Science.gov

Sample records for multiplex pcr methods

  1. A multiplex PCR method for rapid identification of Brachionus rotifers.

    PubMed

    Vasileiadou, Kalliopi; Papakostas, Spiros; Triantafyllidis, Alexander; Kappas, Ilias; Abatzopoulos, Theodore J

    2009-01-01

    Cryptic species are increasingly being recognized in many organisms. In Brachionus rotifers, many morphologically similar yet genetically distinct species/biotypes have been described. A number of Brachionus cryptic species have been recognized among hatchery strains. In this study, we present a simple, one-step genetic method to detect the presence of those Brachionus sp. rotifers that have been found in hatcheries. With the proposed technique, each of the B. plicatilis sensu stricto, B. ibericus, Brachionus sp. Nevada, Brachionus sp. Austria, Brachionus sp. Manjavacas, and Brachionus sp. Cayman species and/or biotypes can be identified with polymerase chain reaction (PCR) analysis. Based on 233 cytochrome c oxidase subunit I sequences, we reviewed all the available cryptic Brachionus sp. genetic polymorphisms, and we designed six nested primers. With these primers, a specific amplicon of distinct size is produced for every one of the involved species/biotypes. Two highly sensitive protocols were developed for using the primers. Many of the primers can be combined in the same PCR. The proposed method has been found to be an effective and practical tool to investigate the presence of the above six cryptic species/biotypes in both individual and communal (bulk) rotifer deoxyribonucleic acid extractions from hatcheries. With this technique, hatchery managers could easily determine their rotifer composition at the level of cryptic species and monitor their cultures more efficiently.

  2. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  3. A Novel Universal Primer-Multiplex-PCR Method with Sequencing Gel Electrophoresis Analysis

    PubMed Central

    Huang, Kunlun; Zhang, Nan; Yuan, Yanfang; Shang, Ying; Luo, Yunbo

    2012-01-01

    In this study, a novel universal primer-multiplex-PCR (UP-M-PCR) method adding a universal primer (UP) in the multiplex PCR reaction system was described. A universal adapter was designed in the 5′-end of each specific primer pairs which matched with the specific DNA sequences for each template and also used as the universal primer (UP). PCR products were analyzed on sequencing gel electrophoresis (SGE) which had the advantage of exhibiting extraordinary resolution. This method overcame the disadvantages rooted deeply in conventional multiplex PCR such as complex manipulation, lower sensitivity, self-inhibition and amplification disparity resulting from different primers, and it got a high specificity and had a low detection limit of 0.1 ng for single kind of crops when screening the presence of genetically modified (GM) crops in mixture samples. The novel developed multiplex PCR assay with sequencing gel electrophoresis analysis will be useful in many fields, such as verifying the GM status of a sample irrespective of the crop and GM trait and so on. PMID:22272223

  4. Designing multiplex PCR system of Campylobacter jejuni for efficient typing by improving monoplex PCR binary typing method.

    PubMed

    Yamada, Kazuhiro; Ibata, Ami; Suzuki, Masahiro; Matsumoto, Masakado; Yamashita, Teruo; Minagawa, Hiroko; Kurane, Ryuichiro

    2015-01-01

    Campylobacter jejuni is responsible for the majority of Campylobacter infections. As the molecular epidemiological study of outbreaks, pulsed-field gel electrophoresis (PFGE) is performed in general. But PFGE has several problems. PCR binary typing (P-BIT) method is a typing method for Campylobacter spp. that was recently developed, and was reported to have a similar discriminatory power and stability to those of PFGE. We modified the P-BIT method from 18 monoplex PCRs to two multiplex PCR systems (mP-BIT). The same results were obtained from monoplex PCRs using original primers and multiplex PCR in the representative isolates. The mP-BIT can analyze 48 strains at a time by using 96-well PCR systems and can identify C. jejuni because mP-BIT includes C. jejuni marker. The typing of the isolates by the mP-BIT and PFGE demonstrated generally concordant results and the mP-BIT method (D = 0.980) has a similar discriminatory power to that of PFGE with SmaI digest (D = 0.975) or KpnI digest (D = 0.987) as with original article. The mP-BIT method is quick, simple and easy, and comes to be able to perform it at low cost by having become a multiplex PCR system. Therefore, the mP-BIT method with two multiplex PCR systems has high potential for a rapid first-line surveillance typing assay of C. jejuni and can be used for routine surveillance and outbreak investigations of C. jejuni in the future. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    PubMed

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  6. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    PubMed Central

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products. PMID:26257724

  7. Screening DNA chip and event-specific multiplex PCR detection methods for biotech crops.

    PubMed

    Lee, Seong-Hun

    2014-11-01

    There are about 80 biotech crop events that have been approved by safety assessment in Korea. They have been controlled by genetically modified organism (GMO) and living modified organism (LMO) labeling systems. The DNA-based detection method has been used as an efficient scientific management tool. Recently, the multiplex polymerase chain reaction (PCR) and DNA chip have been developed as simultaneous detection methods for several biotech crops' events. The event-specific multiplex PCR method was developed to detect five biotech maize events: MIR604, Event 3272, LY 038, MON 88017 and DAS-59122-7. The specificity was confirmed and the sensitivity was 0.5%. The screening DNA chip was developed from four endogenous genes of soybean, maize, cotton and canola respectively along with two regulatory elements and seven genes: P35S, tNOS, pat, bar, epsps1, epsps2, pmi, cry1Ac and cry3B. The specificity was confirmed and the sensitivity was 0.5% for four crops' 12 events: one soybean, six maize, three cotton and two canola events. The multiplex PCR and DNA chip can be available for screening, gene-specific and event-specific analysis of biotech crops as efficient detection methods by saving on workload and time. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  8. A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize.

    PubMed

    Matsuoka, T; Kuribara, H; Akiyama, H; Miura, H; Goda, Y; Kusakabe, Y; Isshiki, K; Toyoda, M; Hino, A

    2001-02-01

    Seven lines of genetically modified (GM) maize have been authorized in Japan as foods and feeds imported from the USA. We improved a multiplex PCR method described in the previous report in order to distinguish the five lines of GM maize. Genomic DNA was extracted from GM maize with a silica spin column kit, which could reduce experimental time and improve safety in the laboratory and potentially in the environment. We sequenced recombinant DNA (r-DNA) introduced into GM maize, and re-designed new primer pairs to increase the specificity of PCR to distinguish five lines of GM maize by multiplex PCR. A primer pair for the maize intrinsic zein gene (Ze1) was also designed to confirm the presence of amplifiable maize DNA. The lengths of PCR products using these six primer pairs were different. The Ze1 and the r-DNAs from the five lines of GM maize were qualitatively detected in one tube. The specific PCR bands were distinguishable from each other on the basis of the expected length. The r-DNA could be detected from maize samples containing 0.5% of each of the five lines of GM maize. The sensitivity would be acceptable to secure the verification of non-GMO materials and to monitor the reliability of the labeling system.

  9. Effective characterization of Salmonella Enteritidis by most probable number (MPN) followed by multiplex polymerase chain reaction (PCR) methods.

    PubMed

    Zappelini, Lincohn; Martone-Rocha, Solange; Dropa, Milena; Matté, Maria Helena; Tiba, Monique Ribeiro; Breternitz, Bruna Suellen; Razzolini, Maria Tereza Pepe

    2017-02-01

    Nontyphoidal Salmonella (NTS) is a relevant pathogen involved in gastroenteritis outbreaks worldwide. In this study, we determined the capacity to combine the most probable number (MPN) and multiplex polymerase chain reaction (PCR) methods to characterize the most important Salmonella serotypes in raw sewage. A total of 499 isolates were recovered from 27 raw sewage samples and screened using two previously described multiplex PCR methods. From those, 123 isolates were selected based on PCR banding pattern-identical or similar to Salmonella Enteritidis and Salmonella Typhimurium-and submitted to conventional serotyping. Results showed that both PCR assays correctly serotyped Salmonella Enteritidis, however, they presented ambiguous results for Salmonella Typhimurium identification. These data highlight that MPN and multiplex PCR can be useful methods to describe microbial quality in raw sewage and suggest two new PCR patterns for Salmonella Enteritidis identification.

  10. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

    PubMed Central

    Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.

    2015-01-01

    Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438

  11. Multiplex-PCR Method for Species Identification of Coagulase-Positive Staphylococci ▿

    PubMed Central

    Sasaki, Takashi; Tsubakishita, Sae; Tanaka, Yoshikazu; Sakusabe, Arihito; Ohtsuka, Masayuki; Hirotaki, Shintaro; Kawakami, Tetsuji; Fukata, Tsuneo; Hiramatsu, Keiichi

    2010-01-01

    In veterinary medicine, coagulase-positive staphylococci (CoPS) other than Staphylococcus aureus have frequently been misidentified as being S. aureus strains, as they have several phenotypic traits in common. There has been no reliable method to distinguish among CoPS species in veterinary clinical laboratories. In the present study, we sequenced the thermonuclease (nuc) genes of staphylococcal species and devised a multiplex-PCR (M-PCR) method for species identification of CoPS by targeting the nuc gene locus. To evaluate sensitivity and specificity, we used this M-PCR method on 374 staphylococcal strains that had been previously identified to the species level by an hsp60 sequencing approach. We could successfully distinguish between S. aureus, S. hyicus, S. schleiferi, S. intermedius, S. pseudintermedius, and S. delphini groups A and B. The present method was both sensitive (99.8%) and specific (100%). Our M-PCR assay will allow the routine species identification of CoPS isolates from various animal species for clinical veterinary diagnosis. PMID:20053855

  12. New multiplex PCR method for the simultaneous diagnosis of the three known species of equine tapeworm.

    PubMed

    Bohórquez, G Alejandro; Luzón, Mónica; Martín-Hernández, Raquel; Meana, Aránzazu

    2015-01-15

    Although several techniques exist for the detection of equine tapeworms in serum and feces, the differential diagnosis of tapeworm infection is usually based on postmortem findings and the morphological identification of eggs in feces. In this study, a multiplex polymerase chain reaction (PCR)-based method for the simultaneuos detection of Anoplocephala magna, Anoplocephala perfoliata and Anoplocephaloides mamillana has been developed and validated. The method simultaneously amplifies hypervariable SSUrRNA gene regions in the three tapeworm species in a single reaction using three pairs of primers, which exclusively amplify the internal transcribed spacer 2 (ITS-2) in each target gene. The method was tested on three types of sample: (a) 1/10, 1/100, 1/500, 1/1000, 1/2000 and 1/5000 dilutions of 70 ng of genomic DNA of the three tapeworm species, (b) DNA extracted from negative aliquots of sediments of negative control fecal samples spiked with 500, 200, 100, 50 and 10 eggs (only for A. magna and A. perfoliata; no A. mamillana eggs available) and (c) DNA extracted from 80, 50, 40, 30, 10 and 1 egg per 2 μl of PCR reaction mix (only for A. magna and A. perfoliata; no A. mamillana eggs available). No amplification was observed against the DNA of Gasterophilus intestinalis, Parascaris equorum and Strongylus vulgaris. The multiplex PCR method emerged as specific for the three tapeworms and was able to identify as few as 50 eggs per fecal sample and as little as 0.7 ng of control genomic DNA obtained from the three species. The method proposed is able to differentiate infections caused by the two most frequent species A. magna or A. perfoliata when the eggs are present in feces and is also able to detect mixed infections by the three cestode species. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Development a rapid and accurate multiplex real time PCR method for the detection Chlamydia trachomatis and Mycoplasma hominis.

    PubMed

    Safarkar, Roya; Mehrabadi, Jalil Fallah; Noormohammadi, Zahra; Mirnejad, Reza

    2017-02-26

    Sexually transmitted diseases easily spread among sexually active people and often have no symptoms. Rapid and accurate method for detecting these infections are necessary in early stages. The traditional detection methods of them are difficult and time-consuming. In this study, multiplex real time PCR was optimized for rapid identification of Chlamydia trachomatis and Mycoplasma hominis in a single tube and was performed with our designed primers. The sensitivity test was carried out to designed primers with diluted genomic DNA. To defined the specificity, non STD bacteria were used as DNA template. This study indicated that the developed multiplex real time PCR can be an effective alternative procedure to the conventional methods for rapid and accurate identification of C Chlamydia trachomatis and Mycoplasma hominis. Multiplex real-time PCR Results of them were checked with melting curves. The sensitivity of our designed primer by multiplex real time PCR for Chlamydia trachomatis and Mycoplasma hominis were 4.78×10(10) and 8.35×10(10) , respectively, Which the primers did not amplify any product from a non-STD species. Multiplex real time PCR by our new primers and analysis of melting curves were successfully usable for rapid and accurate detection of Chlamydia trachomatis and Mycoplasma hominis. This assay instead of traditional culture method, has considerable potential to be rapid, accurate and highly sensitive molecular diagnostic tool for simultaneous and direct detection. © 2017 Wiley Periodicals, Inc.

  14. Development of a genotyping method for potato scab pathogens based on multiplex PCR.

    PubMed

    Tagawa, Masahiro; Tamaki, Hideyuki; Manome, Akira; Koyama, Osamu; Kamagata, Yoichi

    2008-09-01

    Scab disease significantly damages potato and other root crops. Streptomyces scabiei, S. acidiscabiei, and S. turgidiscabiei are the best-known causal agents of this disease. We have developed a novel genotyping method for these potato scab pathogens using multiplex PCR, whose benefits include rapid and easy detection of multiple species. We designed a species-specific primer set (6 primers, 3 pairs) for the 16S rRNA genes and 16S-23S ITS regions of these potato scab pathogens. The specificity of the primer set was confirmed by testing 18 strains containing potato scab pathogens, other Streptomyces species, and strains of other genera. The application of the developed method to potato field soil and potato tissue samples resulted in the clear detection and identification of pathogens. Since this method is applicable to a large number of environmental samples, it is expected to be useful for a high-throughput analysis of soil and plant tissues of scab disease.

  15. [Application of the multiplex PCR and PCR-RFLP method in the identification of the Bacillus anthracis].

    PubMed

    Szymajda, Urszula; Bartoszcze, Michał

    2005-01-01

    The aim of this study was to apply the multiplex PCR and PCR-RFLP method for the identification of the B. anthracis strains and to distinguish those bacteria from other members of the Bacillus cereus group. The multiplex PCR method enables to detect the virulence factors, i.e. the toxin and the capsule in B. anthracis strains. To do that, the authors have used 5 primer pairs specific for the fragments of lef, cya, pag genes which are present in the pXO1 plasmid and encode the toxin, the cap gene, which is present in the pXO2 plasmid and encodes the capsule, and the Ba813 chromosomal sequence. Among the four B. anthracis strains examined, three contained two plasmids and the Ba813 chromosomal sequence, while the fourth one contained the pXO1 plasmid only, together and the Ba813 chromosomal sequence. Other bacterial species, belonging to the B. cereus group, were also examined: 6 strains of B. cereus, 4 strains of B. thuringiensis and one strain of B. mycoides. The presence of Ba813 chromosomal sequence has been detected in two B. cereus strains. Neither plasmids nor Ba813 chromosomal sequence have been discovered in other B. cereus, B. thuringiensis and B. mycoides strains. The results of the survey indicate that the Ba813 chromosomal sequence does not occur solely in B. anthracis strains. The PCR-RFLP method with the use of SG-749f and SG-749r primers enabled to demonstrate the presence of DNA sequence (SG-749) in B. anthracis, B. cereus, B. thuringiensis and B. mycoides strains. Restriction analysis with enzyme AluI of the SG-749 sequence, has shown the presence of two DNA fragments at the size of about 90 and 660 bp in all B. anthracis strains. The restriction profile obtained was characteristic for B. anthracis strains and it did not occur in other investigated bacterial species belonging to the B. cereus group. It was not observed even in such B. cereus strains in which the presence of Ba813 sequence was discovered and it enabled to differentiate between B

  16. Direct PCR - A rapid method for multiplexed detection of different serotypes of Salmonella in enriched pork meat samples.

    PubMed

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas; Quyen, Than Linh; Engelsmann, Pia; Wolff, Anders; Bang, Dang Duong

    2017-04-01

    Salmonellosis, an infectious disease caused by Salmonella spp., is one of the most common foodborne diseases. Isolation and identification of Salmonella by conventional bacterial culture method is time consuming. In response to the demand for rapid on line or at site detection of pathogens, in this study, we developed a multiplex Direct PCR method for rapid detection of different Salmonella serotypes directly from pork meat samples without any DNA purification steps. An inhibitor-resistant Phusion Pfu DNA polymerase was used to overcome PCR inhibition. Four pairs of primers including a pair of newly designed primers targeting Salmonella spp. at subtype level were incorporated in the multiplex Direct PCR. To maximize the efficiency of the Direct PCR, the ratio between sample and dilution buffer was optimized. The sensitivity and specificity of the multiplex Direct PCR were tested using naturally contaminated pork meat samples for detecting and subtyping of Salmonella spp. Conventional bacterial culture methods were used as reference to evaluate the performance of the multiplex Direct PCR. Relative accuracy, sensitivity and specificity of 98.8%; 97.6% and 100%, respectively, were achieved by the method. Application of the multiplex Direct PCR to detect Salmonella in pork meat at slaughter reduces the time of detection from 5 to 6 days by conventional bacterial culture and serotyping methods to 14 h (including 12 h enrichment time). Furthermore, the method poses a possibility of miniaturization and integration into a point-of-need Lab-on-a-chip system for rapid online pathogen detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Rapid detection and differentiation of Listeria monocytogenes and Listeria species in deli meats by a new multiplex PCR method

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes is an important foodborne pathogen. To effectively control this pathogen, it is necessary to have a method that can detect and differentiate L. monocytogenes from other Listeria species in food, environmental, and clinical samples. A new multiplex PCR method using new primers ...

  18. Multiplex PCR method to discriminate Artemisia iwayomogi from other Artemisia plants.

    PubMed

    Doh, Eui Jeong; Oh, Seung-Eun

    2012-01-01

    Some plants in the genus Artemisia have been used for medicinal purposes. Among them, Artemisia iwayomogi, commonly referred to as "Haninjin," is one of the major medicinal materials used in traditional Korean medicine. By contrast, Artemisia capillaris and both Artemisia argyi and Artemisia princeps, referred to as "Injinho" and "Aeyup," respectively, are used to treat diseases different from those for which "Haninjin" is prescribed. Therefore, the development of a reliable method to differentiate each Artemisia herb is necessary. We found that a random amplified polymorphic DNA (RAPD) method can be used to efficiently discriminate a few Artemisia plants from one another. To improve the reliability of RAPD amplification, we designed primer sets based on the nucleotide sequences of RAPD products to amplify a sequence-characterized amplified region (SCAR) marker of A. iwayomogi. In addition, we designed two other primer sets to amplify SCAR markers of "Aeyup" (A. argyi and A. princeps) along with "Injinho" (A. capillaris) and Artemisia japonica, which are also traded in Korean herbal markets. Using these three primer sets, we developed a multiplex PCR method concurrently not only to discriminate A. iwayomogi from other Artemisia plants, but also to identify Artemisia plants using a single PCR process.

  19. Development of a Multiplex PCR Method to Detect Fungal Pathogens for Quarantine on Exported Cacti.

    PubMed

    Cho, Hyun Ji; Hong, Seong Won; Kim, Hyun-Ju; Kwak, Youn-Sig

    2016-02-01

    Major diseases in grafted cacti have been reported and Fusarium oxysporum, Bipolaris cactivora, Phytophthora spp. and Collectotrichum spp. are known as causal pathogens. These pathogens can lead to plant death after infection. Therefore, some European countries have quarantined imported cacti that are infected with specific fungal pathogens. Consequently, we developed PCR detection methods to identify four quarantined fungal pathogens and reduce export rejection rates of Korean grafted cacti. The pathogen specific primer sets F.oF-F.oR, B.CF-B.CR, P.nF-P.nR, and P.cF-P.CR were tested for F. oxysporum, B. cactivora, P. nicotinae, and P. cactorum, respectively. The F.oF-F.oR primer set was designed from the Fusarium ITS region; the B.CF-B.CR and P.nF-P.nR primers respectively from Bipolaris and Phytophthora ITS1; and the P.cF-P.CR primer set from the Ypt1protein gene region. The quarantine fungal pathogen primer pairs were amplified to the specific number of base pairs in each of the following fungal pathogens: 210-bp (F. oxysporum), 510-bp (B. cactivora), 313-bp (P. nicotinae), and 447-bp (P. cactorum). The detection limit for the mono- and multiplex PCR primer sets was 0.1 ng of template DNA under in vitro conditions. Therefore, each primer set successfully diagnosed contamination of quarantine pathogens in export grafted cacti. Consequently, our methodology is a viable tool to screen contamination of the fungal pathogen in exported grafted cacti.

  20. Development of a Multiplex PCR Method to Detect Fungal Pathogens for Quarantine on Exported Cacti

    PubMed Central

    Cho, Hyun ji; Hong, Seong Won; Kim, Hyun-ju; Kwak, Youn-Sig

    2016-01-01

    Major diseases in grafted cacti have been reported and Fusarium oxysporum, Bipolaris cactivora, Phytophthora spp. and Collectotrichum spp. are known as causal pathogens. These pathogens can lead to plant death after infection. Therefore, some European countries have quarantined imported cacti that are infected with specific fungal pathogens. Consequently, we developed PCR detection methods to identify four quarantined fungal pathogens and reduce export rejection rates of Korean grafted cacti. The pathogen specific primer sets F.oF-F.oR, B.CF-B.CR, P.nF-P.nR, and P.cF-P.CR were tested for F. oxysporum, B. cactivora, P. nicotinae, and P. cactorum, respectively. The F.oF-F.oR primer set was designed from the Fusarium ITS region; the B.CF-B.CR and P.nF-P.nR primers respectively from Bipolaris and Phytophthora ITS1; and the P.cF-P.CR primer set from the Ypt1protein gene region. The quarantine fungal pathogen primer pairs were amplified to the specific number of base pairs in each of the following fungal pathogens: 210-bp (F. oxysporum), 510-bp (B. cactivora), 313-bp (P. nicotinae), and 447-bp (P. cactorum). The detection limit for the mono- and multiplex PCR primer sets was 0.1 ng of template DNA under in vitro conditions. Therefore, each primer set successfully diagnosed contamination of quarantine pathogens in export grafted cacti. Consequently, our methodology is a viable tool to screen contamination of the fungal pathogen in exported grafted cacti. PMID:26889115

  1. Comparison of three human papillomavirus DNA detection methods: Next generation sequencing, multiplex-PCR and nested-PCR followed by Sanger based sequencing.

    PubMed

    da Fonseca, Allex Jardim; Galvão, Renata Silva; Miranda, Angelica Espinosa; Ferreira, Luiz Carlos de Lima; Chen, Zigui

    2016-05-01

    To compare the diagnostic performance for HPV infection using three laboratorial techniques. Ninty-five cervicovaginal samples were randomly selected; each was tested for HPV DNA and genotypes using 3 methods in parallel: Multiplex-PCR, the Nested PCR followed by Sanger sequencing, and the Next_Gen Sequencing (NGS) with two assays (NGS-A1, NGS-A2). The study was approved by the Brazilian National IRB (CONEP protocol 16,800). The prevalence of HPV by the NGS assays was higher than that using the Multiplex-PCR (64.2% vs. 45.2%, respectively; P = 0.001) and the Nested-PCR (64.2% vs. 49.5%, respectively; P = 0.003). NGS also showed better performance in detecting high-risk HPV (HR-HPV) and HPV16. There was a weak interobservers agreement between the results of Multiplex-PCR and Nested-PCR in relation to NGS for the diagnosis of HPV infection, and a moderate correlation for HR-HPV detection. Both NGS assays showed a strong correlation for detection of HPVs (k = 0.86), HR-HPVs (k = 0.91), HPV16 (k = 0.92) and HPV18 (k = 0.91). NGS is more sensitive than the traditional Sanger sequencing and the Multiplex PCR to genotype HPVs, with promising ability to detect multiple infections, and may have the potential to establish an alternative method for the diagnosis and genotyping of HPV.

  2. Multiplex PCR method to detect Cyclospora, Cystoisospora, and Microsporidia in stool samples

    PubMed Central

    Taniuchi, Mami; Verweij, Jaco J.; Sethabutr, Orntipa; Bodhidatta, Ladaporn; Garcia, Lynne; Maro, Athanasia; Kumburu, Happiness; Gratz, Jean; Kibiki, Gibson; Houpt, Eric R.

    2011-01-01

    Cyclospora, Cystoisospora, and Microsporidia are eukaryotic enteropathogens that are difficult to detect in stool samples because they require special stains and microscopy. We developed a multiplex PCR reaction with 4 primer sets to amplify Cyclospora cayetanensis, Cystoisospora belli, Enterocytozoon bieneusi, and Encephalitozoon intestinalis. Detection of the amplicon is through specific probes coupled to Luminex beads. Sensitivity of the assay was evaluated using Encephalitozoon intestinalis spores and revealed detection of 101 spores spiked into stool. No cross reactivity was observed. We evaluated the assay on diarrheal specimens from Thailand, Tanzania, Indonesia, and the Netherlands that had been previously tested by microscopy and the assay yielded 87–100% sensitivity and 88–100% specificity. Microscopy negative/PCR positive samples had lower Luminex values suggesting they were true but lower burden infections. In summary this is a convenient single PCR reaction that can detect Cyclospora, Cystoisospora, and Microsporidia without the need for cumbersome microscopic analysis. PMID:21982218

  3. Comparative Evaluation of Multiplex PCR and Routine Laboratory Phenotypic Methods for Detection of Carbapenemases among Gram Negative Bacilli

    PubMed Central

    Vanjari, Lavanya; Subramanian, Sreevidya; B, Aparna; E, Nagapriyanka; Lakshmi, Vemu

    2014-01-01

    Background: Carbapenem resistant pathogens cause infections associated with significant morbidity and mortality. Objective: This study evaluates the use of Multiplex PCR for rapid detection of carbapenemase genes among carbapenem resistant Gram negative bacteria in comparison with the existing phenotypic methods like modified Hodge test (MHT), combined disc test (CDT) and automated methods. Material and Methods: A total of 100 Carbapenem resistant clinical isolates, [Escherichia coli (25), Klebsiella pneumoniae (35) P. aeruginosa (18) and Acinetobacter baumannii (22)] were screened for the presence of carbapenemases (blaNDM-1, blaVIM, blaIMP and blaKPC genes) by phenotype methods such as the modified Hodge test (MHT) and combined disc test (CDT) and the molecular methods such as Multiplex PCR. Results: Seventy of the 100 isolates were MHT positive while, 65 isolates were positive by CDT. All the CDT positive isolates with EDTA and APB were Metallo betalactamase (MBL) and K. pneumoniae carbapenemase (KPC) producers respectively. blaNDM-1 was present as a lone gene in 44 isolates. In 14 isolates blaNDM-1 gene was present with blaKPC gene, and in one isolate blaNDM-1 gene was present with blaVIM, gene. Only one E. coli isolate had a lone blaKPC gene. We didn’t find blaIMP gene in any of the isolates. Neither of the genes could be detected in 35 isolates. Conclusion: Accurate detection of the genes related with carbapenemase production by Molecular methods like Multiplex PCR overcome the limitations of the phenotypic methods and Automated systems. PMID:25653949

  4. Rapid Diagnosis of Leptospirosis by Multiplex PCR

    PubMed Central

    Ahmed, Siti Aminah; Sandai, Doblin Anak; Musa, Suzana; Hoe, Chee Hock; Riadzi, Mehdi; Lau, Kwok Leong; Tang, Thean Hock

    2012-01-01

    Background: Traditionally, the most common diagnostic approach used for diagnosing leptospirosis was the demonstration of immune-seroconversion in acute and convalescent patient serum samples. Recently, a variety of molecular techniques, including conventional and real-time polymerase chain reaction (PCR), have been developed for the specific detection of pathogenic bacteria from the genus Leptospira. PCR is a sensitive, specific, and rapid technique that has been successfully used to detect several microorganisms; including those of clinical significance. Methods: In this study, we developed a multiplex PCR (mPCR) assay for detecting Leptospira’s DNA. The mPCR assay detects both the 16S rRNA gene and the major outer membrane lipoprotein gene, which is known as LipL32. Representative serovars were tested from 10 species of Leptospira and 23 other species of bacteria. Results: A positive result was obtained from all leptospiral serovars. The amplification sensitivity for the multiplex assay was 21.8 pg and 1 × 103 leptospires/ml. This mPCR assay has the potential to facilitate a rapid and sensitive diagnosis for acute leptospirosis. Conclusion: The mPCR assay developed in this study can be used for the early detection of leptospirosis. The LipL32 gene could also serve as another target to aid in the efficient detection of leptospiral infection because using 2 sets of primers in mPCR increases the sensitivity and specificity of the test. PMID:23610544

  5. Rapid detection of coliforms in drinking water of Arak city using multiplex PCR method in comparison with the standard method of culture (Most Probably Number)

    PubMed Central

    Fatemeh, Dehghan; Reza, Zolfaghari Mohammad; Mohammad, Arjomandzadegan; Salomeh, Kalantari; Reza, Ahmari Gholam; Hossein, Sarmadian; Maryam, Sadrnia; Azam, Ahmadi; Mana, Shojapoor; Negin, Najarian; Reza, Kasravi Alii; Saeed, Falahat

    2014-01-01

    Objective To analyse molecular detection of coliforms and shorten the time of PCR. Methods Rapid detection of coliforms by amplification of lacZ and uidA genes in a multiplex PCR reaction was designed and performed in comparison with most probably number (MPN) method for 16 artificial and 101 field samples. The molecular method was also conducted on isolated coliforms from positive MPN samples; standard sample for verification of microbial method certificated reference material; isolated strains from certificated reference material and standard bacteria. The PCR and electrophoresis parameters were changed for reducing the operation time. Results Results of PCR for lacZ and uidA genes were similar in all of standard, operational and artificial samples and showed the 876 bp and 147 bp bands of lacZ and uidA genes by multiplex PCR. PCR results were confirmed by MPN culture method by sensitivity 86% (95% CI: 0.71-0.93). Also the total execution time, with a successful change of factors, was reduced to less than two and a half hour. Conclusions Multiplex PCR method with shortened operation time was used for the simultaneous detection of total coliforms and Escherichia coli in distribution system of Arak city. It's recommended to be used at least as an initial screening test, and then the positive samples could be randomly tested by MPN. PMID:25182727

  6. A New Multiplex-PCR for Urinary Tract Pathogen Detection Using Primer Design Based on an Evolutionary Computation Method.

    PubMed

    García, Liliana Torcoroma; Cristancho, Laura Maritza; Vera, Erika Patricia; Begambre, Oscar

    2015-10-01

    This work describes a new strategy for optimal design of Multiplex-PCR primer sequences. The process is based on the Particle Swarm Optimization-Simplex algorithm (Mult-PSOS). Diverging from previous solutions centered on heuristic tools, the Mult-PSOS is selfconfigured because it does not require the definition of the algorithm's initial search parameters. The successful performance of this method was validated in vitro using Multiplex- PCR assays. For this validation, seven gene sequences of the most prevalent bacteria implicated in urinary tract infections were taken as DNA targets. The in vitro tests confirmed the good performance of the Mult-PSOS, with respect to infectious disease diagnosis, in the rapid and efficient selection of the optimal oligonucleotide sequences for Multiplex-PCRs. The predicted sequences allowed the adequate amplification of all amplicons in a single step (with the correct amount of DNA template and primers), reducing significantly the need for trial and error experiments. In addition, owing to its independence from the initial selection of the heuristic constants, the Mult-PSOS can be employed by non-expert users in computational techniques or in primer design problems.

  7. A Colony Multiplex Quantitative PCR-Based 3S3DBC Method and Variations of It for Screening DNA Libraries

    PubMed Central

    An, Yang; Toyoda, Atsushi; Zhao, Chen; Fujiyama, Asao; Agata, Kiyokazu

    2015-01-01

    A DNA library is a collection of DNA fragments cloned into vectors and stored individually in host cells, and is a valuable resource for molecular cloning, gene physical mapping, and genome sequencing projects. To take the best advantage of a DNA library, a good screening method is needed. After describing pooling strategies and issues that should be considered in DNA library screening, here we report an efficient colony multiplex quantitative PCR-based 3-step, 3-dimension, and binary-code (3S3DBC) method we used to screen genes from a planarian genomic DNA fosmid library. This method requires only 3 rounds of PCR reactions and only around 6 hours to distinguish one or more desired clones from a large DNA library. According to the particular situations in different research labs, this method can be further modified and simplified to suit their requirements. PMID:25646755

  8. Multiplexed Primer Prediction for PCR

    SciTech Connect

    2007-07-23

    MPP predicts sets of multiplex-compatible primers for Polymerase Chain Reaction (PCR), finding a near minimal set of primers such that at least one amplicon will be generated from every target sequence in the input file. The code finds highly conserved oligos that are suitable as primers, according to user-specified desired primer characteristics such as length, melting temperature, and amplicon length. The primers are predicted not to form unwanted dimer or hairpin structures. The target sequences used as input can be diverse, since no multiple sequence alighment is required. The code is scalable, taking up to tens of thousands of sequences as input, and works, for example, to find a "universal primer set" for all viral genomes provided as a single input file. The code generates a periodic check-point file, thus in the event of premature execution termination, the application can be restarted from the last check-point file.

  9. An efficient full-length cDNA amplification strategy based on bioinformatics technology and multiplexed PCR methods.

    PubMed

    Chen, Nan; Wang, Wei-Min; Wang, Huan-Ling

    2016-01-13

    A novel strategy for amplification full-length cDNA and promoter sequences has been developed using bioinformatics technology and multiplexed PCR methods in this study. The amplification of 3' ends of cDNA is performed according to the modified classic 3' RACE techniques, therein the more efficient and effective oligo(dT)-anchor primer with hairpin structure is specially designed. For the amplification of 5' ends of cDNA, two or three-round TAIL-PCR or touch-down PCR using arbitrary degenerate (AD) and sequence-specific reverse (SPR) primers is performed until the 5' sequence of multi-assembled fragment reaches the exon1 region identified by aligning this fragment to reference genome database. Then another TAIL-PCR or touch-down PCR using genomic DNA as template is conducted to obtain the remaining 5' and promoter sequences. The 5' end sites of cDNA are predicted by aligning finally assembled fragment to homologous reference genes of other species, and screening the relative locations of common characteristic cis-elements in silico on promoter. The putative 5' ends are further validated by primers corresponding to these predicted sites in cDNAs. This method is suitable for researchers to isolate limited full-length cDNA sequences due to its operability, inexpensiveness, efficiency and speediness.

  10. An efficient full-length cDNA amplification strategy based on bioinformatics technology and multiplexed PCR methods

    PubMed Central

    Chen, Nan; Wang, Wei-Min; Wang, Huan-Ling

    2016-01-01

    A novel strategy for amplification full-length cDNA and promoter sequences has been developed using bioinformatics technology and multiplexed PCR methods in this study. The amplification of 3′ ends of cDNA is performed according to the modified classic 3′ RACE techniques, therein the more efficient and effective oligo(dT)-anchor primer with hairpin structure is specially designed. For the amplification of 5′ ends of cDNA, two or three-round TAIL-PCR or touch-down PCR using arbitrary degenerate (AD) and sequence-specific reverse (SPR) primers is performed until the 5′ sequence of multi-assembled fragment reaches the exon1 region identified by aligning this fragment to reference genome database. Then another TAIL-PCR or touch-down PCR using genomic DNA as template is conducted to obtain the remaining 5′ and promoter sequences. The 5′ end sites of cDNA are predicted by aligning finally assembled fragment to homologous reference genes of other species, and screening the relative locations of common characteristic cis-elements in silico on promoter. The putative 5′ ends are further validated by primers corresponding to these predicted sites in cDNAs. This method is suitable for researchers to isolate limited full-length cDNA sequences due to its operability, inexpensiveness, efficiency and speediness. PMID:26758040

  11. Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with the linear array HPV genotyping PCR assay and influence of DNA extraction method on HPV detection.

    PubMed

    Roberts, Christine C; Swoyer, Ryan; Bryan, Janine T; Taddeo, Frank J

    2011-05-01

    Real-time human papillomavirus (HPV) type-specific multiplex PCR assays were developed to detect HPV DNA in specimens collected for the efficacy determination of the quadrivalent HPV (type 6, 11, 16, and 18) L1 virus-like particle (VLP) vaccine (Gardasil). We evaluated the concordance between type-specific multiplex HPV PCR and the widely used, commercially available Roche Linear Array genotyping PCR assay. Female genital swab specimens were tested for the presence of L1, E6, and E7 sequences of HPV type 6 (HPV6), HPV11, HPV16, HPV18, HPV31, HPV45, HPV52, and HPV58 and E6 and E7 sequences of HPV33, HPV35, HPV39, HPV51, HPV56, and HPV59 in type- and gene-specific real-time multiplex PCR assays. Specimens were also tested for the presence of L1 sequences using two versions of the Roche Linear Array genotyping assay. Measures of concordance of a modified version of the Linear Array and the standard Linear Array PCR assay were evaluated. With specimen DNA extraction using the Qiagen Spin blood kit held as the constant, multiplex PCR assays detect more HPV-positive specimens for the 14 HPV types common to both than either version of the Linear Array HPV genotyping assay. Type-specific agreements between the assays were good, at least 0.838, but were often driven by negative agreement in HPV types with low prevalence, as evidenced by reduced proportions of positive agreement. Overall HPV status agreements ranged from 0.615 for multiplex PCR and standard Linear Array to 0.881 for multiplex PCR and modified Linear Array. An alternate DNA extraction technique, that used by the Qiagen MinElute kit, impacted subsequent HPV detection in both the multiplex PCR and Linear Array assays.

  12. Multiplex PCR method for use in real-time PCR for identification of fish fillets from grouper (Epinephelus and Mycteroperca species) and common substitute species.

    PubMed

    Trotta, Michele; Schönhuth, Susana; Pepe, Tiziana; Cortesi, M Luisa; Puyet, Antonio; Bautista, José M

    2005-03-23

    Mitochondrial 16S rRNA sequences from morphological validated grouper (Epinephelus aeneus, E. caninus, E. costae, and E. marginatus; Mycteroperca fusca and M. rubra), Nile perch (Lates niloticus), and wreck fish (Polyprion americanus) were used to develop an analytical system for group diagnosis based on two alternative Polymerase Chain Reaction (PCR) approaches. The first includes conventional multiplex PCR in which electrophoretic migration of different sizes of bands allowed identification of the fish species. The second approach, involving real-time PCR, produced a single amplicon from each species that showed different Tm values allowing the fish groups to be directly identified. Real-time PCR allows the quick differential diagnosis of the three groups of species and high-throughput screening of multiple samples. Neither PCR system cross-reacted with DNA samples from 41 common marketed fish species, thus conforming to standards for species validation. The use of these two PCR-based methods makes it now possible to discriminate grouper from substitute fish species.

  13. Multiplex-PCR as a rapid and sensitive method for identification of meat species in Halal-meat Products.

    PubMed

    Alikord, Mahsa; Keramat, Javad; Kadivar, Mahdi; Momtaz, Hassan; Eshtiaghi, Mohammad Naghi; Rad, Aziz Homayouni

    2017-01-13

    Species identification and authentication in meat products are important subjects for ensuring the health of consumers. The multiplex-PCR amplification and species-specific primer set were used for identification of horse, donkey, pig and other ruminants in raw and processed meat products. Oligonucleotid primers were designed for amplification of species-specific mitochondrial DNA sequences of each species and samples were prepared from binary meat mixtures. The results showed that meat species were accurately determined in all combinations by multiplex-PCR, and the sensitivity of this method was 0.001 ng, rendering this technique open to and suitable for use for industrial meat products. It is concluded more fraud is seen in lower percentage industrial meat products than in higher percentage ones. There was also more fraud found in processed products than in raw ones. This rapid and useful test is recommended for quality control firms for exercising more rigorous controls over industrial meat products, for the benefit of target consumers.

  14. Multiplex PCR Tests for Detection of Pathogens Associated with Gastroenteritis

    PubMed Central

    Zhang, Hongwei; Morrison, Scott; Tang, Yi-Wei

    2016-01-01

    Synopsis A wide range of enteric pathogens can cause infectious gastroenteritis. Conventional diagnostic algorithms including culture, biochemical identification, immunoassay and microscopic examination are time consuming and often lack sensitivity and specificity. Advances in molecular technology have as allowed its use as clinical diagnostic tools. Multiplex PCR based testing has made its way to gastroenterology diagnostic arena in recent years. In this article we present a review of recent laboratory developed multiplex PCR tests and current commercial multiplex gastrointestinal pathogen tests. We will focus on two FDA cleared commercial syndromic multiplex tests: Luminex xTAG GPP and Biofire FimArray GI test. These multiplex tests can detect and identify multiple enteric pathogens in one test and provide results within hours. Multiplex PCR tests have shown superior sensitivity to conventional methods for detection of most pathogens. The high negative predictive value of these multiplex tests has led to the suggestion that they be used as screening tools especially in outbreaks. Although the clinical utility and benefit of multiplex PCR test are to be further investigated, implementing these multiplex PCR tests in gastroenterology diagnostic algorithm has the potential to improve diagnosis of infectious gastroenteritis. PMID:26004652

  15. One-step multiplex PCR method for the determination of pecan and Brazil nut allergens in food products.

    PubMed

    Hubalkova, Zora; Rencova, Eva

    2011-10-01

    A one-step polymerase chain reaction (PCR) method for the simultaneous detection of the major allergens of pecan and Brazil nuts was developed. Primer pairs for the amplification of partial sequences of genes encoding the allergens were designed and tested for their specificity on a range of food components. The targeted amplicon size was 173 bp of Ber e 1 gene of Brazil nuts and 72 bp of vicilin-like seed storage protein gene in pecan nuts. The primer pair detecting the noncoding region of the chloroplast DNA was used as the internal control of amplification. The intrinsic detection limit of the PCR method was 100 pg mL(-1) pecan or Brazil nuts DNA. The practical detection limit was 0.1% w/w (1 g kg(-1)). The method was applied for the investigation of 63 samples with the declaration of pecans, Brazil nuts, other different nut species or nuts generally. In 15 food samples pecans and Brazil nuts allergens were identified in the conformity with the food declaration. The presented multiplex PCR method is specific enough and can be used as a fast approach for the detection of major allergens of pecan or Brazil nuts in food. Copyright © 2011 Society of Chemical Industry.

  16. [Evaluation of the usefulness of selective chromogenic agar medium (chromID VRE) and multiplex PCR method for the detection of vancomycin-resistant enterococci].

    PubMed

    Kim, Do-Hoon; Lee, Jae-Hee; Ha, Jung-Sook; Ryoo, Nam-Hee; Jeon, Dong-Seok; Kim, Jae-Ryong

    2010-12-01

    Accurate and early detection of vancomycin-resistant enterococci (VRE) is critical for controlling nosocomial infection. In this study, we evaluated the usefulness of a selective chromogenic agar medium and of multiplex PCR for detection of VRE, and both these techniques were compared with the conventional culture method for VRE detection. We performed the following 3 methods for detecting VRE infection in stool specimens: the routine culture method, culturing in selective chromogenic agar medium (chromID VRE, bioMérieux, France), and multiplex PCR using the Seeplex® VRE ACE Detection kit (Seegene Inc., Korea) with additional PCR for vanC genes. We isolated 109 VRE strains from 100 stool specimens by the routine culture method. In chromID VRE, all the isolates showed purple colonies, including Enterococcus gallinarum and E. raffinosus, which were later identified using the Vitek card. All VRE isolates were identified by the multiplex PCR method; 100 were vanA-positive E. faecium, 8 were vanA- and vanC-1-positive E. gallinarum, and 1 was vanA-positive E. raffinosus. For VRE surveillance, culturing the isolates in chromID VRE after broth enrichment appears to be an accurate, rapid, and easy method for routine screening test. Multiplex PCR is relatively expensive and needs skilled techniques for detecting VRE, but it can be an auxiliary tool for rapid detection of genotype during a VRE outbreak.

  17. In-house validation of a multiplex real-time PCR method for simultaneous detection of Salmonella spp., Escherichia coli O157 and Listeria monocytogenes.

    PubMed

    Garrido, Alejandro; Chapela, María-José; Román, Belén; Fajardo, Paula; Vieites, Juan M; Cabado, Ana G

    2013-06-03

    A wide variety of qPCR methods currently exist for Salmonella spp., Escherichia coli O157 and Listeria monocytogenes detection. These methods target several genes and use different detection chemistries, either in simplex or in multiplex formats. However, the majority of these methods have not been carefully validated, and the number of validated methods that use multiplex qPCR is even lower. The aim of the present study was to develop and validate a multiplex qPCR method from previously validated simplex qPCR primers and probes. A modified broth medium was selected and primary and secondary enrichment times were further optimized. Efficiency of the newly combined qPCR system was comprised between 91% and 108%, for simplex and multiplex analyses. A total of 152 food and environmental, natural and spiked samples, were analyzed for the evaluation of the method obtaining values above 91% that were reached for all the quality parameters analyzed. A very low limit of detection (5 cfu/25 g after enrichment) for simultaneous identification of these 3 pathogens was obtained.

  18. Multiplex RT-PCR method for the analysis of the expression of human sialyltransferases: application to breast cancer cells.

    PubMed

    Recchi, M A; Harduin-Lepers, A; Boilly-Marer, Y; Verbert, A; Delannoy, P

    1998-01-01

    In many cases of human cancer, the appearance of hypersialylated glycan structures is related to a precise stage of the disease; this may depend on altered regulation of one or more sialyltransferases genes. Since several distinct sialyltransferase enzymes arising from different unique genes transfer sialic acid residues in the same linkage onto the same acceptor, it is impossible to precisely determine which enzyme is involved in the observed phenotype based on enzymatic assays. We have developed a very sensitive and highly reproducible multiplex reverse transcriptase-polymerase chain reaction technique in order to monitor the expression of four human sialyltransferases genes ST6Gal I, ST3Gal I, ST3Gal III and ST3Gal IV in small cell samples. Multiplex PCR amplification using specific primers for each sialyltransferase and detection of amplification products by polyacrylamide gel electrophoresis is a method that is fast and easy to handle and has proven to be useful for establishing sialyltransferase patterns of expression in breast immortalized cell line HBL100 as well as in breast cancer cell lines MCF-7/6, MCF-7/AZ and MDA.

  19. A method of multiplex PCR for detection of field released Beauveria bassiana, a fungal entomopathogen applied for pest management in jute (Corchorus olitorius).

    PubMed

    Biswas, Chinmay; Dey, Piyali; Gotyal, B S; Satpathy, Subrata

    2015-04-01

    The fungal entomopathogen Beauveria bassiana is a promising biocontrol agent for many pests. Some B. bassiana strains have been found effective against jute pests. To monitor the survival of field released B. bassiana a rapid and efficient detection technique is essential. Conventional methods such as plating method or direct culture method which are based on cultivation on selective media followed by microscopy are time consuming and not so sensitive. PCR based methods are rapid, sensitive and reliable. A single primer PCR may fail to amplify some of the strains. However, multiplex PCR increases the possibility of detection as it uses multiple primers. Therefore, in the present investigation a multiplex PCR protocol was developed by multiplexing three primers SCA 14, SCA 15 and SCB 9 to detect field released B. bassiana strains from soil as well as foliage of jute field. Using our multiplex PCR protocol all the five B. bassiana strains could be detected from soil and three strains viz., ITCC 6063, ITCC 4563 and ITCC 4796 could be detected even from the crop foliage after 45 days of spray.

  20. [Respiratory viral diagnosis by using an automated system of multiplex PCR (FilmArray) compared to conventional methods].

    PubMed

    Marcone, Débora N; Carballal, Guadalupe; Ricarte, Carmen; Echavarria, Marcela

    2015-01-01

    Acute respiratory infections, which are commonly caused by viruses, are an important cause of morbidity and mortality in children. In Argentina, national surveillance programs for the detection of respiratory viruses are usually performed by using immunofluorescence (IF) assays, although it is well known that molecular methods are more sensitive. An automated multiplex PCR device, the FilmArray-Respiratory Panel (FilmArray-RP), can detect 17 viral and 3 bacterial pathogens in a closed system that requires only 5 min of hands-on time and 1h of instrumentation time. A total of 315 respiratory samples from children under 6 years of age suffering from acute respiratory infections, were studied by IF for 8 respiratory viruses and by RT-PCR for rhinoviruses. Later, these samples were tested by the FilmArray-RP. The positivity frequency obtained for the 9 viruses tested was 75% by IF/RT-PCR and 92% by the FilmArray-RP. The positive and negative percent agreement between both methods was 70.5% whereas the negative percent agreement was 99.6% (95% confidence interval:65.5-75.1 and 99.2-99.8 respectively). The FilmArray-RP allowed a higher positive diagnosis (97%) and detected other viruses such as coronavirus NL63, 229E, OC43, HKU1 (10%) and bocavirus (18%). In addition, this method identified multiple coinfections (39%) with 2, 3, 4 and up to 5 different viruses. At present, IF is still the most frequently used method in most Latin American countries for respiratory viruses diagnosis due to its low cost, its capability to process a high number of samples simultaneously and the fast determination of results for the most frequent viruses, which are available within 5h. However, the coming incorporation of molecular methods in routine procedures will significantly increase the diagnostic yield of these infections.

  1. Development of a Multiplex PCR Method for Detection of the Genes Encoding 16S rRNA, Coagulase, Methicillin Resistance and Enterotoxins in Staphylococcus aureus

    USDA-ARS?s Scientific Manuscript database

    A multiplex PCR method was developed for simultaneous detection of the genes encoding methicillin resistance (mecA), staphylococcal enterotoxins A, B and C (sea, seb and sec), coagulase (coa) and 16S rRNA. The primers for amplification of the 16S rRNA gene were specific for Staphylococcus spp., and ...

  2. Multiplexed Single Intact Cell Droplet Digital PCR (MuSIC ddPCR) Method for Specific Detection of Enterohemorrhagic E. coli (EHEC) in Food Enrichment Cultures.

    PubMed

    McMahon, Tanis C; Blais, Burton W; Wong, Alex; Carrillo, Catherine D

    2017-01-01

    Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin (stx) and intimin (eae)]. However, false positives arise when complex food matrices, such as beef, contain mixtures of eae-negative STEC and eae-positive E. coli, but no EHEC with both markers in a single cell. To reduce false-positive detection of EHEC in food enrichment samples, a Multiplexed, Single Intact Cell droplet digital PCR (MuSIC ddPCR) assay capable of detecting the co-occurrence of the stx and eae genes in a single bacterial cell was developed. This method requires: (1) dispersal of intact bacteria into droplets; (2) release of genomic DNA (gDNA) by heat lysis; and (3) amplification and detection of genetic targets (stx and eae) using standard TaqMan chemistries with ddPCR. Performance of the method was tested with panels of EHEC and non-target E. coli. By determining the linkage (i.e., the proportion of droplets in which stx and eae targets were both amplified), samples containing EHEC (typically greater than 20% linkage) could be distinguished from samples containing mixtures of eae-negative STEC and eae-positive E. coli (0-2% linkage). The use of intact cells was necessary as this linkage was not observed with gDNA extracts. EHEC could be accurately identified in enrichment broth cultures containing excess amounts of background E. coli and in enrichment cultures derived from ground beef/pork and leafy-green produce samples. To our knowledge, this is the first report of dual-target detection in single bacterial cells using ddPCR. The application of MuSIC ddPCR to enrichment-culture screening would reduce false-positives, thereby improving the cost, speed, and accuracy of

  3. Multiplexed Single Intact Cell Droplet Digital PCR (MuSIC ddPCR) Method for Specific Detection of Enterohemorrhagic E. coli (EHEC) in Food Enrichment Cultures

    PubMed Central

    McMahon, Tanis C.; Blais, Burton W.; Wong, Alex; Carrillo, Catherine D.

    2017-01-01

    Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin (stx) and intimin (eae)]. However, false positives arise when complex food matrices, such as beef, contain mixtures of eae-negative STEC and eae-positive E. coli, but no EHEC with both markers in a single cell. To reduce false-positive detection of EHEC in food enrichment samples, a Multiplexed, Single Intact Cell droplet digital PCR (MuSIC ddPCR) assay capable of detecting the co-occurrence of the stx and eae genes in a single bacterial cell was developed. This method requires: (1) dispersal of intact bacteria into droplets; (2) release of genomic DNA (gDNA) by heat lysis; and (3) amplification and detection of genetic targets (stx and eae) using standard TaqMan chemistries with ddPCR. Performance of the method was tested with panels of EHEC and non-target E. coli. By determining the linkage (i.e., the proportion of droplets in which stx and eae targets were both amplified), samples containing EHEC (typically greater than 20% linkage) could be distinguished from samples containing mixtures of eae-negative STEC and eae-positive E. coli (0–2% linkage). The use of intact cells was necessary as this linkage was not observed with gDNA extracts. EHEC could be accurately identified in enrichment broth cultures containing excess amounts of background E. coli and in enrichment cultures derived from ground beef/pork and leafy-green produce samples. To our knowledge, this is the first report of dual-target detection in single bacterial cells using ddPCR. The application of MuSIC ddPCR to enrichment-culture screening would reduce false-positives, thereby improving the cost, speed, and accuracy of

  4. Multiplex one-step Real-time PCR by Taqman-MGB method for rapid detection of pan and H5 subtype avian influenza viruses.

    PubMed

    Zhang, Zhujun; Liu, Dong; Sun, Wenqiang; Liu, Jing; He, Lihong; Hu, Jiao; Gu, Min; Wang, Xiaoquan; Liu, Xiaowen; Hu, Shunlin; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2017-01-01

    Avian influenza virus (AIV) can infect a variety of avian species and mammals, leading to severe economic losses in poultry industry and posing a substantial threat to public health. Currently, traditional virus isolation and identification is inadequate for the early diagnosis because of its labor-intensive and time-consuming features. Real-time RT-PCR (RRT-PCR) is an ideal method for the detection of AIV since it is highly specific, sensitive and rapid. In addition, as the new quencher MGB is used in RRT-PCR, it only needs shorter probe and helps the binding of target gene and probe. In this study, a pan-AIV RRT-PCR for the detection of all AIVs and H5-AIV RRT-PCR for detection of H5 AIV based on NP gene of AIV and HA gene of H5 AIV were successfully established using Taqman-MGB method. We tested 14 AIV strains in total and the results showed that the pan-AIV RRT-PCR can detect AIV of various HA subtypes and the H5-AIV RRT-PCR can detect H5 AIV circulating in poultry in China in recent three years, including H5 viruses of clade 7.2, clade 2.3.4.4 and clade 2.3.2.1. Furthermore, the multiplex detection limit for pan-AIV and H5-AIV RRT-PCR was 5 copies per reaction. When this multiplex method was applied in the detection of experimental and live poultry market samples, the detection rates of pan-AIV and H5 AIV in RRT-PCR were both higher than the routine virus isolation method with embryonated chicken eggs. The multiplex RRT-PCR method established in our study showed high sensitivity, reproducibility and specificity, suggesting the promising application of our method for surveillance of both pan AIV and prevalent H5 AIV in live poultry markets and clinical samples.

  5. Multiplex one-step Real-time PCR by Taqman-MGB method for rapid detection of pan and H5 subtype avian influenza viruses

    PubMed Central

    Liu, Dong; Sun, Wenqiang; Liu, Jing; He, Lihong; Hu, Jiao; Gu, Min; Wang, Xiaoquan; Liu, Xiaowen; Hu, Shunlin; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2017-01-01

    Avian influenza virus (AIV) can infect a variety of avian species and mammals, leading to severe economic losses in poultry industry and posing a substantial threat to public health. Currently, traditional virus isolation and identification is inadequate for the early diagnosis because of its labor-intensive and time-consuming features. Real-time RT-PCR (RRT-PCR) is an ideal method for the detection of AIV since it is highly specific, sensitive and rapid. In addition, as the new quencher MGB is used in RRT-PCR, it only needs shorter probe and helps the binding of target gene and probe. In this study, a pan-AIV RRT-PCR for the detection of all AIVs and H5-AIV RRT-PCR for detection of H5 AIV based on NP gene of AIV and HA gene of H5 AIV were successfully established using Taqman-MGB method. We tested 14 AIV strains in total and the results showed that the pan-AIV RRT-PCR can detect AIV of various HA subtypes and the H5-AIV RRT-PCR can detect H5 AIV circulating in poultry in China in recent three years, including H5 viruses of clade 7.2, clade 2.3.4.4 and clade 2.3.2.1. Furthermore, the multiplex detection limit for pan-AIV and H5-AIV RRT-PCR was 5 copies per reaction. When this multiplex method was applied in the detection of experimental and live poultry market samples, the detection rates of pan-AIV and H5 AIV in RRT-PCR were both higher than the routine virus isolation method with embryonated chicken eggs. The multiplex RRT-PCR method established in our study showed high sensitivity, reproducibility and specificity, suggesting the promising application of our method for surveillance of both pan AIV and prevalent H5 AIV in live poultry markets and clinical samples. PMID:28575115

  6. A multiplex PCR for detection of six viruses in ducks.

    PubMed

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10(2) copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  7. Fundamentals of multiplexing with digital PCR.

    PubMed

    Whale, Alexandra S; Huggett, Jim F; Tzonev, Svilen

    2016-12-01

    Over the past decade numerous publications have demonstrated how digital PCR (dPCR) enables precise and sensitive quantification of nucleic acids in a wide range of applications in both healthcare and environmental analysis. This has occurred in parallel with the advances in partitioning fluidics that enable a reaction to be subdivided into an increasing number of partitions. As the majority of dPCR systems are based on detection in two discrete optical channels, most research to date has focused on quantification of one or two targets within a single reaction. Here we describe 'higher order multiplexing' that is the unique ability of dPCR to precisely measure more than two targets in the same reaction. Using examples, we describe the different types of duplex and multiplex reactions that can be achieved. We also describe essential experimental considerations to ensure accurate quantification of multiple targets.

  8. Rapid detection method for Bacillus anthracis using a combination of multiplexed real-time PCR and pyrosequencing and its application for food biodefense.

    PubMed

    Janzen, Timothy W; Thomas, Matthew C; Goji, Noriko; Shields, Michael J; Hahn, Kristen R; Amoako, Kingsley K

    2015-02-01

    Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml(-1), and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.

  9. Development of a Rapid Identification Method for the Differentiation of Enterococcus Species Using a Species-Specific Multiplex PCR Based on Comparative Genomics.

    PubMed

    Park, Jongbin; Jin, Gwi-Deuk; Pak, Jae In; Won, Jihyun; Kim, Eun Bae

    2017-04-01

    Enterococci are lactic acid bacteria that are commonly found in food and in animal gut. Since 16 S ribosomal RNA (rRNA) sequences, genetic markers for bacterial identification, are similar among several Enterococcus species, it is very difficult to determine the correct species based on only 16 S rRNA sequences. Therefore, we developed a rapid method for the identification of different Enterococcus species using comparative genomics. We compared 38 genomes of 13 Enterococcus species retrieved from the National Center of Biotechnology Information database and identified 25,623 orthologs. Among the orthologs, four genes were specific to four Enterococcus species (Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, and Enterococcus durans). We designed species-specific primer sets targeting the genes and developed a multiplex PCR using primer sets that could distinguish the four Enterococcus species among the nine strains of Enterococcus species that were available locally. The multiplex PCR method also distinguished the four species isolated from various environments, such as feces of chicken and cow, meat of chicken, cow, and pigs, and fermented soybeans (Cheonggukjang and Doenjang). These results indicated that our novel multiplex PCR using species-specific primers could identify the four Enterococcus species in a rapid and easy way. This method will be useful to distinguish Enterococcus species in food, feed, and clinical settings.

  10. Multiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bacteria in foods.

    PubMed

    Marcobal, Angela; de las Rivas, Blanca; Moreno-Arribas, M Victoria; Muñoz, Rosario

    2005-04-01

    In a screening of primers, we have selected three pairs of primers for a multiplex PCR assay for the simultaneous detection of lactic acid bacteria (LAB) strains, which potentially produce histamine, tyramine, and putrescine on fermented foods. These primers were based on sequences from histidine, tyrosine, and ornithine decarboxylases from LAB. Under the optimized conditions, the assay yielded a 367-bp DNA fragment from histidine decarboxylases, a 924-bp fragment from tyrosine decarboxylases, and a 1,446-bp fragment from ornithine decarboxylases. When the DNAs of several target organisms were included in the same reaction, two or three corresponding amplicons of different sizes were observed. This assay was useful for the detection of amine-producing bacteria in control collection strains and in a LAB collection. No amplification was observed with DNA from nonproducing LAB strains. This article is the first describing a multiplex PCR approach for the simultaneous detection of potentially amine-producing LAB in foods. It can be easily incorporated into the routine screening for the accurate selection of starter LAB and in food control laboratories.

  11. Development of multiplex PCR method for simultaneous detection of four events of genetically modified maize: DAS-59122-7, MIR604, MON863 and MON88017.

    PubMed

    Oguchi, Taichi; Onishi, Mari; Mano, Junichi; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Kitta, Kazumi

    2010-01-01

    A novel multiplex PCR method was developed for simultaneous event-specific detection of four events of GM maize, i.e., DAS-59122-7, MIR604, MON88017, and MON863. The single laboratory examination of analytical performance using simulated DNA mixtures containing GM DNA at various concentrations in non-GM DNA suggested that the limits of detection (LOD) of the multiplex PCR method were 0.16% for MON863, MIR604, and MON88017, and 0.078% for DAS-59122-7. We previously developed a nonaplex (9plex) PCR method for eight events of GM maize, i.e., Bt11, Bt176, GA21, MON810, MON863, NK603, T25, and TC1507. Together with the nonaplex PCR method, the newly developed method enabled the detection and identification of eleven GM maize events that are frequently included in commercial GM seed used in Japan. In addition, this combinational analysis may be useful for the identification of combined event products of GM maize.

  12. Development and application of a multiplex PCR method for rapid differential detection of subgroup A, B, and J avian leukosis viruses.

    PubMed

    Gao, Qi; Yun, Bingling; Wang, Qi; Jiang, Lili; Zhu, Haibo; Gao, Yanni; Qin, Liting; Wang, Yongqiang; Qi, Xiaole; Gao, Honglei; Wang, Xiaomei; Gao, Yulong

    2014-01-01

    Avian leukosis virus (ALV) subgroups A, B, and J are very common in poultry flocks and have caused serious economic losses in recent years. A multiplex PCR (mPCR) method for the detection of these three subgroups was developed and optimized in this study. We first designed a common forward primer, PF, and three downstream primers, AR, BR, and JR, which can amplify 715 bp for subgroup A, 515 bp for subgroup B, and 422 bp for subgroup J simultaneously in one reaction. The mPCR method produced neither cross-reactions with other subgroups of ALVs nor nonspecific reactions with other common avian viruses. The detection limit of the mPCR was as low as 1 × 10(3) viral DNA copies of each of the three subgroups. In animal experiments, the mPCR detected ALVs 2 to 4 days earlier than did virus isolation from whole-blood samples and cloaca swabs. Furthermore, a total of 346 clinical samples (including 127 tissue samples, 86 cloaca swabs, 59 albumen samples, and 74 whole-blood samples) from poultry flocks with suspected ALV infection were examined by mPCR, routine PCR, and virus isolation. The positive sample/total sample ratios for ALV-A, ALV-B, and ALV-J were 48% (166/346) as detected by mPCR and 48% (166/346) as detected by routine PCR. However, the positive sample/total sample ratio detected by virus isolation was 40% (138/346). The results of the mPCR and routine PCR were confirmed by sequencing the specific fragments. These results indicate that the mPCR method is rapid, specific, sensitive, and convenient for use in epidemiological studies of ALV, clinical detection of ALV, and ALV eradication programs.

  13. Quantifying RNA allelic ratios by microfluidic multiplex PCR and sequencing.

    PubMed

    Zhang, Rui; Li, Xin; Ramaswami, Gokul; Smith, Kevin S; Turecki, Gustavo; Montgomery, Stephen B; Li, Jin Billy

    2014-01-01

    We developed a targeted RNA sequencing method that couples microfluidics-based multiplex PCR and deep sequencing (mmPCR-seq) to uniformly and simultaneously amplify up to 960 loci in 48 samples independently of their gene expression levels and to accurately and cost-effectively measure allelic ratios even for low-quantity or low-quality RNA samples. We applied mmPCR-seq to RNA editing and allele-specific expression studies. mmPCR-seq complements RNA-seq for studying allelic variations in the transcriptome.

  14. A TaqMan-Based Multiplex qPCR Assay and DNA Extraction Method for Phylotype IIB Sequevars 1&2 (Select Agent) Strains of Ralstonia solanacearum.

    PubMed

    Stulberg, Michael J; Huang, Qi

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.

  15. A TaqMan-Based Multiplex qPCR Assay and DNA Extraction Method for Phylotype IIB Sequevars 1&2 (Select Agent) Strains of Ralstonia solanacearum

    PubMed Central

    Stulberg, Michael J.; Huang, Qi

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum. PMID:26426354

  16. A TaqMan-based multiplex qPCR assay and DNA extraction method for phylotype IIB sequevars 1&2 (select agent) strains of Ralstonia solanacearum

    DOE PAGES

    Stulberg, Michael J.; Huang, Qi

    2015-10-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regionsmore » of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Moreover, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.« less

  17. Empirical evaluation of humpback whale telomere length estimates; quality control and factors causing variability in the singleplex and multiplex qPCR methods

    PubMed Central

    2012-01-01

    Background Telomeres, the protective cap of chromosomes, have emerged as powerful markers of biological age and life history in model and non-model species. The qPCR method for telomere length estimation is one of the most common methods for telomere length estimation, but has received recent critique for being too error-prone and yielding unreliable results. This critique coincides with an increasing awareness of the potentials and limitations of the qPCR technique in general and the proposal of a general set of guidelines (MIQE) for standardization of experimental, analytical, and reporting steps of qPCR. In order to evaluate the utility of the qPCR method for telomere length estimation in non-model species, we carried out four different qPCR assays directed at humpback whale telomeres, and subsequently performed a rigorous quality control to evaluate the performance of each assay. Results Performance differed substantially among assays and only one assay was found useful for telomere length estimation in humpback whales. The most notable factors causing these inter-assay differences were primer design and choice of using singleplex or multiplex assays. Inferred amplification efficiencies differed by up to 40% depending on assay and quantification method, however this variation only affected telomere length estimates in the worst performing assays. Conclusion Our results suggest that seemingly well performing qPCR assays may contain biases that will only be detected by extensive quality control. Moreover, we show that the qPCR method for telomere length estimation can be highly precise and accurate, and thus suitable for telomere measurement in non-model species, if effort is devoted to optimization at all experimental and analytical steps. We conclude by highlighting a set of quality controls which may serve for further standardization of the qPCR method for telomere length estimation, and discuss some of the factors that may cause variation in qPCR experiments

  18. Development and validation of a multiplex real-time PCR method to simultaneously detect 47 targets for the identification of genetically modified organisms.

    PubMed

    Cottenet, Geoffrey; Blancpain, Carine; Sonnard, Véronique; Chuah, Poh Fong

    2013-08-01

    Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers' perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.

  19. Interlaboratory transfer of a PCR multiplex method for simultaneous detection of four genetically modified maize lines: Bt11, MON810, T25, and GA21.

    PubMed

    Hernández, Marta; Rodríguez-Lázaro, David; Zhang, David; Esteve, Teresa; Pla, Maria; Prat, Salomé

    2005-05-04

    The number of cultured hectares and commercialized genetically modified organisms (GMOs) has increased exponentially in the past 9 years. Governments in many countries have established a policy of labeling all food and feed containing or produced by GMOs. Consequently, versatile, laboratory-transferable GMO detection methods are in increasing demand. Here, we describe a qualitative PCR-based multiplex method for simultaneous detection and identification of four genetically modified maize lines: Bt11, MON810, T25, and GA21. The described system is based on the use of five primers directed to specific sequences in these insertion events. Primers were used in a single optimized multiplex PCR reaction, and sequences of the amplified fragments are reported. The assay allows amplification of the MON810 event from the 35S promoter to the hsp intron yielding a 468 bp amplicon. Amplification of the Bt11 and T25 events from the 35S promoter to the PAT gene yielded two different amplicons of 280 and 177 bp, respectively, whereas amplification of the 5' flanking region of the GA21 gave rise to an amplicon of 72 bp. These fragments are clearly distinguishable in agarose gels and have been reproduced successfully in a different laboratory. Hence, the proposed method comprises a rapid, simple, reliable, and sensitive (down to 0.05%) PCR-based assay, suitable for detection of these four GM maize lines in a single reaction.

  20. Detection of glycopeptide resistance genes in enterococci by multiplex PCR

    PubMed Central

    Bhatt, Puneet; Sahni, A.K.; Praharaj, A.K.; Grover, Naveen; Kumar, Mahadevan; Chaudhari, C.N.; Khajuria, Atul

    2014-01-01

    Background Vancomycin Resistant Enterococci (VRE) are a major cause of nosocomial infections. There are various phenotypic and genotypic methods of detection of glycopeptide resistance in enterococci. This study utilizes multiplex PCR for reliable detection of various glycopeptides resistance genes in VRE. Method This study was conducted to detect and to assess the prevalence of vancomycin resistance among enterococci isolates. From October 2011 to June 2013, a total of 96 non-repetitive isolates of enterococci from various clinical samples were analyzed. VRE were identified by Kirby Bauer disc diffusion method with Clinical and Laboratory Standards Institute (CLSI) guidelines. Minimum inhibitory concentration (MIC) of all isolates for vancomycin and teicoplanin was determined by E-test. Multiplex PCR was carried out for all enterococci isolates using six sets of primers. Results Out of 96 isolates, 14 (14.6%) were found to be resistant to vancomycin by vancomycin E-test method (MIC ≥32 μg/ml). Out of these 14 isolates, 13 were also resistant to teicoplanin (MIC ≥16 μg/ml). VanA gene was detected in all the 14 isolates by Multiplex PCR. One of the PCR amplicons was sent for sequencing and the sequence received was submitted in the GenBank (GenBank accession no. KF181100). Conclusion Prevalence of VRE in this study was 14.6%. Multiplex PCR is a robust, sensitive and specific technique, which can be used for rapid detection of various glycopeptide resistance genes. Rapid identification of patients infected or colonized with VRE is essential for implementation of appropriate control measures to prevent their spread. PMID:25609863

  1. Application of a convenient DNA extraction method and multiplex PCR for the direct detection of Staphylococcus aureus and Yersinia enterocolitica in milk samples.

    PubMed

    Ramesh, A; Padmapriya, B P; Chrashekar, A; Varadaraj, M C

    2002-08-01

    The application of PCR for the direct and sensitive detection of food-borne pathogens is largely affected by the quality of the template DNA prepared from food samples. In the present study, a chemical extraction method of bacterial DNA from spiked milk samples for the direct detection of Staphylococcus aureus and Yersinia enterocolitica was evaluated by PCR. Gene specific primers were designed to target the nuclease (nuc) and the attachment invasion locus (ail) genes of S. aureus and Y. enterocolitica, respectively and used in PCR. A combination of organic solvents, detergents and alkali in the DNA extraction method permitted a detection limit of 10 cfu ml(-1) milk for both the pathogens. When equal numbers of S. aureus and Y. enterocolitica were spiked in milk samples, the individual detection limit was determined to be 10(3) cfu ml(-1) milk. Simultaneous amplification of 482 and 359 bp fragments of the nuc and ail genes was obtained using the primer pairs in a single reaction. Multiplex PCR enabled the detection of 10(4) cfu ml(-1) milk of S. aureus and Y. enterocolitica without any pre-enrichment step. A combination of conventional isolation technique and PCR using DNA extracted by the proposed method was used to test raw milk samples for possible contamination with S. aureus and Y. enterocolitica. The presence of S. aureus in the tested samples was indicated by both the methods while Y. enterocolitica could not be detected in any of the samples. The template DNA extraction method developed in this study is rapid, sensitive and avoids interference from potential PCR inhibitors and demonstrates the potential of detecting multiple pathogens in milk samples without any enrichment. Copyright 2002 Elsevier Science Ltd.

  2. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    PubMed

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  3. A novel method for the multiplexed target enrichment of MinION next generation sequencing libraries using PCR-generated baits.

    PubMed

    Karamitros, Timokratis; Magiorkinis, Gkikas

    2015-12-15

    The enrichment of targeted regions within complex next generation sequencing libraries commonly uses biotinylated baits to capture the desired sequences. This method results in high read coverage over the targets and their flanking regions. Oxford Nanopore Technologies recently released an USB3.0-interfaced sequencer, the MinION. To date no particular method for enriching MinION libraries has been standardized. Here, using biotinylated PCR-generated baits in a novel approach, we describe a simple and efficient way for multiplexed enrichment of MinION libraries, overcoming technical limitations related with the chemistry of the sequencing-adapters and the length of the DNA fragments. Using Phage Lambda and Escherichia coli as models we selectively enrich for specific targets, significantly increasing the corresponding read-coverage, eliminating unwanted regions. We show that by capturing genomic fragments, which contain the target sequences, we recover reads extending targeted regions and thus can be used for the determination of potentially unknown flanking sequences. By pooling enriched libraries derived from two distinct E. coli strains and analyzing them in parallel, we demonstrate the efficiency of this method in multiplexed format. Crucially we evaluated the optimal bait size for large fragment libraries and we describe for the first time a standardized method for target enrichment in MinION platform.

  4. Automated Methods for Multiplexed Pathogen Detection

    SciTech Connect

    Straub, Tim M.; Dockendorff, Brian P.; Quinonez-Diaz, Maria D.; Valdez, Catherine O.; Shutthanandan, Janani I.; Tarasevich, Barbara J.; Grate, Jay W.; Bruckner-Lea, Cindy J.

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cycler where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides ''live vs. dead'' capabilities. However

  5. Automated methods for multiplexed pathogen detection.

    PubMed

    Straub, Timothy M; Dockendorff, Brian P; Quiñonez-Díaz, Maria D; Valdez, Catherine O; Shutthanandan, Janani I; Tarasevich, Barbara J; Grate, Jay W; Bruckner-Lea, Cynthia J

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cycler where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides "live vs. dead" capabilities. However

  6. Development and Interlaboratory Validation of a Simple Screening Method for Genetically Modified Maize Using a ΔΔC(q)-Based Multiplex Real-Time PCR Assay.

    PubMed

    Noguchi, Akio; Nakamura, Kosuke; Sakata, Kozue; Sato-Fukuda, Nozomi; Ishigaki, Takumi; Mano, Junichi; Takabatake, Reona; Kitta, Kazumi; Teshima, Reiko; Kondo, Kazunari; Nishimaki-Mogami, Tomoko

    2016-04-19

    A number of genetically modified (GM) maize events have been developed and approved worldwide for commercial cultivation. A screening method is needed to monitor GM maize approved for commercialization in countries that mandate the labeling of foods containing a specified threshold level of GM crops. In Japan, a screening method has been implemented to monitor approved GM maize since 2001. However, the screening method currently used in Japan is time-consuming and requires generation of a calibration curve and experimental conversion factor (C(f)) value. We developed a simple screening method that avoids the need for a calibration curve and C(f) value. In this method, ΔC(q) values between the target sequences and the endogenous gene are calculated using multiplex real-time PCR, and the ΔΔC(q) value between the analytical and control samples is used as the criterion for determining analytical samples in which the GM organism content is below the threshold level for labeling of GM crops. An interlaboratory study indicated that the method is applicable independently with at least two models of PCR instruments used in this study.

  7. Multiplex PCR for identification of herpes virus infections in adolescents.

    PubMed

    Durzyńska, Julia; Pacholska-Bogalska, Joanna; Kaczmarek, Maria; Hanć, Tomasz; Durda, Magdalena; Skrzypczak, Magdalena; Goździcka-Józefiak, Anna

    2011-02-01

    The aim of the study was to develop a multiplex PCR (mPCR) for a rapid and simultaneous detection of herpes simplex 1 (HSV-1), herpes simplex 2 (HSV-2), and human cytomegalovirus (HCMV) DNA in squamous oral cells obtained from adolescents. Accuracy of the method was tested in a group of 513 adolescents, almost 11% of subjects were positive for infection with herpes viruses. Correlations with gender, age, and place of residence were sought. A similar incidence of HSV-2 and HCMV was found (4.3% and 5.4%, respectively) and the incidence of HSV-1 was the lowest (1%) in the study group. Conversely to HSV-2, HCMV was detected mostly in the youngest individuals. The same occurrence of all viruses was observed in boys and girls. The mPCR method described is suggested as a useful tool for epidemiologic studies of active herpes infections.

  8. A comparison of the effectiveness of the microscopic method and the multiplex PCR method in identifying and discriminating the species of Nosema spp. spores in worker bees (Apis mellifera) from winter hive debris.

    PubMed

    Michalczyk, M; Sokół, R; Szczerba-Turek, A; Bancerz-Kisiel, A

    2011-01-01

    The objective of this study was to compare the effectiveness of the multiplex PCR method and traditional light microscopy in identifying and discriminating the species of Nosema spp. spores in worker bees from winter hive debris in the Province of Warmia and Mazury (NE Poland). A total of 1000 beesdead after from the bottom of the hive from bee colonies were analyzed. Spores were identified with the use of a light microscope (400-600x magnification). Spores were assigned to species by the multiplex PCR method. The microscopic evaluation revealed the presence of Nosema spp. spores in 803 samples (80.3%). Nosema ceranae spores were observed in 353 positive samples (43.96%), Nosema apis spores were found in 300 samples (37.35%), while 150 samples (19.67%) showed signs of a mixed infection. A multiplex PCR analysis revealed that 806 samples were infested with Nosema spp., of which 206 were affected only by Nosema ceranae, 600 showed signs of mixed invasion, while no samples were infected solely by Nosema apis parasites. In two cases, the presence of spores detected under a light microscope was not confirmed by the PCR analysis. The results of the study indicate that Nosema ceranae is the predominant parasitic species found in post-winter worker bees from the bottom of the hive in the region of Warmia and Mazury.

  9. Isolation and Identification of Campylobacter spp. from Poultry and Poultry By-Products in Tunisia by Conventional Culture Method and Multiplex Real-Time PCR.

    PubMed

    Jribi, Hela; Sellami, Hanen; Mariam, Siala; Smaoui, Salma; Ghorbel, Asma; Hachicha, Salma; Benejat, Lucie; Messadi-Akrout, Feriel; Mégraud, Francis; Gdoura, Radhouane

    2017-10-01

    Thermophilic Campylobacter spp. are one of the primary causes of bacterial human diarrhea. The consumption of poultry meats, by-products, or both is suspected to be a major cause of human campylobacteriosis. The aims of this study were to determine the prevalence of thermophilic Campylobacter spp. in fresh poultry meat and poultry by-products by conventional culture methods and to confirm Campylobacter jejuni and Campylobacter coli isolates by using the multiplex PCR assay. Two hundred fifty fresh poultry samples were collected from a variety of supermarkets and slaughterhouses located in Sfax, Tunisia, including chicken (n =149) and turkey (n =101). The samples were analyzed using conventional microbiological examinations according to the 2006 International Organization for Standardization method (ISO 10272-1) for Campylobacter spp. Concurrently, a real-time PCR was used for identification of C. jejuni and C. coli . Of the 250 samples of poultry meat and poultry by-products, 25.6% (n = 64) were contaminated with Campylobacter spp. The highest prevalence of Campylobacter spp. was found in chicken meat (26.8%) followed by turkey meat (23.7%). Among the different products, poultry breasts showed the highest contamination (36.6%) followed by poultry by-products (30%), poultry wings (28%) and poultry legs (26%) showed the lowest contamination, and no contamination was found on neck skin. Of the 64 thermophilic Campylobacter isolates, C. jejuni (59.7%) was the most frequently isolated species and 10.9% of the isolates were identified as C. coli . All of the 64 Campylobacter isolates identified by the conventional culture methods were further confirmed by PCR. The seasonal peak of Campylobacter spp. contamination was in the warm seasons (spring and summer). The study concluded that high proportions of poultry meat and poultry by-products marketed in Tunisia are contaminated by Campylobacter spp. Furthermore, to ensure food safety, poultry meats must be properly cooked

  10. [Detection of Staphylococcus aureus, Shigella spp., Salmonella spp. in food by multiplex PCR].

    PubMed

    Li, Bo; Chen, Fusheng; Wang, Xiaohong; Shao, Yanchun

    2008-07-01

    To establish a multiplex PCR method for simultaneous detection of Staphylococcus aureus, Shigella spp., Salmonella spp. in food. Staphylococcus aureus was enriched by 7.5% NaCl broth while Shigella spp. and Salmonella spp. were enriched by GN medium . The primers were designed according to the gene nuc of Staphylococcus aureus, the gene ipaH of Shigella spp. and the gene invA of Salmonella spp. The target genes of these pathogens in food were amplified by multiplex PCR, which reaction conditions were optimized specifically. The multiplex PCR method established in this experment was of high specificity, which detection limit was 1 cfu/ml of Staphylococcus aureus, Shigella spp. and Salmonella spp. when the milk samples contaminated with these pathogens. The multiplex PCR method, which was rapid, convenient, and with high sensitivity, could be suitable for rapid detection of Staphylococcus aureus, Shigella spp., Salmonella spp. in food, and could have a great prospect.

  11. Multiplex-PCR and PCR-RFLP assays to monitor water quality against pathogenic bacteria.

    PubMed

    Abd-El-Haleem, Desouky; Kheiralla, Zeinab H; Zaki, Sahar; Rushdy, Abeer A; Abd-El-Rahiem, Walaa

    2003-12-01

    In this work we developed and optimized two molecular-based approaches to monitor rapidly, sensitively and specifically bacterial pathogens from three different genera, Escherichia coli, Pseudomonas aeruginosa, and Salmonella spp., directly in waters. To achieve this aim, firstly a multiplex-PCR assay (M-PCR) was optimized using a primer pair specific for each pathogen. Secondly, as a molecular confirmatory test after isolation of the pathogens by classical microbiological methods, PCR-RFLP of their amplified 16S rDNA genes was performed. It was observed from the results that the developed M-PCR assay has significant impact on the ability to detect sensitively, rapidly and specifically the three pathogens directly in water within a short time (5 h from sampling to obtain final results), therefore it represents a considerable advancement over other known more time-consuming and less-sensitive methods for identification and characterization of these kinds of pathogens.

  12. Detection of high-risk mucosal human papillomavirus DNA in human specimens by a novel and sensitive multiplex PCR method combined with DNA microarray.

    PubMed

    Gheit, Tarik; Tommasino, Massimo

    2011-01-01

    Epidemiological and functional studies have clearly demonstrated that certain types of human papillomavirus (HPV) from the genus alpha of the HPV phylogenetic tree, referred to as high-risk (HR) types, are the etiological cause of cervical cancer. Several methods for HPV detection and typing have been developed, and their importance in clinical and epidemiological studies has been well demonstrated. However, comparative studies have shown that several assays have different sensitivities for the detection of specific HPV types, particularly in the case of multiple infections. In this chapter, we describe a novel one-shot method for the detection and typing of 19 mucosal HR HPV types (types 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, and 82). The assay combines the advantages of the multiplex PCR methods, i.e., high sensitivity and the possibility to perform multiple amplifications in a single reaction, with an array primer extension (APEX) assay. The latter method offers the benefits of Sanger dideoxy sequencing with the high-throughput potential of the microarray. Initial studies have revealed that the assay is very sensitive in detecting multiple HPV infections.

  13. Multiplex real-time PCR and culture methods for detection of Shiga toxin-producing Escherichia coli and Salmonella Thompson in strawberries, a lettuce mix and basil.

    PubMed

    Delbeke, S; Ceuppens, S; Holvoet, K; Samuels, E; Sampers, I; Uyttendaele, M

    2015-01-16

    An appropriate approach of high throughput multi-screening was verified for Shiga toxin-producing Escherichia coli (STEC) and Salmonella spp. in strawberries, lettuce and basil. Sample replicates were inoculated with STEC O157 or O26 and Salmonella Thompson (ca. 10-70, 100-700 and 1000-7000 cfu/25 g) and analysed after 1 and 5 days of storage (strawberries and lettuce at 7 °C and basil at 10 °C). After 18-24 h of enrichment at 37 °C in buffered peptone water, detection was performed using the GeneDisc multiplex PCR (stx1, stx2, eae and iroB genes) and selective culture media for isolation of STEC (with immunomagnetic separation (IMS)) and Salmonella spp. in parallel. After 1 day, the pathogenic strains were recovered from all samples for all inoculum levels, whereas reduced detection rates of STEC O157 and S. Thompson were observed after 5 days of storage in case of strawberries, in particular for the lowest inoculums level, suggesting superior survival potential for STEC O26. Overall, this study indicates the ability of PCR based screening methods for reproducible multi-detection of low numbers (10-70 cfu/25 g) of STEC and Salmonella in this type of foods. However, for the basil samples, PCR needed twofold dilution of the DNA extract to overcome inhibition. It was noted that on several occasions growth of competitive microbiota obstructed finding presumptive colonies on the selective agar media, whereas the use of an additional agar medium such as CHROMagar STEC (without IMS) improved recovery rate of STEC. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Towards a Pathogenic Escherichia coli Detection Platform Using Multiplex SYBR®Green Real-Time PCR Methods and High Resolution Melting Analysis

    PubMed Central

    Kagkli, Dafni-Maria; Folloni, Silvia; Barbau-Piednoir, Elodie; Van den Eede, Guy; Van den Bulcke, Marc

    2012-01-01

    Escherichia coli is a group of bacteria which has raised a lot of safety concerns in recent years. Five major intestinal pathogenic groups have been recognized amongst which the verocytotoxin or shiga-toxin (stx1 and/or stx2) producing E. coli (VTEC or STEC respectively) have received a lot of attention recently. Indeed, due to the high number of outbreaks related to VTEC strains, the European Food Safety Authority (EFSA) has requested the monitoring of the “top-five” serogroups (O26, O103, O111, O145 and O157) most often encountered in food borne diseases and addressed the need for validated VTEC detection methods. Here we report the development of a set of intercalating dye Real-time PCR methods capable of rapidly detecting the presence of the toxin genes together with intimin (eae) in the case of VTEC, or aggregative protein (aggR), in the case of the O104:H4 strain responsible for the outbreak in Germany in 2011. All reactions were optimized to perform at the same annealing temperature permitting the multiplex application in order to minimize the need of material and to allow for high-throughput analysis. In addition, High Resolution Melting (HRM) analysis allowing the discrimination among strains possessing similar virulence traits was established. The development, application to food samples and the flexibility in use of the methods are thoroughly discussed. Together, these Real-time PCR methods facilitate the detection of VTEC in a new highly efficient way and could represent the basis for developing a simple pathogenic E. coli platform. PMID:22761753

  15. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates.

    PubMed

    Baums, Christoph G; Schotte, Ulrich; Amtsberg, Gunter; Goethe, Ralph

    2004-05-20

    In this study we provide a protocol for genotyping Clostridium perfringens with a new multiplex PCR. This PCR enables reliable and specific detection of the toxin genes cpa, cpb, etx, iap, cpe and cpb2 from heat lysed bacterial suspensions. The efficiency of the protocol was demonstrated by typing C. perfringens reference strains and isolates from veterinary bacteriological routine diagnostic specimens.

  16. Identification of Mycobacterium bovis Isolates by a multiplex PCR

    PubMed Central

    de Souza Figueiredo, Eduardo Eustáquio; Silvestre, Flávia Galindo; Campos, Wilma Neres; Furlanetto, Leone Vinícius; Medeiros, Luciana; Lilenbaum, Walter; Fonseca, Leila Sousa; Silva, Joab Trajano; Paschoalin, Vânia Margaret Flosi

    2009-01-01

    Isolates from suggestive bovine tuberculosis lesions were tested by a multiplex polymerase chain reaction (m-PCR) targeting for RvD1Rv2031c and IS6110 sequences, specific for M. bovis and Mycobacterium tuberculosis complex respectively. The m-PCR successfully identified as M. bovis 88.24% of the isolates. PMID:24031349

  17. Advanced multiplex PCR assay for differentiation of Brucella species.

    PubMed

    Kang, Sung-Il; Her, Moon; Kim, Jong Wan; Kim, Ji-Yeon; Ko, Kyung Yuk; Ha, Yun-Mi; Jung, Suk Chan

    2011-09-01

    Two new primer sets of a 766- and a 344-bp fragment were introduced into the conventional Bruce-ladder PCR assay. This novel multiplex PCR assay rapidly and concisely discriminates Brucella canis and Brucella microti from Brucella suis strains and also may differentiate all of the 10 Brucella species.

  18. MPprimer: a program for reliable multiplex PCR primer design.

    PubMed

    Shen, Zhiyong; Qu, Wubin; Wang, Wen; Lu, Yiming; Wu, Yonghong; Li, Zhifeng; Hang, Xingyi; Wang, Xiaolei; Zhao, Dongsheng; Zhang, Chenggang

    2010-03-18

    Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer) in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility. A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs) for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2x to 5x plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy), which has 79 exons, for 20x, 20x, 20x, 14x, and 5x plex PCR reactions in five tubes to detect underlying exon deletions. MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.

  19. Computational tradeoffs in multiplex PCR assay design for SNP genotyping

    PubMed Central

    Rachlin, John; Ding, Chunming; Cantor, Charles; Kasif, Simon

    2005-01-01

    Background Multiplex PCR is a key technology for detecting infectious microorganisms, whole-genome sequencing, forensic analysis, and for enabling flexible yet low-cost genotyping. However, the design of a multiplex PCR assays requires the consideration of multiple competing objectives and physical constraints, and extensive computational analysis must be performed in order to identify the possible formation of primer-dimers that can negatively impact product yield. Results This paper examines the computational design limits of multiplex PCR in the context of SNP genotyping and examines tradeoffs associated with several key design factors including multiplexing level (the number of primer pairs per tube), coverage (the % of SNP whose associated primers are actually assigned to one of several available tube), and tube-size uniformity. We also examine how design performance depends on the total number of available SNPs from which to choose, and primer stringency criterial. We show that finding high-multiplexing/high-coverage designs is subject to a computational phase transition, becoming dramatically more difficult when the probability of primer pair interaction exceeds a critical threshold. The precise location of this critical transition point depends on the number of available SNPs and the level of multiplexing required. We also demonstrate how coverage performance is impacted by the number of available snps, primer selection criteria, and target multiplexing levels. Conclusion The presence of a phase transition suggests limits to scaling Multiplex PCR performance for high-throughput genomics applications. Achieving broad SNP coverage rapidly transitions from being very easy to very hard as the target multiplexing level (# of primer pairs per tube) increases. The onset of a phase transition can be "delayed" by having a larger pool of SNPs, or loosening primer selection constraints so as to increase the number of candidate primer pairs per SNP, though the latter

  20. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2017-05-17

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  1. Multiplex PCR: Optimization and Application in Diagnostic Virology

    PubMed Central

    Elnifro, Elfath M.; Ashshi, Ahmed M.; Cooper, Robert J.; Klapper, Paul E.

    2000-01-01

    PCR has revolutionized the field of infectious disease diagnosis. To overcome the inherent disadvantage of cost and to improve the diagnostic capacity of the test, multiplex PCR, a variant of the test in which more than one target sequence is amplified using more than one pair of primers, has been developed. Multiplex PCRs to detect viral, bacterial, and/or other infectious agents in one reaction tube have been described. Early studies highlighted the obstacles that can jeopardize the production of sensitive and specific multiplex assays, but more recent studies have provided systematic protocols and technical improvements for simple test design. The most useful of these are the empirical choice of oligonucleotide primers and the use of hot start-based PCR methodology. These advances along with others to enhance sensitivity and specificity and to facilitate automation have resulted in the appearance of numerous publications regarding the application of multiplex PCR in the diagnosis of infectious agents, especially those which target viral nucleic acids. This article reviews the principles, optimization, and application of multiplex PCR for the detection of viruses of clinical and epidemiological importance. PMID:11023957

  2. Multiplexing Short Primers for Viral Family PCR

    SciTech Connect

    Gardner, S N; Hiddessen, A L; Hara, C A; Williams, P L; Wagner, M; Colston, B W

    2008-06-26

    We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets for large, diverse, and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers ({approx}3700 18-mers or {approx}2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and for several diverse species such as foot-and-mouth disease virus, hemagglutinin and neuraminidase segments of influenza A virus, Norwalk virus, and HIV-1.

  3. Multiplex PCR detection of waterborne intestinal protozoa: microsporidia, Cyclospora, and Cryptosporidium.

    PubMed

    Lee, Seung-Hyun; Joung, Migyo; Yoon, Sejoung; Choi, Kyoungjin; Park, Woo-Yoon; Yu, Jae-Ran

    2010-12-01

    Recently, emerging waterborne protozoa, such as microsporidia, Cyclospora, and Cryptosporidium, have become a challenge to human health worldwide. Rapid, simple, and economical detection methods for these major waterborne protozoa in environmental and clinical samples are necessary to control infection and improve public health. In the present study, we developed a multiplex PCR test that is able to detect all these 3 major waterborne protozoa at the same time. Detection limits of the multiplex PCR method ranged from 10(1) to 10(2) oocysts or spores. The primers for microsporidia or Cryptosporidium used in this study can detect both Enterocytozoon bieneusi and Encephalitozoon intestinalis, or both Cryptosporidium hominis and Cryptosporidium parvum, respectively. Restriction enzyme digestion of PCR products with BsaBI or BsiEI makes it possible to distinguish the 2 species of microsporidia or Cryptosporidium, respectively. This simple, rapid, and cost-effective multiplex PCR method will be useful for detecting outbreaks or sporadic cases of waterborne protozoa infections.

  4. [Do Multiplex PCR techniques displace classical cultures in microbiology?].

    PubMed

    Auckenthaler, Raymond; Risch, Martin

    2015-02-01

    Multiplex PCR technologies progressively find their way in clinical microbiology. This technique allows the simultaneous amplification of multiple DNA targets in a single test run for the identification of pathogens up to the species level. Various pathogens of infectious diseases can be detected by a symptom-oriented approach clearly and quickly with high reliability. Essentially multiplex PCR panels are available for clarification of gastrointestinal, respiratory, sexually transmitted infections and meningitis. Today's offer from industry, university hospitals and large private laboratories of Switzerland is tabulated and commented.

  5. Simultaneous detection of bee viruses by multiplex PCR.

    PubMed

    Sguazza, Guillermo Hernán; Reynaldi, Francisco José; Galosi, Cecilia Mónica; Pecoraro, Marcelo Ricardo

    2013-12-01

    Honey bee mortality is a serious problem that beekeepers in Argentina have had to face during the last 3 years. It is known that the consequence of the complex interactions between environmental and beekeeping parameters added to the effect of different disease agents such as viruses, bacteria, fungi and parasitic mites may result in a sudden collapse of the colony. In addition, multiple viral infections are detected frequently concomitantly in bee colonies. The aim of this study was to establish a multiplex polymerase chain reaction method for rapid and simultaneous detection of the most prevalent bee viruses. This multiplex PCR assay will provide specific, rapid and reliable results and allow for the cost effective detection of a particular virus as well as multiple virus infections in a single reaction tube. This method could be a helpful tool in the surveillance of the most frequently found bee viruses and to study the dynamics and the interactions of the virus populations within colonies. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Comparison between multiplex PCR and phenotypic systems for Candida spp. identification.

    PubMed

    Liguori, Giorgio; Gallé, Francesca; Lucariello, Angela; Di Onofrio, Valeria; Albano, Luciana; Mazzarella, Gennaro; D'Amora, Maurizio; Rossano, Fabio

    2010-01-01

    This study evaluated the performances of three phenotypic systems (RapID Yeast panel, Vitek2 YST card, and API 20 C AUX) and multiplex PCR for Candida spp. identification. Four-hundred and fifty clinical strains of Candida spp. were identified with the four systems and results of multiplex PCR were compared with those of phenotypic methods. The best correspondence was obtained between Multiplex PCR and API 20 C AUX (83.7%), but the other comparisons showed similar values (81.7% and 79.3% for Vitek2 and RapID Yeast panel respectively). The correspondence was lower for all the methods in identification of C. krusei; this may be of concern in addition to the azole resistance and the often endogenous origin of this yeast. In the comparison with the three phenotypic methods, multiplex PCR could be reliable and time-saving in the identification of Candida spp. for diagnostics purposes. Nowadays, a large variety of both traditional and molecular methods for Candida spp. identification are commercially available. Multiplex PCR applied in this study may be more rapid and sensitive than phenotypic systems, and less expensive than other molecular methods.

  7. Multiplex PCR for Detection and Typing of Porcine Circoviruses

    PubMed Central

    Ouardani, M.; Wilson, L.; Jetté, R.; Montpetit, C.; Dea, S.

    1999-01-01

    Sets of oligonucleotide primers were designed according to the sequences of the open reading frames (ORFs) ORF1 and ORF2 of the prototype nonpathogenic PK-15 strain of porcine circovirus (PCV) type 1 (PCV-1). By the PCR performed with the various primer sets, genomic DNA or RNA from other bacterial or viral pathogens of the respiratory tracts of pigs could not be amplified. A positive amplification reaction could be visualized with DNA extracted from a viral suspension containing as few as 10 viral particles per ml. No DNA fragment could be amplified from lysates of continuous porcine cell lines (PT, ST, and PFT cells) known to be negative for PCV. When tested with clinical samples from pigs, the results of the single PCR method showed nearly 93% (13 of 14 samples) correlation with histopathological and immunohistochemical findings. Interestingly, subclinical PCV infections could be detected by single PCR with clinical samples that have been submitted from animals with irrelevant cases of respiratory and/or enteric problems. On the basis of the nucleotide sequences of PCV strains (PCV-2) recently associated with outbreaks of postweaning multisystemic wasting syndrome (PWMS) in Quebec, Canada, pig farms, other primers were designed from the PCV-1 genome, and these primers failed to amplify genomic fragments specific to the ORF1 or ORF2 genes of clinical isolates associated with PWMS but amplified DNA from the PCV-1 strain. Two rapid multiplex PCR (mPCR) methods have been developed to distinguish between both genotypes of PCV. By those two mPCR methods, (i) species-specific primer pairs were used to amplify a DNA fragment of 488 bp specific for the ORF2 genes of both genotypes, whereas a 375-bp fragment was amplified from the ORF1 gene of the PCV-1 strain only, or (ii) species-specific primer pairs were used to amplify a DNA fragment of 646 bp specific for the ORF1 genes of both genotypes, whereas a 425-bp fragment was amplified from the ORF2 gene of the PCV-1 strain

  8. Multiplex PCR to detect four different tomato-infecting pathogens.

    PubMed

    Quintero-Vásquez, Gabriela Alejandra; Bazán-Tejeda, María Luisa; Martínez-Peñafiel, Eva; Kameyama-Kawabe, Luis; Bermúdez-Cruz, Rosa María

    2013-07-01

    This work was aimed to develop a multiplex PCR assay to detect infectious agents such as Clavibacter michiganensis subsp. michiganensis, Fusarium sp, Leveillula taurica, and begomoviruses in tomato (Solanum lycopersicum) plants. Specific primer sets of each pathogen were designed based on intergenic ribosomal RNA sequences for the first three, whereas for begomoviruses, primers were designed based on conserved regions. The design also considered that the length (200-800 bp) of the PCR products was resolvable by electrophoresis; thus 296, 380, 457, and 731 bp fragments for Clavibacter, Fusarium, Leveillula, and begomoviruses, respectively, were considered. PCR conditions were optimized to amplify all the products in a single tube from genomic DNA and circumvent PCR inhibitors from infected plants. Finally, when the multiplex PCR assay was tested with tomato plants infected with any of the four pathogens, specific PCR products confirmed the presence of the pathogens. Optimized PCR multiplex allowed for the accurate and simultaneous detection of Clavibacter, Fusarium, Leveillula, and begomoviruses in infected plants or seeds from tomato.

  9. Simultaneous multiplex PCR detection of seven cucurbit-infecting viruses.

    PubMed

    Kwon, Ji Yeon; Hong, Jin Sung; Kim, Min Jea; Choi, Sun Hee; Min, Byeong Eun; Song, Eun Gyeong; Kim, Hyun Hee; Ryu, Ki Hyun

    2014-09-01

    Two multiplex polymerase chain reaction (PCR) systems using dual priming oligonucleotide (DPO) primers were developed for the simultaneous detection of seven cucurbit-infecting viruses. One system allows for the detection of papaya ringspot virus, watermelon mosaic virus, and zucchini yellow mosaic virus, whereas the other permits the detection of cucumber green mottle mosaic virus, cucumber fruit mottle mosaic virus, kyuri green mottle mosaic virus, and zucchini green mottle mosaic virus. Viral species-specific DPO primers developed in this study detected as little as 10 fg/μl of viral RNA under monoplex conditions and 10 pg/μl of viral RNA under multiplex conditions. Multiplex PCR using the DPO primer sets was capable of amplifying viral genes at annealing temperatures ranging from 53 °C to 63 °C. Whereas the use of conventional primers gave rise to non-specific bands, the DPO primers detected target viral genes in the absence of non-specific amplification. When these DPO multiplex primer sets were applied to virus-infected cucurbit samples obtained in the field, multiple infection as well as single infection was accurately identified. This novel approach could also detect multiple viruses in infected seeds. The reliability of multiplex PCR systems using DPO primers for plant virus detection is discussed.

  10. Comparison of nested, multiplex, qPCR; FISH; SeptiFast and blood culture methods in detection and identification of bacteria and fungi in blood of patients with sepsis.

    PubMed

    Gosiewski, Tomasz; Flis, Agnieszka; Sroka, Agnieszka; Kędzierska, Anna; Pietrzyk, Agata; Kędzierska, Jolanta; Drwiła, Rafał; Bulanda, Małgorzata

    2014-12-11

    Microbiological diagnosis of sepsis relies primarily on blood culture data. This study compares four diagnostic methods, i.e. those developed by us: nested, multiplex, qPCR (qPCR) and FISH with commercial methods: SeptiFast (Roche) (SF) and BacT/ALERT® 3D blood culture system (bioMérieux). Blood samples were derived from adult patients with clinical symptoms of sepsis, according to SIRS criteria, hospitalized in the Intensive Care Unit. Using qPCR, FISH, SF, and culture, microbial presence was found in 71.8%, 29.6%, 25.3%, and 36.6% of samples, respectively. It was demonstrated that qPCR was significantly more likely to detect microorganisms than the remaining methods; qPCR confirmed the results obtained with the SF kit in all cases wherein bacteria were detected with simultaneous confirmation of Gram-typing. All data collected through the FISH method were corroborated by qPCR. The qPCR and FISH methods described in this study may constitute alternatives to blood culture and to the few existing commercial molecular assays since they enable the detection of the majority of microbial species, and the qPCR method allows their identification in a higher number of samples than the SF test. FISH made it possible to show the presence of microbes in a blood sample even before its culture.

  11. Detection of Carbapenemases in Enterobacteriaceae by a Commercial Multiplex PCR

    PubMed Central

    Szabados, Florian; Wassill, Lars; Gatermann, Sören G.

    2012-01-01

    A commercial multiplex PCR (hyplex SuperBug ID) was tested with a collection of 132 clinical Enterobacteriaceae strains producing different carbapenemases. The sensitivity for the detection of KPC-, VIM-, NDM-, and OXA-48-encoding genes was 100%, whereas two IMP variants were missed. PMID:22785190

  12. A multiplex real-time PCR-platform integrated into automated extraction method for the rapid detection and measurement of oncogenic HPV type-specific viral DNA load from cervical samples.

    PubMed

    Broccolo, Francesco

    2014-01-01

    The persistent infection with most frequent high-risk (HR)-HPV types (HPV-16, -18, -31, -33, -45, -52, and -58) is considered to be the true precursor of neoplastic progression. HR-HPV detection and genotyping is the most effective and accurate approach in screening of the early cervical lesions and cervical cancer, although also the HR-HPV DNA load is considered an ancillary marker for persistent HPV infection. Here, it is described an in-house multiplex quantitative real-time PCR (qPCR)-based typing system for the rapid detection and quantitation of the most common HR-HPV genotypes from cervical cytology screening tests. First, a separate qPCR assay to quantify a single-copy gene is recommended prior to screening (prescreening assay) to verify the adequate cellularity of the sample and the quality of DNA extracted and to normalize the HPV copy number per genomic DNA equivalent in the sample. Subsequently, to minimize the number of reactions, two multiplex qPCR assays (first line screening) are performed to detect and quantify HPV-16, -18, -31, -33, -45, -52, and -58 (HPV-18 and -45 are measured together by single-fluorophore). In addition, a multiplex qPCR assay specific for HPV-18 and HPV-45 is also available to type precisely the samples found to be positive for one of the two strains. Finally, two nucleic acid extraction methods are proposed by using a 96-well plate format: one manual method (supported by centrifuge or by vacuum) and one automated method integrated into a robotic liquid handler workstation to minimize material and hands-on time. In conclusion, this system provides a reliable high-throughput method for the rapid detection and quantitation of HR-HPV DNA load in cervical samples.

  13. Authentication of medicinal plants by SNP-based multiplex PCR.

    PubMed

    Lee, Ok Ran; Kim, Min-Kyeoung; Yang, Deok-Chun

    2012-01-01

    Highly variable intergenic spacer and intron regions from nuclear and cytoplasmic DNA have been used for species identification. Noncoding internal transcribed spacers (ITSs) located in 18S-5.8S-26S, and 5S ribosomal RNA genes (rDNAs) represent suitable region for medicinal plant authentication. Noncoding regions from two cytoplasmic DNA, chloroplast DNA (trnT-F intergenic spacer region), and mitochondrial DNA (fourth intron region of nad7 gene) are also successfully applied for the proper identification of medicinal plants. Single-nucleotide polymorphism (SNP) sites obtained from the amplification of intergenic spacer and intron regions are properly utilized for the verification of medicinal plants in species level using multiplex PCR. Multiplex PCR as a variant of PCR technique used to amplify more than two loci simultaneously.

  14. Detection of aflatoxin-producing molds in Korean fermented foods and grains by multiplex PCR.

    PubMed

    Yang, Zheng-You; Shim, Won-Bo; Kim, Ji-Hun; Park, Seon-Ja; Kang, Sung-Jo; Nam, Baik-Sang; Chung, Duck-Hwa

    2004-11-01

    An assay based on multiplex PCR was applied for the detection of potential aflatoxin-producing molds in Korean fermented foods and grains. Three genes, avfA, omtA, and ver-1, coding for key enzymes in aflatoxin biosynthesis, were used as aflatoxin-detecting target genes in multiplex PCR. DNA extracted from Aspergillus flavus, Aspergillus parasiticus, Aspergillus oryzae, Aspergillus niger, Aspergillus terreus, Penicillium expansum, and Fusarium verticillioides was used as PCR template to test specificity of the multiplex PCR assay. Positive results were achieved only with DNA that was extracted from the aflatoxigenic molds A. flavus and A. parasiticus in all three primer pairs. This result was supported by aflatoxin detection with direct competitive enzyme-linked immunosorbent assay (DC-ELISA). The PCR assay required just a few hours, enabling rapid and simultaneous detection of many samples at a low cost. A total of 22 Meju samples, 24 Doenjang samples, and 10 barley samples commercially obtained in Korea were analyzed. The DC-ELISA assay for aflatoxin detection gave negative results for all samples, whereas the PCR-based method gave positive results for 1 of 22 Meju samples and 2 of 10 barley samples. After incubation of the positive samples with malt extract agar, DC-ELISA also gave positive results for aflatoxin detection. All Doenjang samples were negative by multiplex PCR and DC-ELISA assay, suggesting that aflatoxin contamination and the presence of aflatoxin-producing molds in Doenjang are probably low.

  15. Simultaneous Detection of Genetically Modified Organisms in a Mixture by Multiplex PCR-Chip Capillary Electrophoresis.

    PubMed

    Patwardhan, Supriya; Dasari, Srikanth; Bhagavatula, Krishna; Mueller, Steffen; Deepak, Saligrama Adavigowda; Ghosh, Sudip; Basak, Sanjay

    2015-01-01

    An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences.

  16. Evaluation of new multiplex PCR primers for the identification ofPlasmodium species found in Sabah, Malaysia.

    PubMed

    Stanis, Cheronie Shely; Song, Beng Kah; Chua, Tock Hing; Lau, Yee Ling; Jelip, Jenarun

    2016-01-05

    Malaria is a major public health problem, especially in the Southeast Asia region, caused by 5 species of Plasmodium (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi). The aim of this study was to compare parasite species identification methods using the new multiplex polymerase chain reaction (PCR) against nested PCR and microscopy. Blood samples on filter papers were subject to conventional PCR methods using primers designed by us in multiplex PCR and previously designed primers of nested PCR. Both sets of results were compared with microscopic identification. Of the 129 samples identified as malaria-positive by microscopy, 15 samples were positive for P. falciparum, 14 for P. vivax, 6 for P. knowlesi, 72 for P. malariae, and 2 for mixed infection of P. falciparum/P. malariae. Both multiplex and nested PCR identified 12 P. falciparum single infections. For P. vivax, 9 were identified by multiplex and 12 by nested PCR. For 72 P. malariae cases, multiplex PCR identified 58 as P. knowlesi and 10 as P. malariae compared to nested PCR, which identified 59 as P. knowlesi and 7 as P. malariae. Multiplex PCR could be used as alternative molecular diagnosis for the identification of all Plasmodium species as it requires a shorter time to screen a large number of samples.

  17. Comparison of Two Widely Used Human Papillomavirus Detection and Genotyping Methods, GP5+/6+-Based PCR Followed by Reverse Line Blot Hybridization and Multiplex Type-Specific E7-Based PCR

    PubMed Central

    Vaccarella, Salvatore; Franceschi, Silvia; Tenet, Vanessa; Umulisa, M. Chantal; Tshomo, Ugyen; Dondog, Bolormaa; Vorsters, Alex; Tommasino, Massimo; Heideman, Daniëlle A. M.; Snijders, Peter J. F.; Gheit, Tarik

    2016-01-01

    GP5+/6+-based PCR followed by reverse line blot hybridization (GP5+/6+RLB) and multiplex type-specific PCR (E7-MPG) are two human papillomavirus (HPV) genotyping methodologies widely applied in epidemiological research. We investigated their relative analytical performance in 4,662 samples derived from five studies in Bhutan, Rwanda, and Mongolia coordinated by the International Agency for Research on Cancer (IARC). A total of 630 samples were positive by E7-MPG only (13.5%), 24 were positive by GP5+/6+RLB only (0.5%), and 1,014 were positive (21.8%) by both methods. Ratios of HPV type-specific positivity of the two tests (E7-MPG:GP5+/6+RLB ratio) were calculated among 1,668 samples that were HPV positive by one or both tests. E7-MPG:GP5+/6+RLB ratios were >1 for all types and highly reproducible across populations and sample types. E7-MPG:GP5+/6+RLB ratios were highest for HPV53 (7.5) and HPV68 (7.1). HPV16 (1.6) and HPV18 (1.7) had lower than average E7-MPG:GP5+/6+RLB ratios. Among E7-MPG positive infections, median mean fluorescence intensity (MFI; a semiquantitative measure of viral load) tended to be higher among samples positive for the same virus type by GP5+/6+RLB than for those negative for the same type by GP5+/6+RLB. Exceptions, however, included HPV53, -59, and -82, for which the chances of being undetected by GP5+/6+RLB appeared to be MFI independent. Furthermore, the probability of detecting an additional type by E7-MPG was higher when another type was already detected by GP5+/6+RLB, suggesting the existence of masking effects due to competition for GP5+/6+ PCR primers. In conclusion, this analysis is not an evaluation of clinical performance but may inform choices for HPV genotyping methods in epidemiological studies, when the relative merits and dangers of sensitivity versus specificity for individual types should be considered, as well as the potential to unmask nonvaccine types following HPV vaccination. PMID:27225411

  18. Comparison of Two Widely Used Human Papillomavirus Detection and Genotyping Methods, GP5+/6+-Based PCR Followed by Reverse Line Blot Hybridization and Multiplex Type-Specific E7-Based PCR.

    PubMed

    Clifford, Gary M; Vaccarella, Salvatore; Franceschi, Silvia; Tenet, Vanessa; Umulisa, M Chantal; Tshomo, Ugyen; Dondog, Bolormaa; Vorsters, Alex; Tommasino, Massimo; Heideman, Daniëlle A M; Snijders, Peter J F; Gheit, Tarik

    2016-08-01

    GP5+/6+-based PCR followed by reverse line blot hybridization (GP5+/6+RLB) and multiplex type-specific PCR (E7-MPG) are two human papillomavirus (HPV) genotyping methodologies widely applied in epidemiological research. We investigated their relative analytical performance in 4,662 samples derived from five studies in Bhutan, Rwanda, and Mongolia coordinated by the International Agency for Research on Cancer (IARC). A total of 630 samples were positive by E7-MPG only (13.5%), 24 were positive by GP5+/6+RLB only (0.5%), and 1,014 were positive (21.8%) by both methods. Ratios of HPV type-specific positivity of the two tests (E7-MPG:GP5+/6+RLB ratio) were calculated among 1,668 samples that were HPV positive by one or both tests. E7-MPG:GP5+/6+RLB ratios were >1 for all types and highly reproducible across populations and sample types. E7-MPG:GP5+/6+RLB ratios were highest for HPV53 (7.5) and HPV68 (7.1). HPV16 (1.6) and HPV18 (1.7) had lower than average E7-MPG:GP5+/6+RLB ratios. Among E7-MPG positive infections, median mean fluorescence intensity (MFI; a semiquantitative measure of viral load) tended to be higher among samples positive for the same virus type by GP5+/6+RLB than for those negative for the same type by GP5+/6+RLB. Exceptions, however, included HPV53, -59, and -82, for which the chances of being undetected by GP5+/6+RLB appeared to be MFI independent. Furthermore, the probability of detecting an additional type by E7-MPG was higher when another type was already detected by GP5+/6+RLB, suggesting the existence of masking effects due to competition for GP5+/6+ PCR primers. In conclusion, this analysis is not an evaluation of clinical performance but may inform choices for HPV genotyping methods in epidemiological studies, when the relative merits and dangers of sensitivity versus specificity for individual types should be considered, as well as the potential to unmask nonvaccine types following HPV vaccination. Copyright © 2016, American Society for

  19. Multiplex PCR-based identification of Streptococcus canis, Streptococcus zooepidemicus and Streptococcus dysgalactiae subspecies from dogs.

    PubMed

    Moriconi, M; Acke, E; Petrelli, D; Preziuso, S

    2017-02-01

    Streptococcus canis (S. canis), Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) and Streptococcus dysgalactiae subspecies (S. dysgalactiae subspecies) are β-haemolytic Gram positive bacteria infecting animals and humans. S. canis and S. zooepidemicus are considered as two of the major zoonotic species of Streptococcus, while more research is needed on S. dysgalactiae subspecies bacteria. In this work, a multiplex-PCR protocol was tested on strains and clinical samples to detect S. canis, S. dysgalactiae subspecies and S. equi subspecies bacteria in dogs. All strains were correctly identified as S. canis, S. equi subspecies or S. dysgalactiae subspecies by the multiplex-PCR. The main Streptococcus species isolated from symptomatic dogs were confirmed S. canis. The multiplex-PCR protocol described is a rapid, accurate and efficient method for identifying S. canis, S. equi subspecies and S. dysgalactiae subspecies in dogs and could be used for diagnostic purposes and for epidemiological studies.

  20. Genotyping of Toxoplasma gondii isolates with 15 microsatellite markers in a single multiplex PCR assay.

    PubMed

    Ajzenberg, Daniel; Collinet, Frédéric; Mercier, Aurélien; Vignoles, Philippe; Dardé, Marie-Laure

    2010-12-01

    We developed an easy-to-use method for genotyping Toxoplasma gondii isolates in a single multiplex PCR assay with 15 microsatellite markers. This method was validated by testing 26 reference isolates that had been characterized with other sets of markers.

  1. A TaqMan-based multiplex qPCR assay and DNA extraction method for phylotype IIB sequevars 1&2 (select agent) strains of Ralstonia solanacearum

    SciTech Connect

    Stulberg, Michael J.; Huang, Qi

    2015-10-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Moreover, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.

  2. Nested-multiplex PCR detection of Orthopoxvirus and Parapoxvirus directly from exanthematic clinical samples

    PubMed Central

    Abrahão, Jônatas S; Lima, Larissa S; Assis, Felipe L; Alves, Pedro A; Silva-Fernandes, André T; Cota, Marcela MG; Ferreira, Vanessa M; Campos, Rafael K; Mazur, Carlos; Lobato, Zélia IP; Trindade, Giliane S; Kroon, Erna G

    2009-01-01

    Background Orthopoxvirus (OPV) and Parapoxvirus (PPV) have been associated with worldwide exanthematic outbreaks. Some species of these genera are able to infect humans and domestic animals, causing serious economic losses and public health impact. Rapid, useful and highly specific methods are required to detect and epidemiologically monitor such poxviruses. In the present paper, we describe the development of a nested-multiplex PCR method for the simultaneous detection of OPV and PPV species directly from exanthematic lesions, with no previous viral isolation or DNA extraction. Methods and Results The OPV/PPV nested-multiplex PCR was developed based on the evaluation and combination of published primer sets, and was applied to the detection of the target pathogens. The method showed high sensitivity, and the specificity was confirmed by amplicon sequencing. Exanthematic lesion samples collected during bovine vaccinia or contagious ecthyma outbreaks were submitted to OPV/PPV nested-multiplex PCR and confirmed its applicability. Conclusion These results suggest that the presented multiplex PCR provides a highly robust and sensitive method to detect OPV and PPV directly from clinical samples. The method can be used for viral identification and monitoring, especially in areas where OPV and PPV co-circulate. PMID:19747382

  3. Development of a multiplex PCR for identification of vineyard mealybugs.

    PubMed

    Daane, Kent M; Middleton, Mathew C; Sforza, René; Cooper, Monica L; Walton, Vaughn M; Walsh, Douglas B; Zaviezo, Tania; Almeida, Rodrigo P P

    2011-12-01

    A simple molecular tool was developed and tested to identify seven mealybug species found in North American vineyards: Pseudococcus maritimus Ehrhorn, Pseudococcus viburni (Signoret), Pseudococcus longispinus (Targioni-Tozzeti), Pseudococcus calceolariae (Maskell), Planococcus ficus (Signoret), Planococcus citri (Risso), and Ferrisia gilli Gullan. The developed multiplex PCR is based on the mitochondrial cytochrome c oxidase subunit one gene. In tests, this single-step multiplex PCR correctly identified 95 of 95 mealybug samples, representing all seven species and collected from diverse geographic regions. To test the sensitivity, single specimen samples with different Pl. ficus developmental stages (egg to adult female and adult male) were processed PCR and the resulting output provided consistent positive identification. To test the utility of this protocol for adult males caught in sex baited pheromone traps, Pl. ficus adult males were placed in pheromone traps, aged at a constant temperature of 26±2°C, and processed with the multiplex each day thereafter for 8 d. Results showed consistent positive identification for up to 6 d (range, 6-8 d). Results are discussed with respect to the usefulness of this molecular tool for the identification of mealybugs in pest management programs and biosecurity of invasive mealybugs.

  4. PCR Amplicon Prediction from Multiplex Degenerate Primer and Probe Sets

    SciTech Connect

    Gardner, S. N.

    2013-08-08

    Assessing primer specificity and predicting both desired and off-target amplification products is an essential step for robust PCR assay design. Code is described to predict potential polymerase chain reaction (PCR) amplicons in a large sequence database such as NCBI nt from either singleplex or a large multiplexed set of primers, allowing degenerate primer and probe bases, with target mismatch annotates amplicons with gene information automatically downloaded from NCBI, and optionally it can predict whether there are also TaqMan/Luminex probe matches within predicted amplicons.

  5. Development of a cps-based multiplex PCR for typing of Actinobacillus pleuropneumoniae serotypes 1, 2 and 5.

    PubMed

    Ito, Hiroya

    2010-05-01

    A cps-based multiplex PCR for typing of Actinobacillus pleuropneumoniae serotypes 1, 2 and 5 was developed. This method should be specific and practical in Japan where more than 88% of isolates are serotypes 1, 2 or 5.

  6. Molecular Subtyping of Salmonella Typhimurium with Multiplex Oligonucleotide Ligation-PCR (MOL-PCR).

    PubMed

    Wuyts, Véronique; Mattheus, Wesley; Roosens, Nancy H C; Marchal, Kathleen; Bertrand, Sophie; De Keersmaecker, Sigrid C J

    2017-01-01

    A multiplex oligonucleotide ligation-PCR (MOL-PCR) assay is a valuable high-throughput technique for the detection of bacteria and viruses, for characterization of pathogens and for diagnosis of genetic diseases, as it allows one to combine different types of molecular markers in a high-throughput multiplex assay. A MOL-PCR assay starts with a multiplex oligonucleotide ligation reaction for detection of the molecular marker, followed by a singleplex PCR for signal amplification and analysis of the MOL-PCR products on a Luminex platform. This last step occurs through a liquid bead suspension array in which the MOL-PCR products are hybridized to MagPlex-TAG beads.In this chapter, we describe the complete procedure for a MOL-PCR assay for subtyping of Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) and its monophasic variant S. 1,4[5],12:i:- from DNA isolation through heat lysis up to data interpretation through a Gödel Prime Product. The subtyping assay consists of 50 discriminative molecular markers and two internal positive control markers divided over three MOL-PCR assays.

  7. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    DOEpatents

    Nolan, John P.; White, P. Scott

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  8. A new methodology for rapid detection of Lactobacillus delbrueckii subsp. bulgaricus based on multiplex PCR.

    PubMed

    Nikolaou, Anastasios; Saxami, Georgia; Kourkoutas, Yiannis; Galanis, Alex

    2011-02-01

    In this study we present a novel multiplex PCR assay for rapid and efficient detection of Lactobacillus delbrueckii subsp. bulgaricus. The accuracy of our method was confirmed by the successful identification of L. delbrueckii subsp. bulgaricus in commercial yoghurts and food supplements and it may be readily applied to the food industry. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Preclinical Assessment of a Fully Automated Multiplex PCR Panel for Detection of Central Nervous System Pathogens

    PubMed Central

    Slechta, E. S.; Killpack, J. A.; Heyrend, C.; Lunt, T.; Daly, J. A; Hemmert, A. C.

    2015-01-01

    We evaluated a multiplexed PCR panel for the detection of 16 bacterial, viral, and fungal pathogens in cerebrospinal fluid. Panel results were compared to routine testing, and discrepancies were resolved by additional nucleic acid amplification tests or sequencing. Overall, the positive and negative agreements across methods were 92.9% and 91.9%, respectively. PMID:26719436

  10. A multiplex PCR for detection of Listeria monocytogenes and its lineages.

    PubMed

    Rawool, Deepak B; Doijad, Swapnil P; Poharkar, Krupali V; Negi, Mamta; Kale, Satyajit B; Malik, S V S; Kurkure, Nitin V; Chakraborty, Trinad; Barbuddhe, Sukhadeo B

    2016-11-01

    A novel multiplex PCR assay was developed to identify genus Listeria, and discriminate Listeria monocytogenes and its major lineages (LI, LII, LIII). This assay is a rapid and inexpensive subtyping method for screening and characterization of L. monocytogenes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Kneallhazia (=Thelohania) Solenopsae infection rate of Pseudacteon Curvatus flies determined by multiplex PCR

    USDA-ARS?s Scientific Manuscript database

    A multiplex PCR method was developed and utilized to determine the Kneallhazia solenopsae infection rate of individual Pseudacteon curvatus flies in north-central Florida. Among P. curvatus flies infected with K. solenopsae, two amplicons were produced, one of 800 nucleotides from the P. curvatus 1...

  12. Single-Step Multiplex PCR Assay for Determining 92 Pneumococcal Serotypes

    PubMed Central

    Ercibengoa, María; Santacatterina, Erica; Alonso, Marta; Pérez-Trallero, Emilio

    2016-01-01

    For pneumococcal disease surveillance, simple and cost-effective methods capable of determining all serotypes are needed. Combining a single-tube multiplex PCR with fluorescently labeled primers followed by amplicon analysis using automated fluorescent capillary electrophoresis, each serotype of 92 reference isolates and 297 recently collected clinical isolates was successfully determined. PMID:27280423

  13. Multiplex PCR for Diagnosis of Enteric Infections Associated with Diarrheagenic Escherichia coli

    PubMed Central

    Vidal, Roberto; Vidal, Maricel; Lagos, Rossana; Levine, Myron; Prado, Valeria

    2004-01-01

    A multiplex PCR for detection of three categories of diarrheagenic Escherichia coli was developed. With this method, enterohemorrhagic E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli were identified in fecal samples from patients with hemorrhagic colitis, watery diarrhea, or hemolytic-uremic syndrome and from food-borne outbreaks. PMID:15071051

  14. Using Multiplex PCR for Assessing the Quality of Whole Genome Amplified DNA.

    PubMed

    El-Heliebi, Amin; Chen, Shukun; Kroneis, Thomas

    2015-01-01

    This chapter describes a simple and inexpensive multiplex PCR-based method to assess the quality of whole genome amplification (WGA) products generated from heat-induced random fragmented DNA. A set of four primer pairs is used to amplify DNA sequences of WGA products in and downstream of GAPDH gene in yielding 100, 200, 300, and 400 bp fragments. PCR products are analyzed by agarose gel electrophoresis and the respective WGA quality is classified according to the number of obtained PCR bands. WGA products that yield three or four PCR bands are considered to be of high quality and yield good results when analyzed by means of array comparative genome hybridization (CGH).

  15. Quantifying RNA allelic ratios by microfluidics-based multiplex PCR and deep sequencing

    PubMed Central

    Zhang, Rui; Li, Xin; Ramaswami, Gokul; Smith, Kevin S; Turecki, Gustavo; Montgomery, Stephen B; Li, Jin Billy

    2013-01-01

    We developed a targeted RNA sequencing method that couples microfluidics-based multiplex PCR and deep sequencing (mmPCR-seq) to uniformly and simultaneously amplify up to 960 loci in 48 samples independently of their gene expression levels, and accurately and cost-effectively measure allelic ratios even for low-quantity or low-quality RNA samples. We applied mmPCR-seq to RNA editing and allele-specific expression studies. mmPCR-seq complements RNA-seq and provides a highly desirable solution for future applications. PMID:24270603

  16. A novel multiplex PCR for detection of Pseudomonas aeruginosa: A major cause of wound infections

    PubMed Central

    Salman, Muhammad; Ali, Aamir; Haque, Abdul

    2013-01-01

    Background and Objective: Wound infections are often difficult to treat due to various bacterial pathogens. Pseudomonas aeruginosa is one of the common invaders of open wounds. Precise diagnosis of this etiological agent in wound infections is of critical importance particularly in treatment of problematic cases. The existing diagnostic methods have certain limitations particularly related to specificity. Our objective was to to establish a comprehensive and reliable multiplex PCR to confirm diagnosis of P. aeruginosa. Methods: A multiplex PCR test was developed for rapid and comprehensive identification of P. aeruginosa. Four highly specific genes were targeted simultaneously for detection of genus, species and exotoxin production (16S rDNA, gyrB, oprL and ETA) in P. aeruginosa; additionally one internal control gene (invA) of Salmonella was used. The specificity of the multiplex PCR was confirmed using internal and negative controls. Amplified fragments were confirmed by restriction analysis and DNA sequencing. Results: The developed method was applied on 40 morphologically suspected P. aeruginosa isolates (from 200 pus samples) and 18 isolates were confirmed as P. aeruginosa. In comparison, only 12 could be identified biochemically. Conclusions: Combination of the four reported genes in multiplex PCR provided more confident and comprehensive detection of P. aeruginosa which is applicable for screening of wound infections and assisting treatment strategy. PMID:24353667

  17. [Development of a multiplex PCR-suspension array for simultaneous detection of five bioterrorism bacteria].

    PubMed

    Wen, Hai-yan; Wang, Jing; Liu, Heng-chuan; Yang, Yu; Hu, Kong-xin; Sun, Xiao-hong

    2009-03-01

    To develop a rapid, high-throughput screening method of gene suspension array technique to simultaneously detect five bioterrorism bacteria: Bacillus anthracis, Francisella tularensis, Yersinia pestis, Brucella spp. and Burkholderia pseudomallei. Highly validated specific primers were used to amplify diagnostic regions unique to each pathogen. Biotin labelled PCR products were hybridized to corresponding probes coupling on the unique sets of fluorescent beads. The hybridized beads were processed through the Bio-plex, which identified the presence of PCR products. Multiplex PCR-suspension array can detect five bioterrorism bacteria correctly with high specificity and high sensitivity, the results suggest the utility of suspension array system for high-throughput screening of bioterrorism samples. A multiplex PCR-suspension array for rapid detection of five bioterrorism bacteria was established.

  18. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  19. A multiplex reverse transcription PCR assay for simultaneous detection of five tobacco viruses in tobacco plants.

    PubMed

    Dai, Jin; Cheng, Julong; Huang, Ting; Zheng, Xuan; Wu, Yunfeng

    2012-07-01

    Tobacco viruses including Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Tobacco etch virus (TEV), Potato virus Y (PVY) and Tobacco vein banding mosaic virus (TVBMV) are major viruses infecting tobacco and can cause serious crop losses. A multiplex reverse transcription polymerase chain reaction assay was developed to detect simultaneously and differentiate all five viruses. The system used specific primer sets for each virus producing five distinct fragments 237, 273, 347, 456 and 547 bp, representing TMV, CMV subgroup I, TEV, PVY(O) and TVBMV, respectively. These primers were used for detection of the different viruses by single PCR and multiplex PCR and the results were confirmed by DNA sequencing analysis. The protocol was used to detect viruses from different parts of China. The simultaneous and sensitive detection of different viruses using the multiplex PCR is more efficient and economical than other conventional methods for tobacco virus detection. This multiplex PCR provides a rapid and reliable method for the detection and identification of major tobacco viruses, and will be useful for epidemiological studies.

  20. A visual multiplex PCR microchip with easy sample loading.

    PubMed

    Chen, Jian-Wei; Shao, Ning; Zhang, Yuchen; Zhu, Yuanshou; Yang, Litao; Tao, Sheng-Ce

    2017-06-20

    There is an urgent demand for affordable, rapid and easy-to-use technology to simultaneously detect many different DNA targets within one reaction. Conventional multiplex PCR is an effective methodology to simultaneously amplify different DNA targets. However, its multiplicity is limited due to the intrinsic interference and competition among primer pairs within one tube. Here, we present an easy multiplex PCR microchip system, which can simultaneously detect 54 targets. The design of the microchip is quite simple. There is a microchannel connected with multiple underlying parallel microwells. And every microchannel has an inlet/outlet for loading PCRmix. The surface of the microchannel is hydrophobic and the inner surface of the microwell is hydrophilic, which enables us to load and separate the PCRmix into different microwells simultaneously. Different primer pairs and low melting agarose are pre-fixed in different microwells, and the microchip is assembled with top glass. The PCRmix is loaded into inlets and then mineral oil is sequentially pipetted into channels to push the PCRmix into all microwells and subsequently mineral oil fills the channels to avoid cross contaminations. After the PCRmix is loaded, it would be placed on a plat thermal cycler for PCR. During PCR, the low melting gel in the well is liquid and after PCR it would be solidified due to temperature changes. When PCR is completed, a nucleic acid dye is introduced into channels and then results are visualized by a home-made, potable UV detector. In our platform we successfully detected seven frequently used targets of genetically modified (GM) organisms. The results demonstrate that our platform has high flexibility and specificity. Due to the excellent performance of this technology, we believe that it can be applied to multiple nucleic acid detection fields including GM organisms.

  1. Usefulness of multiplex PCR methods and respiratory viruses’ distribution in children below 15 years old according to age, seasons and clinical units in France: A 3 years retrospective study

    PubMed Central

    Collin, Gilles; Ichou, Houria; Charpentier, Charlotte; Bendhafer, Samia; Dumitrescu, Madalina; Allal, Lahcene; Cojocaru, Bogdan; Desfrère, Luc; Descamps, Diane; Mandelbrot, Laurent; Houhou-Fidouh, Nadhira

    2017-01-01

    Background To date, only influenza and RSV testing are recommended for respiratory viruses’ detection in paediatric units. In this study, we described, according to seasons, ages and clinical units, the results obtained in children (<15 years old) by multiplex-PCR (mPCR) tests allowing a quick and wide range detection of all respiratory viruses. These results were also compared with RSV specific detection. Methods All nasopharyngeal mPCR and RSV tests requested by clinicians in our French teaching hospitals group between 2011 and 2014 were retrospectively included. All repeated samples for the same children in the same month were discarded. Results Of the 381 mPCR tests (344 children) performed, 51.4% were positive. Positivity and viral co-infection rates were higher in the 6–36 months old strata (81% and 25%, p<0.0001 and p = 0.04, respectively). Viral distribution showed strong variations across ages. During specific influenza epidemic periods, only 1/39 (2.5%) mPCR tests were positive for influenza and 19/39 (48.7%) for other viruses. During specific RSV epidemic periods, only 8/46 (17.4%) mPCR tests were positive for RSV and 14/46 (30.4%) for other viruses. 477/1529 (31.2%) of RSV immunochromatography-tests were positive. Among the negatives immunochromatography-test also explored by mPCR, 28/62 (31%) were positive for other respiratory viruses. Conclusion This study provides a wide description of respiratory viruses’ distribution among children in hospital settings using mPCR over 3 years. It emphasizes the number of undiagnosed respiratory viruses according to the current diagnosis practice in France and gives a better picture of respiratory viruses identified in hospital settings by mPCR all over the year in France. PMID:28235002

  2. Deletion-targeted multiplex PCR (DTM-PCR) for identification of Beijing/W genotypes of Mycobacterium tuberculosis.

    PubMed

    Chen, Jing; Tsolaki, Anthony G; Shen, Xin; Jiang, Xi; Mei, Jian; Gao, Qian

    2007-09-01

    Beijing/W strains of Mycobacterium tuberculosis cause the vast majority of tuberculosis cases in Shanghai, China. Such highly prevalent strains are considered as hypervirulent and are often associated with multi-drug resistance, treatment failure and HIV status. We present a reliable and fast detection method to identify these Beijing/W strains, which can be applied to screening large numbers of samples at low cost. Using this Deletion-Targeted Multiplex PCR (DTM-PCR) method for detecting these strains, we obtained 100% sensitivity and specificity.

  3. Unyvero i60 implant and tissue infection (ITI) multiplex PCR system in diagnosing periprosthetic joint infection.

    PubMed

    Hischebeth, Gunnar T R; Randau, Thomas M; Buhr, Johanna K; Wimmer, Matthias D; Hoerauf, Achim; Molitor, Ernst; Bekeredjian-Ding, Isabelle; Gravius, Sascha

    2016-02-01

    Periprosthetic joint infection (PJI) is one of the most challenging complications in orthopedic surgery. In cases of suspected periprosthetic joint infection several diagnostic methods are available. In this study we investigated the performance of the newly available Unyvero i60 implant and tissue infection (ITI) multiplex PCR System. 62 specimens from 31 patients with suspected PJI or aseptic loosening of a painful joint arthoplasty were included in this study. Besides the established diagnostic procedures we included a commercial multiplex PCR detection system for diagnosis of PJI. The PCR results obtained from analysis of sonication and synovial fluids (62 specimens) showed a sensitivity of 66.7%, a specificity of 100%, a positive predictive value (PPV) of 100% and a negative predictive value (NPV) of 68.4% when compared to cultural methods. Notably, cultures from sonication fluid displayed a sensitivity of 88.9%, a specificity of 61.5%, a PPV of 76.2% and a NPV of 80.0% when compared to tissue cultures. In conclusion, multiplex PCR is an additional - rapid - method for diagnosing PJI. Positive results with the PCR assay used in this study were always confirmed by subsequent matching culture positivity. However, apart from the time saved the nucleic acid amplification technique did not yield additional information than that obtained from microbiological cultures.

  4. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  5. Multiplex real-time PCR assay for rapid detection of methicillin-resistant staphylococci directly from positive blood cultures.

    PubMed

    Wang, Hye-Young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok; Uh, Young; Lee, Hyeyoung

    2014-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 10(3) CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene.

  6. Rapid diagnosis of goose viral infections by multiplex PCR.

    PubMed

    Chen, Zongyan; Li, Chuanfeng; Li, Guoxin; Yu, Hai; Jiang, Yifeng; Yan, Liping; Meng, Chunchun; Zhou, Yanjun; Tong, Guangzhi; Liu, Guangqing

    2013-08-01

    Goose parvovirus (GPV), newcastle disease virus (NDV), goose herpesvirus (GHV) and goose adenovirus (GAV) are considered collectively to be four of the most important and widespread viruses of geese. Because all of these viruses cause similar pathological changes, histological differentiation among these viruses is difficult. A reliable, specific and sensitive multiplex PCR (mPCR) assay was developed for the combined detection of GPV, NDV, GHV and GAV in clinical samples of geese. Using the mPCR technique, single infections with GPV (28/76; 36.8%), NDV (9/76; 11.8%), GHV (3/76; 3.9%) and GAV (12/76; 15.8%) were identified in the samples; co-infections with GAV and either GPV or NDV (31.6%; 24/76) were also identified with this approach. The results for all of the samples tested were the same in both the uPCR and mPCR systems. The mPCR approach is considered to be useful for routine molecular diagnosis and epidemiological applications in geese.

  7. Multiplex PCR Assay for Identifi cation and Differentiation of Campylobacter jejuni and Campylobacter coli Isolates.

    PubMed

    Pavlova, Maria R; Dobreva, Elina G; Ivanova, Katucha I; Asseva, Galina D; Ivanov, Ivan N; Petrov, Peter K; Velev, Valeri R; Tomova, Ivelina I; Tiholova, Maida M; Kantardjiev, Todor V

    2016-01-01

    Campylobacter spp. are important causative agents of gastrointestinal infections in humans. The most frequently isolated strains of this bacterial genus are Campylobacter jejuni and Campylobacter coli. To date, genetic methods for bacterial identification have not been used in Bulgaria. We optimized the multiplex PSR assay to identify Campylobacter spp. and differentiate C. jejuni from C. coli in clinical isolates. We also compared this method with the routinely used biochemical methods. To identify Campylobacter spp. and discriminate C. coli from C. jejuni in clinical isolates using multiplex PCR assay. Between February 2014 and January 2015 we studied 93 stool samples taken from patients with diarrheal syndrome and identified 40 species of Campylobacter spp. in them. The clinical material was cultured in microaerophilic atmosphere, the isolated strains being biochemically diff erentiated (hydrolysis of sodium hippurate for C. jejuni, and hydrolysis of indoxyl acetate for C. coli). DNA was isolated from the strains using QiaAmp MiniKit (QIAGEN, Germany). Twenty strains were tested with multiplex PCR for the presence of these genes: cadF, characteristic for Campylobacter spp., hipO for C. jejuni and asp for C. coli. The biochemical tests identified 16 strains of C. jejuni, 3 strains of C. coli, and 1 strain of C. upsaliensis. After the multiplex PCR assay the capillary gel electrophoresis confirmed 16 strains of C. jejuni, 2 strains of C. coli and 2 strains of Campylobacter spp. - because of the presence of the gene cadF. C. jejuni has the gene hipO, and it is possible that this gene may not be expressed in the biochemical differentiation yielding a negative reaction as a result. In comparison, we can conclude that the genetic differentiation is a more accurate method than the biochemical tests. The multiplex PCR assay is a fast, accurate method for identifi cation of Campylobacter spp. which makes it quite necessary in the clinical diagnostic practice.

  8. Rapid identification of Gram-positive anaerobic coccal species originally classified in the genus Peptostreptococcus by multiplex PCR assays using genus- and species-specific primers.

    PubMed

    Song, Yuli; Liu, Chengxu; McTeague, Maureen; Vu, Ann; Liu, Jia Yia; Finegold, Sydney M

    2003-07-01

    Here, a rapid and reliable two-step multiplex PCR assay for identifying 14 Gram-positive anaerobic cocci (GPAC) species originally classified in the genus Peptostreptococcus (Anaerococcus hydrogenalis, Anaerococcus lactolyticus, Anaerococcus octavius, Anaerococcus prevotii, Anaerococcus tetradius, Anaerococcus vaginalis, Finegoldia magna, Micromonas micros, Peptostreptococcus anaerobius, Peptoniphilus asaccharolyticus, Peptoniphilus harei, Peptoniphilus indolicus, Peptoniphilus ivorii and Peptoniphilus lacrimalis) is reported. Fourteen type strains representing 14 GPAC species were first identified to the genus level by multiplex PCR (multiplex PCR-G). Since three of these genera (Finegoldia, Micromonas and Peptostreptococcus) contain only a single species, F. magna, M. micros and P. anaerobius, respectively, these organisms were identified to the species level directly by using the multiplex PCR-G. Then six species of the genus Anaerococcus (A. hydrogenalis, A. lactolyticus, A. octavius, A. prevotii, A. vaginalis and A. tetradius) were further identified to the species level using multiplex PCR assays (multiplex PCR-Ia and multiplex PCR-Ib). Similarly, five species of the genus Peptoniphilus (Pn. asaccharolyticus, Pn. harei, Pn. indolicus, Pn. ivorii and Pn. lacrimalis) were identified to the species level using multiplex PCR-IIa and multiplex PCR-IIb. The established two-step multiplex PCR identification scheme was applied to the identification of 190 clinical isolates of GPAC species that had been identified previously to the species level by 16S rRNA sequencing and phenotypic tests. The identification obtained from multiplex PCR assays showed 100 % agreement with 16S rDNA sequencing identification, but only 65 % (123/190) agreement with the identification obtained by phenotypic tests. The multiplex PCR scheme established in this study is a simple, rapid and reliable method for the identification of GPAC species. It will permit a more accurate assessment of the

  9. Application of multiplex PCR for Rapid and sensitive detection of human papillomaviruses in cervical cancer.

    PubMed

    Zandnia, Fateme; Doosti, Abbas; Mokhtari-Farsani, Abbas; Kardi, Mohammad Taghi; Movafagh, Abolfazl

    2016-01-01

    Reffering to an increase in cervical cancer in the recent years, rapid, sensitive and economical detection of human papillomaviruses (HPVs) as causative agents of cervical cancer is important. The traditional methods for the detection of HPVs in cervical cancer, such as pap smear, suffer from limitation and PCR has a potential to overcome the limitaitons. The purpose of present research work was to identify the five important strains of HPV (16, 18, 31, 33 and 45) simultaneously by Multiplex PCR application. Study was done on 100 cervical lesions of women. DNA was extracted from specimens by a genomic DNA purification kit. A 5-plex PCR was developed for the simultaneous detection of major HPV. Five pair of new primers was designed for detection of HPV 16, 18, 31, 33 and 45 by Multiplex PCR. Among the 100 evaluated samples, 82 were found positive to HPVs. In the meantime the highest rate of infection was for HPV 16. Also 30 of HPV positive samples had infections with two or more HPV types. Multiplex PCR assay used in present study can provide a rapid, sensitive and economical method for detection of viral infections and is applicable to small volumes of vaginal samples.

  10. Improved detection of episomal Banana streak viruses by multiplex immunocapture PCR.

    PubMed

    Le Provost, Grégoire; Iskra-Caruana, Marie-Line; Acina, Isabelle; Teycheney, Pierre-Yves

    2006-10-01

    Banana streak viruses (BSV) are currently the main viral constraint to Musa germplasm movement, genetic improvement and mass propagation. Therefore, it is necessary to develop and implement BSV detection strategies that are both reliable and sensitive, such as PCR-based techniques. Unfortunately, BSV endogenous pararetrovirus sequences (BSV EPRVs) are present in the genome of Musa balbisiana. They interfere with PCR-based detection of episomal BSV in infected banana and plantain, such as immunocapture PCR. Therefore, a multiplex, immunocapture PCR (M-IC-PCR) was developed for the detection of BSV. Musa sequence tagged microsatellite site (STMS) primers were selected and used in combination with BSV species-specific primers in order to monitor possible contamination by Musa genomic DNA, using multiplex PCR. Furthermore, immunocapture conditions were optimized in order to prevent Musa DNA from interfering with episomal BSV DNA during the PCR step. This improved detection method successfully allowed the accurate, specific and sensitive detection of episomal DNA only from distinct BSV species. Its implementation should benefit PCR-based detection of viruses for which homologous sequences are present in the genome of their hosts, including transgenic plants expressing viral sequences.

  11. Development of a multiplex-PCR probe system for the proper identification of Klebsiella variicola.

    PubMed

    Garza-Ramos, Ulises; Silva-Sánchez, Jesús; Martínez-Romero, Esperanza; Tinoco, Perla; Pina-Gonzales, Marisol; Barrios, Humberto; Martínez-Barnetche, Jesús; Gómez-Barreto, Rosa Elena; Tellez-Sosa, Juan

    2015-03-13

    Klebsiella variicola was very recently described as a new bacterial species and is very closely related to Klebsiella pneumoniae; in fact, K. variicola isolates were first identified as K. pneumoniae. Therefore, it might be the case that some isolates, which were initially classified as K. pneumoniae, are actually K. variicola. The aim of this study was to devise a multiplex-PCR probe that can differentiate isolates from these sister species. This work describes the development of a multiplex-PCR method to identify K. variicola. This development was based on sequencing a K. variicola clinical isolate (801) and comparing it to other K. variicola and K. pneumoniae genomes. The phylogenetic analysis showed that K. variicola isolates form a monophyletic group that is well differentiated from K. pneumoniae. Notably, the isolate K. pneumoniae 342 and K. pneumoniae KP5-1 might have been misclassified because in our analysis, both clustered with K. variicola isolates rather than with K. pneumoniae. The multiplex-PCR (M-PCR-1 to 3) probe system could identify K. variicola with high accuracy using the shared unique genes of K. variicola and K. pneumoniae genomes, respectively. M-PCR-1 was used to assay a collection of multidrug-resistant (503) and antimicrobial-sensitive (557) K. pneumoniae clinical isolates. We found K. variicola with a prevalence of 2.1% (23/1,060), of them a 56.5% (13/23) of the isolates were multidrug resistant, and 43.5% (10/23) of the isolates were antimicrobial sensitive. The phylogenetic analysis of rpoB of K. variicola-positive isolates identified by multiplex-PCR support the correct identification and differentiation of K. variicola from K. pneumoniae clinical isolates. This multiplex-PCR provides the means to reliably identify and genotype K. variicola. This tool could be very helpful for clinical, epidemiological, and population genetics studies of this species. A low but significant prevalence of K. variicola isolates was found, implying that

  12. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    PubMed Central

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  13. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    PubMed

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  14. Multiplex real-time PCR assay for Legionella species.

    PubMed

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies.

  15. Multiplex detection and genotyping of pathogenic bacteria on paper-based biosensor with a novel universal primer mediated asymmetric PCR.

    PubMed

    Liu, Fang; Liu, Hongxing; Liao, Yuhui; Wei, Jitao; Zhou, Xiaoming; Xing, Da

    2015-12-15

    Traditionary multiplex asymmetric polymerase chain reaction (PCR) can be applied to detect multiplex target organisms simultaneously, but complex optimizations of primer concentrations and staggered additions of primers are required to achieve equal amplification of multiplex genes. To overcome this shortcoming, we propose a novel method based on multiplex asymmetric PCR and paper-based nucleic acid diagnostics (PBNAD). In the asymmetric PCR, a universal primer was introduced to break the bottlenecks of low sensitivity and self-inhibition among different sets of primers. Amplification using the novel multiplex asymmetric PCR boosted the quantity of single-stranded amplicons, and the amplified products contained the same sequence at the 5' end. Therefore, only one gold nanoparticle-based signal probe was needed for the simultaneous detection of three genes using the PBNAD platform, and the detection signals could be observed with the naked eye. With this highly efficient, novel multiplex asymmetric PCR, as little as 1 pg/μL genomic DNA can be detected. This method can also be applied to genotyping for reliable epidemiological investigations. This proof-of-concept study highlights the potential of the PBNAD platform for cost- and labor-effective applications in the detection of pathogenic bacteria.

  16. Diagnosis of periprosthetic joint infection using alpha-defensin test or multiplex-PCR: ideal diagnostic test still not found.

    PubMed

    Suda, Arnold J; Tinelli, Marco; Beisemann, Nils D; Weil, Yoram; Khoury, Amal; Bischel, Oliver E

    2017-07-01

    Diagnosing periprosthetic infection remains a challenge. Multiplex-PCR and biomarkers such as alpha-defensin are potentially useful and fast methods for detecting periprosthetic infection. This study compared these new methods with clinical assessment, conventional microbiological methods and histo-pathological examination. Twenty-eight consecutive patients with 30 joints and a mean age of 67.7 years (range 39 to 88) with removal of total hip arthroplasty (THA) or total knee replacement (TKR) were included in this study. Patients were classified according to the modified Musculoskeletal Infection Society score (MSIS) for infected joints. Punction fluid and tissue specimens were taken for conventional microbiological examination, alphadefensin test was performed, a synovial membrane specimen was used for multiplex-PCR and histopathological examination was carried out. The alpha-defensin test and multiplex-PCR showed a sensitivity of 76.9 vs. 30.8% and a specificity of 82.4 vs. 100%, respectively. We found a significant difference between the positive and negative results (p = 0.0023). The conventional microbiological methods were not significantly different from the alpha-defensin test (p = 0.244) with a sensitivity of 84.6% and a specificity of 100% but did differ significantly from the multiplex PCR (p = 0.0030). There was a significant difference between modified MSIS classification and multiplex PCR (p = 0.0007). Neither alpha-defensin test nor multiplex-PCR could detect periprosthetic infection immediately and reliably. Multiplex-PCR was suitable for detecting the non-infected but not the truly infected. Alpha-defensin test was helpful but showed no satisfactory results. Conventional microbiological methods remain the most reliable for periprosthetic infection diagnosis.

  17. Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with INNO-LiPA HPV genotyping extra assay.

    PubMed

    Else, Elizabeth A; Swoyer, Ryan; Zhang, Yuhua; Taddeo, Frank J; Bryan, Janine T; Lawson, John; Van Hyfte, Inez; Roberts, Christine C

    2011-05-01

    Real-time type-specific multiplex human papillomavirus (HPV) PCR assays were developed to detect HPV DNA in samples collected for the efficacy determination of the quadrivalent HPV (type 6, 11, 16, and 18) L1 virus-like particle (VLP) vaccine (Gardasil). Additional multiplex (L1, E6, and E7 open reading frame [ORF]) or duplex (E6 and E7 ORF) HPV PCR assays were developed to detect high-risk HPV types, including HPV type 31 (HPV31), HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, HPV56, HPV58, and HPV59. Here, we evaluated clinical specimen concordance and compared the limits of detection (LODs) between multiplex HPV PCR assays and the INNO-LiPA HPV Genotyping Extra assay, which detects 28 types, for the 14 HPV types common to both of these methods. Overall HPV detection agreement rates were >90% for swabs and >95% for thin sections. Statistically significant differences in detection were observed for HPV6, HPV16, HPV18, HPV35, HPV39, HPV45, HPV56, HPV58, and HPV59 in swabs and for HPV45, HPV58, and HPV59 in thin sections. Where P was <0.05, discordance was due to detection of more HPV-positive samples by the multiplex HPV PCR assays. LODs were similar for eight HPV types, significantly lower in multiplex assays for five HPV types, and lower in INNO-LiPA for HPV6 only. LODs were under 50 copies for all HPV types, with the exception of HPV39, HPV58, and HPV59 in the INNO-LiPA assay. The overall percent agreement for detection of 14 HPV types between the type-specific multiplex HPV PCR and INNO-LiPA genotyping assays was good. The differences in positive sample detection favored multiplex HPV PCR, suggesting increased sensitivity of HPV DNA detection by type-specific multiplex HPV PCR assays.

  18. Evaluation of a multiplex-PCR detection in combination with an isolation method for STEC O26, O103, O111, O145 and sorbitol fermenting O157 in food.

    PubMed

    Verstraete, K; Robyn, J; Del-Favero, J; De Rijk, P; Joris, M-A; Herman, L; Heyndrickx, M; De Zutter, L; De Reu, K

    2012-02-01

    The aim of the current study was to evaluate a multiplex PCR (mPCR) detection test combined with the evaluation of a previously described isolation method. Minced beef, raw-milk cheese and sprouted seed samples were inoculated with low amounts (7-58 cfu 25 g(-1)) of non-stressed, cold-stressed or freeze-stressed clinical STEC strains, including serogroups O26, O103, O111, O145, sorbitol fermenting (SF) O157 and non-sorbitol fermenting (NSF) O157. The inoculated pathogen was detected using a 24 h-enrichment followed by an mPCR protocol, and in parallel isolated using an enrichment step of 6 and 24 h, followed by selective plating of the enriched broth and selective plating of the immunomagnetic separation (IMS) product. Recovery results were evaluated and compared. Successful mPCR detection and isolation was obtained for non-stressed and cold-stressed STEC cells in minced beef and raw-milk cheese samples, except for serogroups O111 and SF O157. For freeze-stressed cells and sprouted seed samples, false negatives were often found. Isolation was better after 24 h-enrichment compared to 6 h-enrichment. IMS improved in some cases the isolation of non-stressed and cold-stressed cells belonging to serogroups O111 and O157 from minced beef and raw-milk cheese and freeze-stressed cells of all tested serogroups from minced beef.

  19. Multiplex PCR testing for nine different sexually transmitted infections.

    PubMed

    Kriesel, John D; Bhatia, Amiteshwar S; Barrus, Cammie; Vaughn, Mike; Gardner, Jordan; Crisp, Robert J

    2016-12-01

    Current sexually transmitted infection (STI) testing is not optimal due to delays in reporting or missed diagnoses due to a lack of comprehensive testing. The FilmArray® (BioFire Diagnostics, LLC, Salt Lake City, Utah) is a user-friendly, fully automated, multiplex PCR system that is being developed for rapid point-of-care use. A research-use-only STI panel including multiple PCR primer sets for each organism was designed to detect Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum, Trichomonas vaginalis, Mycoplasma genitalium, Ureaplasma urealyticum, Haemophilus ducreyi, and herpes simplex virus (HSV) types 1 and 2. Standard clinical testing included Gram stain, nucleic acid amplification, wet mount examination, herpes simplex virus culture, and syphilis IgG. Standard clinical tests were not available for all the organisms tested by the FilmArray STI panel. Two hundred and ninety-five clinical specimens from 190 subjects were directly compared to standard testing. Urine (n = 146), urethral/cervical swabs (31), oral swabs (60), rectal swabs (43), and ulcer swabs (15) were tested. Among the tested samples, FilmArray detected C. trachomatis in 39 (13%), N. gonorrhoeae in 20 (7%), T. vaginalis in nine (3%), HSV 1 in five (2%), HSV 2 in five (2%), U. urealyticum in 36 (12%), M. genitalium in eight (3%), and T. pallidum in 11 (4%). Concordance between the FilmArray STI panel and standard nucleic acid amplification testing for C. trachomatis was 98% and for N. gonorrhoeae was 97%. Multiplex PCR STI testing has the potential to improve public health by providing rapid, sensitive, and reliable results within the clinic or nearby laboratory.

  20. Identification of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from burn patients by multiplex PCR.

    PubMed

    Montazeri, Effat Abbasi; Khosravi, Azar Dokht; Jolodar, Abbas; Ghaderpanah, Mozhgan; Azarpira, Samireh

    2015-05-01

    Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS) as important human pathogens are causes of nosocomial infections worldwide. Burn patients are at a higher risk of local and systemic infections with these microorganisms. A screening method for MRSA by using a multiplex polymerase chain reaction (PCR) targeting the 16S ribosomal RNA (rRNA), mecA, and nuc genes was developed. The aim of the present study was to investigate the potential of this PCR assay for the detection of MRSA strains in samples from burn patients. During an 11-month period, 230 isolates (53.11%) of Staphylococcus spp. were collected from burn patients. The isolates were identified as S. aureus by using standard culture and biochemical tests. DNA was extracted from bacterial colonies and multiplex PCR was used to detect MRSA and MRCoNS strains. Of the staphylococci isolates, 149 (64.9%) were identified as S. aureus and 81 (35.21%) were described as CoNS. Among the latter, 51 (62.97%) were reported to be MRCoNS. From the total S. aureus isolates, 132 (88.6%) were detected as MRSA and 17 (11.4%) were methicillin-susceptible S. aureus (MSSA). The presence of the mecA gene in all isolates was confirmed by using multiplex PCR as a gold standard method. This study presented a high MRSA rate in the region under investigation. The 16S rRNA-mecA-nuc multiplex PCR is a good tool for the rapid characterization of MRSA strains. This paper emphasizes the need for preventive measures and choosing effective antimicrobials against MRSA and MRCoNS infections in the burn units. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  1. Diagnosis of common bacterial causes of urethritis in men by Gram stain, culture and multiplex PCR.

    PubMed

    Jahan, F; Shamsuzzaman, S M; Akter, S

    2014-12-01

    Urethritis is one of the most important causes of morbidity and mortality in developing countries. The aim of this study was to detect common bacterial causes of urethritis in men by Gram stain, culture and multiplex PCR.185 male patients who presented at the Skin and venereal clinic of the Dhaka Medical College, Bangladesh with clinical symptoms suggestive of urethritis were enrolled in this study. Urethral discharges were tested for detection of Neisseria gonorrhoeae by Gram stain, culture and PCR. Multiplex PCR assay was done to detect DNA of Chlamydia trachomatis, Ureaplasma urealyticum and Mycoplasma genitalium. Out of 185 participants, 30.27% and 14.6% were infected by Neisseria gonorrhoeae and Chlamydia trachomatis respectively. None of the individuals was found positive for either Ureaplasma urealyticum or Mycoplasma genitalium. Among the Neisseria gonorrhoeae positive patients 27.57% were positive from Gram stain, 26.49% were culture positive, 30.27% were positive by PCR (p<0.001). 32.65% of the Neisseria gonorrhoeae isolates were penicillinase producers and 83.67% were susceptible to ceftriaxone. Considering culture as the gold standard, the sensitivity and specificity of PCR for the detection of Neisseria gonorrhoeae was 100%, and 94.85% respectively with an accuracy of 96.22%. 3.73% of the 134 smear negative and 5.15% of the 136 culture negative samples were positive by PCR. PCR was the most sensitive and rapid method for the diagnosis of urethritis. Multiplex PCR may be a useful approach to laboratory diagnosis of urethritis in men for its high sensitivity and specificity.

  2. Evaluation of a multiplex real-time PCR method for detecting shiga toxin-producing Escherichia coli in beef and comparison to the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology laboratory guidebook method.

    PubMed

    Fratamico, Pina M; Wasilenko, Jamie L; Garman, Bradley; Demarco, Daniel R; Varkey, Stephen; Jensen, Mark; Rhoden, Kyle; Tice, George

    2014-02-01

    The "top-six" non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) most frequently associated with outbreaks and cases of foodborne illnesses have been declared as adulterants in beef by the U.S. Department of Agriculture Food Safety and Inspection Service (FSIS). Regulatory testing in beef began in June 2012. The purpose of this study was to evaluate the DuPont BAX System method for detecting these top six STEC strains and strains of E. coli O157:H7. For STEC, the BAX System real-time STEC suite was evaluated, including a screening assay for the stx and eae virulence genes and two panel assays to identify the target serogroups: panel 1 detects O26, O111, and O121, and panel 2 detects O45, O103, O145. For E. coli O157:H7, the BAX System real-time PCR assay for this specific serotype was used. Sensitivity of each assay for the PCR targets was ≥1.23 × 10(3) CFU/ml in pure culture. Each assay was 100% inclusive for the strains tested (20 to 50 per assay), and no cross-reactivity with closely related strains was observed in any of the assays. The performance of the BAX System methods was compared with that of the FSIS Microbiology Laboratory Guidebook (MLG) methods for detection of the top six STEC and E. coli O157:H7 strains in ground beef and beef trim. Generally, results of the BAX System method were similar to those of the MLG methods for detecting non-O157 STEC and E. coli O157:H7. Reducing or eliminating novobiocin in modified tryptic soy broth (mTSB) may improve the detection of STEC O111 strains; one beef trim sample inoculated with STEC O111 produced a negative result when enriched in mTSB with 8 mg/liter novobiocin but was positive when enriched in mTSB without novobiocin. The results of this study indicate the feasibility of deploying a panel of real-time PCR assay configurations for the detection and monitoring of the top six STEC and E. coli O157:H7 strains in beef. The approach could easily be adapted

  3. Systematic application of multiplex PCR enhances the detection of bacteria, parasites, and viruses in stool samples.

    PubMed

    McAuliffe, Gary N; Anderson, Trevor P; Stevens, Mary; Adams, Jacqui; Coleman, Robyn; Mahagamasekera, Patalee; Young, Sheryl; Henderson, Tom; Hofmann, Maria; Jennings, Lance C; Murdoch, David R

    2013-08-01

    To determine whether systematic testing of faecal samples with a broad range multiplex PCR increases the diagnostic yield in patients with diarrhoea compared with conventional methods and a clinician initiated testing strategy. 1758 faecal samples from 1516 patients with diarrhoea submitted to two diagnostic laboratories were tested for viral, bacterial, and parasitic pathogens by Fast-Track Diagnostics multiplex real-time PCR kits and conventional diagnostic tests. Multiplex PCR detected pathogens in 530 samples (30%): adenovirus (51, 3%), astrovirus (95, 5%), norovirus (172, 10%), rotavirus (3, 0.2%), Campylobacter jejuni/coli (85, 5%), Salmonella spp. (22, 1%), Clostridium difficile (72, 4%), entero-haemorrhagic Escherichia coli (21, 1%), Cryptosporidium spp. (3, 0.2%), Entamoeba histolytica (1, 0.1%), and Giardia lamblia (59, 3%). In contrast, conventional testing detected a pathogen in 324 (18%) samples. Using a systematic approach to the diagnosis of gastroenteritis improved diagnostic yield. This enhanced detection with PCR was achieved by a combination of improved detection of individual pathogens and detection of pathogens not requested or unable to be tested by conventional tests. This approach also allowed earlier identification for most pathogens and created a workflow which is likely to adapt well for many diagnostic laboratories. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  4. Design of Two Multiplex PCR Assays for Serotyping Shigella flexneri.

    PubMed

    van der Ploeg, Claudia A; Rogé, Ariel D; Bordagorría, Ximena L; de Urquiza, Maria T; Celi Castillo, Ana B; Bruno, Susana B

    2017-10-10

    Shigella flexneri is a major health problem in developing countries. There are 19 serotypes recognized based on O-antigen structure and its typing is important for epidemiological purposes. However, the diversity of serotypes and the difficulties presented by phenotypic serotyping, for example, unavailable antisera for less common antigens, require the implementation of molecular techniques. In this study, we developed two multiplex PCR assays targeting the O-antigen synthesis genes and the O-antigen modification genes, for the rapid identification of S. flexneri serotypes 1/7, 2, 4, 5, and 6 (PCR A) and serotype 7 and group antigenic factors (3,4; 6; 7,8; E1037) (PCR B). A total of 73 S. flexneri strains representing 18 serotypes, except serotype 1d, were used in the study. Specific amplification patterns were obtained for each of the different serotypes. All strains tested had concordant results with phenotypic and genotypic serotyping; therefore, its implementation in the microbiology clinical laboratory will significantly improve S. flexneri serotyping.

  5. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    SciTech Connect

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCR amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.

  6. Evaluation of a Commercial Multiplex PCR for Rapid Detection of Multi Drug Resistant Gram Negative Infections

    PubMed Central

    Chavada, Ruchir; Maley, Michael

    2015-01-01

    Introduction: Community and healthcare associated infections caused by multi-drug resistant gram negative organisms (MDR GN) represent a worldwide threat. Nucleic Acid Detection tests are becoming more common for their detection; however they can be expensive requiring specialised equipment and local expertise. This study was done to evaluate the utility of a commercial multiplex tandem (MT) PCR for detection of MDR GN. Methods: The study was done on stored laboratory MDR GN isolates from sterile and non-sterile specimens (n=126, out of stored 567 organisms). Laboratory validation of the MT PCR was done to evaluate sensitivity, specificity and agreement with the current phenotypic methods used in the laboratory. Amplicon sequencing was also done on selected isolates for assessing performance characteristics. Workflow and cost implications of the MT PCR were evaluated. Results: The sensitivity and specificity of the MT PCR were calculated to be 95% and 96.7% respectively. Agreement with the phenotypic methods was 80%. Major lack of agreement was seen in detection of AmpC beta lactamase in enterobacteriaceae and carbapenemase in non-fermenters. Agreement of the MT PCR with another multiplex PCR was found to be 87%. Amplicon sequencing confirmed the genotype detected by MT PCR in 94.2 % of cases tested. Time to result was faster for the MT PCR but cost per test was higher. Conclusion: This study shows that with carefully chosen targets for detection of resistance genes in MDR GN, rapid and efficient identification is possible. MT PCR was sensitive and specific and likely more accurate than phenotypic methods. PMID:26464612

  7. Prospective evaluation of the SeptiFAST multiplex real-time PCR assay for surveillance and diagnosis of infections in haematological patients after allogeneic stem cell transplantation compared to routine microbiological assays and an in-house real-time PCR method.

    PubMed

    Elges, Sandra; Arnold, Renate; Liesenfeld, Oliver; Kofla, Grzegorz; Mikolajewska, Agata; Schwartz, Stefan; Uharek, Lutz; Ruhnke, Markus

    2017-09-19

    We prospectively evaluated a multiplex real-time PCR assay (SeptiFast, SF) in a cohort of patients undergoing allo-BMT in comparison to an in-house PCR method (IH-PCR). Overall 847 blood samples (mean 8 samples/patient) from 104 patients with haematological malignancies were analysed. The majority of patients had acute leukaemia (62%) with a mean age of 52 years (54% female). Pathogens could be detected in 91 of 847 (11%) samples by SF compared to 38 of 205 (18.5%) samples by BC, and 57 of 847 (6.7%) samples by IH-PCR. Coagulase-negative staphylococci (n=41 in SF, n=29 in BC) were the most frequently detected bacteria followed by Escherichia coli (n=9 in SF, n=6 in BC). Candida albicans (n=17 in SF, n=0 in BC, n=24 in IH-PCR) was the most frequently detected fungal pathogen. SF gave positive results in 5% of samples during surveillance vs in 26% of samples during fever episodes. Overall, the majority of blood samples gave negative results in both PCR methods resulting in 93% overall agreement resulting in a negative predictive value of 0.96 (95% CI: 0.95-0.97), and a positive predictive value of 0.10 (95% CI: -0.01 to 0.21). SeptiFast appeared to be superior over BC and the IH-PCR method. © 2017 Blackwell Verlag GmbH.

  8. Multiplex PCR followed by restriction length polymorphism analysis for the subtyping of bovine herpesvirus 5 isolates

    PubMed Central

    2013-01-01

    Background Several types and subtypes of bovine herpesviruses 1 and 5 (BoHV-1 and BoHV-5) have been associated to different clinical conditions of cattle, making type/subtype differentiation essential to understand the pathogenesis and epidemiology of BoHV infections. BoHV-5 subtyping is currently carried out by BstEII restriction enzyme analysis (REA) of the complete virus genome. This method allowed the description of three subtypes, one of which is the most widespread while the remaining two have so far only been found in South America. The present work describes a multiplex PCR followed by REA for BoHV-5 subtyping. Results The method consists in the simultaneous amplification of glycoprotein B and UL54 gene fragments of 534 and 669 base pairs (bp), respectively, BstEII digestion of amplicons, separation of products in 1% agarose gels, and analysis of fragment length polymorphims. The multiplex PCR detected up to 227 BoHV-5 genome copies and 9.2 × 105 BoHV-5 genome copies when DNA was extracted from purified virus or infected tissue homogenates, respectively. The applicability of multiplex PCR-REA was demonstrated on 3 BoHV-5 reference strains. In addition, subtyping of two new isolates and seventeen previously reported ones (17 BHV-5a and 2 BHV-5b) by this method gave coincident results with those obtained with the classic BstEII REA assay. Conclusions Multiplex PCR-REA provides a new tool for the fast and simple diagnosis and subtyping of BoHV-5. PMID:23734608

  9. Evaluation of a Commercial Multiplex PCR for Rapid Detection of Multi Drug Resistant Gram Negative Infections.

    PubMed

    Chavada, Ruchir; Maley, Michael

    2015-01-01

    Community and healthcare associated infections caused by multi-drug resistant gram negative organisms (MDR GN) represent a worldwide threat. Nucleic Acid Detection tests are becoming more common for their detection; however they can be expensive requiring specialised equipment and local expertise. This study was done to evaluate the utility of a commercial multiplex tandem (MT) PCR for detection of MDR GN. The study was done on stored laboratory MDR GN isolates from sterile and non-sterile specimens (n=126, out of stored 567 organisms). Laboratory validation of the MT PCR was done to evaluate sensitivity, specificity and agreement with the current phenotypic methods used in the laboratory. Amplicon sequencing was also done on selected isolates for assessing performance characteristics. Workflow and cost implications of the MT PCR were evaluated. The sensitivity and specificity of the MT PCR were calculated to be 95% and 96.7% respectively. Agreement with the phenotypic methods was 80%. Major lack of agreement was seen in detection of AmpC beta lactamase in enterobacteriaceae and carbapenemase in non-fermenters. Agreement of the MT PCR with another multiplex PCR was found to be 87%. Amplicon sequencing confirmed the genotype detected by MT PCR in 94.2 % of cases tested. Time to result was faster for the MT PCR but cost per test was higher. This study shows that with carefully chosen targets for detection of resistance genes in MDR GN, rapid and efficient identification is possible. MT PCR was sensitive and specific and likely more accurate than phenotypic methods.

  10. Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics.

    PubMed

    Kim, Hyun-Joong; Ryu, Ji-Oh; Lee, Shin-Young; Kim, Ei-Seul; Kim, Hae-Yeong

    2015-10-26

    The genus Vibrio is clinically significant and major pathogenic Vibrio species causing human Vibrio infections are V. cholerae, V. parahaemolyticus, V. vulnificus, V. alginolyticus and V. mimicus. In this study, we screened for novel genetic markers using comparative genomics and developed a Vibrio multiplex PCR for the reliable diagnosis of the Vibrio genus and the associated major pathogenic Vibrio species. A total of 30 Vibrio genome sequences were subjected to comparative genomics, and specific genes of the Vibrio genus and five major pathogenic Vibrio species were screened. The designed primer sets from the screened genes were evaluated by single PCR using DNAs from various Vibrio spp. and other non-Vibrio bacterial strains. A sextuplet multiplex PCR using six primer sets was developed to enable detection of the Vibrio genus and five pathogenic Vibrio species. The designed primer sets from the screened genes yielded specific diagnostic results for target the Vibrio genus and Vibrio species. The specificity of the developed multiplex PCR was confirmed with various Vibrio and non-Vibrio strains. This Vibrio multiplex PCR was evaluated using 117 Vibrio strains isolated from the south seashore areas in Korea and Vibrio isolates were identified as Vibrio spp., V. parahaemolyticus, V. vulnificus and V. alginolyticus, demonstrating the specificity and discriminative ability of the assay towards Vibrio species. This novel multiplex PCR method could provide reliable and informative identification of the Vibrio genus and major pathogenic Vibrio species in the food safety industry and in early clinical treatment, thereby protecting humans against Vibrio infection.

  11. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    PubMed

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.

  12. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo

    2005-05-18

    To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.

  13. Short communication: Detection of stx2 and elt genes in bovine milk by using a multiplex PCR system.

    PubMed

    Nandi, R D S; Campos, A C; Puño-Sarmiento, J J; Maluta, R P; Rocha, S P D; Kobayashi, R K T; Nakazato, G

    2017-10-01

    The aim of this study was to detect 2 important toxin genes from diarrheagenic Escherichia coli (DEC) in bovine milk using a new multiplex PCR. To standardize the multiplex PCR, the stx2 and elt genes were investigated for the detection of Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC), respectively. The DNA template was prepared with a thermal procedure (boiling) and a commercial kit. Samples consisted of UHT and pasteurized milk, both skimmed, and STEC and ETEC were tested in concentrations between 10(1) and 10(9) cfu/mL. With the thermal procedure, the multiplex PCR system detected both pathotypes of E. coli at 10(9) cfu/mL in UHT and pasteurized milk. When the commercial kit was used for template preparation, STEC and ETEC could be detected at concentrations as low as 10(4) cfu/mL in UHT and pasteurized milk. Negative controls (Listeria monocytogenes, Salmonella Typhimurium, Salmonella Enteritidis, and Escherichia coli strain APEC 13) were not amplified with the multiplex PCR. These results indicate that the multiplex PCR was a rapid (less than 6 h) and efficient method to detect STEC and ETEC in milk using different methods for DNA preparation; however, the commercial kit was more sensitive than the thermal procedure. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Rapid Identification and Differentiation of Clinical Isolates of Enteropathogenic Escherichia coli (EPEC), Atypical EPEC, and Shiga Toxin-Producing Escherichia coli by a One-Step Multiplex PCR Method

    PubMed Central

    Müller, Daniel; Hagedorn, Peter; Brast, Sabine; Heusipp, Gerhard; Bielaszewska, Martina; Friedrich, Alexander W.; Karch, Helge; Schmidt, M. Alexander

    2006-01-01

    Enteropathogenic Escherichia coli (EPEC), atypical enteropathogenic E. coli, and Shiga toxin-producing E. coli differ in their virulence factor profiles, clinical manifestations, and prognosis, and they require different therapeutic measures. We developed and evaluated a robust multiplex PCR to identify these pathogroups based on sequences complementary to escV, bfpB, stx1, and stx2. PMID:16825399

  15. Development of one-tube multiplex polymerase chain reaction (PCR) for detecting Mycobacterium bovis.

    PubMed

    Quan, Zhang; Haiming, Tan; Xiaoyao, Cai; Weifeng, Yuan; Hong, Jia; Hongfei, Zhu

    2017-01-10

    A multiplex PCR (m-PCR) with primers targeting the 16S rRNA, Rv3873 and a 12.7-kb fragment in the genomes of a Mycobacterium tuberculosis complex was designed for the differential diagnosis of M. tuberculosis, M. bovis, M. bovis BCG and non-tuberculosis Mycobacterium (NTM). The specificity of this assay was 100%, and the detection limit was 15 pg of genomic DNA. Of the 206 blinded clinical samples, the detection rate of M. bovis infection by m-PCR was lower than that of the interferon gamma (IFN-γ) release assay; however, the false-positive rate by the tuberculin skin test and false-negative samples in the IFN-γ release assay were reduced. Our findings indicated that our m-PCR method is a useful tool for complementation to differentiate M. bovis from M. tuberculosis and NTM species.

  16. Analytical Performance of Multiplex Real-Time PCR for Six Sexually Transmitted Pathogens.

    PubMed

    Kim, Yoonjung; Kim, Juwon; Lee, Kyung-A

    2015-01-01

    Most organisms that cause sexual transmitted diseases (STDs) are fastidious pathogens that are difficult to detect with conventional microbiological methods and the proportions of multiple infections were noted up to 39.3% among the STI-positive subjects. However, only a few multiplex PCR and multiplex real-time PCR tests that can screen more than six microorganisms that cause STDs have been assessed. A total of 114 endocervical swabs (ThinPrep PAPTEST PreservCyt Solution, Hologic Inc., Marlborough, MA, USA) were collected from healthy Korean women. Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), Mycoplasma genitalium (MG), Mycoplasma hominis (MH), Ureaplasma urealyticum (UU), and Trichomonas vaginalis (TV) were detected by uniplex PCR with Seeplex kits and by multiplex real-time PCR with Real-Q Kits (Biosewoom Inc., Seoul, Korea). To evaluate analytical sensitivity, plasmids containing target genes from CT, NG, MG, MH, UU, and TV were serially diluted five times with saline buffer and replicated eight times per dilution. Real-Q STIs Kit assays showed 100% sensitivity for detecting MH, MG, CT, TV, NG and 94.1% sensitivity for detecting UU. In addition, it showed 100% specificity for UU, MH, MG, CT, TV, and NG. The analytic sensitivity of UU (95% probit = 17.3 copy/μL, 95% CI = 11.6 to 138.6) and MH (95% probit = 30.9 copy/μL, 95% CI = 20.6 to 169.9) was relatively lower than for others pathogens. Thus, the cutoff Ct value of < 45 for UU and MH and a cutoff Ct value of < 38 for CT, MH, NG, TV could minimize differences in detection limit among the six STIs (95% probit values = 5.3 to 14.6) and to optimize overall diagnostic performance. For medical applications of a multiplex real-time PCR assay, one kind of cutoff value, which is according to manufacturer's instructions, was generally used without the consideration of lowest actual detectable concentration of each target substance. However, analytical performance at the low concentration limit often

  17. Development of a multiplex PCR detection kit for Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    A multiplex PCR method was developed for simultaneous detection of Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7 in food samples, and the detection sensitivity for this method was 103 CFU/ml for each pathogen. When this method was used for the detection of each of pathogens ...

  18. Comparison of blood culture and multiplex real-time PCR for the diagnosis of nosocomial sepsis.

    PubMed

    Dinç, Fatih; Akalin, Halis; Özakin, Cüneyt; Sinirtaş, Melda; Kebabçi, Nesrin; Işçimen, Remzi; Kelebek Girgin, Nermin; Kahveci, Ferda

    2016-03-01

    In many cases of suspected sepsis, causative microorganisms cannot be isolated. Multiplex real-time PCR generates results more rapidly than conventional blood culture systems. In this study, we evaluated the diagnostic performance of multiplex real-time PCR (LightCycler® SeptiFast, Roche, Mannheim, Germany), and compared with blood cultures and cultures from focus of infection in nosocomial sepsis. Seventy-eight nosocomial sepsis episodes in 67 adult patients were included in this study. The rates of microorganism detection by blood culture and PCR were 34.2% and 47.9%, respectively. Sixty-five microorganisms were detected by both methods from 78 sepsis episodes. Nineteen of these microorganisms were detected by both blood culture and PCR analysis from the same sepsis episode. There was statistically moderate concordance between the two methods (κ=0.445, P<0.001). There was no significant agreement between the blood culture and PCR analysis in terms of microorganism detected (κ=0.160, P=0.07). Comparison of the results of PCR and cultures from focus of infection revealed no significant agreement (κ=0.110, P=0.176). However, comparison of the results of PCR and blood cultures plus cultures from focus of infection (positive blood culture and/or positive culture from focus of infection) showed poor agreement (κ=0.17, P=0.026). When the blood culture was used as the gold standard, the sensitivity, specificity, positive and negative predictive value of PCR in patients with bacteremia was 80%, 69%, 57% and 87%, respectively. SeptiFast may be useful when added to blood culture in the diagnosis and management of sepsis.

  19. Evaluation of multiplex PCR using MPB64 and IS6110 primers for rapid diagnosis of tuberculous meningitis.

    PubMed

    Lekhak, Sunil Prasad; Sharma, Laxmi; Rajbhandari, Reema; Rajbhandari, Pravesh; Shrestha, Resha; Pant, Basant

    2016-09-01

    Tuberculous meningitis (TBM) is one of those most serious manifestations of extra-pulmonary tuberculosis and prompt diagnosis and treatment is required for better clinical outcome. It is difficult to diagnose due to lack of rapid, sensitive, and specific tests. Newer methods, which are easy and reliable, are required to diagnose TBM at an early stage. Thus our aim was to evaluate the Multiplex polymerase chain reaction (PCR) technique, using primers directed against the insertion sequence IS6110 and MPB64 gene for the detection of Mycobacterium tuberculosis in Cerebrospinal fluid (CSF), for rapid diagnosis of TBM patients. 102 CSF samples were analyzed from patients suspected with TBM along with a control group of 10 patients having other neurological disorders. CSF sediments were analyzed individually for M. tuberculosis DNA by Multiplex PCR using two set of primers targeting insertion sequence IS6110 and gene MBp64, which is very specific for MTBC. Out of 37 patients diagnosed with TBM clinically, MPB64 PCR was positive in 22, IS6110 PCR was positive in 28, both PCR using Multiplex were positive in 34 and Microscopy was positive in one. Thus Sensitivity of MPB64 PCR, IS6110 PCR, Multiplex PCR and Microscopy were found to be 62.3%, 75.4%, 91.8% and 2.7% respectively. In non TBM group PCR was negative in all cases hence, the specificity was 100%. Multiplex PCR system using primers targeting IS6110 and MPB64, for the detection of M. tuberculosis DNA in CSF samples, has high sensitivity than any one of them alone, and could be used for the early detection of TBM in CSF samples.

  20. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    SciTech Connect

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  1. A novel multiplex quantitative DNA array based PCR (MQDA-PCR) for quantification of transgenic maize in food and feed.

    PubMed

    Rudi, Knut; Rud, Ida; Holck, Askild

    2003-06-01

    We have developed a novel multiplex quantitative DNA array based PCR method (MQDA-PCR). The MQDA-PCR is general and may be used in all areas of biological science where simultaneous quantification of multiple gene targets is desired. We used quantification of transgenic maize in food and feed as a model system to show the applicability of the method. The method is based on a two-step PCR. In the first few cycles bipartite primers containing a universal 5' 'HEAD' region and a 3' region specific to each genetically modified (GM) construct are employed. The unused primers are then degraded with a single-strand DNA-specific exonuclease. The second step of the PCR is run containing only primers consisting of the universal HEAD region. The removal of the primers is essential to create a competitive, and thus quantitative PCR. Oligo nucleotides hybridising to internal segments of the PCR products are then sequence specifically labelled in a cyclic linear signal amplification reaction. This is done both to increase the sensitivity and the specificity of the assay. Hybridisation of the labelled oligonucleotides to their complementary sequences in a DNA array enables multiplex detection. Quantitative information was obtained in the range 0.1-2% for the different GM constructs tested. Seventeen different food and feed samples were screened using a twelve-plex system for simultaneous detection of seven different GM maize events (Bt176, Bt11, Mon810, T25, GA21, CBH351 and DBT418). Ten samples were GM positive containing mainly mixtures of Mon810, Bt11 and Bt176 DNA. One sample contained appreciable amounts of GA21. An eight-plex MQDA-PCR system for detection of Mon810, Bt11 and Bt176 was evaluated by comparison with simplex 5' nuclease PCRs. There were no significant differences in the quantifications using the two approaches. The samples could, by both methods, be quantified as containing >2%, between 1 and 2%, between 0.1 and 1%, or <0.1% in 43 out of 47 determinations. The

  2. Genetic characterisation of invasive breast cancer: a comparison of CGH and PCR based multiplex microsatellite analysis.

    PubMed

    Buerger, H; Schmidt, H; Beckmann, A; Zänker, K S; Boecker, W; Brandt, B

    2001-11-01

    Comparative genomic hybridisation (CGH) is a reliable tool to gain an overview of all unbalanced chromosomal alterations within a tumour. Nevertheless, the high numbers of tumour cells required and the comparatively low resolution are drawbacks of this technique. Polymerase chain reaction (PCR) based multiplex microsatellite analysis represents a semi-automated, highly reproducible method, which requires small amounts of tumour cells. This is a comparative study of CGH and microsatellite analysis. Eighty one samples of invasive breast cancer were investigated by two sensitive multiplex PCRs containing three microsatellites each of six markers (D6S261, D11S907, D6S300, D11S927, D8S272, and D11S925), and two additional microsatellite markers located within intron 1 of the epidermal growth factor receptor gene (egfr) and p53 (p53CA). At least one example of loss of heterozygosity was detectable in all breast cancer tissues. However, the overall rate of accordance between the two methods tested was only 61%. An increasing rate of the number of genetic alterations in each case was mirrored by a constantly increasing fractional allelic loss index. PCR based multiplex microsatellite analysis using this panel of eight microsatellite markers not only enables the characterisation of cells that have malignant potential in a high frequency of patients with breast cancer, but can also give an estimate of the degree of genetic progression.

  3. Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice.

    PubMed

    Cui, Z; Ojaghian, M R; Tao, Z; Kakar, K U; Zeng, J; Zhao, W; Duan, Y; Vera Cruz, C M; Li, B; Zhu, B; Xie, G

    2016-05-01

    The aim of this study was to develop a multiplex PCR (mPCR) assay for rapid, sensitive and simultaneous detection of six important rice pathogens: Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, Pseudomonas fuscovaginae, Burkholderia glumae, Burkholderia gladioli and Acidovorax avenae subsp. avenae. Specific primers were designed through a bioinformatics pipeline. Sensitivity of detection was established using both traditional PCR and quantitative real-time PCR on isolated DNA and on bacterial cells both in vitro and in simulated diseased seeds and the parameters were optimized for an mPCR assay. A total of 150 bacterial strains were tested for specificity. The mPCR assay accurately predicted the presence of pathogens among 44 symptomatic and asymptomatic rice seed, sheath and leaf samples. This study confirmed that this mPCR assay is a rapid, reliable and simple tool for the simultaneous detection of six important rice bacterial pathogens. This study is the first report of a method allowing simultaneous detection of six major rice pathogens. The ability to use crude extracts from plants without bacterial isolation or DNA extraction enhances the value of this mPCR technology for rapid detection and aetiological/epidemiological studies. © 2016 The Society for Applied Microbiology.

  4. Guidelines for Optimisation of a Multiplex Oligonucleotide Ligation-PCR for Characterisation of Microbial Pathogens in a Microsphere Suspension Array

    PubMed Central

    Wuyts, Véronique; Roosens, Nancy H. C.; Marchal, Kathleen; De Keersmaecker, Sigrid C. J.

    2015-01-01

    With multiplex oligonucleotide ligation-PCR (MOL-PCR) different molecular markers can be simultaneously analysed in a single assay and high levels of multiplexing can be achieved in high-throughput format. As such, MOL-PCR is a convenient solution for microbial detection and identification assays where many markers should be analysed, including for routine further characterisation of an identified microbial pathogenic isolate. For an assay aimed at routine use, optimisation in terms of differentiation between positive and negative results and of cost and effort is indispensable. As MOL-PCR includes a multiplex ligation step, followed by a singleplex PCR and analysis with microspheres on a Luminex device, several parameters are accessible for optimisation. Although MOL-PCR performance may be influenced by the markers used in the assay and the targeted bacterial species, evaluation of the method of DNA isolation, the probe concentration, the amount of microspheres, and the concentration of reporter dye is advisable in the development of any MOL-PCR assay. Therefore, we here describe our observations made during the optimisation of a 20-plex MOL-PCR assay for subtyping of Salmonella Typhimurium with the aim to provide a possible workflow as guidance for the development and optimisation of a MOL-PCR assay for the characterisation of other microbial pathogens. PMID:25705689

  5. Genomic Characterization of Flavobacterium psychrophilum Serotypes and Development of a Multiplex PCR-Based Serotyping Scheme.

    PubMed

    Rochat, Tatiana; Fujiwara-Nagata, Erina; Calvez, Ségolène; Dalsgaard, Inger; Madsen, Lone; Calteau, Alexandra; Lunazzi, Aurélie; Nicolas, Pierre; Wiklund, Tom; Bernardet, Jean-François; Duchaud, Eric

    2017-01-01

    Flavobacterium psychrophilum is a devastating bacterial pathogen of salmonids reared in freshwater worldwide. So far, serological diversity between isolates has been described but the underlying molecular factors remain unknown. By combining complete genome sequence analysis and the serotyping method proposed by Lorenzen and Olesen (1997) for a set of 34 strains, we identified key molecular determinants of the serotypes. This knowledge allowed us to develop a robust multiplex PCR-based serotyping scheme, which was applied to 244 bacterial isolates. The results revealed a striking association between PCR-serotype and fish host species and illustrate the use of this approach as a simple and cost-effective method for the determination of F. psychrophilum serogroups. PCR-based serotyping could be a useful tool in a range of applications such as disease surveillance, selection of salmonids for bacterial coldwater disease resistance and future vaccine formulation.

  6. Comparison of four multiplex PCR assays for the detection of viral pathogens in respiratory specimens.

    PubMed

    Anderson, Trevor P; Werno, Anja M; Barratt, Kevin; Mahagamasekera, Patalee; Murdoch, David R; Jennings, Lance C

    2013-08-01

    Multiplex PCR has become the test of choice for the detection of multiple respiratory viruses in clinical specimens. However, there are few direct comparisons of different PCR assays. This study compares 4 different multiplex PCR assays for the recovery of common respiratory viruses. We tested 213 respiratory specimens using four different multiplex PCR assays: the xTAG respiratory viral panel fast (Abbott Molecular Laboratories), Fast-track Respiratory Pathogen assay (Fast-track Diagnostics), Easyplex respiratory pathogen 12 kit (Ausdiagnostics), and an in-house multiplex real-time PCR assay. The performance of the four assays was very similar, with 93-100% agreement for all comparisons. Other issues, such as through-put, technical requirements and cost, are likely to be as important for making a decision about which of these assays to use given their comparative performance.

  7. Disentangling mite predator-prey relationships by multiplex PCR.

    PubMed

    Pérez-Sayas, Consuelo; Pina, Tatiana; Gómez-Martínez, María A; Camañes, Gemma; Ibáñez-Gual, María V; Jaques, Josep A; Hurtado, Mónica A

    2015-11-01

    Gut content analysis using molecular techniques can help elucidate predator-prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species-specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores' main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator-prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5-fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator-prey interactions in tiny species such as mites, which include important agricultural pests and their predators.

  8. Rapid detection of Actinobacillus actinomycetemcomitans, Prevotella intermedia and Porphyromona gingivalis by multiplex PCR.

    PubMed

    García, L; Tercero, J C; Legido, B; Ramos, J A; Alemany, J; Sanz, M

    1998-01-01

    The identification of specific periodontal pathogens by conventional methods, mainly anaerobic cultivation, is difficult, time consuming and even sometimes unreliable. Therefore, a multiplex PCR method for simultaneous detection of Actinobacillus actinomycetemcomitans (A.a.), Porphyromona gingivalis (P.g.) and Prevotella intermedia (P.i.) was developed for rapid and easy identification of these specific bacterial pathogens in subgingival plaque samples. In this paper, there is a detailed description of the oligonucleotide primer selection, DNA extraction and PCR conditions and the sequencing of the amplified products. The locus chosen to be amplified is a highly variable region in the 16S ribosomal DNA. For the development of this technique ATCC cultures and pure cultures from subgingival plaque samples taken from periodontitis patients were used. As an internal positive control a recombinant plasmid was developed. This simple DNA extraction procedure and the DNA amplification and visualization of the amplified product permits the detection of the bacteria in a working day. Thus, this multiplex PCR method is a rapid and effective detection method for specific periodontal pathogens.

  9. Impact of multiplex PCR on antimicrobial treatment in febrile neutropenia: a randomized controlled study.

    PubMed

    Idelevich, Evgeny A; Silling, Gerda; Niederbracht, Yvonne; Penner, Hanna; Sauerland, Maria Cristina; Tafelski, Sascha; Nachtigall, Irit; Berdel, Wolfgang E; Peters, Georg; Becker, Karsten

    2015-10-01

    Multiplex PCR (mPCR) directly from blood has been suggested as a promising method for rapid identification of pathogens causing sepsis. This study aimed to investigate whether mPCR has any impact on antimicrobial treatment. Hematological patients with febrile neutropenia were randomized into two groups. In the study group, mPCR was performed as an addition to standard diagnostics, and PCR finding was immediately communicated to the clinicians, thus being available for decision making. In the control group, clinicians were not aware of PCR result. PCR samples were collected simultaneously with clinically indicated blood culture specimens from peripheral vein and/or central venous catheter at fever onset and once again if fever persisted up to 72 h. Overall, 74 patients of the study group and 76 patients of the control group were enrolled and 253 samples collected. Therapy was changed to targeted antimicrobial therapy (AMT) in 12 patients (16.2%) in the study group and in 12 patients (15.8%) in the control group. For patients with changes, the median time to change to the targeted AMT was 21.4 h in the study group and 47.5 h in the control group (p = 0.018). In the study group, 57.1% (8/14) of changes to targeted AMT was due to PCR finding. PCR led to AMT change in 9.5% (7/74) of study group patients, i.e., in 33.3% (7/21) of patients who had positive PCR finding. There were no significant differences in patient outcomes (secondary endpoints). In conclusion, PCR method accelerates change to the targeted AMT in febrile neutropenic patients.

  10. Simultaneous detection of Cymbidium mosaic virus and Odontoglossum ringspot virus in orchids using multiplex RT-PCR.

    PubMed

    Kim, Su Min; Choi, Sun Hee

    2015-12-01

    A system for simultaneous detection of two orchid-infecting viruses was developed and applied to several orchid species. The detection system involved multiplex reverse transcription-polymerase chain reaction (RT-PCR) and could simultaneously identify Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) from the orchid species studied. Multiplex RT-PCR was conducted using two virus-specific primer pairs and an internal control pair of primers to amplify the CymMV and ORSV coat protein regions, and orchid 18S rDNA, respectively. For optimization of multiplex RT-PCR conditions, serial dilutions of total RNA and cDNA were performed and the detection limit of the system was evaluated. The optimized multiplex detection system for CymMV and ORSV was applied to various orchid species, including several cultivars of Doritaenopsis, Cymbidium, Dendrobium, and Phalaenopsis to test the efficacy of this method. Our results indicate that the multiplex RT-PCR detection system will be a rapid, simple, and precise diagnosis tool in a range of orchid species.

  11. Performance evaluation of multiplex PCR including Aspergillus-not so simple!

    PubMed

    Alanio, Alexandre; Bretagne, Stéphane

    2017-01-01

    Multiplex PCRs have been designed for including species other than Aspergillus fumigatus for the diagnosis of invasive aspergillosis, such as microarrays, liquid-phase array, and electrospray-ionization mass spectrometry (PCR/ESI MS). These methods are based on the selection of multiple primers to amplify different species with the specificity checked by hybridization to a probe or by base composition of the amplicon for the PCR/ESI MS. When testing complex samples such as respiratory specimens, some clinically relevant species can be missed. Indeed, it is impossible to design primers able to amplify all the known fungal species with the same efficiency. Therefore, the best amplified species may not be the most clinically relevant. Multiplex assays have also been proposed to detect A. fumigatus DNA and azole resistance. Since the gene responsible for azole resistance is single copy and the gene used for detection is multicopy, only the high fungal loads can be evaluated. Thus, although interesting for investigating mycobiome, the multiplex assays should be used with cautious for the diagnosis of IA or the detection of resistance. For the diagnosis of invasive aspergillosis, validated quantitative PCRs specifically targeting A. fumigatus or a limited set of species to increase sensitivity is a safer option.

  12. Development of multiplex microsatellite PCR panels for the seagrass Thalassia hemprichii (Hydrocharitaceae)1

    PubMed Central

    van Dijk, Kor-jent; Mellors, Jane; Waycott, Michelle

    2014-01-01

    • Premise of the study: New microsatellites were developed for the seagrass Thalassia hemprichii (Hydrocharitaceae), a long-lived seagrass species that is found throughout the shallow waters of tropical and subtropical Indo-West Pacific. Three multiplex PCR panels were designed utilizing new and previously developed markers, resulting in a toolkit for generating a 16-locus genotype. • Methods and Results: Through the use of microsatellite enrichment and next-generation sequencing, 16 new, validated, polymorphic microsatellite markers were isolated. Diversity was between two and four alleles per locus totaling 36 alleles. These markers, plus previously developed microsatellite markers for T. hemprichii and T. testudinum, were tested for suitability in multiplex PCR panels. • Conclusions: The generation of an easily replicated suite of multiplex panels of codominant molecular markers will allow for high-resolution and detailed genetic structure analysis and clonality assessment with minimal genotyping costs. We suggest the establishment of a T. hemprichii primer convention for the unification of future data sets. PMID:25383269

  13. Validation of a multiplex PCR assay for the forensic identification of Indian crocodiles.

    PubMed

    Meganathan, Poorlin Ramakodi; Dubey, Bhawna; Jogayya, Kothakota Naga; Haque, Ikramul

    2011-09-01

    A dependable and efficient wildlife species identification system is essential for swift dispensation of the justice linking wildlife crimes. Development of molecular techniques is befitting the need of the time. The forensic laboratories often receive highly ill-treated samples for identification purposes, and thus, validation of any novel methodology is necessary for forensic usage. We validate a novel multiplex polymerase chain reaction assay, developed at this laboratory for the forensic identification of three Indian crocodiles, Crocodylus palustris, Crocodylus porosus, and Gavialis gangeticus, following the guidelines of Scientific Working Group on DNA Analysis Methods. The multiplex PCR was tested for its specificity, reproducibility, sensitivity, and stability. This study also includes the samples treated with various chemical substances and exposed to various environmental regimes. The result of this validation study promises this technique to be an efficient identification tool for Indian crocodiles and therefore is recommended for forensic purposes.

  14. Molecular Differentiation of Treponema pallidum Subspecies in Skin Ulceration Clinically Suspected as Yaws in Vanuatu Using Real-Time Multiplex PCR and Serological Methods

    PubMed Central

    Chi, Kai-Hua; Danavall, Damien; Taleo, Fasihah; Pillay, Allan; Ye, Tun; Nachamkin, Eli; Kool, Jacob L.; Fegan, David; Asiedu, Kingsley; Vestergaard, Lasse S.; Ballard, Ronald C.; Chen, Cheng-Yen

    2015-01-01

    We developed a TaqMan-based real-time quadriplex polymerase chain reaction (PCR) to simultaneously detect Treponema pallidum subspecies pallidum, T. pallidum subsp. pertenue, and T. pallidum subsp. endemicum, the causative agents of venereal syphilis, yaws, and bejel, respectively. The PCR assay was applied to samples from skin ulcerations of clinically presumptive yaws cases among children on Tanna Island, Vanuatu. Another real-time triplex PCR was used to screen for the point mutations in the 23S rRNA genes that have previously been associated with azithromycin resistance in T. pallidum subsp. pallidum strains. Seropositivity by the classical syphilis serological tests was 35.5% among children with skin ulcerations clinically suspected with yaws, whereas the presence of T. pallidum subsp. pertenue DNA was only found in lesions from 15.5% of children. No evidence of T. pallidum subsp. pertenue infection, by either PCR or serology was found in ∼59% of cases indicating alternative causes of yaws-like lesions in this endemic area. PMID:25404075

  15. Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.

    PubMed

    Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L

    2016-07-01

    Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR.

  16. Development of multiplex PCR for simultaneous detection of six swine DNA and RNA viruses.

    PubMed

    Xu, Xin-Gang; Chen, Guang-Da; Huang, Yong; Ding, Li; Li, Zhao-Cai; Chang, Ching-Dong; Wang, Chi-Young; Tong, De-Wen; Liu, Hung-Jen

    2012-07-01

    Uniplex and multiplex reverse transcription-polymerase chain reaction (RT-PCR) and PCR protocols were developed and evaluated subsequently for its effectiveness in detecting simultaneously single and mixed infections in swine. Specific primers for three DNA viruses and three RNA viruses, including classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), Japanese encephalitis virus (JEV), porcine circovirus type 2 (PCV2), porcine pseudorabies virus (PRV) and porcine parvovirus (PPV) were used for testing procedure. A single nucleic acid extraction protocol was adopted for the simultaneous extraction of both RNA and DNA viruses. The multiplex PCR consisted with two-step procedure which included reverse transcription of RNA virus and multiplex PCR of viral cDNA and DNA. The multiplex PCR assay was shown to be sensitive detecting at least 450pg of viral genomic DNA or RNA from a mixture of six viruses in a reaction. The assay was also highly specific in detecting one or more of the same viruses in various combinations in specimens. Thirty clinical samples and aborted fetuses collected from 4- to 12-week-old piglets were detected among 39 samples tested by both uniplex and multiplex PCR, showing highly identification. Because of the sensitivity and specificity, the multiplex PCR is a useful approach for clinical diagnosis of mixed infections of DNA and RNA viruses in swine.

  17. Capsular typing of Streptococcus agalactiae (Lancefield group B streptococci) from fish using multiplex PCR and serotyping

    USDA-ARS?s Scientific Manuscript database

    Streptococcus spp. including Streptococcus agalactiae (Lancefield group B streptococci) are considered emerging pathogens responsible for approximately $1 billion USD in annual losses to the global tilapia (Oreochromis sp.) aquaculture industry. This study evaluated a published multiplex PCR capsul...

  18. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses.

    PubMed

    Waggoner, Jesse J; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A

    2016-07-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses.

  19. Respiratory virus multiplex RT-PCR assay sensitivities and influence factors in hospitalized children with lower respiratory tract infections.

    PubMed

    Deng, Jikui; Ma, Zhuoya; Huang, Wenbo; Li, Chengrong; Wang, Heping; Zheng, Yuejie; Zhou, Rong; Tang, Yi-Wei

    2013-04-01

    detection of 17 viral pathogens in NPS specimens in pediatric inpatients at the time of admission. The sensitivity of multiplex RT-PCR was influenced by viral loads, specimen process methods, primer and probe design and amplification condition.

  20. Development of a GeXP-multiplex PCR assay for the simultaneous detection and differentiation of six cattle viruses.

    PubMed

    Fan, Qing; Xie, Zhixun; Xie, Zhiqin; Deng, Xianwen; Xie, Liji; Huang, Li; Luo, Sisi; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Wang, Sheng; Liu, Jiabo; Pang, Yaoshan

    2017-01-01

    Foot-and-mouth disease virus (FMDV), Bluetongue virus (BTV), Vesicular stomatitis Virus (VSV), Bovine viral diarrheal (BVDV), Bovine rotavirus (BRV), and Bovine herpesvirus 1 (IBRV) are common cattle infectious viruses that cause a great economic loss every year in many parts of the world. A rapid and high-throughput GenomeLab Gene Expression Profiler (GeXP) analyzer-based multiplex PCR assay was developed for the simultaneous detection and differentiation of these six cattle viruses. Six pairs of chimeric primers consisting of both the gene-specific primer and a universal primer were designed and used for amplification. Then capillary electrophoresis was used to separate the fluorescent labeled PCR products according to the amplicons size. The specificity of GeXP-multiplex PCR assay was examined with samples of the single template and mixed template of six viruses. The sensitivity was evaluated using the GeXP-multiplex PCR assay on serial 10-fold dilutions of ssRNAs obtained via in vitro transcription. To further evaluate the reliability, 305 clinical samples were tested by the GeXP-multiplex PCR assay. The results showed that the corresponding virus specific fragments of genes were amplified. The detection limit of the GeXP-multiplex PCR assay was 100 copies/μL in a mixed sample of ssRNAs containing target genes of six different cattle viruses, whereas the detection limit for the Gexp-mono PCR assay for a single target gene was 10 copies/μL. In detection of viruses in 305 clinical samples, the results of GeXP were consistent with simplex real-time PCR. Analysis of positive samples by sequencing demonstrated that the GeXP-multiplex PCR assay had no false positive samples of nonspecific amplification. In conclusion, this GeXP-multiplex PCR assay is a high throughput, specific, sensitive, rapid and simple method for the detection and differentiation of six cattle viruses. It is an effective tool that can be applied for the rapid differential diagnosis of clinical

  1. Development of a GeXP-multiplex PCR assay for the simultaneous detection and differentiation of six cattle viruses

    PubMed Central

    Xie, Zhixun; Xie, Zhiqin; Deng, Xianwen; Xie, Liji; Huang, Li; Luo, Sisi; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Wang, Sheng; Liu, Jiabo; Pang, Yaoshan

    2017-01-01

    Foot-and-mouth disease virus (FMDV), Bluetongue virus (BTV), Vesicular stomatitis Virus (VSV), Bovine viral diarrheal (BVDV), Bovine rotavirus (BRV), and Bovine herpesvirus 1 (IBRV) are common cattle infectious viruses that cause a great economic loss every year in many parts of the world. A rapid and high-throughput GenomeLab Gene Expression Profiler (GeXP) analyzer-based multiplex PCR assay was developed for the simultaneous detection and differentiation of these six cattle viruses. Six pairs of chimeric primers consisting of both the gene-specific primer and a universal primer were designed and used for amplification. Then capillary electrophoresis was used to separate the fluorescent labeled PCR products according to the amplicons size. The specificity of GeXP-multiplex PCR assay was examined with samples of the single template and mixed template of six viruses. The sensitivity was evaluated using the GeXP-multiplex PCR assay on serial 10-fold dilutions of ssRNAs obtained via in vitro transcription. To further evaluate the reliability, 305 clinical samples were tested by the GeXP-multiplex PCR assay. The results showed that the corresponding virus specific fragments of genes were amplified. The detection limit of the GeXP-multiplex PCR assay was 100 copies/μL in a mixed sample of ssRNAs containing target genes of six different cattle viruses, whereas the detection limit for the Gexp-mono PCR assay for a single target gene was 10 copies/μL. In detection of viruses in 305 clinical samples, the results of GeXP were consistent with simplex real-time PCR. Analysis of positive samples by sequencing demonstrated that the GeXP-multiplex PCR assay had no false positive samples of nonspecific amplification. In conclusion, this GeXP-multiplex PCR assay is a high throughput, specific, sensitive, rapid and simple method for the detection and differentiation of six cattle viruses. It is an effective tool that can be applied for the rapid differential diagnosis of clinical

  2. Simultaneous detection of eight immunosuppressive chicken viruses using a GeXP analyser-based multiplex PCR assay.

    PubMed

    Zeng, Tingting; Xie, Zhixun; Xie, Liji; Deng, Xianwen; Xie, Zhiqin; Luo, Sisi; Huang, Li; Huang, Jiaoling

    2015-12-30

    Immunosuppressive viruses are frequently found as co-infections in the chicken industry, potentially causing serious economic losses. Because traditional molecular biology methods have limited detection ability, a rapid, high-throughput method for the differential diagnosis of these viruses is needed. The objective of this study is to develop a GenomeLab Gene Expression Profiler Analyser-based multiplex PCR method (GeXP-multiplex PCR) for simultaneous detection of eight immunosuppressive chicken viruses. Using chimeric primers, eight such viruses, including Marek's disease virus (MDV), three subgroups of avian leucosis virus (ALV-A/B/J), reticuloendotheliosis virus (REV), infectious bursal disease virus (IBDV), chicken infectious anaemia virus (CIAV) and avian reovirus (ARV), were amplified and identified by their respective amplicon sizes. The specificity and sensitivity of the optimised GeXP-multiplex PCR assay were evaluated, and the data demonstrated that this technique could selectively amplify these eight viruses at a sensitivity of 100 copies/20 μl when all eight viruses were present. Among 300 examined clinical specimens, 190 were found to be positive for immunosuppressive viruses according to this novel assay. The GeXP-multiplex PCR assay is a high-throughput, sensitive and specific method for the detection of eight immunosuppressive viruses and can be used for differential diagnosis and molecular epidemiological surveys.

  3. Development of a Rapid Multiplex PCR Technique for Determination of Salmonella enterica Serotypes Isolated from Pork and Poultry

    USDA-ARS?s Scientific Manuscript database

    Background: A multiplex PCR technique to discriminate Salmonella enterica serotypes was adapted to a high-throughput, automated assay. Methods: Fifteen target genes were chosen that varied in distribution among common Salmonella enterica serotypes isolated from various hosts. These targets were dete...

  4. Multiplex-PCR for differentiation of Mycobacterium bovis from Mycobacterium tuberculosis complex.

    PubMed

    Spositto, F L E; Campanerut, P A Z; Ghiraldi, L D; Leite, C Q F; Hirata, M H; Hirata, R D C; Siqueira, V L D; Cardoso, R Fressatti

    2014-01-01

    We evaluated a multiplex-PCR to differentiate Mycobacterium bovis from M. tuberculosis Complex (MTC) by one step amplification based on simultaneous detection of pncA 169 C > G change in M. bovis and the IS6110 present in MTC species. Our findings showed the proposed multiplex-PCR is a very useful tool for complementation in differentiating M. bovis from other cultured MTC species.

  5. Multiplex PCR for the detection and differentiation of Vibrio parahaemolyticus strains using the groEL, tdh and trh genes.

    PubMed

    Hossain, Muhammad Tofazzal; Kim, Young-Ok; Kong, In-Soo

    2013-01-01

    Vibrio parahaemolyticus is a significant cause of human gastrointestinal disorders worldwide, transmitted primarily by ingestion of raw or undercooked contaminated seafood. In this study, a multiplex PCR assay for the detection and differentiation of V. parahaemolyticus strains was developed using primer sets for a species-specific marker, groEL, and two virulence markers, tdh and trh. Multiplex PCR conditions were standardised, and extracted genomic DNA of 70 V. parahaemolyticus strains was used for identification. The sensitivity and efficacy of this method were validated using artificially inoculated shellfish and seawater. The expected sizes of amplicons were 510 bp, 382 bp, and 171 bp for groEL, tdh and trh, respectively. PCR products were sufficiently different in size, and the detection limits of the multiplex PCR for groEL, tdh and trh were each 200 pg DNA. Specific detection and differentiation of virulent from non-virulent strains in shellfish homogenates and seawater was also possible after artificial inoculation with various V. parahaemolyticus strains. This newly developed multiplex PCR is a rapid assay for detection and differentiation of pathogenic V. parahaemolyticus strains, and could be used to prevent disease outbreaks and protect public health by helping the seafood industry maintain a safe shellfish supply.

  6. Cryptococcus gattii sero-mating type allelic pattern determined by multiplex PCR.

    PubMed

    Cogliati, M; D'Amicis, R; Tortorano, A M

    2015-02-01

    Molecular methods to differentiate serotypes, mating types and molecular types of Cryptococcus neoformans and C. gattii are important tools to understand epidemiology and pathogenesis of these pathogens. In this study, a multiplex polymerase chain reaction (PCR) approach was applied to sero-mating typing of C. gattii strains. Four pairs of primers were designed to target 4 allele-specific genes located in the mating-type locus. Twenty-three C. gattii strains, presenting different mating types and serotypes, were tested to validate the method. The method was able to identify all sero-mating allelic patterns including hybrid combinations, and therefore, it represents a simple one-step PCR for sero-mating typing of C. gattii strains.

  7. Updated Multiplex PCR for Detection of All Six Plasmid-Mediated qnr Gene Families.

    PubMed

    Kraychete, Gabriela Bergiante; Botelho, Larissa Alvarenga Batista; Campana, Eloiza Helena; Picão, Renata Cristina; Bonelli, Raquel Regina

    2016-12-01

    Plasmid-mediated qnr genes have been reported in bacteria worldwide and are widely associated with other relevant determinants of resistance in multiresistance plasmids. Here, we provide an update on a previously described multiplex PCR in order to detect all six qnr families (including qnrA, qnrS, qnrB, qnrC, qnrD, and qnrVC) described until now. The proposed method makes possible the screening of these genes, reducing cost and time, and it may demonstrate an underestimated prevalence of the latest variants described.

  8. A multiplex PCR assay to diagnose and quantify Nosema infections in honey bees (Apis mellifera).

    PubMed

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H

    2010-10-01

    Correct identification of the microsporidia, Nosema apis and Nosema ceranae, is key to the study and control of Nosema disease of honey bees (Apis mellifera). A rapid DNA extraction method combined with multiplex PCR to amplify the 16S rRNA gene with species-specific primers was compared with a previously published assay requiring spore-germination buffer and a DNA extraction kit. When the spore germination-extraction kit method was used, 10 or more bees were required to detect the pathogens, whereas the new extraction method made it possible to detect the pathogens in single bees. Approx. 4-8 times better detection of N. ceranae was found with the new method compared to the spore germination-extraction kit method. In addition, the time and cost required to process samples was lower with the proposed method compared to using a kit. Using the new DNA extraction method, a spore quantification procedure was developed using a triplex PCR involving co-amplifying the N. apis and N. ceranae 16S rRNA gene with the ribosomal protein gene, RpS5, from the honey bee. The accuracy of this semi-quantitative PCR was determined by comparing the relative band intensities to the number of spores per bee determined by microscopy for 23 samples, and a high correlation (R(2)=0.95) was observed. This method of Nosema spore quantification revealed that spore numbers as low as 100 spores/bee could be detected by PCR. The new semi-quantitative triplex PCR assay is more sensitive, economical, rapid, simple, and reliable than previously published standard PCR-based methods for detection of Nosema and will be useful in laboratories where real-time PCR is not available.

  9. Multiplex PCR reveals that viruses are more frequent than bacteria in children with cystic fibrosis.

    PubMed

    Miró-Cañís, Sílvia; Capilla-Rubio, Sílvia; Marzo-Checa, Laura; Fontanals-Aymerich, Dionisia; Sanfeliu-Sala, Isabel; Espasa-Soley, Mateu; Asensio-de-la-Cruz, Oscar

    2017-01-01

    Cystic fibrosis is a degenerative disease characterized by progressive epithelial secretory gland dysfunction associated with repeated respiratory infections. Bacterial infections are very frequent in children with cystic fibrosis, but because rapid METHODS: for screening for the wide variety of potentially involved viruses were unavailable until recently, the frequency of viral presence is unknown. Multiplex PCR enables screening for many viruses involved in respiratory infections. This study aimed to evaluate the frequency of viruses and bacteria in respiratory specimens from children with cystic fibrosis and to clarify the incidence and characteristics (seasonality and age of patients) of different viruses detected in children with cystic fibrosis. In this 2-year prospective study, we obtained paired nasopharyngeal-swab and sputum specimens from children with cystic fibrosis during clinical respiratory examinations separated by at least 14days. We analyzed viruses in nasopharyngeal-swab specimens with multiplex PCR and bacteria in sputum with standard methods. We analyzed 368 paired specimens from 33 children. We detected viruses in 154 (41.8%) and bacteria in 132 (35.9%). Bacteria were commoner in spring and summer; viruses were commoner in autumn and winter. In every season, Staphylococcus aureus was the commonest bacteria and rhinovirus was the commonest virus. Nearly all infections with Haemophilus influenzae occurred in autumn and winter. Viruses were more prevalent in children <5 years old, and bacteria were more prevalent in children ≥12 years old. Multiplex PCR screening for respiratory viruses is feasible in children with cystic fibrosis; the clinical implications of screening warrant further study. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Advances in multiplex PCR: balancing primer efficiencies and improving detection success

    PubMed Central

    Sint, Daniela; Raso, Lorna; Traugott, Michael

    2012-01-01

    1. Multiplex PCR is a valuable tool in many biological studies but it is a multifaceted procedure that has to be planned and optimised thoroughly to achieve robust and meaningful results. In particular, primer concentrations have to be adjusted to assure an even amplification of all targeted DNA fragments. Until now, total DNA extracts were used for balancing primer efficiencies; however, the applicability for comparisons between taxa or different multiple-copy genes was limited owing to the unknown number of template molecules present per total DNA. 2. Based on a multiplex system developed to track trophic interactions in high Alpine arthropods, we demonstrate a fast and easy way of generating standardised DNA templates. These were then used to balance the amplification success for the different targets and to subsequently determine the sensitivity of each primer pair in the multiplex PCR. 3. In the current multiplex assay, this approach led to an even amplification success for all seven targeted DNA fragments. Using this balanced multiplex PCR, methodological bias owing to variation in primer efficiency will be avoided when analysing field-derived samples. 4. The approach outlined here allows comparing multiplex PCR sensitivity, independent of the investigated species, genome size or the targeted genes. The application of standardised DNA templates not only makes it possible to optimise primer efficiency within a given multiplex PCR, but it also offers to adjust and/or to compare the sensitivity between different assays. Along with other factors that influence the success of multiplex reactions, and which we discuss here in relation to the presented detection system, the adoption of this approach will allow for direct comparison of multiplex PCR data between systems and studies, enhancing the utility of this assay type. PMID:23549328

  11. Differential identification of Sporothrix spp. and Leishmania spp. by conventional PCR and qPCR in multiplex format.

    PubMed

    Rodríguez-Brito, Sabrina; Camacho, Emma; Mendoza, Mireya; Niño-Vega, Gustavo A

    2015-01-01

    Sporotrichosis and cutaneous leishmaniasis are skin infections with similar clinical manifestations but different treatment methods. The present study aimed to evaluate qPCR and conventional PCR for differential detection of the etiological agents of both infections in multiplex format. Assays were designed using two sets of reported primers: SS1/SS2, designed on the 18S ribosomal RNA gene from Sporothrix spp., and JW11/JW12, designed on the kinetoplast DNA (kDNA) minicircles of Leishmania spp. qPCR detected 200 fg of DNA per reaction for both Sporothrix and Leishmania. Melting curve analysis revealed two distinctive Tm peaks for Sporothrix spp. (85.5°C), and Leishmania spp. (82.6°C). A detection limit of 20 pg was determined for the diagnosis of both with conventional PCR. No other clinically important organisms were detected by either PCR or qPCR. However, a Blast analysis on GenBank databases, using as query the sequence of the PCR fragment obtained with primers SS1/SS2, showed 100% identity to environmental fungi of the Ophiostomales order. Lower percentages of identity (≤80%), with mismatches at primers' sequence regions were obtained for other environmental or clinically important fungi. Proper handling of clinical samples is required to avoid false negatives due to contamination with environmental fungi of the Ophiostomales order. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Screening genetically modified organisms using multiplex-PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Jia; Miao, Haizhen; Wu, Houfei; Huang, Wensheng; Tang, Rong; Qiu, Minyan; Wen, Jianguo; Zhu, Shuifang; Li, Yao

    2006-07-15

    In this research, we developed a multiplex polymerase chain reaction (multiplex-PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a consecutive reaction to detect a genetically modified organism (GMO). There are a total of 20 probes for detecting a GMO in a DNA microarray which can be classified into three categories according to their purpose: the first for screening GMO from un-transgenic plants based on the common elements such as promoter, reporter and terminator genes; the second for specific gene confirmation based on the target gene sequences such as herbicide-resistance or insect-resistance genes; the third for species-specific genes which the sequences are unique for different plant species. To ensure the reliability of this method, different kinds of positive and negative controls were used in DNA microarray. Commercial GM soybean, maize, rapeseed and cotton were identified by means of this method and further confirmed by PCR analysis and sequencing. The results indicate that this method discriminates between the GMOs very quickly and in a cost-saving and more time efficient way. It can detect more than 95% of currently commercial GMO plants and the limits of detection are 0.5% for soybean and 1% for maize. This method is proved to be a new method for routine analysis of GMOs.

  13. Development of a multiplex real-time PCR to quantify aflatoxin, ochratoxin A and patulin producing molds in foods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Andrade, María J; Córdoba, Juan J

    2012-04-02

    A multiplex real-time PCR (qPCR) method to quantify aflatoxin, ochratoxin A (OTA) and patulin producing molds in foods was developed. For this, the primer pairs F/R-omt, F/R-npstr and F/R-idhtrb and the TaqMan probes, OMTprobe, NPSprobe and IDHprobe targeting the omt-1, otanpsPN and idh genes involved in aflatoxin, OTA and patulin biosynthesis, respectively, were used. The functionality of the developed qPCR method was demonstrated by the high linear relationship of the standard curves constructed with the omt-1, otanpsPN and idh gene copies and threshold cycle (Ct) values for the respective producing molds tested to quantify aflatoxin, OTA and patulin producing molds. The ability of the optimized qPCR protocol to quantify producing molds was evaluated in different artificially inoculated foods (fruits, nuts, cereals and dry-ripened meat and cheese products). Efficiency values ranged from 81 to 110% in all inoculated foods. The detection limit was between 3 and 1logcfu/g for aflatoxin, OTA and patulin producing molds. The developed multiplex qPCR was shown be an appropriate tool for sensitive quantification of growth of toxigenic fungi in foods throughout the incubation time. Thus, the multiplex qPCR is a useful, rapid and efficient method to quantify simultaneously aflatoxin, OTA and patulin producing molds in food products. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Simplified development of multiplex real-time PCR through master mix augmented by universal fluorogenic reporters.

    PubMed

    Wadle, Simon; Lehnert, Michael; Schuler, Friedrich; Köppel, René; Serr, Annerose; Zengerle, Roland; von Stetten, Felix

    2016-01-01

    Mediator probe (MP) PCR is a real-time PCR approach that uses standardized universal fluorogenic reporter oligonucleotides (UR) in conjunction with label-free sequence-specific probes. To enable multiplex real-time MP PCR, we designed a set of five optimized URs with different fluorescent labels. Performance of the optimized URs was verified in multiplex real-time MP PCR for the detection of a pentaplex food panel and a quadruplex methicillin-resistant Staphylococcus aureus (MRSA) panel. Results were comparable to corresponding multiplex hydrolysis probe (HP) PCR, also designated as TaqMan PCR. Analyses of MRSA DNA standards and DNA extracted from patient swab samples showed improved lower limits of detection (LoDs) by a factor of 2-5 when using quadruplex real-time MP PCR instead of HP PCR. The novel set of standardized URs we present here simplifies development of multiplex real-time PCR assays by requiring only the design of label-free probes. In the future, real-time PCR master mixes could be augmented with up to five standardized fluorogenic URs, each emitting light at a different wavelength.

  15. Establishment of Multiplex Solid-Phase Strip PCR Test for Detection of 24 Ocular Infectious Disease Pathogens.

    PubMed

    Nakano, Satoko; Sugita, Sunao; Tomaru, Yasuhiro; Hono, Ayumi; Nakamuro, Takako; Kubota, Toshiaki; Takase, Hiroshi; Mochizuki, Manabu; Takahashi, Masayo; Shimizu, Norio

    2017-03-01

    To establish and evaluate a new multiplex solid-phase strip polymerase chain reaction (strip PCR) for concurrent detection of common ocular infectious disease pathogens. A new multiplex strip PCR was established to detect 24 common ocular infectious disease pathogens: herpes simplex virus (HSV) 1, HSV2, varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpes virus (HHV) 6, HHV7, HHV8, human T-cell lymphotropic virus (HTLV)-1, adenovirus, Mycobacterium tuberculosis, Treponema pallidum, Propionibacterium acnes (P. acnes), bacterial 16S ribosomal RNA (rRNA), Candida species (Candida sp.), C. glabrata, C. krusei, Aspergillus, Fusarium, fungal 28S rRNA, Toxoplasma (T. gondii), Toxocara, Chlamydia trachomatis (C. trachomatis), and Acanthamoeba. Strip PCR was tested with a negative control (distilled water) and standard positive control DNA. Cutoffs of quantification cycle (Cq) values were determined with noninfectious ocular samples to avoid false-positives caused by contamination with P. acnes, bacterial 16S, and fungal 28S from reagents and ocular surfaces. A pilot study to evaluate the strip PCR was performed using infectious ocular samples (aqueous humor, vitreous, cornea, and tears) by strip PCR and previously developed capillary-type multiplex PCR and quantitative real-time PCR (qPCR). Strip PCR was verified with negative and positive controls. Strip PCR rapidly detected HSV1, HSV2, VZV, EBV, CMV, HHV6, HHV7, HTLV-1, adenovirus, P. acnes, bacterial 16S, Candida sp., C. glabrata, Aspergillus, fungal 28S, T. gondii, C. trachomatis, and Acanthamoeba in patient samples. The sensitivity was comparable to that of qPCR. Our novel strip PCR assay is a simple, rapid, and high-sensitivity method for detecting ocular infectious disease pathogens.

  16. Identification of cytoplasm types in rapeseed (Brassica napus L.) accessions by a multiplex PCR assay.

    PubMed

    Zhao, H X; Li, Z J; Hu, S W; Sun, G L; Chang, J J; Zhang, Z H

    2010-08-01

    Cytoplasmic male sterility (CMS) has widely been used as an efficient pollination control system in rapeseed hybrid production. Identification of cytoplasm type of rapeseed accessions is becoming the most important basic work for hybrid-rapeseed breeding. In this study, we report a simple multiplex PCR method to distinguish the existing common cytoplasm resources, Pol, Nap, Cam, Ogu and Ogu-NWSUAF cytoplasm, in rapeseed. Cytoplasm type of 35 F(1) hybrids and 140 rapeseed open pollinated varieties or breeding lines in our rapeseed breeding programme were tested by this method. The results indicated that 10 of 35 F(1) hybrids are the Nap, and 25 the Pol cytoplasm type, which is consistent with the information provided by the breeders. Out of 140 accessions tested, 100 (71.4%), 21 (15%) and 19 (13.6%) accessions possess Nap, Cam and Pol cytoplasm, respectively. All 19 accessions with Pol cytoplasm are from China. Pedigree analysis indicated that these accessions with Pol cytoplasm were either restorers for Pol CMS, including Shaan 2C, Huiyehui, 220, etc. or derived from hybrids with Pol CMS as female parent. Our molecular results are consistent with those of the classical testcross, suggesting the reliability of this method. The multiplex PCR assay method can be applied to CMS "three-line" breeding, selection and validation of hybrid rapeseed.

  17. A single-tube multiplex PCR for rapid detection in feces of 10 viruses causing diarrhea.

    PubMed

    Khamrin, Pattara; Okame, Makiko; Thongprachum, Aksara; Nantachit, Nattika; Nishimura, Shuichi; Okitsu, Shoko; Maneekarn, Niwat; Ushijima, Hiroshi

    2011-05-01

    A novel multiplex polymerase chain reaction assay was developed to identify 10 viruses in a single tube. The assay was targeted to detect group A and C rotaviruses, adenovirus, norovirus GI, norovirus GII, sapovirus, astrovirus, Aichi virus, parechovirus, and enterovirus. A total of 235 stool samples were collected from infants and children with acute gastroenteritis in Kyoto, Japan, from 2008 to 2009, then tested by this novel multiplex PCR and compared with a multiplex PCR described previously, which used 3 primer sets. The novel multiplex PCR could detect the targeted viruses in 111 of the 235 (47.2%) stool samples. Of these, 9 out of 10 types of viruses were identified, including group A rotavirus, norovirus GII, enterovirus, sapovirus, adenovirus, parechovirus, group C rotavirus, astrovirus, and norovirus GI. In contrast, the multiplex PCR that used 3 sets of primers could detect the targeted viruses in 109 of the 235 (46.4%) stool samples. Among these, 8 types of viruses were identified, including group A rotavirus, norovirus GII, enterovirus, adenovirus, parechovirus, group C rotavirus, sapovirus, and astrovirus. The results suggested that the new multiplex PCR is useful as a rapid and cost effective diagnostic tool for the detection of major pathogenic viruses causing diarrhea.

  18. Optimized Multiplex Detection of 7 KRAS Mutations by Taqman Allele-Specific qPCR

    PubMed Central

    Orue, Andrea; Rieber, Manuel

    2016-01-01

    Establishing the KRAS mutational status of tumor samples is essential to manage patients with colorectal or lung cancer, since these mutations preclude treatment with monoclonal anti-epidermal growth factor receptor (EGFR) antibodies. We report an inexpensive, rapid multiplex allele-specific qPCR method detecting the 7 most clinically relevant KRAS somatic mutations with concomitant amplification of non-mutated KRAS in tumor cells and tissues from CRC patients. Positive samples evidenced in the multiplex assay were further subjected to individual allele-specific analysis, to define the specific mutation. Reference human cancer DNA harbouring either G12A, G12C, G12D, G12R, G12S, G12V and G13D confirmed assay specificity with ≤1% sensitivity of mutant alleles. KRAS multiplex mutation analysis usefulness was also demonstrated with formalin-fixed paraffin embedded (FFPE) from CRC biopsies. Conclusion. Co-amplification of non-mutated DNA avoided false negatives from degraded samples. Moreover, this cost effective assay is compatible with mutation detection by DNA sequencing in FFPE tissues, but with a greater sensitivity when mutant DNA concentrations are limiting. PMID:27632281

  19. Use of Multiplex PCR and PCR Restriction Enzyme Analysis for Detection and Exploration of the Variability in the Free-Living Amoeba Naegleria in the Environment

    PubMed Central

    Pélandakis, Michel; Pernin, Pierre

    2002-01-01

    A multiplex PCR was developed to simultaneously detect Naegleria fowleri and other Naegleria species in the environment. Multiplex PCR was also capable of identifying N. fowleri isolates with internal transcribed spacers of different sizes. In addition, restriction fragment length polymorphism analysis of the PCR product distinguished the main thermophilic Naegleria species from the sampling sites. PMID:11916734

  20. Simultaneous detection of Dialister pneumosintes and Filifactor alocis in endodontic infections by 16S rDNA-directed multiplex PCR.

    PubMed

    Siqueira, José F; Rôças, Isabela N

    2004-12-01

    Dialister pneumosintes and Filifactor alocis have been recently considered as candidate endodontic pathogens. In this study, we devised a 16S rDNA-directed multiplex PCR protocol for simultaneous detection of these two bacterial species in endodontic infections. Samples were taken from infected root canals associated with asymptomatic periradicular lesions as well as from cases of acute periradicular abscesses. DNA extracted from the samples was used as template for simultaneous detection of D. pneumosintes and F. alocis through a multiplex PCR assay. Two fragments of the expected sizes, one specific for D. pneumosintes and the other for F. alocis, were simultaneously amplified from a mixture of reference genomic DNA containing DNA from both species. Clinical samples that were positive for the target species showed a single band of the predicted size for each species. D. pneumosintes was detected by multiplex PCR in 11 samples (7 asymptomatic and 4 abscesses) and F. alocis was identified in 9 cases (6 asymptomatic and 3 abscesses). Six samples (3 asymptomatic and 3 abscesses) shared the two species. Data from the present study confirmed that D. pneumosintes and F. alocis are common members of the microbiota present in primary endodontic infections and thereby may participate in the pathogenesis of periradicular lesions. The proposed multiplex PCR assay is a simple, rapid, and accurate method for the simultaneous detection of these two candidate endodontic pathogens.

  1. Internal transcribed spacer guided multiplex PCR for species identification of Convolvulus prostratus and Evolvulus alsinoides

    PubMed Central

    Sharma, Sonal; Shrivastava, Neeta

    2016-01-01

    Shankhpushpi is a reputed drug from an Indian system of medicine for treating mental disorders and enhancing memory. Two herbs, namely Convolvulus prostratus Forssk. and Evolvulus alsinoides (L.) L., are commonly known as Shankhpushpi. Ambiguous vernacular identity can affect the scientific validity of the Shankpushpi-based herbal drug therapy. In the present investigation, a novel and sensitive multiplex PCR method based on polymorphism in the internal transcribed spacer (ITS) region was developed to establish the molecular identity of C. prostratus and E. alsinoides. DNA was isolated and the ITS region was amplified, sequenced and assembled. Sequences were aligned to identify variable nucleotides in order to develop plant-specific primers. Primers were validated in singleplex reactions and eventually a multiplex assay was developed. This assay was tested for sensitivity and validated by amplifying DNA isolated from the simulated blended powdered plant material. Primers developed for C. prostratus resulted into a 200 bp amplicon and 596 bp for E. alsinoides. The assay was found to be sensitive enough for amplification of low quantities of DNA. The method can detect 10% of the mixing of plants with each other in blended material. This PCR assay can be used for rapid botanical identification of Shankhpushpi plant materials and will improve evidence-based herbal drug therapy. PMID:27175337

  2. Multiplex real-time PCR SYBR Green for detection and typing of group III Clostridium botulinum.

    PubMed

    Anniballi, Fabrizio; Auricchio, Bruna; Delibato, Elisabetta; Antonacci, Monia; De Medici, Dario; Fenicia, Lucia

    2012-01-27

    Clostridium botulinum type C and type D belonging to the group III organisms, are mainly responsible for animal botulism outbreaks. Clinical signs alone are often insufficient to make a diagnosis of botulism and a laboratory confirmation is required. Laboratory confirmation can be performed by demonstrating the presence of botulinum neurotoxins in serum, gastrointestinal contents, liver, wound of sick or dead animals, or by demonstrating the presence of C. botulinum in gastrointestinal contents, liver, and wound. Demonstration of spores in gastrointestinal contents or tissue of animals with clinical signs indicative of botulism reinforces the clinical diagnosis. With the aim of detecting and typing C. botulinum group III organisms, a multiplex real-time PCR SYBR Green was developed and in-house validated. Selectivity, limit of detection, relative accuracy, relative specificity, relative sensitivity, and repeatability of the method were investigated. The multiplex real-time PCR SYBR green used showed a 100% selectivity, 100% relative accuracy, 100% relative specificity, 100% relative sensitivity and a limit of detection of 277 and 580 DNA copies for C. botulinum type C and C. botulinum type D, respectively. The method reported here represents a suitable tool for laboratory diagnosis of type C and D botulism and for testing a large number of samples collected during the animal botulism surveillance and prevention activities.

  3. Development and evaluation of a four-tube real time multiplex PCR assay covering fourteen respiratory viruses, and comparison to its corresponding single target counterparts.

    PubMed

    Jansen, Rogier R; Schinkel, Janke; Koekkoek, Sylvie; Pajkrt, Dasja; Beld, Marcel; de Jong, Menno D; Molenkamp, Richard

    2011-07-01

    Multiplex real time PCR is increasingly used to diagnose respiratory viruses and has shown to be superior to traditional methods, like culture and antigen detection. However, comprehensive data on sensitivity, specificity and performance of the multiplex PCR compared to the single target PCR's is limited for most published respiratory multiplex real time PCR assays. Development and extensive analysis of an internally controlled multiplex real time rt-PCR for detection of respiratory viruses. The assay was validated in comparison to single-target PCR's using plasmid targets and prospectively collected nasopharyngeal aspirates. Using plasmid targets the multiplex format was found to be as least as sensitive and specific as the single-target PCR and no competition was observed when different targets were present at different amounts in one tube. Clinical validation showed high concordance for all viruses tested except for samples with low levels of enterovirus. This multiplex showed excellent specificities for all 14 respiratory viruses and sensitivity was high except for clinical samples with low levels of enterovirus. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A new method for sex determination based on detection of SRY, STS and amelogenin gene regions with simultaneous amplification of their homologous sequences by a multiplex PCR.

    PubMed

    Morikawa, Toshio; Yamamoto, Yuji; Miyaishi, Satoru

    2011-04-01

    We have developed a new method for sex determination based on simultaneous detection of the SRY (sex-determining region Y), STS (steroid sulfatase) and amelogenin (AMELX and AMELY) gene regions and their homologous sequences. The sex of 246 blood samples was correctly determined by this method. An AMELY-deleted male sample, which would have been erroneously considered female based solely on analysis of the amelogenin locus, was successfully identified as male by the present method. The detection limit of this method was 63 pg of genomic DNA, and the male DNA component could be detected from mixed samples having a male:female ratio as low as 1:10. This method was useful for degraded DNA and possessed the human specificity. Practical application to 35 autopsy cases is described.

  5. Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time.

    PubMed

    Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu

    2011-09-01

    To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.

  6. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    PubMed

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-07

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.

  7. Multiplex PCR based on a universal biotinylated primer to generate templates for pyrosequencing.

    PubMed

    Chen, Zhiyao; Liu, Yunlong; Duan, Wenbang; Ye, Hui; Wu, Haiping; Li, Jinheng; Zhou, Guohua

    2014-06-01

    Pyrosequencing is a powerful tool widely used in genetic analysis, however template preparation prior to pyrosequencing is still costly and time-consuming. To achieve an inexpensive and labor-saving template preparation for pyrosequencing, we have successfully developed a single-tube multiplex PCR including a pre-amplification and a universal amplification. In the process of pre-amplification, a low concentration of target-specific primers tagged with universal ends introduced universal priming regions into amplicons. In the process of universal amplification, a high concentration of universal primers was used for yielding amplicons with various SNPs of interest. As only a universal biotinylated primer and one step of single-stranded DNA preparation were required for typing multiple SNPs located on different sequences, pyrosequencing-based genotyping became time-saving, labor-saving, sample-saving, and cost-saving. By a simple optimization of multiplex PCR condition, only a 4-plex and a 3-plex PCR were required for typing 7 SNPs related to tamoxifen metabolism. Further study showed that pyrosequencing coupled with an improved multiplex PCR protocol allowed around 30% decrease of either typing cost or typing labor. Considering the biotinylated primer and the optimized condition of the multiplex PCR are independent of SNP locus, it is easy to use the same condition and the identical biotinylated primer for typing other SNPs. The preliminary typing results of the 7 SNPs in 11 samples demonstrated that multiplex PCR-based pyrosequencing could be promising in personalized medicine at a low cost.

  8. Narcissus yellow stripe virus and Narcissus mosaic virus detection in Narcissus via multiplex TaqMan-based reverse transcription-PCR assay.

    PubMed

    Jin, J; Shen, J G; Cai, W; Xie, G H; Liao, F R; Gao, F L; Ma, J F; Chen, X H; Wu, Z J

    2017-05-01

    Development of a multiplex TaqMan RT-qPCR assay to simultaneously detect Narcissus yellow stripe virus (NYSV) and Narcissus mosaic virus (NMV), frequently causing mixed narcissus infection. Feasibility verification was confirmed in natural samples. Primers and probes were designed based on the conserved CP gene regions of NYSV or NMV and their suitability for singleplex and multiplex TaqMan RT-qPCR assays as well as for conventional RT-PCR. Conventional RT-PCR, singleplex and multiplex TaqMan RT-qPCR assays proved to be NYSV and NMV specific. P-values and coefficients of variation of TaqMan RT-qPCR assays indicated high reproducibility. Significantly increased sensitivity was achieved compared to conventional RT-PCR. The detection limit of both viruses was 10(3) copies with superior correlation coefficients and linear standard curve responses between plasmid concentrations and Ct values. NYSV and NMV infection of narcissus leaves, petals and bulbs could successfully be detected via our multiplex RT-qPCR method at 1·25 mg. Our multiplex TaqMan RT-qPCR assay provides rapid, specific, sensitive and reliable testing to simultaneously detect NYSV and NMV, supplying useful routine monitoring for different narcissus samples. Efficient identification and discrimination of the narcissus viruses provides reliable information for scientists and conventional growers. Furthermore, it enriches the information of NYSV, NMV and other narcissus viruses. © 2017 The Society for Applied Microbiology.

  9. Evalution of DNA extraction methods in order to monitor genetically modified materials in soy foodstuffs and feeds commercialised in Turkey by multiplex real-time PCR.

    PubMed

    Turkec, Aydin; Kazan, Hande; Baykut, Aykut; Lucas, Stuart J

    2015-01-01

    Soybean is one of the most important biotech crops, widely used as an ingredient in both foodstuffs and feed. DNA extraction methods have been evaluated to detect the presence of genetically modified (GM) materials in soya-containing food and feed products commercialised in Turkey. All extraction methods performed well for the majority of soya foods and feed products analysed. However, the most successful method varied between different products; the Foodproof, Genespin and the cetyltrimethylammonium bromide (CTAB) methods each produced the highest DNA yield and purity for different soya foodstuffs and feeds. Of the samples tested, 20% were positive for the presence of at least two GM elements (35S/NOS) while 11% contained an additional GM element (35S/NOS/FMV). Of the tested products, animal feeds showed a larger prevalence of GM material (50%) than the soya-containing foodstuffs (13%). The best performing extraction methods proved to be the Foodproof, Genespin and CTAB methods for soya-containing food and feed products. The results obtained herein clearly demonstrate the presence of GM soybean in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of soy-containing food and feed products. © 2014 Society of Chemical Industry.

  10. Genetic characterisation of invasive breast cancer: a comparison of CGH and PCR based multiplex microsatellite analysis

    PubMed Central

    Buerger, H; Schmidt, H; Beckmann, A; Zanker, K; Boecker, W; Brandt, B

    2001-01-01

    Aims—Comparative genomic hybridisation (CGH) is a reliable tool to gain an overview of all unbalanced chromosomal alterations within a tumour. Nevertheless, the high numbers of tumour cells required and the comparatively low resolution are drawbacks of this technique. Polymerase chain reaction (PCR) based multiplex microsatellite analysis represents a semi-automated, highly reproducible method, which requires small amounts of tumour cells. This is a comparative study of CGH and microsatellite analysis. Methods—Eighty one samples of invasive breast cancer were investigated by two sensitive multiplex PCRs containing three microsatellites each of six markers (D6S261, D11S907, D6S300, D11S927, D8S272, and D11S925), and two additional microsatellite markers located within intron 1 of the epidermal growth factor recepter gene (egfr) and p53 (p53CA). Results—At least one example of loss of heterozygosity was detectable in all breast cancer tissues. However, the overall rate of accordance between the two methods tested was only 61%. An increasing rate of the number of genetic alterations in each case was mirrored by a constantly increasing fractional allelic loss index. Conclusions—PCR based multiplex microsatellite analysis using this panel of eight microsatellite markers not only enables the characterisation of cells that have malignant potential in a high frequency of patients with breast cancer, but can also give an estimate of the degree of genetic progression. Key Words: breast cancer • comparative genomic hybridisation • microsatellites • epidermal growth factor • p53 PMID:11684716

  11. Multiplex qPCR for Detection and Absolute Quantification of Malaria

    PubMed Central

    Kamau, Edwin; Alemayehu, Saba; Feghali, Karla C.; Saunders, David; Ockenhouse, Christian F.

    2013-01-01

    We describe development of an absolute multiplex quantitative real-time PCR for detection of Plasmodium spp., P. falciparum and P. vivax targets in order to produce an assay amenable to high throughput but with reduced costs. Important qPCR experimental details and information that is critical to performance and reliability of assay results were investigated. Inhibition studies were performed to test and compare co-purification of PCR inhibitors in samples extracted from whole blood using either the manual or automated methods. To establish the most optimal qPCR reaction volume, volume titration of the reaction master mix was performed starting at 10 µl to 1 µl reaction master mix with 1 µl of template DNA in each reaction. As the reaction volume decreased, qPCR assays became more efficient with 1 µl reaction master mix being the most efficient. For more accurate quantification of parasites in a sample, we developed plasmid DNAs for all the three assay targets for absolute quantification. All of absolute qPCR assays performed with efficiency of more than 94%, R2 values greater than 0.99 and the STDEV of each replicate was <0.167. Linear regression plots generated from absolute qPCR assays were used to estimate the corresponding parasite density from relative qPCR in terms of parasite/µl. One copy of plasmid DNA was established to be equivalent to 0.1 parasite/µl for Plasmodium spp. assay, 0.281 parasites for P. falciparum assay and 0.127 parasite/µl for P. vivax assay. This study demonstrates for the first time use of plasmid DNA in absolute quantification of malaria parasite. The use of plasmid DNA standard in quantification of malaria parasite will be critical as efforts are underway to harmonize molecular assays used in diagnosis of malaria. PMID:24009663

  12. Molecular diagnostics of the honey bee parasites Lotmaria passim and Crithidia spp. (Trypanosomatidae) using multiplex PCR

    USDA-ARS?s Scientific Manuscript database

    Lotmaria passim Schwarz is a recently described trypanosome parasite of honey bees in continental United States, Europe, and Japan. We developed a multiplex PCR technique using a PCR primer specific for L. passim to distinguish this species from C. mellificae. We report the presence of L. passim in ...

  13. Molecular-Beacon Multiplex Real-Time PCR Assay for Detection of Vibrio cholerae

    PubMed Central

    Gubala, Aneta J.; Proll, David F.

    2006-01-01

    A multiplex real-time PCR assay was developed using molecular beacons for the detection of Vibrio cholerae by targeting four important virulence and regulatory genes. The specificity and sensitivity of this assay, when tested with pure culture and spiked environmental water samples, were high, surpassing those of currently published PCR assays for the detection of this organism. PMID:16957277

  14. High Throughput Multiplex PCR and Probe-based Detection with Luminex Beads for Seven Intestinal Parasites

    PubMed Central

    Taniuchi, Mami; Verweij, Jaco J.; Noor, Zannatun; Sobuz, Shihab U.; van Lieshout, Lisette; Petri, William A.; Haque, Rashidul; Houpt, Eric R.

    2011-01-01

    Polymerase chain reaction (PCR) assays for intestinal parasites are increasingly being used on fecal DNA samples for enhanced specificity and sensitivity of detection. Comparison of these tests against microscopy and copro-antigen detection has been favorable, and substitution of PCR-based assays for the ova and parasite stool examination is a foreseeable goal for the near future. One challenge is the diverse list of protozoan and helminth parasites. Several existing real-time PCR assays for the major intestinal parasites—Cryptosporidium spp., Giardia intestinalis, Entamoeba histolytica, Ancylostoma duodenale, Ascaris lumbricoides, Necator americanus, and Strongyloides stercoralis—were adapted into a high throughput protocol. The assay involves two multiplex PCR reactions, one with specific primers for the protozoa and one with specific primers for the helminths, after which PCR products are hybridized to beads linked to internal oligonucleotide probes and detected on a Luminex platform. When compared with the parent multiplex real-time PCR assays, this multiplex PCR-bead assay afforded between 83% and 100% sensitivity and specificity on a total of 319 clinical specimens. In conclusion, this multiplex PCR-bead protocol provides a sensitive diagnostic screen for a large panel of intestinal parasites. PMID:21292910

  15. Simultaneous detection and differentiation of Entamoeba histolytica, E. dispar, E. moshkovskii, Giardia lamblia and Cryptosporidium spp. in human fecal samples using multiplex PCR and qPCR-MCA.

    PubMed

    Zebardast, Nozhat; Yeganeh, Farshid; Gharavi, Mohammad Javad; Abadi, Alireza; Seyyed Tabaei, Seyyed Javad; Haghighi, Ali

    2016-10-01

    Entamoeba histolytica, Giardia lamblia and Cryptosporidium spp. are common causes of diarrheal and intestinal diseases all over the world. Microscopic methods are useful in the diagnosis of intestinal parasites (IPs), but their sensitivity was assessed approximately 60 percent. Recently, molecular techniques have been used increasingly for the identification and characterization of the parasites. Among those, in this study we have used multiplex PCR and Real-time PCR with melting curve analysis (qPCR-MCA) for simultaneous detection and differentiation of E. histolytica, E. dispar, E. moshkovskii, G. lamblia and Cryptosporidium spp. in human fecal samples. Twenty DNA samples from 12 E. histolytica and 8 E. dispar samples and twenty stool samples confirmed positive for G. lamblia and Cryptosporidium spp. were analyzed. After DNA extraction from the samples, multiplex PCR was done for detection and differentiation of above mentioned parasites. QPCR-MCA was also performed for the detection and differentiation of 11 isolates of above mentioned parasite in a cycle with a time and temperature. Multiplex PCR was able to simultaneous detect and differentiate of above mentioned parasite in a single reaction. QPCR-MCA was able to differentiate genus and species those five protozoa using melting temperature simultaneously at the same time and temperature programs. In total, qPCR-MCA diagnosed 7/11 isolation of E. histolytica, 6/8 isolation of E. dispar, 1/1 E. moshkovskii Laredo, 10/11 G. Lamblia and 6/11 Cryptosporidium spp. Application of multiplex PCR for detection of more than one species in a test in developing countries, at least in reference laboratories has accurate diagnosis and plays a critical role in differentiation of protozoan species. Multiplex PCR assay with a template and multi template had different results and it seems that using a set of primers with one template has higher diagnostic capability in compare with multi template. The results of this study

  16. Detection of Gastrointestinal Pathogens from Stool Samples on Hemoccult Cards by Multiplex PCR

    PubMed Central

    Schlenker, Nicklas; Bauer, Malkin; Helfrich, Kerstin; Mengele, Carolin; Löscher, Thomas; Nothdurft, Hans Dieter; Bretzel, Gisela; Beissner, Marcus

    2017-01-01

    Purpose. Up to 30% of international travelers are affected by travelers' diarrhea (TD). Reliable data on the etiology of TD is lacking. Sufficient laboratory capacity at travel destinations is often unavailable and transporting conventional stool samples to the home country is inconvenient. We evaluated the use of Hemoccult cards for stool sampling combined with a multiplex PCR for the detection of model viral, bacterial, and protozoal TD pathogens. Methods. Following the creation of serial dilutions for each model pathogen, last positive dilution steps (LPDs) and thereof calculated last positive sample concentrations (LPCs) were compared between conventional stool samples and card samples. Furthermore, card samples were tested after a prolonged time interval simulating storage during a travel duration of up to 6 weeks. Results. The LPDs/LPCs were comparable to testing of conventional stool samples. After storage on Hemoccult cards, the recovery rate was 97.6% for C. jejuni, 100% for E. histolytica, 97.6% for norovirus GI, and 100% for GII. Detection of expected pathogens was possible at weekly intervals up to 42 days. Conclusion. Stool samples on Hemoccult cards stored at room temperature can be used in combination with a multiplex PCR as a reliable tool for testing of TD pathogens. PMID:28408937

  17. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers

    PubMed Central

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C.; Chorianopoulos, Nikos

    2015-01-01

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry. PMID:26506345

  18. Rapid identification of Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii with a multiplex PCR assay.

    PubMed

    Chen, Te-Li; Lee, Yi-Tzu; Kuo, Shu-Chen; Yang, Su-Pen; Fung, Chang-Phone; Lee, Shou-Dong

    2014-09-01

    Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii are clinically relevant members of the Acinetobacter calcoaceticus-A. baumannii (Acb) complex and important nosocomial pathogens. These three species are genetically closely related and phenotypically similar; however, they differ in their epidemiology, antibiotic resistance and pathogenicity. In this study, we investigated the use of a multiplex PCR-based assay designed to detect internal fragments of the 16S-23S rRNA intergenic region and the gyrB and recA genes. The assay was capable of differentiating A. baumannii, A. nosocomialis and A. pittii in a reliable manner. In 23 different reference strains and 89 clinical isolates of Acinetobacter species, the assay accurately identified clinically relevant Acb complex species except those 'between 1 and 3' or 'close to 13TU'. None of the non-Acb complex species was misidentified. In an analysis of 1034 positive blood cultures, the assay had a sensitivity of 92.4 % and specificity of 98.2 % for Acb complex identification. Our results show that a single multiplex PCR assay can reliably differentiate clinically relevant Acb complex species. Thus, this method may be used to better understand the clinical differences between infections caused by these species.

  19. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers.

    PubMed

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C; Chorianopoulos, Nikos

    2015-10-22

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry.

  20. Detection of Gastrointestinal Pathogens from Stool Samples on Hemoccult Cards by Multiplex PCR.

    PubMed

    Alberer, Martin; Schlenker, Nicklas; Bauer, Malkin; Helfrich, Kerstin; Mengele, Carolin; Löscher, Thomas; Nothdurft, Hans Dieter; Bretzel, Gisela; Beissner, Marcus

    2017-01-01

    Purpose. Up to 30% of international travelers are affected by travelers' diarrhea (TD). Reliable data on the etiology of TD is lacking. Sufficient laboratory capacity at travel destinations is often unavailable and transporting conventional stool samples to the home country is inconvenient. We evaluated the use of Hemoccult cards for stool sampling combined with a multiplex PCR for the detection of model viral, bacterial, and protozoal TD pathogens. Methods. Following the creation of serial dilutions for each model pathogen, last positive dilution steps (LPDs) and thereof calculated last positive sample concentrations (LPCs) were compared between conventional stool samples and card samples. Furthermore, card samples were tested after a prolonged time interval simulating storage during a travel duration of up to 6 weeks. Results. The LPDs/LPCs were comparable to testing of conventional stool samples. After storage on Hemoccult cards, the recovery rate was 97.6% for C. jejuni, 100% for E. histolytica, 97.6% for norovirus GI, and 100% for GII. Detection of expected pathogens was possible at weekly intervals up to 42 days. Conclusion. Stool samples on Hemoccult cards stored at room temperature can be used in combination with a multiplex PCR as a reliable tool for testing of TD pathogens.

  1. Detection of four important Eimeria species by multiplex PCR in a single assay.

    PubMed

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl.

  2. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-01-01

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya. PMID:25337891

  3. Development and validation of a multiplex reverse transcription PCR assay for simultaneous detection of three papaya viruses.

    PubMed

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-10-21

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay's specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya.

  4. Usefulness of multiplex PCR methods and respiratory viruses' distribution in children below 15 years old according to age, seasons and clinical units in France: A 3 years retrospective study.

    PubMed

    Visseaux, Benoit; Collin, Gilles; Ichou, Houria; Charpentier, Charlotte; Bendhafer, Samia; Dumitrescu, Madalina; Allal, Lahcene; Cojocaru, Bogdan; Desfrère, Luc; Descamps, Diane; Mandelbrot, Laurent; Houhou-Fidouh, Nadhira

    2017-01-01

    To date, only influenza and RSV testing are recommended for respiratory viruses' detection in paediatric units. In this study, we described, according to seasons, ages and clinical units, the results obtained in children (<15 years old) by multiplex-PCR (mPCR) tests allowing a quick and wide range detection of all respiratory viruses. These results were also compared with RSV specific detection. All nasopharyngeal mPCR and RSV tests requested by clinicians in our French teaching hospitals group between 2011 and 2014 were retrospectively included. All repeated samples for the same children in the same month were discarded. Of the 381 mPCR tests (344 children) performed, 51.4% were positive. Positivity and viral co-infection rates were higher in the 6-36 months old strata (81% and 25%, p<0.0001 and p = 0.04, respectively). Viral distribution showed strong variations across ages. During specific influenza epidemic periods, only 1/39 (2.5%) mPCR tests were positive for influenza and 19/39 (48.7%) for other viruses. During specific RSV epidemic periods, only 8/46 (17.4%) mPCR tests were positive for RSV and 14/46 (30.4%) for other viruses. 477/1529 (31.2%) of RSV immunochromatography-tests were positive. Among the negatives immunochromatography-test also explored by mPCR, 28/62 (31%) were positive for other respiratory viruses. This study provides a wide description of respiratory viruses' distribution among children in hospital settings using mPCR over 3 years. It emphasizes the number of undiagnosed respiratory viruses according to the current diagnosis practice in France and gives a better picture of respiratory viruses identified in hospital settings by mPCR all over the year in France.

  5. Simultaneous Detection of Aeromonas salmonicida, Flavobacterium psychrophilum, and Yersinia ruckeri, Three Major Fish Pathogens, by Multiplex PCR

    PubMed Central

    del Cerro, A.; Marquez, I.; Guijarro, J. A.

    2002-01-01

    A multiplex PCR assay based on the 16S rRNA genes was developed for the simultaneous detection of three major fish pathogens, Aeromonas salmonicida, Flavobacterium psychrophilum, and Yersinia ruckeri. The assay proved to be specific and as sensitive as each single PCR assay, with detection limits in the range of 6, 0.6, and 27 CFU for A. salmonicida, F. psychrophilum, and Y. ruckeri, respectively. The assay was useful for the detection of the bacteria in artificially infected fish as well as in fish farm outbreaks. Results revealed that this multiplex PCR system permits a specific, sensitive, reproducible, and rapid method for the routine laboratory diagnosis of infections produced by these three bacteria. PMID:12324372

  6. Multiplex PCR for the Detection of 10 Viruses Causing Encephalitis/Encephalopathy and its Application to Clinical Samples Collected from Japanese Children with Suspected Viral.

    PubMed

    Pham, Ngan T K; Ushijima, Hiroshi; Thongprachum, Aksara; Trinh, Quang D; Khamrin, Pattara; Arakawa, Chikako; Ishii, Wakako; Okitsu, Shoko; Komine-Aizawa, Shihoko; Hayakawa, Satoshi

    2017-01-01

    Acute encephalitis is a serious neurological condition having a high mortality rate and affecting both children and adults. This study aimed to develop a multiplex PCR method for the simultaneous screening of clinical samples for the presence of the 10 viruses presently considered as the major viral causes of acute encephalitis/ encephalopathy in Asia. Using previously published primers that have been widely used to screen for herpes virus-6, influenza A virus, human parechovirus, herpes simplex viruses 1 and 2, Japanese encephalitis virus, group A rotavirus, enterovirus, adenovirus, and dengue virus in clinical samples, a single-tube multiplex PCR assay was developed and was tested for its sensitivity and specificity. The method was then applied to screen 57 clinical samples, consisting of 13 fecal samples, 5 throat swabs, 3 post-nasal swabs, 18 serum samples, and 18 cerebrospinal fluid (CSF) samples, collected from 18 hospitalized Japanese children with suspected viral encephalitis/encephalopathy for the target viruses, and the results were compared with those of a monoplex PCR method. Positive viral controls of the 10 viruses were correctly typed using this multiplex PCR method. The multiplex PCR method showed high specificity with no unspecific amplification to non-target viruses. The results of applying this PCR method for screening clinical samples showed that 6 fecal samples, 2 serum samples, and 1 CSF sample collected from 7 patients were positive for a virus, specifically group A rotavirus (4 patients, 22.2%), enterovirus (2 patients, 11.1%), or adenovirus (1 patient, 5.6%). In comparison with monoplex PCR, for group A rotavirus, enterovirus, and adenovirus, the sensitivity of this multiplex PCR method decreased for serum, cerebrospinal fluid, and throat swab samples. This newly developed multiplex PCR method is a simple, rapid diagnostic tool and can be used to screen clinical samples for viruses causing acute encephalitis/encephalopathy in children in

  7. Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review.

    PubMed

    Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad

    2016-05-28

    The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process.

  8. A multiplex restriction enzyme-PCR for unequivocal identification and differentiation of Trichostrongylus species in human samples.

    PubMed

    Mizani, Azadeh; Gill, Pooria; Daryani, Ahmad; Sarvi, Shahabeddin; Amouei, Afsaneh; Katrimi, Ali Bakooie; Soleymani, Eissa; Mirshafiee, Siavash; Gholami, Sara; Hosseini, Seyed Abdollah; Gholami, Shirzad; Rahimi, Mohammad-Taghi; Hashemi-Soteh, Mohammad Bagher; Sharif, Mehdi

    2017-09-01

    Trichostrongylus species remain one of the major health challenges in the tropical and summer rainfall regions worldwide. Identification of strongylid species diagnostic methods is vital for obtaining a deep understanding of the epidemiology, population biology, anthelmintic treatment efficacy, and drug resistance in order to design effective parasite control strategies. We evaluated a multiplex RE-PCR for the diagnosis of key Trichostrongylus spp. Genomic DNA amplification of Trichostrongylus colubriformis, Trichostrongylus axei and Trichostrongylus vitrinus was achieved as standard sample using specific primers located in the second internal transcribed spacer (ITSII) of nuclear ribosomal DNA (rDNA). The mentioned method was based on isolation of Trichostrongylus ova from human fecal samples using Willis method, the extraction of ova genomic DNA samples, followed by rDNA ITSII PCR and one-step multiplex RE-PCR using three restriction enzymes of HinfI, DraI, and MseI. The multiplex RE-PCR technique provides a useful tool for discriminating all Trichostrongylus spp., being useful for diagnostic, epidemiological, ecological studies, and control programs. This method is rapid, especially when numerous restriction enzymes are required for species differentiation or identification. Copyright © 2017. Published by Elsevier B.V.

  9. Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays.

    PubMed

    Iftner, Thomas; Germ, Liesje; Swoyer, Ryan; Kjaer, Susanne Kruger; Breugelmans, J Gabrielle; Munk, Christian; Stubenrauch, Frank; Antonello, Joseph; Bryan, Janine T; Taddeo, Frank J

    2009-07-01

    Human papillomavirus (HPV) DNA genotyping is an essential test to establish efficacy in HPV vaccine clinical trials and HPV prevalence in natural history studies. A number of HPV DNA genotyping methods have been cited in the literature, but the comparability of the outcomes from the different methods has not been well characterized. Clinically, cytology is used to establish possible HPV infection. We evaluated the sensitivity and specificity of HPV multiplex PCR assays compared to those of the testing scheme of the Hybrid Capture II (HCII) assay followed by an HPV PCR/line hybridization assay (HCII-LiPA v2). SurePath residual samples were split into two aliquots. One aliquot was subjected to HCII testing followed by DNA extraction and LiPA v2 genotyping. The second aliquot was shipped to a second laboratory, where DNA was extracted and HPV multiplex PCR testing was performed. Comparisons were evaluated for 15 HPV types common in both assays. A slightly higher proportion of samples tested positive by the HPV multiplex PCR than by the HCII-LiPA v2 assay. The sensitivities of the multiplex PCR assay relative to those of the HCII-LiPA v2 assay for HPV types 6, 11, 16, and 18, for example, were 0.806, 0.646, 0.920, and 0.860, respectively; the specificities were 0.986, 0.998, 0.960, and 0.986, respectively. The overall comparability of detection of the 15 HPV types was quite high. Analyses of DNA genotype testing compared to cytology results demonstrated a significant discordance between cytology-negative (normal) and HPV DNA-positive results. This demonstrates the challenges of cytological diagnosis and the possibility that a significant number of HPV-infected cells may appear cytologically normal.

  10. A new trilocus sequence-based multiplex-PCR to detect major Acinetobacter baumannii clones.

    PubMed

    Martins, Natacha; Picão, Renata Cristina; Cerqueira-Alves, Morgana; Uehara, Aline; Barbosa, Lívia Carvalho; Riley, Lee W; Moreira, Beatriz Meurer

    2016-08-01

    A collection of 163 Acinetobacter baumannii isolates detected in a large Brazilian hospital, was potentially related with the dissemination of four clonal complexes (CC): 113/79, 103/15, 109/1 and 110/25, defined by University of Oxford/Institut Pasteur multilocus sequence typing (MLST) schemes. The urge of a simple multiplex-PCR scheme to specify these clones has motivated the present study. The established trilocus sequence-based typing (3LST, for ompA, csuE and blaOXA-51-like genes) multiplex-PCR rapidly identifies international clones I (CC109/1), II (CC118/2) and III (CC187/3). Thus, the system detects only one (CC109/1) out of four main CC in Brazil. We aimed to develop an alternative multiplex-PCR scheme to detect these clones, known to be present additionally in Africa, Asia, Europe, USA and South America. MLST, performed in the present study to complement typing our whole collection of isolates, confirmed that all isolates belonged to the same four CC detected previously. When typed by 3LST-based multiplex-PCR, only 12% of the 163 isolates were classified into groups. By comparative sequence analysis of ompA, csuE and blaOXA-51-like genes, a set of eight primers was designed for an alternative multiplex-PCR to distinguish the five CC 113/79, 103/15, 109/1, 110/25 and 118/2. Study isolates and one CC118/2 isolate were blind-tested with the new alternative PCR scheme; all were correctly clustered in groups of the corresponding CC. The new multiplex-PCR, with the advantage of fitting in a single reaction, detects five leading A. baumannii clones and could help preventing the spread in healthcare settings.

  11. Xenomonitoring of Different Filarial Nematodes Using Single and Multiplex PCR in Mosquitoes from Assiut Governorate, Egypt

    PubMed Central

    Dyab, Ahmed Kamal; Galal, Lamia Ahmed; Mahmoud, Abeer El-Sayed; Mokhtar, Yasser

    2015-01-01

    Wuchereria bancrofti, Dirofilaria immitis, and Dirofilaria repens are filarial nematodes transmitted by mosquitoes belonging to Culex, Aedes, and Anopheles genera. Screening by vector dissection is a tiresome technique. We aimed to screen filarial parasites in their vectors by single and multiplex PCR and evaluate the usefulness of multiplex PCR as a rapid xenomonitoring and simultaneous differentiation tool, in area where 3 filarial parasites are coexisting. Female mosquitoes were collected from 7 localities in Assiut Governorate, were microscopically identified and divided into pools according to their species and collection site. Detection of W. bancrofti, D. immitis, and D. repens using single PCR was reached followed by multiplex PCR. Usefulness of multiplex PCR was evaluated by testing mosquito pools to know which genera and species are used by filarial parasites as a vector. An overall estimated rate of infection (ERI) in mosquitoes was 0.6%; the highest was Culex spp. (0.47%). W. bancrofti, D. immitis, and D. repens could be simultaneously and differentially detected in infected vectors by using multiplex PCR. Out of 100 mosquito pools, 8 were positive for W. bancrofti (ERI of 0.33%) and 3 pools each were positive for D. immitis and D. repens (ERI 0.12%). The technique showed 100% sensitivity and 98% specificity. El-Nikhila, El-Matiaa villages, and Sahel Seleem district in Assiut Governorate, Egypt are still endemic foci for filarial parasites. Multiplex PCR offers a reliable procedure for molecular xenomonitoring of filariasis within their respective vectors in endemic areas. Therefore, it is recommended for evaluation of mosquito infection after lymphatic filariasis eradication programs. PMID:25748712

  12. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  13. Multiplex RT-PCR for rapid detection of viruses commonly causing diarrhea in pediatric patients.

    PubMed

    Thongprachum, Aksara; Khamrin, Pattara; Pham, Ngan Thi Kim; Takanashi, Sayaka; Okitsu, Shoko; Shimizu, Hiroyuki; Maneekarn, Niwat; Hayakawa, Satoshi; Ushijima, Hiroshi

    2017-05-01

    Multiplex RT-PCR method using five sets of panel primers was developed for the detection of diarrheal viruses, including rotavirus A, B, and C, adenovirus, astrovirus, norovirus GI and GII, sapovirus, Aichi virus, parechovirus, enterovirus, cosavirus, bocavirus, and Saffold virus. The sensitivity of the method was evaluated and tested with 751 fecal specimens collected from Japanese children with acute diarrhea. Several kinds of viruses were detected in 528 out of 751 (70.3%) fecal specimens. Mixed-infection with different viruses in clinical specimens could also be effectively detected. The method proved to be reliable with highly sensitive and specific and useful for routine diagnosis. J. Med. Virol. 89:818-824, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Detection of Ehrlichia canis and Anaplasma platys DNA using multiplex PCR.

    PubMed

    Rufino, Claudia Pinheiro; Moraes, Pablo Henrique Gonçalves; Reis, Thais; Campos, Ruan; Aguiar, Délia Cristina Figueira; McCulloch, John Anthony; Meneses, Andre Marcelo Conceição; Gonçalves, Evonnildo Costa

    2013-12-01

    We hereby propose a novel sensitive, specific, and cost-efficient method to detect Ehrlichia canis and Anaplasma platys DNA from canine whole blood samples by multiplex PCR. Blood samples from hemoparasited dogs attending the Veterinary Hospital at the Universidade Federal Rural da Amazônia-UFRA, Belém, Brazil, were collected in tubes containing EDTA. Amplification of E. canis and A. platys 16S rDNA by nested (n) PCR was successfully achieved by using primers specific to the Anaplasmataceae in the first round of PCR, followed by a second round of PCR using E. canis-specific primers in conjunction with A. platys-specific primers. The amplicons obtained were cloned and sequenced, yielding sequences of 478 and 473 bp (including primers) pertaining to regions of the 16S rDNA of E. canis and A. platys, respectively. The protocol we here propose may help to measure the prevalence of canine monocytic ehrlichiosis (CME) and canine cyclic thrompocytopenia, not only in northern Brazil, where there is no data available, but also elsewhere.

  15. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples.

  16. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  17. Targeted RNA-Sequencing with Competitive Multiplex-PCR Amplicon Libraries

    PubMed Central

    Blomquist, Thomas M.; Crawford, Erin L.; Lovett, Jennie L.; Yeo, Jiyoun; Stanoszek, Lauren M.; Levin, Albert; Li, Jia; Lu, Mei; Shi, Leming; Muldrew, Kenneth; Willey, James C.

    2013-01-01

    Whole transcriptome RNA-sequencing is a powerful tool, but is costly and yields complex data sets that limit its utility in molecular diagnostic testing. A targeted quantitative RNA-sequencing method that is reproducible and reduces the number of sequencing reads required to measure transcripts over the full range of expression would be better suited to diagnostic testing. Toward this goal, we developed a competitive multiplex PCR-based amplicon sequencing library preparation method that a) targets only the sequences of interest and b) controls for inter-target variation in PCR amplification during library preparation by measuring each transcript native template relative to a known number of synthetic competitive template internal standard copies. To determine the utility of this method, we intentionally selected PCR conditions that would cause transcript amplification products (amplicons) to converge toward equimolar concentrations (normalization) during library preparation. We then tested whether this approach would enable accurate and reproducible quantification of each transcript across multiple library preparations, and at the same time reduce (through normalization) total sequencing reads required for quantification of transcript targets across a large range of expression. We demonstrate excellent reproducibility (R2 = 0.997) with 97% accuracy to detect 2-fold change using External RNA Controls Consortium (ERCC) reference materials; high inter-day, inter-site and inter-library concordance (R2 = 0.97–0.99) using FDA Sequencing Quality Control (SEQC) reference materials; and cross-platform concordance with both TaqMan qPCR (R2 = 0.96) and whole transcriptome RNA-sequencing following “traditional” library preparation using Illumina NGS kits (R2 = 0.94). Using this method, sequencing reads required to accurately quantify more than 100 targeted transcripts expressed over a 107-fold range was reduced more than 10,000-fold, from 2.3×109 to 1

  18. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    PubMed

    Hasanpour, Mojtaba; Najafi, Akram

    2017-03-28

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (Tm) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains.

  19. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh.

    PubMed

    Bej, A K; Patterson, D P; Brasher, C W; Vickery, M C; Jones, D D; Kaysner, C A

    1999-06-01

    Vibrio parahaemolyticus is an important human pathogen which can cause gastroenteritis when consumed in raw or partially-cooked seafood. A multiplex PCR amplification-based detection of total and virulent strains of V. parahaemolyticus was developed by targeting thermolabile hemolysin encoded by tl, thermostable direct hemolysin encoded by tdh, and thermostable direct hemolysin-related trh genes. Following optimization using oligonucleotide primers targeting tl, tdh and trh genes, the multiplex PCR was applied to V. parahaemolyticus from 27 clinical, 43 seafood, 15 environmental, 7 strains obtained from various laboratories and 19 from oyster plants. All 111 V. parahaemolyticus isolates showed PCR amplification of the tl gene; however, only 60 isolates showed amplification of tdh, and 43 isolates showed amplification of the trh gene. Also, 18 strains showed amplification of the tdh gene, but these strains did not show amplification of the trh gene. However, one strain exhibited amplification for the trh but not the tdh gene, suggesting both genes need to be targeted in a PCR amplification reaction to detect all hemolysin-producing strains of this pathogen. The multiplex PCR approach was successfully used to detect various strains of V parahaemolyticus in seeded oyster tissue homogenate. Sensitivity of detection for all three target gene segments was at least between 10(1)-10(2) cfu per 10 g of alkaline peptone water enriched seeded oyster tissue homogenate. This high level of sensitivity of detection of this pathogen within 8 h of pre-enrichment is well within the action level (10(4) cfu per 1 g of shell stock) suggested by the National Seafood Sanitation Program guideline. Compared to conventional microbiological culture methods, this multiplex PCR approach is rapid and reliable for accomplishing a comprehensive detection of V. parahaemolyticus in shellfish.

  20. Utility of multiplex PCR in detecting the causative pathogens for pediatric febrile neutropenia.

    PubMed

    Mitsuda, Yoshihiro; Takeshima, Yasuhiro; Mori, Takeshi; Yanai, Tomoko; Hayakawa, Akira; Matsuo, Masafumi

    2011-08-17

    Febrile neutropenia (FN) is a life-threatening complication, and the primary cause of FN is considered to be microbial infection. Therefore, prompt and appropriate antimicrobial therapy is crucial. Clinicians usually prescribe antimicrobial therapy on the basis of presumptive and empirical data. This is because the causative pathogen for FN in blood culture (BC) analysis is detected several days after sampling. Polymerase chain reaction (PCR) analysis has been used for detecting the causative bacteria of infections. Here, we examined whether multiplex PCR is useful for detecting the causative pathogens for FN patients. We extracted DNA from the patients' whole blood and performed multiplex PCR. In total, 128 samples of 40 patients clinically diagnosed with FN were used in this study. Multiplex PCR analysis revealed the causative pathogen in 3 patients with FN; the DNA fragments amplified were those of Pseudomonas aeruginosa in 2 cases and Psedomonas putida in 1 case. These patients could be started on appropriate antimicrobial therapy a few hours after sampling. However, the DNA fragment of the causative pathogen could not be amplified by PCR in 2 patients, although BC analysis did detect the causative bacteria. Thus, we conclude that multiplex PCR is serviceable in case of FN because of its rapidness. However, BC is also indispensable to treating FN owing to its high sensitivity.

  1. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India

    PubMed Central

    Dinoop, K.P.; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R.P.; Narayanan, P.

    2016-01-01

    Background & objectives: Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Methods: Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. Results: In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated (P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Interpretation & conclusions: Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the

  2. Development of a multiplex PCR assay to detect gastroenteric pathogens in the feces of Mexican children.

    PubMed

    Tolentino-Ruiz, R; Montoya-Varela, D; García-Espitia, M; Salas-Benito, M; Gutiérrez-Escolano, A; Gómez-García, C; Figueroa-Arredondo, P; Salas-Benito, J; De Nova-Ocampo, M

    2012-10-01

    Acute gastroenteritis (AGE) is a major cause of childhood morbidity and mortality worldwide; the etiology of AGE includes viruses, bacteria, and parasites. A multiplex PCR assay to simultaneously identify human Astrovirus (HAstV), Calicivirus (HuCVs), Entamoeba histolytica (E. histolytica), and enteroinvasive Escherichia coli (EIEC) in stool samples is described. A total of 103 samples were individually analyzed by ELISA (enzyme-linked immunosorbent assays) and RT-PCR/PCR. HAstV and HuCVs were detected in four out of 103 samples (3.8 %) by RT-PCR, but ELISAs found only one sample as positive for HuCVs (2.5 %). E. histolytica was identified in two out of 19 samples (10.5 %) and EIEC in 13 out of 20 samples (70 %) by PCR, and all PCR products were sequenced to verify their identities. Our multiplex PCR results demonstrate the simultaneous amplification of different pathogens such as HAstV, EIEC, and E. histolytica in the same reaction, though the HuCVs signal was weak in every replicate. Regardless, this multiplex PCR protocol represents a novel tool for the identification of distinct pathogens and may provide support for the diagnosis of AGE in children.

  3. Development of a multiplex RT-PCR-ELISA to identify four distinct species of tospovirus.

    PubMed

    Charoenvilaisiri, Saengsoon; Seepiban, Channarong; Bhunchoth, Anjana; Warin, Nuchnard; Luxananil, Plearnpis; Gajanandana, Oraprapai

    2014-06-01

    In this study, a multiplex RT-PCR-ELISA was developed to detect and differentiate four tospovirus species found in Thailand, namely Capsicum chlorosis virus (CaCV), Melon yellow spot virus (MYSV), Tomato necrotic ringspot virus (TNRV), and Watermelon silver mottle virus (WSMoV). In this system, nucleocapsid (N) gene fragments of four tospoviruses were simultaneously amplified and labeled with digoxigenin (DIG) in a single RT-PCR reaction using a pair of degenerate primers binding to the same conserved regions in all four tospovirus N genes. The DIG-labeled amplicons were distinguished into species by four parallel hybridizations to species-specific biotinylated probes in streptavidin-coated microtiter wells followed by ELISA detection using a peroxidase-conjugated anti-DIG antibody. Results indicated that the multiplex RT-PCR-ELISA assay could specifically identify each of these four tospoviruses without cross-reactivity between species or reactivity to healthy plant negative controls. Assay sensitivity was 10- to 1000-fold higher than conventional RT-PCR. When applied to naturally infected plants, all samples yielded concordant results between RT-PCR-ELISA and the reference RT-PCR. In conclusion, the multiplex RT-PCR-ELISA developed in this study has superior specificity, sensitivity, and high-throughput capacity compared to conventional RT-PCR and is an attractive alternative for the identification of different tospovirus species.

  4. Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses

    PubMed Central

    Iraola, Gregorio; Hernández, Martín; Calleros, Lucía; Paolicchi, Fernando; Silveyra, Silvia; Velilla, Alejandra; Carretto, Luis; Rodríguez, Eliana

    2012-01-01

    Campylobacter (C.) fetus (epsilonproteobacteria) is an important veterinary pathogen. This species is currently divided into C. fetus subspecies (subsp.) fetus (Cff) and C. fetus subsp. venerealis (Cfv). Cfv is the causative agent of bovine genital Campylobacteriosis, an infectious disease that leads to severe reproductive problems in cattle worldwide. Cff is a more general pathogen that causes reproductive problems mainly in sheep although cattle can also be affected. Here we describe a multiplex PCR method to detect C. fetus and differentiate between subspecies in a single step. The assay was standardized using cultured strains and successfully used to analyze the abomasal liquid of aborted bovine fetuses without any pre-enrichment step. Results of our assay were completely consistent with those of traditional bacteriological diagnostic methods. Furthermore, the multiplex PCR technique we developed may be easily adopted by any molecular diagnostic laboratory as a complementary tool for detecting C. fetus subspecies and obtaining epidemiological information about abortion events in cattle. PMID:23271178

  5. Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses.

    PubMed

    Iraola, Gregorio; Hernández, Martín; Calleros, Lucía; Paolicchi, Fernando; Silveyra, Silvia; Velilla, Alejandra; Carretto, Luis; Rodríguez, Eliana; Pérez, Ruben

    2012-12-01

    Campylobacter (C.) fetus (epsilonproteobacteria) is an important veterinary pathogen. This species is currently divided into C. fetus subspecies (subsp.) fetus (Cff) and C. fetus subsp. venerealis (Cfv). Cfv is the causative agent of bovine genital Campylobacteriosis, an infectious disease that leads to severe reproductive problems in cattle worldwide. Cff is a more general pathogen that causes reproductive problems mainly in sheep although cattle can also be affected. Here we describe a multiplex PCR method to detect C. fetus and differentiate between subspecies in a single step. The assay was standardized using cultured strains and successfully used to analyze the abomasal liquid of aborted bovine fetuses without any pre-enrichment step. Results of our assay were completely consistent with those of traditional bacteriological diagnostic methods. Furthermore, the multiplex PCR technique we developed may be easily adopted by any molecular diagnostic laboratory as a complementary tool for detecting C. fetus subspecies and obtaining epidemiological information about abortion events in cattle.

  6. Identification and characterization of Bacillus anthracis by multiplex PCR on DNA chip.

    PubMed

    Wang, Shi-Hua; Wen, Ji-Kai; Zhou, Ya-Feng; Zhang, Zhi-Ping; Yang, Rui-Fu; Zhang, Ji-Bin; Chen, Jia; Zhang, Xian-En

    2004-11-01

    Bacillus anthracis can be identified by detecting virulence factor genes located on two plasmids, pXO1 and pXO2. Combining multiplex PCR with arrayed anchored primer PCR and biotin-avidin alkaline phosphatase indicator system, we developed a qualitative DNA chip method for characterization of B. anthracis, and simultaneous confirmation of the species identity independent of plasmid contents. The assay amplifies pag gene (in pXO1), cap gene (in pXO2) and Ba813 gene (a B. anthracis specific chromosomal marker), and the results were indicated by an easy-to-read profile based on the color reaction of alkaline phosphatase. About 1 pg of specific DNA fragments on the chip wells could be detected after PCR. With the proposed method, the avirulent (pXO1+/2-, pXO1-/2+ and pXO1-/2-) strains of B. anthracis and distinguished 'anthrax-like' strains from other B. cereus group bacteria were unambiguously identified, while the genera other than Bacillus gave no positive signal.

  7. A Dual Filtration-Based Multiplex PCR Method for Simultaneous Detection of Viable Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on Fresh-Cut Cantaloupe

    PubMed Central

    Feng, Ke; Hu, Wenzhong; Jiang, Aili; Sarengaowa; Xu, Yongping; Zou, Yu; Yang, Liu; Wang, Xin

    2016-01-01

    Fresh-cut cantaloupe is particularly susceptible to contamination with pathogenic bacteria, such as Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Therefore, development of rapid, yet accurate detection techniques is necessary to ensure food safety. In this study, a multiplex PCR system and propidium monoazide (PMA) concentration were optimized to detect all viable pathogens in a single tube. A dual filtration system utilized a filtration membrane with different pore sizes to enrich pathogens found on fresh-cut cantaloupe. The results revealed that an optimized multiplex PCR system has the ability to effectively detect three pathogens in the same tube. The viable pathogens were simultaneously detected for PMA concentrations above 10 μg/ml. The combination of a nylon membrane (15 μm) and a micro pore filtration membrane (0.22 μm) formed the dual filtration system used to enrich pathogens. The achieved sensitivity of PMA-mPCR based on this dual filtration system was 2.6 × 103 cfu/g for L. monocytogenes, 4.3 × 10 cfu/g for E. coli O157:H7, and 3.1 × 102 cfu/g for S. aureus. Fresh-cut cantaloupe was inoculated with the three target pathogens using concentrations of 103, 102, 10, and 1 cfu/g. After 6-h of enrichment culture, assay sensitivity increased to 1 cfu/g for each of these pathogens. Thus, this technique represents an efficient and rapid detection tool for implementation on fresh-cut cantaloupe. PMID:27906992

  8. A Dual Filtration-Based Multiplex PCR Method for Simultaneous Detection of Viable Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on Fresh-Cut Cantaloupe.

    PubMed

    Feng, Ke; Hu, Wenzhong; Jiang, Aili; Sarengaowa; Xu, Yongping; Zou, Yu; Yang, Liu; Wang, Xin

    2016-01-01

    Fresh-cut cantaloupe is particularly susceptible to contamination with pathogenic bacteria, such as Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Therefore, development of rapid, yet accurate detection techniques is necessary to ensure food safety. In this study, a multiplex PCR system and propidium monoazide (PMA) concentration were optimized to detect all viable pathogens in a single tube. A dual filtration system utilized a filtration membrane with different pore sizes to enrich pathogens found on fresh-cut cantaloupe. The results revealed that an optimized multiplex PCR system has the ability to effectively detect three pathogens in the same tube. The viable pathogens were simultaneously detected for PMA concentrations above 10 μg/ml. The combination of a nylon membrane (15 μm) and a micro pore filtration membrane (0.22 μm) formed the dual filtration system used to enrich pathogens. The achieved sensitivity of PMA-mPCR based on this dual filtration system was 2.6 × 103 cfu/g for L. monocytogenes, 4.3 × 10 cfu/g for E. coli O157:H7, and 3.1 × 102 cfu/g for S. aureus. Fresh-cut cantaloupe was inoculated with the three target pathogens using concentrations of 103, 102, 10, and 1 cfu/g. After 6-h of enrichment culture, assay sensitivity increased to 1 cfu/g for each of these pathogens. Thus, this technique represents an efficient and rapid detection tool for implementation on fresh-cut cantaloupe.

  9. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species.

    PubMed

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae

    2017-09-01

    The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis (M. tuberculosis) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680, and (iv) simultaneously detect five clinically important NTM (M. avium, M. intracellulare, M. abscessus, M. massiliense, and M. kansasii) by targeting IS1311, DT1, mass_3210, and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10(3) and 10(4) CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis, M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.

  10. Establishment of a system based on universal multiplex-PCR for screening genetically modified crops.

    PubMed

    Lu, I-Jen; Lin, Chih-Hui; Pan, Tzu-Ming

    2010-03-01

    The rapid development of many genetically modified (GM) crops in the past two decades makes it necessary to introduce an alternative strategy for routine screening and identification. In this study, we established a universal multiplex PCR detection system which will effectively reduce the number of reactions needed for sample identification. The PCR targets of this system include the six most frequently used transgenic elements: cauliflower mosaic virus (CaMV) 35S promoter, Agrobacterium tumefaciens nopaline synthase (nos) promoter, Agrobacterium tumefaciens nopaline synthase (nos) terminator, the neomycin phosphotransferase II (nptII) gene, the 5-enolpyruvylshikimate-3-phosphate synthase (CP4 epsps) gene of Agrobacterium tumefaciens strain CP4, and the phosphinothricin N-acetyltransferase (pat) gene. According to the AGBIOS database, the coverage of this detection system is 93% of commercial GM crops. This detection system could detect all certified reference materials (CRMs) at the 1.0% level. The correct combination of all the CRM amplicon patterns proved the specificity of this multiplex PCR system. Furthermore, the amplicon patterns of this multiplex PCR detection system could be used as an index of classification which will narrow the range of possible GM products. The simulation result of this multiplex PCR detection system on all commercialized 139 GM products in the AGBIOS database showed that the maximum number of PCR reactions needed to identify an unknown sample can be reduced to 13. In this study, we established a high-throughput multiplex PCR detection system with feasible sensitivity, specificity, and cost. By incorporating this detection system, the routine GM crop-detection process will meet the challenges resulting from a rapid increase in the number of GM crops in the future.

  11. Multiplex Amplification Refractory Mutation System PCR (ARMS-PCR) provides sequencing independent typing of canine parvovirus.

    PubMed

    Chander, Vishal; Chakravarti, Soumendu; Gupta, Vikas; Nandi, Sukdeb; Singh, Mithilesh; Badasara, Surendra Kumar; Sharma, Chhavi; Mittal, Mitesh; Dandapat, S; Gupta, V K

    2016-10-29

    Canine parvovirus-2 antigenic variants (CPV-2a, CPV-2b and CPV-2c) ubiquitously distributed worldwide in canine population causes severe fatal gastroenteritis. Antigenic typing of CPV-2 remains a prime focus of research groups worldwide in understanding the disease epidemiology and virus evolution. The present study was thus envisioned to provide a simple sequencing independent, rapid, robust, specific, user-friendly technique for detecting and typing of presently circulating CPV-2 antigenic variants. ARMS-PCR strategy was employed using specific primers for CPV-2a, CPV-2b and CPV-2c to differentiate these antigenic types. ARMS-PCR was initially optimized with reference positive controls in two steps; where first reaction was used to differentiate CPV-2a from CPV-2b/CPV-2c. The second reaction was carried out with CPV-2c specific primers to confirm the presence of CPV-2c. Initial validation of the ARMS-PCR was carried out with 24 sequenced samples and the results were matched with the sequencing results. ARMS-PCR technique was further used to screen and type 90 suspected clinical samples. Randomly selected 15 suspected clinical samples that were typed with this technique were sequenced. The results of ARMS-PCR and the sequencing matched exactly with each other. The developed technique has a potential to become a sequencing independent method for simultaneous detection and typing of CPV-2 antigenic variants in veterinary disease diagnostic laboratories globally.

  12. Multiplex Amplification Refractory Mutation System PCR (ARMS-PCR) provides sequencing independent typing of canine parvovirus.

    PubMed

    Chander, Vishal; Chakravarti, Soumendu; Gupta, Vikas; Nandi, Sukdeb; Singh, Mithilesh; Badasara, Surendra Kumar; Sharma, Chhavi; Mittal, Mitesh; Dandapat, S; Gupta, V K

    2016-12-01

    Canine parvovirus-2 antigenic variants (CPV-2a, CPV-2b and CPV-2c) ubiquitously distributed worldwide in canine population causes severe fatal gastroenteritis. Antigenic typing of CPV-2 remains a prime focus of research groups worldwide in understanding the disease epidemiology and virus evolution. The present study was thus envisioned to provide a simple sequencing independent, rapid, robust, specific, user-friendly technique for detecting and typing of presently circulating CPV-2 antigenic variants. ARMS-PCR strategy was employed using specific primers for CPV-2a, CPV-2b and CPV-2c to differentiate these antigenic types. ARMS-PCR was initially optimized with reference positive controls in two steps; where first reaction was used to differentiate CPV-2a from CPV-2b/CPV-2c. The second reaction was carried out with CPV-2c specific primers to confirm the presence of CPV-2c. Initial validation of the ARMS-PCR was carried out with 24 sequenced samples and the results were matched with the sequencing results. ARMS-PCR technique was further used to screen and type 90 suspected clinical samples. Randomly selected 15 suspected clinical samples that were typed with this technique were sequenced. The results of ARMS-PCR and the sequencing matched exactly with each other. The developed technique has a potential to become a sequencing independent method for simultaneous detection and typing of CPV-2 antigenic variants in veterinary disease diagnostic laboratories globally.

  13. Single Multiplex PCR Assay To Identify Simultaneously the Six Categories of Diarrheagenic Escherichia coli Associated with Enteric Infections

    PubMed Central

    Vidal, Maricel; Kruger, Eileen; Durán, Claudia; Lagos, Rosanna; Levine, Myron; Prado, Valeria; Toro, Cecilia; Vidal, Roberto

    2005-01-01

    We designed a multiplex PCR for the detection of all categories of diarrheagenic Escherichia coli. This method proved to be specific and rapid in detecting virulence genes from Shiga toxin-producing (stx1, stx2, and eae), enteropathogenic (eae and bfp), enterotoxigenic (stII and lt), enteroinvasive (virF and ipaH), enteroaggregative (aafII), and diffuse adherent (daaE) Escherichia coli in stool samples. PMID:16208019

  14. Clinical Validation of Multiplex Real-Time PCR Assays for Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Theodore, M. Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L.; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J. Matthew; Messonnier, Nancy E.; Mayer, Leonard W.

    2012-01-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays. PMID:22170919

  15. Rapid identification of HPV 16 and 18 by multiplex nested PCR-immunochromatographic test.

    PubMed

    Kuo, Yung-Bin; Li, Yi-Shuan; Chan, Err-Cheng

    2015-02-01

    Human papillomavirus (HPV) types 16 and 18 are known to be high-risk viruses that cause cervical cancer. An HPV rapid testing kit that could help physicians to make early and more informed decisions regarding patient care is needed urgently but not yet available. This study aimed to develop a multiplex nested polymerase chain reaction-immunochromatographic test (PCR-ICT) for the rapid identification of HPV 16 and 18. A multiplex nested PCR was constructed to amplify the HPV 16 and 18 genotype-specific L1 gene fragments and followed by ICT which coated with antibodies to identify rapidly the different PCR products. The type-specific gene regions of high-risk HPV 16 and 18 could be amplified successfully by multiplex nested PCR at molecular sizes of approximately 99 and 101bp, respectively. The capture antibodies raised specifically against the moleculars labeled on the PCR products could be detected simultaneously both HPV 16 and 18 in one strip. Under optimal conditions, this PCR-ICT assay had the capability to detect HPV in a sample with as low as 100 copies of HPV viral DNA. The PCR-ICT system has the advantage of direct and simultaneous detection of two high-risk HPV 16 and 18 DNA targets in one sample, which suggested a significant potential of this assay for clinical application.

  16. Multiplex Touchdown PCR for Rapid Typing of the Opportunistic Pathogen Propionibacterium acnes

    PubMed Central

    Barnard, Emma; Nagy, István; Hunyadkürti, Judit; Patrick, Sheila

    2015-01-01

    The opportunistic human pathogen Propionibacterium acnes is composed of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II, and III, which vary in their production of putative virulence factors, their inflammatory potential, and their biochemical, aggregative, and morphological characteristics. Although multilocus sequence typing (MLST) currently represents the gold standard for unambiguous phylogroup classification and individual strain identification, it is a labor-intensive and time-consuming technique. As a consequence, we developed a multiplex touchdown PCR assay that in a single reaction can confirm the species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA gene (all isolates), ATPase (types IA1, IA2, and IC), sodA (types IA2 and IB), atpD (type II), and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterized by MLST and representing types IA1 (n = 145), IA2 (n = 20), IB (n = 65), IC (n = 7), II (n = 45), and III (n = 30), the multiplex displayed 100% sensitivity and 100% specificity for detecting isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. This multiplex assay will provide researchers with a rapid, high-throughput, and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, and it will serve as a prescreening tool to maximize the number of genetically diverse isolates selected for downstream higher-resolution sequence-based analyses. PMID:25631794

  17. Multiplex touchdown PCR for rapid typing of the opportunistic pathogen Propionibacterium acnes.

    PubMed

    Barnard, Emma; Nagy, István; Hunyadkürti, Judit; Patrick, Sheila; McDowell, Andrew

    2015-04-01

    The opportunistic human pathogen Propionibacterium acnes is composed of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II, and III, which vary in their production of putative virulence factors, their inflammatory potential, and their biochemical, aggregative, and morphological characteristics. Although multilocus sequence typing (MLST) currently represents the gold standard for unambiguous phylogroup classification and individual strain identification, it is a labor-intensive and time-consuming technique. As a consequence, we developed a multiplex touchdown PCR assay that in a single reaction can confirm the species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA gene (all isolates), ATPase (types IA1, IA2, and IC), sodA (types IA2 and IB), atpD (type II), and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterized by MLST and representing types IA1 (n=145), IA2 (n=20), IB (n=65), IC (n=7), II (n=45), and III (n=30), the multiplex displayed 100% sensitivity and 100% specificity for detecting isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. This multiplex assay will provide researchers with a rapid, high-throughput, and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, and it will serve as a prescreening tool to maximize the number of genetically diverse isolates selected for downstream higher-resolution sequence-based analyses.

  18. Molecular protocol for authentication of snappers (Lutjanidae-Perciformes) based on multiplex PCR.

    PubMed

    Veneza, Ivana; da Silva, Raimundo; Sampaio, Iracilda; Schneider, Horacio; Gomes, Grazielle

    2017-10-01

    Fraud involving fish products is regularly reported and investigated using genetic methods. However, no such approach has been applied to snappers, despite the commercial relevance of these fish. This study proposes an authentication protocol with multiplex PCR for three species of snappers (Lutjanus purpureus, L. synagris, and Ocyurus chrysurus). The protocol yielded a distinct triple-banding pattern for L. purpureus, whereas L. synagris and O. chrysurus showed a double banding pattern of different sizes, thereby allowing differentiation of the three species. The protocol was validated using fillets labeled as snapper or "Pargo" in Brazil, previously identified using DNA sequencing, amongst which substitution with Rhomboplites aurorubens was detected. When subjected to the new protocol, banding characteristic of L. purpureus were detected whilst R. aurorubens generated only the control band. Our study provides a practical tool for investigating substitutions and might assist in quality control and increase food safety for consumers. Copyright © 2017. Published by Elsevier Ltd.

  19. Multiplex RT-PCR for Simultaneous Surveillance of Influenza A and B Viruses.

    PubMed

    Zhou, Bin; Deng, Yi-Mo; Barnes, John R; Sessions, October; Chou, Tsui-Wen; Wilson, Malania; Stark, Thomas J; Volk, Michelle; Spirason, Natalie; Halpin, Rebecca A; Kamaraj, Uma Sangumathi; Ding, Tao; Stockwell, Timothy B; Salvatore, Mirella; Ghedin, Elodie; Barr, Ian G; Wentworth, David E

    2017-10-04

    Influenza A and B viruses are the causative agents of annual influenza epidemics that can be severe; influenza A viruses intermittently cause pandemics. Sequence information from influenza genomes is instrumental in determining mechanisms underpinning antigenic evolution and antiviral resistance. However, due to sequence diversity and the dynamics of influenza evolution, rapid and high-throughput sequencing of influenza viruses remains a challenge. We developed a single-reaction FluA/B Multiplex RT-PCR method that amplifies the most critical genomic segments (HA, NA, and M) of seasonal influenza A and B viruses for next-generation sequencing, regardless of viral types, subtypes, or lineages. Herein we demonstrate that the strategy is highly sensitive and robust. The strategy was validated on thousands of seasonal influenza A and B virus positive specimens using multiple next-generation sequencing platforms. Copyright © 2017 American Society for Microbiology.

  20. Microdroplet-based multiplex PCR on chip to detect foodborne bacteria producing biogenic amines.

    PubMed

    Sciancalepore, Anna Giovanna; Mele, Elisa; Arcadio, Valentina; Reddavide, Francesco; Grieco, Francesco; Spano, Giuseppe; Lucas, Patrick; Mita, Giovanni; Pisignano, Dario

    2013-08-01

    The development of fast, reliable and culture-independent molecular tools to detect bacteria producing biogenic amines deserves the attention of research and ultimately of the food industry in order to protect consumers' health. Here we present the application of a simple, low-cost, fast and sensitive method to perform microdroplet-based multiplex PCR, directly on a food matrix, for the simultaneous detection of bacterial genes involved in biogenic amine biosynthesis. After inoculating wine with Lactobacillus brevis IOEB 9809, cell lysis and DNA amplification are performed in one single step, without preliminary nucleic acid extraction or purification treatments. The assay is performed in about 30 min, requiring 150 nL of starting sample and it enables the detection of down to 15 bacterial cells. With respect to traditional culture techniques, the speed, the simplicity and the cheapness of this procedure allow an effective monitoring of microbial cells during food-making and processing.

  1. Primer design for identifying economically important Liriomyza species (Diptera: Agromyzidae) by multiplex PCR.

    PubMed

    Nakamura, Shigeo; Masuda, Toshio; Mochizuki, Atsushi; Konishi, Kazuhiko; Tokumaru, Susumu; Ueno, Keiichiro; Yamaguchi, Takuhiro

    2013-01-01

    Leafminer flies, especially, Liriomyza huidobrensis, Liriomyza sativae and Liriomyza trifolii, are quarantine species in many countries. Their morphological similarity makes identification difficult. To develop a rapid, reliable, sensitive and simple molecular identification method using multiplex PCR, we newly sequenced the mitochondrial cytochrome oxidase I (COI) genes of Liriomyza bryoniae, Liriomyza chinensis, L. huidobrensis, L. sativae, L. trifolii, Chromatomyia horticola and four parasitoid species. We aligned them with all the COI sequences of the leafminer flies found in the international DNA nucleotide sequence databases (DDBJ/EMBL/GenBank). We then designed species-specific primers to allow us to differentiate between L. bryoniae, L. chinensis, L. huidobrensis, L. sativae, and L. trifolii.

  2. Brief communication: multiplex X/Y-PCR improves sex identification in aDNA analysis.

    PubMed

    Schmidt, Diane; Hummel, Susanne; Herrmann, Bernd

    2003-08-01

    This study introduces a polymerase chain reaction (PCR)-based multiplex approach to improve the certainty of molecular sex identification on archaeological skeletal material. We coamplified amelogenin, two X-chromosomal short tandem repeats (STRs) (DXS6789 and DXS9898), and two Y-specific STRs (DYS391 and DYS392). The amplification results of this multiplex approach back each other up, and enable a reliable sex identification. This coamplification of X- and Y-specific markers in a multiplex assay combines the added advantage of positive identification of both female and male individuals with raising the validity of the diagnosis by obtaining multiple data simultaneously. This multiplex system was successfully applied to 3,000-year-old bone material.

  3. Multiplex PCR detection of the antibiotic resistance genes in Staphylococcus aureus strains isolated from auricular infections.

    PubMed

    Zmantar, T; Chaieb, K; Ben Abdallah, F; Ben Kahla-Nakbi, A; Ben Hassen, A; Mahdouani, K; Bakhrouf, A

    2008-01-01

    Thirty-five Staphylococcus aureus strains from auricular infections were isolated. The identification of strains was confirmed by Api ID 32 Staph strips, the antibiotic susceptibility test was performed using ATB Staph kit. PCR assay was used to detect the oxacillin resistance gene (mecA) and the erythromycin genes (ermA, ermB, ermC, msrA and mef). The susceptibility profile of all strains revealed a low resistance level to oxacillin and erythromycin. The PCR results show that 60 % of the strains are mecA positive. The frequency of erythromycin genes was: ermA (+) 22.8 %, ermB (+) 45.7, ermC (+) 17.1, msrA (+) 28.6. The mef gene was not detected in any strain. No correlations between genotypic and phenotypic methods for the determination of oxacillin and erythromycin resistance was found. However, multiplex PCR technique was shown to be a fast, practical and economic technique for the detection of methicillin-and erythromycin-resistant staphylococci.

  4. Improved detection of Escherichia coli and coliform bacteria by multiplex PCR.

    PubMed

    Molina, Felipe; López-Acedo, Elena; Tabla, Rafael; Roa, Isidro; Gómez, Antonia; Rebollo, José E

    2015-06-04

    The presence of coliform bacteria is routinely assessed to establish the microbiological safety of water supplies and raw or processed foods. Coliforms are a group of lactose-fermenting Enterobacteriaceae, which most likely acquired the lacZ gene by horizontal transfer and therefore constitute a polyphyletic group. Among this group of bacteria is Escherichia coli, the pathogen that is most frequently associated with foodborne disease outbreaks and is often identified by β-glucuronidase enzymatic activity or by the redundant detection of uidA by PCR. Because a significant fraction of essential E. coli genes are preserved throughout the bacterial kingdom, alternative oligonucleotide primers for specific E. coli detection are not easily identified. In this manuscript, two strategies were used to design oligonucleotide primers with differing levels of specificity for the simultaneous detection of total coliforms and E. coli by multiplex PCR. A consensus sequence of lacZ and the orphan gene yaiO were chosen as targets for amplification, yielding 234 bp and 115 bp PCR products, respectively. The assay designed in this work demonstrated superior detection ability when tested with lab collection and dairy isolated lactose-fermenting strains. While lacZ amplicons were found in a wide range of coliforms, yaiO amplification was highly specific for E. coli. Additionally, yaiO detection is non-redundant with enzymatic methods.

  5. Typing and Subtyping Influenza Virus Using DNA Microarrays and Multiplex Reverse Transcriptase PCR

    PubMed Central

    Li, Jiping; Chen, Shu; Evans, David H.

    2001-01-01

    A model DNA microarray has been prepared and shown to facilitate typing and subtyping of human influenza A and B viruses. Reverse transcriptase PCR was used to prepare cDNAs encoding ∼500-bp influenza virus gene fragments, which were then cloned, sequenced, reamplified, and spotted to form a glass-bound microarray. These target DNAs included multiple fragments of the hemagglutinin, neuraminidase, and matrix protein genes. Cy3- or Cy5-labeled fluorescent probes were then hybridized to these target DNAs, and the arrays were scanned to determine the probe binding site(s). The hybridization pattern agreed perfectly with the known grid location of each target, and the signal-to-background ratio varied from 5 to 30. No cross-hybridization could be detected beyond that expected from the limited degree of sequence overlap between different probes and targets. At least 100 to 150 bp of homology was required for hybridization under the conditions used in this study. Combinations of Cy3- and Cy5-labeled DNAs can also be hybridized to the same chip, permitting further differentiation of amplified molecules in complex mixtures. In a more realistic test of the technology, several sets of multiplex PCR primers that collectively target influenza A and B virus strains were identified and were used to type and subtype several previously unsequenced influenza virus isolates. The results show that DNA microarray technology provides a useful supplement to PCR-based diagnostic methods. PMID:11158130

  6. [Clarification of a break-in theft crime by multiplex PCR analysis of cigarette butts].

    PubMed

    Hochmeister, M; Haberl, J; Borer, V; Rudin, O; Dirnhofer, R

    1995-01-01

    This paper describes the first use of multiplex PCR amplification kits for the analysis of DNA extracted from cigarette butts in a criminal case. Two suspects could be excluded as potential contributors to the samples, whereas the multi locus PCR-based DNa profile derived from the cigarette butts was consistent with a DNA profile derived from a third suspect. For identity testing in criminal cases where cigarette butts are involved, commercially available PCR amplification kits provide currently the most powerful tool. Furthermore this PCR-based analysis can be implemented into most application orientated laboratories.

  7. Updated Campylobacter jejuni Capsule PCR Multiplex Typing System and Its Application to Clinical Isolates from South and Southeast Asia

    PubMed Central

    Poly, Frédéric; Serichantalergs, Oralak; Kuroiwa, Janelle; Pootong, Piyarat; Mason, Carl; Guerry, Patricia; Parker, Craig T.

    2015-01-01

    Campylobacter jejuni produces a polysaccharide capsule that is the major determinant of the Penner serotyping scheme. This passive slide agglutination typing system was developed in the early 1980’s and was recognized for over two decades as the gold standard for C. jejuni typing. A preliminary multiplex PCR technique covering 17 serotypes was previously developed in order to replace this classic serotyping scheme. Here we report the completion of the multiplex PCR technology that is able to identify all the 47 Penner serotypes types known for C. jejuni. The number of capsule types represented within the 47 serotypes is 35. We have applied this method to a collection of 996 clinical isolates from Thailand, Cambodia and Nepal and were able to successfully determine capsule types of 98% of these. PMID:26630669

  8. Multiplex-Touchdown PCR to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the Major Causes of Traveler's Diarrhea.

    PubMed

    Shin, Ji-Hun; Lee, Sang-Eun; Kim, Tong Soo; Ma, Da-Won; Chai, Jong-Yil; Shin, Eun-Hee

    2016-10-01

    This study aimed to develop a multiplex-touchdown PCR method to simultaneously detect 3 species of protozoan parasites, i.e., Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the major causes of traveler's diarrhea and are resistant to standard antimicrobial treatments. The target genes included the Cryptosporidium oocyst wall protein for C. parvum, Glutamate dehydrogenase for G. lamblia, and 18S ribosomal RNA (18S rRNA) for C. cayetanensis. The sizes of the amplified fragments were 555, 188, and 400 bps, respectively. The multiplex-touchdown PCR protocol using a primer mixture simultaneously detected protozoa in human stools, and the amplified gene was detected in >1×10(3) oocysts for C. parvum, >1×10(4) cysts for G. lamblia, and >1 copy of the 18S rRNA gene for C. cayetanensis. Taken together, our protocol convincingly demonstrated the ability to simultaneously detect C. parvum, G. lamblia, and C. cayetanenesis in stool samples.

  9. Evaluation of a multiplex PCR to identify and serotype Actinobacillus pleuropneumoniae serovars 1, 5, 7, 12 and 15.

    PubMed

    Turni, C; Singh, R; Schembri, M A; Blackall, P J

    2014-10-01

    The aim of this study was to validate a multiplex PCR for the species identification and serotyping of Actinobacillus pleuropneumoniae serovars 1, 5, 7, 12 and 15. All 15 reference strains and 411 field isolates (394 from Australia, 11 from Indonesia, five from Mexico and one from New Zealand) of A. pleuropneumoniae were tested with the multiplex PCR. The specificity of this multiplex PCR was validated on 26 non-A. pleuropneumoniae species. The multiplex PCR gave the expected results with all 15 serovar reference strains and agreed with conventional serotyping for all field isolates from serovars 1 (n = 46), 5 (n = 81), 7 (n = 80), 12 (n = 16) and serovar 15 (n = 117). In addition, a species-specific product was amplified in the multiplex PCR with all 411 A. pleuropneumoniae field isolates. Of 25 nontypeable field isolates only two did not yield a serovar-specific band in the multiplex PCR. This multiplex PCR for serovars 1, 5, 7, 12 and 15 is species specific and capable of serotyping isolates from diverse locations. Significance and impact of the study: A multiplex PCR that can recognize serovars 1, 5, 7, 12 and 15 of A. pleuropneumoniae was developed and validated. This novel diagnostic tool will enable frontline laboratories to provide key information (the serovar) to guide targeted prevention and control programmes for porcine pleuropneumonia, a serious economic disease of pigs. The previous technology, traditional serotyping, is typically provided by specialized reference laboratories, limiting the capacity to respond to this key disease.

  10. The validation of a 15 STR multiplex PCR for Cannabis species.

    PubMed

    Köhnemann, Stephan; Nedele, Johanna; Schwotzer, Daniela; Morzfeld, Julia; Pfeiffer, Heidi

    2012-07-01

    Trade and acquisition of Cannabis drugs are illegal in many countries worldwide; nevertheless, crimes related with these drugs are a major problem for the investigative authorities. With this manuscript, we want to introduce a 15 short tandem repeat (STR) Cannabis marker set that can be amplified in one PCR reaction. This multiplex PCR is specific to Cannabis species and combines highly informative STR markers. The 15 STR multiplex is easy to use and was validated according to common laboratory quality standards. Due to the fact that a lot of Cannabis plants are cultivated by clonal propagation and may show aneuploidy, polyploidy or multiple gene loci, it is not possible to apply biostatistics that follow the Hardy-Weinberg law. However, this multiplex will help the police to trace back trade routes of drug syndicates or dealers and it can help to link Cannabis plants to a crime scene.

  11. Development of multiplex microsatellite PCR panels for the seagrass Thalassia hemprichii (Hydrocharitaceae).

    PubMed

    van Dijk, Kor-Jent; Mellors, Jane; Waycott, Michelle

    2014-11-01

    New microsatellites were developed for the seagrass Thalassia hemprichii (Hydrocharitaceae), a long-lived seagrass species that is found throughout the shallow waters of tropical and subtropical Indo-West Pacific. Three multiplex PCR panels were designed utilizing new and previously developed markers, resulting in a toolkit for generating a 16-locus genotype. • Through the use of microsatellite enrichment and next-generation sequencing, 16 new, validated, polymorphic microsatellite markers were isolated. Diversity was between two and four alleles per locus totaling 36 alleles. These markers, plus previously developed microsatellite markers for T. hemprichii and T. testudinum, were tested for suitability in multiplex PCR panels. • The generation of an easily replicated suite of multiplex panels of codominant molecular markers will allow for high-resolution and detailed genetic structure analysis and clonality assessment with minimal genotyping costs. We suggest the establishment of a T. hemprichii primer convention for the unification of future data sets.

  12. Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection.

    PubMed

    Payungporn, Sunchai; Chutinimitkul, Salin; Chaisingh, Arunee; Damrongwantanapokin, Sudarat; Buranathai, Chantanee; Amonsin, Alongkorn; Theamboonlers, Apiradee; Poovorawan, Yong

    2006-02-01

    H5N1 influenza A virus causes a rapidly fatal systemic disease in domestic poultry and spreads directly from poultry to mammalian species such as leopards, tigers and humans. The aim of this study was to develop a multiplex real-time RT-PCR for rapid detection of H5N1 influenza A virus. The selected primers and various labeled TaqMan MGB reporter probes corresponding to M, H5 and N1 were used in a single step multiplex real-time RT-PCR to simultaneously detect triple fluorescent signals. In order to validate the method, 75 clinical specimens infected with H5N1 isolated from both poultry and mammals, as well as various specimens of other subtypes and RNA from other viral pathogens of poultry and human were tested. The results showed that the multiplex real-time RT-PCR assays can be applied to detect virus suspensions of H5N1 influenza A virus from a wide host range and demonstrated the sensitivity of the assay amounted to approximately 10(2)-10(3)copies/mul. In conclusion, the highlights of this particular method lie in its rapidity, specificity and sensitivity thus rendering it feasible and effective for large-scale screening at times of H5N1 influenza A virus outbreaks.

  13. A Multiplex PCR for Simultaneous Detection of Three Zoonotic Parasites Ancylostoma ceylanicum, A. caninum, and Giardia lamblia Assemblage A

    PubMed Central

    Hu, Wei; Wu, Sheng; Yu, Xingang; Abullahi, Auwalu Yusuf; Song, Meiran; Tan, Liping; Wang, Zhen; Jiang, Biao; Li, Guoqing

    2015-01-01

    Ancylostoma ceylanicum, A. caninum, and Giardia lamblia assemblage A are common intestinal parasites of dogs and cats; they can also infect humans, causing parasitic zoonoses. In this study, a multiplex PCR method was developed for simultaneous identification and detection of those three zoonotic parasites. Three pairs of specific primers were designed based on ITS sequence of A. ceylanicum and A. caninum and TPI gene of G. lamblia available in the GenBank. The multiplex PCR reaction system was established by optimizing the reaction condition, and a series of tests on the sensitivity, specificity, and clinical application were also conducted. Results showed that three target fragments were amplified specifically; the detection limit was 10 eggs for both A. ceylanicum and A. caninum, 72 pg DNA for G. lamblia. Of 112 clinical fecal samples, 34.8% and 17.8% samples were positive for A. caninum and A. ceylanicum, respectively, while only 2.7% samples were positive for G. lamblia assemblage A. It is concluded that the established multiplex PCR assay is a convenient, rapid, cost-effective, and high-efficiency method for molecular detection and epidemiological investigation of three zoonotic parasites. PMID:26447336

  14. A Multiplex PCR for Simultaneous Detection of Three Zoonotic Parasites Ancylostoma ceylanicum, A. caninum, and Giardia lamblia Assemblage A.

    PubMed

    Hu, Wei; Wu, Sheng; Yu, Xingang; Abullahi, Auwalu Yusuf; Song, Meiran; Tan, Liping; Wang, Zhen; Jiang, Biao; Li, Guoqing

    2015-01-01

    Ancylostoma ceylanicum, A. caninum, and Giardia lamblia assemblage A are common intestinal parasites of dogs and cats; they can also infect humans, causing parasitic zoonoses. In this study, a multiplex PCR method was developed for simultaneous identification and detection of those three zoonotic parasites. Three pairs of specific primers were designed based on ITS sequence of A. ceylanicum and A. caninum and TPI gene of G. lamblia available in the GenBank. The multiplex PCR reaction system was established by optimizing the reaction condition, and a series of tests on the sensitivity, specificity, and clinical application were also conducted. Results showed that three target fragments were amplified specifically; the detection limit was 10 eggs for both A. ceylanicum and A. caninum, 72 pg DNA for G. lamblia. Of 112 clinical fecal samples, 34.8% and 17.8% samples were positive for A. caninum and A. ceylanicum, respectively, while only 2.7% samples were positive for G. lamblia assemblage A. It is concluded that the established multiplex PCR assay is a convenient, rapid, cost-effective, and high-efficiency method for molecular detection and epidemiological investigation of three zoonotic parasites.

  15. Development of a multiplex PCR assay to detect Edwardsiella tarda, Streptococcus parauberis, and Streptococcus iniae in olive flounder (Paralichthys olivaceus).

    PubMed

    Park, Seong Bin; Kwon, Kyoung; Cha, In Seok; Jang, Ho Bin; Nho, Seong Won; Fagutao, Fernand F; Kim, Young Kyu; Yu, Jong Earn; Jung, Tae Sung

    2014-01-01

    A multiplex PCR protocol was established to simultaneously detect major bacterial pathogens in olive flounder (Paralichthys olivaceus) including Edwardsiella (E.) tarda, Streptococcus (S.) parauberis, and S. iniae. The PCR assay was able to detect 0.01 ng of E. tarda, 0.1 ng of S. parauberis, and 1 ng of S. iniae genomic DNA. Furthermore, this technique was found to have high specificity when tested with related bacterial species. This method represents a cheaper, faster, and reliable alternative for identifying major bacterial pathogens in olive flounder, the most important farmed fish in Korea.

  16. The use of factorial design, image analysis, and an efficiency calculation for multiplex PCR optimization.

    PubMed

    Villarreal Camacho, José Luis; Mendoza Torres, Evelyn; Cadena, Christian; Prieto, Julieth; Varela Prieto, Lourdes Luz; Villanueva Torregroza, Daniel Antonio

    2013-05-01

    The quality of multiplex polymerase chain reaction (PCR) assays depends on several factors. Therefore, it is important to establish the optimal conditions to achieve efficient amplification. The objective of this study was to implement a 5 × 4 factorial design combined with image analysis using agarose gels and an efficiency calculation to optimize a multiplex PCR assays for the detection of Salmonella enterica serovar typhimurium. We used 12 ng of Salmonella DNA obtained from pure cultures and applied different annealing temperatures (65°C, 64.5°C, 63.3°C, 61.4°C, or 59°C) and different MgCl2 concentrations (1 mM, 1.5 mM, 2 mM, or 2.5 mM) to amplify regions of the fliC, rfbJ, and fljB genes. The 5 × 4 factorial design was performed using Statgraphics Plus software version 5.1, and the images were analyzed using Image Lab(TM) software. Superior amplification was obtained using an annealing temperature of 65°C and 2 mM MgCl2 . This finding was confirmed by calculating the efficiency of multiplex PCR assays (6.1%) at these conditions. We propose the application of factorial design and image analysis to determine the most suitable conditions for multiplex PCR optimization. © 2013 Wiley Periodicals, Inc.

  17. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K.; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629

  18. Serotype Distribution of Respiratory Adenoviruses in Egypt Determined By Serial Multiplex PCR

    DTIC Science & Technology

    2007-11-02

    Serial Multiplex PCR 5 David Metzgar 1,6* Miguel Osuna 1 Samuel Yingst 2 Magda Rakha 3 Kenneth Earhart 2 10 Diaa Elyan 2 Hala Esmat 3 Magdi A...Metzgar, Miguel Osuna, Samuel Yingst, Magda Rakha, Kenneth Earhart, Diaa Elyan, Hala Esmat, Magdi A. Darwish, Adriana Kajon, Jianguo Wu, Gregory C

  19. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method.

    PubMed

    Gaunt, E R; Hardie, A; Claas, E C J; Simmonds, P; Templeton, K E

    2010-08-01

    Four human coronaviruses (HCoV-229E, HCoV-HKU1, HCoV-NL63, and HCoV-OC43) are associated with a range of respiratory outcomes, including bronchiolitis and pneumonia. Their epidemiologies and clinical characteristics are poorly described and are often reliant on case reports. To address these problems, we conducted a large-scale comprehensive screening for all four coronaviruses by analysis of 11,661 diagnostic respiratory samples collected in Edinburgh, United Kingdom, over 3 years between July 2006 and June 2009 using a novel four-way multiplex real-time reverse transcription-PCR (RT-PCR) assay. Coronaviruses were detected in 0.3 to 0.85% of samples in all age groups. Generally, coronaviruses displayed marked winter seasonality between the months of December and April and were not detected in summer months, which is comparable to the pattern seen with influenza viruses. HCoV-229E was the exception; detection was confined to the winter of 2008 and was sporadic in the following year. There were additional longer-term differences in detection frequencies between seasons, with HCoV-OC43 predominant in the first and third seasons and HCoV-HKU1 dominating in the second (see Results for definitions of seasons). A total of 11 to 41% of coronaviruses detected were in samples testing positive for other respiratory viruses, although clinical presentations of coronavirus monoinfections were comparable to those of viruses which have an established role in respiratory disease, such as respiratory syncytial virus, influenza virus, and parainfluenza viruses. The novel multiplex assay for real-time pan-coronavirus detection enhances respiratory virus diagnosis, overcomes potential diagnostic problems arising through seasonal variation in coronavirus frequency, and provides novel insights into the epidemiology and clinical implications of coronaviruses.

  20. Extensible multiplex real-time PCR for rapid bacterial identification with carbon nanotube composite microparticles.

    PubMed

    Jung, Seungwon; Kim, Jungmin; Kim, Junsun; Yang, Sang Hwa; Kim, Sang Kyung

    2017-03-01

    The early diagnosis of pathogenic bacteria is significant for bacterial identification and antibiotic resistance. Implementing rapid, sensitive, and specific detection, molecular diagnosis has been considered complementary to the conventional bacterial culture. Composite microparticles of a primer-immobilized network (cPIN) are developed for multiplex detection of pathogenic bacteria with real-time polymerase chain reaction (qPCR). A pair of specific primers are incorporated and stably conserved in a cPIN particle. One primer is crosslinked to the polymer network, and the other is bound to carbon nanotubes (CNTs) in the particle. At the initiation of qPCR, the latter primer is released from the CNTs and participates in the amplification. The amplification efficiency of this cPIN qPCR is estimated at more than 90% with suppressed non-specific signals from complex samples. In multiplexing, four infective pathogens are successfully discriminated using this cPIN qPCR. Multiplex qPCR conforms with the corresponding singleplex assays, proving independent amplification in each particle. Four bacterial targets from clinical samples are differentially analyzed in 30min of a single qPCR trial with multiple cPIN particles.

  1. Identification of Vibrio Isolates by a Multiplex PCR Assay and rpoB Sequence Determination▿

    PubMed Central

    Tarr, Cheryl L.; Patel, Jayna S.; Puhr, Nancy D.; Sowers, Evangeline G.; Bopp, Cheryl A.; Strockbine, Nancy A.

    2007-01-01

    Vibrio, a diverse genus of aquatic bacteria, currently includes 72 species, 12 of which occur in human clinical samples. Of these 12, three species—Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus—account for the majority of Vibrio infections in humans. Rapid and accurate identification of Vibrio species has been problematic because phenotypic characteristics are variable within species and biochemical identification requires 2 or more days to complete. To facilitate the identification of human-pathogenic species, we developed a multiplex PCR that uses species-specific primers to amplify gene regions in four species (V. cholerae, V. parahaemolyticus, V. vulnificus, and V. mimicus). The assay was tested on a sample of 309 Vibrio isolates representing 26 named species (including 12 human pathogens) that had been characterized by biochemical methods. A total of 190 isolates that had been identified as one of the four target species all yielded results consistent with the previous classification. The assay identified an additional four V. parahaemolyticus isolates among the other 119 isolates. Sequence analysis based on rpoB was used to validate the multiplex results for these four isolates, and all clustered with other V. parahaemolyticus sequences. The rpoB sequences for 12 of 15 previously unidentified isolates clustered with other Vibrio species in a phylogenetic analysis, and three isolates appeared to represent unnamed Vibrio species. The PCR assay provides a simple, rapid, and reliable tool for identification of the major Vibrio pathogens in clinical samples, and rpoB sequencing provides an additional identification tool for other species in the genus Vibrio. PMID:17093013

  2. Sample-ready multiplex qPCR assay for detection of malaria

    PubMed Central

    2014-01-01

    Background Microscopy and antigen detecting rapid diagnostic tests are the diagnostic tests of choice in management of clinical malaria. However, due to their limitations, the need to utilize more sensitive methods such as real-time PCR (qPCR) is evident as more studies are now utilizing molecular methods in detection of malaria. Some of the challenges that continue to limit the widespread utilization of qPCR include lack of assay standardization, assay variability, risk of contamination, and the need for cold-chain. Lyophilization of molecular assays can overcome some of these limitations and potentially enable widespread qPCR utilization. Methods A recently published multiplex malaria qPCR assay was lyophilized by freezing drying into Sample-Ready™ format (MMSR). MMSR assay contained all the required reagents for qPCR including primers and probes, requiring only the addition of water and sample to perform qPCR. The performance of the MMSR assay was compared to the non-freeze dried, “wet” assay. Stability studies were done by maintaining the MMSR assays at four different ambient temperatures of 4°C, room temperature (RT), 37°C and 42°C over a period of 42 days, tested at seven-day intervals. Plasmodium falciparum and Plasmodium vivax DNAs were used for analysis of the MMSR assay either as single or mixed parasites, at two different concentrations. The CT values and the standard deviations (SD) were used in the analysis of the assay performance. Results The limit of detection for the MMSR assay was 0.244 parasites/μL for Plasmodium spp. (PLU) and P. falciparum (FAL) assay targets compared to “wet” assay which was 0.39 and 3.13 parasites/μL for PLU and FAL assay targets, respectively. The MMSR assay performed with high efficiencies similar to those of the “wet” assay and was stable at 37°C for 42 days, with estimated shelf-life of 5 months. When used to analyse field clinical samples, MMSR assay performed with 100% sensitivity and specificity

  3. High throughput multiplex-PCR for direct detection and diagnosis of dermatophyte species, Candida albicans and Candida parapsilosis in clinical specimen.

    PubMed

    Vahidnia, Ali; Bekers, Wouter; Bliekendaal, Harry; Spaargaren, Joke

    2015-06-01

    We have developed and validated a multiplex-PCR method for detection of dermatophyte spp., Candida albicans and parapsilosis for routine diagnostics. Our m-PCR showed excellent concordance with culture results in 475 clinical samples. Through the rapid diagnosis by our m-PCR, clinicians are able to initiate adequate antimycotic therapy much earlier. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A highly sensitive and multiplexed method for focused transcript analysis.

    PubMed

    Kataja, Kari; Satokari, Reetta M; Arvas, Mikko; Takkinen, Kristiina; Söderlund, Hans

    2006-10-01

    We describe a novel, multiplexed method for focused transcript analysis of tens to hundreds of genes. In this method TRAC (transcript analysis with aid of affinity capture) mRNA targets, a set of amplifiable detection probes of distinct sizes and biotinylated oligo(dT) capture probe are hybridized in solution. The formed sandwich hybrids are collected on magnetic streptavidin-coated microparticles and washed. The hybridized probes are eluted, optionally amplified by a PCR using a universal primer pair and detected with laser-induced fluorescence and capillary electrophoresis. The probes were designed by using a computer program developed for the purpose. The TRAC method was adapted to 96-well format by utilizing an automated magnetic particle processor. Here we demonstrate a simultaneous analysis of 18 Saccharomyces cerevisiae transcripts from two experimental conditions and show a comparison with a qPCR system. The sensitivity of the method is significantly increased by the PCR amplification of the hybridized and eluted probes. Our data demonstrate a bias-free use of at least 16 cycles of PCR amplification to increase probe signal, allowing transcript analysis from 2.5 ng of the total mRNA sample. The method is fast and simple and avoids cDNA conversion. These qualifications make it a potential, new means for routine analysis and a complementing method for microarrays and high density chips.

  5. Development of multiplex PCR for the detection of total coliform bacteria for Escherichia coli and Clostridium perfringens in drinking water.

    PubMed

    Tantawiwat, Suwalee; Tansuphasiri, Unchalee; Wongwit, Waranya; Wongchotigul, Varee; Kitayaporn, Dwip

    2005-01-01

    Multiplex PCR amplification of lacZ, uidA and plc genes was developed for the simultaneous detection of total coliform bacteria for Escherichia coli and Clostridium perfringens, in drinking water. Detection by agarose gel electrophoresis yielded a band of 876 bp for the lacZ gene of all coliform bacteria; a band of 147 bp for the uidA gene and a band of 876 bp for the lacZ gene of all strains of E. coli; a band of 280 bp for the p/c gene for all strains of C. perfringens; and a negative result for all three genes when tested with other bacteria. The detection limit was 100 pg for E. coli and C. perfringens, and 1 ng for coliform bacteria when measured with purified DNA. This assay was applied to the detection of these bacteria in spiked water samples. Spiked water samples with 0-1,000 CFU/ml of coliform bacteria and/or E. coli and/or C. perfringens were detected by this multiplex PCR after a pre-enrichment step to increase the sensitivity and to ensure that the detection was based on the presence of cultivable bacteria. The result of bacterial detection from the multiplex PCR was comparable with that of a standard plate count on selective medium (p=0.62). When using standard plate counts as a gold standard, the sensitivity for this test was 99.1% (95% CI 95.33, 99.98) and the specificity was 90.9 % (95% CI 75.67, 98.08). Multiplex PCR amplification with a pre-enrichment step was shown to be an effective, sensitive and rapid method for the simultaneous detection of these three microbiological parameters in drinking water.

  6. Establishment and application of a multiplex PCR for rapid and simultaneous detection of six viruses in swine.

    PubMed

    Zeng, Zhiyong; Liu, Zhijie; Wang, Weicheng; Tang, Deyuan; Liang, Haiying; Liu, Zhao

    2014-11-01

    A multiplex PCR assay was developed and evaluated subsequently for its effectiveness in simultaneously detecting mixed viral infections of swine. Specific primers were designed and used for testing the six swine viruses: three DNA viruses, including pseudorabies virus (PRV), porcine parvovirus (PPV), and porcine circovirus type 2 (PCV2); three common RNA viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), and Japanese encephalitis virus (JEV). This technique has shown to be highly sensitive in that the minimum detection amounts of nucleic acids from PRV, PPV, PCV2, PRRSV, CSFV, and JEV were 6.6, 96, 12.9, 10.5, 51, and 46 pg, respectively. It also was effective for detecting one or multiple viruses in the specimens, such as the lungs, spleens, lymph nodes, and tonsils collected from clinically ill pigs. The multiplex PCR method can detect simultaneously not only infection of the six viruses, but also other swine DNA and RNA viruses. Given its rapidity, specificity, and sensitivity, the multiplex PCR is a useful tool for diagnosing clinically the mixed infections of swine DNA and RNA viruses. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. [Rapid detection of three common deletional alpha thalassemias in Chinese by single-tube multiplex PCR].

    PubMed

    Zhou, Yuqiu; Zhang, Yongliang; Li, Liyan; Li, Wendian; Mo, Qiuhua; Zheng, Qing; Xu, Xiangmin

    2005-04-01

    To develop a simple, rapid, accurate, and cost-effective single-0tube multiplex polymerase chain reaction (PCR) assay, which could be used for molecular screening and prenatal diagnosis, for detection of three commonest deletional alpha-thalassemias (-- (SEA), -alpha (3.7) and -alpha (4.2)) in Chinese population. Four groups of primers were designed on the basis of gap-PCR, and the PCR reaction condition was optimized systematically with the purpose of amplifying effectively specific DNA fragments that are indicative of the respective genotypes of these three deletional alpha thalassemias. In addition, a pair of primers was designed to amplify LIS1 3' untranslated region (UTR) fragment for use as a separate control for amplification running. A total of 72 blood and prenatal archival DNA samples with various known alpha thalassemia genes or normal alpha globin gene sequence that had been confirmed by Southern blotting analysis or DNA sequencing were collected to test the specificity of this assay by blind analysis. In addition, DNA samples from nine couples at high risk of alpha thalassemia were also analyzed to evaluate the reliability of this technique in prenatal implementation. Homozygote, heterozygote and double heterozygote of the three commonest deletional alpha thalassemias were well detected simultaneously by this established method. For normal allele, a 2.4 kb amplified band as a systematic control and an alpha (2) gene-specific amplicon of 1.8 kb were produced. Besides the two amplified fragments of normal allele, it was found that a 1.3 kb, a 2.0 kb or a 1.6 kb amplified band could be simultaneously shown for representing --(SEA), -alpha (3.7) and -alpha (4.2) alleles, respectively, in the heterozygous states. In a blind test, this technique accurately detected 100% of the DNA samples previously characterized by Southern blotting or DNA sequencing, and it was successfully applied to prenatal diagnosis of alpha thalassemia in nine at-risk families. The

  8. Multiplex PCR for detection of Helicobacter pylori infection in gastric biopsies with lower inflammatory score.

    PubMed

    Fadilah, Najmiyatul; Hanafiah, Alfizah; Razlan, Hamizah; Wong, Zin Qin; Mohamed Rose, Isa; Rahman, Md Mostafizur

    2016-10-01

    No gold standard has yet been established for the diagnosis of H. pylori infection. A multiplex polymerase chain reaction (mPCR) was developed in this study for rapid, sensitive and specific detection of H. pylori from gastric biopsies. H. pylori infections were determined by in-house rapid urease test (iRUT), culture, histology and multiplex PCR. A total of 140 (60.9%) from 230 patients were positive for H. pylori infection. H. pylori were detected in 9.6% (22/230), 17% (39/230), 12.6% (29/230) and 60% (138/230) of biopsy specimens by culture, iRUT, histology and mPCR, respectively. mPCR identified H. pylori infection in 100% of biopsies with positive histology and culture. All biopsies with positive iRUT yielded positive PCR except two cases. mPCR also detected H. pylori in additional 116, 101 and 109 biopsies that were negative by culture, iRUT and histology, respectively. Positive samples by mPCR showed lower average in H. pylori density, activity and inflammation scores. The Indians showed the highest prevalence of H. pylori infection compared to the Chinese and the Malays. In addition, Chinese patients with older age were significantly infected compared to other ethnicities. PCR was able to detect the highest numbers of positive cases although the lowest average scores were recorded in the activity, inflammatory and H. pylori density.

  9. Simultaneous detection and differentiation of Campylobacter jejuni, C. coli, and C. lari in chickens by multiplex real-time PCR

    USDA-ARS?s Scientific Manuscript database

    A multiplex real-time PCR (qPCR) assay was developed to detect and differentiate the three most commonly found and harmful species of Campylobacter in a single PCR reaction. The qPCR primers and TaqMan probes were designed to amplify the unique DNA sequences of hipO, cdtA, and pepT genes which are s...

  10. Development of Multiplexed Real-Time Quantitative PCR Assay for Detecting Human Adenoviruses

    PubMed Central

    Huang, Meei-Li; Nguy, Long; Ferrenberg, James; Boeckh, Michael; Cent, Anne; Corey, Lawrence

    2008-01-01

    Adenoviruses (AdV) have been associated with a wide variety of human disease and are increasingly recognized as viral pathogens that can cause significant morbidity and mortality in immunocompromised patients. Early detection of AdV DNA in plasma and sterile fluids has been shown to be useful for identifying patients at risk for invasive AdV disease. Due to the large number of existing Adv types, few real-time quantitative AdV PCR assays published effectively cover all AdV types. We designed a series of AdV PCR primers and probes and empirically multiplexed them into two separate real-time PCR assays to quantitatively detect all 49 serotypes of human AdV (Types 1-49) available from ATCC. We then subsequently multiplexed all the primers and probes into one reaction. The sensitivity of these assays was determined to be less than 10 copies per reaction (500 copies/ml plasma). In a retrospective evaluation we detected all 84 clinical AdV isolates isolated in cell culture from patients undergoing hematopoietic stem cell transplant (HSCT) between 1981 and 1987. Prospective analysis of 46 consecutive clinical samples submitted for adenovirus testing showed greater sensitivity and equal specificity of the AdV PCR than viral culture. This real time PCR assay allows rapid, sensitive and specific quantification of all currently defined adenoviruses into either two or one multiplex assay for clinical samples. PMID:18707838

  11. Development of a multiplex real-time PCR assay for the detection of ruminant DNA.

    PubMed

    Ekins, Jason; Peters, Sharla M; Jones, Yolanda L; Swaim, Heidi; Ha, Tai; La Neve, Fabio; Civera, Tiziana; Blackstone, George; Vickery, Michael C L; Marion, Bill; Myers, Michael J; Yancy, Haile F

    2012-06-01

    The U.S. Food and Drug Administration (FDA) has previously validated a real-time PCR-based assay that is currently being used by the FDA and several state laboratories as the official screening method. Due to several shortcomings to the assay, a multiplex real-time PCR assay (MRTA) to detect three ruminant species (bovine, caprine, and ovine) was developed using a lyophilized bead design. The assay contained two primer or probe sets: a "ruminant" set to detect bovine-, caprine-, and ovine-derived materials and a second set to serve as an internal PCR control, formatted using a lyophilized bead design. Performance of the assay was evaluated against stringent acceptance criteria developed by the FDA's Center for Veterinary Medicine's Office of Research. The MRTA for the detection of ruminant DNA passed the stringent acceptance criteria for specificity, sensitivity, and selectivity. The assay met sensitivity and reproducibility requirements by detecting 30 of 30 complete feed samples fortified with meals at 0.1 % (wt/wt) rendered material from each of the three ruminant species. The MRTA demonstrated 100 % selectivity (0.0 % false positives) for negative controls throughout the assessment period. The assay showed ruggedness in both sample selection and reagent preparation. Second and third analyst trials confirmed the quality of the written standard operating procedure with consistency of results. An external laboratory participating in a peer-verification trial demonstrated 100 % specificity in identifying bovine meat and bone meal, while exhibiting a 0.03 % rate of false positives. The assay demonstrated equal levels of sensitivity and reproducibility compared with the FDA's current validated real-time PCR assay. The assay detected three prohibited species in less than 1.5 h of total assay time, a significant improvement over the current real-time assay. These results demonstrated this assay's suitability for routine regulatory use both as a primary screening tool

  12. Final Report Nucleic Acid System - PCR, Multiplex Assays and Sample Preparation Project

    SciTech Connect

    Koopman, R.P.; Langlois, R.G.; Nasarabadi, S.; Benett, W.J.; Richards, J.B.; Hadley, D.R.; Miles, R.R.; Brown, S.B.; Stratton, P.L.; Milanovich, F.P.

    2001-04-20

    The objective of this project was to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction). This entailed not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This project had two principal deliverables: (1) design, construct, test and deliver a 24 chamber, multiplex capable suitcase sized PCR instrument, and (2) develop and reduce to practice a multiplex assay for the detection of PCR product by flow cytometry. In addition, significant resources were allocated to test and evaluation of the Hand-held Advanced Nucleic Acid Analyzer (HANAA). This project helps provide the signature and intelligence gathering community the ability to perform, on-site or remote, rapid analysis of environmental or like samples for the presence of a suite of biological warfare pathogens.

  13. Real-time multiplex RT-PCR for the simultaneous detection of the five main grapevine viruses.

    PubMed

    López-Fabuel, Irene; Wetzel, Thierry; Bertolini, Edson; Bassler, Alexandra; Vidal, Eduardo; Torres, Luis B; Yuste, Alberto; Olmos, Antonio

    2013-03-01

    A real-time multiplex RT-PCR has been developed for the simultaneous detection and identification of the major RNA viruses that infect grapevines (Grapevine fanleaf virus, Arabis mosaic virus, Grapevine leafroll-associated virus 1, Grapevine leafroll-associated virus 3 and Grapevine fleck virus). Serial dilutions of infected plant extracts were tested using the new method, and the results were compared with those obtained using a commercially available ELISA and real-time singleplex RT-PCR. The two real-time RT-PCR versions detected up to the same level of dilution and were at least 10,000 times more sensitive than the ELISA. In addition, 158 grapevine plants collected in a survey of the Protected Designation of Origin in Alicante, Spain were compared using the three methods. The results of the molecular methods were very similar, with only four discordant results, and both were able to detect many more infected plants than the ELISA. The high prevalence of Grapevine fleck virus, Grapevine leafroll-associated virus 3 and Grapevine fanleaf virus suggests that the main pathways of viral introduction are infected plant material that has escaped controls and/or uncontrolled traffic of propagating plant material. Real-time multiplex RT-PCR could be used to facilitate a better control of grapevine viruses.

  14. A one-step multiplex RT-PCR assay for simultaneous detection of four viruses that infect peach.

    PubMed

    Yu, Y; Zhao, Z; Jiang, D; Wu, Z; Li, S

    2013-10-01

    A multiplex reverse transcription polymerase chain reaction (mRT-PCR) assay was developed to enable the simultaneous detection and differentiation of four viruses that infect peach, namely Apple chlorotic leaf spot virus (ACLSV), Cherry green ring mottle virus (CGRMV), Prunus necrotic ringspot virus (PNRSV) and Apricot pseudo-chlorotic leaf spot virus (APCLSV). In this study, four pairs of primers, one specific for each virus, were designed; the corresponding PCR products were 632, 439, 346 and 282 bp in length for ACLSV, CGRMV, PNRSV and APCLSV, respectively, and the fragments could be distinguished clearly by agarose gel electrophoresis. The sensitivity and specificity of the method were tested using individual RT-PCR and enzyme-linked immunosorbent assay (ELISA), and the identity of the RT-PCR amplification products was also confirmed by DNA sequencing. The results of RT-PCR and ELISA, along with batch detection using samples collected from peach orchards, revealed that this rapid and simple technique is an effective way to identify the four viruses simultaneously. The mRT-PCR assay described in this study was developed for the simultaneous detection of four peach viruses from infected peach samples is reliable and sensitive. In contrast to conventional uniplex RT-PCR, mRT-PCR is more efficient, reducing costs, time and handling when testing large numbers of samples. This rapid and simple method is useful for large-scale surveys of viruses that infect peach. © 2013 The Society for Applied Microbiology.

  15. Validation of a Multiplex Real-Time PCR Assay for Detection of Mycobacterium spp., Mycobacterium tuberculosis Complex, and Mycobacterium avium Complex Directly from Clinical Samples by Use of the BD Max Open System.

    PubMed

    Rocchetti, Talita T; Silbert, Suzane; Gostnell, Alicia; Kubasek, Carly; Widen, Raymond

    2016-06-01

    A multiplex real-time PCR was validated on the BD Max open system to detect different Mycobacterium tuberculosis complex, Mycobacterium avium complex, and Mycobacterium spp. directly from clinical samples. The PCR results were compared to those with traditional cultures. The multiplex PCR assay was found to be a specific and sensitive method for the rapid detection of mycobacteria directly from clinical specimens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. IDH mutation detection in formalin-fixed paraffin-embedded gliomas using multiplex PCR and single-base extension.

    PubMed

    Perizzolo, Marco; Winkfein, Bob; Hui, Susan; Krulicki, Wally; Chan, Jennifer A; Demetrick, Douglas J

    2012-09-01

    Isocitrate dehydrogenase (IDH) genes are mutated in a significant portion of gliomas, myeloid leukemias and chondroid neoplasms. In gliomas, IDH mutations are prognostic, as those tumors with the mutation are associated with a proneural subclass and have longer survival compared with those without the mutation. We developed a simple, PCR-based SNaPshot® assay (Life Technologies, Carlsbad, CA, USA) to detect IDH1/2 mutations. This protocol combines a single, multiplexed PCR reaction using gene specific primers followed by a single, multiplexed SNaPshot reaction and detection by capillary electrophoresis. In a blinded study of 32 paraffin-embedded glioma specimens previously screened for IDH mutations by a PCR/direct sequencing method, concordance of our IDH SNaPshot test with sequencing was 100%. We performed the assay on an additional 57 specimens submitted for diagnostic IDH mutation evaluation. Data analysis was much faster and easier to perform than analysis of the sequencing data, and results could be obtained in 1 day from DNA extraction to analysis. Furthermore, we could readily identify a mixture of 5% mutant allele vs. 95% wild-type allele in our SNaPshot assay, in comparison to approximately 20% mutant allele in our PCR-sequencing assay. Our assay represents a fast, sensitive, straightforward method of reliably detecting common mutations of IDH genes in glial neoplasms, or other tumors.

  17. A multiplex PCR for rapid identification of Brassica species in the triangle of U.

    PubMed

    Koh, Joshua C O; Barbulescu, Denise M; Norton, Sally; Redden, Bob; Salisbury, Phil A; Kaur, Sukhjiwan; Cogan, Noel; Slater, Anthony T

    2017-01-01

    Within the Brassicaceae, six species from the genus Brassica are widely cultivated throughout the world as oilseed, condiment, fodder or vegetable crops. The genetic relationships among the six Brassica species are described by U's triangle model. Extensive shared traits and diverse morphotypes among Brassica species make identification and classification based on phenotypic data alone challenging and unreliable, especially when dealing with large germplasm collections. Consequently, a major issue for genebank collections is ensuring the correct identification of species. Molecular genotyping based on simple sequence repeat (SSR) marker sequencing or the Illumina Infinium Brassica napus 60K single nucleotide polymorphism (SNP) array has been used to identify species and assess genetic diversity of Brassica collections. However, these methods are technically challenging, expensive and time-consuming, making them unsuitable for routine or rapid screening of Brassica accessions for germplasm management. A cheaper, faster and simpler method for Brassica species identification is described here. A multiplex polymerase chain reaction (MPCR) consisting of new and existing primers specific to the Brassica A, B and C genomes was able to reliably distinguish all six Brassica species in the triangle of U with 16 control samples of known species identity. Further validation against 120 Brassica accessions previously genotyped showed that the MPCR is highly accurate and comparable to more advanced techniques such as SSR marker sequencing or the Illumina Infinium B. napus 60K SNP array. In addition, the MPCR was sensitive enough to detect seed contaminations in pooled seed samples of Brassica accessions. A cheap and fast multiplex PCR assay for identification of Brassica species in the triangle of U was developed and validated in this study. The MPCR assay can be readily implemented in any basic molecular laboratory and should prove useful for the management of Brassica

  18. Blood grouping based on PCR methods and agarose gel electrophoresis.

    PubMed

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  19. A novel diagnostic platform based on multiplex ligase detection-PCR and microarray for simultaneous detection of swine viruses.

    PubMed

    Jiang, Yonghou; Guo, Yao; Wang, Ping; Dong, Qinfang; Opriessnig, Tanja; Cheng, Juhui; Xu, Hui; Ding, Xianfeng; Guo, Jiangfeng

    2011-12-01

    Simultaneous detection and identification of multiple pathogens is required in many diagnostic fields. In this study a novel method based on a multiplex ligase detection (LD)-polymerase chain reaction (PCR) and microarray (MLPM) is described to detect simultaneously several swine viruses involved in reproductive and/or respiratory problems. The multiplex diagnostic system was validated using standard plasmids, and clinical samples. Using this strategy as few as 10 copies of target plasmids were detected successfully. Each probe pair yielded specific positive signal only in its target site. In addition, when six target plasmids were present simultaneously sufficient robust signals were generated in their corresponding sites of six plasmid templates and no obvious signals were detected in non-target sites. Compared to real-time PCR, the MLPM showed specificities and sensitivities of 95.7-100% and 100% for 47 clinical samples tested, respectively. The results demonstrate that this novel assay is a specific, sensitive, and multiplex diagnostic method for detection of multiple pathogens and can also be adapted easily for diagnostic purposes.

  20. Sensitive simultaneous detection of seven sexually transmitted agents in semen by multiplex-PCR and of HPV by single PCR.

    PubMed

    Gimenes, Fabrícia; Medina, Fabiana Soares; Abreu, André Luelsdorf Pimenta de; Irie, Mary Mayumi Taguti; Esquiçati, Isis Baroni; Malagutti, Natália; Vasconcellos, Vinícius Rodrigo Bulla; Discacciati, Michele Garcia; Bonini, Marcelo Gialluisi; Maria-Engler, Silvya Stuchi; Consolaro, Marcia Edilaine Lopes

    2014-01-01

    Sexually transmitted diseases (STDs) may impair sperm parameters and functions thereby promoting male infertility. To date limited molecular studies were conducted to evaluate the frequency and type of such infections in semen Thus, we aimed at conceiving and validating a multiplex PCR (M-PCR) assay for the simultaneous detection of the following STD pathogens in semen: Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis, Herpes virus simplex (HSV) -1 and -2, and Treponema pallidum; We also investigated the potential usefulness of this M-PCR assay in screening programs for semen pathogens. In addition, we aimed: to detect human Papillomavirus (HPV) and genotypes by single PCR (sPCR) in the same semen samples; to determine the prevalence of the seven STDs, HPV and co-infections; to assess the possibility that these infections affect semen parameters and thus fertility. The overall validation parameters of M-PCR were extremely high including agreement (99.2%), sensitivity (100.00%), specificity (99.70%), positive (96.40%) and negative predictive values (100.00%) and accuracy (99.80%). The prevalence of STDs was very high (55.3%). Furthermore, associations were observed between STDs and changes in semen parameters, highlighting the importance of STD detection in semen. Thus, this M-PCR assay has great potential for application in semen screening programs for pathogens in infertility and STD clinics and in sperm banks.

  1. Sensitive Simultaneous Detection of Seven Sexually Transmitted Agents in Semen by Multiplex-PCR and of HPV by Single PCR

    PubMed Central

    de Abreu, André Luelsdorf Pimenta; Irie, Mary Mayumi Taguti; Esquiçati, Isis Baroni; Malagutti, Natália; Vasconcellos, Vinícius Rodrigo Bulla; Discacciati, Michele Garcia; Bonini, Marcelo Gialluisi; Maria-Engler, Silvya Stuchi; Consolaro, Marcia Edilaine Lopes

    2014-01-01

    Sexually transmitted diseases (STDs) may impair sperm parameters and functions thereby promoting male infertility. To date limited molecular studies were conducted to evaluate the frequency and type of such infections in semen Thus, we aimed at conceiving and validating a multiplex PCR (M-PCR) assay for the simultaneous detection of the following STD pathogens in semen: Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis, Herpes virus simplex (HSV) −1 and −2, and Treponema pallidum; We also investigated the potential usefulness of this M-PCR assay in screening programs for semen pathogens. In addition, we aimed: to detect human Papillomavirus (HPV) and genotypes by single PCR (sPCR) in the same semen samples; to determine the prevalence of the seven STDs, HPV and co-infections; to assess the possibility that these infections affect semen parameters and thus fertility. The overall validation parameters of M-PCR were extremely high including agreement (99.2%), sensitivity (100.00%), specificity (99.70%), positive (96.40%) and negative predictive values (100.00%) and accuracy (99.80%). The prevalence of STDs was very high (55.3%). Furthermore, associations were observed between STDs and changes in semen parameters, highlighting the importance of STD detection in semen. Thus, this M-PCR assay has great potential for application in semen screening programs for pathogens in infertility and STD clinics and in sperm banks. PMID:24921247

  2. A novel multiplex PCR for the simultaneous detection of Salmonella enterica and Shigella species.

    PubMed

    Radhika, M; Saugata, Majumder; Murali, H S; Batra, H V

    2014-01-01

    Salmonella enterica and Shigella species are commonly associated with food and water borne infections leading to gastrointestinal diseases. The present work was undertaken to develop a sensitive and reliable PCR based detection system for simultaneous detection of Salmonella enterica and Shigella at species level. For this the conserved regions of specific genes namely ipaH1, ipaH, wbgZ, wzy and invA were targeted for detection of Shigella genus, S. flexneri, S. sonnei, S. boydii and Salmonella enterica respectively along with an internal amplification control (IAC). The results showed that twenty Salmonella and eleven Shigella spp., were accurately identified by the assay without showing non-specificity against closely related other Enterobacteriaceae organisms and also against other pathogens. Further evaluation of multiplex PCR was undertaken on 50 natural samples of chicken, eggs and poultry litter and results compared with conventional culture isolation and identification procedure. The multiplex PCR identified the presence of Salmonella and Shigella strains with a short pre-enrichment step of 5 h in peptone water and the same samples were processed by conventional procedures for comparison. Therefore, this reported multiplex PCR can serve as an alternative to the tedious time-consuming procedure of culture and identification in food safety laboratories.

  3. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays.

    PubMed

    Panicker, Gitika; Call, Douglas R; Krug, Melissa J; Bej, Asim K

    2004-12-01

    This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50 degrees C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 10(2) to 10(3) CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers.

  4. Multiplex Nested PCR for Detection of Xanthomonas axonopodis pv. allii from Onion Seeds▿ †

    PubMed Central

    Robène-Soustrade, Isabelle; Legrand, Delphine; Gagnevin, Lionel; Chiroleu, Frédéric; Laurent, Annie; Pruvost, Olivier

    2010-01-01

    Bacterial blight of onion (BBO) is an emerging disease that is present in many onion-producing areas. The causal agent, Xanthomonas axonopodis pv. allii, is seed transmitted. A reliable and sensitive diagnostic tool for testing seed health is needed. Detection of X. axonopodis pv. allii was achieved using a multiplex nested PCR assay developed using two randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) sequences corresponding to pilus assembly genes (pilW and pilX) and the avrRxv gene, respectively. The multiplex nested PCR was used with a large collection of X. axonopodis pv. allii strains pathogenic to onion and/or other Allium species isolated in different regions of the world. The internal primers used in the multiplex PCR assay directed amplification for all 86 X. axonopodis pv. allii strains tested, resulting in a 401-bp amplicon, a 444- to 447-bp amplicon, or both amplicons, depending on the strain. No amplification was obtained for 41 unrelated phytopathogenic bacteria and for 14 saprophytic bacteria commonly isolated from onion leaves and seeds. Most Xanthomonas strains also did not produce amplicons, except for nine strains classified in X. axonopodis genetic subgroup 9.1 or 9.2 and not pathogenic to onion. Nevertheless, sequence signatures distinguished most of these strains from X. axonopodis pv. allii. The assay detected X. axonopodis pv. allii in seed lots with contamination levels of 5 × 102 CFU g−1 or higher. The sensitivity threshold of the multiplex nested PCR assay was found to be 1 infected seed in 27,340 seeds. This PCR-based assay should be useful for certifying that commercial seed lots are free of this important seed-borne pathogen. PMID:20208024

  5. A Novel Multiplex PCR Discriminates Bacillus anthracis and Its Genetically Related Strains from Other Bacillus cereus Group Species

    PubMed Central

    Ogawa, Hirohito; Fujikura, Daisuke; Ohnuma, Miyuki; Ohnishi, Naomi; Hang'ombe, Bernard M.; Mimuro, Hitomi; Ezaki, Takayuki; Mweene, Aaron S.; Higashi, Hideaki

    2015-01-01

    Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis. PMID:25774512

  6. A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species.

    PubMed

    Ogawa, Hirohito; Fujikura, Daisuke; Ohnuma, Miyuki; Ohnishi, Naomi; Hang'ombe, Bernard M; Mimuro, Hitomi; Ezaki, Takayuki; Mweene, Aaron S; Higashi, Hideaki

    2015-01-01

    Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis.

  7. Comparison of the conventional multiplex RT-PCR, real time RT-PCR and Luminex xTAG® RVP fast assay for the detection of respiratory viruses.

    PubMed

    Choudhary, Manohar L; Anand, Siddharth P; Tikhe, Shamal A; Walimbe, Atul M; Potdar, Varsha A; Chadha, Mandeep S; Mishra, Akhilesh C

    2016-01-01

    Detection of respiratory viruses using polymerase chain reaction (PCR) is sensitive, specific and cost effective, having huge potential for patient management. In this study, the performance of an in-house developed conventional multiplex RT-PCR (mRT-PCR), real time RT-PCR (rtRT-PCR) and Luminex xTAG(®) RVP fast assay (Luminex Diagnostics, Toronto, Canada) for the detection of respiratory viruses was compared. A total 310 respiratory clinical specimens predominantly from pediatric patients, referred for diagnosis of influenza A/H1N1pdm09 from August 2009 to March 2011 were tested to determine performance characteristic of the three methods. A total 193 (62.2%) samples were detected positive for one or more viruses by mRT-PCR, 175 (56.4%) samples by real time monoplex RT-PCR, and 138 (44.5%) samples by xTAG(®) RVP fast assay. The overall sensitivity of mRT-PCR was 96.9% (95% CI: 93.5, 98.8), rtRT-PCR 87.9% (95% CI: 82.5, 92.1) and xTAG(®) RVP fast was 68.3% (95% CI: 61.4, 74.6). Rhinovirus was detected most commonly followed by respiratory syncytial virus group B and influenza A/H1N1pdm09. The monoplex real time RT-PCR and in-house developed mRT-PCR are more sensitive, specific and cost effective than the xTAG(®) RVP fast assay.

  8. Neurocryptococcosis: diagnosis by PCR method.

    PubMed

    Paschoal, Regina Célia; Hirata, Mário Hiroyuki; Hirata, Rosário Crespo; Melhem, Márcia de Souza Carvalho; Dias, Amanda Latercia Tranches; Paula, Claudete Rodrigues

    2004-01-01

    Cryptococcus neoformans detection was optimized using PCR technique with the objective of application in the clinical laboratory diagnosis. The amplification area was ITS and 5,6S which encodes the ribosomal RNA (rRNA). A total of 72 cerebrospinal fluid (CSF) samples were used, obtained from cases with and without AIDS. The patients had cryptococcal meningitis (n = 56) and meningitis caused by other agents (n = 16). The results demonstrated that PCR test had the highest sensitivity rates, superior to culture (85.7%) and to India ink test (76.8%). PCR was found to be sensitive in detecting 1 cell/mL and highly specific since it did not amplify other fungal DNA. The comparative analysis of the methods showed that PCR is more sensitive and specific and is applicable as an important laboratorial resource for neurocryptococcosis diagnosis.

  9. Rapid multiplex PCR assay to identify respiratory viral pathogens: moving forward diagnosing the common cold.

    PubMed

    Layman, Clifton P; Gordon, Sarah M; Elegino-Steffens, Diane U; Agee, Willie; Barnhill, Jason; Hsue, Gunther

    2013-09-01

    Upper respiratory tract infections (URIs) can be a serious burden to the healthcare system. The majority of URIs are viral in etiology, but definitive diagnosis can prove difficult due to frequently overlapping clinical presentations of viral and bacterial infections, and the variable sensitivity, and lengthy turn-around time of viral culture. We tested new automated nested multiplex PCR technology, the FilmArray(®) system, in the TAMC department of clinical investigations, to determine the feasibility of replacing the standard viral culture with a rapid turn-around system. We conducted a feasibility study using a single-blinded comparison study, comparing PCR results with archived viral culture results from a convenience sample of cryopreserved archived nasopharyngeal swabs from acutely ill ED patients who presented with complaints of URI symptoms. A total of 61 archived samples were processed. Viral culture had previously identified 31 positive specimens from these samples. The automated nested multiplex PCR detected 38 positive samples. In total, PCR was 94.5% concordant with the previously positive viral culture results. However, PCR was only 63.4% concordant with the negative viral culture results, owing to PCR detection of 11 additional viral pathogens not recovered on viral culture. The average time to process a sample was 75 minutes. We determined that an automated nested multiplex PCR is a feasible alternative to viral culture in an acute clinical setting. We were able to detect at least 94.5% as many viral pathogens as viral culture is able to identify, with a faster turn-around time.

  10. Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR.

    PubMed Central

    Yoo, H S; Lee, S U; Park, K Y; Park, Y H

    1997-01-01

    Clostridium perfringens has been classified into five toxigenic types (A through E) on the basis of its capability to produce major lethal toxins (alpha, beta, epsilon, and iota toxins). Seroneutralization with mice or guinea pigs has been used to type each toxin, but this conventional method has some disadvantages. Therefore, we used a molecular biological technique to type the bacterium in the present study. A multiplex PCR was developed for this purpose. This method has several advantages in comparison with seroneutralization with mice or guinea pigs. By this method, we also investigated the most prevalent type(s) of the organism in Korean calves, piglets, and chickens showing clinical symptoms such as diarrhea, enterotoxemia, and necrotic enteritis. Only type A was isolated from calves and chickens, while type C (2 of 14 isolates), in addition to type A, was isolated from piglets. These results suggested that seroneutralization could be replaced by our new method and that type A of C. perfringens is the most prevalent type in livestock in Korea. PMID:8968913

  11. Incidence of tuberculous and non-tuberculous mycobacteria, differentiated by multiplex PCR, in clinical specimens of a large general hospital

    PubMed Central

    Bensi, Eliane Picoli Alves; Panunto, Patricia Costa; de Carvalho Ramos, Marcelo

    2013-01-01

    OBJECTIVE: To determine the incidence of Mycobacterium tuberculosis complex and non-tuberculous mycobacterial isolates in the routine setting of a large general hospital using an "in-house" multiplex polymerase chain reaction method and to establish a paradigm for the definitive identification of mycobacteria isolated using semi-automated equipment. METHODS: Established tests, including polymerase chain reaction restriction enzyme analysis, PNB, and NAP inhibition tests as the gold standard, showed 100% agreement with an IS6110/hsp65 multiplex polymerase chain reaction when used to identify stock strains (n = 117). RESULTS: In a subsequent study, 8,790 clinical specimens producing 476 isolates were evaluated with multiplex PCR and also showed 100% agreement in identification using PRA-polymerase chain reaction as the gold standard. The application of this technique to routine analysis was demonstrated in this study. A method was established with the initial application of multiplex PCR for all positive liquid cultures and the subsequent identification of non-tuberculous mycobacteria by polymerase chain reaction restriction enzyme analysis. In total, 77% of isolates belonged to the Mycobacterium tuberculosis complex, and 23% were non-tuberculous mycobacteria. CONCLUSIONS: Several non-tuberculous mycobacterial species were identified, primarily M. avium, but other potentially pathogenic species were also frequently observed, including M. fortuitum, M. abscessus, and M. kansasii. The expeditious communication of these data to the clinical staff was fundamental for the diagnosis of clinical cases. Even in settings where tuberculosis is of major importance, the incidence of non-tuberculous mycobacteria infection is substantial. PMID:23525313

  12. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth and look-alike disease viruses

    SciTech Connect

    Hindson, B J; Baker, B R; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; Reid, S M; Ebert, K; Ferris, N P; King, D P

    2007-09-18

    A high-throughput multiplexed assay (Multiplex Version 1.0) was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRTPCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  13. Multiplex real-time PCR for identification of canine parvovirus antigenic types.

    PubMed

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Narang, Deepti

    2016-07-01

    Canine parvovirus (CPV) is an important disease causing gastroenteritis and/or haemorrhagic gastroenteritis in dogs. There are four antigenic types of CPV reported worldwide viz. CPV 2, CPV 2a, CPV 2b and CPV 2c. The diagnosis of CPV with the identification of the antigen type responsible remains problematic. In the present study, identification as well as antigenic typing of CPV was done using a de novo multiplex real time PCR to combat the problem of antigenic type identification. From the study it could be concluded that the here developed multiplex real time PCR assay could be used for rapid detection of CPV as well as typing of its three antigenic types.

  14. Detection of Lymnaea columella infection by Fasciola hepatica through Multiplex-PCR.

    PubMed

    Magalhães, Kelly Grace; Passos, Liana Konovaloff Jannotti; Carvalho, Omar dos Santos

    2004-06-01

    From complete mitochondrial DNA sequence of Fasciola hepatica available in Genbank, specific primers were designed for a conserved and repetitive region of this trematode. A pair of primers was used for diagnosis of infected Lymnaea columella by F. hepatica during the pre-patent period simultaneously with another pair of primers which amplified the internal transcribed spacer (ITS) region of rDNA from L. columella in a single Multiplex-PCR. The amplification generated a ladder band profile specific for F. hepatica. This profile was observed in positive molluscs at different times of infection, including adult worms from the trematode. The Multiplex-PCR technique showed to be a fast and safe tool for fascioliasis diagnosis, enabling the detection of F. hepatica miracidia in L. columella during the pre-patent period and identification of transmission areas.

  15. Multiplex hydrolysis probe real-time PCR for simultaneous detection of hepatitis A virus and hepatitis E virus.

    PubMed

    Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli

    2014-05-30

    Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV.

  16. Simultaneous detection of four garlic viruses by multiplex reverse transcription PCR and their distribution in Indian garlic accessions.

    PubMed

    Majumder, S; Baranwal, V K

    2014-06-01

    Indian garlic is infected with Onion yellow dwarf virus (OYDV), Shallot latent virus (SLV), Garlic common latent virus (GarCLV) and allexiviruses. Identity and distribution of garlic viruses in various garlic accessions from different geographical regions of India were investigated. OYDV and allexiviruses were observed in all the garlic accessions, while SLV and GarCLV were observed only in a few accessions. A multiplex reverse transcription (RT)-PCR method was developed for the simultaneous detection and identification of OYDV, SLV, GarCLV and Allexivirus infecting garlic accessions in India. This multiplex protocol standardized in this study will be useful in indexing of garlic viruses and production of virus free seed material.

  17. Multiplex Hydrolysis Probe Real-Time PCR for Simultaneous Detection of Hepatitis A Virus and Hepatitis E Virus

    PubMed Central

    Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli

    2014-01-01

    Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV. PMID:24886818

  18. Detection of genetically modified canola using multiplex PCR coupled with oligonucleotide microarray hybridization.

    PubMed

    Schmidt, Anna-Mary; Sahota, Robert; Pope, Derek S; Lawrence, Tracy S; Belton, Mark P; Rott, Michael E

    2008-08-27

    A rapid method was developed for concurrent screening of transgenic elements in GM canola. This method utilizes a single multiplex PCR coupled with an oligonucleotide DNA array capable of simultaneously detecting the 12 approved GM canola lines in Canada. The assay includes construct-specific elements for identification of approved lines, common elements (e.g., CaMV 35S promoter, Agrobacterium tumefaciens nos terminator, or nptII gene) for screening of approved or unapproved lines, a canola-specific endogenous gene, and endogenous genes from heterologous crops to serve as additional controls. Oligonucleotide probes were validated individually for functionality and specificity by amplification of specific transgene sequences from appropriate GM canola lines corresponding to each probe sequence, and hybridization of amplicons to the array. Each target sequence hybridized to its corresponding oligonucleotide probe and no significant cross-hybridization was observed. The limit of detection was examined for the GM lines GT73, T45, and MS8/RF3, and was determined to be 0.1%, 0.1%, and 0.5%, respectively, well within the European food and feed labeling threshold level of 0.9% for approved GM product. Practically, the method was demonstrated to be effective for the detection of GM canola in several types of animal feed, as well as in commercial canola meal.

  19. Discrimination of Major Capsular Types of Campylobacter jejuni by Multiplex PCR

    DTIC Science & Technology

    2011-05-01

    Society for Microbiology. All Rights Reserved. Discrimination of Major Capsular Types of Campylobacter jejuni by Multiplex PCR’Vt Frederic Poly...two PCRs with sensitivities and specificities ranging from 90 tn 100% using 244 strains of knnwn Penner type. Campylobacter jejwzi is one of the...2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Discrimination of Major Capsular Types of Campylobacter jejuni

  20. A multiplex RT-PCR for simultaneous detection and identification of five viruses and two viroids infecting chrysanthemum.

    PubMed

    Zhao, Xiting; Liu, Xingliang; Ge, Beibei; Li, Mingjun; Hong, Bo

    2015-05-01

    Pathogens causing significant economic losses in chrysanthemum include tomato aspermy virus (TAV), chrysanthemum virus B (CVB), cucumber mosaic virus (CMV), tobacco mosaic virus (TMV), potato virus Y (PVY), chrysanthemum stunt viroid (CSVd) and chrysanthemum chlorotic mottle viroid (CChMVd). A multiplex reverse transcription polymerase chain reaction (RT-PCR) method, using specific primer sets for each virus or viroid, was developed for simultaneous detection and differentiation of TAV, CVB, CMV, TMV, PVY, CChMVd, and CSVd. The RT-PCR method was validated by testing chrysanthemum samples collected from different regions of China. In this study, CVB, TAV, TMV, PVY, CSVd, CMV, and CChMVd were detected, respectively, in 24.7 %, 17.5 %, 4.4 %, 4.4 %, 2.9 %, 2.5 %, and 1.5 % of the samples tested. These results indicate that CVB and TAV (24.7 % and 17.5 %) are common, whereas CMV, TMV, CChMVd, CSVd, and PVY (all below 5 %) are less frequently encountered. This new multiplex RT-PCR method has potential to be used routinely in large-scale virus and viroid surveys.

  1. A multiplex real-time PCR assay for detection of Xanthomonas campestris from brassicas.

    PubMed

    Berg, T; Tesoriero, L; Hailstones, D L

    2006-06-01

    To develop a sensitive real-time PCR-based protocol for the detection of Xanthomonas campestris pathovars from Brassica seed. A 5' nuclease real-time PCR assay was developed to screen Brassica spp. seed for the presence of X. campestris pathovars that cause black rot. The assay amplifies a 78-bp segment of the X. campestris hrpF gene and a 100-bp segment of the Brassica spp. 18S-25S internal transcribed spacer region. The Brassica spp. target provides an internal control for the amplification process to prevent false negatives that may arise from inhibitors that are often present in extracts from plant material. Whilst the primers were compatible with SYBR Green I assays, the use of fluorescently labelled probes in a 5' nuclease assay afforded greatest sensitivity and specificity. Seed batches carrying one artificially infected seed among 10,000 were readily detected using the assay. The multiplex real-time PCR assay permitted the rapid detection of pathogenic strains of X. campestris from bacterial colonies, Brassica seed and plants. Strains of X. campestris pathogenic to brassicas were readily detected from seed via a multiplex 5' nuclease real-time PCR assay. The real-time assay offers an improvement in sensitivity and a reduced turn-around time over the conventional multiplex PCR. Real-time PCR can be used to rapidly screen Brassica spp. seed batches for the presence of X. campestris pathovars. This assay provides a means for growers and the seed industry to be aware of the black rot status of their planting material, so that they may more effectively employ disease control measures or seed disinfection.

  2. Discrimination between E. granulosus sensu stricto, E. multilocularis and E. shiquicus Using a Multiplex PCR Assay

    PubMed Central

    Li, Li; Yan, Hong-Bin; Blair, David; Lei, Meng-Tong; Cai, Jin-Zhong; Fan, Yan-Lei; Li, Jian-Qiu; Fu, Bao-Quan; Yang, Yu-Rong; McManus, Donald P.; Jia, Wan-Zhong

    2015-01-01

    Background Infections of Echinococcus granulosus sensu stricto (s.s), E. multilocularis and E. shiquicus are commonly found co-endemic on the Qinghai-Tibet plateau, China, and an efficient tool is needed to facilitate the detection of infected hosts and for species identification. Methodology/Principal Findings A single-tube multiplex PCR assay was established to differentiate the Echinococcus species responsible for infections in intermediate and definitive hosts. Primers specific for E. granulosus, E. multilocularis and E. shiquicus were designed based on sequences of the mitochondrial NADH dehydrogenase subunit 1 (nad1), NADH dehydrogenase subunit 5 (nad5) and cytochrome c oxidase subunit 1 (cox1) genes, respectively. This multiplex PCR accurately detected Echinococcus DNA without generating nonspecific reaction products. PCR products were of the expected sizes of 219 (nad1), 584 (nad5) and 471 (cox1) bp. Furthermore, the multiplex PCR enabled diagnosis of multiple infections using DNA of protoscoleces and copro-DNA extracted from fecal samples of canine hosts. Specificity of the multiplex PCR was 100% when evaluated using DNA isolated from other cestodes. Sensitivity thresholds were determined for DNA from protoscoleces and from worm eggs, and were calculated as 20 pg of DNA for E. granulosus and E. shiquicus, 10 pg of DNA for E. multilocularis, 2 eggs for E. granulosus, and 1 egg for E. multilocularis. Positive results with copro-DNA could be obtained at day 17 and day 26 after experimental infection of dogs with larval E. multilocularis and E. granulosus, respectively. Conclusions/Significance The multiplex PCR developed in this study is an efficient tool for discriminating E. granulosus, E. multilocularis and E. shiquicus from each other and from other taeniid cestodes. It can be used for the detection of canids infected with E. granulosus s.s. and E. multilocularis using feces collected from these definitive hosts. It can also be used for the identification

  3. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes

    USDA-ARS?s Scientific Manuscript database

    TaqMan primer-probe sets were developed for the detection and identification of potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis using two-tube, multiplex real-time PCR. One tube contained a primer-probe set specific for G. pallida (pale cyst nematode) multiplexed with another prim...

  4. [new multiplex PCR for species-specific diagnosis of human candidiasis].

    PubMed

    García, Liliana Torcoroma; Luna, Liany Johanna; Velasco, Tania Katherine; Guerra, Beatriz Elena

    2017-06-01

    Candidiases is a group of opportunistic infections caused by yeasts belonging to the genus Candida. Candida albicans is the most prevalent species in both superficial and deep infections, however, the clinical importance of non-albicans Candida has increased during the last decade, driving an urgent need for diagnostic tests that allow for species-level resolution and selection of the optimum therapeutic approach. To design and to optimize a new multiplex PCR assay for the simultaneous identification of the five most relevant species of Candida involved in human candidiasis etiology. For primers design, the physical and thermodynamic restrictions that affect multiplex PCR performance were analyzed using Gene Runner and Mult-PSOS. As templates, the internal transcribed region 2 (ITR2) was selected for C. albicans (AJ249486.1), and topoisomerase II (TOPII) for C. parasilopsis (AB049144.1), C. krusei (AB049139.1), C. tropicalis (AB049141.1), and C. guillermondii (AB049145.1). We used ATCC strains of all these five species and clinical isolates as templates. We designed ten oligonucleotides for the simultaneous amplification of the Candida species. The electrophoresis band profile was: C. albicans (206 bp), C. guillermondii (244 bp), C. tropicalis (474 bp), C. parasilopsis (558 bp), and C. krusei (419 bp). The new multiplex PCR assay designed in this study allowed a simultaneous and efficient amplification of the amplicons corresponding to the five species of Candida under study, with an adequate resolution in standard agarose gel.

  5. Detection of Porphyromonas gingivalis and Streptococcus intermedius in chronic periodontitis patients by multiplex PCR.

    PubMed

    De La Garza-Ramos, Myriam A; Galán-Wong, Luis J; Caffesse, Raúl G; González-Salazar, Francisco; Pereyra-Alférez, Benito

    2008-01-01

    A Multiplex PCR assay for the detection of Porphyromonas gingivalis and Streptococcus intermedius in chronic periodontitis is presented. A total of 180 samples from 65 adults with untreated periodontitis and 17 healthy volunteers were taken and processed in a simple boiling step. Cell lysates were used as DNA source for multiplex PCR assays. Primers were designed from 16S rRNA gene sequences from the GenBank-EMBL database showing specificity for target pathogens. This multiplex PCR system could detect 8.2 P gingivalis and S. intermedius cells. In untreated periodontitis patients, only 78.5% were positive for one or both bacteria; 37% were positive for P gingivalis only, 17% for S. intermedius and 24.5% for both. P. gingivalis was detected in 23.5% of healthy volunteers, while S. intermedius was not detected in the same patients. The distribution of these bacteria was related to the periodontal probing depth, while 95.23% of patients with pockets wih 6 to 7 mm deep were positive for either or both, only 70.45% of of them with 4 to 5 mm pockets were positive.

  6. False positives in multiplex PCR-based next-generation sequencing have unique signatures.

    PubMed

    McCall, Chad M; Mosier, Stacy; Thiess, Michele; Debeljak, Marija; Pallavajjala, Aparna; Beierl, Katie; Deak, Kristen L; Datto, Michael B; Gocke, Christopher D; Lin, Ming-Tseh; Eshleman, James R

    2014-09-01

    Next-generation sequencing shows great promise by allowing rapid mutational analysis of multiple genes in human cancers. Recently, we implemented the multiplex PCR-based Ion AmpliSeq Cancer Hotspot Panel (>200 amplicons in 50 genes) to evaluate EGFR, KRAS, and BRAF in lung and colorectal adenocarcinomas. In 10% of samples, automated analysis identified a novel G873R substitution mutation in EGFR. By examining reads individually, we found this mutation in >5% of reads in 50 of 291 samples and also found similar events in 18 additional amplicons. These apparent mutations are present only in short reads and within 10 bases of either end of the read. We therefore hypothesized that these were from panel primers promiscuously binding to nearly complementary sequences of nontargeted amplicons. Sequences around the mutations matched primer binding sites in the panel in 18 of 19 cases, thus likely corresponding to panel primers. Furthermore, because most primers did not show this effect, we demonstrated that next-generation sequencing may be used to better design multiplex PCR primers through iterative elimination of offending primers to minimize mispriming. Our results indicate the need for careful sequence analysis to avoid false-positive mutations that can arise in multiplex PCR panels. The AmpliSeq Cancer panel is a valuable tool for clinical diagnostics, provided awareness of potential artifacts.

  7. Multiplex coherent raman spectroscopy detector and method

    DOEpatents

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  8. Multiplex coherent raman spectroscopy detector and method

    NASA Technical Reports Server (NTRS)

    Chen, Peter (Inventor); Joyner, Candace C. (Inventor); Patrick, Sheena T. (Inventor); Guyer, Dean R. (Inventor)

    2004-01-01

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  9. Detection of intestinal protozoa in paediatric patients with gastrointestinal symptoms by multiplex real-time PCR.

    PubMed

    Maas, L; Dorigo-Zetsma, J W; de Groot, C J; Bouter, S; Plötz, F B; van Ewijk, B E

    2014-06-01

    The performance of a multiplex real-time PCR for the detection of Blastocystis, Dientamoeba fragilis, Giardia lamblia, Cryptosporidium species and Entamoeba species in faecal samples was evaluated in an observational prospective study. Paediatric patients (0-18 years) presenting with gastrointestinal symptoms and suspected of having enteroparasitic disease were included. A questionnaire on gastrointestinal symptoms and the chosen treatment was completed at the start of the study and after 6 weeks. Of 163 paediatric patients (mean age, 7.8 years), 114 (70%) had a PCR-positive faecal sample. D. fragilis was detected most frequently, in 101 patients, followed by Blastocystis in 49. In faecal samples of 47 patients, more than one protozoan was detected, mainly the combination of D. fragilis and Blastocystis. Reported gastrointestinal symptoms were abdominal pain (78%), nausea (30%), and altered bowel habits (28%). Eighty-nine of the PCR-positive patients were treated with antibiotics. A significant reduction in abdominal pain was observed both in treated and in untreated patients. This study demonstrated that multiplex real-time PCR detects a high percentage of intestinal protozoa in paediatric patients with gastrointestinal symptoms. However, interpretation and determination of the clinical relevance of a positive PCR result in this population are still difficult. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  10. Microbiological diagnosis of severe diarrhea in kidney transplant recipients by use of multiplex PCR assays.

    PubMed

    Coste, Jean-François; Vuiblet, Vincent; Moustapha, Betoul; Bouin, Alexis; Lavaud, Sylvie; Toupance, Olivier; de Rougemont, Alexis; Benejat, Lucie; Megraud, Francis; Wolak-Thierry, Aurore; Villena, Isabelle; Chemla, Cathy; Le Magrex, Elisabeth; de Champs, Christophe; Andreoletti, Laurent; Rieu, Philippe; Leveque, Nicolas

    2013-06-01

    Diarrhea is a frequent complication after kidney transplantation, ascribed to adverse effects of the immunosuppressive therapy in case of negative microbiological examination of the stools. The aim of this study was to improve the microbiological diagnosis by implementing molecular tests. Fifty-four severe diarrhea events that occurred in 49 adult kidney transplant recipients from September 2010 to November 2011 were investigated. One or several enteric pathogens were detected in 13 (23%) stool samples using classical microbiological methods versus 39 (72%) for the seven commercially available multiplex PCR assays used retrospectively (P = 0.006). Interestingly, molecular diagnosis identified 15 multiple infections compared to none using classical techniques. The primary pathogens detected were enteropathogenic Escherichia coli (EPEC) (n = 15; 38%), Campylobacter spp. (n = 15; 38%), and Norovirus (n = 14; 36%). Specificities for Campylobacter and Norovirus infection diagnosis were 75 and 100%, respectively, by comparison to reference methods. Based on molecular findings, a cyclosporine-mycophenolate mofetil combination was identified as a risk factor for developing Norovirus-induced diarrhea. Norovirus infections were also responsible for higher weight loss than all the other causes of diarrhea. In samples from asymptomatic immunocompromised and immunocompetent patients, EPEC but not Norovirus and Campylobacter infections were detected at a frequency similar to that observed in symptomatic kidney transplant recipients. In conclusion, molecular tools significantly improved the detection of single and multiple enteric infections by comparison to classical techniques and could quickly become the key element in the management of severe acute diarrhea in transplant recipients.

  11. Immunocapture-Multiplex RT-PCR for the Simultaneous Detection and Identification of Plant Viruses and Their Strains: Study Case, Potato Virus Y (PVY).

    PubMed

    Chikh-Ali, Mohamad; Karasev, Alexander V

    2015-01-01

    Immunocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR) is a sensitive, reproducible, and robust method for the detection and identification of RNA viruses. The IC step provides a simple method to isolate virus particles from plant tissue, particularly when inhibitory substances are present, and thus enables subsequent use of RT-PCR amplification for large-scale virus testing and typing. The multiplex format of the PCR is often used for the detection and identification of multiple virus/strain simultaneously to save time, labor, and cost. Potato virus Y (PVY) is one of the most economically important viruses infecting potato worldwide. PVY exists as a complex of at least nine strains and many more unclassified recombinants that vary in their genome structures, phenotypes, and their economic importance. In the current chapter, a detailed protocol of an IC-based, multiplex RT-PCR assay for the detection and identification of various PVY strains is described.

  12. Distinguishing Body Lice from Head Lice by Multiplex Real-Time PCR Analysis of the Phum_PHUM540560 Gene

    PubMed Central

    Drali, Rezak; Boutellis, Amina; Raoult, Didier; Rolain, Jean Marc; Brouqui, Philippe

    2013-01-01

    Background Body louse or head louse? Once removed from their environment, body and head lice are indistinguishable. Neither the morphological criteria used since the mid-18th century nor the various genetic studies conducted since the advent of molecular biology tools have allowed body lice and head lice to be differentiated. In this work, using a portion of the Phum_PHUM540560 gene from the body louse, we aimed to develop a multiplex real-time polymerase chain reaction (PCR) assay to differentiate between body and head lice in a single reaction. Materials and Methods A total of 142 human lice were collected from mono-infested hosts from 13 countries on five continents. We first identified the louse clade using a cytochrome b (CYTB) PCR sequence alignment. We then aligned a fragment of the Phum_PHUM540560 gene amplified from head and body lice to design-specific TaqMan© FAM- and VIC-labeled probes. Results All the analyzed lice were Clade A lice. A total of 22 polymorphisms between the body and head lice were characterized. The multiplex real-time PCR analysis enabled the body and head lice to be distinguished in two hours. This method is simple, with 100% specificity and sensitivity. Conclusions We confirmed that the Phum_PHUM540560 gene is a useful genetic marker for the study of lice. PMID:23469145

  13. Discriminatory simplex and multiplex PCR for four species of the genus Sclerotinia.

    PubMed

    Abd-Elmagid, Ahmed; Garrido, Patricia A; Hunger, Robert; Lyles, Justin L; Mansfield, Michele A; Gugino, Beth K; Smith, Damon L; Melouk, Hassan A; Garzon, Carla D

    2013-03-01

    Sclerotinia sclerotiorum (Lib.) de Bary, S. minor Jagger, S. trifoliorum Eriks, and S. homoeocarpa F.T. Benn are the most relevant plant pathogenic species within the genus Sclerotinia because of their large range of economically important hosts, including tomato, peanut, alfalfa, and turfgrass, among others. Species identification based on morphological characteristics is challenging and time demanding, especially when one crop hosts multiple species. The objective of this study was to design specific primers compatible with multiplexing, for rapid, sensitive and accurate detection and discrimination among four Sclerotinia species. Specific primers were designed for the aspartyl protease gene of S. sclerotiorum, the calmodulin gene of S. trifoliorum, the elongation factor-1 alpha gene of S. homoeocarpa, and the laccase 2 gene of S. minor. The specificity and sensitivity of each primer set was tested individually and in multiplex against isolates of each species and validated using genomic DNA from infected plants. Each primer set consistently amplified DNA of its target gene only. DNA fragments of different sizes were amplified: a 264 bp PCR product for S. minor, a 218 bp product for S. homoeocarpa, a 171 bp product for S. sclerotiorum, and a 97 bp product for S. trifoliorum. These primer sets can be used individually or in multiplex for identification of Sclerotinia spp. in pure culture or from infected plants. The multiplex assay had a lower sensitivity limit than the simplex assays (0.0001 pg/μL DNA of each species). The multiplex assay developed is an accurate and rapid tool to differentiate between the most relevant plant pathogenic Sclerotinia species in a single PCR reaction.

  14. Identification of high-risk Listeria monocytogenes serotypes in lineage I (serotype 1/2a, 1/2c, 3a and 3c) using multiplex PCR

    USDA-ARS?s Scientific Manuscript database

    Aims: Using molecular subtyping techniques, Listeria monocytogenes is divided into three major phylogenetic lineages, and a multiplex PCR method can differentiate five L. monocytogenes subgroups: 1/2a-3a, 1/2c-3c, 1/2b-3b-7, 4b-4d-4e, and 4a-4c. In the current study, we conducted genome comparison...

  15. Development of a multiplex taqMan real-time PCR assay for typing of Mycoplasma pneumoniae based on type-specific indels identified through whole genome sequencing.

    PubMed

    Wolff, Bernard J; Benitez, Alvaro J; Desai, Heta P; Morrison, Shatavia S; Diaz, Maureen H; Winchell, Jonas M

    2017-03-01

    We developed a multiplex real-time PCR assay for simultaneously detecting M. pneumoniae and typing into historically-defined P1 types. Typing was achieved based on the presence of short type-specific indels identified through whole genome sequencing. This assay was 100% specific compared to existing methods and may be useful during epidemiologic investigations.

  16. Development of a Multiplex PCR Assay for Rapid Molecular Serotyping of Haemophilus parasuis.

    PubMed

    Howell, Kate J; Peters, Sarah E; Wang, Jinhong; Hernandez-Garcia, Juan; Weinert, Lucy A; Luan, Shi-Lu; Chaudhuri, Roy R; Angen, Øystein; Aragon, Virginia; Williamson, Susanna M; Parkhill, Julian; Langford, Paul R; Rycroft, Andrew N; Wren, Brendan W; Maskell, Duncan J; Tucker, Alexander W

    2015-12-01

    Haemophilus parasuis causes Glässer's disease and pneumonia in pigs. Indirect hemagglutination (IHA) is typically used to serotype this bacterium, distinguishing 15 serovars with some nontypeable isolates. The capsule loci of the 15 reference strains have been annotated, and significant genetic variation was identified between serovars, with the exception of serovars 5 and 12. A capsule locus and in silico serovar were identified for all but two nontypeable isolates in our collection of >200 isolates. Here, we describe the development of a multiplex PCR, based on variation within the capsule loci of the 15 serovars of H. parasuis, for rapid molecular serotyping. The multiplex PCR (mPCR) distinguished between all previously described serovars except 5 and 12, which were detected by the same pair of primers. The detection limit of the mPCR was 4.29 × 10(5) ng/μl bacterial genomic DNA, and high specificity was indicated by the absence of reactivity against closely related commensal Pasteurellaceae and other bacterial pathogens of pigs. A subset of 150 isolates from a previously sequenced H. parasuis collection was used to validate the mPCR with 100% accuracy compared to the in silico results. In addition, the two in silico-nontypeable isolates were typeable using the mPCR. A further 84 isolates were analyzed by mPCR and compared to the IHA serotyping results with 90% concordance (excluding those that were nontypeable by IHA). The mPCR was faster, more sensitive, and more specific than IHA, enabling the differentiation of 14 of the 15 serovars of H. parasuis.

  17. Development of a Multiplex PCR Assay for Rapid Molecular Serotyping of Haemophilus parasuis

    PubMed Central

    Peters, Sarah E.; Wang, Jinhong; Hernandez-Garcia, Juan; Weinert, Lucy A.; Luan, Shi-Lu; Chaudhuri, Roy R.; Angen, Øystein; Aragon, Virginia; Williamson, Susanna M.; Langford, Paul R.; Rycroft, Andrew N.; Wren, Brendan W.; Maskell, Duncan J.; Tucker, Alexander W.

    2015-01-01

    Haemophilus parasuis causes Glässer's disease and pneumonia in pigs. Indirect hemagglutination (IHA) is typically used to serotype this bacterium, distinguishing 15 serovars with some nontypeable isolates. The capsule loci of the 15 reference strains have been annotated, and significant genetic variation was identified between serovars, with the exception of serovars 5 and 12. A capsule locus and in silico serovar were identified for all but two nontypeable isolates in our collection of >200 isolates. Here, we describe the development of a multiplex PCR, based on variation within the capsule loci of the 15 serovars of H. parasuis, for rapid molecular serotyping. The multiplex PCR (mPCR) distinguished between all previously described serovars except 5 and 12, which were detected by the same pair of primers. The detection limit of the mPCR was 4.29 × 105 ng/μl bacterial genomic DNA, and high specificity was indicated by the absence of reactivity against closely related commensal Pasteurellaceae and other bacterial pathogens of pigs. A subset of 150 isolates from a previously sequenced H. parasuis collection was used to validate the mPCR with 100% accuracy compared to the in silico results. In addition, the two in silico-nontypeable isolates were typeable using the mPCR. A further 84 isolates were analyzed by mPCR and compared to the IHA serotyping results with 90% concordance (excluding those that were nontypeable by IHA). The mPCR was faster, more sensitive, and more specific than IHA, enabling the differentiation of 14 of the 15 serovars of H. parasuis. PMID:26424843

  18. Multiplex PCR Assay for Detection of Vibrio vulnificus Biotype 2 and Simultaneous Discrimination of Serovar E Strains▿

    PubMed Central

    Sanjuán, Eva; Amaro, Carmen

    2007-01-01

    In the present work we develop a multiplex PCR assay for the detection and identification of the fish pathogen Vibrio vulnificus biotype 2 with discriminating potential for zoonotic strains (serovar E). The PCR assay allowed the identification of two new biotype 2 serovar E human isolates from culture collections. Finally, the multiplex was successfully applied to both diagnosis and carrier detection in field samples. PMID:17277209

  19. An Efficient Multiplex PCR-Based Assay as a Novel Tool for Accurate Inter-Serovar Discrimination of Salmonella Enteritidis, S. Pullorum/Gallinarum and S. Dublin

    PubMed Central

    Xiong, Dan; Song, Li; Tao, Jing; Zheng, Huijuan; Zhou, Zihao; Geng, Shizhong; Pan, Zhiming; Jiao, Xinan

    2017-01-01

    Salmonella enterica serovars Enteritidis, Pullorum/Gallinarum, and Dublin are infectious pathogens causing serious problems for pig, chicken, and cattle production, respectively. Traditional serotyping for Salmonella is costly and labor-intensive. Here, we established a rapid multiplex PCR method to simultaneously identify three prevalent Salmonella serovars Enteritidis, Pullorum/Gallinarum, and Dublin individually for the first time. The multiplex PCR-based assay focuses on three genes tcpS, lygD, and flhB. Gene tcpS exists only in the three Salmonella serovars, and lygD exists only in S. Enteritidis, while a truncated region of flhB gene is only found in S. Pullorum/Gallinarum. The sensitivity and specificity of the multiplex PCR assay using three pairs of specific primers for these genes were evaluated. The results showed that this multiplex PCR method could accurately identify Salmonella Enteritidis, Pullorum/Gallinarum, and Dublin from eight non-Salmonella species and 27 Salmonella serovars. The least concentration of genomic DNA that could be detected was 58.5 pg/μL and the least number of cells was 100 CFU. Subsequently, this developed method was used to analyze clinical Salmonella isolates from one pig farm, one chicken farm, and one cattle farm. The results showed that blinded PCR testing of Salmonella isolates from the three farms were in concordance with the traditional serotyping tests, indicating the newly developed multiplex PCR system could be used as a novel tool to accurately distinguish the three specific Salmonella serovars individually, which is useful, especially in high-throughput screening. PMID:28360901

  20. Identification of Clostridium beijerinckii, Cl. butyricum, Cl. sporogenes, Cl. tyrobutyricum isolated from silage, raw milk and hard cheese by a multiplex PCR assay.

    PubMed

    Cremonesi, Paola; Vanoni, Laura; Silvetti, Tiziana; Morandi, Stefano; Brasca, Milena

    2012-08-01

    Late blowing, caused by the outgrowth of clostridial spores present in raw milk and originating from silage, can create considerable product loss, especially in the production of hard and semi-hard cheeses. The conventional method for the isolation of Clostridium spp. from cheeses with late-blowing symptoms is very complicated and the identification of isolates is problematic. The aim of this work was the development of a multiplex PCR method for the detection of the main dairy-related clostridia such as: Cl. beijerinckii, Cl. butyricum, Cl. sporogenes, Cl. tyrobutyricum. Samples derived from silage, raw milk and hard cheese were analysed by the most probable number (MPN) enumeration. Forty-four bacterial strains isolated from gas positive tubes were used to check the reliability of the multiplex PCR assay. The specificity of the primers was tested by individually analysing each primer pair and the primer pair combined in the multiplex PCR. It was interesting to note that the samples not identified by the multiplex PCR assay were amplified by V2-V3 16S rRNA primer pair and the sequencing revealed the aligned 16S rRNA sequences to be Paenibacillus and Bacillus spp. This new molecular assay provides a simple promising alternative to traditional microbiological methods for a rapid, sensitive detection of clostridia in dairy products.

  1. Detection of nine respiratory RNA viruses using three multiplex RT-PCR assays incorporating a novel RNA internal control transcript.

    PubMed

    Auburn, Helen; Zuckerman, Mark; Broughton, Simon; Greenough, Anne; Smith, Melvyn

    2011-09-01

    Real-time PCR is a significant improvement over viral isolation and immunofluorescence for routinely detecting respiratory viruses. We developed three real-time internally controlled multiplex RT-PCR assays for detecting nine respiratory viruses. An internal control transcript consisting of a chimeric plasmid was synthesised and incorporated into each multiplex to monitor amplification efficiency, including inhibition. Each multiplex assay was developed on the Rotor-Gene 3000 and evaluated using RNA extracts from 126 nasopharyngeal aspirates from 112 pre-term infants. All 44/126 (35%) samples positive by immunofluorescence were confirmed by multiplex RT-PCR. Additionally, respiratory syncytial virus RNA was detected in 5 samples, influenza A virus RNA in 2 samples and thirteen (10%) dual infections by multiplex RT-PCR were noted. Inclusion of the RNA internal control did not affect the amplification efficiency of the target sequences and only 2 of 1256 (0.2%) samples tested over a 12 month period were inhibitory. Together with the improved sensitivity of the internally controlled multiplex RT-PCR assays over the older technology and the ability to detect co-infections, the internal control monitored the efficiency of both the RT and PCR steps and indicated inhibition, saving time and costs on running duplicate samples with a "spiked" inhibition control. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Fast identification of wine related lactic acid bacteria by multiplex PCR.

    PubMed

    Petri, A; Pfannebecker, J; Fröhlich, J; König, H

    2013-02-01

    The microflora of must and wine consists of yeasts, acetic acid bacteria and lactic acid bacteria (LAB). The latter group plays an important role for wine quality. The malolactic fermentation carried out by LAB leads to deacidification and stabilisation of wines. Nevertheless, LAB are often associated with wine spoilage. They are mainly responsible for the formation of biogenic amines. Furthermore, some strains produce exopolysaccharide slimes, acetic acid, diacetyl and other off-flavours. In this context a better monitoring of the vinification process is crucial to improve wine quality. Moreover, a lot of biodiversity studies would also profit from a fast and reliable identification method. In this study, we propose a species-specific multiplex PCR system for a rapid and simultaneous detection of 13 LAB species, frequently occurring in must or wine: Lactobacillus brevis, Lb. buchneri, Lb. curvatus, Lb. hilgardii, Lb. plantarum, Leuconostoc mesenteroides, Oenococcus oeni, Pediococcus acidilactici, P. damnosus, P. inopinatus, P. parvulus, P. pentosaceus and Weissella paramesenteroides.

  3. Rapid and simple method by combining FTA(™) card DNA extraction with the adaptation of a two set multiplex PCR for simultaneous detection of non-O157 shiga-toxin producing Escherichia coli strains and virulence genes from food samples.

    PubMed

    Kim, Sun Ae; Park, Si Hong; Lee, Sang In; Ricke, Steven C

    2017-09-27

    The aim of this research was to optimize two multiplex polymerase chain reaction (PCR) assays that could simultaneously detect six non-O157 Shiga toxin-producing Escherichia coli (STEC) as well as the three virulence genes. We also investigated the potential of combining the FTA(™) card-based DNA extraction with the multiplex PCR assays. Two multiplex PCR assays were optimized using six primer pairs for each non-O157 STEC serogroup and three primer pairs for virulence genes respectively. Each STEC strain specific primer pair only amplified 155, 238, 321, 438, 587, and 750 bp product for O26, O45, O103, O111, O121, and O145 respectively. Three virulence genes were successfully multiplexed: 375 bp for eae, 655 bp for stx1, and 477 bp for stx2. When two multiplex PCR assays were validated with ground beef samples, distinctive bands were also successfully produced. Since the two multiplex PCR examined here can be conducted under the same PCR conditions, the six non-O157 STEC and their virulence genes could be concurrent detected with one run on the thermocycler. In addition, all bands clearly appeared to be amplified by FTA card DNA extraction in multiplex PCR assay from the ground beef sample, suggesting that an FTA card could be a viable sampling approach for rapid and simple DNA extraction to reduce time and labor and therefore may have practical use for the food industry. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Simultaneous Detection of Brown Rot- and Soft Rot-Causing Bacterial Pathogens from Potato Tubers Through Multiplex PCR.

    PubMed

    Ranjan, R K; Singh, Dinesh; Baranwal, V K

    2016-11-01

    Ralstonia solanacearum (Smith) Yabuuchi et al. and Erwinia carotovora subsp. carotovora (Jones) Bergey et al. (Pectobacterium carotovorum subsp. carotovorum) are the two major bacterial pathogens of potato causing brown rot (wilt) and soft rot diseases, respectively, in the field and during storage. Reliable and early detection of these pathogens are keys to avoid occurrence of these diseases in potato crops and reduce yield loss. In the present study, multiplex polymerase chain reaction (PCR) protocol was developed for simultaneous detection of R. solanacearum and E. carotovora subsp. carotovora from potato tubers. A set of oligos targeting the pectatelyase (pel) gene of E. carotovora subsp. carotovora and the universal primers based on 16S r RNA gene of R. solanacearum were used. The standardized multiplex PCR protocol could detect R. solanacearum and E. carotovora subsp. carotovora up to 0.01 and 1.0 ng of genomic DNA, respectively. The protocol was further validated on 96 stored potato tuber samples, collected from different potato-growing states of India, viz. Uttarakhand, Odisha, Meghalaya and Delhi. 53.1 % tuber samples were positive for R. solanacearum, and 15.1 % of samples were positive for E. carotovora subsp. carotovora, and both the pathogens were positive in 26.0 % samples when BIO-PCR was used. This method offers sensitive, specific, reliable and fast detection of two major bacterial pathogens from potato tubers simultaneously, particularly pathogen-free seed certification in large scale.

  5. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay.

    PubMed

    Williamson, Charles H D; Vazquez, Adam J; Hill, Karen; Smith, Theresa J; Nottingham, Roxanne; Stone, Nathan E; Sobek, Colin J; Cocking, Jill H; Fernández, Rafael A; Caballero, Patricia A; Leiser, Owen P; Keim, Paul; Sahl, Jason W

    2017-09-15

    Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes, and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present (ha positive [ha(+)] or orfX(+)). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene (bont) clusters.IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes, and two major subgroups within C. botulinum group II. Since BoNT-producing and

  6. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay

    PubMed Central

    Williamson, Charles H. D.; Vazquez, Adam J.; Hill, Karen; Smith, Theresa J.; Nottingham, Roxanne; Stone, Nathan E.; Sobek, Colin J.; Cocking, Jill H.; Fernández, Rafael A.; Caballero, Patricia A.; Leiser, Owen P.

    2017-01-01

    ABSTRACT Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes, and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present (ha positive [ha+] or orfX+). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene (bont) clusters. IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes, and two major subgroups within C. botulinum group II. Since Bo

  7. Multiplex PCR assays for the detection of Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae with an internal amplification control.

    PubMed

    Wei, Shuang; Zhao, Hui; Xian, Yuyin; Hussain, Malik A; Wu, Xiyang

    2014-06-01

    A multiplex polymerase chain reaction (PCR) assay that can simultaneously detect 4 major Vibrio spp., Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae, in the presence of an internal amplification control (IAC) was developed. Species-specific PCR primers were designed based on the gyrB gene for V. alginolyticus, the collagenase gene for V. parahaemolyticus, the vvhA gene for V. vulnificus, and the ompW gene for V. cholerae. Additionally, an IAC primer pair was designed in conserved regions of the bacterial 16S rRNA gene that is used to indicate false-negative results. A multiplex PCR method was developed after optimization of the reaction conditions. The specificity of the PCR was validated by using 83 Vibrio strains and 10 other non-Vibrio bacterial species. The detection limit of the PCR was 10 CFU per tube for V. alginolyticus, V. parahaemolyticus, V. vulnificus, and 10(5) CFU per tube for V. cholerae in mixed conditions. This method was used to identify 69 suspicious Vibrio isolates, and the results were consistent with physiological and biochemical tests. This multiplex PCR method proved to be rapid, sensitive, and specific. The existence of IAC could successfully eliminate false-negative results for the detection of V. alginolyticus, V. parahaemolyticus, V. vulnificus, and V. cholerae. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Comparison of culture and a multiplex probe PCR for identifying Mycoplasma species in bovine milk, semen and swab samples

    PubMed Central

    Parker, Alysia M.; House, John K.; Hazelton, Mark S.; Bosward, Katrina L.; Sheehy, Paul A.

    2017-01-01

    Mycoplasma spp. are a major cause of mastitis, arthritis and pneumonia in cattle, and have been associated with reproductive disorders in cows. While culture is the traditional method of identification the use of PCR has become more common. Several investigators have developed PCR protocols to detect M. bovis in milk, yet few studies have evaluated other sample types or other important Mycoplasma species. Therefore the objective of this study was to develop a multiplex PCR assay to detect M. bovis, M. californicum and M. bovigenitalium, and evaluate its analytical performance against traditional culture of bovine milk, semen and swab samples. The PCR specificity was determined and the limit of detection evaluated in spiked milk, semen and swabs. The PCR was then compared to culture on 474 field samples from individual milk, bulk tank milk (BTM), semen and swab (vaginal, preputial, nose and eye) samples. Specificity analysis produced appropriate amplification for all M. bovis, M. californicum and M. bovigenitalium isolates. Amplification was not seen for any of the other Mollicutes or eubacterial isolates. The limit of detection of the PCR was best in milk, followed by semen and swabs. When all three Mycoplasma species were present in a sample, the limit of detection increased. When comparing culture and PCR, overall there was no significant difference in the proportion of culture and PCR positive samples. Culture could detect significantly more positive swab samples. No significant differences were identified for semen, individual milk or BTM samples. PCR identified five samples with two species present. Culture followed by 16S-23S rRNA sequencing did not enable identification of more than one species. Therefore, the superior method for identification of M. bovis, M. californicum and M. bovigenitalium may be dependent on the sample type being analysed, and whether the identification of multiple target species is required. PMID:28264012

  9. Comparison of culture and a multiplex probe PCR for identifying Mycoplasma species in bovine milk, semen and swab samples.

    PubMed

    Parker, Alysia M; House, John K; Hazelton, Mark S; Bosward, Katrina L; Sheehy, Paul A

    2017-01-01

    Mycoplasma spp. are a major cause of mastitis, arthritis and pneumonia in cattle, and have been associated with reproductive disorders in cows. While culture is the traditional method of identification the use of PCR has become more common. Several investigators have developed PCR protocols to detect M. bovis in milk, yet few studies have evaluated other sample types or other important Mycoplasma species. Therefore the objective of this study was to develop a multiplex PCR assay to detect M. bovis, M. californicum and M. bovigenitalium, and evaluate its analytical performance against traditional culture of bovine milk, semen and swab samples. The PCR specificity was determined and the limit of detection evaluated in spiked milk, semen and swabs. The PCR was then compared to culture on 474 field samples from individual milk, bulk tank milk (BTM), semen and swab (vaginal, preputial, nose and eye) samples. Specificity analysis produced appropriate amplification for all M. bovis, M. californicum and M. bovigenitalium isolates. Amplification was not seen for any of the other Mollicutes or eubacterial isolates. The limit of detection of the PCR was best in milk, followed by semen and swabs. When all three Mycoplasma species were present in a sample, the limit of detection increased. When comparing culture and PCR, overall there was no significant difference in the proportion of culture and PCR positive samples. Culture could detect significantly more positive swab samples. No significant differences were identified for semen, individual milk or BTM samples. PCR identified five samples with two species present. Culture followed by 16S-23S rRNA sequencing did not enable identification of more than one species. Therefore, the superior method for identification of M. bovis, M. californicum and M. bovigenitalium may be dependent on the sample type being analysed, and whether the identification of multiple target species is required.

  10. A multiplexed PCR-coupled liquid bead array for the simultaneous detection of four biothreat agents.

    PubMed

    Wilson, Wendy J; Erler, Anne M; Nasarabadi, Shanavaz L; Skowronski, Evan W; Imbro, Paula M

    2005-04-01

    We have developed a 10-plexed PCR assay coupled to a 12-plexed liquid bead array to rapidly screen environmental samples for B. anthracis, Y. pestis, F. tularensis, and B. melitensis. Highly validated species-specific primer sets were used to simultaneously amplify multiple diagnostic regions unique to each individual pathogen. Resolution of the mix of amplified products was achieved by PCR product hybridization to corresponding probe sequences, attached to unique sets of fluorescent beads. The hybridized beads were processed through a flow cytometer, which detected presence and quantity of each PCR product. The assay was optimized to allow for maximum sensitivity in a multiplexed format. A high-throughput demonstration was performed where 384 simulated environmental samples were spiked with different amounts of B. thuringensis spores and pathogen DNA. The samples were robotically processed to extract DNA and arrayed for multiplexed PCR-liquid bead detection. The assay correctly identified the presence or absence of each pathogen and collected over 3000 individual data points within a single 8-h shift for approximately $4.00 material costs per environmental sample in a 10-plexed assay.

  11. A Multiplex PCR-coupled Liquid Bead Array for the Simultaneous Detection of Four Biothreat Agents

    SciTech Connect

    Wilson, W J; Erler, A M; Nasarabadi, S L; Skowronski, E W; McCready, P M

    2004-02-04

    We have developed a 10-plexed PCR assay coupled to a 12-plexed liquid bead array to rapidly screen environmental samples for B. anthracis, Y. pestis, F. tularensis, and B. melitensis. Highly validated species -specific primer sets were used to simultaneously amplify multiple diagnostic regions unique to each individual pathogen. Resolution of the mix of amplified products was achieved by PCR product hybridization to corresponding probe sequences, attached to unique sets of fluorescent beads. The hybridized beads were processed through a flow cytometer, which detected presence and quantity of each PCR product. The assay was optimized to allow for maximum sensitivity in a multiplexed format. A high- throughput demonstration was performed where 384 simulated environmental samples were spiked with different amounts of B. thuringensis spores and pathogen DNA. The samples were robotically processed to extract DNA and arrayed for multiplexed PCR-liquid bead detection. The assay correctly identified the presence or absence of each pathogen and collected over 3,000 individual data points within a single 8-hour shift for approximately $1.20 per sample in a 10-plexed assay.

  12. Myonecrosis by Clostridium septicum in a dog, diagnosed by a new multiplex-PCR.

    PubMed

    Ribeiro, Márcio Garcia; Silva, Rodrigo Otávio Silveira; Pires, Prhiscylla Sadanã; Martinho, Anna Paula Vitirito; Lucas, Thays Mizuki; Teixeira, Ana Izabel Passarela; Paes, Antonio Carlos; Barros, Claudenice Batista; Lobato, Francisco Carlos Faria

    2012-10-01

    Clostridial myositis is an acute, generally fatal toxemia that is considered to be rare in pet animals. The present report describes an unusual canine clostridial myositis that was diagnosed by a new multiplex-PCR (mPCR) designed for simultaneous identification of Clostridium sordellii, Clostridium septicum, Clostridium perfringens type A, Clostridium chauvoei, and Clostridium novyi type A. A ten-month-old male Rottweiler dog, that had displayed lameness and swelling of the left limb for 12 h, was admitted to a veterinary hospital. The animal was weak, dyspneic and hyperthermic, and a clinical examination indicated the presence of gas and edema in the limb. Despite emergency treatment, the animal died in only a few minutes. Samples of muscular tissue from the necrotic area were aseptically collected and plated onto defibrinated sheep blood agar (5%) in anaerobic conditions. Colonies suggestive of Clostridium spp. were submitted to testing by multiplex-PCR. Impression smears of the tissues, visualized with Gram and also with panoptic stains, revealed long rod-shaped organisms, and specimens also tested positive using the fluorescent antibody technique (FAT). The FAT and mPCR tests enabled a diagnosis of C. septicum myonecrosis in the dog.

  13. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    SciTech Connect

    Call, Douglas R.; Brockman, Fred J.; Chandler, Darrell P.

    2001-07-05

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification. The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFUs ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.

  14. Rapid identification of Histoplasma capsulatum directly from cultures by multiplex PCR.

    PubMed

    Elías, Nahuel Alejandro; Cuestas, María Luján; Sandoval, Macarena; Poblete, Gabriela; Lopez-Daneri, Gabriela; Jewtuchowicz, Virginia; Iovannitti, Cristina; Mujica, María Teresa

    2012-12-01

    The multiplex PCR developed from a suspension of the yeast fungi correctly identified fifty-one clinical of H. capsulatum var. capsulatum strains isolated from clinical samples and soil specimens. The multiplex PCR was developed by combining two pairs of primers, one of them was specific to the H. capsulatum and the other one, universal for fungi, turned out to be specific to H. capsulatum, regardless of the fungus isolate studied. Primers designed to amplify a region of about 390-bp (Hc I-Hc II) and a region of approximately 600-bp (ITS1-ITS4) were used to identify a yeast isolated as H. capsulatum when both regions could be amplified. Absolute agreement (100 % sensitivity) could be shown between this assay and the cultures of H. capsulatum according to their morphological characteristics. Failure to amplify the target DNA sequence by PCR with primers Hc I-Hc II in the presence of the ITS1-ITS4 amplicon in isolates of P. brasiliensis, Cryptococcus neoformans, Trichosporon spp, Candida glabrata, C. albicans, C. tropicalis, C. parapsilosis, C. krusei, or Penicillium marneffei was an unequivocal sign of the high specificity of this assay. The assay specificity was also found to be 100 %. Incipient yeast forms obtained from clinical samples were identified as H. capsulatum by the PCR assay described before the morphological characteristics were registered shortening the time of diagnosis.

  15. Detecting and Genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    SciTech Connect

    Call, Douglas R.; Brockman, Fred J. ); Chandler, Darrell P.

    2000-12-01

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification. The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFU ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.

  16. Mutation spectrum of 122 hemophilia A families from Taiwanese population by LD-PCR, DHPLC, multiplex PCR and evaluating the clinical application of HRM

    PubMed Central

    Lin, Shin-Yu; Su, Yi-Ning; Hung, Chia-Cheng; Tsay, Woei; Chiou, Shyh-Shin; Chang, Chieh-Ting; Ho, Hong-Nerng; Lee, Chien-Nan

    2008-01-01

    Background Hemophilia A represents the most common and severe inherited hemorrhagic disorder. It is caused by mutations in the F8 gene, which leads to a deficiency or dysfunctional factor VIII protein, an essential cofactor in the factor X activation complex. Methods We used long-distance polymerase chain reaction and denaturing high performance liquid chromatography for mutation scanning of the F8 gene. We designed the competitive multiplex PCR to identify the carrier with exonal deletions. In order to facilitate throughput and minimize the cost of mutation scanning, we also evaluated a new mutation scanning technique, high resolution melting analysis (HRM), as an alternative screening method. Results We presented the results of detailed screening of 122 Taiwanese families with hemophilia A and reported twenty-nine novel mutations. There was one family identified with whole exons deletion, and the carriers were successfully recognized by multiplex PCR. By HRM, the different melting curve patterns were easily identified in 25 out of 28 cases (89%) and 15 out of 15 (100%) carriers. The sensitivity was 93 % (40/43). The overall mutation detection rate of hemophilia A was 100% in this study. Conclusion We proposed a diagnostic strategy for hemophilia A genetic diagnosis. We consider HRM as a powerful screening tool that would provide us with a more cost-effective protocol for hemophilia A mutation identification. PMID:18565236

  17. Establishment of a multiplex RT-PCR assay for the rapid detection of fish cytokines.

    PubMed

    Kono, Tomoya; Takayama, Hiroaki; Nagamine, Ryusuke; Korenaga, Hiroki; Sakai, Masahiro

    2013-01-15

    To monitor the expression of cytokine genes in Japanese pufferfish, a novel platform for quantitative multiplexed analysis was developed. This custom-designed multiplex RT-PCR assay was used to analyze the expression profiles of 19 cytokine genes, including pro-inflammatory (IL-1β, IL-6, IL-17A/F3, IL-18, TNF-α, TNF-N), anti-inflammatory (IL-4/13A, IL-4/13B, IL-10), T-cell proliferation/differentiation (IL-2, IL-15, IL-21, TGF-β1), B-cell activation/differentiation (IL-7, IL-6, IL-4/13A, IL-4/13B), NK cell stimulation (IL-12p35 and IL-12p40), induction of anti-viral activity (I-IFN-1 and IFN-γ), and monocyte/macrophage progenitor cell proliferation (M-CSF1b) cytokines in head kidney cells under immune stimulatory conditions. The expression profiles were dissimilar in the unstimulated control and immune-stimulated cells. Moreover, increased expression profile was observed due to different stimulations for IL-1β, IL-6, IL-10, IL-12p35, IL-12p40, IL-21, TNF-α, TNF-N, I-IFN-1 and IFN-γ genes. These results suggest that cytokine genes could be used as biomarkers to know the immune status of fish. The constructed multiplex RT-PCR assay will enhance understanding on immune regulation by cytokines in fish.

  18. Detection and identification of genetically modified EE-1 brinjal (Solanum melongena) by single, multiplex and SYBR® real-time PCR.

    PubMed

    Ballari, Rajashekhar V; Martin, Asha; Gowda, Lalitha R

    2013-01-01

    Brinjal is an important vegetable crop. Major crop loss of brinjal is due to insect attack. Insect-resistant EE-1 brinjal has been developed and is awaiting approval for commercial release. Consumer health concerns and implementation of international labelling legislation demand reliable analytical detection methods for genetically modified (GM) varieties. End-point and real-time polymerase chain reaction (PCR) methods were used to detect EE-1 brinjal. In end-point PCR, primer pairs specific to 35S CaMV promoter, NOS terminator and nptII gene common to other GM crops were used. Based on the revealed 3' transgene integration sequence, primers specific for the event EE-1 brinjal were designed. These primers were used for end-point single, multiplex and SYBR-based real-time PCR. End-point single PCR showed that the designed primers were highly specific to event EE-1 with a sensitivity of 20 pg of genomic DNA, corresponding to 20 copies of haploid EE-1 brinjal genomic DNA. The limits of detection and quantification for SYBR-based real-time PCR assay were 10 and 100 copies respectively. The prior development of detection methods for this important vegetable crop will facilitate compliance with any forthcoming labelling regulations. Copyright © 2012 Society of Chemical Industry.

  19. Diagnostic Evaluation of Multiplexed Reverse Transcription-PCR Microsphere Array Assay for Detection of Foot-and-Mouth and Look-Alike Disease Viruses▿

    PubMed Central

    Hindson, Benjamin J.; Reid, Scott M.; Baker, Brian R.; Ebert, Katja; Ferris, Nigel P.; Tammero, Lance F. Bentley; Lenhoff, Raymond J.; Naraghi-Arani, Pejman; Vitalis, Elizabeth A.; Slezak, Thomas R.; Hullinger, Pamela J.; King, Donald P.

    2008-01-01

    A high-throughput multiplexed assay was developed for the differential laboratory detection of foot-and-mouth disease virus (FMDV) from viruses that cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses by using multiplexed reverse transcription-PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the 17 primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR assay was evaluated using 287 field samples, including 247 samples (213 true-positive samples and 35 true-negative samples) from suspected cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true-negative samples collected from healthy animals. The mRT-PCR assay results were compared to those of two singleplex rRT-PCR assays, using virus isolation with antigen enzyme-linked immunosorbent assays as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% (95% confidence interval [CI], 89.8 to 96.4%), and the sensitivity was 98.1% (95% CI, 95.3 to 99.3%) for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses, such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n = 2) and bovine viral diarrhea virus (n = 2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized by using focused single-target rRT-PCR assays. PMID:18216216

  20. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    SciTech Connect

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  1. Genotyping of exons 1 to 20 in Duchenne muscular dystrophy by universal multiplex PCR and short-end capillary electrophoresis.

    PubMed

    Syu, Jing-Rou; Wang, Chun-Chi; Jong, Yuh-Jyh; Wu, Shou-Mei

    2014-12-01

    One rapid CE method was established to diagnose Duchenne muscular dystrophy (DMD). DMD is a severe recessive inherited disorder frequently caused by gene deletions. Among them, exons 1-20 account for nearly 30% of occurrences. In this study, the universal multiplex PCR was used to enhance the fluorescently labeling efficiency, which was performed only by one universal fluorescent primer. After PCR, a short-end injection CE (short-end CE) speeded up the genotyping of the DMD gene. This method involved no extra purification, and was completed within 9 min. The CE conditions contained a polymer solution of 1.5% hydroxylethylcellulose in 1× TBE buffer at 6 kV for separation. This method was applied to test six DMD patients and one healthy male person. The results showed good agreement with those of multiplex ligation-dependent probe amplification. This method can be applied for clinical diagnosis of DMD disease. Accurate diagnosis of the DMD gene is the best way to prevent the disease.

  2. [Detection of ABO genotype genetic polymorphism by multiplex-PCR based sequencing and application in forensic medicine].

    PubMed

    Chen, Feng; Chen, Teng; Yan, Chun-Xia; Dang, Yong-Hui; Mu, Hao-Fang; Yu, Xiao-Guang; Zhang, Bo; Deng, Ya-Jun

    2008-06-01

    Multiplex PCR-direct sequencing method was established to detect 9 different SNPs in exon 6 and exon 7 of ABO genes and could identify at least 28 different ABO genotypes. Population study was carried out in a sample of 80 unrelated Chinese Tibetan minority individual dwelled in Qinghai Province. The method was also applied to forensic cases. A variety of degeneration forensic samples, including blood stain, hair root, swab, bone and mixed stain were successfully identified by this efficient method and in conformance with serological typing. There were no significant deviations from Hardy-Weinberg equilibrium in ABO genotypes of Tibetan population. The heterozygosity, polymorphic information content, discrimination power, paternity of exclusion, and probability of genetic identity were 0.675, 0.672, 0.874, 0.391, and 0.126 respectively. The gene frequency of ABO was O>B>A. The multiplex PCR-directed sequencing method can accurately and reliably detect ABO genotypes in many kinds of samples, and it improves personal identification efficiency. The ABO genotype is high variance in Qinghai Tibetan minority group, and it can be applied in forensic medicine and population genetic study.

  3. Differentiation of Campylobacter coli, Campylobacter jejuni, Campylobacter lari, and Campylobacter upsaliensis by a Multiplex PCR Developed from the Nucleotide Sequence of the Lipid A Gene lpxA

    PubMed Central

    Klena, John D.; Parker, Craig T.; Knibb, Krista; Ibbitt, J. Claire; Devane, Phillippa M. L.; Horn, Sharon T.; Miller, William G.; Konkel, Michael E.

    2004-01-01

    We describe a multiplex PCR assay to identify and discriminate between isolates of Campylobacter coli, Campylobacter jejuni, Campylobacter lari, and Campylobacter upsaliensis. The C. jejuni isolate F38011 lpxA gene, encoding a UDP-N-acetylglucosamine acyltransferase, was identified by sequence analysis of an expression plasmid that restored wild-type lipopolysaccharide levels in Escherichia coli strain SM105 [lpxA(Ts)]. With oligonucleotide primers developed to the C. jejuni lpxA gene, nearly full-length lpxA amplicons were amplified from an additional 11 isolates of C. jejuni, 20 isolates of C. coli, 16 isolates of C. lari, and five isolates of C. upsaliensis. The nucleotide sequence of each amplicon was determined, and sequence alignment revealed a high level of species discrimination. Oligonucleotide primers were constructed to exploit species differences, and a multiplex PCR assay was developed to positively identify isolates of C. coli, C. jejuni, C. lari, and C. upsaliensis. We characterized an additional set of 41 thermotolerant isolates by partial nucleotide sequence analysis to further demonstrate the uniqueness of each species-specific region. The multiplex PCR assay was validated with 105 genetically defined isolates of C. coli, C. jejuni, C. lari, and C. upsaliensis, 34 strains representing 12 additional Campylobacter species, and 24 strains representing 19 non-Campylobacter species. Application of the multiplex PCR method to whole-cell lysates obtained from 108 clinical and environmental thermotolerant Campylobacter isolates resulted in 100% correlation with biochemical typing methods. PMID:15583280

  4. Rapid detection and differentiation of bovine herpesvirus 1 and 5 glycoprotein C gene in clinical specimens by multiplex-PCR.

    PubMed

    Claus, Marlise Pompeo; Alfieri, Alice Fernandes; Folgueras-Flatschart, Aurea Valadares; Wosiacki, Sheila Rezler; Médici, Kerlei Cristina; Alfieri, Amauri Alcindo

    2005-09-01

    A multiplex polymerase chain reaction (multiplex-PCR) to detect and differentiate bovine herpesvirus 1 (BoHV-1) and 5 (BoHV-5) was developed using primers for the gene sequence that encodes the glycoprotein C. The technique was assessed against the BoHV-1 and BoHV-5 cell culture adapted strains, and clinical samples collected from animals with clinical signs of BoHV-1 (n = 10) or BoHV-5 (n = 7) infection and with diagnosis confirmed by virus isolation in cell culture and semi-nested PCR. Fifteen clinical samples from asymptomatic animals were included as control group. For the evaluation of the amplifiability of the extracted nucleic acid from clinical specimens was included a bovine internal control that amplified a 626 bp fragment of the ND5 gene present in the bovine mitochondrial DNA. For DNA extraction, a combination of the phenol/chloroform/isoamyl alcohol and silica/guanidine isothiocyanate methods was used. The specificity of the BoHV-1 and BoHV-5 amplicons from standard strains were confirmed by sequence analysis. All the positive clinical samples for BoHV included in this study were characterized as BoHV-1 or BoHV-5 by the difference in length of the amplified product visualized in a agarose gel (354 bp size for BoHV-1, and 159 bp for BoHV-5). The internal control was amplified in all clinical specimens. Non-specific reactions were not observed when the multiplex-PCR was assessed with other viruses (bovine viral diarrhea virus and rabies virus) and BoHV-negative clinical samples from fetuses and adult cattle obtained from a slaughterhouse.

  5. Sensitive detection of SARS coronavirus RNA by a novel asymmetric multiplex nested RT-PCR amplification coupled with oligonucleotide microarray hybridization.

    PubMed

    Zhang, Zhi-wei; Zhou, Yi-ming; Zhang, Yan; Guo, Yong; Tao, Sheng-ce; Li, Ze; Zhang, Qiong; Cheng, Jing

    2005-01-01

    We have developed a sensitive method for the detection of specific genes simultaneously. First, DNA was amplified by a novel asymmetric multiplex PCR with universal primer(s). Second, the 6-carboxytetramethylrhodamine (TAMRA)-labeled PCR products were hybridized specifically with oligonucleotide microarrays. Finally, matched duplexes were detected by using a laser-induced fluorescence scanner. The usefulness of this method was illustrated by analyzing severe acute respiratory syndrome (SARS) coronavirus RNA. The detection limit was 10(0) copies/microL. The results of the asymmetric multiplex nested reverse transcription-PCR were in agreement with the results of the microarray hybridization; no hybridization signal was lost as happened with applicons from symmetric amplifications. This reliable method can be used to the identification of other microorganisms, screening of genetic diseases, and other applications.

  6. Multiplex PCR for differential identification of broad tapeworms (Cestoda: Diphyllobothrium) infecting humans.

    PubMed

    Wicht, Barbara; Yanagida, Tetsuya; Scholz, Tomás; Ito, Akira; Jiménez, Juan A; Brabec, Jan

    2010-09-01

    The specific identification of broad tapeworms (genus Diphyllobothrium) infecting humans is very difficult to perform by morphological observation. Molecular analysis by PCR and sequencing represents the only reliable tool to date to identify these parasites to the species level. Due to the recent spread of human diphyllobothriosis in several countries, a correct diagnosis has become crucial to better understand the distribution and the life cycle of human-infecting species as well as to prevent the introduction of parasites to disease-free water systems. Nevertheless, PCR and sequencing, although highly precise, are too complicated, long, and expensive to be employed in medical laboratories for routine diagnostics. In the present study we optimized a cheap and rapid molecular test for the differential identification of the most common Diphyllobothrium species infecting humans (D. latum, D. dendriticum, D. nihonkaiense, and D. pacificum), based on a multiplex PCR with the cytochrome c oxidase subunit 1 gene of mitochondrial DNA.

  7. Multiplex PCR for Differential Identification of Broad Tapeworms (Cestoda: Diphyllobothrium) Infecting Humans▿

    PubMed Central

    Wicht, Barbara; Yanagida, Tetsuya; Scholz, Tomáš; Ito, Akira; Jiménez, Juan A.; Brabec, Jan

    2010-01-01

    The specific identification of broad tapeworms (genus Diphyllobothrium) infecting humans is very difficult to perform by morphological observation. Molecular analysis by PCR and sequencing represents the only reliable tool to date to identify these parasites to the species level. Due to the recent spread of human diphyllobothriosis in several countries, a correct diagnosis has become crucial to better understand the distribution and the life cycle of human-infecting species as well as to prevent the introduction of parasites to disease-free water systems. Nevertheless, PCR and sequencing, although highly precise, are too complicated, long, and expensive to be employed in medical laboratories for routine diagnostics. In the present study we optimized a cheap and rapid molecular test for the differential identification of the most common Diphyllobothrium species infecting humans (D. latum, D. dendriticum, D. nihonkaiense, and D. pacificum), based on a multiplex PCR with the cytochrome c oxidase subunit 1 gene of mitochondrial DNA. PMID:20592146

  8. Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers.

    PubMed

    Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung

    2016-10-07

    In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4  ×  4 LGSO crystals, each with a dimension of 3  ×  3  ×  20 mm(3), and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.

  9. Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung

    2016-10-01

    In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4  ×  4 LGSO crystals, each with a dimension of 3  ×  3  ×  20 mm3, and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.

  10. A Multiplex real-time PCR for detection of Mycoplasma gallisepticum and Mycoplasma synoviae in clinical samples from Brazilian commercial poultry flocks

    PubMed Central

    Fraga, Aline Padilha; de Vargas, Tatiana; Ikuta, Nilo; Fonseca, André Salvador Kazantzi; Celmer, Álvaro José; Marques, Edmundo Kanan; Lunge, Vagner Ricardo

    2013-01-01

    Mycoplasma gallisepticum (MS) and Mycoplasma synoviae (MS) are important avian pathogens and cause economic losses to the poultry industry. Molecular biology techniques are currently used for a rapid detection of these pathogens and the adoption of control measures of the diseases. The aim of this study was to develop and validate a technique for simultaneous detection of MG and MS by multiplex real time polymerase chain reaction (PCR). The complete assay (Multiplex MGMS) was designed with primers and probes specific for each pathogen and developed to be carried out in a single tube reaction. Vaccines, MG and MS isolates and DNA from other Mycoplasma species were used for the development and validation of the method. Further, 78 pooled clinical samples from different poultry flocks in Brazil were obtained and used to determine the sensitivity and specificity of the technique in comparison to 2 real time PCR assays specific for MG (MG PCR) and MS (MS PCR). The results demonstrated an agreement of 100% (23 positive and 44 negative samples) between Multiplex MGMS and MG PCR in the analysis of 67 samples from MG positive and negative poultry flocks, and an agreement of 96.9% between Multiplex MGMS and MS PCR in the analysis of 64 samples from MS positive and negative poultry flocks. Considering the single amplification tests as the gold standard, the Multiplex MGMS showed 100% of specificity and sensitivity in the MG analysis and 94.7% sensitivity and 100% specificity in the MS analysis. This new assay could be used for rapid analysis of MG and MS in the poultry industry laboratories. PMID:24294247

  11. Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes.

    PubMed

    Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid

    2012-11-01

    Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.

  12. A multiplex RT-PCR approach to detect aflatoxigenic strains of Aspergillus flavus.

    PubMed

    Degola, F; Berni, E; Dall'Asta, C; Spotti, E; Marchelli, R; Ferrero, I; Restivo, F M

    2007-08-01

    To develop a multiplex reverse transciption-polymerase chain reaction (RT-PCR) protocol to discriminate aflatoxin-producing from aflatoxin-nonproducing strains of Aspergillus flavus. The protocol was first optimized on a set of strains obtained from laboratory collections and then validated on A. flavus strains isolated from corn grains collected in the fields of the Po Valley (Italy). Five genes of the aflatoxin gene cluster of A. flavus, two regulatory (aflR and aflS) and three structural (aflD, aflO and aflQ), were targeted with specific primers to highlight their expression in mycelia cultivated under inducing conditions for aflatoxins production. 48-h-old cultures expressed the complete set of the genes analysed here whereas 24-h-old ones did not. Genomic PCR (quadruplex PCR) was also performed in parallel using chromosomal DNA extracted from the same set of strains to correlate the integrity of the genes with their expression. We show that a good correlation exists between gene expression of the aflatoxin genes, here analysed by multipex RT-PCR, and aflatoxin production, except for one strain that apparently transcribed all the relevant genes but did not produce aflatoxin in the medium. This is the first example of the application of a combination of multiplex PCR and RT-PCR approaches to screen a population of A. flavus for the presence of aflatoxigenic and nonaflatoxigenic strains. The proposed protocol will be helpful in evaluating the risk posed by A. flavus in natural environments and might also be a useful tool to monitor its presence during the processing steps of food and feed commodities.

  13. MULTIPLEX PCR ASSAY FOR DETECTION OF HUMAN SOMATOTROPIN AND INTERFERON ALPHA2b GENES IN PLANT MATERIAL.

    PubMed

    Gerasymenko, I M; Mazur, M G; Sheludko, Y V; Kuchuk, N V

    2015-01-01

    Using transgenic plants as factories for production of physiologically active human proteins arouses special concern because occasional escape of such transgenes into environment may cause health problems. Creation of plant varieties producing pharmaceutically valuable proteins should be accompanied by development of detection methods suitable for controlling the transgene behavior. Here we describe a multiplex PCR protocol for revealing of two human genes (encoding growth hormone and interferon alpha2b) that have been successfully introduced into plant genomes. The primer pair designed for detection of human growth hormone coding sequence amplifies fragments of different size from the full-length gene in the human genome and the intronless coding sequence usually used for plant transformation. Application of this primer pair may be recommended for ruling out false positive results due to sample contamination with human DNA. Such a control may be useful also in PCR analysis during establishing of transgenic plants carrying genes of human origin.

  14. Development of a multiplex PCR assay for identification of Klebsiella pneumoniae hypervirulent clones of capsular serotype K2.

    PubMed

    Bialek-Davenet, Suzanne; Criscuolo, Alexis; Ailloud, Florent; Passet, Virginie; Nicolas-Chanoine, Marie-Hélène; Decré, Dominique; Brisse, Sylvain

    2014-12-01

    Hypervirulent Klebsiella pneumoniae isolates of capsular serotype K2 (hvKP-K2) that cause community-acquired invasive infections represent several unrelated clones, which all belong to phylogenetic group KpI. These clones can be recognized using multilocus sequence typing and genomic analyses, but no rapid method currently exists to differentiate them. In this work, a multiplex PCR assay was developed to identify three hvKP-K2 groups: (i) sequence type (ST)86; (ii) ST380 and ST679 (i.e. clonal group 380); and (iii) ST65 and ST375. A specific genetic marker, Kp50233, allowing K. pneumoniae sensu stricto (corresponding to phylogroup KpI) to be distinguished from closely related species, was included in the assay. This PCR assay will be useful in better defining the epidemiology and clinical features of emerging virulent K. pneumoniae clones. © 2014 The Authors.

  15. Development of a Multiplex PCR-Ligase Detection Reaction Assay for Diagnosis of Infection by the Four Parasite Species Causing Malaria in Humans

    PubMed Central

    McNamara, David T.; Thomson, Jodi M.; Kasehagen, Laurin J.; Zimmerman, Peter A.

    2004-01-01

    The diagnosis of infections caused by Plasmodium species is critical for understanding the nature of malarial disease, treatment efficacy, malaria control, and public health. The demands of field-based epidemiological studies of malaria will require faster and more sensitive diagnostic methods as new antimalarial drugs and vaccines are explored. We have developed a multiplex PCR-ligase detection reaction (LDR) assay that allows the simultaneous diagnosis of infection by all four parasite species causing malaria in humans. This assay exhibits sensitivity and specificity equal to those of other PCR-based assays, identifying all four human malaria parasite species at levels of parasitemias equal to 1 parasitized erythrocyte/μl of blood. The multiplex PCR-LDR assay goes beyond other PCR-based assays by reducing technical procedures and by detecting intraindividual differences in species-specific levels of parasitemia. Application of the multiplex PCR-LDR assay will provide the sensitivity and specificity expected of PCR-based diagnostic assays and will contribute new insight regarding relationships between the human malaria parasite species and the human host in future epidemiological studies. PMID:15184411

  16. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans.

    PubMed

    McNamara, David T; Thomson, Jodi M; Kasehagen, Laurin J; Zimmerman, Peter A

    2004-06-01

    The diagnosis of infections caused by Plasmodium species is critical for understanding the nature of malarial disease, treatment efficacy, malaria control, and public health. The demands of field-based epidemiological studies of malaria will require faster and more sensitive diagnostic methods as new antimalarial drugs and vaccines are explored. We have developed a multiplex PCR-ligase detection reaction (LDR) assay that allows the simultaneous diagnosis of infection by all four parasite species causing malaria in humans. This assay exhibits sensitivity and specificity equal to those of other PCR-based assays, identifying all four human malaria parasite species at levels of parasitemias equal to 1 parasitized erythrocyte/microl of blood. The multiplex PCR-LDR assay goes beyond other PCR-based assays by reducing technical procedures and by detecting intraindividual differences in species-specific levels of parasitemia. Application of the multiplex PCR-LDR assay will provide the sensitivity and specificity expected of PCR-based diagnostic assays and will contribute new insight regarding relationships between the human malaria parasite species and the human host in future epidemiological studies.

  17. Simultaneous detection of cow and buffalo species in milk from China, India, and Pakistan using multiplex real-time PCR.

    PubMed

    Cottenet, G; Blancpain, C; Golay, P-A

    2011-08-01

    Asian countries are major producers of cow and buffalo milk. For quality and authenticity purposes, a multiplex real-time PCR assay was developed to specifically and simultaneously detect DNA from these 2 bovine species. Targeting the cytochrome b gene of mitochondrial DNA, common PCR primers amplified a 105-bp fragment, and 2 fluorescent probes specific to either cow or buffalo were designed for their identification. Specificity was successfully tested on 6 other species, including sheep and goat, and sensitivity reached 1% of cow DNA in buffalo DNA and vice versa. As an evaluation, the method was tested using 119 freeze-dried Asian milk samples from regional industrial milk facilities. Although these samples did not cover the entire Asian zone, the multiplex assay indicated that approximately 20% of the samples (mainly from India) showed high levels of cross-contamination of cow milk by buffalo milk, and vice versa. Fast, sensitive, and straightforward, this method is fit-for-purpose for the authenticity control of Asian milk. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Development and evaluation of a multiplex real-time PCR assay for the detection and differentiation of Moraxella bovis, Moraxella bovoculi and Moraxella ovis in pure culture isolates and lacrimal swabs collected from conventionally raised cattle.

    PubMed

    Shen, H G; Gould, S; Kinyon, J; Opriessnig, T; O'Connor, A M

    2011-11-01

    To develop a multiplex real-time PCR assay for the detection and differentiation of Moraxella bovis (M. bovis), M. bovoculi and M. ovis. The multiplex real-time PCR assay was validated on three reference strains, 57 pure culture isolates and 45 lacrimal swab samples. All reference strains were identified correctly with no cross-reactions between species. Sequencing of 53 of the 57 culture isolates confirmed the results obtained with the multiplex real-time PCR, and the assay had 96·5% (55/57) concordance with a Moraxella spp. multiplex conventional PCR assay on the isolates. Among the lacrimal swab samples, the concordance between the multiplex real-time PCR and culture was 86·7% (39/45) for M. bovoculi and 75·6% (34/45) for M. bovis. The multiplex real-time PCR assay is specific and sensitive and can be used directly on lacrimal swab samples. The lack of a rapid, specific and sensitive detection method is a barrier for determining the roles of M. bovis, M. bovoculi and M. ovis in infectious bovine keratoconjunctivitis cases, and the developed PCR assay will contribute to improved understanding of the epidemiology and pathogenesis of these three Moraxella species. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  19. A multiplex PCR assay for the simultaneous identification of three mealybug species (Hemiptera: Pseudococcidae).

    PubMed

    Saccaggi, D L; Krüger, K; Pietersen, G

    2008-02-01

    Molecular species identification is becoming more wide-spread in diagnostics and ecological studies, particularly with regard to insects for which morphological identification is difficult or time-consuming. In this study, we describe the development and application of a single-step multiplex PCR for the identification of three mealybug species (Hemiptera: Pseudococcidae) associated with grapevine in South Africa: Planococcus ficus (vine mealybug), Planococcus citri (citrus mealybug) and Pseudococcus longispinus (longtailed mealybug). Mealybugs are pests on many commercial crops, including grapevine, in which they transmit viral diseases. Morphological identification of mealybug species is usually time-consuming, requires a high level of taxonomic expertise and usually only adult females can be identified. The single-step multiplex PCR developed here, based on the mitochondrial cytochrome c oxidase subunit 1 (CO I) gene, is rapid, reliable, sensitive, accurate and simple. The entire identification protocol (including DNA extraction, PCR and electrophoresis) can be completed in approximately four hours. Successful DNA extraction from laboratory and unparasitized field-collected individuals stored in absolute ethanol was 97%. Specimens from which DNA could be extracted were always correctly identified (100% accuracy). The technique developed is simple enough to be implemented in any molecular laboratory. The principles described here can be extended to any organism for which rapid, reliable identification is needed.

  20. Simultaneous detection, typing and quantitation of oncogenic human papillomavirus by multiplex consensus real-time PCR.

    PubMed

    Jenkins, Andrew; Allum, Anne-Gry; Strand, Linda; Aakre, Randi Kersten

    2013-02-01

    A consensus multiplex real-time PCR test (PT13-RT) for the oncogenic human papillomavirus (HPV) types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 66 is described. The test targets the L1 gene. Analytical sensitivity is between 4 and 400 GU (genomic units) in the presence of 500 ng of human DNA, corresponding to 75,000 human cells. HPV types are grouped into multiplex groups of 3 or 4 resulting in the use of 4 wells per sample and permitting up to 24 samples per run (including controls) in a standard 96-well real-time PCR instrument. False negative results are avoided by (a) measuring sample DNA concentration to control that sufficient cellular material is present and (b) including HPV type 6 as a homologous internal control in order to detect PCR inhibition or competition from other (non-oncogenic) HPV types. Analysis time from refrigerator to report is 8 h, including 2.5 h hands-on time. Relative to the HC2 test, the sensitivity and specificity were respectively 98% and 83%, the lower specificity being attributable to the higher analytical sensitivity of PT13-RT. To assess type determination comparison was made with a reversed line-blot test. Type concordance was high (κ=0.79) with discrepancies occurring mostly in multiple-positive samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Detection of Mycoplasma pneumoniae, Chlamydia pneumoniae, and Legionella spp. in clinical specimens using a single-tube multiplex real-time PCR assay.

    PubMed

    Thurman, Kathleen A; Warner, Agnes K; Cowart, Kelley C; Benitez, Alvaro J; Winchell, Jonas M

    2011-05-01

    A multiplex real-time PCR assay for the detection of Mycoplasma pneumoniae (MP181), Chlamydia (Chlamydophila) pneumoniae (CP-Arg), Legionella spp. (Pan-Leg), and the human RNase P (RNase P) gene was developed for rapid testing of atypical bacterial respiratory pathogens in clinical specimens. This method uses 4 distinct hydrolysis probes to detect 3 leading causes of community-acquired pneumonia. The assay was evaluated for specificity and sensitivity by testing against 35 related organisms, a dilution series of each specific target and 197 clinical specimens. Specificity testing demonstrated no cross-reactivity. A comparison to previously validated singleplex real-time PCR assays for each agent was also performed. The analytical sensitivity for specific pathogen targets in both the singleplex and multiplex was identical (50 fg), while efficiencies ranged from 82% to 97% for the singleplex assays and from 90% to 100% for the multiplex assay. The clinical sensitivity of the multiplex assay was improved for the Pan-Leg and CP-Arg targets when compared to the singleplex. The MP181 assay displayed equivalent performance. This multiplex assay provides an overall improvement in the diagnostic capability for these agents by demonstrating a sensitive, high-throughput and rapid method. This procedure may allow for a practical and efficient means to test respiratory clinical specimens for atypical pneumonia agents in health care settings and facilitate an appropriate public health response to outbreaks.

  2. Simultaneous detection and differentiation of three viruses in pear plants by a multiplex RT-PCR.

    PubMed

    Yao, Bingyu; Wang, Guoping; Ma, Xiaofang; Liu, Wenbin; Tang, Huihui; Zhu, Hui; Hong, Ni

    2014-02-01

    A multiplex RT-PCR (mRT-PCR) assay was developed for detection and differentiation of the Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV), which are viruses frequently occurring in pear trees. Different combinations of mixed primer pairs were tested for their specificity and sensitivity for the simultaneous detection of the three viruses. Three primer pairs were used to amplify their fragments of 247bp, 358bp and 500bp, respectively. The primer pair for ASPV was designed in this work, while the primer pairs for ACLSV and ASGV were from previous reports. The sensitivity and specificity of the mRT-PCR assay for the three viruses were comparable to that of each uniplex RT-PCR. The mRT-PCR was applied successfully for the detection of three viruses in leaves of pear and apple plants, but was unreliable in the detection of ASGV in dormant barks. In conclusion, this mRT-PCR provides a useful tool for the routine and rapid detection and the differentiation of three pear viruses.

  3. A multiplex PCR for the detection of Fasciola hepatica in the intermediate snail host Galba cubensis.

    PubMed

    Alba, Annia; Vázquez, Antonio A; Hernández, Hilda; Sánchez, Jorge; Marcet, Ricardo; Figueredo, Mabel; Sarracent, Jorge; Fraga, Jorge

    2015-07-30

    Fasciolosis is a snail-borne trematode infection that has re-emerged as a human disease, and is considered a significant problem for veterinary medicine worldwide. The evaluation of the transmission risk of fasciolosis as well as the efficacy of the strategies for its control could be carried out through epidemiological surveillance of the snails that act as intermediate hosts of the parasites. The present study aimed to develop the first multiplex PCR to detect Fasciola hepatica in Galba cubensis, an important intermediate host of the parasite in the Americas and especially in the Caribbean basin. The multiplex PCR was optimized for the amplification of a 340 bp fragment of the second internal transcribed spacer (ITS-2) of F. hepatica rDNA, while another set of primers was designed and used to amplify a conserved segment of the nuclear 18S rDNA of the snail (451 bp), as an internal control of the reaction. The assay was able to detect up to 100 pg of the parasite even at high concentrations of snail DNA, an analytical sensitivity that allows the detection of less than a single miracidium, which is the minimal biological infestation unit. A controlled laboratory-reared G. cubensis - F. hepatica system was used for the evaluation of the developed multiplex PCR, and 100% sensitivity and specificity was achieved. This assay constitutes a novel, useful and suitable technique for the survey of fasciolosis transmission through one of the main intermediate hosts in the Western hemisphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Development and application of multiplex PCR assays for detection of virus-induced respiratory disease complex in dogs

    PubMed Central

    PIEWBANG, Chutchai; RUNGSIPIPAT, Anudep; POOVORAWAN, Yong; TECHANGAMSUWAN, Somporn

    2016-01-01

    Canine infectious respiratory disease complex (CIRDC) viruses have been detected in dogs with respiratory illness. Canine influenza virus (CIV), canine parainfluenza virus (CPIV), canine distemper virus (CDV), canine respiratory coronavirus (CRCoV), canine adenovirus type 2 (CAdV-2) and canine herpesvirus 1 (CaHV-1), are all associated with the CIRDC. To allow diagnosis, two conventional multiplex polymerase chain reactions (PCR) were developed to simultaneously identify four RNA and two DNA viruses associated with CIRDC. The two multiplex PCR assays were then validated on 102 respiratory samples collected from 51 dogs with respiratory illness by sensitivity and specificity determination in comparison to conventional simplex PCR and a rapid three-antigen test kit. All six viruses were detected in either individual or multiple infections. The developed multiplex PCR assays had a >87% sensitivity and 100% specificity compared to their simplex counterpart. Compared to the three-antigen test kit, the multiplex PCR assays yielded 100% sensitivity and more than 83% specificity for detection of CAdV-2 and CDV, but not for CIV. Therefore, the developed multiplex PCR modalities were able to simultaneously diagnose a panel of CIRDC viruses and facilitated specimen collection through being suitable for use of nasal or oral samples. PMID:27628592

  5. Single-tube multiplex-PCR screen for common deletional determinants of alpha-thalassemia.

    PubMed

    Chong, S S; Boehm, C D; Higgs, D R; Cutting, G R

    2000-01-01

    Alpha-thalassemia is very common throughout all tropical and subtropical regions of the world. In Southeast Asia and the Mediterranean regions, compound heterozygotes and homozygotes may have anemia that is mild to severe (hemoglobin [Hb] H disease) or lethal (Hb Bart's hydrops fetalis). We have developed a reliable, single-tube multiplex-polymerase chain reaction (PCR) assay for the 6 most frequently observed determinants of alpha-thalassemia. The assay allows simple, high throughput genetic screening for these common hematological disorders. (Blood. 2000;95:360-362)

  6. Multiplex pcr assay for detection of human interferon alpha2b gene in transgenic plants.

    PubMed

    Gerasymenko, I M; Sakhno, L O; Mazur, M G; Sheludko, Y V

    2012-01-01

    During the last decade interferons are regarded as potent candidates for generation of plant-based edible vaccines because of broad spectrum of antiviral activities and adjuvant properties. Establishment and certification of numerous interferon producing plant systems requests development of fast and efficient multiplex PCR protocol for the transgene detection in GM plants. Here we represent a protocol for simultaneous amplification in one assay of fragments of hIFN alpha 2b gene and two control genes, namely virD1 of Agrobacterium tumefaciens and conservative region of plant actin gene.

  7. Simultaneous detection of four causal agents of tobacco bushy top disease by a multiplex one-step RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Tobacco bushy top disease is a complex disease caused by mixed infection of Tobacco bushy top virus (TBTV), Tobacco vein distorting virus (TVDV), satellite RNA of TBTV (Sat-TBTV) and Tobacco vein distorting virus associate RNA (TVDVaRNA). A one-tube multiplex reverse transcription-PCR (RT-PCR) assay...

  8. Multiplex PCR assay for unequivocal differentiation of Actinobacillus pleuropneumoniae serovars 1 to 3, 5 to 8, 10, and 12.

    PubMed

    Bossé, Janine T; Li, Yanwen; Angen, Øystein; Weinert, Lucy A; Chaudhuri, Roy R; Holden, Matthew T; Williamson, Susanna M; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N; Langford, Paul R

    2014-07-01

    An improved multiplex PCR, using redesigned primers targeting the serovar 3 capsule locus, which differentiates serovars 3, 6, and 8 Actinobacillus pleuropneumoniae isolates, is described. The new primers eliminate an aberrant serovar 3-indicative amplicon found in some serovar 6 clinical isolates. Furthermore, we have developed a new multiplex PCR for the detection of serovars 1 to 3, 5 to 8, 10, and 12 along with apxIV, thus extending the utility of this diagnostic PCR to cover a broader range of isolates. Copyright © 2014 Bossé et al.

  9. Development of a single multiplex amplification refractory mutation system PCR for the detection of rifampin-resistant Mycobacterium tuberculosis.

    PubMed

    Shi, Xiaodan; Zhang, Chen; Shi, Ming; Yang, Mengjie; Zhang, Yi; Wang, Ji; Shen, Hongwei; Zhao, Gang; Ma, Xuejun

    2013-11-01

    A rapid and simple method for the detection of drug-resistant Mycobacterium tuberculosis is critical for the efficient treatment and control of this pathogen in developing country. Here we developed a single multiplex amplification refractory mutation system (M-ARMS) PCR, in which chimeric-primer and temperature switch PCR (TSP) strategy were included. Using this method, we detected rifampin resistance-associated mutations at codons 511, 516, 526 and 531 in the rifampin resistance-determining region of rpoB gene. The performance of M-ARMS-PCR assay was evaluated with 135 cultured isolates of M. tuberculosis. The sensitivity and specificity were 94.2% and 100%, respectively, compared with direct DNA sequencing, and 86.67% and 89.71%, respectively, compared with culture-based phenotypic drug susceptibility testing. Therefore, this newly-developed M-ARMS-PCR method is useful and efficient with an intended application in provincial Centers for Disease Control and Prevention for rapid detection of rifampin resistance-associated mutations.

  10. Developmental validation of the AmpFℓSTR® Identifiler® Plus PCR Amplification Kit: an established multiplex assay with improved performance.

    PubMed

    Wang, Dennis Y; Chang, Chien-Wei; Lagacé, Robert E; Calandro, Lisa M; Hennessy, Lori K

    2012-03-01

    Analysis of length polymorphism at short tandem repeat (STR) loci utilizing multiplex polymerase chain reaction (PCR) remains the primary method for genotyping forensic samples. The AmpFℓSTR(®) Identifiler(®) Plus PCR Amplification Kit is an improved version of the AmpFℓSTR(®) Identifiler(®) PCR Amplification Kit and amplifies the core CODIS loci: D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, CSF1PO, FGA, TH01, TPOX, and vWA. Additional loci amplified in the multiplex reaction are the sex-determinant, amelogenin, and two internationally accepted loci, D2S1338 and D19S433. While the primer sequences and dye configurations were unchanged, the AmpFℓSTR(®) Identifiler(®) Plus PCR Amplification Kit features an enhanced buffer formulation and an optimized PCR cycling protocol that increases sensitivity, provides better tolerance to PCR inhibitors, and improves performance on mixture samples. The AmpFℓSTR(®) Identifiler(®) Plus PCR Amplification Kit has been validated according to the FBI/National Standards and Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. The validation results support the use of the AmpFℓSTR(®) Identifiler(®) Plus PCR Amplification Kit for human identity and parentage testing.

  11. Multiplex PCR (polymerase chain reaction) assay for detection of E. coli O157:H7, Salmonella sp., Vibrio cholerae and Vibrio parahaemolyticus in spiked shrimps (Penaeus monodon).

    PubMed

    Fakruddin, M D; Sultana, Mahmuda; Ahmed, Monzur Morshed; Chowdhury, Abhijit; Choudhury, Naiyyum

    2013-03-15

    The coastal aquaculture mainly shrimps constitute major export sector in Bangladesh and is increasingly shaped by international trade conditions and by national responses to those stringent quality and safety standards. PCR based validated methods for detection of major bacterial pathogens in shrimp might be very useful tool for ensuring quality and safety standards of exportable shrimps. The objective of this study was to evaluate overall performance (sensitivity and specificity) of the multiplex PCR assay for detection of Vibrio cholerae, Vibrio parahaemolyticus, Salmonella sp. and Escherichia coli O157:H7 from spiked shrimp samples. The targeted genes were ompW for V. cholerae, tdh for V. parahaemolyticus, sefA for Salmonella spp. and hlyEHEC for E. coli O157:H7. The genomic DNA was extracted by using standard method and amplified accordingly. Sensitivity of the assay was tested by inoculating the shrimp homogenate with viable cells of laboratory references strains (target pathogens). The genes were amplified individually both from culture homogenate and spiked samples. Twenty different uniplex and multiplex PCR assay were performed; the results showed that the sensitivity and specificity of multiplex PCR are comparable to that of the results of uniplex PCR for the samples. DNA extracted from shrimp samples spiked with non-target pathogen (Bacillus cereus, Shigella flexneri and Staphylococcus aureus) yielded negative results.

  12. Differentiation of human influenza A viruses including the pandemic subtype H1N1/2009 by conventional multiplex PCR.

    PubMed

    Furuse, Yuki; Odagiri, Takashi; Okada, Takashi; Khandaker, Irona; Shimabukuro, Kozue; Sawayama, Rumi; Suzuki, Akira; Oshitani, Hitoshi

    2010-09-01

    April 2009 witnessed the emergence of a novel H1N1 influenza A virus infecting the human population. Currently, pandemic and seasonal influenza viruses are co-circulating in human populations. Understanding the course of the emerging pandemic virus is important. It is still unknown how the novel virus co-circulates with or outcompetes seasonal viruses. Sustainable and detailed influenza surveillance is required throughout the world including developing countries. In the present study, a multiplex PCR using four primers was developed, which was designed to differentiate the pandemic H1N1 virus from the seasonal H1N1 and H3N2 viruses, to obtain amplicons of different sizes. Multiplex PCR analysis could clearly differentiate the three subtypes of human influenza A virus. This assay was performed using 206 clinical samples collected in 2009 in Japan. Between February and April, four samples were subtyped as seasonal H1N1 and four as seasonal H3N2. All samples collected after July were subtyped as pandemic H1N1. Currently, pandemic viruses seem to have replaced seasonal viruses almost completely in Japan. This is a highly sensitive method and its cost is low. Influenza surveillance using this assay would provide significant information on the epidemiology of both pandemic and seasonal influenza.

  13. Evaluation of Different Oligonucleotide Base Substitutions at CpG Binding sites in Multiplex Bisulfite-PCR sequencing

    PubMed Central

    Lu, Jennifer; Ru, Kelin; Candiloro, Ida; Dobrovic, Alexander; Korbie, Darren; Trau, Matt

    2017-01-01

    Multiplex bisulfite-PCR sequencing is a convenient and scalable method for the quantitative determination of the methylation state of target DNA regions. A challenge of this application is the presence of CpGs in the same region where primers are being placed. A common solution to the presence of CpGs within a primer-binding region is to substitute a base degeneracy at the cytosine position. However, the efficacy of different substitutions and the extent to which bias towards methylated or unmethylated templates may occur has never been evaluated in bisulfite multiplex sequencing applications. In response, we examined the performance of four different primer substitutions at the cytosine position of CpG’s contained within the PCR primers. In this study, deoxyinosine-, 5-nitroindole-, mixed-base primers and primers with an abasic site were evaluated across a series of methylated controls. Primers that contained mixed- or deoxyinosine- base modifications performed most robustly. Mixed-base primers were further selected to determine the conditions that induce bias towards methylated templates. This identified an optimized set of conditions where the methylated state of bisulfite DNA templates can be accurately assessed using mixed-base primers, and expands the scope of bisulfite resequencing assays when working with challenging templates. PMID:28327639

  14. Clinical Relevance of Pathogens Detected by Multiplex PCR in Blood of Very-Low-Birth Weight Infants with Suspected Sepsis - Multicentre Study of the German Neonatal Network.

    PubMed

    Tröger, Birte; Härtel, Christoph; Buer, Jan; Dördelmann, Michael; Felderhoff-Müser, Ursula; Höhn, Thomas; Hepping, Nico; Hillebrand, Georg; Kribs, Angela; Marissen, Janina; Olbertz, Dirk; Rath, Peter-Michael; Schmidtke, Susanne; Siegel, Jens; Herting, Egbert; Göpel, Wolfgang; Steinmann, Joerg; Stein, Anja

    2016-01-01

    In the German Neonatal Network (GNN) 10% of very-low-birth weight infants (VLBWI) suffer from blood-culture confirmed sepsis, while 30% of VLBWI develop clinical sepsis. Diagnosis of sepsis is a difficult task leading to potential over-treatment with antibiotics. This study aims to investigate whether the results of blood multiplex-PCR (SeptiFast®) for common sepsis pathogens are relevant for clinical decision making when sepsis is suspected in VLBWI. We performed a prospective, multi-centre study within the GNN including 133 VLBWI with 214 episodes of suspected late onset sepsis (LOS). In patients with suspected sepsis a multiplex-PCR (LightCycler SeptiFast MGRADE-test®) was performed from 100 μl EDTA blood in addition to center-specific laboratory biomarkers. The attending neonatologist documented whether the PCR-result, which was available after 24 to 48 hrs, had an impact on the choice of antibiotic drugs and duration of therapy. PCR was positive in 110/214 episodes (51%) and blood culture (BC) was positive in 55 episodes (26%). Both methods yielded predominantly coagulase-negative staphylococci (CoNS) followed by Escherichia coli and Staphylococcus aureus. In 214 BC-PCR paired samples concordant results were documented in 126 episodes (59%; n = 32 were concordant pathogen positive results, n = 94 were negative in both methods). In 65 episodes (30%) we found positive PCR results but negative BCs, with CoNS being identified in 43 (66%) of these samples. Multiplex-PCR results influenced clinical decision making in 30% of episodes, specifically in 18% for the choice of antimicrobial therapy and in 22% for the duration of antimicrobial therapy. Multiplex-PCR results had a moderate impact on clinical management in about one third of LOS-episodes. The main advantage of multiplex-PCR was the rapid detection of pathogens from micro-volume blood samples. In VLBWI limitations include risk of contamination, lack of resistance testing and high costs. The high rate of

  15. Optimization of a multiplex PCR assay for detecting transgenic soybean components in feed products.

    PubMed

    Tian, Fang; Wang, Xiumin; Teng, Da; Yang, Yalin; Guan, Qingfeng; Ao, Changjin; Wang, Jianhua

    2011-11-01

    A multiplex polymerase chain reaction (m-PCR) assay was developed for the simultaneous detection of multiple components of genetically modified (GM) soybean. It uses two sets of primers (I, lectin1/35S/CP4; II, lectin2/35S/CP4) specific for a soybean reference gene, the 35S promoter, and an event-specific gene. Amplified fragments of 118, 414, 195, and 320 bp were easily detected by agarose gel electrophoresis and were positively confirmed by sequencing. Primer set concentrations and annealing temperatures in the m-PCR were optimized. The optimized m-PCR conditions were obtained for primer set I at a ratio of 1:2:3 and a 59.2 °C annealing temperature and set II at the same ratio and 58.6 °C, 60.3 °C, and 61.2 °C annealing temperatures. The sensitivities of the two m-PCR primer sets (I and II) were 0.25% and 0.5%, respectively. The results showed that this m-PCR assay provides rapid, reliable, and effective identification of multiple components of GM soybean in feed.

  16. Comparison of multiplex PCR hybridization-based and singleplex real-time PCR-based assays for detection of low prevalence pathogens in spiked samples.

    PubMed

    Hockman, Donna; Dong, Ming; Zheng, Hong; Kumar, Sanjai; Huff, Matthew D; Grigorenko, Elena; Beanan, Maureen; Duncan, Robert

    2017-01-01

    Molecular diagnostic devices are increasingly finding utility in clinical laboratories. Demonstration of the effectiveness of these devices is dependent upon comparing results from clinical samples tested with the new device to an alternative testing method. The preparation of mock clinical specimens will be necessary for the validation of molecular diagnostic devices when a sufficient number of clinical specimens is unobtainable. Examples include rare pathogens, some of which are pathogens posing a biological weapon threat. Here we describe standardized steps for developers to follow for the culture and quantification of three organisms used to spike human whole blood to create mock specimens. The three organisms chosen for this study were the Live Vaccine Strain (LVS) of Francisella tularensis, surrogate for a potential biothreat pathogen, Escherichia coli, a representative Gram-negative bacterium and Babesia microti (Franca) Reichenow Peabody strain, representing a protozoan parasite. Mock specimens were prepared with blood from both healthy donors and donors with nonspecific symptoms including fever, malaise, and flu-like symptoms. There was no significant difference in detection results between the two groups for any pathogen. Testing of the mock samples was compared on two platforms, Target Enriched Multiplex-PCR (TEM-PCR™) and singleplex real-time PCR (RT-PCR). Results were reproducible on both platforms. The reproducibility demonstrated by obtaining the same results between two testing methods and between healthy and symptomatic mock specimens, indicates the standardized methods described for creating the mock specimens are valid and effective for evaluating diagnostic devices.

  17. Evaluation of multiplexed PCR and liquid-phase array for identification of respiratory fungal pathogens.

    PubMed

    Buelow, Daelynn R; Gu, Zhengming; Walsh, Thomas J; Hayden, Randall T

    2012-10-01

    Invasive fungal infections are the cause of serious morbidity and high mortality in immunocompromised patients. Early laboratory diagnostic options remain limited; however, rapid detection and accurate identification may improve outcome. Herein, multiplexed PCR followed by liquid-phase array was evaluated for detection and identification of common respiratory fungal pathogens, including Aspergillus fumigatus, Rhizopus microsporus, Scedosporium apiospermum and Fusarium solani. The limit of detection ranged 0.1-1 ng of DNA, depending on the fungus being tested. Primer cross-reactivity was seen for some fungi: Aspergillus flavus primers detected Aspergillus oryzae; Scedosporium apiospermum primers detected Paecilomyces lilacinus, and Aspergillus terreus primers detected S. apiospermum. PCR followed by liquid-phase array is potentially useful for the identification of clinically relevant fungal pathogens.

  18. Autonomous Detection of Aerosolized Biological Agents by Multiplexed Immunoassay with PCR Confirmation

    SciTech Connect

    Hindson, B J; McBride, M T; Makarewicz, A J; Henderer, B D; Setlur, U S; Smith, S M; Gutierrez, D M; Metz, T R; Nasarabadi, S L; Venkateswaran, K S; Farrow, S W; Colston, Jr., B W; Dzenitis, J M

    2004-05-27

    The autonomous pathogen detection system (APDS) is an automated, podium-sized instrument that continuously monitors the air for biological threat agents (bacteria, viruses, and toxins). The system has been developed to warn of a biological attack in critical or high-traffic facilities and at special events. The APDS performs continuous aerosol collection, sample preparation, and detection using multiplexed immunoassay followed by confirmatory PCR using real-time TaqMan assays. We have integrated completely reusable flow-through devices that perform DNA extraction and PCR amplification. The fully integrated system was challenged with aerosolized Bacillus anthracis, Yersinia pestis, Bacillus globigii and botulinum toxoid. By coupling highly selective antibody and DNA based assays, the probability of an APDS reporting a false positive is extremely low.

  19. Multiplex RT-PCR detection of three common viruses infecting orchids.

    PubMed

    Ali, Raymond N; Dann, Alison L; Cross, Peter A; Wilson, Calum R

    2014-11-01

    A multiplex reverse transcription polymerase chain reaction (RT-PCR) assay was developed for simultaneous detection of three orchid viruses: cymbidium mosaic virus (CymMV), odontoglossum ringspot virus (ORSV), and orchid fleck virus (OFV). Primers were used to amplify nucleocapsid protein gene fragments of 845 bp (ORSV), 505 bp (CymMV) and 160 bp (OFV). A 60-bp amplicon of plant glyceraldehyde-3-phophate dehydrogenase mRNA was included as an internal control against false negatives. The assay was validated against 31 collected plants from six orchid genera and compared with results obtained by transmission electron microscopy (TEM). The RT-PCR assay proved more sensitive than TEM for detection of OFV.

  20. Detection of Brucella canis and Leptospira interrogans in canine semen by multiplex nested PCR.

    PubMed

    Kim, Suk; Lee, Dong Soo; Suzuki, Hiroshi; Watarai, Masahisa

    2006-06-01

    Brucella canis and Leptospira interrogans are pathogenic bacteria that cause brucellosis and leptospirosis in dogs around the world. Both diseases can be diagnosed serologically, but the direct detection of these organisms in canine semen is needed when it is used for artificial reproduction. We have been attempting the artificial reproduction of guide dogs for greater breeding efficiency and for this purpose have developed a multiplex nested PCR technique for the detection of B. canis and L. interrogans in the semen and cryoprotective agent (CPA). Our results demonstrated the high sensitivity and simplicity of this technique in the detection of these organisms in canine semen and that will be useful in routine diagnosis. Since they have been found to stay alive in canine semen and CPA up to 48 hr, canine semen for breeding purposes should be checked for contamination by the PCR assay.

  1. Development of a multiplex real-time PCR assay for the rapid diagnosis of neonatal late onset sepsis.

    PubMed

    van den Brand, Marre; Peters, Remco P H; Catsburg, Arnold; Rubenjan, Anna; Broeke, Ferdi J; van den Dungen, Frank A M; van Weissenbruch, Mirjam M; van Furth, A Marceline; Kõressaar, Triinu; Remm, Maido; Savelkoul, Paul H M; Bos, Martine P

    2014-11-01

    The diagnosis of late onset sepsis (LOS), a severe condition with high prevalence in preterm infants, is hampered by the suboptimal sensitivity and long turnaround time of blood culture. Detection of the infecting pathogen directly in blood by PCR would provide a much more timely result. Unfortunately, PCR-based assays reported so far are labor intensive and often lack direct species identification. Therefore we developed a real-time multiplex PCR assay tailored to LOS diagnosis which is easy-to-use, is applicable on small blood volumes and provides species-specific results within 4h. Species-specific PCR assays were selected from literature or developed using bioinformatic tools for the detection of the most prevalent etiologic pathogens: Enterococcus faecalis, Staphylococcus aureus, Staphylococcus spp., Streptococcus agalactiae, Escherichia coli, Pseudomonas aeruginosa, Klebsiella spp. and Serratia marcescens. The PCR assays showed 100% specificity, full coverage of the target pathogens and a limit of detection (LOD) of ≤10CFUeq./reaction. These LOD values were maintained in the multiplex format or when bacterial DNA was isolated from blood. Clinical evaluation showed high concordance between the multiplex PCR and blood culture. In conclusion, we developed a multiplex PCR that allows the direct detection of the most important bacterial pathogens causing LOS in preterm infants.

  2. Automated high multiplex qPCR platform for simultaneous detection and quantification of multiple nucleic acid targets.

    PubMed

    Hlousek, Louis; Voronov, Sergey; Diankov, Vesselin; Leblang, Amy B; Wells, Patrick J; Ford, Donna M; Nolling, Jork; Hart, Kyle W; Espinoza, Patricio A; Bristol, Michael R; Tsongalis, Gregory J; Yen-Lieberman, Belinda; Slepnev, Vladimir I; Kong, Lilly I; Lee, Ming-Chou

    2012-05-01

    Quantitative PCR (qPCR) using real-time detection of amplification is limited to a small number of targets within a single reaction. The ICEPlex system, using our scalable target analysis routine (STAR) technology, was developed to provide an automated, high multiplexing PCR solution. ICEPlex combines PCR thermal cycling with dynamic, sequential amplicon separation by capillary electrophoresis and two-color quantitative detection in a single integrated system. In contrast to probe-based qPCR, ICEPlex directly measures amplicon accumulation through incorporation of labeled primers. Three orders of magnitude of optical detection range and at least 7 logs of detectable target concentration range are demonstrated. The system can separate more than 50 amplicons per color channel, ranging from 100 to 500 bases, providing broad multiplexing capabilities for a wide spectrum of nucleic acid amplification applications. ICEPlex can be used for analysis of viral DNA or RNA targets, detection of genetic variants, and for reverse-transcriptase PCR gene expression panels.

  3. Detection of feline calicivirus, feline herpesvirus 1 and Chlamydia psittaci mucosal swabs by multiplex RT-PCR/PCR.

    PubMed

    Sykes, J E; Allen, J L; Studdert, V P; Browning, G F

    2001-07-26

    A single tube, multiplex reverse transcription (RT)-polymerase chain reaction (PCR)/PCR assay was developed for detection of feline herpesvirus 1 (FHV1), Chlamydia psittaci and feline calicivirus (FCV) in cats with upper respiratory tract disease (URTD), incorporating a simple, rapid extraction procedure capable of extracting both DNA and RNA. The assay was found to be as sensitive in vitro as simplex assays that have previously been shown to be as sensitive as, or more sensitive than, culture for each pathogen in experimentally infected cats. Conjunctival alone or both conjunctival and oropharyngeal swabs were collected from cats in 104 households with URTD. FHV1 was detected in 18 (17.3%) and C. psittaci was detected in 12 (11.5%) households. The prevalence of C. psittaci was not significantly different to that determined using a duplex PCR assay for C. psittaci and FHV1. The prevalence of FCV was affected by sample storage temperature. Of samples stored at -70 degrees C, 0/31 were positive for FCV but FCV was detected in 10/73 (13.7%) samples stored at 4 degrees C (P=0.006). Of the samples stored at 4 degrees C, 3/19 (15.8%) conjunctival swabs were positive for FCV and 6/32 (18.8%) oropharyngeal/conjunctival swabs were positive for FCV (P=0.79). The potential utility of restriction endonuclease analysis of RT-PCR products resulting from amplification of the hypervariable region of the capsid protein gene of FCV in field samples, without prior cultivation, was also examined. The assay may have considerable importance for diagnosis and epidemiological surveys of feline upper respiratory tract pathogens.

  4. The validation and utility of a quantitative one-step multiplex RT real-time PCR targeting Rotavirus A and Norovirus

    PubMed Central

    Dung, Tran Thi Ngoc; Phat, Voong Vinh; Nga, Tran Vu Thieu; My, Phan Vu Tra; Duy, Pham Thanh; Campbell, James I.; Thuy, Cao Thu; Hoang, Nguyen Van Minh; Van Minh, Pham; Le Phuc, Hoang; Tuyet, Pham Thi Ngoc; Vinh, Ha; Kien, Duong Thi Hue; Huy, Huynh Le Anh; Vinh, Nguyen Thanh; Nga, Tran Thi Thu; Hau, Nguyen Thi Thu; Chinh, Nguyen Tran; Thuong, Tang Chi; Tuan, Ha Manh; Simmons, Cameron; Farrar, Jeremy J.; Baker, Stephen

    2013-01-01

    Rotavirus (RoV) and Norovirus (NoV) are the main causes of viral gastroenteritis. Currently, there is no validated multiplex real-time PCR that can detect and quantify RoV and NoV simultaneously. The aim of the study was to develop, validate, and internally control a multiplex one-step RT real-time PCR to detect and quantify RoV and NoV in stool samples. PCR sensitivity was assessed by comparing amplification against the current gold standard, enzyme immunoassay (EIA), on stool samples from 94 individuals with diarrhea and 94 individuals without diarrhea. PCR detected 10% more RoV positive samples than EIA in stools samples from patients with diarrhea. PCR detected 23% more NoV genogroup II positive samples from individuals with diarrhea and 9% more from individuals without diarrhea than EIA, respectively. Genotyping of the PCR positive/EIA negative samples suggested the higher rate of PCR positivity, in comparison to EIA, was due to increased sensitivity, rather than nonspecific hybridization. Quantitation demonstrated that the viral loads of RoV and NoV in the stools of diarrheal patients were an order of magnitude greater than in individuals without diarrhea. This internally controlled real-time PCR method is robust, exhibits a high degree of reproducibility, and may have a greater utility and sensitivity than commercial EIA kits. PMID:23046990

  5. The validation and utility of a quantitative one-step multiplex RT real-time PCR targeting rotavirus A and norovirus.

    PubMed

    Dung, Tran Thi Ngoc; Phat, Voong Vinh; Nga, Tran Vu Thieu; My, Phan Vu Tra; Duy, Pham Thanh; Campbell, James I; Thuy, Cao Thu; Hoang, Nguyen Van Minh; Van Minh, Pham; Le Phuc, Hoang; Tuyet, Pham Thi Ngoc; Vinh, Ha; Kien, Duong Thi Hue; Huy, Huynh Le Anh; Vinh, Nguyen Thanh; Nga, Tran Thi Thu; Hau, Nguyen Thi Thu; Chinh, Nguyen Tran; Thuong, Tang Chi; Tuan, Ha Manh; Simmons, Cameron; Farrar, Jeremy J; Baker, Stephen

    2013-01-01

    Rotavirus (RoV) and Norovirus (NoV) are the main causes of viral gastroenteritis. Currently, there is no validated multiplex real-time PCR that can detect and quantify RoV and NoV simultaneously. The aim of the study was to develop, validate, and internally control a multiplex one-step RT real-time PCR to detect and quantify RoV and NoV in stool samples. PCR sensitivity was assessed by comparing amplification against the current gold standard, enzyme immunoassay (EIA), on stool samples from 94 individuals with diarrhea and 94 individuals without diarrhea. PCR detected 10% more RoV positive samples than EIA in stools samples from patients with diarrhea. PCR detected 23% more NoV genogroup II positive samples from individuals with diarrhea and 9% more from individuals without diarrhea than EIA, respectively. Genotyping of the PCR positive/EIA negative samples suggested the higher rate of PCR positivity, in comparison to EIA, was due to increased sensitivity, rather than nonspecific hybridization. Quantitation demonstrated that the viral loads of RoV and NoV in the stools of diarrheal patients were an order of magnitude greater than in individuals without diarrhea. This internally controlled real-time PCR method is robust, exhibits a high degree of reproducibility, and may have a greater utility and sensitivity than commercial EIA kits. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Rapid and Sensitive PCR-Dipstick DNA Chromatography for Multiplex Analysis of the Oral Microbiota

    PubMed Central

    Niwa, Kousuke; Kawase, Mitsuo; Tanner, Anne C. R.; Takahashi, Nobuhiro

    2014-01-01

    A complex of species has been associated with dental caries under the ecological hypothesis. This study aimed to develop a rapid, sensitive PCR-dipstick DNA chromatography assay that could be read by eye for multiplex and semiquantitative analysis of plaque bacteria. Parallel oligonucleotides were immobilized on a dipstick strip for multiplex analysis of target DNA sequences of the caries-associated bacteria, Streptococcus mutans, Streptococcus sobrinus, Scardovia wiggsiae, Actinomyces species, and Veillonella parvula. Streptavidin-coated blue-colored latex microspheres were to generate signal. Target DNA amplicons with an oligonucleotide-tagged terminus and a biotinylated terminus were coupled with latex beads through a streptavidin-biotin interaction and then hybridized with complementary oligonucleotides on the strip. The accumulation of captured latex beads on the test and control lines produced blue bands, enabling visual detection with the naked eye. The PCR-dipstick DNA chromatography detected quantities as low as 100 pg of DNA amplicons and demonstrated 10- to 1000-fold higher sensitivity than PCR-agarose gel electrophoresis, depending on the target bacterial species. Semiquantification of bacteria was performed by obtaining a series of chromatograms using serial 10-fold dilution of PCR-amplified DNA extracted from dental plaque samples. The assay time was less than 3 h. The semiquantification procedure revealed the relative amounts of each test species in dental plaque samples, indicating that this disposable device has great potential in analysis of microbial composition in the oral cavity and intestinal tract, as well as in point-of-care diagnosis of microbiota-associated diseases. PMID:25485279

  7. Development of novel AllGlo-probe-based one-step multiplex qRT-PCR assay for rapid identification of avian influenza virus H7N9.

    PubMed

    Zhang, Yanjun; Mao, Haiyan; Yan, Juying; Wang, Xinying; Zhang, Lei; Guus, Koch; Li, Hui; Li, Zhen; Chen, Yin; Gong, Liming; Chen, Zhiping; Xia, Shichang

    2014-07-01

    Recently, human deaths have resulted from infection with low-pathogenicity avian influenza virus H7N9 strains that have emerged recently in China. To strengthen H7N9 surveillance and outbreak control, rapid and reliable diagnostic methods are needed. To develop a sensitive quantitative real-time RT-PCR assay for rapid detection of H7N9 viral RNA, primers and AllGlo probes were designed to target the HA and NA genes of H7N9. Conserved sequences in the HA and NA genes were identified by phylogenic analysis and used as targets for H7N9 virus detection. The similarities of the targeted HA and NA gene sequences from different H7 and N9 influenza virus strains were 93.2-99.9 % and 96.0-99.6 %, respectively The specificity and sensitivity of the new multiplex real-time qRT-PCR was established. The test was used for the detection of viral RNA in human pharyngeal swabs and environmental samples. The detection limit of the multiplex qRT-PCR was estimated to be about 10(-1) TCID50/reaction. Finally, the diagnostic sensitivities of the multiplex qRT-PCR, virus isolation and TaqMan qRT-PCR were compared using pharyngeal swabs and environmental samples. These analyses yielded positive results in 46.7 %, 43.3 % and 20.0 % of the samples, respectively. The novel multiplex AllGlo qRT-PCR is a rapid and sensitive method to identify H7N9 virus in clinical and environmental samples and can be used to facilitate studies on the epidemiology of H7N9 virus.

  8. A multiplex nested PCR assay for simultaneous detection of Corchorus golden mosaic virus and a phytoplasma in white jute (Corchorus capsularis L.).

    PubMed

    Biswas, C; Dey, P; Satpathy, S

    2013-05-01

    A multiplex nested PCR assay was developed by optimizing reaction components and reaction cycling parameters for simultaneous detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma (Group 16Sr V-C) causing little leaf and bunchy top in white jute (Corchorus capsularis). Three sets of specific primers viz. a CoGMV specific (DNA-A region) primer, a 16S rDNA universal primer pair P1/P7 and nested primer pair R16F2n/R2 for phytoplasmas were used. The concentrations of the PCR components such as primers, MgCl2 , Taq DNA polymerase, dNTPs and PCR conditions including annealing temperature and amplification cycles were examined and optimized. Expected fragments of 1 kb (CoGMV), 674 bp (phytoplasma) and 370 bp (nested R16F2n/R2) were successfully amplified by this multiplex nested PCR system ensuring simultaneous, sensitive and specific detection of the phytoplasma and the virus. The multiplex nested PCR provides a sensitive, rapid and low-cost method for simultaneous detection of jute little leaf phytoplasma and CoGMV. Based on BLASTn analyses, the phytoplasma was found to belong to the Group 16Sr V-C.

  9. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.

    PubMed

    Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael

    2009-01-01

    A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.

  10. Multiplex PCR for colony direct detection of Gram-positive histamine- and tyramine-producing bacteria.

    PubMed

    Coton, Emmanuel; Coton, Monika

    2005-12-01

    Formation of biogenic amines (BA) may occur in fermented foods and beverages due to the amino acid decarboxylase activities of Gram-positive bacteria. These compounds may cause food poisoning and therefore could imply food exportation problems. A set of consensual primers based on histidine decarboxylase gene (hdc) sequences of different bacteria was designed for the detection of histamine-producing Gram-positive bacteria. A multiplex PCR based on these hdc primers and recently designed primers targeting the tyrosine decarboxylase (tyrdc) gene was created. A third set of primers targeting the 16S rRNA gene of eubacteria was also used as an internal control. This multiplex PCR was performed on extracted DNA as well as directly on cell colonies. The results obtained show that this new molecular tool allowed for the detection of Gram-positive histamine- and/or tyramine-producing bacteria. The use of this molecular tool for early and rapid detection of Gram-positive BA-producing bacteria is of interest in evaluating the potential of cultured indigenous strains to produce biogenic amines in a fermented food product as well as to validate the innocuity of potential starter strains in the food industry.

  11. Efficacy and limits of genotyping low copy number (LCN) DNA samples by multiplex PCR of STR loci.

    PubMed

    Kloosterman, Ate D; Kersbergen, Paula

    2003-01-01

    In this study, we have evaluated the efficacy and the validity of the AmpFISTR SGM plus multiplex PCR typing system when Low Copy Number (LCN) amounts of DNA are processed. The characteristics of SGM plus profiles produced under LCN conditions were studied on the basis of heterozygote balance, between loci balance and stutter proportion based on profiles that were obtained from a variety of mock casework samples. These experiments clearly showed that LCN DNA profiles carry their own characteristic features, which must be taken into account during interpretation. Herewith, we confirmed the data of recent other studies that a comprehensive interpretation strategy is dependent upon multiple replication of the PCR using the same extract together with the proper use of extraction and amplification controls. The limitations of LCN DNA analysis were further studied in a series of single cell PCR experiments using an amplification regime of 34 PCR cycles. The allele dropout phenomenon was demonstrated to its full extent when single cells were analysed. However, the "consensus profile" which was obtained from separate single cell PCR experiments matched the actual profile of the cell donor. Single cell PCR experiments also showed that a further increase of the number of PCR cycles did not result in enhanced sensitivity and had a highly negative effect on the balance of this multiplex PCR system which hampered correct interpretation of the profile. Also, the potential of LCN typing in analysing mixtures of DNA was investigated. It was clearly shown that LCN typing had no advantages over 28 cycles amplification in the detection of the minor component of DNA-mixtures. In addition to the 34 cycles PCR amplification regime, the utility of a new approach that involved reamplification of the 28 cycle SGM plus PCR products with an extra 6 PCR cycles after the addition of fresh AmpliTaq Gold DNA Polymerase was investigated. This approach provides the scientist with an extra typing

  12. Multiplex real-time PCR monitoring of intestinal helminths in humans reveals widespread polyparasitism in Northern Samar, the Philippines.

    PubMed

    Gordon, Catherine A; McManus, Donald P; Acosta, Luz P; Olveda, Remigio M; Williams, Gail M; Ross, Allen G; Gray, Darren J; Gobert, Geoffrey N

    2015-06-01

    The global socioeconomic importance of helminth parasitic disease is underpinned by the considerable clinical impact on millions of people. While helminth polyparasitism is considered common in the Philippines, little has been done to survey its extent in endemic communities. High morphological similarity of eggs between related species complicates conventional microscopic diagnostic methods which are known to lack sensitivity, particularly in low intensity infections. Multiplex quantitative PCR diagnostic methods can provide rapid, simultaneous identification of multiple helminth species from a single stool sample. We describe a multiplex assay for the differentiation of Ascaris lumbricoides, Necator americanus, Ancylostoma, Taenia saginata and Taenia solium, building on our previously published findings for Schistosoma japonicum. Of 545 human faecal samples examined, 46.6% were positive for at least three different parasite species. High prevalences of S. japonicum (90.64%), A. lumbricoides (58.17%), T. saginata (42.57%) and A. duodenale (48.07%) were recorded. Neither T. solium nor N. americanus were found to be present. The utility of molecular diagnostic methods for monitoring helminth parasite prevalence provides new information on the extent of polyparasitism in the Philippines municipality of Palapag. These methods and findings have potential global implications for the monitoring of neglected tropical diseases and control measures. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. The use of multiplex PCR to detect and differentiate food- and beverage-associated microorganisms: a review.

    PubMed

    Settanni, L; Corsetti, A

    2007-04-01

    Regarding food safety, rapid detection of microbial species is crucial to develop effective preventive and/or adjustment measures. Classical methods for determining the presence of certain species are time-consuming and labor-intensive, hence, molecular methods, which offer speed, sensitivity and specificity, have been developed to address this problem. Multiplex PCR (MPCR) is widely applied in the various fields of microbiology for the rapid differentiation of microbial species without compromising accuracy. This paper describes the method and reports on the state-of-the-art application of this technique to the identification of microorganisms vehiculated with foods and beverages. The identification of both pathogens and probiotics and the species important for food fermentation or deterioration will be discussed. Applications of MPCR in combination with other techniques are also reviewed. Potentials, pitfalls, limitations and future prospects are summarised.

  14. High-specificity single-tube multiplex genotyping using Ribo-PAP PCR, tag primers, alkali cleavage of RNA/DNA chimeras and MALDI-TOF MS.

    PubMed

    Mauger, Florence; Gelfand, David H; Gupta, Amar; Bodepudi, Veeraiah; Will, Stephen G; Bauer, Keith; Myers, Thomas W; Gut, Ivo G

    2013-01-01

    Here, we describe a high-throughput, single-tube, allele-specific ribonucleotide analog pyrophosphorolysis-activated polymerization (ribo-PAP) PCR multiplex genotyping and resequencing method. An RNA/DNA chimeric PCR product is generated using genomic DNA as starting template, a panel of allele-selective 5'-tagged primers, a reverse primer, one nucleotide in the ribo-form (90-100%), the other nucleotides in the deoxy-form, a DNA polymerase capable of incorporating ribonucleotides, a suitable buffer and thermal cycling. The RNA/DNA chimeric PCR products are fragmented by treatment with alkali and analyzed by mass spectrometry. All allele-selective primers have a 5' repetitive motif where each repeat unit has a unique, distinct mass upon reverse copying and alkali fragmentation. The mass of the complement repeat fragment or flag identifies the primer or primers that were recruited in the ribo-PAP PCR. The method readily identifies homozygous and heterozygous positions in simplex or duplex ribo-PAP PCR. Many different tags can be analyzed simultaneously. The assay can genotype several SNPs in a single tube. It thus constitutes the simplest genotyping protocol with multiplex analysis. This novel genotyping and resequencing protocol was applied to different genomic loci: NOS1 and H19 in 30 individuals in simplex ribo-PAP PCR and at two SLCO1B1 loci in 95 individuals in duplex ribo-PAP PCR.

  15. Use of Multiplex Real-Time PCR To Diagnose Scrub Typhus.

    PubMed

    Tantibhedhyangkul, Wiwit; Wongsawat, Ekkarat; Silpasakorn, Saowaluk; Waywa, Duangdao; Saenyasiri, Nuttawut; Suesuay, Jintapa; Thipmontree, Wilawan; Suputtamongkol, Yupin

    2017-05-01

    Scrub typhus, caused by Orientia tsutsugamushi, is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targeting O. tsutsugamushi 47-kDa, groEL, and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness. Copyright © 2017 American Society for Microbiology.

  16. Practical Implementation of a Multiplex PCR for Acute Respiratory Tract Infections in Children

    PubMed Central

    Gruteke, Paul; Glas, Afina S.; Dierdorp, Mirjam; Vreede, Willem B.; Pilon, Jan-Willem; Bruisten, Sylvia M.

    2004-01-01

    Molecular testing for acute respiratory infections (ARIs) has documented value but limited implementation due to questions that typically slow the acceptance of new tests. This study sought to address these questions and achieve implementation. Rhinovirus was added to a nested multiplex PCR (M-PCR), increasing its diagnostic yield. Over one winter, three hospital pediatric departments used the M-PCR to complement their direct fluorescent-antibody assay (DFA) for respiratory syncytial virus (RSV). Clinicians recorded “pretest probability estimates” (using continuous scales for various pathogen groups) for comparison with test results; treatments and test turnaround times were also recorded. Transnasal and throat swabs, with or without nasopharyngeal aspirate (NPA), were M-PCR tested. NPA-containing sample sets found to be RSV positive by DFA were not further tested. Single PCR for human metapneumovirus (hMPV) was performed retrospectively. Of 178 ARI episodes representing 172 patients, NPA was included in 97 sample sets; 54 (56%) were determined to be RSV positive. The other NPA-containing sample sets (n = 43) yielded 27 findings (63%), and the swab-only sets (n = 81) yielded 47 findings (58%); rhinovirus was found most often. Testing for hMPV yielded seven positive results. M-PCR median turnaround times were 4 days in swab-only samples and 5 days with NPA. Antibiotics were prescribed in 50 episodes, at rates similar for RSV and rhinovirus. Pretest probability estimates of a viral cause were lower in episodes caused by rhinovirus than in episodes caused by RSV. The hospitals continued to use M-PCR for NPA-containing samples found to be RSV negative by DFA. Test implementation is more likely with higher diagnostic yield and a protocol that reflects day-to-day clinical and laboratory operations. PMID:15583287

  17. Molecular detection of drug resistance to ofloxacin and kanamycin in Mycobacterium tuberculosis by using multiplex allele-specific PCR.

    PubMed

    Kumari, Richa; Banerjee, Tuhina; Anupurba, Shampa

    2017-04-09

    Drug resistance in tuberculosis (TB) is the biggest global health challenge as it hinders the tuberculosis control program and makes the disease more worsen. Molecular methods interrupt the spread of drug resistance by facilitating the appropriate anti- tuberculosis therapy at correct time through rapid diagnosis of multi drug resistant (MDR) and extensively drug resistant tuberculosis (XDR-TB). In this study we standardized and evaluated the diagnostic utility of multiplex allele specific PCR (MAS-PCR) targeting gyrA D94G and rrs A1401G mutations for detection of resistance against two key drugs (ofloxacin and kanamycin) of second line anti tuberculosis treatment. MAS-PCR assays targeting gyrA D94G and rrs A1401G for ofloxacin (OFL) and kanamycin (KAN) resistance respectively were carried out on 150 multidrug resistant isolates of Mycobacterium tuberculosis. The results were compared with phenotypic drug susceptibility test against ofloxacin and kanamycin by using proportion method on MGIT 960. Of 150 MDR isolates 50 were resistant to both ofloxacin and kanamycin, 36 were resistant to ofloxacin only, 8 were resistant to kanamycin only and 56 were susceptible to both the drugs. MAS-PCR correctly identified gyrA D94G and rrs A1401G mutations in phenotypically resistant isolates with a specificity of 100%. The sensitivity of MAS-PCR was 88.66%, 93.55% and 86% for OFL, KAN and XDR-TB respectively. There was no mutation detected at gyrA D94G region of 12.86% (11 of 86) OFL resistant isolates while 6.89% (4 of 58) of KAN resistant isolates did not carry rrs A1401G substitution. MAS-PCR proves to be a rapid tool for detection of drug resistance which could also be used as an initial marker for screening of XDR-TB. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Using multiplex PCR amplification and typing kits for the analysis of DNA evidence in a serial killer case.

    PubMed

    Hochmeister, M N; Budowle, B; Eisenberg, A; Borer, U V; Dirnhofer, R

    1996-01-01

    Analysis of DNA evidence in a serial killer case was performed using the AmpliType HLA-DQ alpha-, AmpliType PM-, and the GenePrint STR Multiplex System PCR Amplification Kits. In addition, a sex typing procedure using the X-Y homologous gene amelogenin was carried out. DNA profiles from a single hair with attached sheath material, recovered from underneath the seat cover of the suspect's car seat were compared with DNA profiles derived from reference head hairs from a homicide victim. From the evidentiary sample only 9 ng of human DNA could be recovered. In a sample, where the quantity of DNA becomes a critical issue a powerful route is the simultaneous amplification of several loci (multiplex PCR). This is the first report where commercially available multiplex PCR amplification and typing kits have been introduced for the analysis of DNA evidence in a serial killer case and the analysis has been admitted in court.

  19. Development of Multiplex PCR for Simultaneous Detection of Citrus Viruses and the Incidence of Citrus Viral Diseases in Late-Maturity Citrus Trees in Jeju Island

    PubMed Central

    Hyun, Jae Wook; Hwang, Rok Yeon; Jung, Kyung Eun

    2017-01-01

    Satsuma dwarf virus (SDV) or Citrus mosaic sadwavirus (CiMV) were not consistently detected in RT-PCR assay with the primer sets based on gene of Japan isolates. SDV and CiMV isolates were distinctively divided into two groups based on phylogenetic analysis of PP2 gene cloned from 22 Korean isolates, and the Korean CiMV and SDV isolates shared 95.5–96.2% and 97.1–97.7% sequence identity with Japanese isolate, respectively. We developed PP2-1 primer set based on the PP2 gene sequence of Korean isolates to simultaneously and effectively detect SDV and CiMV. And CTLV-2013 and CTV-po primer sets were newly designed for detection of Citrus tatter leaf virus (CTLV) and Citrus tristeza virus (CTV), respectively. Using these primer sets, a new multiplex PCR assay was developed as a means to simultaneously detect 4 citrus viruses, CTV, CTLV, SDV, and CiMV. The degree of detection by the multiplex PCR were consistent with those of uniplex RT-PCR for detection of each of the viruses. Therefore, the new multiplex PCR provides an efficient method for detecting 4 citrus viruses, which will help diagnose many citrus plants at the same time. We verified that 35.2% and 72.1% of 775 trees in 155 orchards were infected with SDV or CiMV (SDV/CiMV) and CTV by the multiplex-PCR assay, respectively, and CTLV was not detected in any of the trees tested. PMID:28592949

  20. Oral candidiasis: a comparison between conventional methods and multiplex polymerase chain reaction for species identification.

    PubMed

    Liguori, G; Di Onofrio, V; Lucariello, A; Gallé, F; Signoriello, G; Colella, G; D'Amora, M; Rossano, F

    2009-02-01

    Oral candidiasis is the most common fungal infection in dental practice, and is caused by yeasts that are normally present in the endogenous flora. To evaluate a rapid diagnostic method for identification of Candida oral isolates, a multiplex polymerase chain reaction (PCR) was carried out on colonies and on oral rinse solutions from 95 subjects with suspected oral candidiasis and results were compared with those from seven commonly used phenotypic identification systems. Between four and nine species were characterized in the samples by the phenotypic methods. PCR identified the same species in 60 (74%) samples from both colony and oral rinse solutions. Statistical analysis, carried out only for the three most frequently isolated species (Candida albicans, Candida glabrata, and Candida tropicalis), showed good concordance in the comparison of multiplex PCR with API 20C AUX and with the Rapid Yeast Identification Panel; conversely, significant differences were registered in the comparison between the molecular method and other phenotypic systems, including four chromogenic media and the automated system Vitek2. Multiplex PCR was rapid and effective in the identification of Candida species and allowed the detection of more than one species in the same sample.

  1. Comparison of multiplex real-time PCR and PCR-reverse blot hybridization assay for the direct and rapid detection of bacteria and antibiotic resistance determinants in positive culture bottles.

    PubMed

    Wang, Hye-Young; Kim, Seoyong; Kim, Jungho; Park, Soon Deok; Kim, Hyo Youl; Uh, Young; Lee, Hyeyoung

    2016-09-01

    The aim of this study was to evaluate the performance of a commercially available multiplex real-time PCR assay and a PCR-reverse blot hybridization assay (PCR-REBA) for the rapid detection of bacteria and identification of antibiotic resistance genes directly from blood culture bottles and to compare the results of these molecular assays with conventional culture methods. The molecular diagnostic methods were used to evaluate 593 blood culture bottles from patients with bloodstream infections. The detection positivity of multiplex real-time PCR assay for Gram-positive bacteria, Gram-negative bacteria and Candida spp. was equivalent to PCR-REBA as 99.6 %, 99.1 % and 100 %, respectively. Using conventional bacterial cultures as the gold standard, the sensitivity, specificity, positive predictive value and negative predictive value of these two molecular methods were 99.5 % [95 % confidence interval (CI), 0.980-1.000; P<0.001), 100 % (95 % CI, 0.983-1.000; P<0.001), 100 % and 99 %, respectively. However, positivity of the Real-methicillin-resistant Staphylococcusaureus multiplex real-time PCR assay targeting the mecA gene to detect methicillin resistance was lower than that of the PCR-REBA method, detecting an overall positivity of 98.4 % (n=182; 95 % CI, 0.964-1.000; P<0.009) and 99.5 % (n=184; 95 % CI, 0.985-1.000; P<0.0001), respectively. The entire two methods take about 3 h, while results from culture can take up to 48-72 h. Therefore, the use of these two molecular methods was rapid and reliable for the characterization of causative pathogens in bloodstream infections.

  2. Simultaneous detection of three fish rhabdoviruses using multiplex real-time quantitative RT-PCR assay.

    PubMed

    Liu, Zongxiao; Teng, Yong; Liu, Hong; Jiang, Yulin; Xie, Xiayang; Li, Huifang; Lv, Jiangqiang; Gao, Longying; He, Junqiang; Shi, Xiujie; Tian, Feiyan; Yang, Jingshun; Xie, Congxin

    2008-04-01

    Spring viremia of carp virus (SVCV), infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are three important fish rhabdoviruses, causing serious Office International des Epizooties (OIE) classified diseases in wild and farmed fish. Here, a new multiplex real-time quantitative RT-PCR (mqRT-PCR) assay was developed for simultaneous detection, identification and quantification of these three rhabdoviruses. The sets of primers and probes were targeted to conserved regions of glycoprotein (G) gene of SVCV, nucleoprotein (N) gene of IHNV and G gene of VHSV and used to amplify. The sensitivity, specificity and interference test of mqRT-PCR assay was analyzed. It was shown that the detection levels of 100 copies of SVCV, 220 copies of IHNV and 140 copies of VHSV were achieved, and there was no non-specific amplification and cross-reactivity using RNA of pike fry rhabdovirus (PFRV), infectious pancreatic necrosis virus (IPNV) and grass carp reovirus (GCRV). A total of 80 clinical fish samples were tested using the mqRT-PCR assay and the results were confirmed by antigen-capture ELISA and cell culture assay. This assay has the potential to be used for both research applications and diagnosis.

  3. Confirmed identification and toxin profiling of Campylobacter jejuni using a thermostabilized multiplex PCR formulation.

    PubMed

    Ramachandran, Nitya; Ramlal, Shylaja; Batra, Harsh Vardhan

    2017-07-01

    Cytolethal distending toxin (CDT) producing Campylobacter jejuni species are one of the leading causes of human gastroenteritis worldwide. The main intent of the study was to develop a multiplex PCR assay for the confirmed identification and toxin profiling of C. jejuni. The genes targeted were rpo B as genus specific, hip O for species; cdt A, cdt B, cdt C encoding respective subunit proteins of CDT with Internal Amplification Control (IAC). To enhance its application as a pre-mixed ready-to-use format, the master mix of developed mPCR was dried by lyophilization and stability was assessed. Thermostabilized reagents showed stability of 1.5 months at room-temperature and upto six months at 4 °C without any loss of functionality. The assay was evaluated on a number of presumptive Campylobacter isolates along with biochemical tests. Results obtained indicated the accurate identification of C. jejuni by developed mPCR format in contrast to misconception associated with biochemical assays. The assay was also tested on spiked samples for its real-time utility. Altogether, the room-temperature storable and ready-to- use mPCR format developed in this study could be preferred for rapid detection and confirmed identification of toxigenic strains of C. jejuni in place of conventional biochemical assays. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  4. Use of an Automated Nested Multiplex Respiratory Pathogen PCR Panel Postmortem in the Pediatric Forensic Setting.

    PubMed

    Baker, Tiffany; Schandl, Cynthia; Presnell, Susan Erin; Madory, James; Nolte, Frederick S; Batalis, Nicholas

    2017-09-01

    Respiratory pathogens have been detected in forensic investigations using multiple techniques; however, no study has examined the use of automated, nested, multiplex polymerase chain reaction (ANM-PCR), commonly used in living patients, in the forensic setting. This retrospective study assessed the utility of ANM-PCR in detecting respiratory pathogens in the pediatric forensic setting. Respiratory samples from 35 cases were tested for up to 20 respiratory pathogens. 51.4% of these cases yielded a positive ANM-PCR result, 20% of which were considered the cause of or contributory to death. The most commonly detected pathogens were rhinovirus/enterovirus and respiratory syncytial virus, and these were the only pathogens determined to play a significant role in cause of death. The sampled sites and postmortem intervals tested did not affect the likelihood of a positive or negative test. ANM-PCR panels are effective, affordable, and rapid ancillary tools in evaluating cause of death in the forensic pediatric population. © 2017 American Academy of Forensic Sciences.

  5. Report of an international collaborative study to evaluate the suitability of multiplex PCR as an identity assay for different sub-strains of BCG vaccine.

    PubMed

    Markey, Kevin; Ho, Mei M; Choudhury, Babna; Seki, Masaaki; Ju, Liu; Castello-Branco, Luiz R R; Gairola, Sunil; Zhao, Aihua; Shibayama, Keigo; Andre, Murielle; Corbel, Michael J

    2010-10-08

    Current methods for the identification of BCG vaccine in quality control settings involve acid-fast staining with microscopic examination. However, this method is unable to distinguish the many different sub-strains of BCG, or to differentiate BCG strains from virulent members of the Mycobacterium tuberculosis complex. A multiplex PCR (mPCR) which uses six target regions in mycobacteria has been developed to identify specific sub-strains of BCG. This study reports the findings from an international collaborative study to assess the accuracy, robustness and reproducibility of this mPCR method to differentiate BCG sub-strains. The method was found to fulfil these criteria successfully and was able to distinguish BCG sub-strains in vaccine preparations. The majority of the participants in the study generated the expected PCR product profiles indicating the method is also robust.

  6. Superior Multiplexing Capacity of PlexPrimers Enables Sensitive and Specific Detection of SNPs and Clustered Mutations in qPCR

    PubMed Central

    Tan, Lit Yeen; Walker, Samantha Michelle; Lonergan, Tina; Lima, Nicole Elizabeth; Todd, Alison Velyian

    2017-01-01

    Background Whilst qPCR provides an extremely powerful tool for genetic analysis, some applications such as multiplexing variant alleles (eg SNPs, point mutations or deletions), remain challenging using current primer/probe systems. The novel design features of PlexPrimers allow sensitive, multiplexed analysis of variant alleles even when these are tightly clustered. Method PlexPrimers were combined with PlexZymes in qPCR assays for the detection of SNPs in human absorption, distribution, metabolism, and excretion (ADME) genes; clustered mutations in the 23S rRNA gene which confer antibiotic resistance to Mycoplasma genitalium; and deletions within the human epidermal growth factor receptor (EGFR) gene. Results The combination of PlexPrimers and PlexZymes allowed robust multiplexing of targets which resulted in 100% concordance with results obtained using hydrolysis probe kits for 14 SNPs in the ADME genes. A 7-plex qPCR assay targeting M. genitalium, 5 clustered mutations associated with macrolide resistance and an internal control, allowed efficient amplification of all targets, with all 5 mutations detected in a single channel. Finally, the strategy was employed to analyse common EGFR mutants with high sensitivity, detecting deletions present at only 0.01%. Conclusion PlexPrime is a novel technology for the detection of genetic variants. Unlike previous strategies, the combination of PlexPrimers with PlexZymes enables both allele-specific detection and allele-specific amplification in qPCR. The study demonstrated highly sensitive and specific detection of mutations and SNPs, and superior multiplexing capacity. The ability to multiplex clustered genetic variants reduces the time to result providing more actionable information. PMID:28114309

  7. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection.

    PubMed

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-14

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  8. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    NASA Astrophysics Data System (ADS)

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  9. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    PubMed Central

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-01-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets. PMID:27739510

  10. Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCR assays.

    PubMed

    Coiras, M T; Aguilar, J C; García, M L; Casas, I; Pérez-Breña, P

    2004-03-01

    There is a need for rapid, sensitive, and accurate diagnosis of lower respiratory tract infections in children, elderly, and immunocompromised patients, who are susceptible to serious complications. The multiplex RT-nested PCR assay has been used widely for simultaneous detection of non-related viruses involved in infectious diseases because of its high specificity and sensitivity. A new multiplex RT-PCR assay is described in this report. This approach includes nested primer sets targeted to conserve regions of human parainfluenza virus haemagglutinin, human coronavirus spike protein, and human enterovirus and rhinovirus polyprotein genes. It permits rapid, sensitive, and simultaneous detection and typing of the four types of parainfluenza viruses (1, 2, 3, 4AB), human coronavirus 229E and OC43, and the generic detection of enteroviruses and rhinoviruses. The testing of 201 clinical specimens with this multiplex assay along with other one formerly described by our group to simultaneously detect and type the influenza viruses, respiratory syncytial viruses, and a generic detection of all serotypes of adenovirus, covers the detection of most viruses causing respiratory infectious disease in humans. The results obtained were compared with conventional viral culture, immunofluorescence assay, and a third multiplex RT-PCR assay for all human parainfluenza viruses types described previously. In conclusion, both multiplex RT-PCR assays provide a system capable of detecting and identifying simultaneously 14 different respiratory viruses in clinical specimens with high sensitivity and specificity, being useful for routine diagnosis and survey of these viruses within the population.

  11. Single-step multiplex RT-PCR for simultaneous and colourimetric detection of six RNA viruses in olive trees.

    PubMed

    Bertolini, E; Olmos, A; Martínez, M C; Gorris, M T; Cambra, M

    2001-07-01

    A single-step multiplex RT-PCR was developed for the simultaneous and colourimetric detection of six RNA viruses (Cucumber mosaic virus, Cherry leaf roll virus, strawberry latent ringspot virus, Arabis mosaic virus, Olive latent-1 virus and Olive latent-2 virus) which infect olive trees. Six compatible primer set for one-step RT-PCR amplification in a single closed-tube and 3' digoxigenin labelled probes were designed in optimal, specific and conserved regions. The method has been assessed with 195 Spanish field olive trees, suggesting that approximately 1.5% of the tested material was infected by Cucumber mosaic virus and 0.5% by Cherry leaf roll virus. This method saves time and reagent costs compared with monospecific RT-PCR which needs several reactions for the same number of tests. Using colourimetric detection, it is possible to analyse many samples, it increases sensitivity 10-fold, and whilst facilitating the interpretation of results, it avoids the use of gels and the toxic ethidium bromide. The method could be used routinely for sanitary and certification programmes.

  12. Group-Specific Multiplex PCR Detection Systems for the Identification of Flying Insect Prey

    PubMed Central

    Sint, Daniela; Niederklapfer, Bettina; Kaufmann, Ruediger; Traugott, Michael

    2014-01-01

    The applicability of species-specific primers to study feeding interactions is restricted to those ecosystems where the targeted prey species occur. Therefore, group-specific primer pairs, targeting higher taxonomic levels, are often desired to investigate interactions in a range of habitats that do not share the same species but the same groups of prey. Such primers are also valuable to study the diet of generalist predators when next generation sequencing approaches cannot be applied beneficially. Moreover, due to the large range of prey consumed by generalists, it is impossible to investigate the breadth of their diet with species-specific primers, even if multiplexing them. However, only few group-specific primers are available to date and important groups of prey such as flying insects have rarely been targeted. Our aim was to fill this gap and develop group-specific primers suitable to detect and identify the DNA of common taxa of flying insects. The primers were combined in two multiplex PCR systems, which allow a time- and cost-effective screening of samples for DNA of the dipteran subsection Calyptratae (including Anthomyiidae, Calliphoridae, Muscidae), other common dipteran families (Phoridae, Syrphidae, Bibionidae, Chironomidae, Sciaridae, Tipulidae), three orders of flying insects (Hymenoptera, Lepidoptera, Plecoptera) and coniferous aphids within the genus Cinara. The two PCR assays were highly specific and sensitive and their suitability to detect prey was confirmed by testing field-collected dietary samples from arthropods and vertebrates. The PCR assays presented here allow targeting prey at higher taxonomic levels such as family or order and therefore improve our ability to assess (trophic) interactions with flying insects in terrestrial and aquatic habitats. PMID:25525799

  13. A tailed PCR procedure for cost-effective, two-order multiplex sequencing of candidate genes in polyploid plants.

    PubMed

    Gholami, Mahmood; Bekele, Wubishet A; Schondelmaier, Joerg; Snowdon, Rod J

    2012-08-01

    Complex polyploid crop genomes can be recalcitrant towards conventional DNA sequencing approaches for allele mining in candidate genes for valuable traits. In the past, this has greatly complicated the transfer of knowledge on promising candidate genes from model plants to even closely related polyploid crops. Next-generation sequencing offers diverse solutions to overcome such difficulties. Here, we present a method for multiplexed 454 sequencing in gene-specific PCR amplicons that can simultaneously address multiple homologues of given target genes. We devised a simple two-step PCR procedure employing a set of barcoded M13/T7 universal fusion primers that enable a cost-effective and efficient amplification of large numbers of target gene amplicons. Sequencing-ready amplicons are generated that can be simultaneously sequenced in pools comprising multiple amplicons from multiple genotypes. High-depth sequencing allows resolution of the resulting sequence reads into contigs representing multiple homologous loci, with only insignificant off-target capture of paralogues or PCR artefacts. In a case study, the procedure was tested in the complex polyploid genome of Brassica napus for a set of nine genes identified in Arabidopsis as candidates for regulation of seed development and oil content. Up to six copies of these genes were expected in B. napus. SNP discovery was performed by pooled multiplex sequencing of 30 amplicons in 20 diverse B. napus accessions with interesting trait variation for oil content, providing a basis for comparative mapping to relevant quantitative trait loci and for subsequent marker-assisted breeding.

  14. Identification of root rot fungi in nursery seedlings by nested multiplex PCR.

    PubMed Central

    Hamelin, R C; Bérubé, P; Gignac, M; Bourassa, M

    1996-01-01

    The internal transcribed spacer (ITS) of the ribosomal DNA (rDNA) subunit repeat was sequenced in 12 isolates of Cylindrocladium floridanum and 11 isolates of Cylindrocarpon destructans. Sequences were aligned and compared with ITS sequences of other fungi in GenBank. Some intraspecific variability was present within our collections of C. destructans but not in C. floridanum. Three ITS variants were identified within C. destructans, but there was no apparent association between ITS variants and host or geographic origin. Two internal primers were synthesized for the specific amplification of portions of the ITS for C. floridanum, and two primers were designed to amplify all three variants of C. destructans. The species-specific primers amplified PCR products of the expected length when tested with cultures of C, destructans and C. floridanum from white spruce, black spruce, Norway spruce, red spruce, jack pine, red pine, and black walnut from eight nurseries and three plantations in Quebec. No amplification resulted from PCR reactions on fungal DNA from 26 common contaminants of conifer roots. For amplifications directly from infected tissues, a nested primer PCR using two rounds of amplification was combined with multiplex PCR approach resulting in the amplification of two different species-specific PCR fragments in the same reaction. First, the entire ITS was amplified with one universal primer and a second primer specific to fungi; a second round of amplification was carried out with species-specific primers that amplified a 400-bp PCR product from C. destructans and a 328-bp product from C. floridanum. The species-specific fragments were amplified directly from infected roots from which one or the two fungi had been isolated. PMID:8899993

  15. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses.

    PubMed

    Shi, Xiju; Liu, Xuming; Wang, Qin; Das, Amaresh; Ma, Guiping; Xu, Lu; Sun, Qing; Peddireddi, Lalitha; Jia, Wei; Liu, Yanhua; Anderson, Gary; Bai, Jianfa; Shi, Jishu

    2016-10-01

    Mixed infection with different pathogens is common in swine production systems especially under intensive production conditions. Quick and accurate detection and differentiation of different pathogens are necessary for epidemiological surveillance, disease management and import and export controls. In this study, we developed and validated a panel of multiplex real-time PCR/RT-PCR assays composed of four subpanels, each detects three common swine pathogens. The panel detects 12 viruses or viral serotypes, namely, VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU and SIV. Correlation coefficients (R(2)) and PCR amplification efficiencies of all singular and triplex real-time PCR reactions are within the acceptable range. Comparison between singular and triplex real-time PCR assays of each subpanel indicates that there is no significant interference on assay sensitivities caused by multiplexing. Specificity tests on 226 target clinical samples or 4 viral strains and 91 non-target clinical samples revealed that the real-time PCR panel is 100% specific, and there is no cross amplification observed. The limit of detection of each triplex real-time PCR is less than 10 copies per reaction for DNA, and less than 16 copies per reaction for RNA viruses. The newly developed multiplex real-time PCR panel also detected different combinations of co-infections as confirmed by other means of detections. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Rapid Detection of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari in Fresh Chicken Meat and By-Products in Bangkok, Thailand, Using Modified Multiplex PCR.

    PubMed

    Saiyudthong, S; Phusri, K; Buates, S

    2015-07-01

    A multiplex PCR assay for simultaneous detection and differentiation of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari was developed and validated to assess the occurrence of these bacteria in fresh chicken meat and by-products in Bangkok, Thailand, by using a new combination of four previously published PCR primers for C. jejuni, C. coli, C. lari, and a universal 16S rDNA gene as an internal control. The specificity was determined by using 13 strains of other bacteria. With pure culture DNA, the detection limit was 0.017 ng/PCR for C. jejuni and C. coli and was 0.016 ng/PCR for C. lari. It can detect 10 CFU of C. jejuni, C. coli, and C. lari in 2 g of chicken meat within a 16-h enrichment time. Our multiplex PCR assay was applied for identification of Campylobacter spp. in 122 supermarket samples and 108 fresh market samples. Of the 230 samples evaluated by multiplex PCR, 54.0, 3.3, and 10.7% of supermarket samples were positive for C. jejuni, C. coli, and mixed C. jejuni and C. coli, respectively, and 56.5 and 33.3% of fresh market samples were positive for C. jejuni and mixed C. jejuni and C. coli, respectively. No sample was positive for C. lari. Fresh market samples had significantly higher C. jejuni and C. coli contamination than those from supermarkets (relative risk: 1.3; P = 0.0001). Compared with the culture method (a gold standard), the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of multiplex PCR were 97.7, 86.8, 96.1, 92.0, and 95.2%, respectively. No significant difference was observed between results from two methods (P = 0.55). Therefore, the established multiplex PCR was not only rapid and easy to perform but had a high sensitivity and specificity to distinguish between C. jejuni, C. coli, and C. lari, even in samples containing mixed contamination. Our study indicated that fresh chicken meat and by-products from fresh markets were significantly less hygienic than those

  17. Impact of Early Detection of Respiratory Viruses by Multiplex PCR Assay on Clinical Outcomes in Adult Patients

    PubMed Central

    Schuetz, Audrey N.; Jenkins, Stephen G.; Calfee, David P.; Walsh, Thomas J.; Wells, Martin T.; Hollenberg, James P.; Glesby, Marshall J.

    2016-01-01

    Rapid and definitive diagnosis of viral respiratory infections is imperative in patient triage and management. We compared the outcomes for adult patients with positive tests for respiratory viruses at a tertiary care center across two consecutive influenza seasons (winters of 2010-2011 and 2012). Infections were diagnosed by conventional methods in the first season and by multiplex PCR (FilmArray) in the second season. FilmArray decreased the time to diagnosis of influenza compared to conventional methods (median turnaround times of 1.7 h versus 7.7 h, respectively; P = 0.015); FilmArray also decreased the time to diagnosis of non-influenza viruses (1.5 h versus 13.5 h, respectively; P < 0.0001). Multivariate logistic regression found that a diagnosis of influenza by FilmArray was associated with significantly lower odds ratios (ORs) for admission (P = 0.046), length of stay (P = 0.040), duration of antimicrobial use (P = 0.032), and number of chest radiographs (P = 0.005), when controlling for potential confounders. We conclude that the rapid turnaround time, multiplex nature of the test (allowing simultaneous detection of an array of viruses), and superior sensitivity of FilmArray may improve the evaluation and management of patients suspected of having respiratory virus infections. PMID:27225406

  18. Development and validation of a multiplex real-time PCR for detection of Clostridium chauvoei and Clostridium septicum.

    PubMed

    Lange, Martin; Neubauer, Heinrich; Seyboldt, Christian

    2010-08-01

    Clostridium chauvoei is the causative agent of blackleg in cattle and sheep. The clinical symptoms of this severe disease are very similar to that of malignant edema (Clostridium septicum), infections of other Clostridium species belonging to the gas edema complex, and anthrax (Bacillus anthracis). C. chauvoei and C. septicum are closely related taxa and share many phenotypic properties hampering diagnosis by using traditional microbiological methods. Thus, there is a need for a fast and reliable identification method for specific detection of both species in clinical samples. The multiplex real-time PCR assay presented here is based on the detection of the spo0A gene and enables the simultaneous identification of C. chauvoei and C. septicum. The assay design includes an amplification control DNA template for the recognition of PCR-inhibitors. Assay validation was performed using a collection of 29 C. chauvoei, 38 C. septicum strains and 26 strains of other Clostridium species. Furthermore, the real-time PCR assay was successfully tested on tissue samples from 19 clinical blackleg cases. The assay allo