- and interassay reproducibility were less than 5%. The multiplex real-time PCR assays showed 100% concordance with conventional PCR when tested against 400 CRA isolates and their sensitivity for the target DNA in sputum and fecal specimens was 102 CFU/mL. Therefore, these novel multiplex real-time PCR assays allow the sensitive and specific characterization and differentiation of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA, making them potential tools for the direct detection of CRA in clinical specimens and the surveillance of nosocomial infections. PMID:27391234

  1. Comparative Evaluation of Multiplex PCR and Routine Laboratory Phenotypic Methods for Detection of Carbapenemases among Gram Negative Bacilli.

    PubMed

    Solanki, Rachana; Vanjari, Lavanya; Subramanian, Sreevidya; B, Aparna; E, Nagapriyanka; Lakshmi, Vemu

    2014-12-01

    Carbapenem resistant pathogens cause infections associated with significant morbidity and mortality. This study evaluates the use of Multiplex PCR for rapid detection of carbapenemase genes among carbapenem resistant Gram negative bacteria in comparison with the existing phenotypic methods like modified Hodge test (MHT), combined disc test (CDT) and automated methods. A total of 100 Carbapenem resistant clinical isolates, [Escherichia coli (25), Klebsiella pneumoniae (35) P. aeruginosa (18) and Acinetobacter baumannii (22)] were screened for the presence of carbapenemases (bla NDM-1, bla VIM , blaIMP and blaKPC genes) by phenotype methods such as the modified Hodge test (MHT) and combined disc test (CDT) and the molecular methods such as Multiplex PCR. Seventy of the 100 isolates were MHT positive while, 65 isolates were positive by CDT. All the CDT positive isolates with EDTA and APB were Metallo betalactamase (MBL) and K. pneumoniae carbapenemase (KPC) producers respectively. bla NDM-1 was present as a lone gene in 44 isolates. In 14 isolates bla NDM-1 gene was present with blaKPC gene, and in one isolate bla NDM-1 gene was present with blaVIM , gene. Only one E. coli isolate had a lone blaKPC gene. We didn't find bla IMP gene in any of the isolates. Neither of the genes could be detected in 35 isolates. Accurate detection of the genes related with carbapenemase production by Molecular methods like Multiplex PCR overcome the limitations of the phenotypic methods and Automated systems.

  2. Synthetic internal control sequences to increase negative call veracity in multiplexed, quantitative PCR assays for Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    Quantitative PCR (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5’-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi, the soybean rust pathogen. Because of the extreme sensitivity of Q-PCR, the DNA of a single u...

  3. Direct multiplex PCR (dmPCR) for the identification of six Phlebotomine sand fly species (Diptera: Psychodidae), including major Leishmania vectors of the Mediterranean

    USDA-ARS?s Scientific Manuscript database

    Sand flies (Diptera: Psychodidae, subfamily Phlebotominae) are haematophagous insects that are known to transmit several anthroponotic and zoonotic diseases. Reliable identification of sand flies at species level is crucial for their surveillance, the detection and spread of their pathogens and the ...

  4. Detecting and Genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Call, Douglas R.; Brockman, Fred J.; Chandler, Darrell P.

    2000-12-01

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification.more » The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFU ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.« less

  5. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Call, Douglas R.; Brockman, Fred J.; Chandler, Darrell P.

    2001-07-05

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification.more » The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFUs ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.« less

  6. Evaluation of the Seeplex® Meningitis ACE Detection kit for the detection of 12 common bacterial and viral pathogens of acute meningitis.

    PubMed

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young; Koo, Sun Hoe

    2012-01-01

    Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. The lower detection limits ranged from 10(1) copies/µL to 5×10(1) copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.

  7. Evaluation of the Seeplex® Meningitis ACE Detection Kit for the Detection of 12 Common Bacterial and Viral Pathogens of Acute Meningitis

    PubMed Central

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young

    2012-01-01

    Background Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results The lower detection limits ranged from 101 copies/µL to 5×101 copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens. PMID:22259778

  8. The design of a microfluidic biochip for the rapid, multiplexed detection of foodborne pathogens by surface plasmon resonance imaging

    NASA Astrophysics Data System (ADS)

    Zordan, Michael D.; Grafton, Meggie M. G.; Park, Kinam; Leary, James F.

    2010-02-01

    The rapid detection of foodborne pathogens is increasingly important due to the rising occurrence of contaminated food supplies. We have previously demonstrated the design of a hybrid optical device that has the capability to perform realtime surface plasmon resonance (SPR) and epi-fluorescence imaging. We now present the design of a microfluidic biochip consisting of a two-dimensional array of functionalized gold spots. The spots on the array have been functionalized with capture peptides that specifically bind E. coli O157:H7 or Salmonella enterica. This array is enclosed by a PDMS microfluidic flow cell. A magnetically pre-concentrated sample is injected into the biochip, and whole pathogens will bind to the capture array. The previously constructed optical device is being used to detect the presence and identity of captured pathogens using SPR imaging. This detection occurs in a label-free manner, and does not require the culture of bacterial samples. Molecular imaging can also be performed using the epi-fluorescence capabilities of the device to determine pathogen state, or to validate the identity of the captured pathogens using fluorescently labeled antibodies. We demonstrate the real-time screening of a sample for the presence of E. coli O157:H7 and Salmonella enterica. Additionally the mechanical properties of the microfluidic flow cell will be assessed. The effect of these properties on pathogen capture will be examined.

  9. Loop-Mediated Isothermal Amplification Label-Based Gold Nanoparticles Lateral Flow Biosensor for Detection of Enterococcus faecalis and Staphylococcus aureus

    PubMed Central

    Wang, Yi; Li, Hui; Wang, Yan; Zhang, Lu; Xu, Jianguo; Ye, Changyun

    2017-01-01

    The report describes a simple, rapid and sensitive assay for visual and multiplex detection of Enterococcus faecalis and Staphylococcus aureus based on multiple loop-mediated isothermal amplification (mLAMP) and lateral flow biosensor (LFB). Detection and differentiation of the Ef0027 gene (E. faecalis-specific gene) and nuc gene (S. aureus-specific gene) were determined using fluorescein (FITC)-and digoxin-modified primers in the mLAMP process. In the presence of biotin- and FITC-/digoxin-modified primers, the mLAMP yielded numerous biotin- and FITC-/digoxin-attached duplex products, which were detected by LFB through biotin/streptavidin interaction (biotin on the duplex and streptavidin on the gold nanoparticle) and immunoreactions (FITC/digoxin on the duplex and anti-FITC/digoxin on the LFB test line). The accumulation of gold nanoparticles generated a characteristic red line, enabling visual and multiplex detection of target pathogens without instrumentation. The limit of detection (LoD), analytical specificity and feasibility of LAMP-LFB technique were successfully examined in pure culture and blood samples. The entire procedure, including specimen (blood samples) processing (30 min), isothermal reaction (40 min) and result reporting (within 2 min), could be completed within 75 min. Thus, this assay offers a simple, rapid, sensitive and specific test for multiplex detection of E. faecalis and S. aureus strains. Furthermore, the LAMP-LFB strategy is a universal technique, which can be extended to detect various target sequences by re-designing the specific LAMP primers. PMID:28239371

  10. A Preliminary Study of Pneumonia Etiology Among Hospitalized Children in Kenya

    PubMed Central

    Kazungu, Sidi; Morpeth, Susan C.; Gibson, Dustin G.; Mvera, Benedict; Brent, Andrew J.; Mwarumba, Salim; Onyango, Clayton O.; Bett, Anne; Akech, Donald O.; Murdoch, David R.; Nokes, D. James; Scott, J. Anthony G.

    2012-01-01

    Background. Pneumonia is the leading cause of childhood death in the developing world. Higher-quality etiological data are required to reduce this mortality burden. Methods. We conducted a case-control study of pneumonia etiology among children aged 1–59 months in rural Kenya. Case patients were hospitalized with World Health Organization–defined severe pneumonia (SP) or very severe pneumonia (VSP); controls were outpatient children without pneumonia. We collected blood for culture, induced sputum for culture and multiplex polymerase chain reaction (PCR), and obtained oropharyngeal swab specimens for multiplex PCR from case patients, and serum for serology and nasopharyngeal swab specimens for multiplex PCR from case patients and controls. Results. Of 984 eligible case patients, 810 (84%) were enrolled in the study; 232 (29%) had VSP. Blood cultures were positive in 52 of 749 case patients (7%). A predominant potential pathogen was identified in sputum culture in 70 of 417 case patients (17%). A respiratory virus was detected by PCR from nasopharyngeal swab specimens in 486 of 805 case patients (60%) and 172 of 369 controls (47%). Only respiratory syncytial virus (RSV) showed a statistically significant association between virus detection in the nasopharynx and pneumonia hospitalization (odds ratio, 12.5; 95% confidence interval, 3.1–51.5). Among 257 case patients in whom all specimens (excluding serum specimens) were collected, bacteria were identified in 24 (9%), viruses in 137 (53%), mixed viral and bacterial infection in 39 (15%), and no pathogen in 57 (22%); bacterial causes outnumbered viral causes when the results of the case-control analysis were considered. Conclusions. A potential etiology was detected in >75% of children admitted with SP or VSP. Except for RSV, the case-control analysis did not detect an association between viral detection in the nasopharynx and hospitalization for pneumonia. PMID:22403235

  11. Different strategies for the detection of bioagents using electrochemical and photoelectrochemical genosensors

    NASA Astrophysics Data System (ADS)

    Voccia, Diego; Bettazi, Francesca; Palchetti, Ilaria

    2015-10-01

    In recent years various kinds of biosensors for the detection of pathogens have been developed. A genosensor consists in the immobilization, onto the surface of a chosen transducer, of an oligonucleotide with a specific base sequence called capture probe. The complementary sequence (the analytical target, i.e. a specific sequence of the DNA/RNA of the pathogen) present in the sample is recognized and captured by the probe through the hybridization reaction. The evaluation of the extent of the hybridization allows one to confirm whether the sample contains the complementary sequence of the probe or not. Electrochemical transducers have received considerable attention in connection with the detection of DNA hybridization. Moreover, recently, with the emergence of novel photoelectrochemically active species and new detection schemes, photoelectrochemistry has resulted in substantial progress in its analytical performance for biosensing applications. In this paper, some examples of electrochemical genosensors for multiplexed pathogen detection are shown. Moreover, the preliminary experiments towards the development of a photoelectrochemical genosensor using a TiO2 - nanocrystal-modified ITO electrode are discussed.

  12. Simultaneous differential detection of human pathogenic and nonpathogenic Vibrio species using a multiplex PCR based on gyrB and pntA genes.

    PubMed

    Teh, C S J; Chua, K H; Thong, K L

    2010-06-01

    To develop a multiplex PCR targeting the gyrB and pntA genes for Vibrio species differentiation. Four pairs of primers targeting gyrB gene of Vibrios at genus level and pntA gene of Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus were designed. This PCR method precisely identified 250 Vibrio species and demonstrated sensitivity in the range of 4 x 10(4) CFU ml(-1) (c. 200 CFU per PCR) to 2 x 10(3) CFU ml(-1) (c. 10 CFU per PCR). Overall, the gyrB gene marker showed a higher specificity than the dnaJ gene marker for Vibrio detection and was able to distinguish Aeromonas from Vibrio species. The multiplex PCR based on combined gyrB and pntA provides a high discriminatory power in the differentiation between Vibrio alginolyticus and V. parahaemolyticus, and between V. cholerae and Vibrio mimicus. This assay will be useful for rapid differentiation of various Vibrio species from clinical and environmental sources and significantly overcomes the limitations of the conventional methods.

  13. Multiplex assay for the quantitative assessment of Rhizoctonia solani AG2-2, AG4 and Rhizoctonia zeae from the soil

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani causes damping off and root and crown rot in sugar beets resulting in substantial losses in the field and during storage. Root rot is a difficult fungal disease to diagnose and manage, as the pathogen is usually not detected until after damage has occurred. The objective of this s...

  14. R&D 100 Winner 2010: Acoustic Wave Biosensors

    ScienceCinema

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2018-01-16

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  15. Rapid Identification of Pathogens from Positive Blood Cultures by Multiplex PCR using the FilmArray System

    PubMed Central

    Blaschke, Anne J.; Heyrend, Caroline; Byington, Carrie L.; Fisher, Mark A.; Barker, Elizabeth; Garrone, Nicholas F.; Thatcher, Stephanie A.; Pavia, Andrew T.; Barney, Trenda; Alger, Garrison D.; Daly, Judy A.; Ririe, Kirk M.; Ota, Irene; Poritz, Mark A.

    2012-01-01

    Sepsis is a leading cause of death. Rapid and accurate identification of pathogens and antimicrobial resistance directly from blood culture could improve patient outcomes. The FilmArray® (FA; Idaho Technology, Inc., Salt Lake City, UT) Blood Culture (BC) panel can identify > 25 pathogens and 4 antibiotic resistance genes from positive blood cultures in 1 hour. We compared a development version of the panel to conventional culture and susceptibility testing on 102 archived blood cultures from adults and children with bacteremia. Of 109 pathogens identified by culture, 95% were identified by FA. Among 111 prospectively collected blood cultures, the FA identified 84 of 92 pathogens (91%) covered by the panel. Among 25 Staphylococcus aureus and 21 Enterococcus species detected, FA identified all culture-proven MRSA and VRE. The FA BC panel is an accurate method for the rapid identification of pathogens and resistance genes from blood culture. PMID:22999332

  16. Multiplex reverse transcription polymerase chain reaction to study the expression of virulence and stress response genes in Staphylococcus aureus.

    PubMed

    Shrihari, Rohinishree Yadahalli; Singh, Negi Pradeep

    2012-02-01

    Staphylococcus aureus survives well in different stress conditions. The ability of this organism to adapt to various stresses is the result of a complex regulatory response, which is attributed to regulation of multiple genes. The aims of the present study were (1) to develop a multiplex PCR for the detection of genes which are involved in stress adaptation (asp23, dnaK, and groEL); alternative sigma factor (sigB) and virulence determination (entB and spa) and (2) to study the expression of these genes during stress conditions for S. aureus culture collection strains (FRI 722 and ATCC 6538) and S. aureus food isolates at mRNA level using multiplex reverse transcription polymerase chain reaction (RT-PCR). During heat shock treatment groEL, dnaK, asp23, sodA, entB, spa, and sigB genes were up regulated up to 2.58, 2.07, 2.76, 2.55, 3.55, 2.71, and 2.62- folds, respectively, whereas in acid shock treatment, sodA and groEL were up regulated; dnaK was downregulated; and entB and sigB genes were not expressed in food isolates. Multiplex PCR assay standardized in this study offers an inexpensive alternative to uniplex PCR for detection of various virulence and stress response genes. This study is relevant to rapid and accurate detection of potential pathogenic S. aureus in foods. © 2012 Institute of Food Technologists®

  17. Within-herd prevalence thresholds for herd-level detection of mastitis pathogens using multiplex real-time PCR in bulk tank milk samples.

    PubMed

    Soltau, J B; Einax, E; Klengel, K; Katholm, J; Failing, K; Wehrend, A; Donat, K

    2017-10-01

    The objective of the study was to assess the value of quantitative multiplex real-time PCR examination of bulk tank milk samples for bovine mastitis pathogens as a tool for herd level diagnosis. Using a logistic regression model, this study is aimed at calculating the threshold level of the apparent within-herd prevalence as determined by quarter milk sample cultivation of all lactating cows, thus allowing the detection of a herd positive for a specific pathogen within certain probability levels. A total of 6,335 quarter milk samples were collected and cultured from 1,615 cows on 51 farms in Germany. Bulk tank milk samples were taken from each farm and tested by bacterial culture as well as the commercial PCR assay Mastit 4A (DNA Diagnostic A/S, Risskov, Denmark) identifying Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus agalactiae, and Streptococcus uberis. In addition, PCR was performed on pooled herd milk samples containing milk aliquots from all lactating cows in each of the 51 herds. Only 1 out of the 51 herds was found PCR positive for Streptococcus agalactiae in bulk tank and pooled herd milk samples, and cultured quarter milk samples. Spearman's rank correlations between the cycle threshold value of bulk tank milk PCR and the apparent within-herd prevalence were calculated in regard to Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis. For these pathogens, significant correlations were found. If 1 bulk tank milk sample per herd was tested, the estimated within-herd prevalence thresholds for 90% probability of detection were 27.6% for Staphylococcus aureus, 9.2% for Streptococcus dysgalactiae, and 13.8% for Streptococcus uberis on the cow level. On the quarter level, the within-herd prevalence had to be at least 32.6% for Staphylococcus aureus, 1.7% for Streptococcus dysgalactiae, and 4.3% for Streptococcus uberis to detect a herd as positive using a single bulk milk sample. The results indicate that mastitis pathogens in bulk tank milk can be identified by the applied PCR assay. Bulk tank milk examination is not a reliable tool for the identification of the named pathogens by single testing, but might be a valuable monitoring tool when used frequently with repeated testing. Furthermore, this approach could be a useful monitoring tool for detecting new pathogen occurrence in the herd. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Diagnostic accuracy of two multiplex real-time polymerase chain reaction assays for the diagnosis of meningitis in children in a resource-limited setting.

    PubMed

    Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile; Bamford, Colleen

    2017-01-01

    Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation.

  19. Diagnostic accuracy of two multiplex real-time polymerase chain reaction assays for the diagnosis of meningitis in children in a resource-limited setting

    PubMed Central

    Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile

    2017-01-01

    Introduction Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. Methods We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. Results From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. Discussion In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation. PMID:28346504

  20. Identification of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from burn patients by multiplex PCR.

    PubMed

    Montazeri, Effat Abbasi; Khosravi, Azar Dokht; Jolodar, Abbas; Ghaderpanah, Mozhgan; Azarpira, Samireh

    2015-05-01

    Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS) as important human pathogens are causes of nosocomial infections worldwide. Burn patients are at a higher risk of local and systemic infections with these microorganisms. A screening method for MRSA by using a multiplex polymerase chain reaction (PCR) targeting the 16S ribosomal RNA (rRNA), mecA, and nuc genes was developed. The aim of the present study was to investigate the potential of this PCR assay for the detection of MRSA strains in samples from burn patients. During an 11-month period, 230 isolates (53.11%) of Staphylococcus spp. were collected from burn patients. The isolates were identified as S. aureus by using standard culture and biochemical tests. DNA was extracted from bacterial colonies and multiplex PCR was used to detect MRSA and MRCoNS strains. Of the staphylococci isolates, 149 (64.9%) were identified as S. aureus and 81 (35.21%) were described as CoNS. Among the latter, 51 (62.97%) were reported to be MRCoNS. From the total S. aureus isolates, 132 (88.6%) were detected as MRSA and 17 (11.4%) were methicillin-susceptible S. aureus (MSSA). The presence of the mecA gene in all isolates was confirmed by using multiplex PCR as a gold standard method. This study presented a high MRSA rate in the region under investigation. The 16S rRNA-mecA-nuc multiplex PCR is a good tool for the rapid characterization of MRSA strains. This paper emphasizes the need for preventive measures and choosing effective antimicrobials against MRSA and MRCoNS infections in the burn units. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  1. A robust multiplex real-time PCR method for simultaneous detection of Salmonella spp., Escherichia coli O157 and Listeria monocytogenes in fresh fruits and vegetables

    USDA-ARS?s Scientific Manuscript database

    Introduction: On average, about 48 million people per year in the U.S. are affected by food borne diseases. A major portion of these illnesses are caused by Salmonella spp., Escherichia coli O157:H7 and Listeria monocytogenes. Hence, it is important to identify the specific pathogens in contaminate...

  2. Development of a real-time RT-PCR assay for squash mosaic virus useful for broad spectrum detection of various serotypes and its incorporation into a multiplex seed health assay

    USDA-ARS?s Scientific Manuscript database

    Seed-borne pathogens pose a serious threat to modern agricultural cropping systems as they can be disseminated to many geographical regions around the world. With trends of increasing global seed production and trade, seed-health testing is an important quality control step to prevent the introduct...

  3. Immunoprevalence to Six Waterborne Pathogens in Beachgoers at Boquerón Beach, Puerto Rico: Application of a Microsphere-Based Salivary Antibody Multiplex Immunoassay

    PubMed Central

    Augustine, Swinburne A. J.; Simmons, Kaneatra J.; Eason, Tarsha N.; Curioso, Clarissa L.; Griffin, Shannon M.; Wade, Timothy J.; Dufour, Alfred; Fout, G. Shay; Grimm, Ann C.; Oshima, Kevin H.; Sams, Elizabeth A.; See, Mary Jean; Wymer, Larry J.

    2017-01-01

    Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure exposure to only one pathogen at a time, require large volumes of individual samples collected using invasive procedures, and are very labor intensive. In this article, we applied a multiplex bead-based immunoassay capable of measuring IgG antibody responses to six waterborne pathogens simultaneously in human saliva to estimate immunoprevalence in beachgoers at Boquerón Beach, Puerto Rico. Further, we present approaches for determining cutoff points to assess immunoprevalence to the pathogens in the assay. For the six pathogens studied, our results show that IgG antibodies against antigens from noroviruses GI.I and GII.4 were more prevalent (60 and 51.6%, respectively) than Helicobacter pylori (21.4%), hepatitis A virus (20.2%), Campylobacter jejuni (8.7%), and Toxoplasma gondii (8%) in the saliva of the study participants. The salivary antibody multiplex immunoassay can be used to examine immunoprevalence of specific pathogens in human populations. PMID:28507984

  4. Comparison of two suspension arrays for simultaneous detection of five biothreat bacterial in powder samples.

    PubMed

    Yang, Yu; Wang, Jing; Wen, Haiyan; Liu, Hengchuan

    2012-01-01

    We have developed novel Bio-Plex assays for simultaneous detection of Bacillus anthracis, Yersinia pestis, Brucella spp., Francisella tularensis, and Burkholderia pseudomallei. Universal primers were used to amplify highly conserved region located within the 16S rRNA amplicon, followed by hybridized to pathogen-specific probes for identification of these five organisms. The other assay is based on multiplex PCR to simultaneously amplify five species-specific pathogen identification-targeted regions unique to individual pathogen. Both of the two arrays are validated to be flexible and sensitive for simultaneous detection of bioterrorism bacteria. However, universal primer PCR-based array could not identify Bacillus anthracis, Yersinia pestis, and Brucella spp. at the species level because of the high conservation of 16S rDNA of the same genus. The two suspension arrays can be utilized to detect Bacillus anthracis sterne spore and Yersinia pestis EV76 from mimic "write powder" samples, they also proved that the suspension array system will be valuable tools for diagnosis of bacterial biothreat agents in environmental samples.

  5. Applied Genomics: Data Mining Reveals Species-Specific Malaria Diagnostic Targets More Sensitive than 18S rRNA▿†‡

    PubMed Central

    Demas, Allison; Oberstaller, Jenna; DeBarry, Jeremy; Lucchi, Naomi W.; Srinivasamoorthy, Ganesh; Sumari, Deborah; Kabanywanyi, Abdunoor M.; Villegas, Leopoldo; Escalante, Ananias A.; Kachur, S. Patrick; Barnwell, John W.; Peterson, David S.; Udhayakumar, Venkatachalam; Kissinger, Jessica C.

    2011-01-01

    Accurate and rapid diagnosis of malaria infections is crucial for implementing species-appropriate treatment and saving lives. Molecular diagnostic tools are the most accurate and sensitive method of detecting Plasmodium, differentiating between Plasmodium species, and detecting subclinical infections. Despite available whole-genome sequence data for Plasmodium falciparum and P. vivax, the majority of PCR-based methods still rely on the 18S rRNA gene targets. Historically, this gene has served as the best target for diagnostic assays. However, it is limited in its ability to detect mixed infections in multiplex assay platforms without the use of nested PCR. New diagnostic targets are needed. Ideal targets will be species specific, highly sensitive, and amenable to both single-step and multiplex PCRs. We have mined the genomes of P. falciparum and P. vivax to identify species-specific, repetitive sequences that serve as new PCR targets for the detection of malaria. We show that these targets (Pvr47 and Pfr364) exist in 14 to 41 copies and are more sensitive than 18S rRNA when utilized in a single-step PCR. Parasites are routinely detected at levels of 1 to 10 parasites/μl. The reaction can be multiplexed to detect both species in a single reaction. We have examined 7 P. falciparum strains and 91 P. falciparum clinical isolates from Tanzania and 10 P. vivax strains and 96 P. vivax clinical isolates from Venezuela, and we have verified a sensitivity and specificity of ∼100% for both targets compared with a nested 18S rRNA approach. We show that bioinformatics approaches can be successfully applied to identify novel diagnostic targets and improve molecular methods for pathogen detection. These novel targets provide a powerful alternative molecular diagnostic method for the detection of P. falciparum and P. vivax in conventional or multiplex PCR platforms. PMID:21525225

  6. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    PubMed

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources. Published by Elsevier Inc.

  7. Surveillance of Food- and Smear-Transmitted Pathogens in European Soldiers with Diarrhea on Deployment in the Tropics: Experience from the European Union Training Mission (EUTM) Mali

    PubMed Central

    Frickmann, Hagen; Warnke, Philipp; Frey, Claudia; Schmidt, Salvatore; Janke, Christian; Erkens, Kay; Schotte, Ulrich; Köller, Thomas; Maaßen, Winfried; Podbielski, Andreas; Binder, Alfred; Hinz, Rebecca; Queyriaux, Benjamin; Wiemer, Dorothea; Schwarz, Norbert Georg; Hagen, Ralf Matthias

    2015-01-01

    Introduction. Since 2013, European soldiers have been deployed on the European Union Training Mission (EUTM) in Mali. From the beginning, diarrhea has been among the most “urgent” concerns. Diarrhea surveillance based on deployable real-time PCR equipment was conducted between December 2013 and August 2014. Material and Methods. In total, 53 stool samples were obtained from 51 soldiers with acute diarrhea. Multiplex PCR panels comprised enteroinvasive bacteria, diarrhea-associated Escherichia coli (EPEC, ETEC, EAEC, and EIEC), enteropathogenic viruses, and protozoa. Noroviruses were characterized by sequencing. Cultural screening for Enterobacteriaceae with extended-spectrum beta-lactamases (ESBL) with subsequent repetitive sequence-based PCR (rep-PCR) typing was performed. Clinical information was assessed. Results. Positive PCR results for diarrhea-associated pathogens were detected in 43/53 samples, comprising EPEC (n = 21), ETEC (n = 19), EAEC (n = 15), Norovirus (n = 10), Shigella spp./EIEC (n = 6), Cryptosporidium parvum (n = 3), Giardia duodenalis (n = 2), Salmonella spp. (n = 1), Astrovirus (n = 1), Rotavirus (n = 1), and Sapovirus (n = 1). ESBL-positive Enterobacteriaceae were grown from 13 out of 48 samples. Simultaneous infections with several enteropathogenic agents were observed in 23 instances. Symptoms were mild to moderate. There were hints of autochthonous transmission. Conclusions. Multiplex real-time PCR proved to be suitable for diarrhea surveillance on deployment. Etiological attribution is challenging in cases of detection of multiple pathogens. PMID:26525953

  8. Diagnosis of intestinal parasites in a rural community of Venezuela: Advantages and disadvantages of using microscopy or RT-PCR.

    PubMed

    Incani, Renzo Nino; Ferrer, Elizabeth; Hoek, Denise; Ramak, Robbert; Roelfsema, Jeroen; Mughini-Gras, Lapo; Kortbeek, Titia; Pinelli, Elena

    2017-03-01

    A cross-sectional study was carried out to determine the prevalence and diagnostic performance of microscopy and real time PCR (RT-PCR) for 14 intestinal parasites in a Venezuelan rural community with a long history of persistent intestinal parasitic infections despite the implementation of regular anthelminthic treatments. A total of 228 participants were included in this study. A multiplex RT-PCR was used for the detection of Dientamoeba fragilis, Giardia intestinalis, Cryptosporidium sp. and a monoplex RT-PCR for Entamoeba histolytica. Furthermore, a multiplex PCR was performed for detection of Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus and Ancylostoma duodenale. Combined microscopy-PCR revealed prevalences of 49.3% for A. lumbricoides, 10.1% for N. americanus (no A. duodenale was detected), 2.0% for S. stercoralis, 40.4% for D. fragilis, 35.1% for G. intestinalis, and 7.9% for E. histolytica/dispar. Significant increases in prevalence at PCR vs. microscopy were found for A. lumbricoides, G. intestinalis and D. fragilis. Other parasites detected by microscopy alone were Trichuris trichiura (25.7%), Enterobius vermicularis (3.4%), Blastocystis sp. (65.8%), and the non-pathogenic Entamoeba coli (28.9%), Entamoeba hartmanni (12.3%), Endolimax nana (19.7%) and Iodamoeba bütschlii (7.5%). Age- but no gender-related differences in prevalences were found for A. lumbricoides, T. trichiura, G. intestinalis, and E. histolytica/dispar. The persistently high prevalences of intestinal helminths are probably related to the high faecal pollution as also evidenced by the high prevalences of non-pathogenic intestinal protozoans. These results highlight the importance of using sensitive diagnostic techniques in combination with microscopy to better estimate the prevalence of intestinal parasites, especially in the case of D. fragilis trophozoites, which deteriorate very rapidly and would be missed by microscopy. In addition, the differentiation between the pathogenic E. histolytica and the non-pathogenic E. dispar can be attained. However, microscopy remains an important diagnostic tool since it can detect other intestinal parasites for which no PCR is available. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of a new multiplex PCR assay (ParaGENIE G-Amoeba Real-Time PCR kit) targeting Giardia intestinalis, Entamoeba histolytica and Entamoeba dispar/Entamoeba moshkovskii from stool specimens: evidence for the limited performances of microscopy-based approach for amoeba species identification.

    PubMed

    Morio, F; Valot, S; Laude, A; Desoubeaux, G; Argy, N; Nourrisson, C; Pomares, C; Machouart, M; Le Govic, Y; Dalle, F; Botterel, F; Bourgeois, N; Cateau, E; Leterrier, M; Jeddi, F; Gaboyard, M; Le Pape, P

    2018-02-15

    Besides the potential to identify a wide variety of gastrointestinal parasites, microscopy remains the reference standard in clinical microbiology for amoeba species identification and, especially when coupled with adhesin detection, to discriminate the pathogenic Entamoeba histolytica from its sister but non-pathogenic species Entamoeba dispar/Entamoeba moshkovskii. However, this approach is time-consuming, requires a high-level of expertise that can be jeopardized considering the low prevalence of gastrointestinal parasites in non-endemic countries. Here, we evaluated the CE-IVD-marked multiplex PCR (ParaGENIE G-Amoeba, Ademtech) targeting E. histolytica and E. dispar/E. moshkovskii and Giardia intestinalis. This evaluation was performed blindly on a reference panel of 172 clinical stool samples collected prospectively from 12 laboratories and analysed using a standardized protocol relying on microscopy (and adhesin detection by ELISA for the detection of E. histolytica) including G. intestinalis (n = 37), various amoeba species (n = 55) including E. dispar (n = 15), E. histolytica (n = 5), as well as 17 other gastrointestinal parasites (n = 80), and negative samples (n = 37). This new multiplex PCR assay offers fast and reliable results with appropriate sensitivity and specificity for the detection of G. intestinalis and E. dispar/E. moshkovskii from stools (89.7%/96.9% and 95%/100%, respectively). Detection rate and specificity were greatly improved by the PCR assay, highlighting several samples misidentified by microscopy, including false-negative and false-positive results for both E. dispar/E. moshkovskii and E. histolytica. Given the clinical relevance of amoeba species identification, microbiologists should be aware of the limitations of using an algorithm relying on microscopy coupled with adhesin detection by ELISA. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Prevalence of bloodstream pathogens is higher in neonatal encephalopathy cases vs. controls using a novel panel of real-time PCR assays.

    PubMed

    Tann, Cally J; Nkurunziza, Peter; Nakakeeto, Margaret; Oweka, James; Kurinczuk, Jennifer J; Were, Jackson; Nyombi, Natasha; Hughes, Peter; Willey, Barbara A; Elliott, Alison M; Robertson, Nicola J; Klein, Nigel; Harris, Kathryn A

    2014-01-01

    In neonatal encephalopathy (NE), infectious co-morbidity is difficult to diagnose accurately, but may increase the vulnerability of the developing brain to hypoxia-ischemia. We developed a novel panel of species-specific real-time PCR assays to identify bloodstream pathogens amongst newborns with and without NE in Uganda. Multiplex real-time PCR assays for important neonatal bloodstream pathogens (gram positive and gram negative bacteria, cytomegalovirus (CMV), herpes simplex virus(HSV) and P. falciparum) were performed on whole blood taken from 202 encephalopathic and 101 control infants. Automated blood culture (BACTEC) was performed for all cases and unwell controls. Prevalence of pathogenic bacterial species amongst infants with NE was 3.6%, 6.9% and 8.9%, with culture, PCR and both tests in combination, respectively. More encephalopathic infants than controls had pathogenic bacterial species detected (8.9%vs2.0%, p = 0.028) using culture and PCR in combination. PCR detected bacteremia in 11 culture negative encephalopathic infants (3 Group B Streptococcus, 1 Group A Streptococcus, 1 Staphylococcus aureus and 6 Enterobacteriacae). Coagulase negative staphylococcus, frequently detected by PCR amongst case and control infants, was considered a contaminant. Prevalence of CMV, HSV and malaria amongst cases was low (1.5%, 0.5% and 0.5%, respectively). This real-time PCR panel detected more bacteremia than culture alone and provides a novel tool for detection of neonatal bloodstream pathogens that may be applied across a range of clinical situations and settings. Significantly more encephalopathic infants than controls had pathogenic bacterial species detected suggesting that infection may be an important risk factor for NE in this setting.

  11. Detection of Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari in Skin Biopsy Specimens Using a Multiplex Real-time Polymerase Chain Reaction Assay

    PubMed Central

    Denison, Amy M.; Amin, Bijal D.; Nicholson, William L.; Paddock, Christopher D.

    2015-01-01

    Background Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari are the most common causes of spotted fever group rickettsioses indigenous to the United States. Infected patients characteristically present with a maculopapular rash, often accompanied by an inoculation eschar. Skin biopsy specimens are often obtained from these lesions for diagnostic evaluation. However, a species-specific diagnosis is achieved infrequently from pathologic specimens because immunohistochemical stains do not differentiate among the causative agents of spotted fever group rickettsiae, and existing polymerase chain reaction (PCR) assays generally target large gene segments that may be difficult or impossible to obtain from formalin-fixed tissues. Methods This work describes the development and evaluation of a multiplex real-time PCR assay for the detection of these 3 Rickettsia species from formalin-fixed, paraffin-embedded (FFPE) skin biopsy specimens. Results The multiplex PCR assay was specific at discriminating each species from FFPE controls of unrelated bacterial, viral, protozoan, and fungal pathogens that cause skin lesions, as well as other closely related spotted fever group Rickettsia species. Conclusions This multiplex real-time PCR demonstrates greater sensitivity than nested PCR assays in FFPE tissues and provides an effective method to specifically identify cases of Rocky Mountain spotted fever, rickettsialpox, and R. parkeri rickettsiosis by using skin biopsy specimens. PMID:24829214

  12. Clinical evaluation of a new single-tube multiplex reverse transcription PCR assay for simultaneous detection of 11 respiratory viruses, Mycoplasma pneumoniae and Chlamydia in hospitalized children with acute respiratory infections.

    PubMed

    Zhao, Meng-Chuan; Li, Gui-Xia; Zhang, Dan; Zhou, Hang-Yu; Wang, Hao; Yang, Shuo; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2017-06-01

    Respiratory Pathogen 13 Detection Kit (13× kit) is able to simultaneously detect 11 respiratory viruses, Mycoplasma pneumoniae (MP) and Chlamydia in a single reaction. Using 572 Nasopharyngeal aspirates collected from hospitalized children, the clinical performance of 13× kit for detecting 11 respiratory viruses was evaluated in comparison with a routinely used 2-tube multiplex reverse transcription PCR assay (2-tube assay) at provincial Centers for Disease Control and Prevention in China. The clinical performance of 13× kit for detecting MP and Chlamydia was evaluated by commercial real-time quantitative PCR (qPCR) kits or sequencing. For tested viruses, the assay concordance was 95.98% and the kappa coefficient was 0.89. All the MP and Chlamydia positive samples detected by 13× kit were confirmed as true positives. The utilization of the 13× kit in clinical settings will be helpful for doctors to assess clinical outcome according to virus type or multiple infections, and to limit the use of antibiotics. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Use of bacteriophage cell wall-binding proteins for rapid diagnostics of Listeria.

    PubMed

    Schmelcher, Mathias; Loessner, Martin J

    2014-01-01

    Diagnostic protocols for food-borne bacterial pathogens such as Listeria need to be sensitive, specific, rapid, and inexpensive. Conventional culture methods are hampered by lengthy enrichment and incubation steps. Bacteriophage-derived high-affinity binding molecules (cell wall-binding domains, CBDs) specific for Listeria cells have recently been introduced as tools for detection and differentiation of this pathogen in foods. When coupled with magnetic separation, these proteins offer advantages in sensitivity and speed compared to the standard diagnostic methods. Furthermore, fusion of CBDs to differently colored fluorescent reporter proteins enables differentiation of Listeria strains in mixed cultures. This chapter provides protocols for detection of Listeria in food by CBD-based magnetic separation and subsequent multiplexed identification of strains of different serotypes with reporter-CBD fusion proteins.

  14. An Integrated Lab-on-Chip for Rapid Identification and Simultaneous Differentiation of Tropical Pathogens

    PubMed Central

    Sato, Mitsuharu; Watthanaworawit, Wanitda; Ling, Clare L.; Mauduit, Marjorie; Malleret, Benoît; Grüner, Anne-Charlotte; Tan, Rosemary; Nosten, François H.; Snounou, Georges; Rénia, Laurent; Ng, Lisa F. P.

    2014-01-01

    Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens. PMID:25078474

  15. Detection of influenza virus types A and B and type A subtypes (H1, H3, and H5) by multiplex polymerase chain reaction.

    PubMed

    Boonsuk, Pitirat; Payungporn, Sunchai; Chieochansin, Thaweesak; Samransamruajkit, Rujipat; Amonsin, Alongkorn; Songserm, Thaweesak; Chaisingh, Arunee; Chamnanpood, Pornchai; Chutinimitkul, Salin; Theamboonlers, Apiradee; Poovorawan, Yong

    2008-07-01

    Infections with influenza virus type A and B present serious public health problems on a global scale. However, only influenza A virus has been reported to cause fatal pandemic in many species. To provide suitable clinical management and prevent further virus transmission, efficient and effective clinical diagnosis is essential. Therefore, we developed multiplex PCR assays for detecting influenza types A and B and the subtypes of influenza A virus (H1, H3 and H5). Upon performing multiplex PCR assays with type-specific primer sets, the clearly distinguishable products representing influenza A and B virus were separated by agarose gel electrophoresis. In addition, the subtypes of influenza A virus (H1, H3 and H5), which are most common in humans, can be readily distinguished by PCR with subtype-specific primer sets, yielding PCR products of different sizes depending on which subtype has been amplified. This method was tested on 46 influenza virus positive specimens of avian and mammalian (dog and human) origins collected between 2006 and 2008. The sensitivity of this method, tested against known concentrations of each type and subtype specific plasmid, was established to detect 10(3) copies/microl. The method's specificity was determined by testing against other subtypes of influenza A virus (H2, H4 and H6-H15) and respiratory pathogens commonly found in humans. None of them could be amplified, thus excluding cross reactivity. In conclusion, the multiplex PCR assays developed are advantageous as to rapidity, specificity, and cost effectiveness.

  16. Evaluation of the Roche LightMix Gastro parasites multiplex PCR assay detecting Giardia duodenalis, Entamoeba histolytica, cryptosporidia, Dientamoeba fragilis, and Blastocystis hominis.

    PubMed

    Friesen, J; Fuhrmann, J; Kietzmann, H; Tannich, E; Müller, M; Ignatius, R

    2018-03-23

    Multiplex PCR assays offer highly sensitive and specific tools for the detection of enteric pathogens. This prospective study aimed at comparing the novel Roche LightMix Modular Assay Gastro Parasites (LMAGP) detecting Giardia duodenalis, Entamoeba histolytica, Cryptosporidium spp., Blastocystishominis, and Dientamoebafragilis with routine laboratory procedures. Stool specimens (n = 1062 from 1009 patients) were consecutively examined by LMAGP, R-Biopharm Ridascreen enzyme immunoassays (EIAs) detecting G. duodenalis or E. histolytica/dispar, and microscopy of wet mounts. Discrepant results were analysed by in-house PCR. D. fragilis or B. hominis were detected by LMAGP in 131 (14.4%) and 179 (19.9%; 16 samples positive by microscopy; p < 0.0001) of 909 samples, respectively. Of 918 samples analysed for Cryptosporidium spp., six were positive by LMAGP (three could be confirmed by Kinyoun staining and one by in-house PCR). G. duodenalis was detected by LMAGP, EIA, or microscopy in 20, 16, or 9 of 1039 stool samples, respectively; all four samples missed by EIA were confirmed by in-house PCR. In total, 938 stool samples were analysed for E. histolytica/dispar. Nine of ten EIA-positive samples were negative by LMAGP but positive by in-house PCR for E. dispar. One E. histolytica infection (positive by both LMAGP and in-house PCR) was missed by EIA and microscopy. Parasites only detected by microscopy included Enterobius vermicularis eggs (n = 3) and apathogenic amoebae (n = 27). The data call for routine use of multiplex PCR assays for the detection of enteric protozoan parasites in laboratory diagnostics. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Tick-borne haemoparasites and Anaplasmataceae in domestic dogs in Zambia.

    PubMed

    Qiu, Yongjin; Kaneko, Chiho; Kajihara, Masahiro; Ngonda, Saasa; Simulundu, Edgar; Muleya, Walter; Thu, May June; Hang'ombe, Mudenda Bernard; Katakura, Ken; Takada, Ayato; Sawa, Hirofumi; Simuunza, Martin; Nakao, Ryo

    2018-05-01

    Tick-borne diseases (TBDs), including emerging and re-emerging infectious diseases, are important threats to human and animal health worldwide. Indeed, the number of reported human and animal infectious cases of novel TBD agents has increased in recent decades. However, TBDs tend to be neglected, especially in resource-limited countries that often have limited diagnostic capacity. The aim of this molecular survey was to detect and characterise tick-borne pathogens (Babesia, Theileria, and Hepatozoon parasites and Anaplasmataceae bacteria) in domestic dogs in Zambia. In total, 247 canine peripheral blood samples were collected in Lusaka, Mazabuka, Monze, and Shangombo. Conventional PCR to detect the selected pathogens was performed using DNA extracted from canine blood. One hundred eleven samples were positive for protozoa and 5 were positive for Anaplasmataceae. Sequencing of thirty-five randomly selected protozoa-positive samples revealed the presence of Babesia rossi, Babesia vogeli, and Hepatozoon canis 18S rDNA. Based on these sequences, a multiplex PCR system was developed to yield PCR products with different amplicons, the size of which depended on the parasite species; thus, each species could be identified without the need for sequence analysis. Approximately 40% of dogs were positive for H. canis. In particular, the positive rate (75.2%) of H. canis infection was significantly higher in Shangombo than in other sampling sites. Multiplex PCR assay detected B. rossi and B. vogeli infections in five and seven dogs, respectively, indicating that this approach is useful for detecting parasites with low prevalence. Sequencing analysis of gltA and groEL genes of Anaplasmataceae revealed that two and one dogs in Lusaka were infected with Anaplasma platys and Ehrlichia canis, respectively. The data indicated that Zambian dogs were infected with multiple tick-borne pathogens such as H. canis, B. rossi, B. vogeli, A. platys, E. canis and uncharacterized Ehrlichia sp. Since some of these parasites are zoonotic, concerted efforts are needed to raise awareness of, and control, these tick-borne pathogens. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. A lab-on-chip for biothreat detection using single-molecule DNA mapping.

    PubMed

    Meltzer, Robert H; Krogmeier, Jeffrey R; Kwok, Lisa W; Allen, Richard; Crane, Bryan; Griffis, Joshua W; Knaian, Linda; Kojanian, Nanor; Malkin, Gene; Nahas, Michelle K; Papkov, Vyacheslav; Shaikh, Saad; Vyavahare, Kedar; Zhong, Qun; Zhou, Yi; Larson, Jonathan W; Gilmanshin, Rudolf

    2011-03-07

    Rapid, specific, and sensitive detection of airborne bacteria, viruses, and toxins is critical for biodefense, yet the diverse nature of the threats poses a challenge for integrated surveillance, as each class of pathogens typically requires different detection strategies. Here, we present a laboratory-on-a-chip microfluidic device (LOC-DLA) that integrates two unique assays for the detection of airborne pathogens: direct linear analysis (DLA) with unsurpassed specificity for bacterial threats and Digital DNA for toxins and viruses. The LOC-DLA device also prepares samples for analysis, incorporating upstream functions for concentrating and fractionating DNA. Both DLA and Digital DNA assays are single molecule detection technologies, therefore the assay sensitivities depend on the throughput of individual molecules. The microfluidic device and its accompanying operation protocols have been heavily optimized to maximize throughput and minimize the loss of analyzable DNA. We present here the design and operation of the LOC-DLA device, demonstrate multiplex detection of rare bacterial targets in the presence of 100-fold excess complex bacterial mixture, and demonstrate detection of picogram quantities of botulinum toxoid.

  19. Evaluation of a multiplex real-time PCR assay for detecting pathogens in cardiac valve tissue in patients with endocarditis.

    PubMed

    Fernández, Angel L; Varela, Eduardo; Martínez, Lucía; Martínez, Amparo; Sierra, Juan; González-Juanatey, José R; Regueiro, Benito

    2010-10-01

    With a novel real-time multiplex polymerase chain reaction test, the LightCycler SeptiFast® test, 25 bacterial and fungal species can be identified directly in blood. The SeptiFast® test has been used for rapid etiologic diagnosis in infectious endocarditis using blood samples but has not been evaluated directly on cardiac vegetations in patients being treated for infectious endocarditis. We prospectively analyzed 15 samples of heart valve tissue with active infectious endocarditis using the SeptiFast® test and compared the test's sensitivity with that of blood culture, valve tissue culture, and the SeptiFast® test in blood. The sensitivity of the SeptiFast test in heart valve tissue was 100%. The test results confirmed the diagnosis obtained using blood culture in 13 cases and identified the pathogen in 2 cases where blood culture tested negative. The sensitivity of the SeptiFast® test in heart valve tissue was greater than that obtained with conventional culture of vegetations or with the SeptiFast test in blood.

  20. A BOX-SCAR fragment for the identification of Actinobacillus pleuropneumoniae.

    PubMed

    Rossi, Ciro C; Pereira, Monalessa F; Langford, Paul R; Bazzolli, Denise M S

    2014-03-01

    Bacterial respiratory diseases are responsible for considerable mortality, morbidity and economic losses in the swine industry. Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is one of the most important disease agents, but its identification and surveillance can be impaired by the existence of many other related bacteria in normal swine microbiota. In this work, we have evaluated a BOX-A1R-based repetitive extragenic palindromic-PCR (BOX-PCR) sequence characterised amplified region (SCAR) marker for the specific identification of A. pleuropneumoniae and its use in a multiplex PCR to detect additionally Haemophilus parasuis and Pasteurella multocida, two other major respiratory pathogens of pigs that are members of the family Pasteurellaceae. PCRs based on the BOX-SCAR fragment developed were rapid, sensitive and differentiated A. pleuropneumoniae from all swine-related members of the Pasteurellaceae family tested. Single and multiplex BOX-SCAR fragment-based PCRs can be used to identify A. pleuropneumoniae from other bacterial swine pathogens and will be useful in surveillance and epidemiological studies. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Evaluation of multiplex real-time PCR for detection of Haemophilus ducreyi, Treponema pallidum, herpes simplex virus type 1 and 2 in the diagnosis of genital ulcer disease in the Rakai District, Uganda.

    PubMed

    Suntoke, T R; Hardick, A; Tobian, A A R; Mpoza, B; Laeyendecker, O; Serwadda, D; Opendi, P; Gaydos, C A; Gray, R H; Wawer, M J; Quinn, T C; Reynolds, S J

    2009-04-01

    To develop a real-time PCR assay that reliably and accurately detects the predominant sexually transmitted aetiological agents of genital ulcer disease (GUD) (Haemophilus ducreyi, Treponema pallidum and herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2)) and to assess the use of real-time PCR diagnostic testing in a rural African field site. Two multiplex real-time PCR reactions were used to detect H ducreyi/and HSV-1/HSV-2 in ulcer swabs from 100 people with symptomatic genital ulcers in rural Rakai, Uganda. Results were compared with syphilis, HSV-1 and HSV-2 serology. Of 100 GUD samples analysed from 43 HIV positive and 57 HIV negative individuals, 71% were positive for one or more sexually transmitted infection (STI) pathogens by real-time PCR (61% for HSV-2, 5% for T pallidum, 3% for HSV-1, 1% for H ducreyi and 1% for dual H ducreyi/HSV-2). The frequency of HSV in genital ulcers was 56% (32/57) in HIV negative individuals and 77% (33/43) in HIV positive individuals (p = 0.037). Assay reproducibility was evaluated by repeat PCR testing in the USA with 96% agreement (kappa = 0.85). STI pathogens were detected in the majority of GUD swab samples from symptomatic patients in Rakai, Uganda, by real-time PCR. HSV-2 was the predominant cause of genital ulcers. Real-time PCR technology can provide sensitive, rapid and reproducible evaluation of GUD aetiology in a resource-limited setting.

  2. Evaluation of Innate Immune Biomarkers in Saliva for Diagnostic Potential of Bacterial and Viral Respiratory Infection

    DTIC Science & Technology

    2014-02-03

    subjects with chronic periodontitis and in periodontally healthy individuals: a cross-sectional study. Journal of periodontal research 44:411-417. 19...chemokines in whole saliva using a multiplex bead immunoassay in healthy individuals vs. patients with periodontitis . The detection of immune and pathogen...6, and IL-8 in saliva vs. serum obtained from healthy subjects and people afflicted with a chronic inflammatory disease. 6 Additionally, several

  3. Salvage microbiology: opportunities and challenges in the detection of bacterial pathogens following initiation of antimicrobial treatment

    PubMed Central

    Farrell, John J.; Hujer, Andrea M.; Sampath, Rangarajan; Bonomo, Robert A.

    2015-01-01

    Broad-range 16S ribosomal RNA gene PCR coupled with Sanger sequencing was originally employed by soil scientists and was subsequently adapted for clinical applications. PCR coupled with electrospray ionization mass spectrometry has also progressed from initial applications in the detection of organisms from environmental samples into the clinical realm and has demonstrated promise in detection of pathogens in clinical specimens obtained from patients with suspected infection but negative cultures. We review studies of multiplex PCR, 16S ribosomal RNA gene PCR and sequencing and PCR coupled with electrospray ionization mass spectrometry for detection of bacteria in specimens that were obtained from patients during or after administration of antibiotic treatment, and examine the role of each for assisting in antimicrobial treatment and stewardship efforts. Following an exploration of the available data in this field we discuss the opportunities that the preliminary investigations reveal, as well as the challenges faced with implementation of these strategies in clinical practice. PMID:25523281

  4. BeeDoctor, a Versatile MLPA-Based Diagnostic Tool for Screening Bee Viruses

    PubMed Central

    De Smet, Lina; Ravoet, Jorgen; de Miranda, Joachim R.; Wenseleers, Tom; Mueller, Matthias Y.; Moritz, Robin F. A.; de Graaf, Dirk C.

    2012-01-01

    The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called “BeeDoctor”, was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. “BeeDoctor” is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. “BeeDoctor” was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the “BeeDoctor”, virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies. PMID:23144717

  5. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses.

    PubMed

    De Smet, Lina; Ravoet, Jorgen; de Miranda, Joachim R; Wenseleers, Tom; Mueller, Matthias Y; Moritz, Robin F A; de Graaf, Dirk C

    2012-01-01

    The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called "BeeDoctor", was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. "BeeDoctor" is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. "BeeDoctor" was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the "BeeDoctor", virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies.

  6. Clinical application of 2.7M Cytogenetics array for CNV detection in subjects with idiopathic autism and/or intellectual disability.

    PubMed

    Qiao, Y; Tyson, C; Hrynchak, M; Lopez-Rangel, E; Hildebrand, J; Martell, S; Fawcett, C; Kasmara, L; Calli, K; Harvard, C; Liu, X; Holden, J J A; Lewis, S M E; Rajcan-Separovic, E

    2013-02-01

    Higher resolution whole-genome arrays facilitate the identification of smaller copy number variations (CNVs) and their integral genes contributing to autism and/or intellectual disability (ASD/ID). Our study describes the use of one of the highest resolution arrays, the Affymetrix(®) Cytogenetics 2.7M array, coupled with quantitative multiplex polymerase chain reaction (PCR) of short fluorescent fragments (QMPSF) for detection and validation of small CNVs. We studied 82 subjects with ASD and ID in total (30 in the validation and 52 in the application cohort) and detected putatively pathogenic CNVs in 6/52 cases from the application cohort. This included a 130-kb maternal duplication spanning exons 64-79 of the DMD gene which was found in a 3-year-old boy manifesting autism and mild neuromotor delays. Other pathogenic CNVs involved 4p14, 12q24.31, 14q32.31, 15q13.2-13.3, and 17p13.3. We established the optimal experimental conditions which, when applied to select small CNVs for QMPSF confirmation, reduced the false positive rate from 60% to 25%. Our work suggests that selection of small CNVs based on the function of integral genes, followed by review of array experimental parameters resulting in highest confirmation rate using multiplex PCR, may enhance the usefulness of higher resolution platforms for ASD and ID gene discovery. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  7. Comparison of three multiplex gastrointestinal platforms for the detection of gastroenteritis viruses

    PubMed Central

    Chhabra, Preeti; Gregoricus, Nicole; Weinberg, Geoffrey A.; Halasa, Natasha; Chappell, James; Hassan, Ferdaus; Selvarangan, Rangaraj; Mijatovic-Rustempasic, Slavica; Ward, M. Leanne; Bowen, Michael; Payne, Daniel C.; Vinjé, Jan

    2018-01-01

    Background Viruses are major etiological agents of childhood gastroenteritis. In recent years, several molecular platforms for the detection of viral enteric pathogens have become available. Objective/study design We evaluated the performance of three multiplex platforms including Biofire’s Gastrointestinal Panel (FilmArray), Luminex xTAG® Gastrointestinal Pathogen Panel (GPP), and the TaqMan Array Card (TAC) for the detection of five gastroenteritis viruses using a coded panel of 300 archived stool samples. Results The FilmArray detected a virus in 199 (96.1%) and the TAC in 172 (83.1%) of the 207 samples (187 samples positive for a single virus and 20 samples positive for more than one virus) whereas the GPP detected a virus in 100 (78.7%) of the 127 (97 positive for one virus and three positive for more than one virus) samples. Overall the clinical accuracy was highest for the FilmArray (98%) followed by TAC (97.2%) and GPP (96.9%). The sensitivity of the FilmArray, GPP and TAC platforms was highest for rotavirus (100%, 95.8%, and 89.6%, respectively) and lowest for adenovirus type 40/41 (97.4%, 57.9% and 68.4%). The specificity of the three platforms ranged from 95.6% (rotavirus) to 99.6% (norovirus/sapovirus) for the FilmArray, 99.6% (norovirus) to 100% (rotavirus/adenovirus) for GPP, and 98.9% (astrovirus) to 100% (rotavirus/sapovirus) for TAC. Conclusion The FilmArray demonstrated the best analytical performance followed by TAC. In recent years, the availability of multi-enteric molecular testing platforms has increased significantly and our data highlight the strengths and weaknesses of these platforms. PMID:28889082

  8. Detection of Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari in skin biopsy specimens using a multiplex real-time polymerase chain reaction assay.

    PubMed

    Denison, Amy M; Amin, Bijal D; Nicholson, William L; Paddock, Christopher D

    2014-09-01

    Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari are the most common causes of spotted fever group rickettsioses indigenous to the United States. Infected patients characteristically present with a maculopapular rash, often accompanied by an inoculation eschar. Skin biopsy specimens are often obtained from these lesions for diagnostic evaluation. However, a species-specific diagnosis is achieved infrequently from pathologic specimens because immunohistochemical stains do not differentiate among the causative agents of spotted fever group rickettsiae, and existing polymerase chain reaction (PCR) assays generally target large gene segments that may be difficult or impossible to obtain from formalin-fixed tissues. This work describes the development and evaluation of a multiplex real-time PCR assay for the detection of these 3 Rickettsia species from formalin-fixed, paraffin-embedded (FFPE) skin biopsy specimens. The multiplex PCR assay was specific at discriminating each species from FFPE controls of unrelated bacterial, viral, protozoan, and fungal pathogens that cause skin lesions, as well as other closely related spotted fever group Rickettsia species. This multiplex real-time PCR demonstrates greater sensitivity than nested PCR assays in FFPE tissues and provides an effective method to specifically identify cases of Rocky Mountain spotted fever, rickettsialpox, and R. parkeri rickettsiosis by using skin biopsy specimens. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Development and clinical validation of a multiplex real-time PCR assay for herpes simplex and varicella zoster virus.

    PubMed

    Tan, Thean Yen; Zou, Hao; Ong, Danny Chee Tiong; Ker, Khor Jia; Chio, Martin Tze Wei; Teo, Rachael Yu Lin; Koh, Mark Jean Aan

    2013-12-01

    Herpes simplex virus (HSV) and varicella zoster virus (VZV) are related members of the Herpesviridae family and are well-documented human pathogens causing a spectrum of diseases, from mucocutaneous disease to infections of the central nervous system. This study was carried out to evaluate and validate the performance of a multiplex real-time polymerase chain reaction (PCR) assay in detecting and differentiating HSV1, HSV2, and VZV from clinical samples. Consensus PCR primers for HSV were designed from the UL30 component of the DNA polymerase gene of HSV, with 2 separate hydrolysis probes designed to differentiate HSV1 and HSV2. Separate primers and a probe were also designed against the DNA polymerase gene of VZV. A total of 104 clinical samples were available for testing by real-time PCR, conventional PCR, and viral culture. The sensitivity and specificity of the real-time assay was calculated by comparing the multiplex PCR result with that of a combined standard of virus culture and conventional PCR. The sensitivity of the real-time assay was 100%, with specificity ranging from 98% to 100% depending on the target gene. Both PCR methods detected more positive samples for HSV or VZV, compared with conventional virus culture. This multiplex PCR assay provides accurate and rapid diagnostic capabilities for the diagnosis and differentiation of HSV1, HSV2, and VZV infections, with the presence of an internal control to monitor for inhibition of the PCR reaction.

  10. Multiplex Touchdown PCR for Rapid Typing of the Opportunistic Pathogen Propionibacterium acnes

    PubMed Central

    Barnard, Emma; Nagy, István; Hunyadkürti, Judit; Patrick, Sheila

    2015-01-01

    The opportunistic human pathogen Propionibacterium acnes is composed of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II, and III, which vary in their production of putative virulence factors, their inflammatory potential, and their biochemical, aggregative, and morphological characteristics. Although multilocus sequence typing (MLST) currently represents the gold standard for unambiguous phylogroup classification and individual strain identification, it is a labor-intensive and time-consuming technique. As a consequence, we developed a multiplex touchdown PCR assay that in a single reaction can confirm the species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA gene (all isolates), ATPase (types IA1, IA2, and IC), sodA (types IA2 and IB), atpD (type II), and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterized by MLST and representing types IA1 (n = 145), IA2 (n = 20), IB (n = 65), IC (n = 7), II (n = 45), and III (n = 30), the multiplex displayed 100% sensitivity and 100% specificity for detecting isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. This multiplex assay will provide researchers with a rapid, high-throughput, and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, and it will serve as a prescreening tool to maximize the number of genetically diverse isolates selected for downstream higher-resolution sequence-based analyses. PMID:25631794

  11. Multiplexed Activity-based Protein Profiling of the Human Pathogen Aspergillus fumigatus Reveals Large Functional Changes upon Exposure to Human Serum*

    PubMed Central

    Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.

    2012-01-01

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858

  12. Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum.

    PubMed

    Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T

    2012-09-28

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.

  13. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    NASA Astrophysics Data System (ADS)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  14. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients.

    PubMed

    Tat Trung, Ngo; Van Tong, Hoang; Lien, Tran Thi; Van Son, Trinh; Thanh Huyen, Tran Thi; Quyen, Dao Thanh; Hoan, Phan Quoc; Meyer, Christian G; Song, Le Huu

    2018-02-01

    For the identification of bacterial pathogens, blood culture is still the gold standard diagnostic method. However, several disadvantages apply to blood cultures, such as time and rather large volumes of blood sample required. We have previously established an optimised multiplex real-time PCR method in order to diagnose bloodstream infections. In the present study, we evaluated the diagnostic performance of this optimised multiplex RT-PCR in blood samples collected from 110 septicaemia patients enrolled at the 108 Military Central Hospital, Hanoi, Vietnam. Positive results were obtained by blood culture, the Light Cylcler-based SeptiFast ® assay and our multiplex RT-PCR in 35 (32%), 31 (28%), and 31 (28%) samples, respectively. Combined use of the three methods confirmed 50 (45.5%) positive cases of bloodstream infection, a rate significantly higher compared to the exclusive use of one of the three methods (P=0.052, 0.012 and 0.012, respectively). The sensitivity, specificity and area under the curve (AUC) of our assay were higher compared to that of the SeptiFast ® assay (77.4%, 86.1% and 0.8 vs. 67.7%, 82.3% and 0.73, respectively). Combined use of blood culture and multiplex RT-PCR assay showed a superior diagnostic performance, as the sensitivity, specificity, and AUC reached 83.3%, 100%, and 0.95, respectively. The concordance between blood culture and the multiplex RT-PCR assay was highest for Klebsiella pneumonia (100%), followed by Streptococcus spp. (77.8%), Escherichia coli (66.7%), Staphylococcus spp. (50%) and Salmonella spp. (50%). In addition, the use of the newly established multiplex RT-PCR assay increased the spectrum of identifiable agents (Acintobacter baumannii, 1/32; Proteus mirabilis, 1/32). The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Evaluation of a real-time PCR assay for detection and quantification of bacterial DNA directly in blood of preterm neonates with suspected late-onset sepsis.

    PubMed

    van den Brand, Marre; van den Dungen, Frank A M; Bos, Martine P; van Weissenbruch, Mirjam M; van Furth, A Marceline; de Lange, Annemieke; Rubenjan, Anna; Peters, Remco P H; Savelkoul, Paul H M

    2018-04-22

    Rapid and accurate diagnosis of neonatal sepsis is highly warranted because of high associated morbidity and mortality. The aim of this study was to evaluate the performance of a novel multiplex PCR assay for diagnosis of late-onset sepsis and to investigate the value of bacterial DNA load (BDL) determination as a measure of infection severity. This cross-sectional study was conducted in a neonatal intensive care unit. Preterm and/or very low birth weight infants suspected for late-onset sepsis were included. Upon suspicion of sepsis, a whole blood sample was drawn for multiplex PCR to detect the eight most common bacteria causing neonatal sepsis, as well as for blood culture. BDL was determined in episodes with a positive multiplex PCR. In total, 91 episodes of suspected sepsis were investigated, and PCR was positive in 53 (58%) and blood culture in 60 (66%) episodes, yielding no significant difference in detection rate (p = 0.17). Multiplex PCR showed a sensitivity of 77%, specificity of 81%, positive predictive value of 87%, and negative predictive value of 68% compared with blood culture. Episodes with discordant results of PCR and blood culture included mainly detection of coagulase-negative staphylococci (CoNS). C-reactive protein (CRP) level and immature to total neutrophil (I/T) ratio were lower in these episodes, indicating less severe disease or even contamination. Median BDL was high (4.1 log 10 cfu Eq/ml) with a wide range, and was it higher in episodes with a positive blood culture than in those with a negative blood culture (4.5 versus 2.5 log 10 cfu Eq/ml; p < 0.0001). For CoNS infection episodes BDL and CRP were positively associated (p = 0.004), and for Staphylococcus aureus infection episodes there was a positive association between BDL and I/T ratio (p = 0.049). Multiplex PCR provides a powerful assay to enhance rapid identification of the causative pathogen in late-onset sepsis. BDL measurement may be a useful indicator of severity of infection.

  16. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  17. The microfluidic bioagent autonomous networked detector (M-BAND): an update. Fully integrated, automated, and networked field identification of airborne pathogens

    NASA Astrophysics Data System (ADS)

    Sanchez, M.; Probst, L.; Blazevic, E.; Nakao, B.; Northrup, M. A.

    2011-11-01

    We describe a fully automated and autonomous air-borne biothreat detection system for biosurveillance applications. The system, including the nucleic-acid-based detection assay, was designed, built and shipped by Microfluidic Systems Inc (MFSI), a new subsidiary of PositiveID Corporation (PSID). Our findings demonstrate that the system and assay unequivocally identify pathogenic strains of Bacillus anthracis, Yersinia pestis, Francisella tularensis, Burkholderia mallei, and Burkholderia pseudomallei. In order to assess the assay's ability to detect unknown samples, our team also challenged it against a series of blind samples provided by the Department of Homeland Security (DHS). These samples included natural occurring isolated strains, near-neighbor isolates, and environmental samples. Our results indicate that the multiplex assay was specific and produced no false positives when challenged with in house gDNA collections and DHS provided panels. Here we present another analytical tool for the rapid identification of nine Centers for Disease Control and Prevention category A and B biothreat organisms.

  18. Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology.

    PubMed

    Sibley, Christopher D; Peirano, Gisele; Church, Deirdre L

    2012-04-01

    Clinical microbiology laboratories worldwide have historically relied on phenotypic methods (i.e., culture and biochemical tests) for detection, identification and characterization of virulence traits (e.g., antibiotic resistance genes, toxins) of human pathogens. However, limitations to implementation of molecular methods for human infectious diseases testing are being rapidly overcome allowing for the clinical evaluation and implementation of diverse technologies with expanding diagnostic capabilities. The advantages and limitation of molecular techniques including real-time polymerase chain reaction, partial or whole genome sequencing, molecular typing, microarrays, broad-range PCR and multiplexing will be discussed. Finally, terminal restriction fragment length polymorphism (T-RFLP) and deep sequencing are introduced as technologies at the clinical interface with the potential to dramatically enhance our ability to diagnose infectious diseases and better define the epidemiology and microbial ecology of a wide range of complex infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Diagnostic accuracy of the ROCHE Septifast PCR system for the rapid detection of blood pathogens in neonatal sepsis-A prospective clinical trial.

    PubMed

    Straub, Julia; Paula, Helga; Mayr, Michaela; Kasper, David; Assadian, Ojan; Berger, Angelika; Rittenschober-Böhm, Judith

    2017-01-01

    Diagnosis of neonatal sepsis remains a major challenge in neonatology. Most molecular-based methods are not customized for neonatal requirements. The aim of the present study was to assess the diagnostic accuracy of a modified multiplex PCR protocol for the detection of neonatal sepsis using small blood volumes. 212 episodes of suspected neonatal late onset sepsis were analyzed prospectively using the Roche SeptiFast® MGRADE PCR with a modified DNA extraction protocol and software-handling tool. Results were compared to blood culture, laboratory biomarkers and clinical signs of sepsis. Of 212 episodes, 85 (40.1%) were categorized as "not infected". Among these episodes, 1 was false positive by blood culture (1.2%) and 23 were false positive by PCR (27.1%). Of 51 (24.1%) episodes diagnosed as "culture proven sepsis", the same pathogen was detected by blood culture and PCR in 39 episodes (76.5%). In 8 episodes, more pathogens were detected by PCR compared to blood culture, and in 4 episodes the pathogen detected by blood culture was not found by PCR. One of these episodes was caused by Bacillus cereus, a pathogen not included in the PCR panel. In 76/212 (35.8%) episodes, clinical sepsis was diagnosed. Among these, PCR yielded positive results in 39.5% of episodes (30/76 episodes). For culture-positive sepsis, PCR showed a sensitivity of 90.2% (95%CI 86.2-94.2%) and a specificity of 72.9% (95%CI 67.0-79.0%). The Roche SeptiFast® MGRADE PCR using a modified DNA extraction protocol showed acceptable results for rapid detection of neonatal sepsis in addition to conventional blood culture. The benefit of rapid pathogen detection has to be balanced against the considerable risk of contamination, loss of information on antibiotic sensitivity pattern and increased costs.

  20. Specific detection of common pathogens of acute bacterial meningitis using an internally controlled tetraplex-PCR assay.

    PubMed

    Farahani, Hamidreza; Ghaznavi-Rad, Ehsanollah; Mondanizadeh, Mahdieh; MirabSamiee, Siamak; Khansarinejad, Behzad

    2016-08-01

    Accurate and timely diagnosis of acute bacterial meningitis is critical for antimicrobial treatment of patients. Although PCR-based methods have been widely used for the diagnosis of acute meningitis caused by bacterial pathogens, the main disadvantage of these methods is their high cost. This disadvantage has hampered the widespread use of molecular assays in many developing countries. The application of multiplex assays and "in-house" protocols are two main approaches that can reduce the overall cost of a molecular test. In the present study, an internally controlled tetraplex-PCR was developed and validated for the specific detection of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae in cerebrospinal fluid (CSF) samples. The analysis of a panel of other human pathogens showed no cross-reactivity in the assay. The analytical sensitivity of the in-house assay was 792.3 copies/ml, when all three bacteria were presentin the specimens. This value was calculated as 444.5, 283.7, 127.8 copies/ml when only S. pneumoniae, N. meningitidis and H. influenzae, respectively, were present. To demonstrate the diagnostic performance of the assay, a total of 150 archival CSF samples were tested and compared with a commercial multiplex real-time PCR kit. A diagnostic sensitivity of 92.8% and a specificity of 95.1% were determined for the present tetraplex-PCR assay. The results indicate that the established method is sensitive, specific and cost-effective, and can be used particularly in situations where the high cost of commercial kits prevents the use of molecular methods for the diagnosis of bacterial meningitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    PubMed

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction

    NASA Astrophysics Data System (ADS)

    Jia, Nan; Ding, Li; Liu, Yu-Jing; Hu, Ping

    2018-07-01

    In this paper, we consider two interacting pathogens spreading on multiplex networks. Each pathogen spreads only on its single layer, and different layers have the same individuals but different network topology. A state-dependent infectious rate is proposed to describe the nonlinear mutual interaction during the propagation of two pathogens. Then a novel epidemic spreading model incorporating treatment control strategy is established. We investigate the global asymptotic stability of the equilibrium points by using Dulac's criterion, Poincaré-Bendixson theorem and Lyapunov method. Furthermore, we discuss an optimal strategy to minimize the total number of the infected individuals and the cost associated with treatment control for both spreading of two pathogens. Finally, numerical simulations are presented to show the validity and efficiency of our results.

  3. Electrokinetic stringency control in self-assembled monolayer-based biosensors for multiplex urinary tract infection diagnosis.

    PubMed

    Liu, Tingting; Sin, Mandy L Y; Pyne, Jeff D; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2014-01-01

    Rapid detection of bacterial pathogens is critical toward judicious management of infectious diseases. Herein, we demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis. The in situ electrokinetic stringency control technique generates Joule heating induced temperature rise and electrothermal fluid motion directly on the sensor to improve its performance for detecting bacterial 16S rRNA, a phylogenetic biomarker. The dependence of the hybridization efficiency reveals that in situ electrokinetic stringency control is capable of discriminating single-base mismatches. With electrokinetic stringency control, the background noise due to the matrix effects of clinical urine samples can be reduced by 60%. The applicability of the system is demonstrated by multiplex detection of three uropathogenic clinical isolates with similar 16S rRNA sequences. The results demonstrate that electrokinetic stringency control can significantly improve the signal-to-noise ratio of the biosensor for multiplex urinary tract infection diagnosis. Urinary tract infections remain a significant cause of mortality and morbidity as secondary conditions often related to chronic diseases or to immunosuppression. Rapid and sensitive identification of the causative organisms is critical in the appropriate management of this condition. These investigators demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis, establishing that such an approach significantly improves the biosensor's signal-to-noise ratio. © 2013.

  4. Prospective evaluation of the SeptiFAST multiplex real-time PCR assay for surveillance and diagnosis of infections in haematological patients after allogeneic stem cell transplantation compared to routine microbiological assays and an in-house real-time PCR method.

    PubMed

    Elges, Sandra; Arnold, Renate; Liesenfeld, Oliver; Kofla, Grzegorz; Mikolajewska, Agata; Schwartz, Stefan; Uharek, Lutz; Ruhnke, Markus

    2017-12-01

    We prospectively evaluated a multiplex real-time PCR assay (SeptiFast, SF) in a cohort of patients undergoing allo-BMT in comparison to an in-house PCR method (IH-PCR). Overall 847 blood samples (mean 8 samples/patient) from 104 patients with haematological malignancies were analysed. The majority of patients had acute leukaemia (62%) with a mean age of 52 years (54% female). Pathogens could be detected in 91 of 847 (11%) samples by SF compared to 38 of 205 (18.5%) samples by BC, and 57 of 847 (6.7%) samples by IH-PCR. Coagulase-negative staphylococci (n=41 in SF, n=29 in BC) were the most frequently detected bacteria followed by Escherichia coli (n=9 in SF, n=6 in BC). Candida albicans (n=17 in SF, n=0 in BC, n=24 in IH-PCR) was the most frequently detected fungal pathogen. SF gave positive results in 5% of samples during surveillance vs in 26% of samples during fever episodes. Overall, the majority of blood samples gave negative results in both PCR methods resulting in 93% overall agreement resulting in a negative predictive value of 0.96 (95% CI: 0.95-0.97), and a positive predictive value of 0.10 (95% CI: -0.01 to 0.21). SeptiFast appeared to be superior over BC and the IH-PCR method. © 2017 Blackwell Verlag GmbH.

  5. Paradigm for diagnosing mycobacterial disease: direct detection and differentiation of Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in clinical specimens using multiplex real-time PCR.

    PubMed

    Kim, Jeong-Uk; Ryu, Dae-Shick; Cha, Choong-Hwan; Park, Seon-Hee

    2018-03-20

    Mycobacterium tuberculosis and non-tuberculous mycobacteria (NTM) are clinically different, and the rapid detection and differentiation of M. tuberculosis complex (MTBC) and NTM is crucial for patient management and infection control. Given the slow growth of most pathogenic mycobacteria, nucleic acid amplification assays are excellent tools for direct identification of mycobacteria in clinical specimens. Recently, a multiplex real-time PCR assay was developed that can directly detect 20 mycobacterial species in clinical specimens. Here, we evaluated the diagnostic performance of the assay for diagnosing mycobacterial disease under routine laboratory conditions. A total of 3334 specimens collected from 1437 patients suspected of tuberculosis infection were subjected to acid-fast bacilli staining, conventional culture and the multiplex real-time PCR assay. To evaluate the sensitivity and specificity of the assay, the overall diagnosis of tuberculosis was defined by positive culture plus medical history, and the 2007 American Thoracic Society and Infectious Disease Society of America diagnostic criteria for NTM disease were applied. The sensitivity, specificity, positive predictive value and negative predictive value were 87.5%, 99.6%, 96.1% and 98.5%, respectively, for the detection of MTBC isolates and 53.3%, 99.9%, 95.2%, and 98.9%, respectively, for detecting NTM isolates. Thus, the assay can correctly differentiate between MTBC and NTM isolates in clinical specimens and would be a useful tool for the rapid differentiation of tuberculosis and NTM disease, despite its limited sensitivity for the diagnosis of NTM disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses

    PubMed Central

    Chan, Jasper Fuk-Woo; Choi, Garnet Kwan-Yue; Tsang, Alan Ka-Lun; Tee, Kah-Meng; Lam, Ho-Yin; Yip, Cyril Chik-Yan; To, Kelvin Kai-Wang; Cheng, Vincent Chi-Chung; Yeung, Man-Lung; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Chan, Kwok-Hung; Tang, Bone Siu-Fai

    2015-01-01

    Based on findings in small RNA-sequencing (Seq) data analysis, we developed highly sensitive and specific real-time reverse transcription (RT)-PCR assays with locked nucleic acid probes targeting the abundantly expressed leader sequences of Middle East respiratory syndrome coronavirus (MERS-CoV) and other human coronaviruses. Analytical and clinical evaluations showed their noninferiority to a commercial multiplex PCR test for the detection of these coronaviruses. PMID:26019210

  7. Establishment and Application of a Visual DNA Microarray for the Detection of Food-borne Pathogens.

    PubMed

    Li, Yongjin

    2016-01-01

    The accurate detection and identification of food-borne pathogenic microorganisms is critical for food safety nowadays. In the present work, a visual DNA microarray was established and applied to detect pathogens commonly found in food, including Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in food samples. Multiplex PCR (mPCR) was employed to simultaneously amplify specific gene fragments, fimY for Salmonella, ipaH for Shigella, iap for L. monocytogenes and ECs2841 for E. coli O157:H7, respectively. Biotinylated PCR amplicons annealed to the microarray probes were then reacted with a streptavidin-alkaline phosphatase conjugate and nitro blue tetrazolium/5-bromo-4-chloro-3'-indolylphosphate, p-toluidine salt (NBT/BCIP); the positive results were easily visualized as blue dots formatted on the microarray surface. The performance of a DNA microarray was tested against 14 representative collection strains and mock-contamination food samples. The combination of mPCR and a visual micro-plate chip specifically and sensitively detected Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in standard strains and food matrices with a sensitivity of ∼10(2) CFU/mL of bacterial culture. Thus, the developed method is advantageous because of its high throughput, cost-effectiveness and ease of use.

  8. An Improved Multiplex Real-Time SYBR Green PCR Assay for Analysis of 24 Target Genes from 16 Bacterial Species in Fecal DNA Samples from Patients with Foodborne Illnesses.

    PubMed

    Kawase, Jun; Etoh, Yoshiki; Ikeda, Tetsuya; Yamaguchi, Keiji; Watahiki, Masanori; Shima, Tomoko; Kameyama, Mitsuhiro; Horikawa, Kazumi; Fukushima, Hiroshi; Goto, Ryoichi; Shirabe, Komei

    2016-05-20

    Here, we developed a new version of our original screening system (Rapid Foodborne Bacterial Screening 24; RFBS24), which can simultaneously detect 24 genes of foodborne pathogens in fecal DNA samples. This new version (RFBS24 ver. 5) detected all known stx2 subtypes, enterotoxigenic Escherichia coli (STh genotype), and Vibrio parahaemolyticus (trh2), which were not detected by the original RFBS24 assay. The detection limits of RFBS24 ver. 5 were approximately 5.6 × 10(-2)-5.6 × 10(-5) (ng DNA)/reaction, significantly lower (10- to 100-fold) than those of the original RFBS24 for the 22 target genes analyzed here. We also tested the new assay on fecal DNA samples from patients infected with Salmonella, Campylobacter, or enterohemorrhagic E. coli. The number of bacterial target genes detected by RFBS24 ver. 5 was greater than that detected by RFBS24. RFBS24 ver. 5 combined with an Ultra Clean Fecal DNA Isolation Kit showed adequate performance (sensitivity and specificity 89% and 100%, respectively, for Salmonella spp. and 100% and 83%, respectively, for Campylobacter jejuni) in terms of rapid detection of a causative pathogen during foodborne-illness outbreaks. Thus, RFBS24 ver. 5 is more useful than the previous assay system for detection of foodborne pathogens and offers quick simultaneous analysis of many targets and thus facilitates rapid dissemination of information to public health officials.

  9. Assessment of the Usefulness of Multiplex Real-Time PCR Tests in the Diagnostic and Therapeutic Process of Pneumonia in Hospitalized Children: A Single-Center Experience.

    PubMed

    Gowin, Ewelina; Bartkowska-Śniatkowska, Alicja; Jończyk-Potoczna, Katarzyna; Wysocka-Leszczyńska, Joanna; Bobkowski, Waldemar; Fichna, Piotr; Sobkowiak, Paulina; Mazur-Melewska, Katarzyna; Bręborowicz, Anna; Wysocki, Jacek; Januszkiewicz-Lewandowska, Danuta

    2017-01-01

    The aim of the study was assessment of the usefulness of multiplex real-time PCR tests in the diagnostic and therapeutic process in children hospitalized due to pneumonia and burdened with comorbidities. Methods . The study group included 97 children hospitalized due to pneumonia at the Karol Jonscher Teaching Hospital in Poznań, in whom multiplex real-time PCR tests (FTD respiratory pathogens 33; fast-track diagnostics) were used. Results . Positive test results of the test were achieved in 74 patients (76.3%). The average age in the group was 56 months. Viruses were detected in 61 samples (82% of all positive results); bacterial factors were found in 29 samples (39% of all positive results). The presence of comorbidities was established in 90 children (92.78%). On the basis of the obtained results, 5 groups of patients were established: viral etiology of infection, 34 patients; bacterial etiology, 7 patients; mixed etiology, 23 patients; pneumocystis, 9 patients; and no etiology diagnosed, 24 patients. Conclusions . Our analysis demonstrated that the participation of viruses in causing severe lung infections is significant in children with comorbidities. Multiplex real-time PCR tests proved to be more useful in establishing the etiology of pneumonia in hospitalized children than the traditional microbiological examinations.

  10. [A review of mixed gas detection system based on infrared spectroscopic technique].

    PubMed

    Dang, Jing-Min; Fu, Li; Yan, Zi-Hui; Zheng, Chuan-Tao; Chang, Yu-Chun; Chen, Chen; Wang, Yi-Din

    2014-10-01

    In order to provide the experiences and references to the researchers who are working on infrared (IR) mixed gas detection field. The proposed manuscript reviews two sections of the aforementioned field, including optical multiplexing structure and detection method. At present, the coherent light sources whose representative are quantum cascade laser (QCL) and inter-band cascade laser(ICL) become the mainstream light source in IR mixed gas detection, which replace the traditional non-coherent light source, such as IR radiation source and IR light emitting diode. In addition, the photon detector which has a super high detectivity and very short response time is gradually beyond thermal infrared detector, dominant in the field of infrared detector. The optical multiplexing structure is the key factor of IR mixed gas detection system, which consists of single light source multi-plexing detection structure and multi light source multiplexing detection structure. Particularly, single light source multiplexing detection structure is advantages of small volume and high integration, which make it a plausible candidate for the portable mixed gas detection system; Meanwhile, multi light source multiplexing detection structure is embodiment of time division multiplex, frequency division multiplexing and wavelength division multiplexing, and become the leading structure of the mixed gas detection system because of its wider spectral range, higher spectral resolution, etc. The detection method applied to IR mixed gas detection includes non-dispersive infrared (NDIR) spectroscopy, wavelength and frequency-modulation spectroscopy, cavity-enhanced spectroscopy and photoacoustic spectroscopy, etc. The IR mixed gas detection system designed by researchers after recognizing the whole sections of the proposed system, which play a significant role in industrial and agricultural production, environmental monitoring, and life science, etc.

  11. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR.

    PubMed

    Kannika, K; Pisuttharachai, D; Srisapoome, P; Wongtavatchai, J; Kondo, H; Hirono, I; Unajak, S; Areechon, N

    2017-06-01

    This study aimed to biotype Streptococcus agalactiae isolated from tilapia farms in Thailand based on molecular biotyping methods and to determine the correlation between the serotype and virulence of bacteria. In addition to a biotyping (serotyping) technique based on multiplex PCR of cps genes, in this study, we developed multiplex PCR typing of Group B streptococcus (GBS) virulence genes to examine three clusters of virulence genes and their correlation with the pathogenicity of S. agalactiae. The epidemiology of S. agalactiae in Thailand was analysed to provide bacterial genetic information towards a future rational vaccine strategy for tilapia culture systems. Streptococcus agalactiae were isolated from diseased tilapia from different areas of Thailand. A total of 124 S. agalactiae isolates were identified by phenotypic analysis and confirmed by 16S rRNA PCR. Bacterial genotyping was conducted based on (i) molecular serotyping of the capsular polysaccharide (cps) gene cluster and (ii) virulence gene profiling using multiplex PCR analysis of 14 virulence genes (lmb, scpB, pavA, cspA, spb1, cyl, bca, rib, fbsA, fbsB, cfb, hylB, bac and pbp1A/ponA). Only serotypes Ia and III were found in this study; serotype Ia lacks the lmb, scpB and spb1 genes, whereas serotype III lacks only the bac gene. Virulence tests in juvenile Nile tilapia demonstrated a correlation between the pathogenicity of the bacteria and their virulence gene profile, with serotype III showing higher virulence than serotype Ia. Epidemiological analysis showed an almost equal distribution in all regions of Thailand, except serotype III was found predominantly in the southern areas. Only two serotypes of S. agalactiae were isolated from diseased tilapia in Thailand. Serotype Ia showed fewer virulence genes and lower virulence than serotype III. Both serotypes showed a similar distribution throughout Thailand. We identified two major serotypes of S. agalactiae isolates associated with the outbreak in tilapia culture in Thailand. We developed multiplex PCR assays for 14 virulence genes, which may be used to predict the pathogenicity of the isolates and track future infections. Multiplex PCR typing of the GBS virulence genes was developed and might be further used to predict the pathogenicity of S. agalactiae. © 2017 The Society for Applied Microbiology.

  12. Otopathogens Detected in Middle Ear Fluid Obtained during Tympanostomy Tube Insertion: Contrasting Purulent and Non-Purulent Effusions

    PubMed Central

    Holder, Robert C.; Kirse, Daniel J.; Evans, Adele K.; Whigham, Amy S.; Peters, Timothy R.; Poehling, Katherine A.; Swords, William E.; Reid, Sean D.

    2015-01-01

    Otitis media is a prominent disease among children. Previous literature indicates that otitis media is a polymicrobial disease, with Haemophilus influenzae, Streptococcus pneumoniae, Alloiococcus otitidis and Moraxella catarrhalis being the most commonly associated bacterial pathogens. Recent literature suggests that introduction of pneumococcal conjugate vaccines has had an effect on the etiology of otitis media. Using a multiplex PCR procedure, we sought to investigate the presence of the aforementioned bacterial pathogens in middle ear fluid collected from children undergoing routine tympanostomy tube placement at Wake Forest Baptist Medical Center during the period between January 2011 and March 2014. In purulent effusions, one or more bacterial organisms were detected in ~90% of samples. Most often the presence of H. influenzae alone was detected in purulent effusions (32%; 10 of 31). In non-purulent effusions, the most prevalent organism detected was A. otitidis (26%; 63 of 245). Half of the non-purulent effusions had none of these otopathogens detected. In purulent and non-purulent effusions, the overall presence of S. pneumoniae was lower (19%; 6 of 31, and 4%; 9 of 245, respectively) than that of the other pathogens being identified. The ratio of the percentage of each otopathogen identified in purulent vs. non-purulent effusions was >1 for the classic otopathogens but not for A. otitidis. PMID:26039250

  13. Prevalence and pathogens of subclinical mastitis in dairy goats in China.

    PubMed

    Zhao, Yanqing; Liu, Hui; Zhao, Xuanduo; Gao, Yang; Zhang, Miaotao; Chen, Dekun

    2015-02-01

    Subclinical mastitis, a costly disease for the dairy industry, is usually caused by intramammary bacterial infection. The aim of this study was to investigate the prevalence of and pathogens involved in subclinical mastitis in dairy goats in China. A total of 683 dairy goats in the main breeding areas of China were selected, and milk samples were collected. Out of these, 313 (45.82 %) goats were detected distinct or strong positive for subclinical mastitis by using California mastitis test. Among these positive goats, 209 milk samples were used to identify the causing agents by a multiplex PCR assay, and results were listed as follows: coagulase-negative staphylococci (59.52 %), Staphylococcus aureus (15.24 %), Escherichia coli (11.43 %), and Streptococcus spp. (10.95 %). In conclusion, subclinical mastitis is a highly prevalent disease in dairy goats in China, and coagulase-negative staphylococci are the predominant pathogens.

  14. An optical biosensor for detection of pathogen biomarkers from Shiga toxin-producing Escherichia coli in ground beef samples

    NASA Astrophysics Data System (ADS)

    Lamoureux, Loreen; Adams, Peter; Banisadr, Afsheen; Stromberg, Zachary; Graves, Steven; Montano, Gabriel; Moxley, Rodney; Mukundan, Harshini

    2014-03-01

    Shiga toxin-producing Escherichia coli (STEC) poses a serious threat to human health through the consumption of contaminated food products, particularly beef and produce. Early detection in the food chain, and discrimination from other non-pathogenic Escherichia coli (E. coli), is critical to preventing human outbreaks, and meeting current agricultural screening standards. These pathogens often present in low concentrations in contaminated samples, making discriminatory detection difficult without the use of costly, time-consuming methods (e.g. culture). Using multiple signal transduction schemes (including novel optical methods designed for amphiphiles), specific recognition antibodies, and a waveguide-based optical biosensor developed at Los Alamos National Laboratory, we have developed ultrasensitive detection methods for lipopolysaccharides (LPS), and protein biomarkers (Shiga toxin) of STEC in complex samples (e.g. beef lysates). Waveguides functionalized with phospholipid bilayers were used to pull down amphiphilic LPS, using methods (membrane insertion) developed by our team. The assay format exploits the amphiphilic biochemistry of lipoglycans, and allows for rapid, sensitive detection with a single fluorescent reporter. We have used a combination of biophysical methods (atomic force and fluorescence microscopy) to characterize the interaction of amphiphiles with lipid bilayers, to efficiently design these assays. Sandwich immunoassays were used for detection of protein toxins. Biomarkers were spiked into homogenated ground beef samples to determine performance and limit of detection. Future work will focus on the development of discriminatory antibodies for STEC serotypes, and using quantum dots as the fluorescence reporter to enable multiplex screening of biomarkers.

  15. Capsular typing of Streptococcus agalactiae (Lancefield group B streptococci) from fish using multiplex PCR and serotyping

    USDA-ARS?s Scientific Manuscript database

    Streptococcus spp. including Streptococcus agalactiae (Lancefield group B streptococci) are considered emerging pathogens responsible for approximately $1 billion USD in annual losses to the global tilapia (Oreochromis sp.) aquaculture industry. This study evaluated a published multiplex PCR capsul...

  16. Multiple pathogen biomarker detection using an encoded bead array in droplet PCR.

    PubMed

    Periyannan Rajeswari, Prem Kumar; Soderberg, Lovisa M; Yacoub, Alia; Leijon, Mikael; Andersson Svahn, Helene; Joensson, Haakan N

    2017-08-01

    We present a droplet PCR workflow for detection of multiple pathogen DNA biomarkers using fluorescent color-coded Luminex® beads. This strategy enables encoding of multiple singleplex droplet PCRs using a commercially available bead set of several hundred distinguishable fluorescence codes. This workflow provides scalability beyond the limited number offered by fluorescent detection probes such as TaqMan probes, commonly used in current multiplex droplet PCRs. The workflow was validated for three different Luminex bead sets coupled to target specific capture oligos to detect hybridization of three microorganisms infecting poultry: avian influenza, infectious laryngotracheitis virus and Campylobacter jejuni. In this assay, the target DNA was amplified with fluorescently labeled primers by PCR in parallel in monodisperse picoliter droplets, to avoid amplification bias. The color codes of the Luminex detection beads allowed concurrent and accurate classification of the different bead sets used in this assay. The hybridization assay detected target DNA of all three microorganisms with high specificity, from samples with average target concentration of a single DNA template molecule per droplet. This workflow demonstrates the possibility of increasing the droplet PCR assay detection panel to detect large numbers of targets in parallel, utilizing the scalability offered by the color-coded Luminex detection beads. Copyright © 2017. Published by Elsevier B.V.

  17. Multiplex PCR for rapid diagnosis and differentiation of pox and pox-like diseases in dromedary Camels.

    PubMed

    Khalafalla, Abdelmalik I; Al-Busada, Khalid A; El-Sabagh, Ibrahim M

    2015-07-07

    Pox and pox-like diseases of camels are a group of exanthematous skin conditions that have become increasingly important economically. Three distinct viruses may cause them: camelpox virus (CMLV), camel parapox virus (CPPV) and camelus dromedary papilloma virus (CdPV). These diseases are often difficult to differentiate based on clinical presentation in disease outbreaks. Molecular methods such as PCR targeting species-specific genes have been developed and used to identify these diseases, but not simultaneously in a single tube. Recently, multiplex PCR has gained reputation as a convenient diagnostic method with cost-and timesaving benefits. In the present communication, we describe the development, optimization and validation of a multiplex PCR assay able to detect simultaneously the genome of the three viruses in one single test allowing for rapid and efficient molecular diagnosis. The assay was developed based on the evaluation and combination of published and new primer sets and was validated with viral genomic DNA extracted from known virus strains (n = 14) and DNA extracted from homogenized clinical skin specimens (n = 86). The assay detects correctly the target pathogens by amplification of targeted genes, even in case of co-infection. The method showed high sensitivity, and the specificity was confirmed by PCR-product sequencing. This assay provide rapid, sensitive and specific method for identifying three important viruses in specimens collected from dromedary camels with varying clinical presentations.

  18. Comparison of the FilmArray Respiratory Panel and Prodesse Real-Time PCR Assays for Detection of Respiratory Pathogens ▿ †

    PubMed Central

    Loeffelholz, M. J.; Pong, D. L.; Pyles, R. B.; Xiong, Y.; Miller, A. L.; Bufton, K. K.; Chonmaitree, T.

    2011-01-01

    We compared the diagnostic performance and overall respiratory pathogen detection rate of the premarket version of the FilmArray Respiratory Panel (RP) multiplex PCR assay (Idaho Technology, Inc., Salt Lake City, UT) with those of the Food and Drug Administration (FDA)-cleared Prodesse ProFlu+, ProFAST+, ProParaflu+, Pro hMPV+, and ProAdeno+ real-time PCR assays (Gen-Probe, San Diego, CA). The assays were performed on a panel of 192 nasopharyngeal-secretion specimens collected from 81 children under 1 year of age with upper respiratory tract symptoms. To resolve discordant results and confirm pathogens detected only by the larger FilmArray panel, we performed laboratory-developed real-time PCR assays. Among viruses detectable by both commercial assays (adenovirus, human metapneumovirus, influenza A virus, influenza B virus, parainfluenza viruses 1 to 3, and respiratory syncytial virus), the FilmArray and Prodesse assays showed good overall agreement (181/192 [94.3%]; kappa = 0.87; 95% CI, 0.79 to 0.94). FilmArray RP detected more parainfluenza viruses 1 and 3 than ProParaflu+ (18 versus 13) while ProAdeno+ detected more adenoviruses (11 versus 6), but these differences were not statistically significant. Additionally, FilmArray RP detected 138 pathogens (confirmed as true positives) not included in the Prodesse assays (rhinovirus [RV]/enterovirus [EV], 118; bocavirus, 8; coronavirus, 7; parainfluenza virus 4, 4; Mycoplasma pneumoniae, 1). FilmArray RP was cleared by the FDA following the completion of this study. The FDA-cleared version includes the following targets: adenovirus, coronaviruses HKU1 and NL63, human metapneumovirus (hMPV), influenza A virus (to type level only), influenza A H1 seasonal virus, influenza A H3 seasonal virus, influenza A virus H1-2009, influenza B virus, parainfluenza viruses 1 to 4, respiratory syncytial virus (RSV), and RV/EV (no differentiation). The larger panel in the FilmArray RP assay allowed the detection of additional respiratory pathogens compared to the Prodesse assays. In this population of young children with upper respiratory tract infection, RV/EV accounted for the majority of the additional pathogens detected by FilmArray RP. PMID:21998418

  19. T-Cell response profiling to biological threat agents including the SARS coronavirus.

    PubMed

    Gioia, C; Horejsh, D; Agrati, C; Martini, F; Capobianchi, M R; Ippolito, G; Poccia, F

    2005-01-01

    The emergence of pathogens such as SARS and the increased threat of bioterrorism has stimulated the development of novel diagnostic assays for differential diagnosis. Rather than focusing on the detection of an individual pathogen component, we have developed a T cell profiling system to monitor responses to the pathogens in an array format. Using a matrix of antigens specific for different pathogens, a specific T cell profile was generated for each individual by monitoring the intracellular production of interferon-gamma by flow cytometry. This assay allows for the testing of multiple proteins or peptides at a single time and provides a quantitative and phenotypic assessment of CD4(+) and CD8(+) responding cells. We present profiling examples for several positive individuals, including those vaccinated with the smallpox and anthrax vaccines. We also show antigen optimization for the SARS-hCoV, as studies revealed that these proteins contain peptides which cross-react with more common coronaviruses, a cause of the common cold. The T cell array is an early and sensitive multiplex measure of active infection, exposure to a pathogen, or effective, recent vaccination.

  20. Development of a multiplex PCR assay for the detection and differentiation of Burkholderia pseudomallei, Burkholderia mallei, Burkholderia thailandensis, and Burkholderia cepacia complex.

    PubMed

    Zakharova, Irina; Teteryatnikova, Natalya; Toporkov, Andrey; Viktorov, Dmitry

    2017-10-01

    Two species of Burkholderia pseudomallei complex (Bpc), B. pseudomallei and B. mallei, can cause severe life-threatening infections. Rapidly discerning individual species within the group and separating them from other opportunistic pathogens of the Burkholderia cepacia complex (Bcc) is essential to establish a correct diagnosis and for epidemiological surveillance. In this study, a multiplex PCR assay based on the detection of an individual set of chromosomal beta-lactamase genes for single-step identification and differentiation of B. pseudomallei, B. mallei, B. thailandensis, and Bcc was developed. Two pairs of primers specific to a distinct class of B metallo-beta-lactamase genes and a pair of primers specific to the oxacillin-hydrolyzing class D beta-lactamase gene were demonstrated to successfully discriminate species within Bpc and from Bcc. The assay sensitivity was 9561 genomic equivalents (GE) for B. pseudomallei, 7827 GE for B. mallei, 8749 GE for B. thailandensis and 6023 GE for B. cepacia. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. DNAemia detection by multiplex PCR and biomarkers for infection in systemic inflammatory response syndrome patients.

    PubMed

    Fitting, Catherine; Parlato, Marianna; Adib-Conquy, Minou; Memain, Nathalie; Philippart, François; Misset, Benoît; Monchi, Mehran; Cavaillon, Jean-Marc; Adrie, Christophe

    2012-01-01

    Fast and reliable assays to precisely define the nature of the infectious agents causing sepsis are eagerly anticipated. New molecular biology techniques are now available to define the presence of bacterial or fungal DNA within the bloodstream of sepsis patients. We have used a new technique (VYOO®) that allows the enrichment of microbial DNA before a multiplex polymerase chain reaction (PCR) for pathogen detection provided by SIRS-Lab (Jena, Germany). We analyzed 72 sepsis patients and 14 non-infectious systemic inflammatory response syndrome (SIRS) patients. Among the sepsis patients, 20 had a positive blood culture and 35 had a positive microbiology in other biological samples. Of these, 51.4% were positive using the VYOO® test. Among the sepsis patients with a negative microbiology and the non-infectious SIRS, 29.4% and 14.2% were positive with the VYOO® test, respectively. The concordance in bacterial identification between microbiology and the VYOO® test was 46.2%. This study demonstrates that these new technologies offer great hopes, but improvements are still needed.

  2. Multiplex and label-free screening of foodborne pathogens using surface plasmon resonance imaging

    USDA-ARS?s Scientific Manuscript database

    In order to protect outbreaks caused by foodborne pathogens, more rapid and efficient methods are needed for pathogen screening from food samples. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for label-free screening of multiple targets simultaneously with ...

  3. Value of multiplex PCR to determine the bacterial and viral aetiology of pneumonia in school-age children.

    PubMed

    Aydemir, Yusuf; Aydemir, Özlem; Pekcan, Sevgi; Özdemir, Mehmet

    2017-02-01

    Conventional methods for the aetiological diagnosis of community-acquired pneumonia (CAP) are often insufficient owing to low sensitivity and the long wait for the results of culture and particularly serology, and it often these methods establish a diagnosis in only half of cases. To evaluate the most common bacterial and viral agents in CAP using a fast responsive PCR method and investigate the relationship between clinical/laboratory features and aetiology, thereby contributing to empirical antibiotic selection and reduction of treatment failure. In children aged 4-15 years consecutively admitted with a diagnosis of CAP, the 10 most commonly detected bacterial and 12 most commonly detected viral agents were investigated by induced sputum using bacterial culture and multiplex PCR methods. Clinical and laboratory features were compared between bacterial and viral pneumonia. In 78 patients, at least one virus was detected in 38 (48.7%) and at least one bacterium in 32 (41%). In addition, both bacteria and viruses were detected in 16 (20.5%) patients. Overall, the agent detection rate was 69.2%. The most common viruses were respiratory syncytial virus and influenza and the most frequently detected bacteria were S. pneumoniae and H. influenzae. PCR was superior to culture for bacterial isolation (41% vs 13%, respectively). Fever, wheezing and radiological features were not helpful in differentiating between bacterial and viral CAP. White blood cell count, CRP and ESR values were significantly higher in the bacterial/mixed aetiology group than in the viral aetiology group. In CAP, multiplex PCR is highly reliable, superior in detecting multiple pathogens and rapidly identifies aetiological agents. Clinical features are poor for differentiation between bacterial and viral infections. The use of PCR methods allow physicians to provide more appropriate antimicrobial therapy, resulting in a better response to treatment, and it may be possible for use as a routine service if costs can be reduced.

  4. Characteristics of cytotoxic necrotizing factor and cytolethal distending toxin producing Escherichia coli strains isolated from meat samples in Northern Ireland.

    PubMed

    Kadhum, H J; Ball, H J; Oswald, E; Rowe, M T

    2006-08-01

    Swabs collected from pig, lamb and beef carcasses and samples of pork, lamb and beef mince were cultured for Escherichia coli strains. Strains harbouring cytotoxic necrotizing factors (CNF1 and 2) and cytolethal distending toxins (CDT-I,-II,-III and -IV) were identified in plate cultures of the isolates by colony hybridization with labelled probes and multiplex PCR assays. Simplex and multiplex PCR assays were used to further characterize the isolates to determine the presence of P, S and F17 fimbriae as well as afimbrial adhesins and haemolysin. The serotype was also determined where possible. Thirty strains with the capacity to code for CNF (4), CDT (24) or both (2) were isolated and characterized, and a wide range of associated factor patterns was observed. The methods utilized were successful in demonstrating the detection of viable strains with potentially significant pathogenic factors from human food sources.

  5. The clinical diagnostic accuracy of rapid detection of healthcare-associated bloodstream infection in intensive care using multipathogen real-time PCR technology

    PubMed Central

    Dunn, Graham; Chadwick, Paul; Young, Duncan; Bentley, Andrew; Carlson, Gordon; Warhurst, Geoffrey

    2011-01-01

    Background There is growing interest in the potential utility of real-time PCR in diagnosing bloodstream infection by detecting pathogen DNA in blood samples within a few hours. SeptiFast is a multipathogen probe-based real-time PCR system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection and has European regulatory approval. The SeptiFast pathogen panel is suited to identifying healthcare-associated bloodstream infection acquired during complex healthcare, and the authors report here the protocol for the first detailed health-technology assessment of multiplex real-time PCR in this setting. Methods/design A Phase III multicentre double-blinded diagnostic study will determine the clinical validity of SeptiFast for the rapid detection of healthcare-associated bloodstream infection, against the current service standard of microbiological culture, in an adequately sized population of critically ill adult patients. Results from SeptiFast and standard microbiological culture procedures in each patient will be compared at study conclusion and the metrics of clinical diagnostic accuracy of SeptiFast determined in this population setting. In addition, this study aims to assess further the preliminary evidence that the detection of pathogen DNA in the bloodstream using SeptiFast may have value in identifying the presence of infection elsewhere in the body. Furthermore, differences in circulating immune-inflammatory markers in patient groups differentiated by the presence/absence of culturable pathogens and pathogen DNA will help elucidate further the patho-physiology of infection developing in the critically ill. Ethics and dissemination Ethical approval has been granted by the North West 6 Research Ethics Committee (09/H1003/109). Based on the results of this first non-commercial study, independent recommendations will be made to The Department of Health (open-access health technology assessment report) as to whether SeptiFast has sufficient clinical diagnostic accuracy to move forward to efficacy testing during the provision of routine clinical care. PMID:22021785

  6. Multiplex PCR detection of Cryptosporidium sp, Giardia lamblia and Entamoeba histolytica directly from dried stool samples from Guinea-Bissauan children with diarrhoea.

    PubMed

    Mero, Sointu; Kirveskari, Juha; Antikainen, Jenni; Ursing, Johan; Rombo, Lars; Kofoed, Poul-Erik; Kantele, Anu

    2017-09-01

    In developing countries, diarrhoea is the most common cause of death for children under five years of age, with Giardia lamblia, Cryptosporidium and Entamoeba histolytica as the most frequent pathogenic parasites. Traditional microscopy for stool parasites has poor sensitivity and specificity, while new molecular methods may provide more accurate diagnostics. In poor regions with sample storage hampered by uncertain electricity supply, research would benefit from a method capable of analysing dried stools. A real-time multiplex PCR method with internal inhibition control was developed for detecting Giardia lamblia, Cryptosporidium hominis/parvum and Entamoeba histolytica directly from stool specimens. Applicability to dried samples was checked by comparing with fresh ones in a small test material. Finally, the assay was applied to dried specimens collected from Guinea-Bissauan children with diarrhoea. The PCR's analytical sensitivity limit was 0.1 ng/ml for G. lamblia DNA, 0.01 ng/ml for E. histolytica DNA and 0.1 ng/ml for Cryptosporidium sp. In the test material, the assay performed similarly with fresh and dried stools. Of the 52 Guinea-Bissauan samples, local microscopy revealed a parasite in 15%, while PCR detected 62% positive for at least one parasite: 44% of the dried samples had Giardia, 23% Cryptosporidium and 0% E. histolytica. Our new multiplex real-time PCR for protozoa presents a sensitive method applicable to dried samples. As proof of concept, it worked well on stools collected from Guinea-Bissauan children with diarrhoea. It provides an epidemiological tool for analysing dried specimens from regions poor in resources.

  7. Evaluation of a multiplex PCR assay for detection of cytomegalovirus in stool samples from patients with ulcerative colitis

    PubMed Central

    Nahar, Saifun; Iraha, Atsushi; Hokama, Akira; Uehara, Ayako; Parrott, Gretchen; Ohira, Tetsuya; Kaida, Masatoshi; Kinjo, Tetsu; Kinjo, Takeshi; Hirata, Tetsuo; Kinjo, Nagisa; Fujita, Jiro

    2015-01-01

    AIM: To evaluate a multiplex PCR assay for the detection of bacterial and viral enteropathogens in stool samples from patients with ulcerative colitis (UC). METHODS: We prospectively analyzed 300 individuals, including immunocompetent patients, immunocompromised patients, and patients with UC. Stool samples were collected from the recto-sigmoid region of the colon by endoscopy. The samples were qualitatively analyzed for bacterial and viral enteropathogens with a multiplex PCR assay using a Seeplex® Kit. Additional clinical and laboratory data were collected from the medical records. RESULTS: A multiplex PCR assay detected 397 pathogens (191 bacteria and 206 viruses) in 215 samples (71.7%). The most frequently detected bacteria were Escherichia coli H7, 85 (28.3%); followed by Aeromonas spp., 43 (14.3%); and Clostridium perfringens, 36 (12.0%) samples. The most prevalent viruses were Epstein-Barr virus (EBV), 90 (30.0%); followed by human herpes virus-6 (HHV-6), 53 (17.7%); and cytomegalovirus (CMV), 37 (12.3%) samples. The prevalence rate of CMV infection was significantly higher in the immunocompromised group than in the immunocompetent group (P < 0.01). CMV infection was more common in patients with UC (26/71; 36.6%) than in the immunocompetent patients excluding UC (6/188; 3.2%) (P < 0.01). CMV infection was more prevalent in UC active patients (25/58; 43.1%) than in UC inactive patients (1/13; 7.7%) (P < 0.05). Among 4 groups which defined by the UC activity and immunosuppressive drugs, the prevalence rate of CMV infection was highest in the UC active patients with immunosuppressive drugs (19/34; 55.8%). Epstein-Barr virus (EBV) infection was more common in the immunocompromised patients excluding UC (18/41; 43.9%) than in the immunocompetent patients excluding UC (47/188; 25.0%) (P < 0.05). The simultaneous presence of CMV and EBV and/or HHV6 in UC active patients (14/58; 24.1%) was greater than in immunocompromised patients excluding UC (5/41; 12.2%) (P < 0.05). CONCLUSION: The multiplex PCR assay that was used to analyze the stool samples in this study may serve as a non-invasive approach that can be used to exclude the possibility of CMV infection in patients with active UC who are treated with immunosuppressive therapy. PMID:26640344

  8. Technical Evaluation: Identification of Pathogenic Mutations in PKD1 and PKD2 in Patients with Autosomal Dominant Polycystic Kidney Disease by Next-Generation Sequencing and Use of a Comprehensive New Classification System.

    PubMed

    Kinoshita, Moritoshi; Higashihara, Eiji; Kawano, Haruna; Higashiyama, Ryo; Koga, Daisuke; Fukui, Takafumi; Gondo, Nobuhisa; Oka, Takehiko; Kawahara, Kozo; Rigo, Krisztina; Hague, Tim; Katsuragi, Kiyonori; Sudo, Kimiyoshi; Takeshi, Masahiko; Horie, Shigeo; Nutahara, Kikuo

    2016-01-01

    Genetic testing of PKD1 and PKD2 is expected to play an increasingly important role in determining allelic influences in autosomal dominant polycystic kidney disease (ADPKD) in the near future. However, to date, genetic testing is not commonly employed because it is expensive, complicated because of genetic heterogeneity, and does not easily identify pathogenic variants. In this study, we developed a genetic testing system based on next-generation sequencing (NGS), long-range polymerase chain reaction, and a new software package. The new software package integrated seven databases and provided access to five cloud-based computing systems. The database integrated 241 polymorphic nonpathogenic variants detected in 140 healthy Japanese volunteers aged >35 years, who were confirmed by ultrasonography as having no cysts in either kidney. Using this system, we identified 60 novel and 30 known pathogenic mutations in 101 Japanese patients with ADPKD, with an overall detection rate of 89.1% (90/101) [95% confidence interval (CI), 83.0%-95.2%]. The sensitivity of the system increased to 93.1% (94/101) (95% CI, 88.1%-98.0%) when combined with multiplex ligation-dependent probe amplification analysis, making it sufficient for use in a clinical setting. In 82 (87.2%) of the patients, pathogenic mutations were detected in PKD1 (95% CI, 79.0%-92.5%), whereas in 12 (12.8%) patients pathogenic mutations were detected in PKD2 (95% CI, 7.5%-21.0%); this is consistent with previously reported findings. In addition, we were able to reconfirm our pathogenic mutation identification results using Sanger sequencing. In conclusion, we developed a high-sensitivity NGS-based system and successfully employed it to identify pathogenic mutations in PKD1 and PKD2 in Japanese patients with ADPKD.

  9. Multiplex detection of nine food-borne pathogens by mPCR and capillary electrophoresis after using a universal pre-enrichment medium.

    PubMed

    Villamizar-Rodríguez, Germán; Fernández, Javier; Marín, Laura; Muñiz, Juan; González, Isabel; Lombó, Felipe

    2015-01-01

    Routine microbiological quality analyses in food samples require, in some cases, an initial incubation in pre-enrichment medium. This is necessary in order to ensure that small amounts of pathogenic strains are going to be detected. In this work, a universal pre-enrichment medium has been developed for the simultaneous growth of Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Cronobacter sakazakii, Escherichia coli, Enterobacteriaceae family (38 species, 27 genera), Listeria monocytogenes, Staphylococcus aureus, Salmonella spp. (two species, 13 strains). Growth confirmation for all these species was achieved in all cases, with excellent enrichments. This was confirmed by plating on the corresponding selective agar media for each bacterium. This GVUM universal pre-enrichment medium could be useful in food microbiological analyses, where different pathogenic bacteria must be detected after a pre-enrichment step. Following, a mPCR reaction for detection of all these pathogens was developed, after designing a set of nine oligonucleotide pairs from specific genetic targets on gDNA from each of these bacteria, covering all available strains already sequenced in GenBank for each pathogen type. The detection limits have been 1 Genome Equivalent (GE), with the exception of the Fam. Enterobacteriaceae (5 GEs). We obtained amplification for all targets (from 70 to 251 bp, depending on the bacteria type), showing the capability of this method to detect the most important industrial and sanitary food-borne pathogens from a universal pre-enrichment medium. This method includes an initial pre-enrichment step (18 h), followed by a mPCR (2 h) and a capillary electrophoresis (30 min); avoiding the tedious and long lasting growing on solid media required in traditional analysis (1-4 days, depending on the specific pathogen and verification procedure). An external testing of this method was conducted in order to compare classical and mPCR methods. This evaluation was carried out on five types of food matrices (meat, dairy products, prepared foods, canned fish, and pastry products), which were artificially contaminated with each one of the microorganisms, demonstrating the equivalence between both methods (coincidence percentages between both methods ranged from 78 to 92%).

  10. Multiplex detection of nine food-borne pathogens by mPCR and capillary electrophoresis after using a universal pre-enrichment medium

    PubMed Central

    Villamizar-Rodríguez, Germán; Fernández, Javier; Marín, Laura; Muñiz, Juan; González, Isabel; Lombó, Felipe

    2015-01-01

    Routine microbiological quality analyses in food samples require, in some cases, an initial incubation in pre-enrichment medium. This is necessary in order to ensure that small amounts of pathogenic strains are going to be detected. In this work, a universal pre-enrichment medium has been developed for the simultaneous growth of Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Cronobacter sakazakii, Escherichia coli, Enterobacteriaceae family (38 species, 27 genera), Listeria monocytogenes, Staphylococcus aureus, Salmonella spp. (two species, 13 strains). Growth confirmation for all these species was achieved in all cases, with excellent enrichments. This was confirmed by plating on the corresponding selective agar media for each bacterium. This GVUM universal pre-enrichment medium could be useful in food microbiological analyses, where different pathogenic bacteria must be detected after a pre-enrichment step. Following, a mPCR reaction for detection of all these pathogens was developed, after designing a set of nine oligonucleotide pairs from specific genetic targets on gDNA from each of these bacteria, covering all available strains already sequenced in GenBank for each pathogen type. The detection limits have been 1 Genome Equivalent (GE), with the exception of the Fam. Enterobacteriaceae (5 GEs). We obtained amplification for all targets (from 70 to 251 bp, depending on the bacteria type), showing the capability of this method to detect the most important industrial and sanitary food-borne pathogens from a universal pre-enrichment medium. This method includes an initial pre-enrichment step (18 h), followed by a mPCR (2 h) and a capillary electrophoresis (30 min); avoiding the tedious and long lasting growing on solid media required in traditional analysis (1–4 days, depending on the specific pathogen and verification procedure). An external testing of this method was conducted in order to compare classical and mPCR methods. This evaluation was carried out on five types of food matrices (meat, dairy products, prepared foods, canned fish, and pastry products), which were artificially contaminated with each one of the microorganisms, demonstrating the equivalence between both methods (coincidence percentages between both methods ranged from 78 to 92%). PMID:26579100

  11. Array of Synthetic Oligonucleotides to Generate Unique Multi-Target Artificial Positive Controls and Molecular Probe-Based Discrimination of Liposcelis Species

    PubMed Central

    Arif, Mohammad; Opit, George; Mendoza-Yerbafría, Abigail; Dobhal, Shefali; Li, Zhihong; Kučerová, Zuzana; Ochoa-Corona, Francisco M.

    2015-01-01

    Several species of the genus Liposcelis are common insect pests that cause serious qualitative and quantitative losses to various stored grains and processed grain products. They also can contaminate foods, transmit pathogenic microorganisms and cause allergies in humans. The common occurrence of multi-species infestations and the fact that it is difficult to identify and discriminate Liposcelis spp. make accurate, rapid detection and discriminatory tools absolutely necessary for confirmation of their identity. In this study, PCR primers and probes specific to different Liposcelis spp. were designed based on nucleotide sequences of the cytochrome oxidase 1 (CO1) gene. Primer sets ObsCo13F/13R, PeaCo15F/14R, BosCO7F/7R, BruCo5F/5R, and DecCo11F/11R were used to specifically detect Liposcelis obscura Broadhead, Liposcelis pearmani Lienhard, Liposcelis bostrychophila Badonnel, Liposcelis brunnea Motschulsky and Liposcelis decolor (Pearman) in multiplex endpoint PCRs, which amplified products of 438-, 351-, 191-, 140-, and 87-bp, respectively. In multiplex TaqMan qPCR assays, orange, yellow, red, crimson and green channels corresponding to reporter dyes 6-ROXN, HEX, Cy5, Quasar705 and 6-FAM specifically detected L. obscura, L. brunnea, L. bostrychophila, L. pearmani and L. decolor, respectively. All developed primer and probe sets allowed specific amplification of corresponding targeted Liposcelis species. The development of multiplex endpoint PCR and multiplex TaqMan qPCR will greatly facilitate psocid identification and their management. The use of APCs will streamline and standardize PCR assays. APC will also provide the opportunity to have all positive controls in a single tube, which reduces maintenance cost and labor, but increases the accuracy and reliability of the assays. These novel methods from our study will have applications in pest management, biosecurity, quarantine, food safety, and routine diagnostics. PMID:26086728

  12. Can rapid integrated polymerase chain reaction-based diagnostics for gastrointestinal pathogens improve routine hospital infection control practice? A diagnostic study.

    PubMed

    Pankhurst, Louise; Macfarlane-Smith, Louissa; Buchanan, James; Anson, Luke; Davies, Kerrie; O'Connor, Lily; Ashwin, Helen; Pike, Graham; Dingle, Kate E; Peto, Timothy Ea; Wordsworth, Sarah; Walker, A Sarah; Wilcox, Mark H; Crook, Derrick W

    2014-08-01

    Every year approximately 5000-9000 patients are admitted to a hospital with diarrhoea, which in up to 90% of cases has a non-infectious cause. As a result, single rooms are 'blocked' by patients with non-infectious diarrhoea, while patients with infectious diarrhoea are still in open bays because of a lack of free side rooms. A rapid test for differentiating infectious from non-infectious diarrhoea could be very beneficial for patients. To evaluate MassCode multiplex polymerase chain reaction (PCR) for the simultaneous diagnosis of multiple enteropathogens directly from stool, in terms of sensitivity/specificity to detect four common important enteropathogens: Clostridium difficile, Campylobacter spp., Salmonella spp. and norovirus. A retrospective study of fixed numbers of samples positive for C. difficile (n = 200), Campylobacter spp. (n = 200), Salmonella spp. (n = 100) and norovirus (n = 200) plus samples negative for all these pathogens (n = 300). Samples were sourced from NHS microbiology laboratories in Oxford and Leeds where initial diagnostic testing was performed according to Public Health England methodology. Researchers carrying out MassCode assays were blind to this information. A questionnaire survey, examining current practice for infection control teams and microbiology laboratories managing infectious diarrhoea, was also carried out. MassCode assays were carried out at Oxford University Hospitals NHS Trust. Further multiplex assays, carried out using Luminex, were run on the same set of samples at Leeds Teaching Hospitals NHS Trust. The questionnaire was completed by various NHS trusts. Sensitivity and specificity to detect C. difficile, Campylobacter spp., Salmonella spp., and norovirus. Nucleic acids were extracted from 948 clinical samples using an optimised protocol (200 Campylobacter spp., 199 C. difficile, 60 S. enterica, 199 norovirus and 295 negative samples; some samples contained more than one pathogen). Using the MassCode assay, sensitivities for each organism compared with standard microbiological testing ranged from 43% to 94% and specificities from 95% to 98%, with particularly poor performance for S. enterica. Relatively large numbers of unexpected positives not confirmed with quantitative PCR were also observed, particularly for S. enterica, Giardia lamblia and Cryptosporidium spp. As the results indicated that S. enterica detection might provide generic challenges to other multiplex assays for gastrointestinal pathogens, the Luminex xTag(®) gastrointestinal assay was also run blinded on the same extracts (937/948 remaining) and on re-extracted samples (839/948 with sufficient material). For Campylobacter spp., C. difficile and norovirus, high sensitivities (> 92%) and specificities (> 96%) were observed. For S. enterica, on the original MassCode/Oxford extracts, Luminex sensitivity compared with standard microbiological testing was 84% [95% confidence interval (CI) 73% to 93%], but this dropped to 46% on a fresh extract, very similar to MassCode, with a corresponding increase in specificity from 92% to 99%. Overall agreement on the per-sample diagnosis compared with combined microbiology plus PCR for the main four/all pathogens was 85.6%/64.7%, 87.0%/82.9% and 89.8%/86.8% for the MassCode assay, Luminex assay/MassCode extract and Luminex assay/fresh extract, respectively. Luminex assay results from fresh extracts implied that 5% of samples did not represent infectious diarrhoea, even though enteropathogens were genuinely present. Managing infectious diarrhoea was a significant burden for infection control teams (taking 21% of their time) and better diagnostics were identified as having major potential benefits for patients. Overall, the Luminex xTag gastrointestinal panel showed similar or superior sensitivity and specificity to the MassCode assay. However, on fresh extracts, this test had low sensitivity to detect a key enteric pathogen, S. enterica; making it an unrealistic option for most microbiology laboratories. Extraction efficiency appears to be a major obstacle for nucleic acid-based tests for this organism, and possibly the whole Enterobacteriaceae family. To improve workflows in service microbiology laboratories, to reduce workload for infection control practitioners, and to improve outcomes for NHS patients, further research on deoxyribonucleic acid-based multiplex gastrointestinal diagnostics is urgently needed. The Health Technology Assessment programme of the National Institute for Health Research.

  13. Development and first evaluation of a novel multiplex real-time PCR on whole blood samples for rapid pathogen identification in critically ill patients with sepsis.

    PubMed

    van de Groep, Kirsten; Bos, Martine P; Savelkoul, Paul H M; Rubenjan, Anna; Gazenbeek, Christel; Melchers, Willem J G; van der Poll, Tom; Juffermans, Nicole P; Ong, David S Y; Bonten, Marc J M; Cremer, Olaf L

    2018-04-26

    Molecular tests may enable early adjustment of antimicrobial therapy and be complementary to blood culture (BC) which has imperfect sensitivity in critically ill patients. We evaluated a novel multiplex real-time PCR assay to diagnose bloodstream pathogens directly in whole blood samples (BSI-PCR). BSI-PCR included 11 species- and four genus-specific PCRs, a molecular Gram-stain PCR, and two antibiotic resistance markers. We collected 5 mL blood from critically ill patients simultaneously with clinically indicated BC. Microbial DNA was isolated using the Polaris method followed by automated DNA extraction. Sensitivity and specificity were calculated using BC as reference. BSI-PCR was evaluated in 347 BC-positive samples (representing up to 50 instances of each pathogen covered by the test) and 200 BC-negative samples. Bacterial species-specific PCR sensitivities ranged from 65 to 100%. Sensitivity was 26% for the Gram-positive PCR, 32% for the Gram-negative PCR, and ranged 0 to 7% for yeast PCRs. Yeast detection was improved to 40% in a smaller set-up. There was no overall association between BSI-PCR sensitivity and time-to-positivity of BC (which was highly variable), yet Ct-values were lower for true-positive versus false-positive PCR results. False-positive results were observed in 84 (4%) of the 2200 species-specific PCRs in 200 culture-negative samples, and ranged from 0 to 6% for generic PCRs. Sensitivity of BSI-PCR was promising for individual bacterial pathogens, but still insufficient for yeasts and generic PCRs. Further development of BSI-PCR will focus on improving sensitivity by increasing input volumes and on subsequent implementation as a bedside test.

  14. Retrospective analysis of multiplex polymerase chain reaction-based molecular diagnostics (SES) in 70 patients with suspected central nervous system infections: A single-center study

    PubMed Central

    Ramalingam, Rama Krishnan Tiruppur Chinnappan; Chakraborty, Dipanjan

    2016-01-01

    Background: Central nervous system (CNS) infections present a grave health care challenge due to high morbidity and mortality. Clinical findings and conventional laboratory assessments are not sufficiently distinct for specific etiologic diagnosis. Identification of pathogens is a key to appropriate therapy. Aim: In this retrospective observational study, we evaluated the efficacy and clinical utility of syndrome evaluation system (SES) for diagnosing clinically suspected CNS infections. Materials and Methods: This retrospective analysis included inpatients in our tertiary level neurointensive care unit (NICU) and ward from February 2010 to December 2013. Cerebrospinal fluid (CSF) samples of 70 patients, clinically suspected of having CNS infections, were subjected to routine laboratory tests, culture, imaging, and SES. We analyzed the efficacy of SES in the diagnosis of CNS infections and its utility in therapeutic decision-making. Results: SES had a clinical sensitivity of 57.4% and clinical specificity of 95.6%. Streptococcus pneumoniae and Pseudomonas aeruginosa were the top two bacterial pathogens, whereas Herpes simplex virus (HSV) was the most common viral pathogen. Polymicrobial infections were detected in 32.14% of SES-positive cases. SES elicited a change in the management in 30% of the patients from initial empiric therapy. At discharge, 51 patients recovered fully while 11 patients had partial recovery. Three-month follow-up showed only six patients to have neurological deficits. Conclusion: In a tertiary care center, etiological microbial diagnosis is central to appropriate therapy and outcomes. Sensitive and accurate multiplex molecular diagnostics play a critical role in not only identifying the causative pathogen but also in helping clinicians to institute appropriate therapy, reduce overuse of antimicrobials, and ensure superior clinical outcomes. PMID:27994358

  15. Retrospective analysis of multiplex polymerase chain reaction-based molecular diagnostics (SES) in 70 patients with suspected central nervous system infections: A single-center study.

    PubMed

    Ramalingam, Rama Krishnan Tiruppur Chinnappan; Chakraborty, Dipanjan

    2016-01-01

    Central nervous system (CNS) infections present a grave health care challenge due to high morbidity and mortality. Clinical findings and conventional laboratory assessments are not sufficiently distinct for specific etiologic diagnosis. Identification of pathogens is a key to appropriate therapy. In this retrospective observational study, we evaluated the efficacy and clinical utility of syndrome evaluation system (SES) for diagnosing clinically suspected CNS infections. This retrospective analysis included inpatients in our tertiary level neurointensive care unit (NICU) and ward from February 2010 to December 2013. Cerebrospinal fluid (CSF) samples of 70 patients, clinically suspected of having CNS infections, were subjected to routine laboratory tests, culture, imaging, and SES. We analyzed the efficacy of SES in the diagnosis of CNS infections and its utility in therapeutic decision-making. SES had a clinical sensitivity of 57.4% and clinical specificity of 95.6%. Streptococcus pneumoniae and Pseudomonas aeruginosa were the top two bacterial pathogens, whereas Herpes simplex virus (HSV) was the most common viral pathogen. Polymicrobial infections were detected in 32.14% of SES-positive cases. SES elicited a change in the management in 30% of the patients from initial empiric therapy. At discharge, 51 patients recovered fully while 11 patients had partial recovery. Three-month follow-up showed only six patients to have neurological deficits. In a tertiary care center, etiological microbial diagnosis is central to appropriate therapy and outcomes. Sensitive and accurate multiplex molecular diagnostics play a critical role in not only identifying the causative pathogen but also in helping clinicians to institute appropriate therapy, reduce overuse of antimicrobials, and ensure superior clinical outcomes.

  16. Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens.

    PubMed

    Wang, Chungang; Irudayaraj, Joseph

    2010-01-01

    Multifunctional nanoparticles possessing magnetization and near-infrared (NIR) absorption have warranted interest due to their significant applications in magnetic resonance imaging, diagnosis, bioseparation, target delivery, and NIR photothermal ablation. Herein, the site-selective assembly of magnetic nanoparticles onto the ends or ends and sides of gold nanorods with different aspect ratios (ARs) to create multifunctional nanorods decorated with varying numbers of magnetic particles is described for the first time. The resulting hybrid nanoparticles are designated as Fe(3)O(4)-Au(rod)-Fe(3)O(4) nanodumbbells and Fe(3)O(4)-Au(rod) necklacelike constructs with tunable optical and magnetic properties, respectively. These hybrid nanomaterials can be used for multiplex detection and separation because of their tunable magnetic and plasmonic functionality. More specifically, Fe(3)O(4)-Au(rod) necklacelike probes of different ARs are utilized for simultaneous optical detection based on their plasmon properties, magnetic separation, and photokilling of multiple pathogens from a single sample at one time. The combined functionalities of the synthesized probes will open up many exciting opportunities in dual imaging for targeted delivery and photothermal therapy.

  17. Science & Technology Review November 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinn, D J

    2007-10-16

    This month's issue has the following articles: (1) Simulating the Electromagnetic World--Commentary by Steven R. Patterson; (2) A Code to Model Electromagnetic Phenomena--EMSolve, a Livermore supercomputer code that simulates electromagnetic fields, is helping advance a wide range of research efforts; (3) Characterizing Virulent Pathogens--Livermore researchers are developing multiplexed assays for rapid detection of pathogens; (4) Imaging at the Atomic Level--A powerful new electron microscope at the Laboratory is resolving materials at the atomic level for the first time; (5) Scientists without Borders--Livermore scientists lend their expertise on peaceful nuclear applications to their counterparts in other countries; and (6) Probing Deepmore » into the Nucleus--Edward Teller's contributions to the fast-growing fields of nuclear and particle physics were part of a physics golden age.« less

  18. Multiple advanced logic gates made of DNA-Ag nanocluster and the application for intelligent detection of pathogenic bacterial genes.

    PubMed

    Lin, Xiaodong; Liu, Yaqing; Deng, Jiankang; Lyu, Yanlong; Qian, Pengcheng; Li, Yunfei; Wang, Shuo

    2018-02-21

    The integration of multiple DNA logic gates on a universal platform to implement advance logic functions is a critical challenge for DNA computing. Herein, a straightforward and powerful strategy in which a guanine-rich DNA sequence lighting up a silver nanocluster and fluorophore was developed to construct a library of logic gates on a simple DNA-templated silver nanoclusters (DNA-AgNCs) platform. This library included basic logic gates, YES, AND, OR, INHIBIT, and XOR, which were further integrated into complex logic circuits to implement diverse advanced arithmetic/non-arithmetic functions including half-adder, half-subtractor, multiplexer, and demultiplexer. Under UV irradiation, all the logic functions could be instantly visualized, confirming an excellent repeatability. The logic operations were entirely based on DNA hybridization in an enzyme-free and label-free condition, avoiding waste accumulation and reducing cost consumption. Interestingly, a DNA-AgNCs-based multiplexer was, for the first time, used as an intelligent biosensor to identify pathogenic genes, E. coli and S. aureus genes, with a high sensitivity. The investigation provides a prototype for the wireless integration of multiple devices on even the simplest single-strand DNA platform to perform diverse complex functions in a straightforward and cost-effective way.

  19. A multiplex PCR method for the simultaneous detection of three viruses associated with canine viral enteric infections.

    PubMed

    Deng, Xiaoyu; Zhang, Jiali; Su, Jiazi; Liu, Hao; Cong, Yanlong; Zhang, Lei; Zhang, Kemeng; Shi, Ning; Lu, Rongguang; Yan, Xijun

    2018-04-19

    The aim of this study was to establish a multiplex PCR (mPCR) method that can simultaneously detect canine parvovirus (CPV-2), canine coronavirus (CCoV) and canine adenovirus (CAV), thereby eliminating the need to detect these pathogens individually. Based on conserved regions in the genomes of these three viruses, the VP2 gene of CPV-2, the endoribonuclease nsp15 gene of CCoV, and the 52K gene of CAV were selected for primer design. The specificity of the mPCR results showed no amplification of canine distemper virus (CDV), canine parainfluenza virus (CPIV), or pseudorabies virus (PRV), indicating that the method had good specificity. A sensitivity test showed that the detection limit of the mPCR method was 1 × 10 4 viral copies. A total of 63 rectal swabs from dogs with diarrheal symptoms were evaluated using mPCR and routine PCR. The ratio of positive samples to total samples for CPV-2, CCoV, and CAV was 55.6% (35/63) for mPCR and 55.6% (35/63) for routine PCR. Thirty-five positive samples were detected by both methods, for a coincidence ratio of 100%. This mPCR method can simultaneously detect CCoV (CCoV-II), CAV (CAV-1, CAV-2) and CPV-2 (CPV-2a, CPV-2b, CPV-2c), which are associated with viral enteritis, thereby providing an efficient, inexpensive, specific, and accurate new tool for clinical diagnosis and laboratory epidemiological investigations.

  20. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    PubMed

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.

  1. Feasibility and acceptance of cervicovaginal self-sampling within the German National Cohort (Pretest 2).

    PubMed

    Castell, Stefanie; Krause, G; Schmitt, M; Pawlita, M; Deleré, Y; Obi, N; Flesch-Janys, D; Kemmling, Y; Kaufmann, A M

    2014-11-01

    Within the German National Cohort (GNC) 100,000 adult women in Germany will be comprehensively interviewed and examined. While women's health is addressed in the basic interview, direct detection of cervicovaginal microbial colonisation or infection is not part of the examination protocol. In a pilot project the feasibility of female study participants of the GNC collecting a cervicovaginal lavage at home without having to involve a gynecologist or other medical personnel was thus investigated. The ability of the procedure to detect vaginal microbes and conditions including human papillomavirus (HPV), Chlamydia trachomatis and bacterial vaginosis (BV) were also explored. This cross-sectional study was conducted in two study centers (Hamburg and Hanover) of the GNC during Pretest 2 in 2012 as an add-on module to the main program of the National Cohort. Participants were randomly selected through the population registration office. After providing written informed consent at the study center, participants self-collected a cervicovaginal lavage (Delphi Screener™) at home following written instructions. Participants mailed samples and acceptability questionnaires to the laboratory and the study center, respectively. Acceptability of self-sampling was categorized as consent, partial consent and rejection. The samples were analyzed by multiplex HPV genotyping for the presence of 27 mucosal HPV subtypes. To detect other pathogens "Sexually Transmitted Infection Profiling" (STIP) was used, a novel multiplex polymerase chain reaction (PCR) for various vaginally occurring pathogens/conditions coupled with subsequent bead-based Luminex(®) hybridization. Human beta-globin and DNA polymerase alpha (PolA) sequences were used as positive controls for the detection of human DNA during HPV detection and STIP, respectively. The participation based on the proportion of all women in Pretest 2 who could take part in the add-on Pretest 2 was 67.3 % (109 out of 162). The age of participants ranged from 20 to 69 years. The self-reported median duration of the collection of the lavage was 5 min. Analysis of the questionnaires (n = 108) revealed that the self-sampling of a cervicovaginal lavage was acceptable to 98 % of women (106 out of 108), and considered to be easy by 89 % (96 out of 108) as well as user-friendly by 96 % of the women (104 out of 108). Human beta-globin and PolA as markers for human DNA and sample quality were detected in all samples analyzed while HPV as a marker for pathogen detectability was identified in 18 out of 109 samples. Of the 107 samples tested with STIP as a second marker for pathogen detectability, 5 samples were excluded from statistical analyses on bacterial colonization because of signs in the laboratory results of the use of antibiotics. For the computation of the possible occurrence of bacterial vaginosis and candidiasis 7 and 8 samples, respectively, were excluded because of low signal intensities resulting in an evaluation of 95 or 94 samples, respectively. Ureaplasma parvum was detected in 22 out of 102 samples, BV in 14 out of 95 samples and candidiasis in 13 out of 94 samples. Chlamydia trachomatis was not detected in any sample. The feasibility study on cervicovaginal self-sampling indicates that this form of biosampling was very well accepted within the framework of the GNC and feasible in terms of pathogen detection. Its further application in the GNC would allow investigation of transience and persistence, or long-term effects of vaginal (co)infections and colonization.

  2. Rapid detection of avian influenza virus a and subtype H5N1 by single step multiplex reverse transcription-polymerase chain reaction.

    PubMed

    Wei, Hui-Ling; Bai, Gui-Rong; Mweene, Aaron S; Zhou, Ying-Chun; Cong, Yan-Long; Pu, Juan; Wang, Shuai; Kida, Hiroshi; Liu, Jin-Hua

    2006-06-01

    Outbreaks of H5N1 highly pathogenic avian influenza (HPAI) virus caused great economic losses to the poultry industry and resulted in human deaths in Thailand and Viet Nam in 2004. Rapid typing and subtyping of H5N1 viruses, especially from clinical specimens, are desirable for taking prompt control measures to prevent the spread of the disease. Here, we developed a set of oligonucleotide primers able to detect, type and subtype H5 and N1 influenza viruses in a single step multiplex reverse transcription-polymerase chain reaction (RT-PCR). RNA was extracted from allantoic fluid or from specimens with guanidinium isothiocyanate reagent. Reverse transcription and PCR were carried out with a mixture of primers specific for influenza viruses of type A, subtype H5 and N1 in a single reaction system under identical conditions. The amplified DNA fragments were analyzed by agarose gel electrophoresis. All the H5N1 viruses tested in the study and the experimental specimens presented three specific bands by the method established here. The results presented here suggest that the method described below is rapid and specific and, therefore, could be valuable in the rapid detection of H5N1 influenza viruses in clinics.

  3. Direct Multiplex PCR (dmPCR) for the Identification of Six Phlebotomine Sand Fly Species (Diptera: Psychodidae), Including Major Leishmania Vectors of the Mediterranean.

    PubMed

    Giantsis, Ioannis A; Chaskopoulou, Alexandra; Claude Bon, Marie

    2017-02-01

    Sand flies (Diptera: Psychodidae, subfamily Phlebotominae) are hematophagous insects that are known to transmit several anthroponotic and zoonotic diseases. Reliable identification of sand flies at species level is crucial for their surveillance, the detection and spread of their pathogens, and the implementation of targeted pest control strategies. Here, we designed a novel, time-saving, cost-effective and easy-to-apply molecular methodology, which avoids sequencing, for the identification of the following six Eastern Mediterranean sand fly species: Phebotomus perfiliewi Parrot, Phebotomus simici Theodor, Phebotomus tobbi Adler and Theodor, Phebotomus papatasi Scopoli, Sergentomyia dentata Sinton, and Sergentomyia minuta Theodor. This methodology, which is a multiplex PCR assay using one common and six diagnostic primers, is based on species-specific single-nucleotide polymorphisms of the nuclear 18S rRNA gene. Amplification products were easily and reliably separated in agarose gel yielding one single clear band of diagnostic size for each species. Further, we verified its successful application on tissue samples that were immersed directly to the PCR mix, skipping DNA extraction. The direct multiplex PCR can be completed in < 3 h, including all operating procedures, and costing no more than a simple PCR. The applicability of this methodology in the detection of hybrids is an additional considerable benefit. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Detection of Borrelia miyamotoi and other tick-borne pathogens in human clinical specimens and Ixodes scapularis ticks in New York State, 2012-2015.

    PubMed

    Wroblewski, Danielle; Gebhardt, Linda; Prusinski, Melissa A; Meehan, Lisa J; Halse, Tanya A; Musser, Kimberlee A

    2017-03-01

    Borrelia miyamotoi (Bm) is a recently emerging bacterial agent transmitted by several species of ixodid ticks. Diagnosis of Bm infection can be challenging, as the organism is not easily cultivable. We have developed and validated a multiplex real-time PCR to simultaneously identify Bm infection and the agents causing human granulocytic anaplasmosis and human monocytic ehrlichiosis, Anaplasma phagocytophilum and Ehrlichia chaffeensis, respectively. The assay is 100% specific; highly sensitive, detecting 11 gene copies of Bm DNA in both whole blood and cerebral spinal fluid; and provides rapid results in less than two hours. A retrospective study of 796 clinical specimens collected between the years 2012 and 2014 and a prospective study of 366 clinical specimens were performed utilizing this novel assay to evaluate the frequency of Bm infection in New York State (NYS). Eight clinical specimens (1%) were found to be positive for Bm, 216 were positive for A. phagocytophilum, and 10 were positive for E. chaffeensis. Additionally, we tested 411 I. scapularis ticks collected in NYS during 2013 and 2014 in a separate multiplex real-time PCR to determine the prevalence of Bm, A. phagocytophilum, Borrelia burgdorferi s.s., and Borrelia species. Our results indicated rates of 1.5%, 27%, 19.7%, and 8.8% respectively. The ability to monitor both the frequency and geographic distribution of Bm cases and the prevalence and geographic distribution of Bm in ticks will help create a better understanding of this emerging tick-borne pathogen. Published by Elsevier GmbH.

  5. Rapid and sensitive multiplex single-tube nested PCR for the identification of five human Plasmodium species.

    PubMed

    Saito, Takahiro; Kikuchi, Aoi; Kaneko, Akira; Isozumi, Rie; Teramoto, Isao; Kimura, Masatsugu; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2018-06-01

    Malaria is caused by five species of Plasmodium in humans. Microscopy is currently used for pathogen detection, requiring considerable training and technical expertise as the parasites are often difficult to differentiate morphologically. Rapid diagnostic tests are as reliable as microscopy and offer faster diagnoses but possess lower detection limits and are incapable of distinguishing among the parasitic species. To improve global health efforts towards malaria control, a rapid, sensitive, species-specific, and economically viable diagnostic method is needed. In this study, we designed a malaria diagnostic method involving a multiplex single-tube nested PCR targeting Plasmodium mitochondrial cytochrome c oxidase III and single-stranded tag hybridization chromatographic printed-array strip. The detection sensitivity was found to be at least 40 times higher than that of agarose gel electrophoresis with ethidium bromide. This system also enables the identification of both single- and mixed-species malaria infections. The assay was validated with 152 Kenyan samples; using nested PCR as the standard, the assay's sensitivity and specificity were 88.7% and 100.0%, respectively. The turnaround time required, from PCR preparation to signal detection, is 90min. Our method should improve the diagnostic speed, treatment efficacy, and control of malaria, in addition to facilitating surveillance within global malaria eradication programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. [A METHOD FOR DIFFERENTIATION OF BACILLUS ANTHRACIS STRAINS AND PHYLOGENETICALLY RELATED SPECIES BASED ON DETERMINATION OF THE STRUCTURAL DIFFERENCESBETWEEN CHROMOSOMAL GENES FOR BIOSYNTHESIS OF FLAGELLIN AND METHIONINE].

    PubMed

    Mikshis, N I; Kashtanova, T N; Kutyrev, V V

    2015-01-01

    Nucleotide sequence analysis of several genes responsible for the anthrax pathogen definitive properties--motility and penicillinase activity--determined a chromosomal locus promising for interspecies differentiation. We demonstrated that the gene fliC encoding flagellin synthesis contains extended region, distinguishing B. anthracis strains from the majority of non-pathogenic and opportunistic bacilli. A novel method for the anthrax pathogen indication and identification based on determination of the differences in the chromosomal genes fliC and hom2 structure was suggested. A total of 60 strains of different Bacillus spp. (B. anthracis, B. cereus, B. thuringiensis, B. mycoides, B. megaterium, B. subtilis, etc.) were tested using two chromosomal DNA targets. The algorithm developed in this work permits to detect the pathogenic microorganism and reliably differentiate it from other Bacillus spp. representatives. The introduction of primers complementary to specific sequences of pXO1 and pXQ2 plasmids into the multiplex PCR makes it possible to receive additional information on proposed virulence of the isolate.

  7. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    PubMed

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  8. Interferometric biosensing platform for multiplexed digital detection of viral pathogens and biomarkers

    NASA Astrophysics Data System (ADS)

    Daaboul, George

    Label-free optical biosensors have been established as proven tools for monitoring specific biomolecular interactions. However, compact and robust embodiments of such instruments have yet to be introduced in order to provide sensitive, quantitative, and high-throughput biosensing for low-cost research and clinical applications. Here we present the interferometric reflectance-imaging sensor (IRIS). IRIS allows sensitive label free analysis using an inexpensive and durable multi-color LED illumination source on a silicon based surface. IRIS monitors biomolecular interaction through measurement of biomass addition to the sensor's surface. We demonstrate the capability of this system to dynamically monitor antigen---antibody interactions with a noise floor of 5.2 pg/mm 2 and DNA single mismatch detection under isothermal melting conditions in an array format. Ensemble detection of binding events using IRIS did not provide the sensitivity needed for detection of infectious disease and biomarkers at clinically relevant concentrations. Therefore, a new approach was adapted to the IRIS platform that allowed the detection and identification of individual nanoparticles on the sensor's surface. The new detection method was termed single-particle IRIS (SP-IRIS). We developed two detection modalities for SP-IRIS. The first modality is when the target is a nanoparticle such as a virus. We verified that SP-IRIS can accurately detect and size individual viral particles. Then we demonstrated that single nanoparticle counting and sizing methodology on SP-IRIS leads to a specific and sensitive virus sensor that can be multiplexed. Finally, we developed an assay for the detection of Ebola and Marburg. A detection limit of 3 x 103 PFU/ml was demonstrated for vesicular stomatitis virus (VSV) pseudotyped with Ebola or Marburg virus glycoprotein. We have demonstrated that virus detection can be done in human whole blood directly without the need for sample preparation. The second modality of SP-IRIS we developed was single molecule counting of biomarkers utilizing a sandwich assay with detection probes labeled with gold nanoparticles. We demonstrated the use of single molecule counting in a nucleic acid assay for melanoma biomarker detection. We showed that a single molecule counting assay can lead to detection limits in the attomolar range. The improved sensitivity of IRIS utilizing single nanoparticle detection holds promise for a simple and low-cost technology for rapid virus detection and multiplexed molecular screening for clinical applications.

  9. Prospective evaluation of SeptiFast Multiplex PCR in children with systemic inflammatory response syndrome under antibiotic treatment.

    PubMed

    Gies, Franziska; Tschiedel, Eva; Felderhoff-Müser, Ursula; Rath, Peter-Michael; Steinmann, Joerg; Dohna-Schwake, Christian

    2016-08-08

    Antimicrobially pre-treated children with systemic inflammation often pose a diagnostic challenge to the physician. We aimed to evaluate the additional use of SeptiFast multiplex polymerase chain reaction (PCR) to identify causative pathogens in children with suspected systemic bacterial or fungal infection. Prospective observational study in 39 children with systemic inflammatory response syndrome (SIRS) under empiric antibiotic treatment. Primary outcome was the rate of positive blood cultures (BC), compared to the rate of positive SeptiFast (SF) results. In total, 14 SF-samples yielded positive results, compared to 4 positive BC (p < 0.05). All blood cultures and 13 of 14 positive SF-tests were considered infection. Median time for positive BC was 2 days, and time to definite result was 6 days, compared to 12 h for SF. Antimicrobial therapy was adapted in 7 of the 14 patients with positive SeptiFast, and in 3 of the 4 patients with positive BC. Best predictive power for positive SF shown by receiver-operating characteristic was demonstrated for procalcitonin PCT (Area under the curve AUC: 0.79), compared to C-reactive protein CRP (AUC: 0.51) and leukocyte count (AUC: 0.46). A procalcitonin threshold of 0.89 ng/ml yielded a sensitivity of 0.82 and a specifity of 0.7. Children with a positive SeptiFast result on day 0 had a significantly higher risk to require treatment on the Pediatric Intensive Care Unit or to be deceased on day 30 (Odds-Ratio 8.62 (CI 1.44-51.72). The additional testing with SeptiFast in antimicrobially pre-treated children with systemic inflammation enhances the rate of pathogen detection. The influence of multiplex PCR on clinically relevant outcome parameters has to be further evaluated. ( DRKS00004694).

  10. High-Resolution Melting Analysis as a Powerful Tool to Discriminate and Genotype Pseudomonas savastanoi Pathovars and Strains

    PubMed Central

    Gori, Andrea; Cerboneschi, Matteo; Tegli, Stefania

    2012-01-01

    Pseudomonas savastanoi is a serious pathogen of Olive, Oleander, Ash, and several other Oleaceae. Its epiphytic or endophytic presence in asymptomatic plants is crucial for the spread of Olive and Oleander knot disease, as already ascertained for P. savastanoi pv. savastanoi (Psv) on Olive and for pv. nerii (Psn) on Oleander, while no information is available for pv. fraxini (Psf) on Ash. Nothing is known yet about the distribution on the different host plants and the real host range of these pathovars in nature, although cross-infections were observed following artificial inoculations. A multiplex Real-Time PCR assay was recently developed to simultaneously and quantitatively discriminate in vitro and in planta these P. savastanoi pathovars, for routine culture confirmation and for epidemiological and diagnostical studies. Here an innovative High-Resolution Melting Analysis (HRMA)-based assay was set up to unequivocally discriminate Psv, Psn and Psf, according to several single nucleotide polymorphisms found in their Type Three Secretion System clusters. The genetic distances among 56 P. savastanoi strains belonging to these pathovars were also evaluated, confirming and refining data previously obtained by fAFLP. To our knowledge, this is the first time that HRMA is applied to a bacterial plant pathogen, and one of the few multiplex HRMA-based assays developed so far. This protocol provides a rapid, sensitive, specific tool to differentiate and detect Psv, Psn and Psf strains, also in vivo and against other related bacteria, with lower costs than conventional multiplex Real-Time PCR. Its application is particularly suitable for sanitary certification programs for P. savastanoi, aimed at avoiding the spreading of this phytopathogen through asymptomatic plants. PMID:22295075

  11. Evaluation of a multiplex real-time PCR for detection of four bacterial agents commonly associated with bovine respiratory disease in bronchoalveolar lavage fluid.

    PubMed

    Wisselink, Henk J; Cornelissen, Jan B W J; van der Wal, Fimme J; Kooi, Engbert A; Koene, Miriam G; Bossers, Alex; Smid, Bregtje; de Bree, Freddy M; Antonis, Adriaan F G

    2017-07-13

    Pasteurella multocida, Mannheimia haemolytica, Histophilus somni and Trueperella pyogenes are four bacterial agents commonly associated with bovine respiratory disease (BRD). In this study a bacterial multiplex real-time PCR (the RespoCheck PCR) was evaluated for the detection in bronchoalveolar lavage fluid (BALF) of these four bacterial agents. The analytical sensitivity of the multiplex real-time PCR assay determined on purified DNA and on bacterial cells of the four target pathogens was one to ten fg DNA/assay and 4 × 10 -1 to 2 × 10 0  CFU/assay. The analytical specificity of the test was, as evaluated on a collection of 118 bacterial isolates, 98.3% for M. haemolytica and 100% for the other three target bacteria. A set of 160 BALF samples of calves originating from ten different herds with health problems related to BRD was examined with bacteriological methods and with the RespoCheck PCR. Using bacteriological examination as the gold standard, the diagnostic sensitivities and specificities of the four bacterial agents were respectively between 0.72 and 1.00 and between 0.70 and 0.99. Kappa values for agreement between results of bacteriological examination and PCRs were low for H. somni (0.17), moderate for P. multocida (0.52) and M. haemolytica (0.57), and good for T. pyogenes (0.79). The low and moderate kappa values seemed to be related to limitations of the bacteriological examination, this was especially the case for H. somni. It was concluded that the RespoCheck PCR assay is a valuable diagnostic tool for the simultaneous detection of the four bacterial agents in BALF of calves.

  12. Implementation and Evaluation of a Fully Automated Multiplex Real-Time PCR Assay on the BD Max Platform to Detect and Differentiate Herpesviridae from Cerebrospinal Fluids

    PubMed Central

    Köller, Thomas; Kurze, Daniel; Lange, Mirjam; Scherdin, Martin; Podbielski, Andreas; Warnke, Philipp

    2016-01-01

    A fully automated multiplex real-time PCR assay—including a sample process control and a plasmid based positive control—for the detection and differentiation of herpes simplex virus 1 (HSV1), herpes simplex virus 2 (HSV2) and varicella-zoster virus (VZV) from cerebrospinal fluids (CSF) was developed on the BD Max platform. Performance was compared to an established accredited multiplex real time PCR protocol utilizing the easyMAG and the LightCycler 480/II, both very common devices in viral molecular diagnostics. For clinical validation, 123 CSF specimens and 40 reference samples from national interlaboratory comparisons were examined with both methods, resulting in 97.6% and 100% concordance for CSF and reference samples, respectively. Utilizing the BD Max platform revealed sensitivities of 173 (CI 95%, 88–258) copies/ml for HSV1, 171 (CI 95%, 148–194) copies/ml for HSV2 and 84 (CI 95%, 5–163) copies/ml for VZV. Cross reactivity could be excluded by checking 25 common viral, bacterial and fungal human pathogens. Workflow analyses displayed shorter test duration as well as remarkable fewer and easier preparation steps with the potential to reduce error rates occurring when manually assessing patient samples. This protocol allows for a fully automated PCR assay on the BD Max platform for the simultaneously detection of herpesviridae from CSF specimens. Singular or multiple infections due to HSV1, HSV2 and VZV can reliably be differentiated with good sensitivities. Control parameters are included within the assay, thereby rendering its suitability for current quality management requirements. PMID:27092772

  13. Microfluidic Chip-Based Detection and Intraspecies Strain Discrimination of Salmonella Serovars Derived from Whole Blood of Septic Mice

    PubMed Central

    Patterson, Adriana S.; Heithoff, Douglas M.; Ferguson, Brian S.; Soh, H. Tom; Mahan, Michael J.

    2013-01-01

    Salmonella is a zoonotic pathogen that poses a considerable public health and economic burden in the United States and worldwide. Resultant human diseases range from enterocolitis to bacteremia to sepsis and are acutely dependent on the particular serovar of Salmonella enterica subsp. enterica, which comprises over 99% of human-pathogenic S. enterica isolates. Point-of-care methods for detection and strain discrimination of Salmonella serovars would thus have considerable benefit to medical, veterinary, and field applications that safeguard public health and reduce industry-associated losses. Here we describe a single, disposable microfluidic chip that supports isothermal amplification and sequence-specific detection and discrimination of Salmonella serovars derived from whole blood of septic mice. The integrated microfluidic electrochemical DNA (IMED) chip consists of an amplification chamber that supports loop-mediated isothermal amplification (LAMP), a rapid, single-temperature amplification method as an alternative to PCR that offers advantages in terms of sensitivity, reaction speed, and amplicon yield. The amplification chamber is connected via a microchannel to a detection chamber containing a reagentless, multiplexed (here biplex) sensing array for sequence-specific electrochemical DNA (E-DNA) detection of the LAMP products. Validation of the IMED device was assessed by the detection and discrimination of S. enterica subsp. enterica serovars Typhimurium and Choleraesuis, the causative agents of enterocolitis and sepsis in humans, respectively. IMED chips conferred rapid (under 2 h) detection and discrimination of these strains at clinically relevant levels (<1,000 CFU/ml) from whole, unprocessed blood collected from septic animals. The IMED-based chip assay shows considerable promise as a rapid, inexpensive, and portable point-of-care diagnostic platform for the detection and strain-specific discrimination of microbial pathogens. PMID:23354710

  14. Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview.

    PubMed

    Deshmukh, Rehan A; Joshi, Kopal; Bhand, Sunil; Roy, Utpal

    2016-12-01

    Waterborne diseases have emerged as global health problems and their rapid and sensitive detection in environmental water samples is of great importance. Bacterial identification and enumeration in water samples is significant as it helps to maintain safe drinking water for public consumption. Culture-based methods are laborious, time-consuming, and yield false-positive results, whereas viable but nonculturable (VBNCs) microorganisms cannot be recovered. Hence, numerous methods have been developed for rapid detection and quantification of waterborne pathogenic bacteria in water. These rapid methods can be classified into nucleic acid-based, immunology-based, and biosensor-based detection methods. This review summarizes the principle and current state of rapid methods for the monitoring and detection of waterborne bacterial pathogens. Rapid methods outlined are polymerase chain reaction (PCR), digital droplet PCR, real-time PCR, multiplex PCR, DNA microarray, Next-generation sequencing (pyrosequencing, Illumina technology and genomics), and fluorescence in situ hybridization that are categorized as nucleic acid-based methods. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence are classified into immunology-based methods. Optical, electrochemical, and mass-based biosensors are grouped into biosensor-based methods. Overall, these methods are sensitive, specific, time-effective, and important in prevention and diagnosis of waterborne bacterial diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  15. Continuous-Flow Detector for Rapid Pathogen Identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Louise M.; Skulan, Andrew J.; Singh, Anup K.

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit frommore » the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).« less

  16. Development of multiplex PCR assay for simultaneous detection of Salmonella genus, Salmonella subspecies I, Salm. Enteritidis, Salm. Heidelberg and Salm. Typhimurium.

    PubMed

    Park, S H; Ricke, S C

    2015-01-01

    The aim of this research was to develop multiplex PCR assay that could simultaneously detect Salmonella genus, Salmonella subsp. I, Salm. Enteritidis, Heidelberg and Typhimurium because these Salmonella serovars are the most common isolates associated with poultry products. Five primers were utilized to establish multiplex PCR and applied to Salmonella isolates from chickens and farm environments. These isolates were identified as Salmonella subsp. I and 16 of 66 isolates were classified as Salm. Enteritidis, while Heidelberg or Typhimurium was not detected. We also spiked three Salmonella strains on chicken breast meat to evaluate the specificity and sensitivity of multiplex PCR as well as qPCR to optimize quantification of Salmonella in these samples. The optimized multiplex PCR and qPCR could detect approx. 2·2 CFU of Salmonella per gram after 18 h enrichment. The multiplex PCR and qPCR would provide rapid and consistent results. Also, these techniques would be useful for the detection and quantification of Salmonella in contaminated poultry, foods and environmental samples. The strategy for the rapid detection of Salmonella serovars in poultry is needed to further reduce the incidence of salmonellosis in humans. The optimized multiplex PCR will be useful to detect prevalent Salmonella serovars in poultry products. © 2014 The Society for Applied Microbiology.

  17. A multiplex PCR assay for determination of mating type in isolates of the honey bee fungal pathogen, Ascosphaera apis

    USDA-ARS?s Scientific Manuscript database

    In this study we developed a multiplex PCR for identification of mating type idiomorphs in the filamentous fungus, Ascosphaera apis, the causative agent of chalkbrood disease in the honey bee (Apis melliffera). A combination of gene-specific primers was designed to amplify Mat1-1 and Mat1-2 gene fra...

  18. Multiplex real-time PCR for detection, identification and quantification of 'Candidatus Liberibacter solanacearum' in potato plants with zebra chip.

    PubMed

    Li, Wenbin; Abad, Jorge A; French-Monar, Ronald D; Rascoe, John; Wen, Aimin; Gudmestad, Neil C; Secor, Gary A; Lee, Ing-Ming; Duan, Yongping; Levy, Laurene

    2009-07-01

    The new Liberibacter species, 'Candidatus Liberibacter solanacearum' (Lso) recently associated with potato/tomato psyllid-transmitted diseases in tomato and capsicum in New Zealand, was found to be consistently associated with a newly emerging potato zebra chip (ZC) disease in Texas and other southwestern states in the USA. A species-specific primer LsoF was developed for both quantitative real-time PCR (qPCR) and conventional PCR (cPCR) to detect and quantify Lso in infected samples. In multiplex qPCR, a plant cytochrome oxidase (COX)-based probe-primer set was used as a positive internal control for host plants, which could be used to reliably access the DNA extraction quality and to normalize qPCR data for accurate quantification of the bacterial populations in environment samples. Neither the qPCR nor the cPCR using the primer and/or probe sets with LsoF reacted with other Liberibacter species infecting citrus or other potato pathogens. The low detection limit of the multiplex qPCR was about 20 copies of the target 16S rDNA templates per reaction for field samples. Lso was readily detected and quantified in various tissues of ZC-affected potato plants collected from fields in Texas. A thorough but uneven colonization of Lso was revealed in various tissues of potato plants. The highest Lso populations were about 3x10(8) genomes/g tissue in the root, which were 3-order higher than those in the above-ground tissues of potato plants. The Lso bacterial populations were normally distributed across the ZC-affected potato plants collected from fields in Texas, with 60% of ZC-affected potato plants harboring an average Lso population from 10(5) to 10(6) genomes/g tissue, 4% of plants hosting above 10(7) Lso genomes/g tissue, and 8% of plants holding below 10(3) Lso genomes/g tissue. The rapid, sensitive, specific and reliable multiplex qPCR showed its potential to become a powerful tool for early detection and quantification of the new Liberibacter species associated with potato ZC, and will be very useful for the potato quarantine programs and seed potato certification programs to ensure the availability of clean seed potato stocks and also for epidemiological studies on the disease.

  19. Microfluidic platform for multiplexed detection in single cells and methods thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meiye; Singh, Anup K.

    The present invention relates to a microfluidic device and platform configured to conduct multiplexed analysis within the device. In particular, the device allows multiple targets to be detected on a single-cell level. Also provided are methods of performing multiplexed analyses to detect one or more target nucleic acids, proteins, and post-translational modifications.

  20. Standardized Methods to Generate Mock (Spiked) Clinical Specimens by Spiking Blood or Plasma with Cultured Pathogens

    PubMed Central

    Dong, Ming; Fisher, Carolyn; Añez, Germán; Rios, Maria; Nakhasi, Hira L.; Hobson, J. Peyton; Beanan, Maureen; Hockman, Donna; Grigorenko, Elena; Duncan, Robert

    2016-01-01

    Aims To demonstrate standardized methods for spiking pathogens into human matrices for evaluation and comparison among diagnostic platforms. Methods and Results This study presents detailed methods for spiking bacteria or protozoan parasites into whole blood and virus into plasma. Proper methods must start with a documented, reproducible pathogen source followed by steps that include standardized culture, preparation of cryopreserved aliquots, quantification of the aliquots by molecular methods, production of sufficient numbers of individual specimens and testing of the platform with multiple mock specimens. Results are presented following the described procedures that showed acceptable reproducibility comparing in-house real-time PCR assays to a commercially available multiplex molecular assay. Conclusions A step by step procedure has been described that can be followed by assay developers who are targeting low prevalence pathogens. Significance and Impact of Study The development of diagnostic platforms for detection of low prevalence pathogens such as biothreat or emerging agents is challenged by the lack of clinical specimens for performance evaluation. This deficit can be overcome using mock clinical specimens made by spiking cultured pathogens into human matrices. To facilitate evaluation and comparison among platforms, standardized methods must be followed in the preparation and application of spiked specimens. PMID:26835651

  1. Developing a Salivary Antibody Multiplex Immunoassay to Measure Human Exposure to Environmental Pathogens

    EPA Science Inventory

    The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. The principal objective of this work is to devel...

  2. Multiplex PCR To Identify Macrolide Resistance Determinants in Mannheimia haemolytica and Pasteurella multocida

    PubMed Central

    Rose, Simon; Desmolaize, Benoit; Jaju, Puneet; Wilhelm, Cornelia; Warrass, Ralf

    2012-01-01

    The bacterial pathogens Mannheimia haemolytica and Pasteurella multocida are major etiological agents in respiratory tract infections of cattle. Although these infections can generally be successfully treated with veterinary macrolide antibiotics, a few recent isolates have shown resistance to these drugs. Macrolide resistance in members of the family Pasteurellaceae is conferred by combinations of at least three genes: erm(42), which encodes a monomethyltransferase and confers a type I MLSB (macrolide, lincosamide, and streptogramin B) phenotype; msr(E), which encodes a macrolide efflux pump; and mph(E), which encodes a macrolide-inactivating phosphotransferase. Here, we describe a multiplex PCR assay that detects the presence of erm(42), msr(E), and mph(E) and differentiates between these genes. In addition, the assay distinguishes P. multocida from M. haemolytica by amplifying distinctive fragments of the 23S rRNA (rrl) genes. One rrl fragment acts as a general indicator of gammaproteobacterial species and confirms whether the PCR assay has functioned as intended on strains that are negative for erm(42), msr(E), and mph(E). The multiplex system has been tested on more than 40 selected isolates of P. multocida and M. haemolytica and correlated with MICs for the veterinary macrolides tulathromycin and tilmicosin, and the newer compounds gamithromycin and tildipirosin. The multiplex PCR system gives a rapid and robustly accurate determination of macrolide resistance genotypes and bacterial genus, matching results from microbiological methods and whole-genome sequencing. PMID:22564832

  3. Optofluidic wavelength division multiplexing for single-virus detection

    PubMed Central

    Ozcelik, Damla; Parks, Joshua W.; Wall, Thomas A.; Stott, Matthew A.; Cai, Hong; Parks, Joseph W.; Hawkins, Aaron R.; Schmidt, Holger

    2015-01-01

    Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context––the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine. PMID:26438840

  4. Evaluation of the FilmArray® system for detection of Bacillus anthracis, Francisella tularensis, and Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiner, Derrick R.; Colburn, Heather A.; Baird, Cheryl L.

    2013-04-29

    To evaluate the sensitivity and specificity of the Idaho Technologies FilmArray® Biothreat Panel for the detection of Bacillus anthracis (Ba), Francisella tularensis (Ft), and Yersinia pestis (Yp) DNA, and demonstrate the detection of Ba spores. Methods and Results: DNA samples from Ba, Ft and Yp strains and near-neighbors, and live Ba spores were analyzed using the Biothreat Panel, a multiplexed PCR-based assay for 17 pathogens and toxins. Sensitivity studies with DNA suggest a limit of detection of 250 genome equivalents (GEs) per sample. Furthermore, the correct call of Ft, Yp or Bacillus species was made in 63 of 72 samplesmore » tested at 25 GE or less. With samples containing 25 Ba Sterne spores, at least one of the two possible Ba markers were identified in all samples tested. We observed no cross-reactivity with near-neighbor DNAs.« less

  5. A multiplex PCR for detection of six viruses in ducks.

    PubMed

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  6. Rapid Detection and Characterization of Emerging Foreign Animal Disease Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C.

    To best safeguard human and animal health requires early detection and characterization of disease events. This must include effective surveillance for emerging infectious diseases. Both deliberate and natural outbreaks have enormous economic and public health impacts, and can present serious threats to national security. In this project, we developed novel next generation detection technologies to protect the agricultural economy and biosecurity. The first technology is a multiplexed assay to simultaneously detection 10 swine viral and bacterial pathogens. The second one is the Lawrence Livermore Microbial Detection Array (LLMDA) which can detect more than 10,000 microbial species including 4219 viruses, 5367more » bacteria, 265 fungi, 117 protozoa and 293 archaea. We analyzed a series of swine clinical samples from past disease events to demonstrate the utility of the assays for faster and cheaper detection of emerging and foreign animal disease pathogens, and their utility as s routine diagnosis and surveillance tool. A second goal of the study is to better understand mechanisms of African swine fever virus (ASFV) infection in pigs to aid the development of countermeasures and diagnostics. There is no vaccine available for ASF. ASF outbreak is on the rise on several European countries. Though ASF is not currently in the U.S., a potential outbreak in the U.S. would be detrimental to the swine industry and the US agricultural economy. We pursued a genome-wide approach to characterize the pig immune responses after ASFV infection. We used RNA sequencing and bioinformatics methods to identify genes and pathways that are affected during ASF infection. We have identified a list of most differentially expressed genes that are in the immune response pathways.« less

  7. Tuning a Parallel Segmented Flow Column and Enabling Multiplexed Detection.

    PubMed

    Pravadali-Cekic, Sercan; Kocic, Danijela; Hua, Stanley; Jones, Andrew; Dennis, Gary R; Shalliker, R Andrew

    2015-12-15

    Active flow technology (AFT) is new form of column technology that was designed to overcome flow heterogeneity to increase separation performance in terms of efficiency and sensitivity and to enable multiplexed detection. This form of AFT uses a parallel segmented flow (PSF) column. A PSF column outlet end-fitting consists of 2 or 4 ports, which can be multiplexed to connect up to 4 detectors. The PSF column not only allows a platform for multiplexed detection but also the combination of both destructive and non-destructive detectors, without additional dead volume tubing, simultaneously. The amount of flow through each port can also be adjusted through pressure management to suit the requirements of a specific detector(s). To achieve multiplexed detection using a PSF column there are a number of parameters which can be controlled to ensure optimal separation performance and quality of results; that is tube dimensions for each port, choice of port for each type of detector and flow adjustment. This protocol is intended to show how to use and tune a PSF column functioning in a multiplexed mode of detection.

  8. Molecular Evidence of Toxoplasma gondii, Neospora caninum, and Encephalitozoon cuniculi in Red Foxes ( Vulpes vulpes).

    PubMed

    Lukášová, Radka; Marková, Jiřina; Bártová, Eva; Murat, Jean-Benjamin; Sedlák, Kamil

    2018-05-07

    Toxoplasma gondii, Neospora caninum, and Encephalitozoon cuniculi are important infectious agents, with T. gondii and E. cuniculi having zoonotic potential. There are two main clonal lineages (types I and II) of T. gondii in Europe, but little is known about genotypes of T. gondii in wild animals. The aim of our study was molecular detection of these three pathogens in tissues of wild red foxes ( Vulpes vulpes) from the Czech Republic. Using PCR (B1 gene), we detected T. gondii in 10% of the animals that we tested ( n=100); N. caninum and E. cuniculi were not detected. The T. gondii samples were genotyped by single multiplex PCR assay with 15 microsatellite markers. Five samples were successfully genotyped as genotype II, a unique finding for T. gondii isolated from red foxes from the Czech Republic.

  9. Multiplex polymerase chain reaction detection of black-pigmented bacteria in infections of endodontic origin.

    PubMed

    Seol, Jung-Hwan; Cho, Byung-Hoon; Chung, Chong-Pyoung; Bae, Kwang-Shik

    2006-02-01

    The purpose of this study was to detect the presence of Porphyromonas endodontalis, P. gingivalis, Prevotella intermedia, P. nigrescens, and P. tannerae from clinical samples using multiplex polymerase chain reactions (PCR). Two different multiplex PCR protocols were used (one for the two Porphyromonas species and the other for the three Prevotella species), each one using a primer pair specific for each target species. The results were compared to those of the conventional culture procedures. Microbial samples were taken aseptically from 40 infected root canals and abscesses from patients. Samples were cultured in an anaerobic condition for conventional identification using a Rapid ID 32 A kit. Multiplex PCR was processed using the DNA extracted from each sample. At least one of the five species of black-pigmented bacteria (BPB) were detected in 65% (26 of 40) of the samples using multiplex PCR, and in 15% (6 of 40) using the conventional culture procedures. Multiplex PCR was more rapid, sensitive, specific, and effective in detecting BPB than the conventional culture procedures.

  10. Evaluation of multiplex tandem real-time PCR for detection of Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis in clinical stool samples.

    PubMed

    Stark, D; Al-Qassab, S E; Barratt, J L N; Stanley, K; Roberts, T; Marriott, D; Harkness, J; Ellis, J T

    2011-01-01

    The aim of this study was to describe the first development and evaluation of a multiplex tandem PCR (MT-PCR) assay for the detection and identification of 4 common pathogenic protozoan parasites, Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis, from human clinical samples. A total of 472 fecal samples submitted to the Department of Microbiology at St. Vincent's Hospital were included in the study. The MT-PCR assay was compared to four real-time PCR (RT-PCR) assays and microscopy by a traditional modified iron hematoxylin stain. The MT-PCR detected 28 G. intestinalis, 26 D. fragilis, 11 E. histolytica, and 9 Cryptosporidium sp. isolates. Detection and identification of the fecal protozoa by MT-PCR demonstrated 100% correlation with the RT-PCR results, and compared to RT-PCR, MT-PCR exhibited 100% sensitivity and specificity, while traditional microscopy of stained fixed fecal smears exhibited sensitivities and specificities of 56% and 100% for Cryptosporidium spp., 38% and 99% for D. fragilis, 47% and 97% for E. histolytica, and 50% and 100% for G. intestinalis. No cross-reactivity was detected in 100 stool samples containing various other bacterial, viral, and protozoan species. The MT-PCR assay was able to provide rapid, sensitive, and specific simultaneous detection and identification of the four most important diarrhea-causing protozoan parasites that infect humans. This study also highlights the lack of sensitivity demonstrated by microscopy, and thus, molecular methods such as MT-PCR must be considered the diagnostic methods of choice for enteric protozoan parasites.

  11. Rate of Detection of Multiple Organisms and Clostridium difficile with Stool Multiplex PCR Detection Test in Pediatrics

    PubMed Central

    Mangla, Saisho; Villalobos, Tibisay

    2017-01-01

    Abstract Background New multiplex molecular assays have been developed to determine the etiology of infectious gastroenteritis. Unfortunately, these assays can detect multiple organisms simultaneously along with Clostridium difficile (C.diff), making it difficult to differentiate true pathogen vs. colonization. In January 2015, our institution switched from traditional testing methods to a multiplex polymerase chain reaction (PCR) detection test (FilmArrayTM Gastrointestinal Panel. BioFireDX, Salt Lake City, Utah). The objective of our study was to determine the number of FilmArrayTMpanels that detected C.diff and/or multiple organisms. Methods We conducted a retrospective data review of FilmArray™ panels in pediatric patients 18 years and younger from January 2015 to December 2016. Stool samples were received from both inpatient and outpatient setting. Results In 2016, 495 FilmArray™ panels were reviewed and 300 (61%) isolated at least one organism. Among the positives panels, 206 (69%) detected one organism, 73 (24%) detected 2 organisms and 21 (7.0%) detected 3 or more organisms. No more than 4 organisms were detected in a single panel. C.diff was most commonly isolated, found 105 times (25%), and 34 (31%) of these were in children younger than 2 years. Amongst the 105 C.diff isolates, 64% were alone and 35% with another organism. Amongst children younger than 2, C.diff was isolated alone in 13 (38%) samples and with another organism in 21 (62%) samples. In 2015, 353 panels were reviewed with a detection rate of 60.3%. C.Diff was isolated 70 times (24% of total isolates) and 22 (31%) were in children younger than 2 years. Amongst those C.diff isolates, 49% were alone and 51% with another organism. Amongst children younger than 2, C.diff was isolated alone in 8 (38%) samples and with another organism in 14 (62%) samples. Conclusion Although the FilmArray™ Gastrointestinal Panel is a useful single modality for determining the etiology of infectious gastroenteritis, more than one organism is frequently detected. C.diff has become the most common organism isolated among children at our institution. Caution should be used when interpreting the isolation of C.diff in younger children and when isolated with other organisms. Disclosures All authors: No reported disclosures.

  12. The plasma interleukin-6 response to acute psychosocial stress in humans is detected by a magnetic multiplex assay: comparison to high-sensitivity ELISA.

    PubMed

    Quinn, Andrea M; Williams, Allison R; Sivilli, Teresa I; Raison, Charles L; Pace, Thaddeus W W

    2018-03-13

    Circulating concentrations of interleukin (IL)-6, an inflammatory biomarker widely assessed in humans to study the inflammatory response to acute psychological stress, have for decades been quantified using enzyme-linked immunosorbent assay (ELISA). However, biobehavioral researchers are increasingly using cytokine multiplex assays instead of ELISA to measure IL-6 and other cytokines. Despite this trend, multiplex assays have not been directly compared to ELISA for their ability to detect subtle stress-induced changes of IL-6. Here, we tested the prediction that a high-sensitivity multiplex assay (human Magnetic Luminex Performance Assay, R&D Systems, Minneapolis, MN) would detect changes in IL-6 as a result of acute stress challenge in a manner comparable to high-sensitivity ELISA. Blood was collected from 12 healthy adults immediately before and then 90 and 210 min after the start of the Trier Social Stress Test (TSST), an acute laboratory psychosocial stress challenge. In addition to quantifying IL-6 concentrations in plasma with both multiplex and ELISA, we also assessed concentrations of tumor necrosis factor-alpha, IL-8, IL-10, IL-5, and IL-2 with multiplex. The multiplex detected IL-6 in all samples. Concentrations strongly correlated with values determined by ELISA across all samples (r = 0.941, p < .001) as well as among samples collected at individual TSST time points. IL-6 responses to the TSST (i.e. area under the curve) captured by multiplex and ELISA were also strongly correlated (r s   = 0.937, p < .001). While other cytokines were detected by multiplex, none changed as a result of TSST challenge at time points examined. These results suggest high-sensitivity magnetic multiplex assay is able to detect changes in plasma concentrations of IL-6 as a result of acute stress in humans.

  13. A multiplex microplatform for the detection of multiple DNA methylation events using gold-DNA affinity.

    PubMed

    Sina, Abu Ali Ibn; Foster, Matthew Thomas; Korbie, Darren; Carrascosa, Laura G; Shiddiky, Muhammad J A; Gao, Jing; Dey, Shuvashis; Trau, Matt

    2017-10-07

    We report a new multiplexed strategy for the electrochemical detection of regional DNA methylation across multiple regions. Using the sequence dependent affinity of bisulfite treated DNA towards gold surfaces, the method integrates the high sensitivity of a micro-fabricated multiplex device comprising a microarray of gold electrodes, with the powerful multiplexing capability of multiplex-PCR. The synergy of this combination enables the monitoring of the methylation changes across several genomic regions simultaneously from as low as 500 pg μl -1 of DNA with no sequencing requirement.

  14. Selective Discrimination of Key Enzymes of Pathogenic and Nonpathogenic Bacteria on Autonomously Reporting Shape-Encoded Hydrogel Patterns.

    PubMed

    Jia, Zhiyuan; Sukker, Issa; Müller, Mareike; Schönherr, Holger

    2018-02-14

    This work reports on a new approach to rapidly and selectively detect and discriminate enzymes of pathogenic from those of nonpathogenic bacteria using a patterned autonomously reporting hydrogel on a transparent support, in which the selectivity has been encoded by the pattern shape to enable facile detection by a color change at one single wavelength. In particular, enzyme-responsive chitosan hydrogel layers that report the presence of the enzymes β-glucuronidase (β-Gus) and β-galactosidase (β-Gal), produced by the nonvirulent Escherichia coli K12 and the food-borne biosafety level 3 pathogen enterohemorrhagic E. coli, respectively, via the blue color of an indigo dye were patterned by two complementary strategies. The comparison of the functionalization of patterned chitosan patches on a solid support with two chromogenic substrates on one hand and the area-selective conjugation of the substrates on the other hand showed that the two characteristic enzymes could indeed be rapidly and selectively discriminated. The limits of detection of the highly stable sensing layers for an observation time of 60 min using a spectrophotometer correspond to enzyme concentrations of β-Gus and β-Gal of ≤5 and ≤3 nM, respectively, and to ≤62 and ≤33 nM for bare eye detection in nonoptimized sensor patches. These results confirm the applicability of this approach, which is compatible with the simple measurement of optical density at one single wavelength only as well as with parallel, multiplexed detection, to differentiate the enzymes secreted by a highly pathogenic E. coli from a nonpathogenic E. coli on the basis of specifically secreted enzymes. Hence, a general approach for the rapid and selective detection of enzymes of different bacterial species for potential applications in food safety as well as point-of-care microbiological diagnostics is described.

  15. Development of a Multiplex PCR Assay for Rapid Molecular Serotyping of Haemophilus parasuis

    PubMed Central

    Peters, Sarah E.; Wang, Jinhong; Hernandez-Garcia, Juan; Weinert, Lucy A.; Luan, Shi-Lu; Chaudhuri, Roy R.; Angen, Øystein; Aragon, Virginia; Williamson, Susanna M.; Langford, Paul R.; Rycroft, Andrew N.; Wren, Brendan W.; Maskell, Duncan J.; Tucker, Alexander W.

    2015-01-01

    Haemophilus parasuis causes Glässer's disease and pneumonia in pigs. Indirect hemagglutination (IHA) is typically used to serotype this bacterium, distinguishing 15 serovars with some nontypeable isolates. The capsule loci of the 15 reference strains have been annotated, and significant genetic variation was identified between serovars, with the exception of serovars 5 and 12. A capsule locus and in silico serovar were identified for all but two nontypeable isolates in our collection of >200 isolates. Here, we describe the development of a multiplex PCR, based on variation within the capsule loci of the 15 serovars of H. parasuis, for rapid molecular serotyping. The multiplex PCR (mPCR) distinguished between all previously described serovars except 5 and 12, which were detected by the same pair of primers. The detection limit of the mPCR was 4.29 × 105 ng/μl bacterial genomic DNA, and high specificity was indicated by the absence of reactivity against closely related commensal Pasteurellaceae and other bacterial pathogens of pigs. A subset of 150 isolates from a previously sequenced H. parasuis collection was used to validate the mPCR with 100% accuracy compared to the in silico results. In addition, the two in silico-nontypeable isolates were typeable using the mPCR. A further 84 isolates were analyzed by mPCR and compared to the IHA serotyping results with 90% concordance (excluding those that were nontypeable by IHA). The mPCR was faster, more sensitive, and more specific than IHA, enabling the differentiation of 14 of the 15 serovars of H. parasuis. PMID:26424843

  16. Invasive candidiasis: future directions in non-culture based diagnosis.

    PubMed

    Posch, Wilfried; Heimdörfer, David; Wilflingseder, Doris; Lass-Flörl, Cornelia

    2017-09-01

    Delayed initial antifungal therapy is associated with high mortality rates caused by invasive candida infections, since accurate detection of the opportunistic pathogenic yeast and its identification display a diagnostic challenge. diagnosis of candida infections relies on time-consuming methods such as blood cultures, serologic and histopathologic examination. to allow for fast detection and characterization of invasive candidiasis, there is a need to improve diagnostic tools. trends in diagnostics switch to non-culture-based methods, which allow specified diagnosis within significantly shorter periods of time in order to provide early and appropriate antifungal treatment. Areas covered: within this review comprise novel pathogen- and host-related testing methods, e.g. multiplex-PCR analyses, T2 magnetic resonance, fungus-specific DNA microarrays, microRNA characterization or analyses of IL-17 as biomarker for early detection of invasive candidiasis. Expert commentary: Early recognition and diagnosis of fungal infections is a key issue for improved patient management. As shown in this review, a broad range of novel molecular based tests for the detection and identification of Candida species is available. However, several assays are in-house assays and lack standardization, clinical validation as well as data on sensitivity and specificity. This underscores the need for the development of faster and more accurate diagnostic tests.

  17. A Platform for Combined DNA and Protein Microarrays Based on Total Internal Reflection Fluorescence

    PubMed Central

    Asanov, Alexander; Zepeda, Angélica; Vaca, Luis

    2012-01-01

    We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax. PMID:22438738

  18. A recombinase polymerase amplification assay for the diagnosis of atypical pneumonia.

    PubMed

    Kersting, Sebastian; Rausch, Valentina; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2018-04-18

    Pneumonia is one of the most common and potentially lethal infectious conditions worldwide. Streptococcus pneumoniae is the pathogen most frequently associated with bacterial community-acquired pneumonia, while Legionella pneumophila is the major cause for local outbreaks of legionellosis. Both pathogens can be difficult to diagnose since signs and symptoms are nonspecific and do not differ from other causes of pneumonia. Therefore, a rapid diagnosis within a clinically relevant time is essential for a fast onset of the proper treatment. Although methods based on polymerase chain reaction significantly improved the identification of pathogens, they are difficult to conduct and need specialized equipment. We describe a rapid and sensitive test using isothermal recombinase polymerase amplification and detection on a disposable test strip. This method does not require any special instrumentation and can be performed in less than 20 min. The analytical sensitivity in the multiplex assay amplifying specific regions of S. pneumoniae and L. pneumophila simultaneously was 10 CFUs of genomic DNA per reaction. In cross detection studies with closely related strains and other bacterial agents the specificity of the RPA was confirmed. The presented method is applicable for near patient and field testing with a rather simple routine and the possibility for a read out with the naked eye. Copyright © 2018. Published by Elsevier Inc.

  19. Developing a Salivary Antibody Multiplex Immunoassay to ...

    EPA Pesticide Factsheets

    The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. The principal objective of this work is to develop an immunoassay capable of measuring the presence of antibodies in human saliva to multiple pathogens simultaneously. Saliva is particularly attractive in this application because it is noninvasive, cheaper and easier to collect than serum. Antigens from environmental pathogens were coupled to carboxylated microspheres (beads) and used to measure antibodies in very small volumes of human saliva samples using the Luminex xMAP solution-phase assay. Beads were coupled to antigens from Campylobacter jejuni, Helicobacter pylori, Toxoplasma gondii, noroviruses (G I.1 and G II.4) and hepatitis A virus. To ensure that the antigens were sufficiently coupled to the beads, coupling was confirmed using species-specific, animal-derived primary detection antibodies, followed by incubation with biotinylated anti-species secondary detection antibodies and streptavidin-R-phycoerythrin reporter (SAPE). As a control to measure non-specific binding, one bead set was treated identically to the others except it was not coupled to any antigen. The antigen coupled and control beads were then incubated with prospectively-collected human saliva samples, analyzed on a Luminex 100 platform, and the presence

  20. Epidemiology and clinical profile of pathogens responsible for the hospitalization of children in Sousse area, Tunisia

    PubMed Central

    Guerrero, Aida; Hannachi, Naila; Bouguila, Jihene; Orth-Höller, Dorothea; Bouhlel, Amira; Boughamoura, Lamia; Hetzer, Benjamin; Borena, Wegene; Schiela, Britta; Von Laer, Dorothee; Boukadida, Jalel; Stoiber, Heribert

    2017-01-01

    This study aimed to identify a broad spectrum of respiratory pathogens from hospitalized and not-preselected children with acute respiratory tract infections in the Farhat Hached University-hospital of Sousse, Tunisia. Between September 2013 and December 2014, samples from 372 children aged between 1 month and 5 years were collected, and tested using multiplex real-time RT-PCR by a commercial assay for 21 respiratory pathogens. In addition, samples were screened for the presence of Streptococcus pneumoniae 16S rDNA using real-time PCR. The viral distribution and its association with clinical symptoms were statistically analyzed. Viral pathogens were detected in 342 (91.93%) of the samples of which 28.76% were single positive and 63.17% had multiple infections. The most frequent detected viruses were rhinovirus (55.64%), respiratory syncytial virus A/B (33.06%), adenovirus (25.00%), coronavirus NL63, HKU1, OC43, and 229E (21.50%), and metapneumovirus A/B (16.12%). Children in the youngest age group (1–3 months) exhibited the highest frequencies of infection. Related to their frequency of detection, RSV A/B was the most associated pathogen with patient’s demographic situation and clinical manifestations (p<0.05). Parainfluenza virus 1–4 and parechovirus were found to increase the risk of death (p<0.05). Adenovirus was statistically associated to the manifestation of gastroenteritis (p = 0.004). Rhinovirus infection increases the duration of oxygen support (p = 0.042). Coronavirus group was statistically associated with the manifestation of bronchiolitis (p = 0.009) and laryngitis (p = 0.017). Streptococcus pneumoniae DNA was detected in 143 (38.44%) of tested samples. However, only 53 samples had a concentration of C-reactive protein from equal to higher than 20 milligrams per liter, and 6 of them were single positive for Streptocuccus pneumoniae. This study confirms the high incidence of respiratory viruses in children hospitalized for acute respiratory tract infections in the Sousse area, Tunisia. PMID:29149199

  1. Epidemiology and clinical profile of pathogens responsible for the hospitalization of children in Sousse area, Tunisia.

    PubMed

    Brini, Ines; Guerrero, Aida; Hannachi, Naila; Bouguila, Jihene; Orth-Höller, Dorothea; Bouhlel, Amira; Boughamoura, Lamia; Hetzer, Benjamin; Borena, Wegene; Schiela, Britta; Von Laer, Dorothee; Boukadida, Jalel; Stoiber, Heribert

    2017-01-01

    This study aimed to identify a broad spectrum of respiratory pathogens from hospitalized and not-preselected children with acute respiratory tract infections in the Farhat Hached University-hospital of Sousse, Tunisia. Between September 2013 and December 2014, samples from 372 children aged between 1 month and 5 years were collected, and tested using multiplex real-time RT-PCR by a commercial assay for 21 respiratory pathogens. In addition, samples were screened for the presence of Streptococcus pneumoniae 16S rDNA using real-time PCR. The viral distribution and its association with clinical symptoms were statistically analyzed. Viral pathogens were detected in 342 (91.93%) of the samples of which 28.76% were single positive and 63.17% had multiple infections. The most frequent detected viruses were rhinovirus (55.64%), respiratory syncytial virus A/B (33.06%), adenovirus (25.00%), coronavirus NL63, HKU1, OC43, and 229E (21.50%), and metapneumovirus A/B (16.12%). Children in the youngest age group (1-3 months) exhibited the highest frequencies of infection. Related to their frequency of detection, RSV A/B was the most associated pathogen with patient's demographic situation and clinical manifestations (p<0.05). Parainfluenza virus 1-4 and parechovirus were found to increase the risk of death (p<0.05). Adenovirus was statistically associated to the manifestation of gastroenteritis (p = 0.004). Rhinovirus infection increases the duration of oxygen support (p = 0.042). Coronavirus group was statistically associated with the manifestation of bronchiolitis (p = 0.009) and laryngitis (p = 0.017). Streptococcus pneumoniae DNA was detected in 143 (38.44%) of tested samples. However, only 53 samples had a concentration of C-reactive protein from equal to higher than 20 milligrams per liter, and 6 of them were single positive for Streptocuccus pneumoniae. This study confirms the high incidence of respiratory viruses in children hospitalized for acute respiratory tract infections in the Sousse area, Tunisia.

  2. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening.

    PubMed

    Gerstel-Thompson, Jacalyn L; Wilkey, Jonathan F; Baptiste, Jennifer C; Navas, Jennifer S; Pai, Sung-Yun; Pass, Kenneth A; Eaton, Roger B; Comeau, Anne Marie

    2010-09-01

    Real-time quantitative PCR (qPCR) targeting a specific marker of functional T cells, the T-cell-receptor excision circle (TREC), detects the absence of functional T cells and has a demonstrated clinical validity for detecting severe combined immunodeficiency (SCID) in infants. There is need for a qPCR TREC assay with an internal control to monitor DNA quality and the relative cellular content of the particular dried blood spot punch sampled in each reaction. The utility of the qPCR TREC assay would also be far improved if more tests could be performed on the same newborn screening sample. We approached the multiplexing of qPCR for TREC by attenuating the reaction for the reference gene, with focus on maintaining tight quality assurance for reproducible slopes and for prevention of sample-to-sample cross contamination. Statewide newborn screening for SCID using the multiplexed assay was implemented, and quality-assurance data were recorded. The multiplex qPCR TREC assay showed nearly 100% amplification efficiency for each of the TREC and reference sequences, clinical validity for multiple forms of SCID, and an analytic limit of detection consistent with prevention of contamination. The eluate and residual ghost from a 3.2-mm dried blood spot could be used as source material for multiplexed immunoassays and multiplexed DNA tests (Multiplex Plus), with no disruption to the multiplex TREC qPCR. Population-based SCID newborn screening programs should consider multiplexing for quality assurance purposes. Potential benefits of using Multiplex Plus include the ability to perform multianalyte profiling.

  3. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    PubMed

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional microarrays that rely on passive hybridization. With further refinement, this novel, rapid, highly automated microarray technology has potential applications in multipathogen surveillance of livestock diseases. © 2017 Her Majesty the Queen in Right of Canada • Transboundary and Emerging Diseases.

  4. Development of multiplex polymerase chain reaction for detection of Ehrlichia canis, Babesia spp and Hepatozoon canis in canine blood.

    PubMed

    Kledmanee, Kan; Suwanpakdee, Sarin; Krajangwong, Sakranmanee; Chatsiriwech, Jarin; Suksai, Parut; Suwannachat, Pongpun; Sariya, Ladawan; Buddhirongawatr, Ruangrat; Charoonrut, Phingphol; Chaichoun, Kridsada

    2009-01-01

    A multiplex polymerase chain reaction (PCR) has been developed for simultaneous detection of canine blood parasites, Ehrlichia canis, Babesia spp and Hepatozoon canis, from blood samples in a single reaction. The multiplex PCR primers were specific to E. canis VirB9, Babesia spp 16S rRNA and H. canis 16S rRNA genes. Specificity of the amplicons was confirmed by DNA sequencing. The assay was evaluated using normal canine and infected blood samples, which were detected by microscopic examination. This multiplex PCR offers scope for simultaneous detection of three important canine blood parasites and should be valuable in monitoring parasite infections in dogs and ticks.

  5. Comparison of culture, single and multiplex real-time PCR for detection of Sabin poliovirus shedding in recently vaccinated Indian children.

    PubMed

    Giri, Sidhartha; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Iturriza-Gomara, Miren; Taniuchi, Mami; John, Jacob; Abraham, Asha Mary; Kang, Gagandeep

    2017-08-01

    Although, culture is considered the gold standard for poliovirus detection from stool samples, real-time PCR has emerged as a faster and more sensitive alternative. Detection of poliovirus from the stool of recently vaccinated children by culture, single and multiplex real-time PCR was compared. Of the 80 samples tested, 55 (68.75%) were positive by culture compared to 61 (76.25%) and 60 (75%) samples by the single and one step multiplex real-time PCR assays respectively. Real-time PCR (singleplex and multiplex) is more sensitive than culture for poliovirus detection in stool, although the difference was not statistically significant. © 2017 Wiley Periodicals, Inc.

  6. Newer diagnostic approaches to intestinal protozoa.

    PubMed

    van Lieshout, Lisette; Verweij, Jaco J

    2010-10-01

    To update the reader on the latest developments in the laboratory diagnosis of intestinal protozoa. Correct identification of a diarrhoea causing pathogens is essential for the choice of treatment in an individual patient as well as to map the aetiology of diarrhoea in a variety of patient populations. Classical diagnosis of diarrhoea causing protozoa by microscopic examination of a stool sample lacks both sensitivity and specificity. Alternative diagnostic platforms are discussed. Recent literature on the diagnosis of intestinal protozoa has focused mainly on nucleic acid-based assays, in particular the specific detection of parasite DNA in stool samples using real-time PCR. In addition, the trend has been moving from single pathogen detection to a multiplex approach, allowing simultaneous identification of multiple parasites. Different combinations of targets can be used within a routine diagnostic setting, depending on the patient population, such as children, immunocompromised individuals and those who have been travelling to tropical regions. Large-scale monitoring and evaluation of control strategies become feasible due to automation and high-throughput facilities. Improved technology also has become available for differentiating protozoa subspecies, which facilitates outbreak investigations and extensive research in molecular epidemiology.

  7. Randomized controlled clinical trial evaluating multiplex polymerase chain reaction for pathogen identification and therapy adaptation in critical care patients with pulmonary or abdominal sepsis.

    PubMed

    Tafelski, Sascha; Nachtigall, Irit; Adam, Thomas; Bereswill, Stefan; Faust, Jana; Tamarkin, Andrey; Trefzer, Tanja; Deja, Maria; Idelevich, Evgeny A; Wernecke, Klaus-Dieter; Becker, Karsten; Spies, Claudia

    2015-06-01

    To determine whether a multiplex polymerase chain reaction (PCR)-based test could reduce the time required for initial pathogen identification in patients in an intensive care unit (ICU) setting. This double-blind, parallel-group randomized controlled trial** enrolled adults with suspected pulmonary or abdominal sepsis caused by an unknown pathogen. Both the intervention and control groups underwent the standard blood culture (BC) testing, but additional pathogen identification, based on the results of a LightCycler® SeptiFast PCR test, were provided in the intervention group. The study enrolled 37 patients in the control group and 41 in the intervention group. Baseline clinical and demographic characteristics were similar in both groups. The PCR-based test identified a pathogen in 10 out of 41 (24.4%) patients in the intervention group, with a mean duration from sampling to providing the information to the ICU of 15.9 h. In the control group, BC results were available after a significantly longer period (38.1 h). The LightCycler® SeptiFast PCR test demonstrated a significant reduction in the time required for initial pathogen identification, compared with standard BC. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent

    PubMed Central

    Li, Linlin; Deng, Xutao; Mee, Edward T.; Collot-Teixeira, Sophie; Anderson, Rob; Schepelmann, Silke; Minor, Philip D.; Delwart, Eric

    2014-01-01

    Unbiased metagenomic sequencing holds significant potential as a diagnostic tool for the simultaneous detection of any previously genetically described viral nucleic acids in clinical samples. Viral genome sequences can also inform on likely phenotypes including drug susceptibility or neutralization serotypes. In this study, different variables of the laboratory methods often used to generate viral metagenomics libraries on the efficiency of viral detection and virus genome coverage were compared. A biological reagent consisting of 25 different human RNA and DNA viral pathogens was used to estimate the effect of filtration and nuclease digestion, DNA/RNA extraction methods, pre-amplification and the use of different library preparation kits on the detection of viral nucleic acids. Filtration and nuclease treatment led to slight decreases in the percentage of viral sequence reads and number of viruses detected. For nucleic acid extractions silica spin columns improved viral sequence recovery relative to magnetic beads and Trizol extraction. Pre-amplification using random RT-PCR while generating more viral sequence reads resulted in detection of fewer viruses, more overlapping sequences, and lower genome coverage. The ScriptSeq library preparation method retrieved more viruses and a greater fraction of their genomes than the TruSeq and Nextera methods. Viral metagenomics sequencing was able to simultaneously detect up to 22 different viruses in the biological reagent analyzed including all those detected by qPCR. Further optimization will be required for the detection of viruses in biologically more complex samples such as tissues, blood, or feces. PMID:25497414

  9. A capillary-based multiplexed isothermal nucleic acid-based test for sexually transmitted diseases in patients.

    PubMed

    Xu, Gaolian; Zhao, Hang; Cooper, Jonathan M; Reboud, Julien

    2016-10-06

    We demonstrate a multiplexed loop mediated isothermal amplification (LAMP) assay for infectious disease diagnostics, where the analytical process flow of target pathogens genomic DNA is performed manually by moving magnetic beads through a series of plugs in a capillary. Heat is provided by a water bath and the results are read by the naked eye, enabling applications in low resource settings.

  10. Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America.

    PubMed

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Lopes, João R S; Muller, Christiane; Almeida, Rodrigo P P

    2017-03-01

    Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.

  11. Immunoprevalence to Six Waterborne Pathogens in Beachgoers at Boquerón Beach, Puerto Rico: Application of a Microsphere-Based Salivary Antibody Multiplex Immunoassay

    EPA Science Inventory

    Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure expos...

  12. Prospective evaluation of a high multiplexing real-time polymerase chain reaction array for the rapid identification and characterization of bacteria causative of nosocomial pneumonia from clinical specimens: a proof-of-concept study.

    PubMed

    Roisin, S; Huang, T-D; de Mendonça, R; Nonhoff, C; Bogaerts, P; Hites, M; Delaere, B; Hamels, S; de Longueville, F; Glupczynski, Y; Denis, O

    2018-01-01

    The purpose of this study was evaluation of the VAPChip assay based on the "Rapid-Array-PCR-technology" which targets 13 respiratory pathogens and 24 β-lactam resistance genes directly on respiratory clinical specimens. The first step included analysis of 45 respiratory specimens in order to calibrate and determine the threshold for target genes. The second prospective step involved 85 respiratory samples from patients suspected of nosocomial pneumonia collected in two academic hospitals over an 8-month period. Results of the VAPChip assay were compared to routine methods. The first step showed a large proportion of positive signals for H. influenzae and/or S. pneumoniae. For identification, discrepancies were observed in seven samples. Thresholds were adapted and two probes were re-designed to create a new version of the cartridge. In the second phase, sensitivity and specificity of the VAPchip for bacterial identification were 72.9% and 99.1%, respectively. Seventy (82%) pathogens were correctly identified by both methods. Nine pathogens detected by the VAPChip were culture negative and 26 pathogens identified by culture were VAPChip negative. For resistance mechanisms, 11 probes were positive without identification of pathogens with an antimicrobial-susceptibility testing compatible by culture. However, the patient's recent microbiological history was able to explain most of these positive signals. The VAPChip assay simultaneously detects different pathogens and resistance mechanisms directly from clinical samples. This system seems very promising but the extraction process needs to be automated for routine implementation. This kind of rapid point-of-care automated platform permitting a syndromic approach will be the future challenge in the management of infectious diseases.

  13. Identification of two GH18 chitinase family genes and their use as targets for detection of the crayfish-plague oomycete Aphanomyces astaci

    PubMed Central

    2009-01-01

    Background The oomycete Aphanomyces astaci is regarded as the causative agent of crayfish plague and represents an evident hazard for European crayfish species. Native crayfish populations infected with this pathogen suffer up to 100% mortality. The existence of multiple transmission paths necessitates the development of a reliable, robust and efficient test to detect the pathogen. Currently, A. astaci is diagnosed by a PCR-based assay that suffers from cross-reactivity to other species. We developed an alternative closed-tube assay for A. astaci, which achieves robustness through simultaneous amplification of multiple functionally constrained genes. Results Two novel constitutively expressed members of the glycosyl hydrolase (GH18) gene family of chitinases were isolated from the A. astaci strain Gb04. The primary amino acid sequence of these chitinase genes, termed CHI2 and CHI3, is composed of an N-terminal signal peptide directing the post-translational transport of the protein into the extracellular space, the catalytic GH18 domain, a proline-, serine-, and threonine-rich domain and a C-terminal cysteine-rich putative chitin-binding site. The A. astaci mycelium grown in a pepton-glucose medium showed significant temporal changes in steady-state CHI2 and CHI3 mRNA amounts indicating functional constraint. Their different temporal occurrence with maxima at 48 and 24 hours of incubation for CHI2 and CHI3, respectively, is in accordance with the multifunctionality of GH18 family members. To identify A. astaci-specific primer target sites in these novel genes, we determined the partial sequence homologs in the related oomycetes A. frigidophilus, A. invadans, A. helicoides, A. laevis, A. repetans, Achlya racemosa, Leptolegnia caudata, and Saprolegnia parasitica, as well as in the relevant fungi Fusarium solani and Trichosporon cutaneum. An A. astaci-specific primer pair targeting the novel genes CHI2 and CHI3 as well as CHI1 - a third GH18 family member - was multiplexed with primers targeting the 5.8S rRNA used as an endogenous control. A species was typed unambiguously as A. astaci if two peaks were concomitantly detected by melting curve analysis (MCA). For sensitive detection of the pathogen, but also for quantification of agent levels in susceptible crayfish and carrier crayfish, a TaqMan-probe based real-time PCR (qPCR) assay was developed. It targets the same chitinase genes and allows quantification down to 25 target sequences. Conclusion The simultaneous qualitative detection of multiple sequences by qPCR/MCA represents a promising approach to detect species with elevated levels of genetic variation and/or limited available sequence information. The homogenous closed-tube format, reduced detection time, higher specificity, and the considerably reduced chance of false negative detection achieved by targeting multiple genes (CHI1, CHI2, CHI3, and the endogenous control) at least two of which are subject to high functional constraint, are the major advantages of this multiplex assay compared to other diagnostic methods. Sensitive quantification achieved with TaqMan qPCR facilitates to monitor infection status and pathogen distribution in different tissues and can help prevent disease transmission. PMID:19719847

  14. Syndromic Panel-Based Testing in Clinical Microbiology.

    PubMed

    Ramanan, Poornima; Bryson, Alexandra L; Binnicker, Matthew J; Pritt, Bobbi S; Patel, Robin

    2018-01-01

    The recent development of commercial panel-based molecular diagnostics for the rapid detection of pathogens in positive blood culture bottles, respiratory specimens, stool, and cerebrospinal fluid has resulted in a paradigm shift in clinical microbiology and clinical practice. This review focuses on U.S. Food and Drug Administration (FDA)-approved/cleared multiplex molecular panels with more than five targets designed to assist in the diagnosis of bloodstream, respiratory tract, gastrointestinal, or central nervous system infections. While these panel-based assays have the clear advantages of a rapid turnaround time and the detection of a large number of microorganisms and promise to improve health care, they present certain challenges, including cost and the definition of ideal test utilization strategies (i.e., optimal ordering) and test interpretation. Copyright © 2017 American Society for Microbiology.

  15. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients

    PubMed Central

    2014-01-01

    Background Nosocomial candidaemia is associated with high mortality rates in critically ill paediatric patients; thus, the early detection and identification of the infectious agent is crucial for successful medical intervention. The PCR-based techniques have significantly increased the detection of Candida species in bloodstream infections. In this study, a multiplex nested PCR approach was developed for candidaemia detection in neonatal and paediatric intensive care patients. Methods DNA samples from the blood of 54 neonates and children hospitalised in intensive care units with suspected candidaemia were evaluated by multiplex nested PCR with specific primers designed to identify seven Candida species, and the results were compared with those obtained from blood cultures. Results The multiplex nested PCR had a detection limit of four Candida genomes/mL of blood for all Candida species. Blood cultures were positive in 14.8% of patients, whereas the multiplex nested PCR was positive in 24.0% of patients, including all culture-positive patients. The results obtained with the molecular technique were available within 24 hours, and the assay was able to identify Candida species with 100% of concordance with blood cultures. Additionally, the multiplex nested PCR detected dual candidaemia in three patients. Conclusions Our proposed PCR method may represent an effective tool for the detection and identification of Candida species in the context of candidaemia diagnosis in children, showing highly sensitive detection and the ability to identify the major species involved in this infection. PMID:25047415

  16. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients.

    PubMed

    Taira, Cleison Ledesma; Okay, Thelma Suely; Delgado, Artur Figueiredo; Ceccon, Maria Esther Jurfest Rivero; de Almeida, Margarete Teresa Gottardo; Del Negro, Gilda Maria Barbaro

    2014-07-21

    Nosocomial candidaemia is associated with high mortality rates in critically ill paediatric patients; thus, the early detection and identification of the infectious agent is crucial for successful medical intervention. The PCR-based techniques have significantly increased the detection of Candida species in bloodstream infections. In this study, a multiplex nested PCR approach was developed for candidaemia detection in neonatal and paediatric intensive care patients. DNA samples from the blood of 54 neonates and children hospitalised in intensive care units with suspected candidaemia were evaluated by multiplex nested PCR with specific primers designed to identify seven Candida species, and the results were compared with those obtained from blood cultures. The multiplex nested PCR had a detection limit of four Candida genomes/mL of blood for all Candida species. Blood cultures were positive in 14.8% of patients, whereas the multiplex nested PCR was positive in 24.0% of patients, including all culture-positive patients. The results obtained with the molecular technique were available within 24 hours, and the assay was able to identify Candida species with 100% of concordance with blood cultures. Additionally, the multiplex nested PCR detected dual candidaemia in three patients. Our proposed PCR method may represent an effective tool for the detection and identification of Candida species in the context of candidaemia diagnosis in children, showing highly sensitive detection and the ability to identify the major species involved in this infection.

  17. Novel multiplex qualitative detection using universal primer-multiplex-PCR combined with pyrosequencing.

    PubMed

    Shang, Ying; Xu, Wentao; Wang, Yong; Xu, Yuancong; Huang, Kunlun

    2017-12-15

    This study described a novel multiplex qualitative detection method using pyrosequencing. Based on the principle of the universal primer-multiplex-PCR, only one sequencing primer was employed to realize the detection of the multiple targets. Samples containing three genetically modified (GM) crops in different proportions were used to validate the method. The dNTP dispensing order was designed based on the product sequences. Only 12 rounds (ATCTGATCGACT) of dNTPs addition and, often, as few as three rounds (CAT) under ideal conditions, were required to detect the GM events qualitatively, and sensitivity was as low as 1% of a mixture. However, when considering a mixture, calculating signal values allowed the proportion of each GM to be estimated. Based on these results, we concluded that our novel method not only realized detection but also allowed semi-quantitative detection of individual events. Copyright © 2017. Published by Elsevier Ltd.

  18. Array-on-a-disk? How Blu-ray technology can be applied to molecular diagnostics.

    PubMed

    Morais, Sergi; Tortajada-Genaro, Luis; Maquieira, Angel

    2014-09-01

    This editorial comments on the balance and perspectives of compact disk technology applied to molecular diagnostics. The development of sensitive, rapid and multiplex assays using Blu-ray technology for the determination of biomarkers, drug allergens, pathogens and detection of infections would have a direct impact on diagnostics. Effective tests for use in clinical, environmental and food applications require versatile and low-cost platforms as well as cost-effective detectors. Blu-ray technology accomplishes those requirements and advances on the concept of high density arrays for massive screening to achieve the demands of point of care or in situ analysis.

  19. Multiplexing of ChIP-Seq Samples in an Optimized Experimental Condition Has Minimal Impact on Peak Detection.

    PubMed

    Kacmarczyk, Thadeous J; Bourque, Caitlin; Zhang, Xihui; Jiang, Yanwen; Houvras, Yariv; Alonso, Alicia; Betel, Doron

    2015-01-01

    Multiplexing samples in sequencing experiments is a common approach to maximize information yield while minimizing cost. In most cases the number of samples that are multiplexed is determined by financial consideration or experimental convenience, with limited understanding on the effects on the experimental results. Here we set to examine the impact of multiplexing ChIP-seq experiments on the ability to identify a specific epigenetic modification. We performed peak detection analyses to determine the effects of multiplexing. These include false discovery rates, size, position and statistical significance of peak detection, and changes in gene annotation. We found that, for histone marker H3K4me3, one can multiplex up to 8 samples (7 IP + 1 input) at ~21 million single-end reads each and still detect over 90% of all peaks found when using a full lane for sample (~181 million reads). Furthermore, there are no variations introduced by indexing or lane batch effects and importantly there is no significant reduction in the number of genes with neighboring H3K4me3 peaks. We conclude that, for a well characterized antibody and, therefore, model IP condition, multiplexing 8 samples per lane is sufficient to capture most of the biological signal.

  20. Multiplexing of ChIP-Seq Samples in an Optimized Experimental Condition Has Minimal Impact on Peak Detection

    PubMed Central

    Kacmarczyk, Thadeous J.; Bourque, Caitlin; Zhang, Xihui; Jiang, Yanwen; Houvras, Yariv; Alonso, Alicia; Betel, Doron

    2015-01-01

    Multiplexing samples in sequencing experiments is a common approach to maximize information yield while minimizing cost. In most cases the number of samples that are multiplexed is determined by financial consideration or experimental convenience, with limited understanding on the effects on the experimental results. Here we set to examine the impact of multiplexing ChIP-seq experiments on the ability to identify a specific epigenetic modification. We performed peak detection analyses to determine the effects of multiplexing. These include false discovery rates, size, position and statistical significance of peak detection, and changes in gene annotation. We found that, for histone marker H3K4me3, one can multiplex up to 8 samples (7 IP + 1 input) at ~21 million single-end reads each and still detect over 90% of all peaks found when using a full lane for sample (~181 million reads). Furthermore, there are no variations introduced by indexing or lane batch effects and importantly there is no significant reduction in the number of genes with neighboring H3K4me3 peaks. We conclude that, for a well characterized antibody and, therefore, model IP condition, multiplexing 8 samples per lane is sufficient to capture most of the biological signal. PMID:26066343

  1. Development of a multiplex PCR-based rapid typing method for enterohemorrhagic Escherichia coli O157 strains.

    PubMed

    Ooka, Tadasuke; Terajima, Jun; Kusumoto, Masahiro; Iguchi, Atsushi; Kurokawa, Ken; Ogura, Yoshitoshi; Asadulghani, Md; Nakayama, Keisuke; Murase, Kazunori; Ohnishi, Makoto; Iyoda, Sunao; Watanabe, Haruo; Hayashi, Tetsuya

    2009-09-01

    Enterohemorrhagic Escherichia coli O157 (EHEC O157) is a food-borne pathogen that has raised worldwide public health concern. The development of simple and rapid strain-typing methods is crucial for the rapid detection and surveillance of EHEC O157 outbreaks. In the present study, we developed a multiplex PCR-based strain-typing method for EHEC O157, which is based on the variability in genomic location of IS629 among EHEC O157 strains. This method is very simple, in that the procedures are completed within 2 h, the analysis can be performed without the need for special equipment or techniques (requiring only conventional PCR and agarose gel electrophoresis systems), the results can easily be transformed into digital data, and the genes for the major virulence markers of EHEC O157 (the stx(1), stx(2), and eae genes) can be detected simultaneously. Using this method, 201 EHEC O157 strains showing different XbaI digestion patterns in pulsed-field gel electrophoresis (PFGE) analysis were classified into 127 types, and outbreak-related strains showed identical or highly similar banding patterns. Although this method is less discriminatory than PFGE, it may be useful as a primary screening tool for EHEC O157 outbreaks.

  2. Comparison of Conventional PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Arcobacter Species

    PubMed Central

    Wang, Xiaoyu; Seo, Dong Joo; Lee, Min Hwa

    2014-01-01

    This study aimed to develop a loop-mediated isothermal amplification (LAMP) method for the rapid detection of Arcobacter species. Specific primers targeting the 23S ribosomal RNA gene were used to detect Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. The specificity of the LAMP primer set was assessed using DNA samples from a panel of Arcobacter and Campylobacter species, and the sensitivity was determined using serial dilutions of Arcobacter species cultures. LAMP showed a 10- to 1,000-fold-higher sensitivity than multiplex PCR, with a detection limit of 2 to 20 CFU per reaction in vitro. Whereas multiplex PCR showed cross-reactivity with Campylobacter species, the LAMP method developed in this study was more sensitive and reliable than conventional PCR or multiplex PCR for the detection of Arcobacter species. PMID:24478488

  3. Detection of sorbitol-negative and sorbitol-positive Shiga toxin-producing Escherichia coli, Listeria monocytogenes, Campylobacter jejuni, and Salmonella spp. in dairy farm environmental samples.

    PubMed

    Murinda, S E; Nguyen, L T; Nam, H M; Almeida, R A; Headrick, S J; Oliver, S P

    2004-01-01

    Six visits were conducted to four dairy farms to collect swab, liquid, and solid dairy farm environmental samples (165 to 180/farm; 15 sample types). The objective of the study was to determine on-farm sources of Campylobacter jejuni, Salmonella spp., Listeria monocytogenes, and Shiga toxin-producing Escherichia coli (STEC), which might serve as reservoirs for transmission of pathogens. Samples were analyzed using mostly U.S. Food and Drug Administration's Bacteriological Analytical Manual protocols; however, Salmonella spp., L. monocytogenes and STEC were co-enriched in universal pre-enrichment broth. Campylobacter jejuni were enriched in Bolton broth containing Bolton broth supplement. Pathogens were isolated on agar media, typed biochemically, and confirmed using multiplex polymerase chain reaction protocols. Campylobacter jejuni, Salmonella spp., L. monocytogenes, Sorbitol-negative (SN)-STEC O157:H7, and sorbitol-positive (SP)-STEC, respectively, were isolated from 5.06%, 3.76%, 6.51%, 0.72%, and 17.3% of samples evaluated. Whereas other pathogens were isolated from all four farms, SN-STEC O157:H7 were isolated from only two farms. Diverse serotypes of SP-STEC including O157:H7, O26:H11, O111, and O103 were isolated. None of the five pathogen groups studied were isolated from bulk tank milk (BTM). Most pathogens (44.2%) were isolated directly from fecal samples. Bovine fecal samples, lagoon water, bedding, bird droppings, and rat intestinal contents constituted areas of major concern on dairy farms. Although in-line milk filters from two farms tested positive for Salmonella or L. monocytogenes, none of the pathogens were detected in the corresponding BTM samples. Good manure management practices, including control of feral animals, are critical in assuring dairy farm hygiene. Identification of on-farm pathogen reservoirs could aid with implementation of farm-specific pathogen reduction programs.

  4. Epidemiology and clinical characteristics of respiratory syncytial virus infections among children and adults in Mexico.

    PubMed

    Gamiño-Arroyo, Ana E; Moreno-Espinosa, Sarbelio; Llamosas-Gallardo, Beatriz; Ortiz-Hernández, Ana A; Guerrero, M Lourdes; Galindo-Fraga, Arturo; Galán-Herrera, Juan F; Prado-Galbarro, Francisco J; Beigel, John H; Ruiz-Palacios, Guillermo M; Noyola, Daniel E

    2017-01-01

    Respiratory syncytial virus (RSV) is a leading etiological agent of acute respiratory tract infections and hospitalizations in children. However, little information is available regarding RSV infections in Latin American countries, particularly among adult patients. To describe the epidemiology of RSV infection and to analyze the factors associated with severe infections in children and adults in Mexico. Patients ≥1 month old, who presented with an influenza-like illness (ILI) to six hospitals in Mexico, were eligible for participation in the study. Multiplex reverse-transcriptase polymerase chain reaction identified viral pathogens in nasal swabs from 5629 episodes of ILI. Patients in whom RSV was detected were included in this report. Respiratory syncytial virus was detected in 399 children and 171 adults. RSV A was detected in 413 cases and RSV B in 163, including six patients who had coinfection with both subtypes; 414 (72.6%) patients required hospital admission, including 96 (16.8%) patients that required admission to the intensive care unit. Coinfection with one or more respiratory pathogens other than RSV was detected in 159 cases. Young age (in children) and older age (in adults) as well as the presence of some underlying conditions were associated with more severe disease. This study confirms that RSV is an important respiratory pathogen in children in Mexico. In addition, a substantial number of cases in adults were also detected highlighting the relevance of this virus in all ages. It is important to identify subjects at high risk of complications who may benefit from current or future preventive interventions. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  5. DNA Differential Diagnosis of Taeniasis and Cysticercosis by Multiplex PCR

    PubMed Central

    Yamasaki, Hiroshi; Allan, James C.; Sato, Marcello Otake; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Qiu, Dongchuan; Mamuti, Wulamu; Craig, Philip S.; Ito, Akira

    2004-01-01

    Multiplex PCR was established for differential diagnosis of taeniasis and cysticercosis, including their causative agents. For identification of the parasites, multiplex PCR with cytochrome c oxidase subunit 1 gene yielded evident differential products unique for Taenia saginata and Taenia asiatica and for American/African and Asian genotypes of Taenia solium with molecular sizes of 827, 269, 720, and 984 bp, respectively. In the PCR-based detection of tapeworm carriers using fecal samples, the diagnostic markers were detected from 7 of 14 and 4 of 9 T. solium carriers from Guatemala and Indonesia, respectively. Test sensitivity may have been reduced by the length of time (up to 12 years) that samples were stored and/or small sample volumes (ca. 30 to 50 mg). However, the diagnostic markers were detected by nested PCR in five worm carriers from Guatemalan cases that were found to be negative by multiplex PCR. It was noteworthy that a 720 bp-diagnostic marker was detected from a T. solium carrier who was egg-free, implying that it is possible to detect worm carriers and treat before mature gravid proglottids are discharged. In contrast to T. solium carriers, 827-bp markers were detected by multiplex PCR in all T. saginata carriers. The application of the multiplex PCR would be useful not only for surveillance of taeniasis and cysticercosis control but also for the molecular epidemiological survey of these cestode infections. PMID:14766815

  6. Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye

    PubMed Central

    Ahberg, Christian D.; Manz, Andreas; Neuzil, Pavel

    2015-01-01

    Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio. PMID:26088868

  7. Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for GMO screening--assay for simultaneous detection of five genetically modified cotton events and species.

    PubMed

    Nadal, Anna; Esteve, Teresa; Pla, Maria

    2009-01-01

    A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (<1.7% of false classification rate), with limit of detection values of 0.1% for each event, which were also achieved with simulated mixtures at different relative percentages of targets. The assay was further combined with a second multiplex PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.

  8. Refining the role of PMS2 in Lynch syndrome: germline mutational analysis improved by comprehensive assessment of variants.

    PubMed

    Borràs, Ester; Pineda, Marta; Cadiñanos, Juan; Del Valle, Jesús; Brieger, Angela; Hinrichsen, Inga; Cabanillas, Ruben; Navarro, Matilde; Brunet, Joan; Sanjuan, Xavier; Musulen, Eva; van der Klift, Helen; Lázaro, Conxi; Plotz, Guido; Blanco, Ignacio; Capellá, Gabriel

    2013-08-01

    The majority of mismatch repair (MMR) gene mutations causing Lynch syndrome (LS) occur either in MLH1 or MSH2. However, the relative contribution of PMS2 is less well defined. The aim of this study was to evaluate the role of PMS2 in LS by assessing the pathogenicity of variants of unknown significance (VUS) detected in the mutational analysis of PMS2 in a series of Spanish patients. From a cohort of 202 LS suspected patients, 13 patients showing loss of PMS2 expression in tumours were screened for germline mutations in PMS2, using a long range PCR based strategy and multiplex ligation dependent probe amplification (MLPA). Pathogenicity assessment of PMS2 VUS was performed evaluating clinicopathological data, frequency in control population and in silico and in vitro analyses at the RNA and protein level. Overall 25 different PMS2 DNA variants were detected. Fourteen were classified as polymorphisms. Nine variants were classified as pathogenic: seven alterations based on their molecular nature and two after demonstrating a functional defect (c.538-3C>G affected mRNA processing and c.137G>T impaired MMR activity). The c.1569C>G variant was classified as likely neutral while the c.384G>A remained as a VUS. We have also shown that the polymorphic variant c.59G>A is MMR proficient. Pathogenic PMS2 mutations were detected in 69% of patients harbouring LS associated tumours with loss of PMS2 expression. In all, PMS2 mutations account for 6% of the LS cases identified. The comprehensive functional analysis shown here has been useful in the classification of PMS2 VUS and contributes to refining the role of PMS2 in LS.

  9. Pre-capture multiplexing improves efficiency and cost-effectiveness of targeted genomic enrichment.

    PubMed

    Shearer, A Eliot; Hildebrand, Michael S; Ravi, Harini; Joshi, Swati; Guiffre, Angelica C; Novak, Barbara; Happe, Scott; LeProust, Emily M; Smith, Richard J H

    2012-11-14

    Targeted genomic enrichment (TGE) is a widely used method for isolating and enriching specific genomic regions prior to massively parallel sequencing. To make effective use of sequencer output, barcoding and sample pooling (multiplexing) after TGE and prior to sequencing (post-capture multiplexing) has become routine. While previous reports have indicated that multiplexing prior to capture (pre-capture multiplexing) is feasible, no thorough examination of the effect of this method has been completed on a large number of samples. Here we compare standard post-capture TGE to two levels of pre-capture multiplexing: 12 or 16 samples per pool. We evaluated these methods using standard TGE metrics and determined the ability to identify several classes of genetic mutations in three sets of 96 samples, including 48 controls. Our overall goal was to maximize cost reduction and minimize experimental time while maintaining a high percentage of reads on target and a high depth of coverage at thresholds required for variant detection. We adapted the standard post-capture TGE method for pre-capture TGE with several protocol modifications, including redesign of blocking oligonucleotides and optimization of enzymatic and amplification steps. Pre-capture multiplexing reduced costs for TGE by at least 38% and significantly reduced hands-on time during the TGE protocol. We found that pre-capture multiplexing reduced capture efficiency by 23 or 31% for pre-capture pools of 12 and 16, respectively. However efficiency losses at this step can be compensated by reducing the number of simultaneously sequenced samples. Pre-capture multiplexing and post-capture TGE performed similarly with respect to variant detection of positive control mutations. In addition, we detected no instances of sample switching due to aberrant barcode identification. Pre-capture multiplexing improves efficiency of TGE experiments with respect to hands-on time and reagent use compared to standard post-capture TGE. A decrease in capture efficiency is observed when using pre-capture multiplexing; however, it does not negatively impact variant detection and can be accommodated by the experimental design.

  10. Development of an In-House Multiplex Nested RT-PCR Method for Detecting Acute HIV-1 Infection in High Risk Populations.

    PubMed

    Liu, Zhiying; Li, Wei; Xu, Meng; Sheng, Bo; Yang, Zixuan; Jiao, Yanmei; Zhang, Tong; Mou, Danlei; Chen, Dexi; Wu, Hao

    2015-01-01

    The detection of acute HIV infection (AHI) among high risk populations can help reduce secondary transmission of HIV. The nucleic acid testing (NAT) can shorten the test window period by up to 7-12 days. In this study, we describe an in-house NAT based on the multiplex nested RT-PCR method to detect the HIV RNA. We also evaluated it in a high risk cohort in Beijing. Four primer pairs were designed and evaluated for the detection of different HIV-1 subtypes in group M. Multiplex RT-PCR and nested PCR were performed. The sensitivity, specialty, primers compatibility among HIV subtypes were evaluated simultaneously. In an MSM cohort in Beijing during a 3-year period, a total of 11,808 blood samples that were negative by ELISA or indeterminate by Western blot were analyzed by this multiplex nested RT-PCR with pooling strategy. The multiplex nested RT-PCR was successfully applied for the detection of at least six HIV-1 subtypes. The sensitivity was 40 copies/ml and the specificity was 100%. A total of 29 people were tested HIV-1 positive with acute infection in a MSM cohort of Beijing during a 3 years period. This multiplex nested RT-PCR provides a useful tool for the rapid detection of acute HIV-1 infection. When used in combination with the 3(rd) generation ELISA, it can improve the detection rate of HIV infection, especially in the source limited regions.

  11. Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Run-Ran; Peng, Dan; Jia, Chun-Xiao; Wang, Bing-Hong

    2018-02-01

    Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.

  12. A method of multiplex PCR for detection of field released Beauveria bassiana, a fungal entomopathogen applied for pest management in jute (Corchorus olitorius).

    PubMed

    Biswas, Chinmay; Dey, Piyali; Gotyal, B S; Satpathy, Subrata

    2015-04-01

    The fungal entomopathogen Beauveria bassiana is a promising biocontrol agent for many pests. Some B. bassiana strains have been found effective against jute pests. To monitor the survival of field released B. bassiana a rapid and efficient detection technique is essential. Conventional methods such as plating method or direct culture method which are based on cultivation on selective media followed by microscopy are time consuming and not so sensitive. PCR based methods are rapid, sensitive and reliable. A single primer PCR may fail to amplify some of the strains. However, multiplex PCR increases the possibility of detection as it uses multiple primers. Therefore, in the present investigation a multiplex PCR protocol was developed by multiplexing three primers SCA 14, SCA 15 and SCB 9 to detect field released B. bassiana strains from soil as well as foliage of jute field. Using our multiplex PCR protocol all the five B. bassiana strains could be detected from soil and three strains viz., ITCC 6063, ITCC 4563 and ITCC 4796 could be detected even from the crop foliage after 45 days of spray.

  13. Multiplex nucleic acid sequence-based amplification for simultaneous detection of several enteric viruses in model ready-to-eat foods.

    PubMed

    Jean, Julie; D'Souza, Doris H; Jaykus, Lee-Ann

    2004-11-01

    Human enteric viruses are currently recognized as one of the most important causes of food-borne disease. Implication of enteric viruses in food-borne outbreaks can be difficult to confirm due to the inadequacy of the detection methods available. In this study, a nucleic acid sequence-based amplification (NASBA) method was developed in a multiplex format for the specific, simultaneous, and rapid detection of epidemiologically relevant human enteric viruses. Three previously reported primer sets were used in a single reaction for the amplification of RNA target fragments of 474, 371, and 165 nucleotides for the detection of hepatitis A virus and genogroup I and genogroup II noroviruses, respectively. Amplicons were detected by agarose gel electrophoresis and confirmed by electrochemiluminescence and Northern hybridization. Endpoint detection sensitivity for the multiplex NASBA assay was approximately 10(-1) reverse transcription-PCR-detectable units (or PFU, as appropriate) per reaction. When representative ready-to-eat foods (deli sliced turkey and lettuce) were inoculated with various concentrations of each virus and processed for virus detection with the multiplex NASBA method, all three human enteric viruses were simultaneously detected at initial inoculum levels of 10(0) to 10(2) reverse transcription-PCR-detectable units (or PFU)/9 cm2 in both food commodities. The multiplex NASBA system provides rapid and simultaneous detection of clinically relevant food-borne viruses in a single reaction tube and may be a promising alternative to reverse transcription-PCR for the detection of viral contamination of foods.

  14. Efficient Genotyping of KRAS Mutant Non-Small Cell Lung Cancer Using a Multiplexed Droplet Digital PCR Approach.

    PubMed

    Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O'Brien, Mary; Turner, Nicholas C; Popat, Sanjay; Downward, Julian

    2015-01-01

    Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.

  15. Efficient Genotyping of KRAS Mutant Non-Small Cell Lung Cancer Using a Multiplexed Droplet Digital PCR Approach

    PubMed Central

    Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J.; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O’Brien, Mary; Turner, Nicholas C.; Popat, Sanjay; Downward, Julian

    2015-01-01

    Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma. PMID:26413866

  16. Multiplex Detection of Toxigenic Penicillium Species.

    PubMed

    Rodríguez, Alicia; Córdoba, Juan J; Rodríguez, Mar; Andrade, María J

    2017-01-01

    Multiplex PCR-based methods for simultaneous detection and quantification of different mycotoxin-producing Penicillia are useful tools to be used in food safety programs. These rapid and sensitive techniques allow taking corrective actions during food processing or storage for avoiding accumulation of mycotoxins in them. In this chapter, three multiplex PCR-based methods to detect at least patulin- and ochratoxin A-producing Penicillia are detailed. Two of them are different multiplex real-time PCR suitable for monitoring and quantifying toxigenic Penicillium using the nonspecific dye SYBR Green and specific hydrolysis probes (TaqMan). All of them successfully use the same target genes involved in the biosynthesis of such mycotoxins for designing primers and/or probes.

  17. Usefulness of Multiplex Real-Time PCR for Simultaneous Pathogen Detection and Resistance Profiling of Staphylococcal Bacteremia

    PubMed Central

    Chung, Yousun; Kim, Taek Soo; Min, Young Gi; Hong, Yun Ji; Park, Jeong Su; Hwang, Sang Mee; Song, Kyoung-Ho; Kim, Eu Suk; Kim, Hong Bin; Song, Junghan; Kim, Eui-Chong

    2016-01-01

    Staphylococci are the leading cause of nosocomial blood stream infections. Fast and accurate identification of staphylococci and confirmation of their methicillin resistance are crucial for immediate treatment with effective antibiotics. A multiplex real-time PCR assay that targets mecA, femA specific for S. aureus, femA specific for S. epidermidis, 16S rRNA for universal bacteria, and 16S rRNA specific for staphylococci was developed and evaluated with 290 clinical blood culture samples containing Gram-positive cocci in clusters (GPCC). For the 262 blood cultures identified to the species level with the MicroScan WalkAway system (Siemens Healthcare Diagnostics, USA), the direct real-time PCR assay of positive blood cultures showed very good agreement for the categorization of staphylococci into methicillin-resistant S. aureus (MRSA), methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. epidermidis (MRSE), methicillin-susceptible S. epidermidis (MSSE), methicillin-resistant non-S. epidermidis CoNS (MRCoNS), and methicillin-susceptible non-S. epidermidis CoNS (MSCoNS) (κ = 0.9313). The direct multiplex real-time PCR assay of positive blood cultures containing GPCC can provide essential information at the critical point of infection with a turnaround time of no more than 4 h. Further studies should evaluate the clinical outcome of using this rapid real-time PCR assay in glycopeptide antibiotic therapy in clinical settings. PMID:27403436

  18. Simultaneous and Rapid Detection of Salmonella typhi, Bacillus anthracis, and Yersinia pestis by Using Multiplex Polymerase Chain Reaction (PCR)

    PubMed Central

    Safari Foroshani, Nargess; Karami, Ali; Pourali, Fatemeh

    2013-01-01

    Background Salmonella typhi, Bacillus anthracis, and Yersinia pestis are some serious human pathogens, which their early diagnosis is of great importance. Salmonella typhi, Bacillus anthracis, and Yersinia pestis cause typhoid fever, anthrax, and plague respectively. These bacteria can be used to make biologic weapons. Objectives In this study, we designed a new and rapid diagnostic method based on Uniplex and Multiplex PCR method. Materials and Methods Uniplex and multiplex Polymerase Chain Reaction (PCR) were conducted on virulent genes of hp and invA of Salmonella typhimurium, Pa and chr of Bacillus anthracis, and pla of Yersinia pestis. A genome from other bacteria was used to study the specificity of the primer and the PCR test. Results Standard strains used in this study showed that primers were specific. As for sensitivity, it was shown that this method can diagnose 1-10 copies of the genome, or 1-10 Colony Forming Units (CFU) for each of the bacteria. All pieces except anthrax were sequenced in PCR to validate the product. DNA fragment resulted from Bacillus anthracis was confirmed by restriction enzyme digestions. Conclusion The designed methods are accurate, rapid, and inexpensive to find and differentiate these bacteria from similar bacteria. They can be applied for rapid diagnosis of these agents in different specimens, and bioterrorism cases. PMID:24719692

  19. Measuring changes in transmission of neglected tropical diseases, malaria, and enteric pathogens from quantitative antibody levels.

    PubMed

    Arnold, Benjamin F; van der Laan, Mark J; Hubbard, Alan E; Steel, Cathy; Kubofcik, Joseph; Hamlin, Katy L; Moss, Delynn M; Nutman, Thomas B; Priest, Jeffrey W; Lammie, Patrick J

    2017-05-01

    Serological antibody levels are a sensitive marker of pathogen exposure, and advances in multiplex assays have created enormous potential for large-scale, integrated infectious disease surveillance. Most methods to analyze antibody measurements reduce quantitative antibody levels to seropositive and seronegative groups, but this can be difficult for many pathogens and may provide lower resolution information than quantitative levels. Analysis methods have predominantly maintained a single disease focus, yet integrated surveillance platforms would benefit from methodologies that work across diverse pathogens included in multiplex assays. We developed an approach to measure changes in transmission from quantitative antibody levels that can be applied to diverse pathogens of global importance. We compared age-dependent immunoglobulin G curves in repeated cross-sectional surveys between populations with differences in transmission for multiple pathogens, including: lymphatic filariasis (Wuchereria bancrofti) measured before and after mass drug administration on Mauke, Cook Islands, malaria (Plasmodium falciparum) before and after a combined insecticide and mass drug administration intervention in the Garki project, Nigeria, and enteric protozoans (Cryptosporidium parvum, Giardia intestinalis, Entamoeba histolytica), bacteria (enterotoxigenic Escherichia coli, Salmonella spp.), and viruses (norovirus groups I and II) in children living in Haiti and the USA. Age-dependent antibody curves fit with ensemble machine learning followed a characteristic shape across pathogens that aligned with predictions from basic mechanisms of humoral immunity. Differences in pathogen transmission led to shifts in fitted antibody curves that were remarkably consistent across pathogens, assays, and populations. Mean antibody levels correlated strongly with traditional measures of transmission intensity, such as the entomological inoculation rate for P. falciparum (Spearman's rho = 0.75). In both high- and low transmission settings, mean antibody curves revealed changes in population mean antibody levels that were masked by seroprevalence measures because changes took place above or below the seropositivity cutoff. Age-dependent antibody curves and summary means provided a robust and sensitive measure of changes in transmission, with greatest sensitivity among young children. The method generalizes to pathogens that can be measured in high-throughput, multiplex serological assays, and scales to surveillance activities that require high spatiotemporal resolution. Our results suggest quantitative antibody levels will be particularly useful to measure differences in exposure for pathogens that elicit a transient antibody response or for monitoring populations with very high- or very low transmission, when seroprevalence is less informative. The approach represents a new opportunity to conduct integrated serological surveillance for neglected tropical diseases, malaria, and other infectious diseases with well-defined antigen targets.

  20. Measuring changes in transmission of neglected tropical diseases, malaria, and enteric pathogens from quantitative antibody levels

    PubMed Central

    van der Laan, Mark J.; Hubbard, Alan E.; Steel, Cathy; Kubofcik, Joseph; Hamlin, Katy L.; Moss, Delynn M.; Nutman, Thomas B.; Priest, Jeffrey W.; Lammie, Patrick J.

    2017-01-01

    Background Serological antibody levels are a sensitive marker of pathogen exposure, and advances in multiplex assays have created enormous potential for large-scale, integrated infectious disease surveillance. Most methods to analyze antibody measurements reduce quantitative antibody levels to seropositive and seronegative groups, but this can be difficult for many pathogens and may provide lower resolution information than quantitative levels. Analysis methods have predominantly maintained a single disease focus, yet integrated surveillance platforms would benefit from methodologies that work across diverse pathogens included in multiplex assays. Methods/Principal findings We developed an approach to measure changes in transmission from quantitative antibody levels that can be applied to diverse pathogens of global importance. We compared age-dependent immunoglobulin G curves in repeated cross-sectional surveys between populations with differences in transmission for multiple pathogens, including: lymphatic filariasis (Wuchereria bancrofti) measured before and after mass drug administration on Mauke, Cook Islands, malaria (Plasmodium falciparum) before and after a combined insecticide and mass drug administration intervention in the Garki project, Nigeria, and enteric protozoans (Cryptosporidium parvum, Giardia intestinalis, Entamoeba histolytica), bacteria (enterotoxigenic Escherichia coli, Salmonella spp.), and viruses (norovirus groups I and II) in children living in Haiti and the USA. Age-dependent antibody curves fit with ensemble machine learning followed a characteristic shape across pathogens that aligned with predictions from basic mechanisms of humoral immunity. Differences in pathogen transmission led to shifts in fitted antibody curves that were remarkably consistent across pathogens, assays, and populations. Mean antibody levels correlated strongly with traditional measures of transmission intensity, such as the entomological inoculation rate for P. falciparum (Spearman’s rho = 0.75). In both high- and low transmission settings, mean antibody curves revealed changes in population mean antibody levels that were masked by seroprevalence measures because changes took place above or below the seropositivity cutoff. Conclusions/Significance Age-dependent antibody curves and summary means provided a robust and sensitive measure of changes in transmission, with greatest sensitivity among young children. The method generalizes to pathogens that can be measured in high-throughput, multiplex serological assays, and scales to surveillance activities that require high spatiotemporal resolution. Our results suggest quantitative antibody levels will be particularly useful to measure differences in exposure for pathogens that elicit a transient antibody response or for monitoring populations with very high- or very low transmission, when seroprevalence is less informative. The approach represents a new opportunity to conduct integrated serological surveillance for neglected tropical diseases, malaria, and other infectious diseases with well-defined antigen targets. PMID:28542223

  1. Performance Assessment of a Trypanosoma cruzi Chimeric Antigen in Multiplex Liquid Microarray Assays.

    PubMed

    Santos, Fred Luciano Neves; Celedon, Paola Alejandra Fiorani; Zanchin, Nilson Ivo Tonin; Leitolis, Amanda; Crestani, Sandra; Foti, Leonardo; de Souza, Wayner Vieira; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2017-10-01

    Diagnosing chronic Chagas disease (CD) requires antibody-antigen detection methods, which are traditionally based on enzymatic assay techniques whose performance depend on the type and quality of antigen used. Previously, 4 recombinant chimeric proteins from the Instituto de Biologia Molecular do Paraná (IBMP-8.1 to 8.4) comprising immuno-dominant regions of diverse Trypanosoma cruzi antigens showed excellent diagnostic performance in enzyme-linked immunosorbent assays. Considering that next-generation platforms offer improved CD diagnostic accuracy with different T. cruzi -specific recombinant antigens, we assessed the performance of these chimeras in liquid microarrays (LMAs). The chimeric proteins were expressed in Escherichia coli and purified by chromatography. Sera from 653 chagasic and 680 healthy individuals were used to assess the performance of these chimeras in detecting specific anti- T. cruzi antibodies. Accuracies ranged from 98.1 to 99.3%, and diagnostic odds ratio values were 3,548 for IBMP-8.3, 4,826 for IBMP-8.1, 7,882 for IBMP-8.2, and 25,000 for IBMP-8.4. A separate sera bank (851 samples) was employed to assess cross-reactivity with other tropical diseases. Leishmania , a pathogen with high similarity to T. cruzi , showed cross-reactivity rates ranging from 0 to 2.17%. Inconclusive results were negligible (0 to 0.71%). Bland-Altman and Deming regression analysis based on 200 randomly selected CD-positive and negative samples demonstrated interchangeability with respect to CD diagnostic performance in both singleplex and multiplex assays. Our results suggested that these chimeras can potentially replace antigens currently used in commercially available assay kits. Moreover, the use of multiplex platforms, such as LMA assays employing 2 or more IBMP antigens, would abrogate the need for 2 different testing techniques when diagnosing CD. Copyright © 2017 American Society for Microbiology.

  2. Comparisons of etiology and diagnostic tools of lower respiratory tract infections in hospitalized young children in Southern Taiwan in two seasons.

    PubMed

    Chou, Chih-An; Lin, Ting-I; Chen, Yu-Shen; Liu, Po-Yen; Huang, Yung-Feng; Chen, Ying-Yao; Hsieh, Kai-Sheng; Chen, Yao-Shen; Ger, Luo-Ping

    2016-08-01

    Lower respiratory tract infections (LRTIs) play an important role in pediatric diseases; however, there are limited data about LRTIs in Southern Taiwan. This study aimed to investigate the clinical and epidemiological data of LRTIs in this area. Children aged under 5 years who were hospitalized at a medical center in Southern Taiwan with acute LRTIs from July 2010 to October 2010 (summer) and from March 2011 to May 2011 (spring) were prospectively enrolled. Nasopharyngeal aspirates were obtained and sent for viral cultures, multiplex polymerase chain reaction (PCR), and traditional quick tests. The clinical features, laboratory data, and imaging findings were recorded and analyzed. A total of 90 children were enrolled, 70 of whom had detectable pathogens. The positive rate of conventional viral and bacterial cultures was 25.6%, which increased to 77.77% after combining with the two multiplex PCR methods. Adenovirus and enterovirus were the most common viral etiologies identified (26.5% of cases) and Streptococcus pneumoniae was the leading bacterial etiology (46.4%). The seasonal trend of viral infections in Southern Taiwan was different from Northern Taiwan. There were no differences in demographic data, severity of disease, or hospital stay between single and mixed infections. A similar result was found between nonpneumococcal and pneumococcal infections. Viral infections were the main etiologies of LRTIs in young children. Multiplex PCR methods are rapid assays that can increase the diagnostic yield rate. Mixed infections do not seem to affect the severity of disease. Early detection may aid clinicians in appropriate decision-making and treatment. Copyright © 2014. Published by Elsevier B.V.

  3. Multiple advanced logic gates made of DNA-Ag nanocluster and the application for intelligent detection of pathogenic bacterial genes† †Electronic supplementary information (ESI) available: Chemicals, materials and DNA sequences used in the investigation, the construction of YES, AND, OR, XOR and INH logic gates, CD and PAGE experimental results. See DOI: 10.1039/c7sc05246d

    PubMed Central

    Lin, Xiaodong; Deng, Jiankang; Lyu, Yanlong; Qian, Pengcheng; Li, Yunfei

    2018-01-01

    The integration of multiple DNA logic gates on a universal platform to implement advance logic functions is a critical challenge for DNA computing. Herein, a straightforward and powerful strategy in which a guanine-rich DNA sequence lighting up a silver nanocluster and fluorophore was developed to construct a library of logic gates on a simple DNA-templated silver nanoclusters (DNA-AgNCs) platform. This library included basic logic gates, YES, AND, OR, INHIBIT, and XOR, which were further integrated into complex logic circuits to implement diverse advanced arithmetic/non-arithmetic functions including half-adder, half-subtractor, multiplexer, and demultiplexer. Under UV irradiation, all the logic functions could be instantly visualized, confirming an excellent repeatability. The logic operations were entirely based on DNA hybridization in an enzyme-free and label-free condition, avoiding waste accumulation and reducing cost consumption. Interestingly, a DNA-AgNCs-based multiplexer was, for the first time, used as an intelligent biosensor to identify pathogenic genes, E. coli and S. aureus genes, with a high sensitivity. The investigation provides a prototype for the wireless integration of multiple devices on even the simplest single-strand DNA platform to perform diverse complex functions in a straightforward and cost-effective way. PMID:29675221

  4. Centrifugal Microfluidic Platform for Rapid, Multiplexed Detection of TB and HIV Biomarkers in Whole Blood Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinov, Julia; Moen, Scott T.; Berry, Gregory J.

    Infection with Mycobacterium Tuberculosis represents a significant threat to people with immune disorders, such as HIV-positive individuals, and can result in significant health complications or death if not diagnosed and treated early. We present a centrifugal microfluidic platform for multiplexed detection of tuberculosis and HIV biomarkers in human whole blood with minimal sample preparation and a sample-to-answer time of 30 minutes. This multiplexed assay was developed for the detection of two M.tuberculosis secreted proteins, whose secretion represents an active and ongoing infection, as well as detection of HIV p24 protein and human anti-p24 antibodies. The limit of detection for thismore » multiplex assay is in the pg/mL range for both HIV and M.tuberculosis proteins, making this assay potentially useful in the clinical diagnosis of both HIV and Tuberculosis proteins indicative of active infection. Antigen detection for the HIV assay sensitivity was 89%, the specificity 85%. Serological detection had 100% sensitivity and specificity for the limited sample pool. The centrifugal microfluidic platform presented here offers the potential for a portable, fast and inexpensive multiplexed diagnostic device that can be used in resource-limited settings for diagnosis of TB and HIV.« less

  5. Centrifugal Microfluidic Platform for Rapid, Multiplexed Detection of TB and HIV Biomarkers in Whole Blood Samples

    DOE PAGES

    Litvinov, Julia; Moen, Scott T.; Berry, Gregory J.; ...

    2017-05-30

    Infection with Mycobacterium Tuberculosis represents a significant threat to people with immune disorders, such as HIV-positive individuals, and can result in significant health complications or death if not diagnosed and treated early. We present a centrifugal microfluidic platform for multiplexed detection of tuberculosis and HIV biomarkers in human whole blood with minimal sample preparation and a sample-to-answer time of 30 minutes. This multiplexed assay was developed for the detection of two M.tuberculosis secreted proteins, whose secretion represents an active and ongoing infection, as well as detection of HIV p24 protein and human anti-p24 antibodies. The limit of detection for thismore » multiplex assay is in the pg/mL range for both HIV and M.tuberculosis proteins, making this assay potentially useful in the clinical diagnosis of both HIV and Tuberculosis proteins indicative of active infection. Antigen detection for the HIV assay sensitivity was 89%, the specificity 85%. Serological detection had 100% sensitivity and specificity for the limited sample pool. The centrifugal microfluidic platform presented here offers the potential for a portable, fast and inexpensive multiplexed diagnostic device that can be used in resource-limited settings for diagnosis of TB and HIV.« less

  6. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  7. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  8. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment.

    PubMed

    Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong

    2017-01-01

    This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus ( S. aureus ), Listeria monocytogenes ( L. monocytogenes ) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 10 2 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes , and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes , and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples.

  9. Simultaneous detection of eight avian influenza A virus subtypes by multiplex reverse transcription-PCR using a GeXP analyser.

    PubMed

    Li, Meng; Xie, Zhixun; Xie, Zhiqin; Liu, Jiabo; Xie, Liji; Deng, Xianwen; Luo, Sisi; Fan, Qing; Huang, Li; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Wang, Sheng

    2018-04-18

    Recent studies have demonstrated that at least eight subtypes of avian influenza virus (AIV) can infect humans, including H1, H2, H3, H5, H6, H7, H9 and H10. A GeXP analyser-based multiplex reverse transcription (RT)-PCR (GeXP-multiplex RT-PCR) assay was developed in our recent studies to simultaneously detect these eight AIV subtypes using the haemagglutinin (HA) gene. The assay consists of chimeric primer-based PCR amplification with fluorescent labelling and capillary electrophoresis separation. RNA was extracted from chick embryo allantoic fluid or liquid cultures of viral isolates. In addition, RNA synthesised via in vitro transcription was used to determine the specificity and sensitivity of the assay. After selecting the primer pairs, their concentrations and GeXP-multiplex RT-PCR conditions were optimised. The established GeXP-multiplex RT-PCR assay can detect as few as 100 copies of premixed RNA templates. In the present study, 120 clinical specimens collected from domestic poultry at live bird markets and from wild birds were used to evaluate the performance of the assay. The GeXP-multiplex RT-PCR assay specificity was the same as that of conventional RT-PCR. Thus, the GeXP-multiplex RT-PCR assay is a rapid and relatively high-throughput method for detecting and identifying eight AIV subtypes that may infect humans.

  10. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment

    PubMed Central

    Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong

    2017-01-01

    This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 102 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes, and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes, and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples. PMID:28620364

  11. Detection of Immunoglobulin G Antibodies to Taenia solium Cysticercosis Antigen Glutathione-S-Transferase-rT24H in Malian Children Using Multiplex Bead Assay.

    PubMed

    Moss, Delynn M; Handali, Sukwan; Chard, Anna N; Trinies, Victoria; Bullard, Stevan; Wiegand, Ryan E; Doumbia, Seydou; Freeman, Matthew C; Lammie, Patrick J

    2018-05-01

    Blood samples from 805 students attending 42 elementary schools in Mopti, Sikasso, and Koulikoro regions, and Bamako district in Mali participated in a school water, sanitation, and hygiene intervention. Immunoglobulin (Ig) G responses to several antigens/pathogens were assessed by a multiplex bead assay (MBA), and the recombinant Taenia solium T24H antigen was included. Of all students tested, 8.0% were positive to rT24H, but in some schools 25-30%. A cluster of 12 widespread school locations showed not only a relative risk of 3.23 for T. solium exposure and significantly higher IgG responses ( P < 0.001) but also significantly lower elevation ( P = 0.04) (m, above sea level) compared with schools outside the cluster. All schools at elevations < 425 m showed significantly higher IgG responses ( P = 0.017) than schools at elevations ≥ 425 m. The MBA is an excellent serological platform that provides cost-effective opportunities to expand testing in serosurveys.

  12. Multiplex fluorescent PCR for noninvasive prenatal detection of fetal-derived paternally inherited diseases using circulatory fetal DNA in maternal plasma.

    PubMed

    Tang, Dong-ling; Li, Yan; Zhou, Xin; Li, Xia; Zheng, Fang

    2009-05-01

    To develop a fluorescent polymerase chain reaction (PCR) assay for the detection of circulating fetal DNA in maternal plasma and use the established multiplex in noninvasive prenatal genetic diagnosis and its further applications in forensic casework. The DNA template was extracted from 47 pregnant women and the whole blood samples from the stated biological fathers were used to detect genotype. Using multiplex fluorescent PCR at 16 different polymorphic short tandem repeat (STR) loci, maternal DNA extracted from plasma samples at early pregnancy, medium pregnancy and late pregnancy were used to detect genotype. Their husbands' DNA was also used for fetal genotype ascertainment. Multiplex fluorescent PCR with 16 polymorphic short tandem repeats revealed the presence of fetal DNA in all cases. Every pregnant women/husband pair was informative in at least 3 of 16 loci. The chances of detecting paternally inherited fetal alleles ranged from 66.67 to 94.12%. They are 66.67% in early pregnancy, 85.71% in medium pregnancy and 94.12% in late pregnancy. The accuracy of Multiplex PCR assay to detect fetal DNA was 100%. Circulating fetal DNA analysis can be used as a possible alternative tool in routine laboratory prenatal diagnosis in the near future; this highly polymorphic STR multiplex has greatly improved the chances of detecting paternally inherited fetal alleles compared with other fetal DNA detection systems that use fetus-derived Y sequences to detect only male fetal DNA in maternal plasma. Our proposed technique can be applied to both female and male fetuses, which provides a sensitive, accurate and efficient method for noninvasive prenatal genetic diagnosis and forensic casework.

  13. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses.

    PubMed

    Santiago, Gilberto A; Vázquez, Jesús; Courtney, Sean; Matías, Katia Y; Andersen, Lauren E; Colón, Candimar; Butler, Angela E; Roulo, Rebecca; Bowzard, John; Villanueva, Julie M; Muñoz-Jordan, Jorge L

    2018-04-11

    The emergence and spread of Zika virus (ZIKV) presented a challenge to the diagnosis of ZIKV infections in areas with transmission of dengue (DENV) and chikungunya (CHIKV) viruses. To facilitate detection of ZIKV infections, and differentiate these infections from DENV and CHIKV, we developed the Trioplex real-time RT-PCR assay (Trioplex assay). Here, we describe the optimization of multiplex and singleplex formats of the assay for a variety of chemistries and instruments to facilitate global standardization and implementation. We evaluated the analytical performance of all Trioplex modalities for detection of these three pathogens in serum and whole blood, and for ZIKV in urine. The limit of detection for the three viruses and in different RNA-extraction modalities is near 10 3 genome copy equivalents per milliliter (GCE/mL). Simultaneous testing of more than one specimen type from each patient provides a 6.4% additional diagnostic sensitivity. Overall, the high sensitivity of the Trioplex assay demonstrates the utility of this assay ascertaining Zika cases.

  14. Simultaneous detection of IgG antibodies associated with viral hemorrhagic fever by a multiplexed Luminex-based immunoassay.

    PubMed

    Wu, Wei; Zhang, Shuo; Qu, Jing; Zhang, Quanfu; Li, Chuan; Li, Jiandong; Jin, Cong; Liang, Mifang; Li, Dexin

    2014-07-17

    Viral hemorrhagic fevers (VHFs) are worldwide diseases caused by several kinds of viruses. With the emergence of new viruses, advanced diagnostic methods are urgently needed for identification of VHFs. Based on Luminex xMAP technology, a rapid, sensitive, multi-pathogen and high-throughput method which could simultaneously detect hemorrhagic fever viruses (HFVs) specific IgG antibodies was developed. Recombinant antigens of nine HFVs including Hantaan virus (HTNV), Seoul virus (SEOV), Puumala virus (PUUV), Andes virus (ANDV), Sin Nombre virus (SNV), Crimean-Congo hemorrhagic fever virus (CCHFV), Rift Valley fever virus (RVFV), Severe fever with thrombocytopenia syndrome bunyavirus (SFTSV) and dengue virus (DENV) were produced and purified from a prokaryotic expression system and the influence of the coupling amount was investigated. Cross-reactions among antigens and their rabbit immune sera were evaluated. Serum samples collected from 51 laboratory confirmed hemorrhagic fever with renal syndrome (HFRS) patients, 43 confirmed SFTS patients and 88 healthy donors were analyzed. Results showed that recombinant nucleocapsid protein of the five viruses belonging to the genus Hantavirus, had serological cross-reactivity with their corresponding rabbit immune sera, but not apparent with immune sera of other four viruses. Evaluation of this new method with clinical serum samples showed 98.04% diagnostic sensitivity for HFRS, 90.70% for SFTS detection and the specificity was ranging from 66.67% to 100.00%. The multiplexed Luminex-based immunoassay has firstly been established in our study, which provides a potentially reliable diagnostic tool for IgG antibody detection of VHFs. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A novel real-time duplex PCR assay for detecting penA and ponA genotypes in Neisseria gonorrhoeae: Comparison with phenotypes determined by the E-test.

    PubMed

    Vernel-Pauillac, Frédérique; Merien, Fabrice

    2006-12-01

    For many years, the pathogenic bacterium Neisseria gonorrhoeae, the etiologic agent of gonorrhea, was generally susceptible to penicillin, until the emergence of resistant strains. Well-characterized genetic variations in the penicillin resistance-determining region correlate with decreased susceptibility to penicillin. At least 5 genes (penA, penB, mtrR, ponA, and penC) are involved in the chromosomally mediated resistance to this antibiotic. To date, no development of multiplex PCR assays targeting a range of gonococcal genes and variations as a means of predicting antibiotic resistance has been reported. The aim of this study was to develop a duplex assay using DNA from isolated strains. We describe the development and evaluation on the LightCycler platform of a real-time duplex PCR assay (hybridization probe format) for rapid and specific detection of ponA and penA variations, predicting penicillin susceptibilities. The real-time duplex PCR assay successfully detected variations in ponA and penA genes by use of distinct melting temperatures from a total of 120 Neisseria gonorrhoeae isolates. Moreover, the variation profiles obtained with the real-time PCR and the melting analysis showed good correlation with the pattern of penicillin susceptibility generated with classical antibiograms. Nucleotide sequencing data were in complete agreement with multiplex assay results. The presented assay is suitable for the detection of chromosomally mediated resistant strains of Neisseria gonorrhoeae in genotyping studies and could be valuable in the effective antimicrobial strategy to gonococci.

  16. Multiplex PCR detection of waterborne intestinal protozoa: microsporidia, Cyclospora, and Cryptosporidium.

    PubMed

    Lee, Seung-Hyun; Joung, Migyo; Yoon, Sejoung; Choi, Kyoungjin; Park, Woo-Yoon; Yu, Jae-Ran

    2010-12-01

    Recently, emerging waterborne protozoa, such as microsporidia, Cyclospora, and Cryptosporidium, have become a challenge to human health worldwide. Rapid, simple, and economical detection methods for these major waterborne protozoa in environmental and clinical samples are necessary to control infection and improve public health. In the present study, we developed a multiplex PCR test that is able to detect all these 3 major waterborne protozoa at the same time. Detection limits of the multiplex PCR method ranged from 10(1) to 10(2) oocysts or spores. The primers for microsporidia or Cryptosporidium used in this study can detect both Enterocytozoon bieneusi and Encephalitozoon intestinalis, or both Cryptosporidium hominis and Cryptosporidium parvum, respectively. Restriction enzyme digestion of PCR products with BsaBI or BsiEI makes it possible to distinguish the 2 species of microsporidia or Cryptosporidium, respectively. This simple, rapid, and cost-effective multiplex PCR method will be useful for detecting outbreaks or sporadic cases of waterborne protozoa infections.

  17. Single Assay for Simultaneous Detection and Differential Identification of Human and Avian Influenza Virus Types, Subtypes, and Emergent Variants

    PubMed Central

    Metzgar, David; Myers, Christopher A.; Russell, Kevin L.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Vo, Scott; Swayne, David E.; Thomas, Colleen; Stenger, David A.; Lin, Baochuan; Malanoski, Anthony P.; Wang, Zheng; Blaney, Kate M.; Long, Nina C.; Schnur, Joel M.; Saad, Magdi D.; Borsuk, Lisa A.; Lichanska, Agnieszka M.; Lorence, Matthew C.; Weslowski, Brian; Schafer, Klaus O.; Tibbetts, Clark

    2010-01-01

    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence, host-range, and resistance to antiviral agents. PMID:20140251

  18. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    PubMed

    Metzgar, David; Myers, Christopher A; Russell, Kevin L; Faix, Dennis; Blair, Patrick J; Brown, Jason; Vo, Scott; Swayne, David E; Thomas, Colleen; Stenger, David A; Lin, Baochuan; Malanoski, Anthony P; Wang, Zheng; Blaney, Kate M; Long, Nina C; Schnur, Joel M; Saad, Magdi D; Borsuk, Lisa A; Lichanska, Agnieszka M; Lorence, Matthew C; Weslowski, Brian; Schafer, Klaus O; Tibbetts, Clark

    2010-02-03

    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence, host-range, and resistance to antiviral agents.

  19. Multicenter Evaluation of the ePlex Respiratory Pathogen Panel for the Detection of Viral and Bacterial Respiratory Tract Pathogens in Nasopharyngeal Swabs

    PubMed Central

    England, Matthew R.; Jurcic Smith, Kristen L.; He, Taojun; Wijetunge, Dona Saumya; Chamberland, Robin R.; Menegus, Marilyn; Swierkosz, Ella M.; Jerris, Robert C.; Greene, Wallace

    2017-01-01

    ABSTRACT The performance of the new ePlex Respiratory Pathogen (RP) panel (GenMark Diagnostics) for the simultaneous detection of 19 viruses (influenza A virus; influenza A H1 virus; influenza A 2009 H1 virus; influenza A H3 virus; influenza B virus; adenovirus; coronaviruses [HKU1, OC43, NL63, and 229E]; human rhinovirus/enterovirus; human metapneumovirus; parainfluenza viruses 1, 2, 3, and 4; and respiratory syncytial virus [RSV] [RSV subtype A and RSV subtype B]) and 2 bacteria (Mycoplasma pneumoniae and Chlamydia pneumoniae) was evaluated. Prospectively and retrospectively collected nasopharyngeal swab (NPS) specimens (n = 2,908) were evaluated by using the ePlex RP panel, with the bioMérieux/BioFire FilmArray Respiratory Panel (BioFire RP) as the comparator method. Discordance analysis was performed by using target-specific PCRs and bidirectional sequencing. The reproducibility of the assay was evaluated by using reproducibility panels comprised of 6 pathogens. The overall agreement between the ePlex RP and BioFire RP results was >95% for all targets. Positive percent agreement with the BioFire RP result for viruses ranged from 85.1% (95% confidence interval [CI], 80.2% to 88.9%) to 95.1% (95% CI, 89.0% to 97.9%), while negative percent agreement values ranged from 99.5% (95% CI, 99.1% to 99.7%) to 99.8% (95% CI, 99.5% to 99.9%). Additional testing of discordant targets (12%; 349/2,908) confirmed the results of ePlex RP for 38% (131/349) of samples tested. Reproducibility was 100% for all targets tested, with the exception of adenovirus, for which reproducibilities were 91.6% at low virus concentrations and 100% at moderate virus concentrations. The ePlex RP panel offers a new, rapid, and sensitive “sample-to-answer” multiplex panel for the detection of the most common viral and bacterial respiratory pathogens. PMID:29212701

  20. Prevalence and clinical significance of respiratory viruses and bacteria detected in tuberculosis patients compared to household contact controls in Tanzania: a cohort study.

    PubMed

    Mhimbira, F; Hiza, H; Mbuba, E; Hella, J; Kamwela, L; Sasamalo, M; Ticlla, M; Said, K; Mhalu, G; Chiryamkubi, M; Schindler, C; Reither, K; Gagneux, S; Fenner, L

    2018-03-23

    To describe the prevalence of respiratory pathogens in tuberculosis (TB) patients and in their household contact controls, and to determine the clinical significance of respiratory pathogens in TB patients. We studied 489 smear-positive adult TB patients and 305 household contact controls without TB with nasopharyngeal swab samples within an ongoing prospective cohort study in Dar es Salaam, Tanzania, between 2013 and 2015. We used multiplex real-time PCR to detect 16 respiratory viruses and seven bacterial pathogens from nasopharyngeal swabs. The median age of the study participants was 33 years; 61% (484/794) were men, and 21% (168/794) were HIV-positive. TB patients had a higher prevalence of HIV (28.6%; 140/489) than controls (9.2%; 28/305). Overall prevalence of respiratory viral pathogens was 20.4% (160/794; 95%CI 17.7-23.3%) and of bacterial pathogens 38.2% (303/794; 95%CI 34.9-41.6%). TB patients and controls did not differ in the prevalence of respiratory viruses (Odds Ratio [OR] 1.00, 95%CI 0.71-1.44), but respiratory bacteria were less frequently detected in TB patients (OR 0.70, 95%CI 0.53-0.94). TB patients with both respiratory viruses and respiratory bacteria were likely to have more severe disease (adjusted OR [aOR] 1.6, 95%CI 1.1-2.4; p 0.011). TB patients with respiratory viruses tended to have more frequent lung cavitations (aOR 1.6, 95%CI 0.93-2.7; p 0.089). Respiratory viruses are common for both TB patients and household controls. TB patients may present with more severe TB disease, particularly when they are co-infected with both bacteria and viruses. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. Epidemiology of Epstein-Barr virus, cytomegalovirus, and Kaposi's sarcoma-associated herpesvirus infections in peripheral blood leukocytes revealed by a multiplex PCR assay.

    PubMed

    Nishiwaki, Morie; Fujimuro, Masahiro; Teishikata, Yasuhiro; Inoue, Hisanori; Sasajima, Hitoshi; Nakaso, Kazuhiro; Nakashima, Kenji; Sadanari, Hidetaka; Yamamoto, Tomohiro; Fujiwara, Yoshie; Ogawa, Naoki; Yokosawa, Hideyoshi

    2006-12-01

    A multiplex polymerase chain reaction (PCR) has been developed for the simultaneous detection of Epstein-Barr virus (EBV), cytomegalovirus (CMV), and Kaposi's sarcoma-associated herpesvirus (KSHV) in a clinical sample. Primers of multiplex PCR were designed to amplify specific regions of the EBV EBNA1, CMV IE2, and KSHV LANA genes. This multiplex PCR assay was found to have detection sensitivities of 1-10 copies of purified viral DNA cloned into the plasmid. To assess diagnostic and pre-clinical applications with this method, we utilized KSHV-positive primary effusion lymphoma (PEL) cells, EBV-positive Burkitt's lymphoma cells, CMV-infected fibroblast cells, and clinically prepared peripheral blood leukocytes (PBLs) that had been infected with viruses. We found that this multiplex PCR assay has high sensitivity and specificity for simultaneous detection of EBV, CMV, and KSHV genomes in a single amplification from a clinical material. Using this multiplex PCR assay, we investigated the prevalence of EBV, CMV, and KSHV in PBL samples from normal Japanese randomly selected. KSHV, EBV, and CMV genomes were detected in samples from 2 (0.2%), 377 (39.5%), and 27 (2.8%) of the 953 blood donors, respectively. Interestingly, both EBV and CMV genomes were detected in samples from all KSHV-positive donors. (c) 2006 Wiley-Liss, Inc.

  2. One-step multiplex RT-qPCR detects three citrus viroids from different genera in a wide range of hosts.

    PubMed

    Osman, Fatima; Dang, Tyler; Bodaghi, Sohrab; Vidalakis, Georgios

    2017-07-01

    A one-step multiplex reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) based on species-specific minor groove binding (MGB) probes, was developed for the simultaneous detection, identification, and quantification of three citrus viroids belonging to different genera. Citrus exocortis viroid (Pospiviroid), Hop stunt viroid (Hostuviroid), and Citrus bark cracking viroid (Cocadviroid) cause a variety of maladies in agriculturally significant crops. Therefore, reliable assays for their detection are essential tools for various government and industry organizations implementing disease management programs. Singleplex qPCR primers and MGB probes were designed individually for the detection of the three targeted viroids, and subsequently combined in a one-step multiplex RT-qPCR reaction. A wide host range of woody plants, including citrus, grapevines, apricots, plums and herbaceous plants such as tomato, cucumber, eggplant and chrysanthemum different world regions were used to validate the assay. Single, double and triple viroid infections were identified in the tested samples. The developed multiplex RT-qPCR assay was compared with a previously reported SYBR Green I RT-qPCR for the universal detection of citrus viroids. Both assays accurately identified all citrus viroid infected samples. The multiplex assay complemented the SYBR Green I universal detection assay by differentiating among citrus viroid species in the positive samples. The developed multiplex RT-qPCR assay has the potential to simultaneously detect each targeted viroid and could be used in high throughput screenings for citrus viroids in field surveys, germplasm banks, nurseries and other viroid disease management programs. Copyright © 2017. Published by Elsevier B.V.

  3. A Multiplex Snapback Primer System for the Enrichment and Detection of JAK2 V617F and MPL W515L/K Mutations in Philadelphia-Negative Myeloproliferative Neoplasms

    PubMed Central

    Zhang, Yunqing; Zhang, Xinju; Xu, Xiao; Kang, Zhihua; Li, Shibao; Zhang, Chen; Su, Bing

    2014-01-01

    A multiplex snapback primer system was developed for the simultaneous detection of JAK2 V617F and MPL W515L/K mutations in Philadelphia chromosome- (Ph-) negative myeloproliferative neoplasms (MPNs). The multiplex system comprises two snapback versus limiting primer sets for JAK2 and MPL mutation enrichment and detection, respectively. Linear-After exponential (LATE) PCR strategy was employed for the primer design to maximize the amplification efficiency of the system. Low ionic strength buffer and rapid PCR protocol allowed for selective amplification of the mutant alleles. Amplification products were analyzed by melting curve analysis for mutation identification. The multiplex system archived 0.1% mutation load sensitivity and <5% coefficient of variation inter-/intra-assay reproducibility. 120 clinical samples were tested by the multiplex snapback primer assay, and verified with amplification refractory system (ARMS), quantitative PCR (qPCR) and Sanger sequencing method. The multiplex system, with a favored versatility, provided the molecular diagnosis of Ph-negative MPNs with a suitable implement and simplified the genetic test process. PMID:24729973

  4. Multiplex Nucleic Acid Sequence-Based Amplification for Simultaneous Detection of Several Enteric Viruses in Model Ready-To-Eat Foods†

    PubMed Central

    Jean, Julie; D'Souza, Doris H.; Jaykus, Lee-Ann

    2004-01-01

    Human enteric viruses are currently recognized as one of the most important causes of food-borne disease. Implication of enteric viruses in food-borne outbreaks can be difficult to confirm due to the inadequacy of the detection methods available. In this study, a nucleic acid sequence-based amplification (NASBA) method was developed in a multiplex format for the specific, simultaneous, and rapid detection of epidemiologically relevant human enteric viruses. Three previously reported primer sets were used in a single reaction for the amplification of RNA target fragments of 474, 371, and 165 nucleotides for the detection of hepatitis A virus and genogroup I and genogroup II noroviruses, respectively. Amplicons were detected by agarose gel electrophoresis and confirmed by electrochemiluminescence and Northern hybridization. Endpoint detection sensitivity for the multiplex NASBA assay was approximately 10−1 reverse transcription-PCR-detectable units (or PFU, as appropriate) per reaction. When representative ready-to-eat foods (deli sliced turkey and lettuce) were inoculated with various concentrations of each virus and processed for virus detection with the multiplex NASBA method, all three human enteric viruses were simultaneously detected at initial inoculum levels of 100 to 102 reverse transcription-PCR-detectable units (or PFU)/9 cm2 in both food commodities. The multiplex NASBA system provides rapid and simultaneous detection of clinically relevant food-borne viruses in a single reaction tube and may be a promising alternative to reverse transcription-PCR for the detection of viral contamination of foods. PMID:15528524

  5. Rapid Detection of Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Perlin

    2005-08-14

    Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleicmore » acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development and the Perlin lab in sample preparation and testing in animal models.« less

  6. High number of diarrhoeal co-infections in travellers to Benin, West Africa.

    PubMed

    Lääveri, Tinja; Pakkanen, Sari H; Antikainen, Jenni; Riutta, Jukka; Mero, Sointu; Kirveskari, Juha; Kantele, Anu

    2014-02-12

    Travellers' diarrhoea (TD) is the most frequent health problem among travellers to the tropics. Using routine techniques, the aetiology mostly remains unresolved, whereas modern molecular methods enable reducing the number of equivocal cases considerably. While many studies address the aetiology of TD in Asian, Central American and North African tourist resorts, only few focus on Western Africa. Stool samples from 45 travellers travelling in Benin, West Africa, were analyzed by a new multiplex qPCR assay for Salmonella, Yersinia, Campylobacter, Vibrio cholerae, Shigella or enteroinvasive (EIEC), enterohaemorrhagic (EHEC), enterotoxigenic (ETEC), enteroaggregative (EAEC), and enteropathogenic Escherichia coli (EPEC). All 18 pre-travel samples proved negative for bacterial pathogens. Of the 39/45 (87%) travellers having had TD, EPEC was detected in post-travel samples in 30 (77%) cases, EAEC in 23 (59%), ETEC in 22 (56%), Shigella or EIEC in 7 (18%), EHEC in two (5%), and Salmonella in one (3%). In 31(79%) of the TD cases two or more bacterial pathogens were identified. Two (8%) samples remained negative: both patients had taken antimicrobials for TD. EPEC, EAEC and ETEC were the most common findings. 79% of the cases had a co-infection. As modern diagnostics reveals in most patients a multitude of pathogens, the role of each pathogen should be re-evaluated.

  7. High number of diarrhoeal co-infections in travellers to Benin, West Africa

    PubMed Central

    2014-01-01

    Background Travellers’ diarrhoea (TD) is the most frequent health problem among travellers to the tropics. Using routine techniques, the aetiology mostly remains unresolved, whereas modern molecular methods enable reducing the number of equivocal cases considerably. While many studies address the aetiology of TD in Asian, Central American and North African tourist resorts, only few focus on Western Africa. Methods Stool samples from 45 travellers travelling in Benin, West Africa, were analyzed by a new multiplex qPCR assay for Salmonella, Yersinia, Campylobacter, Vibrio cholerae, Shigella or enteroinvasive (EIEC), enterohaemorrhagic (EHEC), enterotoxigenic (ETEC), enteroaggregative (EAEC), and enteropathogenic Escherichia coli (EPEC). Results All 18 pre-travel samples proved negative for bacterial pathogens. Of the 39/45 (87%) travellers having had TD, EPEC was detected in post-travel samples in 30 (77%) cases, EAEC in 23 (59%), ETEC in 22 (56%), Shigella or EIEC in 7 (18%), EHEC in two (5%), and Salmonella in one (3%). In 31(79%) of the TD cases two or more bacterial pathogens were identified. Two (8%) samples remained negative: both patients had taken antimicrobials for TD. Conclusions EPEC, EAEC and ETEC were the most common findings. 79% of the cases had a co-infection. As modern diagnostics reveals in most patients a multitude of pathogens, the role of each pathogen should be re-evaluated. PMID:24521079

  8. Polarization-multiplexing ghost imaging

    NASA Astrophysics Data System (ADS)

    Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu

    2018-03-01

    A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.

  9. Microgels for multiplex and direct fluorescence detection

    NASA Astrophysics Data System (ADS)

    Causa, Filippo; Aliberti, Anna; Cusano, Angela M.; Battista, Edmondo; Netti, Paolo A.

    2015-05-01

    Blood borne oligonucleotides fragments contain useful clinical information whose detection and monitoring represent the new frontier in liquid biopsy as they can transform the current diagnosis procedure. For instance, recent studies have identified a new class of circulating biomarkers such as s miRNAs, and demonstrated that changes in their concentration are closely associated with the development of cancer and other pathologies. However, direct detection of miRNAs in body fluids is particularly challenging and demands high sensitivity -concentration range between atto to femtomolarspecificity, and multiplexing Here we report on engineered multifunctional microgels and innovative probe design for a direct and multiplex detection of relevant clinical miRNAs in fluorescence by single particle assay. Polyethyleneglycol-based microgels have a coreshell architecture with two spectrally encoded fluorescent dyes for multiplex analyses and are endowed with fluorescent probes for miRNA detection. Encoding and detection fluorescence signals are distinguishable by not overlapping emission spectra. Tuneable fluorescence probe conjugation and corresponding emission confinement on single microgel allows for enhanced target detection. Such suspension array has indeed high selectivity and sensitivity with a detection limit of 10-15 M and a dynamic range from 10-9 to 10-15 M. We believe that sensitivity in the fM concentration range, signal background minimization, multiplexed capability and direct measurement of such microgels will translate into diagnostic benefits opening up new roots toward liquid biopsy in the context of point-of-care testing through an easy and fast detection of sensitive diagnostic biomarkers directly in serum.

  10. Effective characterization of Salmonella Enteritidis by most probable number (MPN) followed by multiplex polymerase chain reaction (PCR) methods.

    PubMed

    Zappelini, Lincohn; Martone-Rocha, Solange; Dropa, Milena; Matté, Maria Helena; Tiba, Monique Ribeiro; Breternitz, Bruna Suellen; Razzolini, Maria Tereza Pepe

    2017-02-01

    Nontyphoidal Salmonella (NTS) is a relevant pathogen involved in gastroenteritis outbreaks worldwide. In this study, we determined the capacity to combine the most probable number (MPN) and multiplex polymerase chain reaction (PCR) methods to characterize the most important Salmonella serotypes in raw sewage. A total of 499 isolates were recovered from 27 raw sewage samples and screened using two previously described multiplex PCR methods. From those, 123 isolates were selected based on PCR banding pattern-identical or similar to Salmonella Enteritidis and Salmonella Typhimurium-and submitted to conventional serotyping. Results showed that both PCR assays correctly serotyped Salmonella Enteritidis, however, they presented ambiguous results for Salmonella Typhimurium identification. These data highlight that MPN and multiplex PCR can be useful methods to describe microbial quality in raw sewage and suggest two new PCR patterns for Salmonella Enteritidis identification.

  11. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    NASA Astrophysics Data System (ADS)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  12. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  13. Multiplex PCR for Rapid Detection of Genes Encoding Class A Carbapenemases

    PubMed Central

    Hong, Sang Sook; Kim, Kyeongmi; Huh, Ji Young; Jung, Bochan; Kang, Myung Seo

    2012-01-01

    In recent years, there have been increasing reports of KPC-producing Klebsiella pneumoniae in Korea. The modified Hodge test can be used as a phenotypic screening test for class A carbapenamase (CAC)-producing clinical isolates; however, it does not distinguish between carbapenemase types. The confirmation of type of CAC is important to ensure optimal therapy and to prevent transmission. This study applied a novel multiplex PCR assay to detect and differentiate CAC genes in a single reaction. Four primer pairs were designed to amplify fragments encoding 4 CAC families (SME, IMI/NMC-A, KPC, and GES). The multiplex PCR detected all genes tested for 4 CAC families that could be differentiated by fragment size according to gene type. This multiplex PCR offers a simple and useful approach for detecting and distinguishing CAC genes in carbapenem-resistant strains that are metallo-β-lactamase nonproducers. PMID:22950072

  14. Multiplex PCR for rapid detection of genes encoding class A carbapenemases.

    PubMed

    Hong, Sang Sook; Kim, Kyeongmi; Huh, Ji Young; Jung, Bochan; Kang, Myung Seo; Hong, Seong Geun

    2012-09-01

    In recent years, there have been increasing reports of KPC-producing Klebsiella pneumoniae in Korea. The modified Hodge test can be used as a phenotypic screening test for class A carbapenamase (CAC)-producing clinical isolates; however, it does not distinguish between carbapenemase types. The confirmation of type of CAC is important to ensure optimal therapy and to prevent transmission. This study applied a novel multiplex PCR assay to detect and differentiate CAC genes in a single reaction. Four primer pairs were designed to amplify fragments encoding 4 CAC families (SME, IMI/NMC-A, KPC, and GES). The multiplex PCR detected all genes tested for 4 CAC families that could be differentiated by fragment size according to gene type. This multiplex PCR offers a simple and useful approach for detecting and distinguishing CAC genes in carbapenem-resistant strains that are metallo-β-lactamase nonproducers.

  15. Development of a versatile tool for the simultaneous differential detection of Pseudomonas savastanoi pathovars by End Point and Real-Time PCR

    PubMed Central

    2010-01-01

    Background Pseudomonas savastanoi pv. savastanoi is the causal agent of olive knot disease. The strains isolated from oleander and ash belong to the pathovars nerii and fraxini, respectively. When artificially inoculated, pv. savastanoi causes disease also on ash, and pv. nerii attacks also olive and ash. Surprisingly nothing is known yet about their distribution in nature on these hosts and if spontaneous cross-infections occur. On the other hand sanitary certification programs for olive plants, also including P. savastanoi, were launched in many countries. The aim of this work was to develop several PCR-based tools for the rapid, simultaneous, differential and quantitative detection of these P. savastanoi pathovars, in multiplex and in planta. Results Specific PCR primers and probes for the pathovars savastanoi, nerii and fraxini of P. savastanoi were designed to be used in End Point and Real-Time PCR, both with SYBR® Green or TaqMan® chemistries. The specificity of all these assays was 100%, as assessed by testing forty-four P. savastanoi strains, belonging to the three pathovars and having different geographical origins. For comparison strains from the pathovars phaseolicola and glycinea of P. savastanoi and bacterial epiphytes from P. savastanoi host plants were also assayed, and all of them tested always negative. The analytical detection limits were about 5 - 0.5 pg of pure genomic DNA and about 102 genome equivalents per reaction. Similar analytical thresholds were achieved in Multiplex Real-Time PCR experiments, even on artificially inoculated olive plants. Conclusions Here for the first time a complex of PCR-based assays were developed for the simultaneous discrimination and detection of P. savastanoi pv. savastanoi, pv. nerii and pv. fraxini. These tests were shown to be highly reliable, pathovar-specific, sensitive, rapid and able to quantify these pathogens, both in multiplex reactions and in vivo. Compared with the other methods already available for P. savastanoi, the identification procedures here reported provide a versatile tool both for epidemiological and ecological studies on these pathovars, and for diagnostic procedures monitoring the asymptomatic presence of P. savastanoi on olive and oleander propagation materials. PMID:20509893

  16. Rapid screening of pyogenic Staphylococcus aureus for confirmation of genus and species, methicillin resistance and virulence factors by using two novel multiplex PCR.

    PubMed

    Haque, Abdul; Haque, Asma; Saeed, Muhammad; Azhar, Aysha; Rasool, Samreen; Shan, Sidra; Ehsan, Beenish; Nisar, Zohaib

    2017-01-01

    Emergence of methicillin resistant Staphylococcus aureus (MRSA) is a major medical problem of current era. These bacteria are resistant to most drugs and rapid diagnosis can provide a clear guideline to clinicians. They possess specific virulence factors and relevant information can be very useful. We designed this study to develop multiplex PCRs to provide rapid information. We studied 60 Staphylococcus aureus isolates and detected methicillin resistance by cefoxitin sensitivity and targeting of mecA gene. After initial studies with uniplex PCRs we optimized two multiplex PCRs with highly reproducible results. The first multiplex PCR was developed to confirm genus, species and methicillin resistance simultaneously, and the second multiplex PCR was for screening of virulence factors. We found 38.33% isolates as methicillin resistant. α -toxin, the major cytotoxic factor, was detected in 40% whereas β-hemolysin was found in 25% cases. Panton Valentine leucocidin was detected in 8.33% and toxic shock syndrome toxin in5% cases. The results of uniplex and multiplex PCRs were highly compatible. These two multiplex PCRs when run simultaneously can provide vital information about methicillin resistance and virulence status of the isolate within a few hours as compared to several days needed by routine procedures.

  17. New COL6A6 variant detected by whole-exome sequencing is linked to break points in intron 4 and 3′-UTR, deleting exon 5 of RHO, and causing adRP

    PubMed Central

    de Sousa Dias, Miguel; Hernan, Imma; Delás, Barbara; Pascual, Beatriz; Borràs, Emma; Gamundi, Maria José; Mañé, Begoña; Fernández-San José, Patricia; Ayuso, Carmen

    2015-01-01

    Purpose This study aimed to test a newly devised cost-effective multiplex PCR assay for the molecular diagnosis of autosomal dominant retinitis pigmentosa (adRP), as well as the use of whole-exome sequencing (WES) to detect disease-causing mutations in adRP. Methods Genomic DNA was extracted from peripheral blood lymphocytes of index patients with adRP and their affected and unaffected family members. We used a newly devised multiplex PCR assay capable of amplifying the genetic loci of RHO, PRPH2, RP1, PRPF3, PRPF8, PRPF31, IMPDH1, NRL, CRX, KLHL7, and NR2E3 to molecularly diagnose 18 index patients with adRP. We also performed WES in affected and unaffected members of four families with adRP in whom a disease-causing mutation was previously not found. Results We identified five previously reported mutations (p.Arg677X in the RP1 gene, p.Asp133Val and p.Arg195Leu in the PRPH2 gene, and p.Pro171Leu and p.Pro215Leu in the RHO gene) and one novel mutation (p.Val345Gly in the RHO gene) representing 33% detection of causative mutations in our adRP cohort. Comparative WES analysis showed a new variant (p.Gly103Arg in the COL6A6 gene) that segregated with the disease in one family with adRP. As this variant was linked with the RHO locus, we sequenced the complete RHO gene, which revealed a deletion in intron 4 that encompassed all of exon 5 and 28 bp of the 3′-untranslated region (UTR). Conclusions The novel multiplex PCR assay with next-generation sequencing (NGS) proved effective for detecting most of the adRP-causing mutations. A WES approach led to identification of a deletion in RHO through detection of a new linked variant in COL6A6. No pathogenic variants were identified in the remaining three families. Moreover, NGS and WES were inefficient for detecting the complete deletion of exon 5 in the RHO gene in one family with adRP. Carriers of this deletion showed variable clinical status, and two of these carriers had not previously been diagnosed with RP. PMID:26321861

  18. Diarrheagenic pathogens in adults attending a hospital in Singapore.

    PubMed

    Chau, Man Ling; Hartantyo, Sri Harminda Pahm; Yap, Min; Kang, Joanne Su Lin; Aung, Kyaw Thu; Gutiérrez, Ramona Alikiiteaga; Ng, Lee Ching; Tam, Clarence C; Barkham, Timothy

    2016-01-28

    Singapore's diarrhoeal notification system is based on specific pathogens. Official data may thus be skewed towards notifiable diseases. Limited information is available on the profiles of aetiological agents responsible for acute gastroenteritis (AGE) cases, especially among the adult population. To understand the frequency and distribution of potential causative agents of diarrheal disease in Singapore, we screened adults' stool samples collected from a large public hospital. The stool samples were screened for 18 diarrheagenic pathogens using a combination of commercial multiplex polymerase chain reaction (PCR), in-house singleplex PCR and immunochromatographic assays. One hundred adult faecal samples that were collected from October 2013 to January 2014 for routine diagnostic purposes and submitted for culture at Tan Tock Seng Hospital, Singapore were used. Pathogens were detected in 32% of the samples. The predominant organisms encountered were norovirus genogroup II (11%), Aeromonas spp. (9%) and Campylobacter spp. (5%). One sample was positive for both verocytotoxigenic E. coli (VTEC) and E. coli O157:H7. Two other samples were positive for VTEC only, and one other sample was positive for E. coli O157:H7 only. Astrovirus, C. perfringens, Shigella spp. and toxigenic C. difficile were each detected in 2% of the samples. Cryptosporidium parvum, Giardia lamblia, group A rotavirus, Salmonella spp. and Vibrio spp. were each detected in 1% of the samples. No L. monocytogenes, Y. enterocolitica, enteric adenovirus, or norovirus genogroup I were detected. Our preliminary findings suggest that pathogens causing non-notifiable diseases might have contributed considerably to the adult hospitalised AGE cases. However, as the samples were from an adult hospital, the data obtained may not be representative of the whole community. Thus, a larger study to collect clinical samples and risk exposure data from primary healthcare clinics and children hospital is planned for, to gain a more holistic perspective on the epidemiology of AGE in Singapore. A larger study may also offer valuable insights for improving the approach of microbiological surveillance of food, as well as strategizing inspection efforts along the food supply chain by public health authorities.

  19. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot of soybean (Glycine max Merr.) is caused by the oomycete Phytophthora sojae (Kaufm. and Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospo...

  20. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients.

    PubMed

    Taly, Valerie; Pekin, Deniz; Benhaim, Leonor; Kotsopoulos, Steve K; Le Corre, Delphine; Li, Xinyu; Atochin, Ivan; Link, Darren R; Griffiths, Andrew D; Pallier, Karine; Blons, Hélène; Bouché, Olivier; Landi, Bruno; Hutchison, J Brian; Laurent-Puig, Pierre

    2013-12-01

    Multiplex digital PCR (dPCR) enables noninvasive and sensitive detection of circulating tumor DNA with performance unachievable by current molecular-detection approaches. Furthermore, picodroplet dPCR facilitates simultaneous screening for multiple mutations from the same sample. We investigated the utility of multiplex dPCR to screen for the 7 most common mutations in codons 12 and 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) oncogene from plasma samples of patients with metastatic colorectal cancer. Fifty plasma samples were tested from patients for whom the primary tumor biopsy tissue DNA had been characterized by quantitative PCR. Tumor characterization revealed that 19 patient tumors had KRAS mutations. Multiplex dPCR analysis of the plasma DNA prepared from these samples identified 14 samples that matched the mutation identified in the tumor, 1 sample contained a different KRAS mutation, and 4 samples had no detectable mutation. Among the tumor samples that were wild type for KRAS, 2 KRAS mutations were identified in the corresponding plasma samples. Duplex dPCR (i.e., wild-type and single-mutation assay) was also used to analyze plasma samples from patients with KRAS-mutated tumors and 5 samples expected to contain the BRAF (v-raf murine sarcoma viral oncogene homolog B) V600E mutation. The results for the duplex analysis matched those for the multiplex analysis for KRAS-mutated samples and, owing to its higher sensitivity, enabled detection of 2 additional samples with low levels of KRAS-mutated DNA. All 5 samples with BRAF mutations were detected. This work demonstrates the clinical utility of multiplex dPCR to screen for multiple mutations simultaneously with a sensitivity sufficient to detect mutations in circulating DNA obtained by noninvasive blood collection.

  1. Aqueous two-phase systems enable multiplexing of homogeneous immunoassays

    PubMed Central

    Simon, Arlyne B.; Frampton, John P.; Huang, Nien-Tsu; Kurabayashi, Katsuo; Paczesny, Sophie; Takayama, Shuichi

    2014-01-01

    Quantitative measurement of protein biomarkers is critical for biomarker validation and early disease detection. Current multiplex immunoassays are time consuming costly and can suffer from low accuracy. For example, multiplex ELISAs require multiple, tedious, washing and blocking steps. Moreover, they suffer from nonspecific antibody cross-reactions, leading to high background and false-positive signals. Here, we show that co-localizing antibody-bead pairs in an aqueous two-phase system (ATPS) enables multiplexing of sensitive, no-wash, homogeneous assays, while preventing nonspecific antibody cross-reactions. Our cross-reaction-free, multiplex assay can simultaneously detect picomolar concentrations of four protein biomarkers ((C-X-C motif) ligand 10 (CXCL10), CXCL9, interleukin (IL)-8 and IL-6) in cell supernatants using a single assay well. The potential clinical utility of the assay is demonstrated by detecting diagnostic biomarkers (CXCL10 and CXCL9) in plasma from 88 patients at the onset of the clinical symptoms of chronic graft-versus-host disease (GVHD). PMID:25083509

  2. Integrated analyses of proteins and their glycans in a magnetic bead-based multiplex assay format.

    PubMed

    Li, Danni; Chiu, Hanching; Chen, Jing; Zhang, Hui; Chan, Daniel W

    2013-01-01

    Well-annotated clinical samples are valuable resources for biomarker discovery and validation. Multiplex and integrated methods that simultaneously measure multiple analytes and generate integrated information about these analytes from a single measurement are desirable because these methods help conserve precious samples. We developed a magnetic bead-based system for multiplex and integrated glycoprotein quantification by immunoassays and glycan detection by lectin immunosorbent assays (LISAs). Magnetic beads coupled with antibodies were used for capturing proteins of interest. Biotinylated antibodies in combination with streptavidin-labeled phycoerythrin were used for protein quantification. In the LISAs, biotinylated detection antibodies were replaced by biotinylated lectins for glycan detection. Using tissue inhibitor of metallopeptidase 1 (TIMP-1), tissue plasminogen activator, membrane metallo-endopeptidase, and dipeptidyl peptidase-IV (DPP-4) as models, we found that the multiplex integrated system was comparable to single immunoassays in protein quantification and LISAs in glycan detection. The merits of this system were demonstrated when applied to well-annotated prostate cancer tissues for validation of biomarkers in aggressive prostate cancer. Because of the system's multiplex ability, we used only 300 ng of tissue protein for the integrated detection of glycans in these proteins. Fucosylated TIMP-1 and DPP-4 offered improved performance over the proteins in distinguishing aggressive and nonaggressive prostate cancer. The multiplex and integrated system conserves samples and is a useful tool for validation of glycoproteins and their glycoforms as biomarkers. © 2012 American Association for Clinical Chemistry

  3. Multiplexed instrument-free meningitis diagnosis on a polymer/paper hybrid microfluidic biochip.

    PubMed

    Dou, Maowei; Sanjay, Sharma T; Dominguez, Delfina C; Liu, Peng; Xu, Feng; Li, XiuJun

    2017-01-15

    Neisseria meningitidis (N. meningitidis), Streptococcus pneumoniae (S. pneumoniae), and Haemophilus influenzae type b (Hib) are three most common pathogens accounting for most bacterial meningitis, a serious global infectious disease with high fatality, especially in developing nations. Because the treatment and antibiotics differ among each type, the identification of the exact bacteria causing the disease is vital. Herein, we report a polymer/paper hybrid microfluidic biochip integrated with loop-mediated isothermal amplification (LAMP) for multiplexed instrument-free diagnosis of these three major types of bacterial meningitis, with high sensitivity and specificity. Results can be visually observed by the naked eye or imaged by a smartphone camera under a portable UV light source. Without using any specialized laboratory instrument, the limits of detection of a few DNA copies per LAMP zone for N. meningitidis, S. pneumoniae and Hib were achieved within 1h. In addition, these three types of microorganisms spiked in artificial cerebrospinal fluid (ACSF) were directly detected simultaneously, avoiding cumbersome sample preparation procedures in conventional methods. Compared with the paper-free non-hybrid microfluidic biochip over a period of three months, the hybrid microfluidic biochip was found to have a much longer shelf life. Hence, this rapid, instrument-free and highly sensitive microfluidic approach has great potential for point-of-care (POC) diagnosis of multiple infectious diseases simultaneously, especially in resource-limited settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Xylella fastidiosa: Host Range and Advance in Molecular Identification Techniques

    PubMed Central

    Baldi, Paolo; La Porta, Nicola

    2017-01-01

    In the never ending struggle against plant pathogenic bacteria, a major goal is the early identification and classification of infecting microorganisms. Xylella fastidiosa, a Gram-negative bacterium belonging to the family Xanthmonadaceae, is no exception as this pathogen showed a broad range of vectors and host plants, many of which may carry the pathogen for a long time without showing any symptom. Till the last years, most of the diseases caused by X. fastidiosa have been reported from North and South America, but recently a widespread infection of olive quick decline syndrome caused by this fastidious pathogen appeared in Apulia (south-eastern Italy), and several cases of X. fastidiosa infection have been reported in other European Countries. At least five different subspecies of X. fastidiosa have been reported and classified: fastidiosa, multiplex, pauca, sandyi, and tashke. A sixth subspecies (morus) has been recently proposed. Therefore, it is vital to develop fast and reliable methods that allow the pathogen detection during the very early stages of infection, in order to prevent further spreading of this dangerous bacterium. To this purpose, the classical immunological methods such as ELISA and immunofluorescence are not always sensitive enough. However, PCR-based methods exploiting specific primers for the amplification of target regions of genomic DNA have been developed and are becoming a powerful tool for the detection and identification of many species of bacteria. The aim of this review is to illustrate the application of the most commonly used PCR approaches to X. fastidiosa study, ranging from classical PCR, to several PCR-based detection methods: random amplified polymorphic DNA (RAPD), quantitative real-time PCR (qRT-PCR), nested-PCR (N-PCR), immunocapture PCR (IC-PCR), short sequence repeats (SSRs, also called VNTR), single nucleotide polymorphisms (SNPs) and multilocus sequence typing (MLST). Amplification and sequence analysis of specific targets is also mentioned. The fast progresses achieved during the last years in the DNA-based classification of this pathogen are described and discussed and specific primers designed for the different methods are listed, in order to provide a concise and useful tool to all the researchers working in the field. PMID:28642764

  5. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells.

    PubMed

    Agasti, Sarit S; Liong, Monty; Peterson, Vanessa M; Lee, Hakho; Weissleder, Ralph

    2012-11-14

    DNA barcoding is an attractive technology, as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative, and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification, and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells.

  6. In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer (CRET) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging

    DTIC Science & Technology

    2014-10-01

    Transfer ( CRET ) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging PRINCIPAL INVESTIGATOR: Susan L. Deutscher...SUBTITLE 5a. CONTRACT NUMBER In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer ( CRET ) Multiplexed Optical Imaging for Human...internal illumination via 18F-fluorocholine Cerenkov radiation energy transfer ( CRET ) coupled with TF- and ErbB2/3- molecularly targeted near-infrared

  7. Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR

    PubMed Central

    2012-01-01

    Background Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. Methods A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. Results The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. Conclusions The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa. PMID:22682065

  8. Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR.

    PubMed

    Kuamsab, Napaporn; Putaporntip, Chaturong; Pattanawong, Urassaya; Jongwutiwes, Somchai

    2012-06-10

    Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa.

  9. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  10. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags.

    PubMed

    Wee, Eugene J H; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.

  11. Challenges in designing a Taqman-based multiplex assay for the simultaneous detection of Herpes simplex virus types 1 and 2 and Varicella-zoster virus.

    PubMed

    Weidmann, Manfred; Armbruster, Katrin; Hufert, Frank T

    2008-08-01

    To optimise molecular detection of herpesviruses an internally controlled multiplex Taqman-PCR for the detection of Herpes simplex virus 1 (HSV1), Herpes simplex virus 2 (HSV2) and Varicella-zoster virus (VZV) was developed. The selection of the dye combination working on the ABI 7700 cycler for this multiplex PCR revealed crosstalk phenomena between several combinations of reference dyes and reporter dyes. A final dye combination with CY5 as reference dye and FAM/JOE/TXR as reporter dyes was selected. The influence of the concentration of the internal positive control (IPC) concentration on the quantitative results of HSV1, HSV2 and VZV positive patient samples was analysed. The results indicate that high IPC concentrations are detrimental for the sensitivity of the multiplex assay and that the presence of the IPC molecule narrows the dynamic range of the duplex PCRs between any of the virus PCRs and the IPC-PCR. The optimised multiplex assay detecting HSV1, HSV2 and VZV using 10(3) IPC molecules showed a performance and sensitivity comparable to that of the individual assays.

  12. High Throughput Multiplex PCR and Probe-based Detection with Luminex Beads for Seven Intestinal Parasites

    PubMed Central

    Taniuchi, Mami; Verweij, Jaco J.; Noor, Zannatun; Sobuz, Shihab U.; van Lieshout, Lisette; Petri, William A.; Haque, Rashidul; Houpt, Eric R.

    2011-01-01

    Polymerase chain reaction (PCR) assays for intestinal parasites are increasingly being used on fecal DNA samples for enhanced specificity and sensitivity of detection. Comparison of these tests against microscopy and copro-antigen detection has been favorable, and substitution of PCR-based assays for the ova and parasite stool examination is a foreseeable goal for the near future. One challenge is the diverse list of protozoan and helminth parasites. Several existing real-time PCR assays for the major intestinal parasites—Cryptosporidium spp., Giardia intestinalis, Entamoeba histolytica, Ancylostoma duodenale, Ascaris lumbricoides, Necator americanus, and Strongyloides stercoralis—were adapted into a high throughput protocol. The assay involves two multiplex PCR reactions, one with specific primers for the protozoa and one with specific primers for the helminths, after which PCR products are hybridized to beads linked to internal oligonucleotide probes and detected on a Luminex platform. When compared with the parent multiplex real-time PCR assays, this multiplex PCR-bead assay afforded between 83% and 100% sensitivity and specificity on a total of 319 clinical specimens. In conclusion, this multiplex PCR-bead protocol provides a sensitive diagnostic screen for a large panel of intestinal parasites. PMID:21292910

  13. Ultrasensitive Detection of Multiplexed Somatic Mutations Using MALDI-TOF Mass Spectrometry.

    PubMed

    Mosko, Michael J; Nakorchevsky, Aleksey A; Flores, Eunice; Metzler, Heath; Ehrich, Mathias; van den Boom, Dirk J; Sherwood, James L; Nygren, Anders O H

    2016-01-01

    Multiplex detection of low-frequency mutations is becoming a necessary diagnostic tool for clinical laboratories interested in noninvasive prognosis and prediction. Challenges include the detection of minor alleles among abundant wild-type alleles, the heterogeneous nature of tumors, and the limited amount of available tissue. A method that can reliably detect minor variants <1% in a multiplexed reaction using a platform amenable to a variety of throughputs would meet these requirements. We developed a novel approach, UltraSEEK, for high-throughput, multiplexed, ultrasensitive mutation detection and used it for detection of mutant sequence mixtures as low as 0.1% minor allele frequency. The process consisted of multiplex PCR, followed by mutation-specific, single-base extension using chain terminators labeled with a moiety for solid phase capture. The captured and enriched products were then identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. For verification, we successfully analyzed ultralow fractions of mutations in a set of characterized cell lines, and included a direct comparison to droplet digital PCR. Finally, we verified the specificity in a set of 122 paired tumor and circulating cell-free DNA samples from melanoma patients. Our results show that the UltraSEEK chemistry is a particularly powerful approach for the detection of somatic variants, with the potential to be an invaluable resource to investigators in saving time and material without compromising analytical sensitivity and accuracy. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  14. Deletion detection for diagnosis of Duchenne muscular dystrophy in the Japanese population--comparison between the polymerase chain reaction and the Southern blot analysis.

    PubMed

    Katayama, S; Takeshita, N; Yano, T; Ubagai, T; Qiu, X J; Katagiri, Y; Kubo, H; Hirakawa, S

    1993-06-01

    We compared the efficacy of the multiplex PCR with that of the cDNA analysis for detection of deletions of the DMD gene in the Japanese patients. Thirty males with DMD from 27 Japanese families were studied by the multiplex PCR, and 24 of them were also investigated by Southern blot analysis. We used five dystrophin cDNA probes for deletion analysis. A total of 19 regions were amplified by the PCR to detect deletions, 9 regions by the method of Chamberlain et al. and another 10 regions by the method of Beggs et al. Deletions were detected in 14 (52%) out of 27 DMD families by the PCR. Southern blot analysis detected deletions in 14 (64%) out of 22 families. Thirteen (93%) of the 14 DMD families with deletions detected by Southern blotting were also confirmed by the multiplex PCR. Provided care is taken in cases where the deletion is limited to a single exon, the multiplex PCR appears to be an efficient and useful alternative to conventional Southern blot analysis for detecting deletions during the prenatal and postnatal diagnosis of DMD.

  15. Establishment of a Molecular Serotyping Scheme and a Multiplexed Luminex-Based Array for Enterobacter aerogenes

    PubMed Central

    Guo, Xi; Wang, Min; Wang, Lu; Wang, Yao; Chen, Tingting; Wu, Pan; Chen, Min; Liu, Bin; Feng, Lu

    2018-01-01

    Serotyping based on surface polysaccharide antigens is important for the clinical detection and epidemiological surveillance of pathogens. Polysaccharide gene clusters (PSgcs) are typically responsible for the diversity of bacterial surface polysaccharides. Through whole-genome sequencing and analysis, eight putative PSgc types were identified in 23 Enterobacter aerogenes strains from several geographic areas, allowing us to present the first molecular serotyping system for E. aerogenes. A conventional antigenic scheme was also established and correlated well with the molecular serotyping system that was based on PSgc genetic variation, indicating that PSgc-based molecular typing and immunological serology provide equally valid results. Further, a multiplex Luminex-based array was developed, and a double-blind test was conducted with 97 clinical specimens from Shanghai, China, to validate our array. The results of these analyses indicated that strains containing PSgc4 and PSgc7 comprised the predominant groups. We then examined 86 publicly available E. aerogenes strain genomes and identified an additional seven novel PSgc types, with PSgc10 being the most abundant type. In total, our study identified 15 PSgc types in E. aerogenes, providing the basis for a molecular serotyping scheme. From these results, differing epidemic patterns were identified between strains that were predominant in different regions. Our study highlights the feasibility and reliability of a serotyping system based on PSgc diversity, and for the first time, presents a molecular serotyping system, as well as an antigenic scheme for E. aerogenes, providing the basis for molecular diagnostics and epidemiological surveillance of this important emerging pathogen. PMID:29616012

  16. Establishment of a Molecular Serotyping Scheme and a Multiplexed Luminex-Based Array for Enterobacter aerogenes.

    PubMed

    Guo, Xi; Wang, Min; Wang, Lu; Wang, Yao; Chen, Tingting; Wu, Pan; Chen, Min; Liu, Bin; Feng, Lu

    2018-01-01

    Serotyping based on surface polysaccharide antigens is important for the clinical detection and epidemiological surveillance of pathogens. Polysaccharide gene clusters (PSgcs) are typically responsible for the diversity of bacterial surface polysaccharides. Through whole-genome sequencing and analysis, eight putative PSgc types were identified in 23 Enterobacter aerogenes strains from several geographic areas, allowing us to present the first molecular serotyping system for E. aerogenes . A conventional antigenic scheme was also established and correlated well with the molecular serotyping system that was based on PSgc genetic variation, indicating that PSgc-based molecular typing and immunological serology provide equally valid results. Further, a multiplex Luminex-based array was developed, and a double-blind test was conducted with 97 clinical specimens from Shanghai, China, to validate our array. The results of these analyses indicated that strains containing PSgc4 and PSgc7 comprised the predominant groups. We then examined 86 publicly available E. aerogenes strain genomes and identified an additional seven novel PSgc types, with PSgc10 being the most abundant type. In total, our study identified 15 PSgc types in E. aerogenes , providing the basis for a molecular serotyping scheme. From these results, differing epidemic patterns were identified between strains that were predominant in different regions. Our study highlights the feasibility and reliability of a serotyping system based on PSgc diversity, and for the first time, presents a molecular serotyping system, as well as an antigenic scheme for E. aerogenes , providing the basis for molecular diagnostics and epidemiological surveillance of this important emerging pathogen.

  17. Development of a multiplex assay for genus and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    USDA-ARS?s Scientific Manuscript database

    The availability of a molecular diagnostic assay for Phytophthora that is specific, sensitive, has both genus and species specific detection capabilities multiplexed and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory ef...

  18. Multiplex real-time PCR and culture methods for detection of Shiga toxin-producing Escherichia coli and Salmonella Thompson in strawberries, a lettuce mix and basil.

    PubMed

    Delbeke, S; Ceuppens, S; Holvoet, K; Samuels, E; Sampers, I; Uyttendaele, M

    2015-01-16

    An appropriate approach of high throughput multi-screening was verified for Shiga toxin-producing Escherichia coli (STEC) and Salmonella spp. in strawberries, lettuce and basil. Sample replicates were inoculated with STEC O157 or O26 and Salmonella Thompson (ca. 10-70, 100-700 and 1000-7000 cfu/25 g) and analysed after 1 and 5 days of storage (strawberries and lettuce at 7 °C and basil at 10 °C). After 18-24 h of enrichment at 37 °C in buffered peptone water, detection was performed using the GeneDisc multiplex PCR (stx1, stx2, eae and iroB genes) and selective culture media for isolation of STEC (with immunomagnetic separation (IMS)) and Salmonella spp. in parallel. After 1 day, the pathogenic strains were recovered from all samples for all inoculum levels, whereas reduced detection rates of STEC O157 and S. Thompson were observed after 5 days of storage in case of strawberries, in particular for the lowest inoculums level, suggesting superior survival potential for STEC O26. Overall, this study indicates the ability of PCR based screening methods for reproducible multi-detection of low numbers (10-70 cfu/25 g) of STEC and Salmonella in this type of foods. However, for the basil samples, PCR needed twofold dilution of the DNA extract to overcome inhibition. It was noted that on several occasions growth of competitive microbiota obstructed finding presumptive colonies on the selective agar media, whereas the use of an additional agar medium such as CHROMagar STEC (without IMS) improved recovery rate of STEC. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Highly Sensitive Multiplex Assay for Detection of Human Immunodeficiency Virus Type 1 and Hepatitis C Virus RNA

    PubMed Central

    Giachetti, C.; Linnen, J. M.; Kolk, D. P.; Dockter, J.; Gillotte-Taylor, K.; Park, M.; Ho-Sing-Loy, M.; McCormick, M. K.; Mimms, L. T.; McDonough, S. H.

    2002-01-01

    Various nucleic acid assays have been developed and implemented for diagnostics and therapeutic monitoring of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infections. The high-throughput, semiautomated assays described here were developed to provide a method suitable for screening plasma specimens for the presence of HIV-1 and HCV RNAs. Three assays were developed: a multiplex HIV-1/HCV assay for simultaneous detection of HIV-1 and HCV, and discriminatory assays for specific detection of HIV-1 and HCV. The assay systems utilize three proprietary technologies: (i) target capture-based sample preparation, (ii) transcription-mediated amplification (TMA), and (iii) hybridization protection assay (HPA). An internal control is incorporated into each reaction to control for every step of the assay and identify random false-negative reactions. The assays demonstrated a sensitivity of at least 100 copies/ml for each target, and they detected with similar sensitivity all major variants of HCV and HIV-1, including HIV-1 group O strains. Assay sensitivity for one virus was not affected by the presence of the other. The specificity of these TMA-driven assays was ≥99.5% in both normal donor specimens and plasma containing potentially interfering substances or other blood-borne pathogens. Statistical receiver operating characteristic plots of 1 − specificity versus sensitivity data determined very wide analyte cutoff values for each assay at the point at which the assay specificity and sensitivity were both ≥99.5%. The sensitivity, specificity, and throughput capability predict that these assays will be valuable for large-volume plasma screening, either in a blood bank setting or in other diagnostic applications. PMID:12089255

  20. Development of two real-time multiplex PCR assays for the detection and quantification of eight key bacterial pathogens in lower respiratory tract infections

    PubMed Central

    Gadsby, N.J.; McHugh, M.P.; Russell, C.D.; Mark, H.; Conway Morris, A.; Laurenson, I.F.; Hill, A.T.; Templeton, K.E.

    2015-01-01

    The frequent lack of a positive and timely microbiological diagnosis in patients with lower respiratory tract infection (LRTI) is an important obstacle to antimicrobial stewardship. Patients are typically prescribed broad-spectrum empirical antibiotics while microbiology results are awaited, but, because these are often slow, negative, or inconclusive, de-escalation to narrow-spectrum agents rarely occurs in clinical practice. The aim of this study was to develop and evaluate two multiplex real-time PCR assays for the sensitive detection and accurate quantification of Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Moraxella catarrhalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. We found that all eight bacterial targets could be reliably quantified from sputum specimens down to a concentration of 100 CFUs/reaction (8333 CFUs/mL). Furthermore, all 249 positive control isolates were correctly detected with our assay, demonstrating effectiveness on both reference strains and local clinical isolates. The specificity was 98% on a panel of nearly 100 negative control isolates. Bacterial load was quantified accurately when three bacterial targets were present in mixtures of varying concentrations, mimicking likely clinical scenarios in LRTI. Concordance with culture was 100% for culture-positive sputum specimens, and 90% for bronchoalveolar lavage fluid specimens, and additional culture-negative bacterial infections were detected and quantified. In conclusion, a quantitative molecular test for eight key bacterial causes of LRTI has the potential to provide a more sensitive decision-making tool, closer to the time-point of patient admission than current standard methods. This should facilitate de-escalation from broad-spectrum to narrow-spectrum antibiotics, substantially improving patient management and supporting efforts to curtail inappropriate antibiotic use. PMID:25980353

  1. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

    PubMed Central

    Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.

    2015-01-01

    Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438

  2. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    PubMed

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  3. Prevalence of Pseudomonas aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with chronic periodontal infection.

    PubMed

    Souto, Renata; Silva-Boghossian, Carina M; Colombo, Ana Paula Vieira

    2014-01-01

    P. aeruginosa and Acinetobacter spp. are important pathogens associated with late nosocomial pneumonia in hospitalized and institutionalized individuals. The oral cavity may be a major source of these respiratory pathogens, particularly in the presence of poor oral hygiene and periodontal infection. This study investigated the prevalence of P. aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with periodontal disease or health. Samples were obtained from 55 periodontally healthy (PH) and 169 chronic periodontitis (CP) patients. DNA was obtained from the samples and detection of P. aeruginosa and Acinetobacter spp. was carried out by multiplex and nested PCR. P. aeruginosa and Acinetobacter spp. were detected in 40% and 45% of all samples, respectively. No significant differences in the distribution of these microorganisms between men and women, subgingival biofilm and saliva samples, patients ≤ 35 and > 35 years of age, and smokers and non-smokers were observed regardless periodontal status (p > 0.05). In contrast, the frequencies of P. aeruginosa and Acinetobacter spp. in saliva and biofilm samples were significantly greater in CP than PH patients (p < 0.01). Smokers presenting P. aeruginosa and high frequencies of supragingival plaque were more likely to present CP than PH. P. aeruginosa and Acinetobacter spp. are frequently detected in the oral microbiota of CP. Poor oral hygiene, smoking and the presence of P. aeruginosa are strongly associated with periodontitis.

  4. Prevalence of Pseudomonas aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with chronic periodontal infection

    PubMed Central

    Souto, Renata; Silva-Boghossian, Carina M.; Colombo, Ana Paula Vieira

    2014-01-01

    P. aeruginosa and Acinetobacter spp. are important pathogens associated with late nosocomial pneumonia in hospitalized and institutionalized individuals. The oral cavity may be a major source of these respiratory pathogens, particularly in the presence of poor oral hygiene and periodontal infection. This study investigated the prevalence of P. aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with periodontal disease or health. Samples were obtained from 55 periodontally healthy (PH) and 169 chronic periodontitis (CP) patients. DNA was obtained from the samples and detection of P. aeruginosa and Acinetobacter spp. was carried out by multiplex and nested PCR. P. aeruginosa and Acinetobacter spp. were detected in 40% and 45% of all samples, respectively. No significant differences in the distribution of these microorganisms between men and women, subgingival biofilm and saliva samples, patients ≤ 35 and > 35 years of age, and smokers and non-smokers were observed regardless periodontal status (p > 0.05). In contrast, the frequencies of P. aeruginosa and Acinetobacter spp. in saliva and biofilm samples were significantly greater in CP than PH patients (p < 0.01). Smokers presenting P. aeruginosa and high frequencies of supragingival plaque were more likely to present CP than PH. P. aeruginosa and Acinetobacter spp. are frequently detected in the oral microbiota of CP. Poor oral hygiene, smoking and the presence of P. aeruginosa are strongly associated with periodontitis. PMID:25242933

  5. Rapid and simple method by combining FTA™ card DNA extraction with two set multiplex PCR for simultaneous detection of non-O157 Shiga toxin-producing Escherichia coli strains and virulence genes in food samples.

    PubMed

    Kim, S A; Park, S H; Lee, S I; Ricke, S C

    2017-12-01

    The aim of this research was to optimize two multiplex polymerase chain reaction (PCR) assays that could simultaneously detect six non-O157 Shiga toxin-producing Escherichia coli (STEC) as well as the three virulence genes. We also investigated the potential of combining the FTA™ card-based DNA extraction with the multiplex PCR assays. Two multiplex PCR assays were optimized using six primer pairs for each non-O157 STEC serogroup and three primer pairs for virulence genes respectively. Each STEC strain specific primer pair only amplified 155, 238, 321, 438, 587 and 750 bp product for O26, O45, O103, O111, O121 and O145 respectively. Three virulence genes were successfully multiplexed: 375 bp for eae, 655 bp for stx1 and 477 bp for stx2. When two multiplex PCR assays were validated with ground beef samples, distinctive bands were also successfully produced. Since the two multiplex PCR examined here can be conducted under the same PCR conditions, the six non-O157 STEC and their virulence genes could be concurrently detected with one run on the thermocycler. In addition, all bands clearly appeared to be amplified by FTA card DNA extraction in the multiplex PCR assay from the ground beef sample, suggesting that an FTA card could be a viable sampling approach for rapid and simple DNA extraction to reduce time and labour and therefore may have practical use for the food industry. Two multiplex polymerase chain reaction (PCR) assays were optimized for discrimination of six non-O157 Shiga toxin-producing Escherichia coli (STEC) and identification of their major virulence genes within a single reaction, simultaneously. This study also determined the successful ability of the FTA™ card as an alternative to commercial DNA extraction method for conducting multiplex STEC PCR assays. The FTA™ card combined with multiplex PCR holds promise for the food industry by offering a simple and rapid DNA sample method for reducing time, cost and labour for detection of STEC in food and environmental samples. © 2017 The Society for Applied Microbiology.

  6. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-01-01

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya. PMID:25337891

  7. Diarrheagenic Escherichia coli strains recovered from urban pigeons (Columba livia) in Brazil and their antimicrobial susceptibility patterns.

    PubMed

    Silva, Vânia L; Nicoli, Jacques R; Nascimento, Thiago C; Diniz, Cláudio G

    2009-09-01

    Urban pigeons (Columba livia) come into close contact with humans and animals, and may contribute to the spread of infectious agents. These may include human pathogens such as diarrheagenic Escherichia coli strains, which are able to survive in pigeon feces, thus creating potential for human exposure and infection. Our objectives were to determine the occurrence of diarrheagenic E. coli strains in fresh feces from urban pigeons and their drug susceptibility patterns. E. coli strains were isolated from 100 fresh feces samples and presumptive phenotypic species identification was carried out, confirmed by amplification of specific 16S ribosomal RNA encoding DNA. Multiplex PCR was performed to characterize pathogenic strains. Drug susceptibility patterns were determined by the agar dilution method. Enteroinvasive E. coli, Shiga toxin-producing E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli were detected at an overall rate of 12.1%. Among the isolated E. coli strains, 62.1% were susceptible to all tested drugs, whereas 37.9% were resistant to at least one of the antimicrobials tested. Amikacin was the less effective drug (36.8% resistance), followed by ampicillin (7.8%). No resistance was detected to gentamicin, ceftriaxone, and ceftazidime and almost all the isolates were susceptible to ampicillin-sulbactam (98.4%), levofloxacin (97.8%), and trimethoprim-sulfamethoxazole (96.1%). Since these pigeons may harbor multidrug-resistant pathogens, their presence in an urban environment could be an important component of infection spread, with impact on public health.

  8. Triblock copolymer matrix-based capillary electrophoretic microdevice for high-resolution multiplex pathogen detection.

    PubMed

    Kim, Se Jin; Shin, Gi Won; Choi, Seok Jin; Hwang, Hee Sung; Jung, Gyoo Yeol; Seo, Tae Seok

    2010-03-01

    Rapid and simple analysis for the multiple target pathogens is critical for patient management. CE-SSCP analysis on a microchip provides high speed, high sensitivity, and a portable genetic analysis platform in molecular diagnostic fields. The capability of separating ssDNA molecules in a capillary electrophoretic microchannel with high resolution is a critical issue to perform the precise interpretation in the electropherogram. In this study, we explored the potential of poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer as a sieving matrix for CE-SSCP analysis on a microdevice. To demonstrate the superior resolving power of PEO-PPO-PEO copolymers, 255-bp PCR amplicons obtained from 16S ribosomal RNA genes of four bacterial species, namely Proteus mirabilis, Haemophilus ducreyi, Pseudomonas aeruginosa, and Neisseria meningitidis, were analyzed in the PEO-PPO-PEO matrix in comparison with 5% linear polyacrylamide and commercial GeneScan gel. Due to enhanced dynamic coating and sieving ability, PEO-PPO-PEO copolymer displayed fourfold enhancement of resolving power in the CE-SSCP to separate same-sized DNA molecules. Fivefold input of genomic DNA of P. aeruginosa and/or N. meningitidis produced proportionally increased corresponding amplicon peaks, enabling correct quantitative analysis in the pathogen detection. Besides the high-resolution sieving capability, a facile loading and replenishment of gel in the microchannel due to thermally reversible gelation property makes PEO-PPO-PEO triblock copolymer an excellent matrix in the CE-SSCP analysis on the microdevice.

  9. Quantifying viable Vibrio parahaemolyticus and Listeria monocytogenes simultaneously in raw shrimp.

    PubMed

    Zhang, Zhaohuan; Liu, Haiquan; Lou, Yang; Xiao, Lili; Liao, Chao; Malakar, Pradeep K; Pan, Yingjie; Zhao, Yong

    2015-08-01

    A novel TaqMan-based multiplex real-time PCR method combined with propidium monoazide (PMA) treatment was firstly developed for the simultaneous quantification of viable Vibrio parahaemolyticus and Listeria monocytogenes in raw shrimp. The optimization of PMA concentration showed that 100 μM was considered optimal to effectively inhibit 10(8) CFU/mL dead cells of both bacteria. The high specificity of this method was confirmed on tests using 96 target and non-target strains. The optimized assay could detect as low as 10(1)-10(2) CFU/g of each strain on the artificially contaminated shrimp, and its amplification efficiencies were up to 100 and 106 % for V. parahaemolyticus and L. monocytogenes, respectively. Furthermore, this assay has been successfully applied to describe the behavior of these two pathogens in raw shrimps stored at 4 °C. In conclusion, this PMA TaqMan-based multiplex real-time PCR technique, where the whole procedure takes less than 5 h, provides an effective and rapid tool for monitoring contamination of viable V. parahaemolyticus and L. monocytogenes in seafood, improving seafood safety and protecting public health.

  10. Development and validation of a multiplex PCR for detection of Scedosporium spp. in respiratory tract specimens from patients with cystic fibrosis.

    PubMed

    Harun, Azian; Blyth, Christopher C; Gilgado, Felix; Middleton, Peter; Chen, Sharon C-A; Meyer, Wieland

    2011-04-01

    The emergence of Scedosporium infections in diverse groups of individuals, which are often treatment refractory, warrants timely and accurate laboratory diagnosis. Species- or group-specific primers based on internal transcribed spacer (ITS) sequence polymorphisms were designed for Scedosporium aurantiacum, Scedosporium dehoogii, Scedosporium prolificans, Pseudallescheria boydii species complex (former clade 5)/Pseudallescheria apiosperma (formerly classified as S. apiospermum sensu lato) and Pseudallescheria minutispora. Primers for S. aurantiacum, S. prolificans, and P. boydii species complex/P. apiosperma were incorporated into a multiplex PCR assay for the detection and identification of the three major clinically important Scedosporium species and validated using sputum specimens collected from patients seen at a major Australian cystic fibrosis clinic. The multiplex PCR assay showed 100% specificity in identifying the three major clinically relevant Scedosporium species from pure culture. When evaluated using DNA extracts from sputa, sensitivity and specificity of the multiplex PCR assay were 62.1% and 97.2%, respectively. This highly species-specific multiplex PCR assay offers a rapid and simple method of detection of the most clinically important Scedosporium species in respiratory tract specimens.

  11. Species-specific multiplex PCR for the diagnosis of Brucella ovis, Actinobacillus seminis, and Histophilus somni infection in rams.

    PubMed

    Moustacas, Valéria S; Silva, Teane M A; Costa, Luciana F; Xavier, Mariana N; Carvalho, Custódio A; Costa, Érica A; Paixão, Tatiane A; Santos, Renato L

    2013-03-21

    Infectious ovine epididymitis results in substantial economic losses worldwide due to reproductive failure and culling of breeders. The most common causative agents of these infections are Brucella ovis, Actinobacillus seminis, and Histophilus somni. The aim of this study was to develop a multiplex PCR assay for simultaneous detection of Brucella ovis, Actinobacillus seminis, and Histophilus somni with species-specific primers applied to biological samples for molecular diagnosis of these infections. The multiplex assay was capable of detecting B. ovis, A. seminis, and H. somni DNA simultaneously from genomic bacterial DNA samples and pool of semen samples from experimentally infected rams. The method was highly specific since it did not amplify DNA from other bacterial species that can potentially cause epididymitis in rams as well as species phylogenetically related to B. ovis. All negative control samples were negative in PCR multiplex assay. Urine can be used as an alternative to semen samples. The species-specific multiplex PCR assay developed in this study can be successfully used for the detection of three of the most common bacterial causes of ovine epididymitis.

  12. Development of multiplex PCR for the detection of total coliform bacteria for Escherichia coli and Clostridium perfringens in drinking water.

    PubMed

    Tantawiwat, Suwalee; Tansuphasiri, Unchalee; Wongwit, Waranya; Wongchotigul, Varee; Kitayaporn, Dwip

    2005-01-01

    Multiplex PCR amplification of lacZ, uidA and plc genes was developed for the simultaneous detection of total coliform bacteria for Escherichia coli and Clostridium perfringens, in drinking water. Detection by agarose gel electrophoresis yielded a band of 876 bp for the lacZ gene of all coliform bacteria; a band of 147 bp for the uidA gene and a band of 876 bp for the lacZ gene of all strains of E. coli; a band of 280 bp for the p/c gene for all strains of C. perfringens; and a negative result for all three genes when tested with other bacteria. The detection limit was 100 pg for E. coli and C. perfringens, and 1 ng for coliform bacteria when measured with purified DNA. This assay was applied to the detection of these bacteria in spiked water samples. Spiked water samples with 0-1,000 CFU/ml of coliform bacteria and/or E. coli and/or C. perfringens were detected by this multiplex PCR after a pre-enrichment step to increase the sensitivity and to ensure that the detection was based on the presence of cultivable bacteria. The result of bacterial detection from the multiplex PCR was comparable with that of a standard plate count on selective medium (p=0.62). When using standard plate counts as a gold standard, the sensitivity for this test was 99.1% (95% CI 95.33, 99.98) and the specificity was 90.9 % (95% CI 75.67, 98.08). Multiplex PCR amplification with a pre-enrichment step was shown to be an effective, sensitive and rapid method for the simultaneous detection of these three microbiological parameters in drinking water.

  13. Multiplex families with epilepsy

    PubMed Central

    Afawi, Zaid; Oliver, Karen L.; Kivity, Sara; Mazarib, Aziz; Blatt, Ilan; Neufeld, Miriam Y.; Helbig, Katherine L.; Goldberg-Stern, Hadassa; Misk, Adel J.; Straussberg, Rachel; Walid, Simri; Mahajnah, Muhammad; Lerman-Sagie, Tally; Ben-Zeev, Bruria; Kahana, Esther; Masalha, Rafik; Kramer, Uri; Ekstein, Dana; Shorer, Zamir; Wallace, Robyn H.; Mangelsdorf, Marie; MacPherson, James N.; Carvill, Gemma L.; Mefford, Heather C.; Jackson, Graeme D.; Scheffer, Ingrid E.; Bahlo, Melanie; Gecz, Jozef; Heron, Sarah E.; Corbett, Mark; Mulley, John C.; Dibbens, Leanne M.; Korczyn, Amos D.

    2016-01-01

    Objective: To analyze the clinical syndromes and inheritance patterns of multiplex families with epilepsy toward the ultimate aim of uncovering the underlying molecular genetic basis. Methods: Following the referral of families with 2 or more relatives with epilepsy, individuals were classified into epilepsy syndromes. Families were classified into syndromes where at least 2 family members had a specific diagnosis. Pedigrees were analyzed and molecular genetic studies were performed as appropriate. Results: A total of 211 families were ascertained over an 11-year period in Israel. A total of 169 were classified into broad familial epilepsy syndrome groups: 61 generalized, 22 focal, 24 febrile seizure syndromes, 33 special syndromes, and 29 mixed. A total of 42 families remained unclassified. Pathogenic variants were identified in 49/211 families (23%). The majority were found in established epilepsy genes (e.g., SCN1A, KCNQ2, CSTB), but in 11 families, this cohort contributed to the initial discovery (e.g., KCNT1, PCDH19, TBC1D24). We expand the phenotypic spectrum of established epilepsy genes by reporting a familial LAMC3 homozygous variant, where the predominant phenotype was epilepsy with myoclonic-atonic seizures, and a pathogenic SCN1A variant in a family where in 5 siblings the phenotype was broadly consistent with Dravet syndrome, a disorder that usually occurs sporadically. Conclusion: A total of 80% of families were successfully classified, with pathogenic variants identified in 23%. The successful characterization of familial electroclinical and inheritance patterns has highlighted the value of studying multiplex families and their contribution towards uncovering the genetic basis of the epilepsies. PMID:26802095

  14. Simultaneous detection and differentiation of three Potyviridae viruses by a multiplex TaqMan real time RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay w...

  15. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    Treesearch

    G. J. Bilodeau; F. N. Martin; M. D. Coffey; C. L. Blomquist

    2014-01-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed...

  16. Self-calibrating multiplexer circuit

    DOEpatents

    Wahl, Chris P.

    1997-01-01

    A time domain multiplexer system with automatic determination of acceptable multiplexer output limits, error determination, or correction is comprised of a time domain multiplexer, a computer, a constant current source capable of at least three distinct current levels, and two series resistances employed for calibration and testing. A two point linear calibration curve defining acceptable multiplexer voltage limits may be defined by the computer by determining the voltage output of the multiplexer to very accurately known input signals developed from predetermined current levels across the series resistances. Drift in the multiplexer may be detected by the computer when the output voltage limits, expected during normal operation, are exceeded, or the relationship defined by the calibration curve is invalidated.

  17. Comparison of the Idaho Technology FilmArray System to Real-Time PCR for Detection of Respiratory Pathogens in Children

    PubMed Central

    Pierce, Virginia M.; Elkan, Michael; Leet, Marilyn; McGowan, Karin L.

    2012-01-01

    The FilmArray Respiratory Panel (RP) multiplexed nucleic acid amplification test (Idaho Technology, Inc., Salt Lake City, UT) was compared to laboratory-developed real-time PCR assays for the detection of various respiratory viruses and certain bacterial pathogens. A total of 215 frozen archived pediatric respiratory specimens previously characterized as either negative or positive for one or more pathogens by real-time PCR were examined using the FilmArray RP system. Overall agreement between the FilmArray RP and corresponding real-time PCR assays for shared analytes was 98.6% (kappa = 0.92 [95% confidence interval (CI), 0.89 to 0.94]). The combined positive percent agreement was 89.4% (95% CI, 85.4 to 92.6); the negative percent agreement was 99.6% (95% CI, 99.2 to 99.8). The mean real-time PCR threshold cycle (CT) value for specimens with discordant results was 36.46 ± 4.54. Detection of coinfections and correct identification of influenza A virus subtypes were comparable to those of real-time PCR when using the FilmArray RP. The greatest comparative difference in sensitivity was observed for adenovirus; only 11 of 24 (45.8%; 95% CI, 27.9 to 64.9) clinical specimens positive for adenovirus by real-time PCR were also positive by the FilmArray RP. In addition, upon testing 20 characterized adenovirus serotypes prepared at high and low viral loads, the FilmArray RP did not detect serotypes 6 and 41 at either level and failed to detect serotypes 2, 20, 35, and 37 when viral loads were low. The FilmArray RP system is rapid and extremely user-friendly, with results available in just over 1 h with almost no labor involved. Its low throughput is a significant drawback for laboratories receiving large numbers of specimens, as only a single sample can be processed at a time with one instrument. PMID:22116144

  18. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K.; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629

  19. Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review.

    PubMed

    Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad

    2016-05-28

    The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process.

  20. Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review

    PubMed Central

    Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad

    2016-01-01

    The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process. PMID:27239109

  1. Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR.

    PubMed

    Watanabe, Masaru; Kawaguchi, Tomoya; Isa, Shun-Ichi; Ando, Masahiko; Tamiya, Akihiro; Kubo, Akihito; Saka, Hideo; Takeo, Sadanori; Adachi, Hirofumi; Tagawa, Tsutomu; Kawashima, Osamu; Yamashita, Motohiro; Kataoka, Kazuhiko; Ichinose, Yukito; Takeuchi, Yukiyasu; Watanabe, Katsuya; Matsumura, Akihide; Koh, Yasuhiro

    2017-07-01

    Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy. Here, we developed a multiplex picodroplet digital PCR (ddPCR) assay to detect 3 common EGFR mutations in 1 reaction. Serial-dilution experiments with genomic DNA harboring EGFR mutations revealed linear performance, with analytical sensitivity ~0.01% for each mutation. All 33 EGFR-activating mutations detected in formalin-fixed paraffin-embedded (FFPE) tissue samples by the conventional method were also detected by this multiplex assay. Owing to the higher sensitivity, an additional mutation (T790M; including an ultra-low-level mutation, <0.1%) was detected in the same reaction. Regression analysis of the duplex assay and multiplex assay showed a correlation coefficient (R 2 ) of 0.9986 for L858R, 0.9844 for an exon 19 deletion, and 0.9959 for T790M. Using ddPCR, we designed a multiplex ultrasensitive genotyping platform for 3 common EGFR mutations. Results of this proof-of-principle study on clinical samples indicate clinical utility of multiplex ddPCR for screening for multiple EGFR mutations concurrently with an ultra-rare pretreatment mutation (T790M). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Golden jackals (Canis aureus) as hosts for ticks and tick-borne pathogens in Serbia.

    PubMed

    Sukara, Ratko; Chochlakis, Dimosthenis; Ćirović, Duško; Penezić, Aleksandra; Mihaljica, Darko; Ćakić, Sanja; Valčić, Miroslav; Tselentis, Yannis; Psaroulaki, Anna; Tomanović, Snežana

    2018-04-10

    The golden jackal (Canis aureus) is a medium-sized canid species native to Europe. This species is characterized by rapid large-scale expansion. A similar trend is also observed in Serbia, where the species is now distributed in more than a half of the territory. Although jackals prefer habitats in human-dominated landscapes, these animals have not been studied well enough from an eco-epidemiological point of view, and little is known about their potential for carrying zoonotic pathogens. In a study conducted during a three-year period (01/2010-02/2013), a total of 216 hunted or road-killed golden jackals were collected from 10 localities in Serbia. Ticks, when present, were removed, and after necropsy, spleen samples were collected from each animal. All tick and spleen samples were tested for the DNA of bacterial and protozoan tick-borne pathogens (Borrelia species, Bartonella species, Rickettsia species, Anaplasma species, Coxiella burnetii, Francisella species and Babesia species) by multiplex real-time PCR, conventional PCR and sequencing analyses. The DNA of Babesia canis was detected in nine out of 216 (4.2%) spleen samples, and two samples (0.9%) tested positive for Anaplasma phagocytophilum. In 118 ticks collected from jackals, the DNA of two Babesia species (Ba. canis and Ba. microti), three Borrelia species (Bo. garinii, Bo. valaisiana, and Bo. lusitaniae) and A. marginale was detected. From the aspect of public health surveillance, the potential role of the golden jackal in the maintenance of vector-borne zoonotic pathogens in Serbia must be considered, and further eco-epidemiological studies should be performed to determine the precise role of this animal species in zoonotic disease transmission cycles. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  4. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  5. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  6. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  7. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  8. Retrospective Evaluation of Infants Aged 1-60 Days With Residual CSF Tested Using the FilmArray® Meningitis/Encephalitis (ME) Panel.

    PubMed

    Blaschke, Anne J; Holmberg, Kristen M; Daly, Judy A; Leber, Amy L; Dien Bard, Jennifer; Korgenski, Ernest K; Bourzac, Kevin M; Kanack, Kristen J

    2018-04-18

    In pediatric practice it is common for infants under 2 months of age to undergo evaluation for sepsis when they are ill, often including lumbar puncture (LP) to assess for central nervous system (CNS) infection. The FilmArray® Meningitis/Encephalitis (ME) Panel is a newly approved test for rapid identification of CNS pathogens. Our objective was to study the epidemiology of CNS infection in young infants and the potential impact of rapid multiplex PCR on their care.A performance evaluation of the FilmArray ME Panel was conducted from 2/2014-9/2014 at 11 sites. FilmArray ME Panel results were compared to reference standards but not shared with providers. In our study, medical records for infants (aged 1-60 days) enrolled at 3 sites were reviewed for clinical, laboratory and outcome data.145 infants were reviewed. Median age was 25 days. Most were hospitalized [134/145 (92%)], received antibiotics [123/145 (85%)] and almost half [71/145 (49%)] received acyclovir. One infant had a bacterial pathogen, likely false-positive, identified by the FilmArray ME Panel. Thirty-six infants (25%) had a viral pathogen detected, including 21 enteroviruses. All infants with enteroviral meningitis detected by the FilmArray ME Panel and conventional PCR were hospitalized, but 20% were discharged in less than 24 hours when conventional PCR results became available.The FilmArray ME Panel may play a role in the evaluation of young infants for CNS infection. Results may be used to guide management, possibly resulting in decreased length of stay and antimicrobial exposure for infants with low-risk viral infection detected. Copyright © 2018 Blaschke et al.

  9. Rapid identification of ESKAPE bacterial strains using an autonomous microfluidic device.

    PubMed

    Ho, Jack Y; Cira, Nate J; Crooks, John A; Baeza, Josue; Weibel, Douglas B

    2012-01-01

    This article describes Bacteria ID Chips ('BacChips'): an inexpensive, portable, and autonomous microfluidic platform for identifying pathogenic strains of bacteria. BacChips consist of a set of microchambers and channels molded in the elastomeric polymer, poly(dimethylsiloxane) (PDMS). Each microchamber is preloaded with mono-, di-, or trisaccharides and dried. Pressing the layer of PDMS into contact with a glass coverslip forms the device; the footprint of the device in this article is ∼6 cm(2). After assembly, BacChips are degased under large negative pressure and are stored in vacuum-sealed plastic bags. To use the device, the bag is opened, a sample containing bacteria is introduced at the inlet of the device, and the degased PDMS draws the sample into the central channel and chambers. After the liquid at the inlet is consumed, air is drawn into the BacChip via the inlet and provides a physical barrier that separates the liquid samples in adjacent microchambers. A pH indicator is admixed with the samples prior to their loading, enabling the metabolism of the dissolved saccharides in the microchambers to be visualized. Importantly, BacChips operate without external equipment or instruments. By visually detecting the growth of bacteria using ambient light after ∼4 h, we demonstrate that BacChips with ten microchambers containing different saccharides can reproducibly detect the ESKAPE panel of pathogens, including strains of: Enterococcus faecalis, Enteroccocus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterobacter cloacae. This article describes a BacChip for point-of-care detection of ESKAPE pathogens and a starting point for designing multiplexed assays that identify bacterial strains from clinical samples and simultaneously determine their susceptibility to antibiotics.

  10. Rapid Identification of ESKAPE Bacterial Strains Using an Autonomous Microfluidic Device

    PubMed Central

    Ho, Jack Y.; Cira, Nate J.; Crooks, John A.; Baeza, Josue; Weibel, Douglas B.

    2012-01-01

    This article describes Bacteria ID Chips (‘BacChips’): an inexpensive, portable, and autonomous microfluidic platform for identifying pathogenic strains of bacteria. BacChips consist of a set of microchambers and channels molded in the elastomeric polymer, poly(dimethylsiloxane) (PDMS). Each microchamber is preloaded with mono-, di-, or trisaccharides and dried. Pressing the layer of PDMS into contact with a glass coverslip forms the device; the footprint of the device in this article is ∼6 cm2. After assembly, BacChips are degased under large negative pressure and are stored in vacuum-sealed plastic bags. To use the device, the bag is opened, a sample containing bacteria is introduced at the inlet of the device, and the degased PDMS draws the sample into the central channel and chambers. After the liquid at the inlet is consumed, air is drawn into the BacChip via the inlet and provides a physical barrier that separates the liquid samples in adjacent microchambers. A pH indicator is admixed with the samples prior to their loading, enabling the metabolism of the dissolved saccharides in the microchambers to be visualized. Importantly, BacChips operate without external equipment or instruments. By visually detecting the growth of bacteria using ambient light after ∼4 h, we demonstrate that BacChips with ten microchambers containing different saccharides can reproducibly detect the ESKAPE panel of pathogens, including strains of: Enterococcus faecalis, Enteroccocus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterobacter cloacae. This article describes a BacChip for point-of-care detection of ESKAPE pathogens and a starting point for designing multiplexed assays that identify bacterial strains from clinical samples and simultaneously determine their susceptibility to antibiotics. PMID:22848451

  11. Highly specific and efficient primers for in-house multiplex PCR detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum

    PubMed Central

    2014-01-01

    Background Although sophisticated methodologies are available, the use of endpoint polymerase chain reaction (PCR) to detect 16S rDNA genes remains a good approach for estimating the incidence and prevalence of specific infections and for monitoring infections. Considering the importance of the early diagnosis of sexually transmitted infections (STIs), the development of a sensitive and affordable method for identifying pathogens in clinical samples is needed. Highly specific and efficient primers for a multiplex polymerase chain reaction (m-PCR) system were designed in silico to detect the 16S rDNA genes of four bacteria that cause genital infections, and the PCR method was developed. Methods The Genosensor Probe Designer (GPD) (version 1.0a) software was initially used to design highly specific and efficient primers for in-house m-PCR. Single-locus PCR reactions were performed and standardised, and then primers for each locus in turn were added individually in subsequent amplifications until m-PCR was achieved. Amplicons of the expected size were obtained from each of the four bacterial gene fragments. Finally, the analytical specificity and limits of detection were tested. Results Because they did not amplify any product from non-STI tested species, the primers were specific. The detection limits for the Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum primer sets were 5.12 × 105, 3.9 × 103, 61.19 × 106 and 6.37 × 105 copies of a DNA template, respectively. Conclusions The methodology designed and standardised here could be applied satisfactorily for the simultaneous or individual detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum. This method is at least as efficient as other previously described methods; however, this method is more affordable for low-income countries. PMID:24997675

  12. New primers for the detection Leishmania species by multiplex polymerase chain reaction.

    PubMed

    Conter, Carolina Cella; Lonardoni, Maria Valdrinez Campana; Aristides, Sandra Mara Alessi; Cardoso, Rosilene Fressatti; Silveira, Thaís Gomes Verzignassi

    2018-02-01

    Leishmaniasis is caused by protozoa of the Leishmania genus, which is divided into subgenus Viannia and Leishmania. In humans, the course of infection largely depends on the host-parasite relationship and primarily of the infective species. The objective of the present study was to design specific primers to the identification of Leishmania species using multiplex PCR. Four primers were designed, based on the GenBank sequences of the kDNA minicircle, amplifying 127 bp for subgenus Viannia, 100 bp for L. amazonensis, and 60 bp for Leishmania donovani complex and L. major. None of the primers amplified Trypanosoma cruzi or L. mexicana. The limit of detection of multiplex PCR was 2 × 10 -5 parasites for L. braziliensis, 2 x 10 -3 parasites for L. amazonensis, and 1.4 × 10 -3 parasites for L. infantum. The high sensitivity of multiplex PCR was confirmed by the detection of parasites in different biological samples, including lesion scrapings, spleen imprinting of a hamster, sandflies, and blood. The multiplex PCR that was developed herein presented good performance with regard to detecting and identifying the parasite in different biological samples and may thus be useful for diagnosis, decision making with regard to the proper therapeutic approach, and determining the geographic distribution of Leishmania species.

  13. Surveillance for Emerging Diseases with Multiplexed Point-of-Care Diagnostics

    DOE PAGES

    Deshpande, Alina; McMahon, Benjamin; Daughton, Ashlynn Rae; ...

    2016-06-17

    Here, we present an analysis of the diagnostic technologies that were used to identify historical outbreaks of ebola virus disease and consider systematic surveillance strategies that may greatly reduce the peak size of future epidemics. We observe that clinical signs and symptoms alone are often insufficient to recognize index cases of diseases of global concern against the considerable background infectious disease burden that is present throughout the developing world. We propose a simple sampling strategy to enrich in especially dangerous pathogens with a low background for molecular diagnostics by targeting blood borne pathogens in the healthiest age groups. With existingmore » multiplexed diagnostic technologies, such a system could be combined with existing public health screening and reference laboratory systems for malaria, dengue, and common bacteremia or be used to develop such an infrastructure in less-developed locations. Because the needs for valid samples and accurate recording of patient attributes are aligned with needs for global biosurveillance, local public health needs, and improving patient care, co-development of these capabilities appears to be quite natural, flexible, and extensible as capabilities, technologies, and needs evolve over time. Furthermore, implementation of multiplexed diagnostic technologies to enhance fundamental clinical lab capacity will increase public health monitoring and biosurveillance as a natural extension.« less

  14. Surveillance for Emerging Diseases with Multiplexed Point-of-Care Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Alina; McMahon, Benjamin; Daughton, Ashlynn Rae

    Here, we present an analysis of the diagnostic technologies that were used to identify historical outbreaks of ebola virus disease and consider systematic surveillance strategies that may greatly reduce the peak size of future epidemics. We observe that clinical signs and symptoms alone are often insufficient to recognize index cases of diseases of global concern against the considerable background infectious disease burden that is present throughout the developing world. We propose a simple sampling strategy to enrich in especially dangerous pathogens with a low background for molecular diagnostics by targeting blood borne pathogens in the healthiest age groups. With existingmore » multiplexed diagnostic technologies, such a system could be combined with existing public health screening and reference laboratory systems for malaria, dengue, and common bacteremia or be used to develop such an infrastructure in less-developed locations. Because the needs for valid samples and accurate recording of patient attributes are aligned with needs for global biosurveillance, local public health needs, and improving patient care, co-development of these capabilities appears to be quite natural, flexible, and extensible as capabilities, technologies, and needs evolve over time. Furthermore, implementation of multiplexed diagnostic technologies to enhance fundamental clinical lab capacity will increase public health monitoring and biosurveillance as a natural extension.« less

  15. Charging YOYO-1 on Capillary Wall for Online DNA Intercalation and Integrating This Approach with Multiplex PCR and Bare Narrow Capillary–Hydrodynamic Chromatography for Online DNA Analysis

    PubMed Central

    2016-01-01

    Multiplex polymerase chain reaction (PCR) has been widely utilized for high-throughput pathogen identification. Often, a dye is used to intercalate the amplified DNA fragments, and identifications of the pathogens are carried out by DNA melting curve analysis or gel electrophoresis. Integrating DNA amplification and identification is a logic path toward maximizing the benefit of multiplex PCR. Although PCR and gel electrophoresis have been integrated, replenishing the gels after each run is tedious and time-consuming. In this technical note, we develop an approach to address this issue. We perform multiplex PCR inside a capillary, transfer the amplified fragments to a bare narrow capillary, and measure their lengths online using bare narrow capillary–hydrodynamic chromatography (BaNC-HDC), a new technique recently developed in our laboratory for free-solution DNA separation. To intercalate the DNA with YOYO-1 (a fluorescent dye) for BaNC-HDC, we flush the capillary column with a YOYO-1 solution; positively charged YOYO-1 is adsorbed (or charged) onto the negatively charged capillary wall. As DNA molecules are driven down the column for separation, they react with the YOYO-1 stored on the capillary wall and are online-intercalated with the dye. With a single YOYO-1 charging, the column can be used for more than 40 runs, although the fluorescence signal intensities of the DNA peaks decrease gradually. Although the dye-DNA intercalation occurs during the separation, it does not affect the retention times, separation efficiencies, or resolutions. PMID:25555111

  16. Multiplex polymerase chain reaction on FTA cards vs. flow cytometry for B-lymphocyte clonality.

    PubMed

    Dictor, Michael; Skogvall, Ingela; Warenholt, Janina; Rambech, Eva

    2007-01-01

    Two-colour flow cytometry was compared with multiplex PCR with capillary electrophoresis for clonality determination in specific categories of B-cell lymphoma. FTA cards were evaluated for preserving DNA from node imprints and expediting molecular analysis. A single-tube multiplex PCR targeted IGH and lymphoma-specific translocations in DNA extracted from 180 frozen lymphoid tissues and DNA bound to FTA cards from 192 fresh tissues and 137 aspirates. PCR results were compared with flow cytometry in the extracted and aspirated samples. Overall, single-tube multiplex PCR sensitivity was equivalent in the sample groups (intergroup range 79%-91%). False negatives were associated with tumour origin in the follicle centre. Multiplex PCR and flow cytometry were equally sensitive and together detected 98% of B-cell lymphomas. Additional two-tube targeting of IGK suggested an overall molecular sensitivity >90%. False positive (pseudoclonal) single-tube multiplex PCR was associated with necrosis and sparse lymphocytes. Multiplex PCR using template DNA bound to an FTA card effectively detects B-lymphocyte clonality, obviates DNA extraction and refrigeration, and can be used without diminished sensitivity in fine needle aspirates or node imprints as a replacement for or complement to flow cytometry at any point in the diagnostic work-up.

  17. Multiplex hydrolysis probe real-time PCR for simultaneous detection of hepatitis A virus and hepatitis E virus.

    PubMed

    Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli

    2014-05-30

    Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV.

  18. Multiflora rose invasion amplifies prevalence of Lyme disease pathogen, but not necessarily Lyme disease risk.

    PubMed

    Adalsteinsson, Solny A; Shriver, W Gregory; Hojgaard, Andrias; Bowman, Jacob L; Brisson, Dustin; D'Amico, Vincent; Buler, Jeffrey J

    2018-01-23

    Forests in urban landscapes differ from their rural counterparts in ways that may alter vector-borne disease dynamics. In urban forest fragments, tick-borne pathogen prevalence is not well characterized; mitigating disease risk in densely-populated urban landscapes requires understanding ecological factors that affect pathogen prevalence. We trapped blacklegged tick (Ixodes scapularis) nymphs in urban forest fragments on the East Coast of the United States and used multiplex real-time PCR assays to quantify the prevalence of four zoonotic, tick-borne pathogens. We used Bayesian logistic regression and WAIC model selection to understand how vegetation, habitat, and landscape features of urban forests relate to the prevalence of B. burgdorferi (the causative agent of Lyme disease) among blacklegged ticks. In the 258 nymphs tested, we detected Borrelia burgdorferi (11.2% of ticks), Borrelia miyamotoi (0.8%) and Anaplasma phagocytophilum (1.9%), but we did not find Babesia microti (0%). Ticks collected from forests invaded by non-native multiflora rose (Rosa multiflora) had greater B. burgdorferi infection rates (mean = 15.9%) than ticks collected from uninvaded forests (mean = 7.9%). Overall, B. burgdorferi prevalence among ticks was positively related to habitat features (e.g. coarse woody debris and total understory cover) favorable for competent reservoir host species. Understory structure provided by non-native, invasive shrubs appears to aggregate ticks and reservoir hosts, increasing opportunities for pathogen transmission. However, when we consider pathogen prevalence among nymphs in context with relative abundance of questing nymphs, invasive plants do not necessarily increase disease risk. Although pathogen prevalence is greater among ticks in invaded forests, the probability of encountering an infected tick remains greater in uninvaded forests characterized by thick litter layers, sparse understories, and relatively greater questing tick abundance in urban landscapes.

  19. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction.

    PubMed

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2013-04-08

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Improved assessment of accuracy and performance using a rotational paper-based device for multiplexed detection of heavy metals.

    PubMed

    Sun, Xiange; Li, Bowei; Qi, Anjin; Tian, Chongguo; Han, Jinglong; Shi, Yajun; Lin, Bingcheng; Chen, Lingxin

    2018-02-01

    In this work, a novel rotational microfluidic paper-based device was developed to improve the accuracy and performance of the multiplexed colorimetric detection by effectively avoiding the diffusion of colorimetric reagent on the detection zone. The integrated paper-based rotational valves were used to control the connection or disconnection between detection zones and fluid channels. Based on the manipulation of the rotational valves, this rotational paper-based device could prevent the random diffusion of colorimetric reagent and reduce the error of quantitative analysis considerably. The multiplexed colorimetric detection of heavy metals Ni(II), Cu(II) and Cr(VI) were implemented on the rotational device and the detection limits could be found to be 4.8, 1.6, and 0.18mg/L, respectively. The developed rotational device showed the great advantage in improving the detection accuracy and was expected to be a low-cost, portable analytical platform for the on-site detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  2. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes

    USDA-ARS?s Scientific Manuscript database

    TaqMan primer-probe sets were developed for the detection and identification of potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis using two-tube, multiplex real-time PCR. One tube contained a primer-probe set specific for G. pallida (pale cyst nematode) multiplexed with another prim...

  3. Multilocus sequence typing of Xylella fastidiosa causing Pierce's disease and oleander leaf scorch in the United States.

    PubMed

    Yuan, Xiaoli; Morano, Lisa; Bromley, Robin; Spring-Pearson, Senanu; Stouthamer, Richard; Nunney, Leonard

    2010-06-01

    Using a modified multilocus sequence typing (MLST) scheme for the bacterial plant pathogen Xylella fastidiosa based on the same seven housekeeping genes employed in a previously published MLST, we studied the genetic diversity of two subspecies, X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi, which cause Pierce's disease and oleander leaf scorch, respectively. Typing of 85 U.S. isolates (plus one from northern Mexico) of X. fastidiosa subsp. fastidiosa from 15 different plant hosts and 21 isolates of X. fastidiosa subsp. sandyi from 4 different hosts in California and Texas supported their subspecific status. Analysis using the MLST genes plus one cell-surface gene showed no significant genetic differentiation based on geography or host plant within either subspecies. Two cases of homologous recombination (with X. fastidiosa subsp. multiplex, the third U.S. subspecies) were detected in X. fastidiosa subsp. fastidiosa. Excluding recombination, MLST site polymorphism in X. fastidiosa subsp. fastidiosa (0.048%) and X. fastidiosa subsp. sandyi (0.000%) was substantially lower than in X. fastidiosa subsp. multiplex (0.240%), consistent with the hypothesis that X. fastidiosa subspp. fastidiosa and sandyi were introduced into the United States (probably just prior to 1880 and 1980, respectively). Using whole-genome analysis, we showed that MLST is more effective at genetic discrimination at the specific and subspecific level than other typing methods applied to X. fastidiosa. Moreover, MLST is the only technique effective in detecting recombination.

  4. RPA using a multiplexed cartridge for low cost point of care diagnostics in the field.

    PubMed

    Ereku, Luck Tosan; Mackay, Ruth E; Craw, Pascal; Naveenathayalan, Angel; Stead, Thomas; Branavan, Manorharanehru; Balachandran, Wamadeva

    2018-04-15

    A point of care device utilising Lab-on-a-Chip technologies that is applicable for biological pathogens was designed, fabricated and tested showing sample in to answer out capabilities. The purpose of the design was to develop a cartridge with the capability to perform nucleic acid extraction and purification from a sample using a chitosan membrane at an acidic pH. Waste was stored within the cartridge with the use of sodium polyacrylate to solidify or gelate the sample in a single chamber. Nucleic acid elution was conducted using the RPA amplification reagents (alkaline pH). Passive valves were used to regulate the fluid flow and a multiplexer was designed to distribute the fluid into six microchambers for amplification reactions. Cartridges were produced using soft lithography of silicone from 3D printed moulds, bonded to glass substrates. The isothermal technique, RPA is employed for amplification. This paper shows the results from two separate experiments: the first using the RPA control nucleic acid, the second showing successful amplification from Chlamydia Trachomatis. Endpoint analysis conducted for the RPA analysis was gel electrophoresis that showed 143 base pair DNA was amplified successfully for positive samples whilst negative samples did not show amplification. End point analysis for Chlamydia Trachomatis samples was fluorescence detection that showed successful detection of 1 copy/μL and 10 copies/μL spiked in a MES buffer. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  5. Quantum Dot Enabled Molecular Sensing and Diagnostics

    PubMed Central

    Zhang, Yi; Wang, Tza-Huei

    2012-01-01

    Since its emergence, semiconductor nanoparticles known as quantum dots (QDs) have drawn considerable attention and have quickly extended their applicability to numerous fields within the life sciences. This is largely due to their unique optical properties such as high brightness and narrow emission band as well as other advantages over traditional organic fluorophores. New molecular sensing strategies based on QDs have been developed in pursuit of high sensitivity, high throughput, and multiplexing capabilities. For traditional biological applications, QDs have already begun to replace traditional organic fluorophores to serve as simple fluorescent reporters in immunoassays, microarrays, fluorescent imaging applications, and other assay platforms. In addition, smarter, more advanced QD probes such as quantum dot fluorescence resonance energy transfer (QD-FRET) sensors, quenching sensors, and barcoding systems are paving the way for highly-sensitive genetic and epigenetic detection of diseases, multiplexed identification of infectious pathogens, and tracking of intracellular drug and gene delivery. When combined with microfluidics and confocal fluorescence spectroscopy, the detection limit is further enhanced to single molecule level. Recently, investigations have revealed that QDs participate in series of new phenomena and exhibit interesting non-photoluminescent properties. Some of these new findings are now being incorporated into novel assays for gene copy number variation (CNV) studies and DNA methylation analysis with improved quantification resolution. Herein, we provide a comprehensive review on the latest developments of QD based molecular diagnostic platforms in which QD plays a versatile and essential role. PMID:22916072

  6. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes.

    PubMed

    Li, Lanlan; Pan, Lijia; Ma, Zhong; Yan, Ke; Cheng, Wen; Shi, Yi; Yu, Guihua

    2018-06-13

    Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip. However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors. Here, we report on a "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system. The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment. For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min. The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum samples are comparable. The inkjet printing process exhibited advantages of high efficiency and accuracy, which opens substantial possibilities for massive fabrication of integrated multiplexed biosensors for human health monitoring.

  7. Development, Characterisation and Application of Monoclonal Antibodies for the Detection and Quantification of Infectious Salmon Anaemia Virus in Plasma Samples Using Luminex Bead Array Technology.

    PubMed

    Hoare, R; Thompson, K D; Herath, T; Collet, B; Bron, J E; Adams, A

    2016-01-01

    Infectious salmon anaemia virus (ISAV) is an orthomyxovirus that has had a significant economic impact on Atlantic salmon farming in Europe, North America and Chile. Monoclonal antibodies (mAbs) were developed against Segment 3 (encoding the viral nucleoprotein, NP) of the virus. Six of the mAbs were shown to be specific to ISAV and recognised all isolates from Scotland, Norway and Canada. They reacted with ISAV in enzyme-linked immunosorbent assay (ELISA), indirect fluorescent antibody technique (IFAT) and western blotting. They were also used to develop a novel detection method based on Luminex (Bio-Plex) bead-based flow cytometric technology for the detection of ISAV in the plasma of Atlantic salmon (Salmo salar L.) smolts experimentally infected with ISAV. Fish were challenged by intraperitoneal (i.p.) injection of virus at 50% Tissue Culture Infective Dose (TCID50) = 2.8 x106 per animal. Virus present in plasma of infected fish, collected at 0, 4, 8, 12, 16, 21 and 28 days post infection using a non-lethal sampling method (n = 12 at each time point), was quantified using the optimised Bio-Plex assay. The results obtained with this assay were compared with absolute quantification of the virus by RT-qPCR using SYBR Green I and TaqMan chemistries. The Bio-Plex assay developed using the NP mAbs appears to be a rapid, sensitive method for detecting and quantifying ISAV in small volumes of fish plasma and has the potential to be multiplexed for the detection of other fish pathogens (e.g. during co-infections). To our knowledge this is the first report of the use of Luminex (Bio-Plex) technology for the detection of a fish pathogen.

  8. 78 FR 16513 - Application of Advances in Nucleic Acid and Protein Based Detection Methods to Multiplex...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Transfusion-Transmissible Agents and Blood Cell Antigens in Blood Donations; Public Workshop AGENCY: Food and... Methods to Multiplex Detection of Transfusion- Transmissible Agents and Blood Cell Antigens in Blood... and the use of these tests in blood donor screening and blood cell antigen typing. The public workshop...

  9. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    NASA Astrophysics Data System (ADS)

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-05-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings.

  10. Simultaneous mutation and copy number variation (CNV) detection by multiplex PCR-based GS-FLX sequencing.

    PubMed

    Goossens, Dirk; Moens, Lotte N; Nelis, Eva; Lenaerts, An-Sofie; Glassee, Wim; Kalbe, Andreas; Frey, Bruno; Kopal, Guido; De Jonghe, Peter; De Rijk, Peter; Del-Favero, Jurgen

    2009-03-01

    We evaluated multiplex PCR amplification as a front-end for high-throughput sequencing, to widen the applicability of massive parallel sequencers for the detailed analysis of complex genomes. Using multiplex PCR reactions, we sequenced the complete coding regions of seven genes implicated in peripheral neuropathies in 40 individuals on a GS-FLX genome sequencer (Roche). The resulting dataset showed highly specific and uniform amplification. Comparison of the GS-FLX sequencing data with the dataset generated by Sanger sequencing confirmed the detection of all variants present and proved the sensitivity of the method for mutation detection. In addition, we showed that we could exploit the multiplexed PCR amplicons to determine individual copy number variation (CNV), increasing the spectrum of detected variations to both genetic and genomic variants. We conclude that our straightforward procedure substantially expands the applicability of the massive parallel sequencers for sequencing projects of a moderate number of amplicons (50-500) with typical applications in resequencing exons in positional or functional candidate regions and molecular genetic diagnostics. 2008 Wiley-Liss, Inc.

  11. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    PubMed Central

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-01-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings. PMID:24786974

  12. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo

    2005-05-18

    To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.

  13. Multiplex Amplification Coupled with COLD-PCR and High Resolution Melting Enables Identification of Low-Abundance Mutations in Cancer Samples with Low DNA Content

    PubMed Central

    Milbury, Coren A.; Chen, Clark C.; Mamon, Harvey; Liu, Pingfang; Santagata, Sandro; Makrigiorgos, G. Mike

    2011-01-01

    Thorough screening of cancer-specific biomarkers, such as DNA mutations, can require large amounts of genomic material; however, the amount of genomic material obtained from some specimens (such as biopsies, fine-needle aspirations, circulating-DNA or tumor cells, and histological slides) may limit the analyses that can be performed. Furthermore, mutant alleles may be at low-abundance relative to wild-type DNA, reducing detection ability. We present a multiplex-PCR approach tailored to amplify targets of interest from small amounts of precious specimens, for extensive downstream detection of low-abundance alleles. Using 3 ng of DNA (1000 genome-equivalents), we amplified the 1 coding exons (2-11) of TP53 via multiplex-PCR. Following multiplex-PCR, we performed COLD-PCR (co-amplification of major and minor alleles at lower denaturation temperature) to enrich low-abundance variants and high resolution melting (HRM) to screen for aberrant melting profiles. Mutation-positive samples were sequenced. Evaluation of mutation-containing dilutions revealed improved sensitivities after COLD-PCR over conventional-PCR. COLD-PCR improved HRM sensitivity by approximately threefold to sixfold. Similarly, COLD-PCR improved mutation identification in sequence-chromatograms over conventional PCR. In clinical specimens, eight mutations were detected via conventional-PCR-HRM, whereas 12 were detected by COLD-PCR-HRM, yielding a 33% improvement in mutation detection. In summary, we demonstrate an efficient approach to increase screening capabilities from limited DNA material via multiplex-PCR and improve mutation detection sensitivity via COLD-PCR amplification. PMID:21354058

  14. Clinical Microbiology Laboratories' Adoption of Culture-Independent Diagnostic Tests Is a Threat to Foodborne-Disease Surveillance in the United States.

    PubMed

    Shea, Shari; Kubota, Kristy A; Maguire, Hugh; Gladbach, Stephen; Woron, Amy; Atkinson-Dunn, Robyn; Couturier, Marc Roger; Miller, Melissa B

    2017-01-01

    INTRODUCTIONIn November 2015, the Centers for Disease Control and Prevention (CDC) sent a letter to state and territorial epidemiologists, state and territorial public health laboratory directors, and state and territorial health officials. In this letter, culture-independent diagnostic tests (CIDTs) for detection of enteric pathogens were characterized as "a serious and current threat to public health surveillance, particularly for Shiga toxin-producing Escherichia coli (STEC) and Salmonella" The document says CDC and its public health partners are approaching this issue, in part, by "reviewing regulatory authority in public health agencies to require culture isolates or specimen submission if CIDTs are used." Large-scale foodborne outbreaks are a continuing threat to public health, and tracking these outbreaks is an important tool in shortening them and developing strategies to prevent them. It is clear that the use of CIDTs for enteric pathogen detection, including both antigen detection and multiplex nucleic acid amplification techniques, is becoming more widespread. Furthermore, some clinical microbiology laboratories will resist the mandate to require submission of culture isolates, since it will likely not improve patient outcomes but may add significant costs. Specimen submission would be less expensive and time-consuming for clinical laboratories; however, this approach would be burdensome for public health laboratories, since those laboratories would need to perform culture isolation prior to typing. Shari Shea and Kristy Kubota from the Association of Public Health Laboratories, along with state public health laboratory officials from Colorado, Missouri, Tennessee, and Utah, will explain the public health laboratories' perspective on why having access to isolates of enteric pathogens is essential for public health surveillance, detection, and tracking of outbreaks and offer potential workable solutions which will allow them to do this. Marc Couturier of ARUP Laboratories and Melissa Miller of the University of North Carolina will explain the advantages of CIDTs for enteric pathogens and discuss practical solutions for clinical microbiology laboratories to address these public health needs. Copyright © 2016 American Society for Microbiology.

  15. Etiological analysis and predictive diagnostic model building of community-acquired pneumonia in adult outpatients in Beijing, China.

    PubMed

    Liu, Ya-Fen; Gao, Yan; Chen, Mei-Fang; Cao, Bin; Yang, Xiao-Hua; Wei, Lai

    2013-07-09

    Etiological epidemiology and diagnosis are important issues in adult community-acquired pneumonia (CAP), and identifying pathogens based on patient clinical features is especially a challenge. CAP-associated main pathogens in adults include viruses as well as bacteria. However, large-scale epidemiological investigations of adult viral CAP in China are still lacking. In this study, we analyzed the etiology of adult CAP in Beijing, China and constructed diagnostic models based on combinations of patient clinical factors. A multicenter cohort was established with 500 adult CAP outpatients enrolled in Beijing between November 2010 to October 2011. Multiplex and quantitative real-time fluorescence PCR were used to detect 15 respiratory viruses and mycoplasma pneumoniae, respectively. Bacteria were detected with culture and enzyme immunoassay of the Streptococcus pneumoniae urinary antigen. Univariate analysis, multivariate analysis, discriminatory analysis and Receiver Operating Characteristic (ROC) curves were used to build predictive models for etiological diagnosis of adult CAP. Pathogens were detected in 54.2% (271/500) of study patients. Viruses accounted for 36.4% (182/500), mycoplasma pneumoniae for 18.0% (90/500) and bacteria for 14.4% (72/500) of the cases. In 182 of the patients with viruses, 219 virus strains were detected, including 166 single and 53 mixed viral infections. Influenza A virus represented the greatest proportion with 42.0% (92/219) and 9.1% (20/219) in single and mixed viral infections, respectively. Factors selected for the predictive etiological diagnostic model of viral CAP included cough, dyspnea, absence of chest pain and white blood cell count (4.0-10.0) × 10(9)/L, and those of mycoplasma pneumoniae CAP were being younger than 45 years old and the absence of a coexisting disease. However, these models showed low accuracy levels for etiological diagnosis (areas under ROC curve for virus and mycoplasma pneumoniae were both 0.61, P < 0.05). Greater consideration should be given to viral and mycoplasma pneumoniae infections in adult CAP outpatients. While predictive etiological diagnostic models of viral and mycoplasma pneumoniae based on combinations of demographic and clinical factors may provide indications of etiology, diagnostic confirmation of CAP remains dependent on laboratory pathogen test results.

  16. Development and systematic validation of qPCR assays for rapid and reliable differentiation of Xylella fastidiosa strains causing citrus variegated chlorosis.

    PubMed

    Li, Wenbin; Teixeira, Diva C; Hartung, John S; Huang, Qi; Duan, Yongping; Zhou, Lijuan; Chen, Jianchi; Lin, Hong; Lopes, Silvio; Ayres, A Juliano; Levy, Laurene

    2013-01-01

    The xylem-limited, Gram-negative, fastidious plant bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease affecting approximately half of the citrus plantations in the State of São Paulo, Brazil. The disease was recently found in Central America and is threatening the multi-billion U.S. citrus industry. Many strains of X. fastidiosa are pathogens or endophytes in various plants growing in the U.S., and some strains cross infect several host plants. In this study, a TaqMan-based assay targeting the 16S rDNA signature region was developed for the identification of X. fastidiosa at the species level. Another TaqMan-based assay was developed for the specific identification of the CVC strains. Both new assays have been systematically validated in comparison with the primer/probe sets from four previously published assays on one platform and under similar PCR conditions, and shown to be superior. The species specific assay detected all X. fastidiosa strains and did not amplify any other citrus pathogen or endophyte tested. The CVC-specific assay detected all CVC strains but did not amplify any non-CVC X. fastidiosa nor any other citrus pathogen or endophyte evaluated. Both sets were multiplexed with a reliable internal control assay targeting host plant DNA, and their diagnostic specificity and sensitivity remained unchanged. This internal control provides quality assurance for DNA extraction, performance of PCR reagents, platforms and operators. The limit of detection for both assays was equivalent to 2 to 10 cells of X. fastidiosa per reaction for field citrus samples. Petioles and midribs of symptomatic leaves of sweet orange harbored the highest populations of X. fastidiosa, providing the best materials for detection of the pathogen. These new species specific assay will be invaluable for molecular identification of X. fastidiosa at the species level, and the CVC specific assay will be very powerful for the specific identification of X. fastidiosa strains that cause citrus variegated chlorosis. Published by Elsevier B.V.

  17. Comparison of three human papillomavirus DNA detection methods: Next generation sequencing, multiplex-PCR and nested-PCR followed by Sanger based sequencing.

    PubMed

    da Fonseca, Allex Jardim; Galvão, Renata Silva; Miranda, Angelica Espinosa; Ferreira, Luiz Carlos de Lima; Chen, Zigui

    2016-05-01

    To compare the diagnostic performance for HPV infection using three laboratorial techniques. Ninty-five cervicovaginal samples were randomly selected; each was tested for HPV DNA and genotypes using 3 methods in parallel: Multiplex-PCR, the Nested PCR followed by Sanger sequencing, and the Next_Gen Sequencing (NGS) with two assays (NGS-A1, NGS-A2). The study was approved by the Brazilian National IRB (CONEP protocol 16,800). The prevalence of HPV by the NGS assays was higher than that using the Multiplex-PCR (64.2% vs. 45.2%, respectively; P = 0.001) and the Nested-PCR (64.2% vs. 49.5%, respectively; P = 0.003). NGS also showed better performance in detecting high-risk HPV (HR-HPV) and HPV16. There was a weak interobservers agreement between the results of Multiplex-PCR and Nested-PCR in relation to NGS for the diagnosis of HPV infection, and a moderate correlation for HR-HPV detection. Both NGS assays showed a strong correlation for detection of HPVs (k = 0.86), HR-HPVs (k = 0.91), HPV16 (k = 0.92) and HPV18 (k = 0.91). NGS is more sensitive than the traditional Sanger sequencing and the Multiplex PCR to genotype HPVs, with promising ability to detect multiple infections, and may have the potential to establish an alternative method for the diagnosis and genotyping of HPV. © 2015 Wiley Periodicals, Inc.

  18. Detection and Typing of Human Papilloma Viruses by Nested Multiplex Polymerase Chain Reaction Assay in Cervical Cancer

    PubMed Central

    Jalal Kiani, Seyed; Shatizadeh Malekshahi, Somayeh; Yousefi Ghalejoogh, Zohreh; Ghavvami, Nastaran; Shafiei Jandaghi, Nazanin Zahra; Shahsiah, Reza; Jahanzad, Isa; Yavarian, Jila

    2015-01-01

    Background: Cervical cancer is the leading cause of death from cancer in under-developed countries. Human papilloma virus (HPV) 16 and 18 are the most prevalent types associated with carcinogenesis in the cervix. Conventional Polymerase Chain Reaction (PCR), type-specific and consensus primer-based PCR followed by sequencing, Restriction Fragment Length Polymorphism (RFLP) or hybridization by specific probes are common methods for HPV detection and typing. In addition, some researchers have developed a multiplex PCR for simultaneous detection and typing of different HPVs. Objectives: The aim of the present study was to investigate the prevalence of HPV infection and its types in cervical Squamous Cell Carcinoma (SCC) using the Nested Multiplex PCR (NMPCR) assay. Patients and Methods: Sixty-six samples with histologically confirmed SCC were evaluated. Total DNA was isolated by phenol–chloroform extraction and ethanol precipitation. Nested multiplex PCR was performed with first-round PCR by GP-E6/E7 consensus primers for amplification of the genomic DNA of all known mucosal HPV genotypes and second-round PCR by type-specific multiplex PCR primer cocktails. Results: Human papilloma virus infection was detected in 78.8% of samples, with the highest prevalence of HPV 16 (60.6%) while concurrent infections with two types was detected in 10.6%. Conclusions: The NMPCR assay is more convenient and easy for analysis of results, which is important for fast diagnosis and patient management, in a type-specific manner. PMID:26865940

  19. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

    PubMed

    Liu, Yacui; Zhang, Jiangyan; Tian, Jingxiao; Fan, Xiaofei; Geng, Hao; Cheng, Yongqiang

    2017-01-01

    A simple, highly sensitive, and specific assay was developed for the homogeneous and multiplex detection of microRNAs (miRNAs) by combining molecular beacon (MB) probes and T7 exonuclease-assisted cyclic amplification. An MB probe with five base pairs in the stem region without special modification can effectively prevent the digestion by T7 exonuclease. Only in the presence of target miRNA is the MB probe hybridized with the target miRNA, and then digested by T7 exonuclease in the 5' to 3' direction. At the same time, the target miRNA is released and subsequently initiates the nuclease-assisted cyclic digestion process, generating enhanced fluorescence signal significantly. The results show that the combination of T7 exonuclease-assisted cyclic amplification reaction and MB probe possesses higher sensitivity for miRNA detection. Moreover, multiplex detection of miRNAs was successfully achieved by designing two MB probes labeled with FAM and Cy3, respectively. As a result, the method opens a new pathway for the sensitive and multiplex detection of miRNAs as well as clinical diagnosis. Graphical Abstract A simple, highly sensitive, and specific assay was developed for the detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

  20. Rapid detection method for Bacillus anthracis using a combination of multiplexed real-time PCR and pyrosequencing and its application for food biodefense.

    PubMed

    Janzen, Timothy W; Thomas, Matthew C; Goji, Noriko; Shields, Michael J; Hahn, Kristen R; Amoako, Kingsley K

    2015-02-01

    Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml(-1), and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.

Top