[Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].
Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing
2012-08-01
Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.
Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.
Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing
2018-02-01
The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.
Davidson, Irit; Raibshtein, I; Al-Touri, A
2013-06-01
The worldwide distribution of chicken anemia virus (CAV) and Marek's disease virus (MDV) is well documented. In addition to their economic significance in single- or dual-virus infections, the two viruses can often accompany various other pathogens and affect poultry health either directly, by causing tumors, anemia, and delayed growth, or indirectly, by aggravating other diseases, as a result of their immunosuppressive effects. After a decade of employing the molecular diagnosis of those viruses, which replaced conventional virus isolation, we present the development of a real-time multiplex PCR for the simultaneous detection of both viruses. The real-time PCRs for MDV and for CAV alone are more sensitive than the respective end-point PCRs. In addition, the multiplex real-time shows a similar sensitivity when compared to the single real-time PCR for each virus. The newly developed real-time multiplex PCR is of importance in terms of the diagnosis and detection of low copies of each virus, MDV and CAV in single- and in multiple-virus infections, and its applicability will be further evaluated.
Ahberg, Christian D.; Manz, Andreas; Neuzil, Pavel
2015-01-01
Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio. PMID:26088868
Frølund, Maria; Björnelius, Eva; Lidbrink, Peter; Ahrens, Peter; Jensen, Jørgen Skov
2014-01-01
A novel multiplex quantitative real-time polymerase chain reaction (qPCR) for simultaneous detection of U. urealyticum and U. parvum was developed and compared with quantitative culture in Shepard's 10 C medium for ureaplasmas in urethral swabs from 129 men and 66 women, and cervical swabs from 61 women. Using culture as the gold standard, the sensitivity of the qPCR was 96% and 95% for female urethral and cervical swabs, respectively. In male urethral swabs the sensitivity was 89%. The corresponding specificities were 100%, 87% and 99%. The qPCR showed a linear increasing DNA copy number with increasing colour-changing units. Although slightly less sensitive than culture, this multiplex qPCR assay detecting U. urealyticum and U. parvum constitutes a simple and fast alternative to the traditional methods for identification of ureaplasmas and allows simultaneous species differentiation and quantitation in clinical samples. Furthermore, specimens overgrown by other bacteria using the culture method can be evaluated in the qPCR.
Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu
2011-09-01
To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.
Janzen, Timothy W; Thomas, Matthew C; Goji, Noriko; Shields, Michael J; Hahn, Kristen R; Amoako, Kingsley K
2015-02-01
Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml(-1), and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.
Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang
2018-05-01
Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2 > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.
USDA-ARS?s Scientific Manuscript database
A duplex quantitative real-time polymerase chain reaction (qPCR) assay was developed to differentiate between Bolbophorus damnificus and Bolbophorus type II species cercariae. Both trematode species are prevalent throughout the commercial catfish industry,.as both infect the ram’s horn snail, Plano...
Dung, Tran Thi Ngoc; Phat, Voong Vinh; Nga, Tran Vu Thieu; My, Phan Vu Tra; Duy, Pham Thanh; Campbell, James I.; Thuy, Cao Thu; Hoang, Nguyen Van Minh; Van Minh, Pham; Le Phuc, Hoang; Tuyet, Pham Thi Ngoc; Vinh, Ha; Kien, Duong Thi Hue; Huy, Huynh Le Anh; Vinh, Nguyen Thanh; Nga, Tran Thi Thu; Hau, Nguyen Thi Thu; Chinh, Nguyen Tran; Thuong, Tang Chi; Tuan, Ha Manh; Simmons, Cameron; Farrar, Jeremy J.; Baker, Stephen
2013-01-01
Rotavirus (RoV) and Norovirus (NoV) are the main causes of viral gastroenteritis. Currently, there is no validated multiplex real-time PCR that can detect and quantify RoV and NoV simultaneously. The aim of the study was to develop, validate, and internally control a multiplex one-step RT real-time PCR to detect and quantify RoV and NoV in stool samples. PCR sensitivity was assessed by comparing amplification against the current gold standard, enzyme immunoassay (EIA), on stool samples from 94 individuals with diarrhea and 94 individuals without diarrhea. PCR detected 10% more RoV positive samples than EIA in stools samples from patients with diarrhea. PCR detected 23% more NoV genogroup II positive samples from individuals with diarrhea and 9% more from individuals without diarrhea than EIA, respectively. Genotyping of the PCR positive/EIA negative samples suggested the higher rate of PCR positivity, in comparison to EIA, was due to increased sensitivity, rather than nonspecific hybridization. Quantitation demonstrated that the viral loads of RoV and NoV in the stools of diarrheal patients were an order of magnitude greater than in individuals without diarrhea. This internally controlled real-time PCR method is robust, exhibits a high degree of reproducibility, and may have a greater utility and sensitivity than commercial EIA kits. PMID:23046990
Methods for detection of GMOs in food and feed.
Marmiroli, Nelson; Maestri, Elena; Gullì, Mariolina; Malcevschi, Alessio; Peano, Clelia; Bordoni, Roberta; De Bellis, Gianluca
2008-10-01
This paper reviews aspects relevant to detection and quantification of genetically modified (GM) material within the feed/food chain. The GM crop regulatory framework at the international level is evaluated with reference to traceability and labelling. Current analytical methods for the detection, identification, and quantification of transgenic DNA in food and feed are reviewed. These methods include quantitative real-time PCR, multiplex PCR, and multiplex real-time PCR. Particular attention is paid to methods able to identify multiple GM events in a single reaction and to the development of microdevices and microsensors, though they have not been fully validated for application.
NAIMA as a solution for future GMO diagnostics challenges.
Dobnik, David; Morisset, Dany; Gruden, Kristina
2010-03-01
In the field of genetically modified organism (GMO) diagnostics, real-time PCR has been the method of choice for target detection and quantification in most laboratories. Despite its numerous advantages, however, the lack of a true multiplexing option may render real-time PCR less practical in the face of future GMO detection challenges such as the multiplicity and increasing complexity of new transgenic events, as well as the repeated occurrence of unauthorized GMOs on the market. In this context, we recently reported the development of a novel multiplex quantitative DNA-based target amplification method, named NASBA implemented microarray analysis (NAIMA), which is suitable for sensitive, specific and quantitative detection of GMOs on a microarray. In this article, the performance of NAIMA is compared with that of real-time PCR, the focus being their performances in view of the upcoming challenge to detect/quantify an increasing number of possible GMOs at a sustainable cost and affordable staff effort. Finally, we present our conclusions concerning the applicability of NAIMA for future use in GMO diagnostics.
Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli
2014-05-30
Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV.
Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok
2014-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566
Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli
2014-01-01
Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV. PMID:24886818
Li, Jiandong; Qu, Jing; He, Chengcheng; Zhang, Shuo; Li, Chuan; Zhang, Quanfu; Liang, Mifang; Li, Dexin
2014-01-01
Background Viral hemorrhagic fevers (VHFs) are a group of animal and human illnesses that are mostly caused by several distinct families of viruses including bunyaviruses, flaviviruses, filoviruses and arenaviruses. Although specific signs and symptoms vary by the type of VHF, initial signs and symptoms are very similar. Therefore rapid immunologic and molecular tools for differential diagnosis of hemorrhagic fever viruses (HFVs) are important for effective case management and control of the spread of VHFs. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay is one of the reliable and desirable methods for specific detection and quantification of virus load. Multiplex PCR assay has the potential to produce considerable savings in time and resources in the laboratory detection. Results Primers/probe sets were designed based on appropriate specific genes for each of 28 HFVs which nearly covered all the HFVs, and identified with good specificity and sensitivity using monoplex assays. Seven groups of multiplex one-step real-time qRT-PCR assays in a universal experimental system were then developed by combining all primers/probe sets into 4-plex reactions and evaluated with serial dilutions of synthesized viral RNAs. For all the multiplex assays, no cross-reactivity with other HFVs was observed, and the limits of detection were mainly between 45 and 150 copies/PCR. The reproducibility was satisfactory, since the coefficient of variation of Ct values were all less than 5% in each dilution of synthesized viral RNAs for both intra-assays and inter-assays. Evaluation of the method with available clinical serum samples collected from HFRS patients, SFTS patients and Dengue fever patients showed high sensitivity and specificity of the related multiplex assays on the clinical specimens. Conclusions Overall, the comprehensive multiplex one-step real-time qRT-PCR assays were established in this study, and proved to be specific, sensitive, stable and easy to serve as a useful tool for rapid detection of HFVs. PMID:24752452
2010-04-01
53592), Escherichia coli, Klebsiella pneu- moniae (ATCC 13883), Pseudomonas aeruginosa (ATCC 97), Mycoplasma pneu- moniae, and Legionella pneumophila... Legionella pneumophila. Additionally, when we tested all samples with the multiplex assays, we did not see any cross- reactivity (data not shown...Chlamydophila pneumoniae Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa Mycoplasma pneumoniae Legionella pneumophila VOL. 48, 2010
Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P
2015-12-01
Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.
Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong
2011-01-01
Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.
Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi
2011-01-01
In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.
Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.
2015-01-01
Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438
Dinoop, K P; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R P; Narayanan, P
2016-01-01
Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated ( P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods.
van Zanten, E; Wisselink, G J; Stoll, S; Alvarez, R; Kooistra-Smid, A M D
2011-02-01
A shortened DNA extraction protocol for the QIAsymphony SP was evaluated by quantitative and qualitative comparison of real-time PCR results of 150 co-extracted stool samples. The average ∆Cycle threshold value for positive pathogenic targets was 0.28 Ct. A consensus of 96.91%, with a correlation coefficient of 0.9880 was recorded. Copyright © 2010 Elsevier B.V. All rights reserved.
Malandraki, Ioanna; Varveri, Christina; Olmos, Antonio; Vassilakos, Nikon
2015-03-01
A one-step multiplex real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan chemistry was developed for the simultaneous detection of Pear blister canker viroid and Apple scar skin viroid along with universal detection of phytoplasmas, in pome trees. Total nucleic acids (TNAs) extraction was performed according to a modified CTAB protocol. Primers and TaqMan MGB probes for specific detection of the two viroids were designed in this study, whereas for phytoplasma detection published universal primers and probe were used, with the difference that the later was modified to carry a MGB quencher. The pathogens were detected simultaneously in 10-fold serial dilutions of TNAs from infected plant material into TNAs of healthy plant up to dilutions 10(-5) for viroids and 10(-4) for phytoplasmas. The multiplex real-time assay was at least 10 times more sensitive than conventional protocols for viroid and phytoplasma detection. Simultaneous detection of the three targets was achieved in composite samples at least up to a ratio of 1:100 triple-infected to healthy tissue, demonstrating that the developed assay has the potential to be used for rapid and massive screening of viroids and phytoplasmas of pome fruit trees in the frame of certification schemes and surveys. Copyright © 2014 Elsevier B.V. All rights reserved.
Dinoop, K.P.; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R.P.; Narayanan, P.
2016-01-01
Background & objectives: Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Methods: Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. Results: In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated (P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Interpretation & conclusions: Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods. PMID:26997014
Vasquez, Joshua J; Hussien, Rajaa; Aguilar-Rodriguez, Brandon; Junger, Henrik; Dobi, Dejan; Henrich, Timothy J; Thanh, Cassandra; Gibson, Erica; Hogan, Louise E; McCune, Joseph; Hunt, Peter W; Stoddart, Cheryl A; Laszik, Zoltan G
2018-06-01
Persistent tissue reservoirs of HIV present a major barrier to cure. Defining subsets of infected cells in tissues is a major focus of HIV cure research. Herein, we describe a novel multiplexed in situ hybridization (ISH) (RNAscope) protocol to detect HIV-DNA (vDNA) and HIV-RNA (vRNA) in formalin-fixed paraffin-embedded (FFPE) human tissues in combination with immunofluorescence (IF) phenotyping of the infected cells. We show that multiplexed IF and ISH (mIFISH) is suitable for quantitative assessment of HIV vRNA and vDNA and that multiparameter IF phenotyping allows precise identification of the cellular source of the ISH signal. We also provide semi-quantitative data on the impact of various tissue fixatives on the detectability of vDNA and vRNA with RNAscope technology. Finally, we describe methods to quantitate the ISH signal on whole-slide digital images and validation of the quantitative ISH data with quantitative real-time PCR for vRNA. It is our hope that this approach will provide insight into the biology of HIV tissue reservoirs and to inform strategies aimed at curing HIV.
NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.
Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina
2008-10-01
We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.
NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs
Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina
2008-01-01
We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880
Giri, Sidhartha; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Iturriza-Gomara, Miren; Taniuchi, Mami; John, Jacob; Abraham, Asha Mary; Kang, Gagandeep
2017-08-01
Although, culture is considered the gold standard for poliovirus detection from stool samples, real-time PCR has emerged as a faster and more sensitive alternative. Detection of poliovirus from the stool of recently vaccinated children by culture, single and multiplex real-time PCR was compared. Of the 80 samples tested, 55 (68.75%) were positive by culture compared to 61 (76.25%) and 60 (75%) samples by the single and one step multiplex real-time PCR assays respectively. Real-time PCR (singleplex and multiplex) is more sensitive than culture for poliovirus detection in stool, although the difference was not statistically significant. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wu, Yafeng; Han, Jianyu; Xue, Peng; Xu, Rong; Kang, Yuejun
2015-01-01
MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of them is able to monitor miRNA levels expressed in living cancer cells in a real-time fashion. Some fluorescennt biosensors developed recently from carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO), and carbon nanoparticles, have been successfully used for assaying miRNA in vitro; however the preparation processes are often expensive, complicated and time-consuming, which have motivated the research on other substitute and novel materials. Herein we present a novel sensing strategy based on peptide nucleic acid (PNA) probes labeled with fluorophores and conjugated with an NMOF vehicle to monitor multiplexed miRNAs in living cancer cells. The NMOF works as a fluorescence quencher of the labelled PNA that is firmly bound with the metal center. In the presence of a target miRNA, PNA is hybridized and released from the NMOF leading to the recovery of fluorescence. This miRNA sensor not only enables the quantitative and highly specific detection of multiplexed miRNAs in living cancer cells, but it also allows the precise and in situ monitoring of the spatiotemporal changes of miRNA expression.MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of them is able to monitor miRNA levels expressed in living cancer cells in a real-time fashion. Some fluorescennt biosensors developed recently from carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO), and carbon nanoparticles, have been successfully used for assaying miRNA in vitro; however the preparation processes are often expensive, complicated and time-consuming, which have motivated the research on other substitute and novel materials. Herein we present a novel sensing strategy based on peptide nucleic acid (PNA) probes labeled with fluorophores and conjugated with an NMOF vehicle to monitor multiplexed miRNAs in living cancer cells. The NMOF works as a fluorescence quencher of the labelled PNA that is firmly bound with the metal center. In the presence of a target miRNA, PNA is hybridized and released from the NMOF leading to the recovery of fluorescence. This miRNA sensor not only enables the quantitative and highly specific detection of multiplexed miRNAs in living cancer cells, but it also allows the precise and in situ monitoring of the spatiotemporal changes of miRNA expression. Electronic supplementary information (ESI) available: Extra figures and tables. See DOI: 10.1039/c4nr05447d
Jenkins, Andrew; Allum, Anne-Gry; Strand, Linda; Aakre, Randi Kersten
2013-02-01
A consensus multiplex real-time PCR test (PT13-RT) for the oncogenic human papillomavirus (HPV) types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 66 is described. The test targets the L1 gene. Analytical sensitivity is between 4 and 400 GU (genomic units) in the presence of 500 ng of human DNA, corresponding to 75,000 human cells. HPV types are grouped into multiplex groups of 3 or 4 resulting in the use of 4 wells per sample and permitting up to 24 samples per run (including controls) in a standard 96-well real-time PCR instrument. False negative results are avoided by (a) measuring sample DNA concentration to control that sufficient cellular material is present and (b) including HPV type 6 as a homologous internal control in order to detect PCR inhibition or competition from other (non-oncogenic) HPV types. Analysis time from refrigerator to report is 8 h, including 2.5 h hands-on time. Relative to the HC2 test, the sensitivity and specificity were respectively 98% and 83%, the lower specificity being attributable to the higher analytical sensitivity of PT13-RT. To assess type determination comparison was made with a reversed line-blot test. Type concordance was high (κ=0.79) with discrepancies occurring mostly in multiple-positive samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Gerstel-Thompson, Jacalyn L; Wilkey, Jonathan F; Baptiste, Jennifer C; Navas, Jennifer S; Pai, Sung-Yun; Pass, Kenneth A; Eaton, Roger B; Comeau, Anne Marie
2010-09-01
Real-time quantitative PCR (qPCR) targeting a specific marker of functional T cells, the T-cell-receptor excision circle (TREC), detects the absence of functional T cells and has a demonstrated clinical validity for detecting severe combined immunodeficiency (SCID) in infants. There is need for a qPCR TREC assay with an internal control to monitor DNA quality and the relative cellular content of the particular dried blood spot punch sampled in each reaction. The utility of the qPCR TREC assay would also be far improved if more tests could be performed on the same newborn screening sample. We approached the multiplexing of qPCR for TREC by attenuating the reaction for the reference gene, with focus on maintaining tight quality assurance for reproducible slopes and for prevention of sample-to-sample cross contamination. Statewide newborn screening for SCID using the multiplexed assay was implemented, and quality-assurance data were recorded. The multiplex qPCR TREC assay showed nearly 100% amplification efficiency for each of the TREC and reference sequences, clinical validity for multiple forms of SCID, and an analytic limit of detection consistent with prevention of contamination. The eluate and residual ghost from a 3.2-mm dried blood spot could be used as source material for multiplexed immunoassays and multiplexed DNA tests (Multiplex Plus), with no disruption to the multiplex TREC qPCR. Population-based SCID newborn screening programs should consider multiplexing for quality assurance purposes. Potential benefits of using Multiplex Plus include the ability to perform multianalyte profiling.
Vargas, Diana Y.; Kramer, Fred Russell; Tyagi, Sanjay; Marras, Salvatore A. E.
2016-01-01
We describe the use of “SuperSelective” primers that enable the detection and quantitation of somatic mutations whose presence relates to cancer diagnosis, prognosis, and therapy, in real-time PCR assays that can potentially analyze rare DNA fragments present in blood samples (liquid biopsies). The design of these deoxyribonucleotide primers incorporates both a relatively long “5' anchor sequence” that hybridizes strongly to target DNA fragments, and a very short, physically and functionally separate, “3' foot sequence” that is perfectly complementary to the mutant target sequence, but mismatches the wild-type sequence. As few as ten mutant fragments can reliably be detected in the presence of 1,000,000 wild-type fragments, even when the difference between the mutant and the wild type is only a single nucleotide polymorphism. Multiplex PCR assays employing a set of SuperSelective primers, and a corresponding set of differently colored molecular beacon probes, can be used in situations where the different mutations, though occurring in different cells, are located in the same codon. These non-symmetric real-time multiplex PCR assays contain limited concentrations of each SuperSelective primer, thereby enabling the simultaneous determination of each mutation’s abundance by comparing its threshold value to the threshold value of a reference gene present in the sample. PMID:27244445
Time multiplexing for increased FOV and resolution in virtual reality
NASA Astrophysics Data System (ADS)
Miñano, Juan C.; Benitez, Pablo; Grabovičkić, Dejan; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj
2017-06-01
We introduce a time multiplexing strategy to increase the total pixel count of the virtual image seen in a VR headset. This translates into an improvement of the pixel density or the Field of View FOV (or both) A given virtual image is displayed by generating a succession of partial real images, each representing part of the virtual image and together representing the virtual image. Each partial real image uses the full set of physical pixels available in the display. The partial real images are successively formed and combine spatially and temporally to form a virtual image viewable from the eye position. Partial real images are imaged through different optical channels depending of its time slot. Shutters or other schemes are used to avoid that a partial real image be imaged through the wrong optical channels or at the wrong time slot. This time multiplexing strategy needs real images be shown at high frame rates (>120fps). Available display and shutters technologies are discussed. Several optical designs for achieving this time multiplexing scheme in a compact format are shown. This time multiplexing scheme allows increasing the resolution/FOV of the virtual image not only by increasing the physical pixel density but also by decreasing the pixels switching time, a feature that may be simpler to achieve in certain circumstances.
Das, Amaresh; Deng, Ming Y; Babiuk, Shawn; McIntosh, Michael T
2017-05-01
Capripoxviruses (CaPVs), consisting of Sheeppox virus (SPV), Goatpox virus (GPV), and Lumpy skin disease virus (LSDV) species, cause economically significant diseases in sheep, goats, and cattle, respectively. Quantitative real-time polymerase chain reaction (qPCR) assays are routinely used for rapid detection of CaPVs in surveillance and outbreak management programs. We further modified and optimized 2 previously published CaPV qPCR assays, referred to as the Balinsky and Bowden assays, by changing commercial PCR reagents used in the tests. The modified assays displayed 100% analytical specificity and showed no apparent changes in analytical sensitivities for detection of CaPVs compared with the original assays. Diagnostic sensitivities, assessed using 50 clinical reference samples from experimentally infected sheep, goats, and cattle, improved from 82% to 92% for the modified Balinsky assay and from 58% to 82% for the modified Bowden assay. The modified qPCR assays were multiplexed for detection of beta-actin as an indicator for potential false-negative results. The multiplex modified qPCR assays exhibited the same diagnostic sensitivities as the singleplex assays suggesting their utility in the detection of CaPVs.
Schelm, Stefanie; Haase, Ilka; Fischer, Christin; Fischer, Markus
2017-01-18
Marzipan is a confectionary which is mostly offered in form of filled chocolate, pralines, or pure. According to the German guidelines for oil seeds only almonds, sugar and water are admitted ingredients of marzipan. A product very similar in taste is persipan which is used in the confectionary industry because of its stronger flavor. For persipan production almonds are replaced by debittered apricot or peach kernels. To guarantee high quality products for consumers, German raw paste producers have agreed a limit of apricot kernels in marzipan raw paste of 0.5%. Different DNA-based methods for quantitation of persipan contaminations in marzipan are already published. To increase the detection specificity compared to published intercalation dye-based assays, the present work demonstrate the utilization of a multiplex real-time PCR based on the Plexor technology. Thus, the present work enables the detection of at least 0.1% apricot DNA in almond DNA or less. By analyzing DNA mixtures, the theoretical limit of quantification of the duplex PCR for the quantitation of persipan raw paste DNA in marzipan raw paste DNA was determined as 0.05%.
Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes
USDA-ARS?s Scientific Manuscript database
TaqMan primer-probe sets were developed for the detection and identification of potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis using two-tube, multiplex real-time PCR. One tube contained a primer-probe set specific for G. pallida (pale cyst nematode) multiplexed with another prim...
Soft fruit traceability in food matrices using real-time PCR.
Palmieri, Luisa; Bozza, Elisa; Giongo, Lara
2009-02-01
Food product authentication provides a means of monitoring and identifying products for consumer protection and regulatory compliance. There is a scarcity of analytical methods for confirming the identity of fruit pulp in products containing Soft Fruit. In the present work we have developed a very sensible qualitative and quantitative method to determine the presence of berry DNAs in different food matrices. To our knowledge, this is the first study that shows the applicability, to Soft Fruit traceability, of melting curve analysis and multiplexed fluorescent probes, in a Real-Time PCR platform. This methodology aims to protect the consumer from label misrepresentation.
A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.
Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S
2011-12-01
Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Azzi, Salah; Steunou, Virginie; Rousseau, Alexandra; Rossignol, Sylvie; Thibaud, Nathalie; Danton, Fabienne; Le Jule, Marilyne; Gicquel, Christine; Le Bouc, Yves; Netchine, Irène
2011-02-01
Many human syndromes involve a loss of imprinting (LOI) due to a loss (LOM) or a gain of DNA methylation (GOM). Most LOI occur as mosaics and can therefore be difficult to detect with conventional methods. The human imprinted 11p15 region is crucial for the control of fetal growth, and LOI at this locus is associated with two clinical disorders with opposite phenotypes: Beckwith-Wiedemann syndrome (BWS), characterized by fetal overgrowth and a high risk of tumors, and Russell-Silver syndrome (RSS), characterized by intrauterine and postnatal growth restriction. Until recently, we have been using Southern blotting for the diagnosis of RSS and BWS. We describe here a powerful quantitative technique, allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), for the diagnosis of these two complex disorders. We first checked the specificity of the probes and primers used for ASMM RTQ-PCR. We then carried out statistical validation for this method, on both retrospective and prospective populations of patients. This analysis demonstrated that ASMM RTQ-PCR is more sensitive than Southern blotting for detecting low degree of LOI. Moreover, ASMM RTQ-PCR is a very rapid, reliable, simple, safe, and cost effective method. © 2011 Wiley-Liss, Inc.
Yang, Qiu; Rui, Yongyu
2016-01-01
Nosocomial infections caused by Acinetobacter spp. resistant to carbapenems are increasingly reported worldwide. Carbapenem-resistant Acinetobacter (CRA) is becoming a serious concern with increasing patient morbidity, mortality, and lengths of hospital stay. Therefore, the rapid detection of CRA is essential for epidemiological surveillance. Polymerase chain reaction (PCR) has been extensively used for the rapid identification of most pathogens. In this study, we have developed two multiplex real-time PCR assays to detect and differentiate A. baumannii and non-A. baumannii Acinetobacter spp, and common carbapenemase genes, including blaNDM, blaOXA-23-like, blaOXA-40-like, blaOXA-51-like, and blaOXA-58-like. We demonstrate the potential utility of these assays for the direct detection of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA in clinical specimens. Primers were specifically designed, and two multiplex real-time PCR assays were developed: multiplex real-time PCR assay1 for the detection of Acinetobacter baumannii 16S–23S rRNA internal transcribed spacer sequence, the Acinetobacter recA gene, and class-B-metalloenzyme-encoding gene blaNDM; and multiplex real-time PCR assay2 to detect class-D-oxacillinase-encoding genes (blaOXA-23-like, blaOXA-40-like, blaOXA-51-like,and blaOXA-58-like). The assays were performed on an ABI Prism 7500 FAST Real-Time PCR System. CRA isolates were used to compare the assays with conventional PCR and sequencing. Known amounts of CRA cells were added to sputum and fecal specimens and used to test the multiplex real-time PCR assays. The results for target and nontarget amplification showed that the multiplex real-time PCR assays were specific, the limit of detection for each target was 10 copies per 20 μL reaction volume, the assays were linear over six log dilutions of the target genes (r2 > 0.99), and the Ct values of the coefficients of variation for intra- and interassay reproducibility were less than 5%. The multiplex real-time PCR assays showed 100% concordance with conventional PCR when tested against 400 CRA isolates and their sensitivity for the target DNA in sputum and fecal specimens was 102 CFU/mL. Therefore, these novel multiplex real-time PCR assays allow the sensitive and specific characterization and differentiation of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA, making them potential tools for the direct detection of CRA in clinical specimens and the surveillance of nosocomial infections. PMID:27391234
Garai, Ellis; Loewke, Nathan O.; Rogalla, Stephan; Mandella, Michael J.; Felt, Stephen A.; Friedland, Shai; Liu, Jonathan T. C.; Gambhir, Sanjiv S.; Contag, Christopher H.
2015-01-01
The detection of biomarker-targeting surface-enhanced Raman scattering (SERS) nanoparticles (NPs) in the human gastrointestinal tract has the potential to improve early cancer detection; however, a clinically relevant device with rapid Raman-imaging capability has not been described. Here we report the design and in vivo demonstration of a miniature, non-contact, opto-electro-mechanical Raman device as an accessory to clinical endoscopes that can provide multiplexed molecular data via a panel of SERS NPs. This device enables rapid circumferential scanning of topologically complex luminal surfaces of hollow organs (e.g., colon and esophagus) and produces quantitative images of the relative concentrations of SERS NPs that are present. Human and swine studies have demonstrated the speed and simplicity of this technique. This approach also offers unparalleled multiplexing capabilities by simultaneously detecting the unique spectral fingerprints of multiple SERS NPs. Therefore, this new screening strategy has the potential to improve diagnosis and to guide therapy by enabling sensitive quantitative molecular detection of small and otherwise hard-to-detect lesions in the context of white-light endoscopy. PMID:25923788
Soft Fruit Traceability in Food Matrices using Real-Time PCR
Palmieri, Luisa; Bozza, Elisa; Giongo, Lara
2009-01-01
Food product authentication provides a means of monitoring and identifying products for consumer protection and regulatory compliance. There is a scarcity of analytical methods for confirming the identity of fruit pulp in products containing Soft Fruit. In the present work we have developed a very sensible qualitative and quantitative method to determine the presence of berry DNAs in different food matrices. To our knowledge, this is the first study that shows the applicability, to Soft Fruit traceability, of melting curve analysis and multiplexed fluorescent probes, in a Real-Time PCR platform. This methodology aims to protect the consumer from label misrepresentation. PMID:22253987
Design of primers and probes for quantitative real-time PCR methods.
Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J
2015-01-01
Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.
Byoun, Mun Sub; Yoo, Changhoon; Sim, Sang Jun; Lim, Chae Seung; Kim, Sung Woo
2018-01-01
Real-time PCR, also called quantitative PCR (qPCR), has been powerful analytical tool for detection of nucleic acids since it developed. Not only for biological research but also for diagnostic needs, qPCR technique requires capacity to detect multiple genes in recent years. Solid phase PCR (SP-PCR) where one or two directional primers are immobilized on solid substrates could analyze multiplex genetic targets. However, conventional SP-PCR was subjected to restriction of application for lack of PCR efficiency and quantitative resolution. Here we introduce an advanced qPCR with primer-incorporated network (PIN). One directional primers are immobilized in the porous hydrogel particle by covalent bond and the other direction of primers are temporarily immobilized at so-called 'Supplimers'. Supplimers released the primers to aqueous phase in the hydrogel at the thermal cycling of PCR. It induced the high PCR efficiency over 92% with high reliability. It reduced the formation of primer dimers and improved the selectivity of qPCR thanks to the strategy of 'right primers supplied to right place only'. By conducting a six-plex qPCR of 30 minutes, we analyzed DNA samples originated from malaria patients and successfully identified malaria species in a single reaction. PMID:29293604
Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid
2012-11-01
Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.
Theodore, M. Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L.; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J. Matthew; Messonnier, Nancy E.; Mayer, Leonard W.
2012-01-01
Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays. PMID:22170919
Wang, Xin; Theodore, M Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J Matthew; Messonnier, Nancy E; Mayer, Leonard W
2012-03-01
Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays.
Basuni, M; Mohamed, Z; Ahmad, M; Zakaria, N Z; Noordin, R
2012-09-01
Intestinal parasites are the causative agents of a number of important human infections in developing countries. The objective of this study was to determine the prevalence of selected helminths and protozoan infections among patients admitted with gastrointestinal disorders at Hospital Universiti Sains Malaysia, Kelantan, Malaysia using multiplex real-time PCR. In addition microscopic examination was also performed following direct smear, zinc sulphate concentration and Kato-Katz thick smear techniques; and the presence of protozoan parasites was confirmed using trichrome and acid-fast stains. Of the 225 faecal samples analysed, 26.2% were positive for intestinal parasites by the multiplex real-time PCR, while 5.3% were positive by microscopy. As compared to microscopy, the multiplex real-time PCR detected 5.8 and 4.5 times more positives for the selected helminth and protozoan infections respectively. Among the selected helminths detected in this study, hookworm was the most prevalent by real-time PCR, while Ascaris lumbricoides was detected the most by microscopy. Meanwhile, among the selected protozoa detected in this study, Entamoeba histolytica was the most prevalent by real-time PCR, however microscopy detected equal number of cases with E. histolytica and Giardia lamblia. This study showed that real-time PCR can be used to obtain a more accurate prevalence data on intestinal helminths and protozoa.
Compston, Lara Isobel; Sarkobie, Francis; Li, Chengyao; Candotti, Daniel; Opare-Sem, Ohene; Allain, Jean-Pierre
2008-07-01
In common with latent viruses such as herpesviruses, parvovirus B19, HBV and GBV-C are contained successfully by the immune response and persist in the host. When immune control breaks down, reactivation of both latent and persistent viruses occurs. Two multiplex assays were developed (B19, HBV, HHV-8), (EBV, CMV, VZV) for blood screening, and tested on blood donor samples from Ghana to determine baseline prevalence of viraemia in immunocompetent persons. Single-virus real-time quantitative PCR (qPCR) assays were optimised for viral load determination of positive initial screening. The qPCR method utilised was absolute quantification with external standards. Multiplex and single-virus qPCR assays had similar sensitivity, except for the B19 assay in which sensitivity was 100-fold lower. Assays were optimised for reproducibility and repeatability, with R(2) of 0.9 being obtained for most assays. With the exception of B19 and CMV, assays had 100% detection limit ranging between 10(1) and 10(2) copies, IU or arbitrary units under single-virus and multiplex assay conditions. The prevalence of viraemia was 1.6% HBV (0.8% DNA+/HBsAg-, 0.8% DNA+/HBsAg+), 0.8% parvovirus B19, and 3.3% GBV-C viraemia in the plasma fraction. The prevalence of four herpesviruses was 1.0% HHV-8, 0.85% CMV, and 8.3% EBV, and no detectable VZV viraemia.
NASA Astrophysics Data System (ADS)
Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena
2014-06-01
We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.
Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan
2008-09-01
In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.
Daniel, Hubert Darius J; Fletcher, John G; Chandy, George M; Abraham, Priya
2009-01-01
Sensitive nucleic acid testing for the detection and accurate quantitation of hepatitis B virus (HBV) is necessary to reduce transmission through blood and blood products and for monitoring patients on antiviral therapy. The aim of this study is to standardize an "in-house" real-time HBV polymerase chain reaction (PCR) for accurate quantitation and screening of HBV. The "in-house" real-time assay was compared with a commercial assay using 30 chronically infected individuals and 70 blood donors who are negative for hepatitis B surface antigen, hepatitis C virus (HCV) antibody and human immunodeficiency virus (HIV) antibody. Further, 30 HBV-genotyped samples were tested to evaluate the "in-house" assay's capacity to detect genotypes prevalent among individuals attending this tertiary care hospital. The lower limit of detection of this "in-house" HBV real-time PCR was assessed against the WHO international standard and found to be 50 IU/mL. The interassay and intra-assay coefficient of variation (CV) of this "in-house" assay ranged from 1.4% to 9.4% and 0.0% to 2.3%, respectively. Virus loads as estimated with this "in-house" HBV real-time assay correlated well with the commercial artus HBV RG PCR assay ( r = 0.95, P < 0.0001). This assay can be used for the detection and accurate quantitation of HBV viral loads in plasma samples. This assay can be employed for the screening of blood donations and can potentially be adapted to a multiplex format for simultaneous detection of HBV, HIV and HCV to reduce the cost of testing in blood banks.
Shanks, O.C.; Sivaganesan, M.; Peed, L.; Kelty, C.A.; Blackwood, A.D.; Greene, M.R.; Noble, R.T.; Bushon, R.N.; Stelzer, E.A.; Kinzelman, J.; Anan'Eva, T.; Sinigalliano, C.; Wanless, D.; Griffith, J.; Cao, Y.; Weisberg, S.; Harwood, V.J.; Staley, C.; Oshima, K.H.; Varma, M.; Haugland, R.A.
2012-01-01
The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized protocol requires information on the reproducibility and sources of variation associated with qPCR methodology across laboratories. This study examines interlaboratory variability in the measurement of enterococci and Bacteroidales concentrations from standardized, spiked, and environmental sources of DNA using the Entero1a and GenBac3 qPCR methods, respectively. Comparisons are based on data generated from eight different research facilities. Special attention was placed on the influence of the DNA isolation step and effect of simplex and multiplex amplification approaches on interlaboratory variability. Results suggest that a crude lysate is sufficient for DNA isolation unless environmental samples contain substances that can inhibit qPCR amplification. No appreciable difference was observed between simplex and multiplex amplification approaches. Overall, interlaboratory variability levels remained low (<10% coefficient of variation) regardless of qPCR protocol. ?? 2011 American Chemical Society.
A Droplet Digital PCR Method for Severe Combined Immunodeficiency Newborn Screening.
Vidal-Folch, Noemi; Milosevic, Dragana; Majumdar, Ramanath; Gavrilov, Dimitar; Matern, Dietrich; Raymond, Kimiyo; Rinaldo, Piero; Tortorelli, Silvia; Abraham, Roshini S; Oglesbee, Devin
2017-09-01
Severe combined immunodeficiency (SCID) benefits from early intervention via hematopoietic cell transplantation to reverse T-cell lymphopenia (TCL). Newborn screening (NBS) programs use T-cell receptor excision circle (TREC) levels to detect SCID. Real-time quantitative PCR is often performed to quantify TRECs in dried blood spots (DBSs) for NBS. Yet, real-time quantitative PCR has inefficiencies necessitating normalization, repeat analyses, or standard curves. To address these issues, we developed a multiplex, droplet digital PCR (ddPCR) method for measuring absolute TREC amounts in one DBS punch. TREC and RPP30 levels were simultaneously measured with a Bio-Rad AutoDG and QX200 ddPCR system. DBSs from 610 presumed-normal, 29 lymphocyte-profiled, and 10 clinically diagnosed infants (1 X-linked SCID, 1 RAG1 Omenn syndrome, and other conditions) were tested. Control infants showed 14 to 474 TREC copies/μL blood. SCID infants, and other TCL conditions, had ≤15 TREC copies/μL. The ddPCR lower limit of quantitation was 14 TREC copies/μL, and the limit of detection was 4 TREC copies/μL. Intra-assay and interassay imprecision was <20% CV for DBSs at 54 to 60 TREC copies/μL. Testing 29 infants with known lymphocyte profiles resulted in a sensitivity of 88.9% and a specificity of 100% at TRECs <20 copies/μL. We developed a multiplex ddPCR method for the absolute quantitation of DBS TRECs that can detect SCID and other TCL conditions associated with absent or low TRECs and validated this method for NBS. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Berger, Cordula; Parson, Walther
2009-06-01
The degradation state of some biological traces recovered from the crime scene requires the amplification of very short fragments to attain a useful mitochondrial (mt)DNA sequence. We have previously introduced two mini-multiplex assays that amplify 10 overlapping control region (CR) fragments in two separate multiplex PCRs, which brought successful CR consensus sequences from even highly degraded DNA extracts. This procedure requires a total of 20 sequencing reactions per sample, which is laborious and cost intensive. For only moderately degraded samples that we encounter more frequently with typical mtDNA casework material, we developed two new multiplex assays that use a subset of the mini-amplicon primers but embrace larger fragments (midis) and require only 10 sequencing reactions to build a double-stranded CR consensus sequence. We used a preceding mtDNA quantitation step by real-time PCR with two different target fragments (143 and 283 bp) that roughly correspond to the average fragment sizes of the different multiplex approaches to estimate size-dependent mtDNA quantities and to aid the choice of the appropriate PCR multiplexes with respect to quality of the results and required costs.
Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review.
Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad
2016-05-28
The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process.
Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review
Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad
2016-01-01
The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process. PMID:27239109
Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains.
He, Peiyan; Chen, Zhongwen; Luo, Jianyong; Wang, Henghui; Yan, Yong; Chen, Lixia; Gao, Wenjie
2014-01-01
Foodborne disease caused by pathogenic Vibrio parahaemolyticus has become a serious public health problem in many countries. Rapid diagnosis and the identification of pathogenic V. parahaemolyticus are very important in the context of public health. In this study, an EvaGreen-based multiplex real-time PCR assay was established for the detection of pathogenic V. parahaemolyticus. This assay targeted three genetic markers of V. parahaemolyticus (species-specific gene toxR and virulence genes tdh and trh). The assay could unambiguously identify pathogenic V. parahaemolyticus with a minimum detection limit of 1.4 pg genomic DNA per reaction (concentration giving a positive multiplex real-time PCR result in 95% of samples). The specificity of the assay was evaluated using 72 strains of V. parahaemolyticus and other bacteria. A validation of the assay with clinical samples confirmed its sensitivity and specificity. Our data suggest the newly established multiplex real-time PCR assay is practical, cost-effective, specific, sensitive and capable of high-throughput detection of pathogenic V. parahaemolyticus. Copyright © 2014. Published by Elsevier Ltd.
Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics
NASA Astrophysics Data System (ADS)
Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong
2015-03-01
Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.
Levine, Peter M; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L
2009-03-15
Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4 x 4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5 mm x 3 mm CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays.
Gori, Andrea; Cerboneschi, Matteo; Tegli, Stefania
2012-01-01
Pseudomonas savastanoi is a serious pathogen of Olive, Oleander, Ash, and several other Oleaceae. Its epiphytic or endophytic presence in asymptomatic plants is crucial for the spread of Olive and Oleander knot disease, as already ascertained for P. savastanoi pv. savastanoi (Psv) on Olive and for pv. nerii (Psn) on Oleander, while no information is available for pv. fraxini (Psf) on Ash. Nothing is known yet about the distribution on the different host plants and the real host range of these pathovars in nature, although cross-infections were observed following artificial inoculations. A multiplex Real-Time PCR assay was recently developed to simultaneously and quantitatively discriminate in vitro and in planta these P. savastanoi pathovars, for routine culture confirmation and for epidemiological and diagnostical studies. Here an innovative High-Resolution Melting Analysis (HRMA)-based assay was set up to unequivocally discriminate Psv, Psn and Psf, according to several single nucleotide polymorphisms found in their Type Three Secretion System clusters. The genetic distances among 56 P. savastanoi strains belonging to these pathovars were also evaluated, confirming and refining data previously obtained by fAFLP. To our knowledge, this is the first time that HRMA is applied to a bacterial plant pathogen, and one of the few multiplex HRMA-based assays developed so far. This protocol provides a rapid, sensitive, specific tool to differentiate and detect Psv, Psn and Psf strains, also in vivo and against other related bacteria, with lower costs than conventional multiplex Real-Time PCR. Its application is particularly suitable for sanitary certification programs for P. savastanoi, aimed at avoiding the spreading of this phytopathogen through asymptomatic plants. PMID:22295075
Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping
2018-06-01
The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.
Multiplex real-time PCR for identification of canine parvovirus antigenic types.
Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Narang, Deepti
2016-07-01
Canine parvovirus (CPV) is an important disease causing gastroenteritis and/or haemorrhagic gastroenteritis in dogs. There are four antigenic types of CPV reported worldwide viz. CPV 2, CPV 2a, CPV 2b and CPV 2c. The diagnosis of CPV with the identification of the antigen type responsible remains problematic. In the present study, identification as well as antigenic typing of CPV was done using a de novo multiplex real time PCR to combat the problem of antigenic type identification. From the study it could be concluded that the here developed multiplex real time PCR assay could be used for rapid detection of CPV as well as typing of its three antigenic types. Copyright © 2016 Elsevier B.V. All rights reserved.
Llewellyn, Stacey; Inpankaew, Tawin; Nery, Susana Vaz; Gray, Darren J.; Verweij, Jaco J.; Clements, Archie C. A.; Gomes, Santina J.; Traub, Rebecca; McCarthy, James S.
2016-01-01
Background Accurate quantitative assessment of infection with soil transmitted helminths and protozoa is key to the interpretation of epidemiologic studies of these parasites, as well as for monitoring large scale treatment efficacy and effectiveness studies. As morbidity and transmission of helminth infections are directly related to both the prevalence and intensity of infection, there is particular need for improved techniques for assessment of infection intensity for both purposes. The current study aimed to evaluate two multiplex PCR assays to determine prevalence and intensity of intestinal parasite infections, and compare them to standard microscopy. Methodology/Principal Findings Faecal samples were collected from a total of 680 people, originating from rural communities in Timor-Leste (467 samples) and Cambodia (213 samples). DNA was extracted from stool samples and subject to two multiplex real-time PCR reactions the first targeting: Necator americanus, Ancylostoma spp., Ascaris spp., and Trichuris trichiura; and the second Entamoeba histolytica, Cryptosporidium spp., Giardia. duodenalis, and Strongyloides stercoralis. Samples were also subject to sodium nitrate flotation for identification and quantification of STH eggs, and zinc sulphate centrifugal flotation for detection of protozoan parasites. Higher parasite prevalence was detected by multiplex PCR (hookworms 2.9 times higher, Ascaris 1.2, Giardia 1.6, along with superior polyparasitism detection with this effect magnified as the number of parasites present increased (one: 40.2% vs. 38.1%, two: 30.9% vs. 12.9%, three: 7.6% vs. 0.4%, four: 0.4% vs. 0%). Although, all STH positive samples were low intensity infections by microscopy as defined by WHO guidelines the DNA-load detected by multiplex PCR suggested higher intensity infections. Conclusions/Significance Multiplex PCR, in addition to superior sensitivity, enabled more accurate determination of infection intensity for Ascaris, hookworms and Giardia compared to microscopy, especially in samples exhibiting polyparasitism. The superior performance of multiplex PCR to detect polyparasitism and more accurately determine infection intensity suggests that it is a more appropriate technique for use in epidemiologic studies and for monitoring large-scale intervention trials. PMID:26820626
Chan, Kamfai; Marras, Salvatore A E; Parveen, Nikhat
2013-12-20
The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients' blood samples. Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study can detect three tick-borne pathogens simultaneously in an accurate manner.
2013-01-01
Background The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. Results In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients’ blood samples. Conclusion Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study can detect three tick-borne pathogens simultaneously in an accurate manner. PMID:24359556
USDA-ARS?s Scientific Manuscript database
A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay w...
Twisted Acoustics: Metasurface-Enabled Multiplexing and Demultiplexing.
Jiang, Xue; Liang, Bin; Cheng, Jian-Chun; Qiu, Cheng-Wei
2018-05-01
Metasurfaces are used to enable acoustic orbital angular momentum (a-OAM)-based multiplexing in real-time, postprocess-free, and sensor-scanning-free fashions to improve the bandwidth of acoustic communication, with intrinsic compatibility and expandability to cooperate with other multiplexing schemes. The metasurface-based communication relying on encoding information onto twisted beams is numerically and experimentally demonstrated by realizing real-time picture transfer, which differs from existing static data transfer by encoding data onto OAM states. With the advantages of real-time transmission, passive and instantaneous data decoding, vanishingly low loss, compact size, and high transmitting accuracy, the study of a-OAM-based information transfer with metasurfaces offers new route to boost the capacity of acoustic communication and great potential to profoundly advance relevant fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nong, Rachel Yuan; Wu, Di; Yan, Junhong; Hammond, Maria; Gu, Gucci Jijuan; Kamali-Moghaddam, Masood; Landegren, Ulf; Darmanis, Spyros
2013-06-01
Solid-phase proximity ligation assays share properties with the classical sandwich immunoassays for protein detection. The proteins captured via antibodies on solid supports are, however, detected not by single antibodies with detectable functions, but by pairs of antibodies with attached DNA strands. Upon recognition by these sets of three antibodies, pairs of DNA strands brought in proximity are joined by ligation. The ligated reporter DNA strands are then detected via methods such as real-time PCR or next-generation sequencing (NGS). We describe how to construct assays that can offer improved detection specificity by virtue of recognition by three antibodies, as well as enhanced sensitivity owing to reduced background and amplified detection. Finally, we also illustrate how the assays can be applied for parallel detection of proteins, taking advantage of the oligonucleotide ligation step to avoid background problems that might arise with multiplexing. The protocol for the singleplex solid-phase proximity ligation assay takes ~5 h. The multiplex version of the assay takes 7-8 h depending on whether quantitative PCR (qPCR) or sequencing is used as the readout. The time for the sequencing-based protocol includes the library preparation but not the actual sequencing, as times may vary based on the choice of sequencing platform.
Carloni, Elisa; Amagliani, Giulia; Omiccioli, Enrica; Ceppetelli, Veronica; Del Mastro, Michele; Rotundo, Luca; Brandi, Giorgio; Magnani, Mauro
2017-06-01
Pasta is the Italian product par excellence and it is now popular worldwide. Pasta of a superior quality is made with pure durum wheat. In Italy, addition of Triticum aestivum (common wheat) during manufacturing is not allowed and, without adequate labeling, its presence is considered an adulteration. PCR-related techniques can be employed for the detection of common wheat contaminations. In this work, we demonstrated that a previously published method for the detection of T. aestivum, based on the gliadin gene, is inadequate. Moreover, a new molecular method, based on DNA extraction from semolina and real-time PCR determination of T. aestivum in Triticum spp., was validated. This multiplex real-time PCR, based on the dual-labeled probe strategy, guarantees target detection specificity and sensitivity in a short period of time. Moreover, the molecular analysis of common wheat contamination in commercial wheat and flours is described for the first time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nadal, Anna; Esteve, Teresa; Pla, Maria
2009-01-01
A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (<1.7% of false classification rate), with limit of detection values of 0.1% for each event, which were also achieved with simulated mixtures at different relative percentages of targets. The assay was further combined with a second multiplex PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.
Pourhajibagher, Maryam; Raoofian, Reza; Ghorbanzadeh, Roghayeh; Bahador, Abbas
2018-03-01
The infected root canal system harbors one of the highest accumulations of polymicrobial infections. Since the eradication of endopathogenic microbiota is a major goal in endodontic infection therapy, photo-activated disinfection (PAD) can be used as an alternative therapeutic method in endodontic treatment. Compared to cultivation-based approaches, molecular techniques are more reliable for identifying microbial agents associated with endodontic infections. The purpose of this study was to evaluate the ability of designed multiplex real-time PCR protocol for the rapid detection and quantification of six common microorganisms involved in endodontic infection before and after the PAD. Samples were taken from the root canals of 50 patients with primary and secondary/persistent endodontic infections using sterile paper points. PAD with toluidine blue O (TBO) plus diode laser was performed on root canals. Resampling was then performed, and the samples were transferred to transport medium. Then, six target microorganisms were detected using multiplex real-time PCR before and after the PAD. Veillonella parvula was found using multiplex real-time PCR to have the highest frequency among samples collected before the PAD (29.4%), followed by Porphyromonas gingivalis (23.1%), Aggregatibacter actinomycetemcomitans (13.6%), Actinomyces naeslundii (13.0%), Enterococcus faecalis (11.5%), and Lactobacillus rhamnosus (9.4%). After TBO-mediated PAD, P. gingivalis strains, the most resistance microorganisms, were recovered in 41.7% of the samples using molecular approach (P > 0.05). As the results shown, multiplex real-time PCR as an accurate detection approach with high-throughput and TBO-mediated PAD as an efficient antimicrobial strategy due to the significant reduction of the endopathogenic count can be used for detection and treatment of microbiota involved in infected root canals, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhao, Youyun; Cao, Xuan; Tang, Jingfeng; Zhou, Li; Gao, Yinglin; Wang, Jiangping; Zheng, Yi; Yin, Shanshan; Wang, Yefu
2012-04-01
Infection with human papillomavirus (HPV), particularly HPV16 and HPV18, is the main cause of invasive cervical cancer, although other factors such as herpes simplex virus (HSV) may act in conjunction with HPV in this context. To explore the possibility of developing a system for rapid diagnosis and clinical screening of cervical cancer, we developed a multiplex real-time PCR assay that can simultaneously detect and quantify HPV16/18 and HSV1/2. To evaluate its possibilities and practical uses, 177 samples collected from patients with suspected HPV and HSV infection in exfoliated cervical cells, genital herpes or labial herpes were tested by multiplex real-time PCR and compared with results obtained by DNA sequencing. Each virus was detected over a range from 1.0 × 10(1) to 1.0 × 10(7) copies/reaction. The clinical sensitivity was 100% for HPV16/18 and HSV1/2. The clinical specificity was 97.1% for HPV16, 98.1% for HPV18, 97.0% for HSV1 and 96.0% for HSV2. The kappa value was 0.96 for HPV16, 0.92 for HPV18, 0.94 for HSV1 and 0.93 for HSV2, when DNA sequencing was used as the reference standard. In summary, this novel multiplex real-time PCR allows the rapid and specific detection of HPV16/18 and HSV1/2, as well as coinfection with HPV and HSV, in clinical samples. In the future, this multiplex real-time PCR assay will assist in cervical cancer screening, viral treatment evaluation and epidemiological studies in which high throughput analysis is required. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kawamura, Masaki; Kobayashi, Naomi; Inaba, Yutaka; Choe, Hyonmin; Tezuka, Taro; Kubota, So; Saito, Tomoyuki
2017-11-01
A new multiplex real-time polymerase chain reaction (PCR) assay was developed to detect methicillin-resistant Staphylococcus (MRS) and to distinguish between gram-positive and gram-negative bacteria. In this study, we validated the sensitivity and specificity of this assay with periprosthetic joint infections (PJIs) and evaluated the utility of PCR for culture-negative PJI. Forty-five samples from 23 infectious PJI cases and 106 samples from 64 non-infectious control cases were analyzed by real-time PCR using a LightCycler Nano ® system. Twenty-eight clinical samples, comprising bacteria of known species isolated consecutively in the microbiological laboratory of our hospital, were used to determine the spectrum of bacterial species that could be detected using the new multiplex primers and probes. The sensitivity and specificity of the MRS- and universal-PCR assays were 92% and 99%, and 91% and 88%, respectively. Twenty-eight species of clinically isolated bacteria were detected using this method and the concordance rate for the identification of gram-positive or gram-negative organisms was 96%. Eight samples were identified as PCR-positive despite a culture-negative result. This novel multiplex real-time PCR system has acceptable sensitivity and specificity and several advantages; therefore, it has potential use for the diagnosis of PJIs, particularly in culture-negative cases.
Gowin, Ewelina; Bartkowska-Śniatkowska, Alicja; Jończyk-Potoczna, Katarzyna; Wysocka-Leszczyńska, Joanna; Bobkowski, Waldemar; Fichna, Piotr; Sobkowiak, Paulina; Mazur-Melewska, Katarzyna; Bręborowicz, Anna; Wysocki, Jacek; Januszkiewicz-Lewandowska, Danuta
2017-01-01
The aim of the study was assessment of the usefulness of multiplex real-time PCR tests in the diagnostic and therapeutic process in children hospitalized due to pneumonia and burdened with comorbidities. Methods . The study group included 97 children hospitalized due to pneumonia at the Karol Jonscher Teaching Hospital in Poznań, in whom multiplex real-time PCR tests (FTD respiratory pathogens 33; fast-track diagnostics) were used. Results . Positive test results of the test were achieved in 74 patients (76.3%). The average age in the group was 56 months. Viruses were detected in 61 samples (82% of all positive results); bacterial factors were found in 29 samples (39% of all positive results). The presence of comorbidities was established in 90 children (92.78%). On the basis of the obtained results, 5 groups of patients were established: viral etiology of infection, 34 patients; bacterial etiology, 7 patients; mixed etiology, 23 patients; pneumocystis, 9 patients; and no etiology diagnosed, 24 patients. Conclusions . Our analysis demonstrated that the participation of viruses in causing severe lung infections is significant in children with comorbidities. Multiplex real-time PCR tests proved to be more useful in establishing the etiology of pneumonia in hospitalized children than the traditional microbiological examinations.
Tan, Thean Yen; Zou, Hao; Ong, Danny Chee Tiong; Ker, Khor Jia; Chio, Martin Tze Wei; Teo, Rachael Yu Lin; Koh, Mark Jean Aan
2013-12-01
Herpes simplex virus (HSV) and varicella zoster virus (VZV) are related members of the Herpesviridae family and are well-documented human pathogens causing a spectrum of diseases, from mucocutaneous disease to infections of the central nervous system. This study was carried out to evaluate and validate the performance of a multiplex real-time polymerase chain reaction (PCR) assay in detecting and differentiating HSV1, HSV2, and VZV from clinical samples. Consensus PCR primers for HSV were designed from the UL30 component of the DNA polymerase gene of HSV, with 2 separate hydrolysis probes designed to differentiate HSV1 and HSV2. Separate primers and a probe were also designed against the DNA polymerase gene of VZV. A total of 104 clinical samples were available for testing by real-time PCR, conventional PCR, and viral culture. The sensitivity and specificity of the real-time assay was calculated by comparing the multiplex PCR result with that of a combined standard of virus culture and conventional PCR. The sensitivity of the real-time assay was 100%, with specificity ranging from 98% to 100% depending on the target gene. Both PCR methods detected more positive samples for HSV or VZV, compared with conventional virus culture. This multiplex PCR assay provides accurate and rapid diagnostic capabilities for the diagnosis and differentiation of HSV1, HSV2, and VZV infections, with the presence of an internal control to monitor for inhibition of the PCR reaction.
Jonker, Femkje A. M.; Calis, Job C. J.; Phiri, Kamija; Brienen, Eric A. T.; Khoffi, Harriet; Brabin, Bernard J.; Verweij, Jaco J.; van Hensbroek, Michael Boele; van Lieshout, Lisette
2012-01-01
Background Hookworm infections are an important cause of (severe) anemia and iron deficiency in children in the tropics. Type of hookworm species (Ancylostoma duodenale or Necator americanus) and infection load are considered associated with disease burden, although these parameters are rarely assessed due to limitations of currently used diagnostic methods. Using multiplex real-time PCR, we evaluated hookworm species-specific prevalence, infection load and their contribution towards severe anemia and iron deficiency in pre-school children in Malawi. Methodology and Findings A. duodenale and N. americanus DNA loads were determined in 830 fecal samples of pre-school children participating in a case control study investigating severe anemia. Using multiplex real-time PCR, hookworm infections were found in 34.1% of the severely anemic cases and in 27.0% of the non-severely anemic controls (p<0.05) whereas a 5.6% hookworm prevalence was detected by microscopy. Prevalence of A. duodenale and N. americanus was 26.1% and 4.9% respectively. Moderate and high load A. duodenale infections were positively associated with severe anemia (adjusted odds ratio: 2.49 (95%CI 1.16–5.33) and 9.04 (95%CI 2.52–32.47) respectively). Iron deficiency (assessed through bone marrow examination) was positively associated with intensity of A. duodenale infection (adjusted odds ratio: 3.63 (95%CI 1.18–11.20); 16.98 (95%CI 3.88–74.35) and 44.91 (95%CI 5.23–385.77) for low, moderate and high load respectively). Conclusions/Significance This is the first report assessing the association of hookworm load and species differentiation with severe anemia and bone marrow iron deficiency. By revealing a much higher than expected prevalence of A. duodenale and its significant and load-dependent association with severe anemia and iron deficiency in pre-school children in Malawi, we demonstrated the need for quantitative and species-specific screening of hookworm infections. Multiplex real-time PCR is a powerful diagnostic tool for public health research to combat (severe) anemia and iron deficiency in children living in resource poor settings. PMID:22514750
Parra, Macarena; Jung, Jimmy; Boone, Travis D; Tran, Luan; Blaber, Elizabeth A; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J; Rubins, Kathleen; Sgarlato, Gregory D; Talavera, Rafael O; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S; Schonfeld, Julie; Almeida, Eduardo A C
2017-01-01
The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment.
Boone, Travis D.; Tran, Luan; Blaber, Elizabeth A.; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T.; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J.; Rubins, Kathleen; Sgarlato, Gregory D.; Talavera, Rafael O.; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S.; Schonfeld, Julie
2017-01-01
The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment. PMID:28877184
USDA-ARS?s Scientific Manuscript database
Asian prunus viruses (APV 1, APV 2 and APV 3) and Plum bark necrosis stem pitting associated virus (PBNSPaV) are two recently described viruses infecting Prunus spp., and Peach latent mosaic viroid (PLMVd) is a viroid that infects the same species. A single-tube multiplex, TaqMan real-time RT-PCR as...
Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S
2018-05-29
There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.
Prendergast, Deirdre M; Hand, Darren; Nί Ghallchóir, Eadaoin; McCabe, Evonne; Fanning, Seamus; Griffin, Margaret; Egan, John; Gutierrez, Montserrat
2013-08-16
Salmonella enterica subsp. enterica serovar 4,[5],12:i:- is considered to be a monophasic variant of Salmonella Typhimurium and is increasingly associated with human infections. The use of PCR for the unequivocal identification of strains identified by conventional serotyping as 4,[5],12:i:- has been recommended by the European Food Safety Authority (EFSA), in particular the conventional multiplex PCR developed by Tennant et al. (2010). An alternative protocol for the identification and differentiation of S. Typhimurium and S. Typhimurium-like strains, including its monophasic variants, based on a multiplex real-time PCR assay was developed in our laboratory. A panel of 206 Salmonella strains was used to validate our multiplex real-time PCR against the conventional multiplex PCR recommended by EFSA, i.e. 43 Salmonella strains of serovars other than Typhimurium and 163 routine isolates determined by slide agglutination serotyping to have an incomplete antigenic formula compatible with the S. Typhimurium formula 4,[5],12:i:1,2. Both methods correctly identified the 43 Salmonella strains as non S. Typhimurium. Among the 163 isolates of undetermined serovar by conventional serotyping, both PCR protocols identified 54 isolates as S. Typhimurium, 101 as monophasic S. Typhimurium and 8 as non-S. Typhimurium. Twenty isolates phenotypically lacking the phase-2 H antigen were positive for the fljB.1,2 gene. These strains have been recently described in the literature by other workers and have been referred to as "inconsistent" variants of S. Typhimurium. Antimicrobial resistance and phage typing were also performed on the S. Typhimurium isolates, including monophasic variants, and approximately half of the isolates identified as monophasic S. Typhimurium by our multiplex real-time PCR protocol were DT193 with the resistance pattern ASSuT. There was 100% concordance between the conventional PCR and the multiplex real-time PCR method developed in this study which proved that our protocol is equivalent to the one recommended by EFSA. In comparison to the conventional PCR, this new protocol is faster and is currently being applied routinely in our laboratory to all isolates that could potentially be S. Typhimurium. Copyright © 2013 Elsevier B.V. All rights reserved.
Luo, Yiyang; Xia, Li; Xu, Zhilin; Yu, Can; Sun, Qizhen; Li, Wei; Huang, Di; Liu, Deming
2015-02-09
An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.
Ito, Takao; Suzaki, Koichi
2017-01-01
Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.
Suzaki, Koichi
2017-01-01
Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays. PMID:28957362
Waggoner, Jesse J; Sahadeo, Nikita S D; Brown, Arianne; Mohamed-Hadley, Alisha; Hadley, Dexter; Carrington, Leslie; Carrington, Christine V F; Pinsky, Benjamin A
2015-02-01
Dengue virus (DENV) transmission occurs throughout the Caribbean, though laboratory confirmation and epidemiologic surveillance are limited by the availability of serotype-specific molecular diagnostics. In this study, we show that a serotype-specific DENV multiplex, real-time reverse transcriptase-PCR (RT-PCR) detected DENV RNA in significantly more samples (82/182) than a reference hemi-nested RT-PCR (57/182; P=0.01). Copyright © 2015 Elsevier Inc. All rights reserved.
Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas
2002-03-15
The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.
Abbatiello, Susan E.; Schilling, Birgit; Mani, D. R.; Zimmerman, Lisa J.; Hall, Steven C.; MacLean, Brendan; Albertolle, Matthew; Allen, Simon; Burgess, Michael; Cusack, Michael P.; Gosh, Mousumi; Hedrick, Victoria; Held, Jason M.; Inerowicz, H. Dorota; Jackson, Angela; Keshishian, Hasmik; Kinsinger, Christopher R.; Lyssand, John; Makowski, Lee; Mesri, Mehdi; Rodriguez, Henry; Rudnick, Paul; Sadowski, Pawel; Sedransk, Nell; Shaddox, Kent; Skates, Stephen J.; Kuhn, Eric; Smith, Derek; Whiteaker, Jeffery R.; Whitwell, Corbin; Zhang, Shucha; Borchers, Christoph H.; Fisher, Susan J.; Gibson, Bradford W.; Liebler, Daniel C.; MacCoss, Michael J.; Neubert, Thomas A.; Paulovich, Amanda G.; Regnier, Fred E.; Tempst, Paul; Carr, Steven A.
2015-01-01
There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma. PMID:25693799
The new challenges of multiplex networks: Measures and models
NASA Astrophysics Data System (ADS)
Battiston, Federico; Nicosia, Vincenzo; Latora, Vito
2017-02-01
What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.
Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong
2017-01-01
This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus ( S. aureus ), Listeria monocytogenes ( L. monocytogenes ) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 10 2 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes , and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes , and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples.
Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong
2017-01-01
This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 102 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes, and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes, and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples. PMID:28620364
Crosstalk analyse of DFB fiber laser hydrophone array based on time division multiplexing
NASA Astrophysics Data System (ADS)
Li, Yu; Huang, Junbin; Gu, Hongcan; Tang, Bo; Wu, Jing
2014-12-01
In this paper, the crosstalk of a time division multiplexed (TDM) system of distributed feedback (DFB) fiber laser (FL)hydrophones based on optical switch using Phase Generated Carrier (PGC) method was quantitatively analyzed. After mathematical deduction, the relationship among crosstalk, multiplexing scale and extinction ratio of optical switch was given. The simulation results show that to realize a TDM system of DFB fiber laser hydrophones with crosstalk lower than -40dB, the average extinction ratio should be higher than 24.78dB for a 4- channel system, while higher than 28.45dB for an 8- channel system. Two experiments to analyze the array crosstalk to a certain channel in an 8- channel array were conducted in this paper. Firstly, by testing the powers of leak laser to a certain channel from others, the array crosstalk to this channel was obtained according to the equation mathematically deduced in this paper. The result shows the array crosstalk to a certain channel of the 8-channel array was -7.6dB. An experiment of underwater acoustic detection was carried out finally to get the real array crosstalk to this certain channel, and the experimental result shows that the array crosstalk to this channel is -8.8dB, which is close to the calculated result.
Te, Shu Harn; Chen, Enid Yingru
2015-01-01
The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892
Chung, Yousun; Kim, Taek Soo; Min, Young Gi; Hong, Yun Ji; Park, Jeong Su; Hwang, Sang Mee; Song, Kyoung-Ho; Kim, Eu Suk; Kim, Hong Bin; Song, Junghan; Kim, Eui-Chong
2016-01-01
Staphylococci are the leading cause of nosocomial blood stream infections. Fast and accurate identification of staphylococci and confirmation of their methicillin resistance are crucial for immediate treatment with effective antibiotics. A multiplex real-time PCR assay that targets mecA, femA specific for S. aureus, femA specific for S. epidermidis, 16S rRNA for universal bacteria, and 16S rRNA specific for staphylococci was developed and evaluated with 290 clinical blood culture samples containing Gram-positive cocci in clusters (GPCC). For the 262 blood cultures identified to the species level with the MicroScan WalkAway system (Siemens Healthcare Diagnostics, USA), the direct real-time PCR assay of positive blood cultures showed very good agreement for the categorization of staphylococci into methicillin-resistant S. aureus (MRSA), methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. epidermidis (MRSE), methicillin-susceptible S. epidermidis (MSSE), methicillin-resistant non-S. epidermidis CoNS (MRCoNS), and methicillin-susceptible non-S. epidermidis CoNS (MSCoNS) (κ = 0.9313). The direct multiplex real-time PCR assay of positive blood cultures containing GPCC can provide essential information at the critical point of infection with a turnaround time of no more than 4 h. Further studies should evaluate the clinical outcome of using this rapid real-time PCR assay in glycopeptide antibiotic therapy in clinical settings. PMID:27403436
Multiplex real-time PCR assay for Legionella species.
Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja
2015-12-01
Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yu, Xin-Fen; Pan, Jing-Cao; Ye, Rong; Xiang, Hai-Qing; Kou, Yu; Huang, Zhi-Cheng
2008-03-01
The common respiratory viruses, including influenza A, influenza B, and newly emerging severe acute respiratory syndrome (SARS) viruses, may cause similar clinical symptoms. Therefore, differential diagnosis of these virus pathogens is frequently required for single clinical samples. In addition, there is an urgent need for noninfectious and stable RNA standards and controls for multivirus detection. In this study, reverse transcription-PCR (RT-PCR) targeting of the RNAs of influenza A and influenza B viruses and SARS coronavirus was performed, and the resulting products were spliced into a fragment which was packaged into armored RNA for use as a noninfectious, quantifiable synthetic substitute. Furthermore, in the present study we developed a multiplex real-time RT-PCR assay in which the armored RNA was used as an external positive control and the three RNA viruses could be detected simultaneously in a single reaction mix. The detection limit of the multiplex real-time PCR was 10 copies/microl of armored RNA.
Wong, Anita A; Pabbaraju, Kanti; Wong, Sallene; Tellier, Raymond
2016-03-01
Herpes simplex viruses (HSV) and varicella zoster virus (VZV) can have very similar and wide-ranging clinical presentations. Rapid identification is necessary for timely antiviral therapy, especially with infections involving the central nervous system, neonates, and immunocompromised individuals. Detection of HSV-1, HSV-2 and VZV was combined into one real-time PCR reaction utilizing hydrolysis probes. The assay was validated on the LightCycler(®) (Roche) and Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher Scientific Inc.) to detect alphaherpesviruses in cerebral spinal fluid (CSF) and lesion swab specimens, respectively. Validation data on blood and tissue samples are also presented. The multiplex assay showed excellent sensitivity, specificity and reproducibility when compared to two singleplex real-time PCR assays for CSF samples and direct fluorescent antigen/culture for lesion swab samples. Implementation of the multiplex assay has facilitated improved sensitivity and accuracy as well as reduced turn-around-times and costs. The results from a large data set of 16,622 prospective samples tested between August 16, 2012 to February 1, 2014 at the Provincial Laboratory for Public Health (Alberta, Canada) are presented here. Copyright © 2015 Elsevier B.V. All rights reserved.
Gao, Yonghui; Chen, Xiaoli; Wang, Jianhua; Shangguan, Shaofang; Dai, Yaohua; Zhang, Ting; Liu, Junling
2013-06-20
With the increasing interest in copy number variation as it pertains to human genomic variation, common phenotypes, and disease susceptibility, there is a pressing need for methods to accurately identify copy number. In this study, we developed a simple approach that combines multiplex PCR with matrix-assisted laser desorption ionization time-of-flight mass spectrometry for submicroscopic copy number variation detection. Two pairs of primers were used to simultaneously amplify query and endogenous control regions in the same reaction. Using a base extension reaction, the two amplicons were then distinguished and quantified in a mass spectrometry map. The peak ratio between the test region and the endogenous control region was manually calculated. The relative copy number could be determined by comparing the peak ratio between the test and control samples. This method generated a copy number measurement comparable to those produced by two other commonly used methods - multiplex ligation-dependent probe amplification and quantitative real-time PCR. Furthermore, it can discriminate a wide range of copy numbers. With a typical 384-format SpectroCHIP, at least six loci on 384 samples can be analyzed simultaneously in a hexaplex assay, making this assay adaptable for high throughput, and potentially applicable for large-scale association studies. Copyright © 2013 Elsevier B.V. All rights reserved.
Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo
2016-01-01
Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.
Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR.
Zhong, Qun; Bhattacharya, Smiti; Kotsopoulos, Steven; Olson, Jeff; Taly, Valérie; Griffiths, Andrew D; Link, Darren R; Larson, Jonathan W
2011-07-07
Quantitative polymerase chain reactions (qPCR) based on real-time PCR constitute a powerful and sensitive method for the analysis of nucleic acids. However, in qPCR, the ability to multiplex targets using differently colored fluorescent probes is typically limited to 4-fold by the spectral overlap of the fluorophores. Furthermore, multiplexing qPCR assays requires expensive instrumentation and most often lengthy assay development cycles. Digital PCR (dPCR), which is based on the amplification of single target DNA molecules in many separate reactions, is an attractive alternative to qPCR. Here we report a novel and easy method for multiplexing dPCR in picolitre droplets within emulsions-generated and read out in microfluidic devices-that takes advantage of both the very high numbers of reactions possible within emulsions (>10(6)) as well as the high likelihood that the amplification of only a single target DNA molecule will initiate within each droplet. By varying the concentration of different fluorogenic probes of the same color, it is possible to identify the different probes on the basis of fluorescence intensity. Adding multiple colors increases the number of possible reactions geometrically, rather than linearly as with qPCR. Accurate and precise copy numbers of up to sixteen per cell were measured using a model system. A 5-plex assay for spinal muscular atrophy was demonstrated with just two fluorophores to simultaneously measure the copy number of two genes (SMN1 and SMN2) and to genotype a single nucleotide polymorphism (c.815A>G, SMN1). Results of a pilot study with SMA patients are presented. This journal is © The Royal Society of Chemistry 2011
Hyperspectral fluorescence imaging with multi wavelength LED excitation
NASA Astrophysics Data System (ADS)
Luthman, A. Siri; Dumitru, Sebastian; Quirós-Gonzalez, Isabel; Bohndiek, Sarah E.
2016-04-01
Hyperspectral imaging (HSI) can combine morphological and molecular information, yielding potential for real-time and high throughput multiplexed fluorescent contrast agent imaging. Multiplexed readout from targets, such as cell surface receptors overexpressed in cancer cells, could improve both sensitivity and specificity of tumor identification. There remains, however, a need for compact and cost effective implementations of the technology. We have implemented a low-cost wide-field multiplexed fluorescence imaging system, which combines LED excitation at 590, 655 and 740 nm with a compact commercial solid state HSI system operating in the range 600 - 1000 nm. A key challenge for using reflectance-based HSI is the separation of contrast agent fluorescence from the reflectance of the excitation light. Here, we illustrate how it is possible to address this challenge in software, using two offline reflectance removal methods, prior to least-squares spectral unmixing. We made a quantitative comparison of the methods using data acquired from dilutions of contrast agents prepared in well-plates. We then established the capability of our HSI system for non-invasive in vivo fluorescence imaging in small animals using the optimal reflectance removal method. The HSI presented here enables quantitative unmixing of at least four fluorescent contrast agents (Alexa Fluor 610, 647, 700 and 750) simultaneously in living mice. A successful unmixing of the four fluorescent contrast agents was possible both using the pure contrast agents and with mixtures. The system could in principle also be applied to imaging of ex vivo tissue or intraoperative imaging in a clinical setting. These data suggest a promising approach for developing clinical applications of HSI based on multiplexed fluorescence contrast agent imaging.
Osman, Fatima; Dang, Tyler; Bodaghi, Sohrab; Vidalakis, Georgios
2017-07-01
A one-step multiplex reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) based on species-specific minor groove binding (MGB) probes, was developed for the simultaneous detection, identification, and quantification of three citrus viroids belonging to different genera. Citrus exocortis viroid (Pospiviroid), Hop stunt viroid (Hostuviroid), and Citrus bark cracking viroid (Cocadviroid) cause a variety of maladies in agriculturally significant crops. Therefore, reliable assays for their detection are essential tools for various government and industry organizations implementing disease management programs. Singleplex qPCR primers and MGB probes were designed individually for the detection of the three targeted viroids, and subsequently combined in a one-step multiplex RT-qPCR reaction. A wide host range of woody plants, including citrus, grapevines, apricots, plums and herbaceous plants such as tomato, cucumber, eggplant and chrysanthemum different world regions were used to validate the assay. Single, double and triple viroid infections were identified in the tested samples. The developed multiplex RT-qPCR assay was compared with a previously reported SYBR Green I RT-qPCR for the universal detection of citrus viroids. Both assays accurately identified all citrus viroid infected samples. The multiplex assay complemented the SYBR Green I universal detection assay by differentiating among citrus viroid species in the positive samples. The developed multiplex RT-qPCR assay has the potential to simultaneously detect each targeted viroid and could be used in high throughput screenings for citrus viroids in field surveys, germplasm banks, nurseries and other viroid disease management programs. Copyright © 2017. Published by Elsevier B.V.
Yang, Litao; Pan, Aihu; Zhang, Kewei; Guo, Jinchao; Yin, Changsong; Chen, Jianxiu; Huang, Cheng; Zhang, Dabing
2005-08-10
As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM insect resistant cottons quantification. All of these results indicated that our established conventional and TaqMan real-time PCR assays were applicable to detect the three insect resistant cottons qualitatively and quantitatively.
Hietala, Ari M.; Eikenes, Morten; Kvaalen, Harald; Solheim, Halvor; Fossdal, Carl G.
2003-01-01
A multiplex real-time PCR assay was developed to monitor the dynamics of the Picea abies-Heterobasidion annosum pathosystem. Tissue cultures and 32-year-old trees with low or high resistance to this pathogen were used as the host material. Probes and primers were based on a laccase gene for the pathogen and a polyubiquitin gene for the host. The real-time PCR procedure was compared to an ergosterol-based quantification method in a tissue culture experiment, and there was a strong correlation (product moment correlation coefficient, 0.908) between the data sets. The multiplex real-time PCR procedure had higher resolution and sensitivity during the early stages of colonization and also could be used to monitor the host. In the tissue culture experiment, host DNA was degraded more rapidly in the clone with low resistance than in the clone with high resistance. In the field experiment, the lesions elicited were not strictly proportional to the area colonized by the pathogen. Fungal colonization was more restricted and localized in the lesion in the clone with high resistance, whereas in the clone with low resistance, the fungus could be detected until the visible end of the lesion. Thus, the real-time PCR assay gives better resolution than does the traditionally used lesion length measurement when screening host clones for resistance. PMID:12902224
Intapan, Pewpan M; Thanchomnang, Tongjit; Lulitanond, Viraphong; Maleewong, Wanchai
2009-01-01
We developed a single-step real-time fluorescence resonance energy transfer (FRET) multiplex polymerase chain reaction (PCR) merged with melting curve analysis for the detection of Wuchereria bancrofti and Brugia malayi DNA in blood-fed mosquitoes. Real-time FRET multiplex PCR is based on fluorescence melting curve analysis of a hybrid of amplicons generated from two families of repeated DNA elements: the 188 bp SspI repeated sequence, specific to W. bancrofti, and the 153-bp HhaI repeated sequence, specific to the genus Brugia and two pairs of specific fluorophore-labeled probes. Both W. bancrofti and B. malayi can be differentially detected in infected vectors by this process through their different fluorescence channel and melting temperatures. The assay could distinguish both human filarial DNAs in infected vectors from the DNAs of Dirofilaria immitis- and Plasmodium falciparum-infected human red blood cells and noninfected mosquitoes and human leukocytes. The technique showed 100% sensitivity and specificity and offers a rapid and reliable procedure for differentially identifying lymphatic filariasis. The introduced real-time FRET multiplex PCR can reduce labor time and reagent costs and is not prone to carry over contamination. The test can be used to screen mosquito vectors in endemic areas and therefore should be a useful diagnostic tool for the evaluation of infection rate of the mosquito populations and for xenomonitoring in the community after eradication programs such as the Global Program to Eliminate Lymphatic Filariasis.
2010-01-01
Background Pseudomonas savastanoi pv. savastanoi is the causal agent of olive knot disease. The strains isolated from oleander and ash belong to the pathovars nerii and fraxini, respectively. When artificially inoculated, pv. savastanoi causes disease also on ash, and pv. nerii attacks also olive and ash. Surprisingly nothing is known yet about their distribution in nature on these hosts and if spontaneous cross-infections occur. On the other hand sanitary certification programs for olive plants, also including P. savastanoi, were launched in many countries. The aim of this work was to develop several PCR-based tools for the rapid, simultaneous, differential and quantitative detection of these P. savastanoi pathovars, in multiplex and in planta. Results Specific PCR primers and probes for the pathovars savastanoi, nerii and fraxini of P. savastanoi were designed to be used in End Point and Real-Time PCR, both with SYBR® Green or TaqMan® chemistries. The specificity of all these assays was 100%, as assessed by testing forty-four P. savastanoi strains, belonging to the three pathovars and having different geographical origins. For comparison strains from the pathovars phaseolicola and glycinea of P. savastanoi and bacterial epiphytes from P. savastanoi host plants were also assayed, and all of them tested always negative. The analytical detection limits were about 5 - 0.5 pg of pure genomic DNA and about 102 genome equivalents per reaction. Similar analytical thresholds were achieved in Multiplex Real-Time PCR experiments, even on artificially inoculated olive plants. Conclusions Here for the first time a complex of PCR-based assays were developed for the simultaneous discrimination and detection of P. savastanoi pv. savastanoi, pv. nerii and pv. fraxini. These tests were shown to be highly reliable, pathovar-specific, sensitive, rapid and able to quantify these pathogens, both in multiplex reactions and in vivo. Compared with the other methods already available for P. savastanoi, the identification procedures here reported provide a versatile tool both for epidemiological and ecological studies on these pathovars, and for diagnostic procedures monitoring the asymptomatic presence of P. savastanoi on olive and oleander propagation materials. PMID:20509893
High-speed real-time OFDM transmission based on FPGA
NASA Astrophysics Data System (ADS)
Xiao, Xin; Li, Fan; Yu, Jianjun
2016-02-01
In this paper, we review our recent research progresses on real-time orthogonal frequency division multiplexing (OFDM) transmission based on FPGA. We successfully demonstrated four-channel wavelength-division multiplexing (WDM) 256.51Gb/s 16-ary quadrature amplitude modulation (16QAM)-OFDM signal transmission system for short-reach optical amplifier free inter-connection with real-time reception. Four optical carriers are modulated by four different 16QAM-OFDM signals via 10G-class direct modulation lasers (DMLs). We achieved highest capacity real-time reception optical OFDM signal transmission over 2.4-km SMF with the bit-error ratio (BER) under soft-decision forward error correction (SD-FEC) limitation of 2.4×10-2. In order to achieve higher spectrum efficiency (SE), we demonstrate 4-channel high level QAM-OFDM transmission over 20-km SMF-28 with real-time reception. 58.72-Gb/s 256QAM-OFDM and 56.4-Gb/s 128QAM-OFDM signal transmission within 25-GHz grid is achieved with the BER under 2.4×10-2 and real-time reception.
Real-time multiplexed digital cavity-enhanced spectroscopy
Boyson, Toby K.; Dagdigian, Paul J.; Pavey, Karl D.; ...
2015-10-01
Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. In addition, this Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylatemore » and show parts-per-billion per root hertz sensitivity measured in real-time.« less
Szuhai, Károly; Sandhaus, Emily; Kolkman-Uljee, Sandra M.; Lemaître, Marc; Truffert, Jean-Christophe; Dirks, Roeland W.; Tanke, Hans J.; Fleuren, Gert Jan; Schuuring, Ed; Raap, Anton K.
2001-01-01
Human papillomaviruses (HPVs) play an important role in the pathogenesis of cervical cancer. For identification of the large number of different HPV types found in (pre)malignant lesions, a robust methodology is needed that combines general HPV detection with HPV genotyping. We have developed for formaldehyde-fixed samples a strategy that, in a homogenous, real-time fluorescence polymerase chain reaction (PCR)-based assay, accomplishes general HPV detection by SybrGreen reporting of HPV-DNA amplicons, and genotyping of seven prevalent HPV types (HPV-6, -11, -16, -18, -31, -33, -45) by real-time molecular beacon PCR. The false-positive rate of the HPV SybrGreen-PCR was 4%, making it well suited as a prescreening, general HPV detection technology. The type specificity of the seven selected HPV molecular beacons was 100% and double infections were readily identified. The multiplexing capacity of the HPV molecular beacon PCR was analyzed and up to three differently labeled molecular beacons could be used in one PCR reaction without observing cross talk. The inherent quantitation capacities of real-time fluorescence PCR allowed the determination of average HPV copy number per cell. We conclude that the HPV SybrGreen-PCR in combination with the HPV molecular beacon PCR provides a robust, sensitive, and quantitative general HPV detection and genotyping methodology. PMID:11696426
Metric projection for dynamic multiplex networks.
Jurman, Giuseppe
2016-08-01
Evolving multiplex networks are a powerful model for representing the dynamics along time of different phenomena, such as social networks, power grids, biological pathways. However, exploring the structure of the multiplex network time series is still an open problem. Here we propose a two-step strategy to tackle this problem based on the concept of distance (metric) between networks. Given a multiplex graph, first a network of networks is built for each time step, and then a real valued time series is obtained by the sequence of (simple) networks by evaluating the distance from the first element of the series. The effectiveness of this approach in detecting the occurring changes along the original time series is shown on a synthetic example first, and then on the Gulf dataset of political events.
Li, Baoguang; Liu, Huanli; Wang, Weimin
2017-11-09
Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, are responsible for numerous foodborne outbreaks annually worldwide. E. coli O157:H7, as well as pathogenic non-O157:H7 STECs, can cause life-threating complications, such as bloody diarrhea (hemolytic colitis) and hemolytic-uremic syndrome (HUS). Previously, we developed a real-time PCR assay to detect E. coli O157:H7 in foods by targeting a unique putative fimbriae protein Z3276. To extend the detection spectrum of the assay, we report a multiplex real-time PCR assay to specifically detect E. coli O157:H7 and screen for non-O157 STEC by targeting Z3276 and Shiga toxin genes (stx1 and stx2). Also, an internal amplification control (IAC) was incorporated into the assay to monitor the amplification efficiency. The multiplex real-time PCR assay was developed using the Life Technology ABI 7500 System platform and the standard chemistry. The optimal amplification mixture of the assay contains 12.5 μl of 2 × Universal Master Mix (Life Technology), 200 nM forward and reverse primers, appropriate concentrations of four probes [(Z3276 (80 nM), stx1 (80 nM), stx2 (20 nM), and IAC (40 nM)], 2 μl of template DNA, and water (to make up to 25 μl in total volume). The amplification conditions of the assay were set as follows: activation of TaqMan at 95 °C for 10 min, then 40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 60 s. The multiplex assay was optimized for amplification conditions. The limit of detection (LOD) for the multiplex assay was determined to be 200 fg of bacterial DNA, which is equivalent to 40 CFU per reaction which is similar to the LOD generated in single targeted PCRs. Inclusivity and exclusivity determinants were performed with 196 bacterial strains. All E. coli O157:H7 (n = 135) were detected as positive and all STEC strains (n = 33) were positive for stx1, or stx2, or stx1 and stx2 (Table 1). No cross reactivity was detected with Salmonella enterica, Shigella strains, or any other pathogenic strains tested. A multiplex real-time PCR assay that can rapidly and simultaneously detect E. coli O157:H7 and screen for non-O157 STEC strains has been developed and assessed for efficacy. The inclusivity and exclusivity tests demonstrated high sensitivity and specificity of the multiplex real-time PCR assay. In addition, this multiplex assay was shown to be effective for the detection of E. coli O157:H7 from two common food matrices, beef and spinach, and may be applied for detection of E. coli O157:H7 and screening for non-O157 STEC strains from other food matrices as well.
Benitez, Alvaro J; Winchell, Jonas M
2016-04-01
We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Xu, Shicai; Zhan, Jian; Man, Baoyuan; Jiang, Shouzhen; Yue, Weiwei; Gao, Shoubao; Guo, Chengang; Liu, Hanping; Li, Zhenhua; Wang, Jihua; Zhou, Yaoqi
2017-03-01
Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array.
Interactive MPEG-4 low-bit-rate speech/audio transmission over the Internet
NASA Astrophysics Data System (ADS)
Liu, Fang; Kim, JongWon; Kuo, C.-C. Jay
1999-11-01
The recently developed MPEG-4 technology enables the coding and transmission of natural and synthetic audio-visual data in the form of objects. In an effort to extend the object-based functionality of MPEG-4 to real-time Internet applications, architectural prototypes of multiplex layer and transport layer tailored for transmission of MPEG-4 data over IP are under debate among Internet Engineering Task Force (IETF), and MPEG-4 systems Ad Hoc group. In this paper, we present an architecture for interactive MPEG-4 speech/audio transmission system over the Internet. It utilities a framework of Real Time Streaming Protocol (RTSP) over Real-time Transport Protocol (RTP) to provide controlled, on-demand delivery of real time speech/audio data. Based on a client-server model, a couple of low bit-rate bit streams (real-time speech/audio, pre- encoded speech/audio) are multiplexed and transmitted via a single RTP channel to the receiver. The MPEG-4 Scene Description (SD) and Object Descriptor (OD) bit streams are securely sent through the RTSP control channel. Upon receiving, an initial MPEG-4 audio- visual scene is constructed after de-multiplexing, decoding of bit streams, and scene composition. A receiver is allowed to manipulate the initial audio-visual scene presentation locally, or interactively arrange scene changes by sending requests to the server. A server may also choose to update the client with new streams and list of contents for user selection.
[Detection of recombinant-DNA in foods from stacked genetically modified plants].
Sorokina, E Iu; Chernyshova, O N
2012-01-01
A quantitative real-time multiplex polymerase chain reaction method was applied to the detection and quantification of MON863 and MON810 in stacked genetically modified maize MON 810xMON 863. The limit of detection was approximately 0,1%. The accuracy of the quantification, measured as bias from the accepted value and the relative repeatability standard deviation, which measures the intra-laboratory variability, were within 25% at each GM-level. A method verification has demonstrated that the MON 863 and the MON810 methods can be equally applied in quantification of the respective events in stacked MON810xMON 863.
Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong
2015-08-01
The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K.; Balmaseda, Angel; Harris, Eva
2016-01-01
Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629
Abate, Teresa; Cayo, Nelly M.; Parrado, Rudy; Bello, Zoraida Diaz; Velazquez, Elsa; Muñoz-Calderon, Arturo; Juiz, Natalia A.; Basile, Joaquín; Garcia, Lineth; Riarte, Adelina; Nasser, Julio R.; Ocampo, Susana B.; Yadon, Zaida E.; Torrico, Faustino; de Noya, Belkisyole Alarcón; Ribeiro, Isabela; Schijman, Alejandro G.
2013-01-01
Background The analytical validation of sensitive, accurate and standardized Real-Time PCR methods for Trypanosoma cruzi quantification is crucial to provide a reliable laboratory tool for diagnosis of recent infections as well as for monitoring treatment efficacy. Methods/Principal Findings We have standardized and validated a multiplex Real-Time quantitative PCR assay (qPCR) based on TaqMan technology, aiming to quantify T. cruzi satellite DNA as well as an internal amplification control (IAC) in a single-tube reaction. IAC amplification allows rule out false negative PCR results due to inhibitory substances or loss of DNA during sample processing. The assay has a limit of detection (LOD) of 0.70 parasite equivalents/mL and a limit of quantification (LOQ) of 1.53 parasite equivalents/mL starting from non-boiled Guanidine EDTA blood spiked with T. cruzi CL-Brener stock. The method was evaluated with blood samples collected from Chagas disease patients experiencing different clinical stages and epidemiological scenarios: 1- Sixteen Venezuelan patients from an outbreak of oral transmission, 2- Sixty three Bolivian patients suffering chronic Chagas disease, 3- Thirty four Argentinean cases with chronic Chagas disease, 4- Twenty seven newborns to seropositive mothers, 5- A seronegative receptor who got infected after transplantation with a cadaveric kidney explanted from an infected subject. Conclusions/Significance The performing parameters of this assay encourage its application to early assessment of T. cruzi infection in cases in which serological methods are not informative, such as recent infections by oral contamination or congenital transmission or after transplantation with organs from seropositive donors, as well as for monitoring Chagas disease patients under etiological treatment. PMID:23350002
Method and apparatus for high speed data acquisition and processing
Ferron, J.R.
1997-02-11
A method and apparatus are disclosed for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register. 15 figs.
Method and apparatus for high speed data acquisition and processing
Ferron, John R.
1997-01-01
A method and apparatus for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register.
Taniuchi, Mami; Verweij, Jaco J.; Noor, Zannatun; Sobuz, Shihab U.; van Lieshout, Lisette; Petri, William A.; Haque, Rashidul; Houpt, Eric R.
2011-01-01
Polymerase chain reaction (PCR) assays for intestinal parasites are increasingly being used on fecal DNA samples for enhanced specificity and sensitivity of detection. Comparison of these tests against microscopy and copro-antigen detection has been favorable, and substitution of PCR-based assays for the ova and parasite stool examination is a foreseeable goal for the near future. One challenge is the diverse list of protozoan and helminth parasites. Several existing real-time PCR assays for the major intestinal parasites—Cryptosporidium spp., Giardia intestinalis, Entamoeba histolytica, Ancylostoma duodenale, Ascaris lumbricoides, Necator americanus, and Strongyloides stercoralis—were adapted into a high throughput protocol. The assay involves two multiplex PCR reactions, one with specific primers for the protozoa and one with specific primers for the helminths, after which PCR products are hybridized to beads linked to internal oligonucleotide probes and detected on a Luminex platform. When compared with the parent multiplex real-time PCR assays, this multiplex PCR-bead assay afforded between 83% and 100% sensitivity and specificity on a total of 319 clinical specimens. In conclusion, this multiplex PCR-bead protocol provides a sensitive diagnostic screen for a large panel of intestinal parasites. PMID:21292910
Hasanpour, Mojtaba; Najafi, Akram
2017-06-01
Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.
Denison, Amy M.; Amin, Bijal D.; Nicholson, William L.; Paddock, Christopher D.
2015-01-01
Background Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari are the most common causes of spotted fever group rickettsioses indigenous to the United States. Infected patients characteristically present with a maculopapular rash, often accompanied by an inoculation eschar. Skin biopsy specimens are often obtained from these lesions for diagnostic evaluation. However, a species-specific diagnosis is achieved infrequently from pathologic specimens because immunohistochemical stains do not differentiate among the causative agents of spotted fever group rickettsiae, and existing polymerase chain reaction (PCR) assays generally target large gene segments that may be difficult or impossible to obtain from formalin-fixed tissues. Methods This work describes the development and evaluation of a multiplex real-time PCR assay for the detection of these 3 Rickettsia species from formalin-fixed, paraffin-embedded (FFPE) skin biopsy specimens. Results The multiplex PCR assay was specific at discriminating each species from FFPE controls of unrelated bacterial, viral, protozoan, and fungal pathogens that cause skin lesions, as well as other closely related spotted fever group Rickettsia species. Conclusions This multiplex real-time PCR demonstrates greater sensitivity than nested PCR assays in FFPE tissues and provides an effective method to specifically identify cases of Rocky Mountain spotted fever, rickettsialpox, and R. parkeri rickettsiosis by using skin biopsy specimens. PMID:24829214
A Versatile Multichannel Digital Signal Processing Module for Microcalorimeter Arrays
NASA Astrophysics Data System (ADS)
Tan, H.; Collins, J. W.; Walby, M.; Hennig, W.; Warburton, W. K.; Grudberg, P.
2012-06-01
Different techniques have been developed for reading out microcalorimeter sensor arrays: individual outputs for small arrays, and time-division or frequency-division or code-division multiplexing for large arrays. Typically, raw waveform data are first read out from the arrays using one of these techniques and then stored on computer hard drives for offline optimum filtering, leading not only to requirements for large storage space but also limitations on achievable count rate. Thus, a read-out module that is capable of processing microcalorimeter signals in real time will be highly desirable. We have developed multichannel digital signal processing electronics that are capable of on-board, real time processing of microcalorimeter sensor signals from multiplexed or individual pixel arrays. It is a 3U PXI module consisting of a standardized core processor board and a set of daughter boards. Each daughter board is designed to interface a specific type of microcalorimeter array to the core processor. The combination of the standardized core plus this set of easily designed and modified daughter boards results in a versatile data acquisition module that not only can easily expand to future detector systems, but is also low cost. In this paper, we first present the core processor/daughter board architecture, and then report the performance of an 8-channel daughter board, which digitizes individual pixel outputs at 1 MSPS with 16-bit precision. We will also introduce a time-division multiplexing type daughter board, which takes in time-division multiplexing signals through fiber-optic cables and then processes the digital signals to generate energy spectra in real time.
Samson, Maria Cristina; Gullì, Mariolina; Marmiroli, Nelson
2010-07-01
Methodologies that enable the detection of genetically modified organisms (GMOs) (authorized and non-authorized) in food and feed strongly influence the potential for adequate updating and implementation of legislation together with labeling requirements. Quantitative polymerase chain reaction (qPCR) systems were designed to boost the sensitivity and specificity on the identification of GMOs in highly degraded DNA samples; however, such testing will become economically difficult to cope with due to increasing numbers of approved genetically modified (GM) lines. Multiplexing approaches are therefore in development to provide cost-efficient solution. Construct-specific primers and probe were developed for quantitative analysis of Roundup Ready soybean (RRS) event glyphosate-tolerant soybean (GTS) 40-3-2. The lectin gene (Le1) was used as a reference gene, and its specificity was verified. RRS- and Le1-specific quantitative real-time PCR (qRTPCR) were optimized in a duplex platform that has been validated with respect to limit of detection (LOD) and limit of quantification (LOQ), as well as accuracy. The analysis of model processed food samples showed that the degradation of DNA has no adverse or little effects on the performance of quantification assay. In this study, a duplex qRTPCR using TaqMan minor groove binder-non-fluorescent quencher (MGB-NFQ) chemistry was developed for specific detection and quantification of RRS event GTS 40-3-2 that can be used for practical monitoring in processed food products.
Characterization, adaptive traffic shaping, and multiplexing of real-time MPEG II video
NASA Astrophysics Data System (ADS)
Agrawal, Sanjay; Barry, Charles F.; Binnai, Vinay; Kazovsky, Leonid G.
1997-01-01
We obtain network traffic model for real-time MPEG-II encoded digital video by analyzing video stream samples from real-time encoders from NUKO Information Systems. MPEG-II sample streams include a resolution intensive movie, City of Joy, an action intensive movie, Aliens, a luminance intensive (black and white) movie, Road To Utopia, and a chrominance intensive (color) movie, Dick Tracy. From our analysis we obtain a heuristic model for the encoded video traffic which uses a 15-stage Markov process to model the I,B,P frame sequences within a group of pictures (GOP). A jointly-correlated Gaussian process is used to model the individual frame sizes. Scene change arrivals are modeled according to a gamma process. Simulations show that our MPEG-II traffic model generates, I,B,P frame sequences and frame sizes that closely match the sample MPEG-II stream traffic characteristics as they relate to latency and buffer occupancy in network queues. To achieve high multiplexing efficiency we propose a traffic shaping scheme which sets preferred 1-frame generation times among a group of encoders so as to minimize the overall variation in total offered traffic while still allowing the individual encoders to react to scene changes. Simulations show that our scheme results in multiplexing gains of up to 10% enabling us to multiplex twenty 6 Mbps MPEG-II video streams instead of 18 streams over an ATM/SONET OC3 link without latency or cell loss penalty. This scheme is due for a patent.
Scott, Laura Jane; Gunson, Rory N; Carman, William F; Winter, Andrew J
2010-12-01
To develop, evaluate and implement a new multiplex real-time PCR test for the detection of herpes simplex virus (HSV)1, HSV2 and syphilis in a single sample using a single test. A multiplex real-time PCR test detecting HSV1, HSV2 and Treponema pallidum was designed, validated and evaluated for a period of 6 months on patients attending the Sandyford Initiative (a series of genitourinary medicine clinics in and around Glasgow). A total of 692 samples were tested, and T pallidum PCR positives were confirmed by a second PCR at the Scottish Reference Laboratory (SBSTIRL). All PCR results were aligned with dark ground microscopy findings and serological results where available and compared. The laboratory validation of the multiplex assay showed the test to be sensitive, specific and robust. Of the 692 samples, 139 were positive for HSV1, 136 for HSV2, 15 for syphilis, one for both syphilis and HSV1, and 401 were negative; the reference laboratory confirmed all T pallidum PCR-positive samples. The PCR test was more sensitive than both dark ground microscopy and serological testing for the diagnosis of primary syphilis. The introduction of this new test has led to a better turnaround time for the diagnosis of genital ulcer disease, better detection of primary syphilis infection, and the detection of unexpected cases of syphilis where the aetiological agent suspected was HSV.
Wiengkum, Thanatcha; Srithep, Sarinee; Chainoi, Isarapong; Singboottra, Panthong; Wongwiwatthananukit, Sanchai
2011-01-01
Background Prevention and control of thalassemia requires simple, rapid, and accurate screening tests for carrier couples who are at risk of conceiving fetuses with severe thalassemia. Methods Single-tube multiplex real-time PCR with SYBR Green1 and high-resolution melting (HRM) analysis were used for the identification of α-thalassemia-1 Southeast Asian (SEA) and Thai type deletions and β-thalassemia 3.5-kb gene deletion. The results were compared with those obtained using conventional gap-PCR. DNA samples were derived from 28 normal individuals, 11 individuals with α-thalassemia-1 SEA type deletion, 2 with α-thalassemia-1 Thai type deletion, and 2 with heterozygous β-thalassemia 3.5-kb gene deletion. Results HRM analysis indicated that the amplified fragments from α-thalassemia-1 SEA type deletion, α-thalassemia-1 Thai type deletion, β-thalassemia 3.5-kb gene deletion, and the wild-type β-globin gene had specific peak heights at mean melting temperature (Tm) values of 86.89℃, 85.66℃, 77.24℃, and 74.92℃, respectively. The results obtained using single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis showed 100% consistency with those obtained using conventional gap-PCR. Conclusions Single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis is a potential alternative for routine clinical screening of the common types of α- and β-thalassemia large gene deletions, since it is simple, cost-effective, and highly accurate. PMID:21779184
Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok
2016-06-21
In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.
Bester, Rachelle; Jooste, Anna E C; Maree, Hans J; Burger, Johan T
2012-09-27
Grapevine leafroll-associated virus 3 (GLRaV-3) is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3. In this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM) curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay. A universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h) gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM. The real-time RT-PCR HRM provides a sensitive, automated and rapid tool to detect and differentiate different variant groups in order to study the epidemiology of leafroll disease.
Navigability of multiplex temporal network
NASA Astrophysics Data System (ADS)
Wang, Yan; Song, Qiao-Zhen
2017-01-01
Real world complex systems have multiple levels of relationships and in many cases, they need to be modeled as multiplex networks where the same nodes can interact with each other in different layers, such as social networks. However, social relationships only appear at prescribed times so the temporal structures of edge activations can also affect the dynamical processes located above them. To consider both factors are simultaneously, we introduce multiplex temporal networks and propose three different walk strategies to investigate the concurrent dynamics of random walks and the temporal structure of multiplex networks. Thus, we derive analytical results for the multiplex centrality and coverage function in multiplex temporal networks. By comparing them with the numerical results, we show how the underlying topology of the layers and the walk strategy affect the efficiency when exploring the networks. In particular, the most interesting result is the emergence of a super-diffusion process, where the time scale of the multiplex is faster than that of both layers acting separately.
Horváth, Ádám; Pető, Zoltán; Urbán, Edit; Vágvölgyi, Csaba; Somogyvári, Ferenc
2013-12-23
Polymerase chain reaction (PCR)-based techniques are widely used to identify fungal and bacterial infections. There have been numerous reports of different, new, real-time PCR-based pathogen identification methods although the clinical practicability of such techniques is not yet fully clarified.The present study focuses on a novel, multiplex, real-time PCR-based pathogen identification system developed for rapid differentiation of the commonly occurring bacterial and fungal causative pathogens of bloodstream infections. A multiplex, real-time PCR approach is introduced for the detection and differentiation of fungi, Gram-positive (G+) and Gram-negative (G-) bacteria. The Gram classification is performed with the specific fluorescence resonance energy transfer (FRET) probes recommended for LightCycler capillary real-time PCR. The novelty of our system is the use of a non-specific SYBR Green dye instead of labelled anchor probes or primers, to excite the acceptor dyes on the FRET probes. In conjunction with this, the use of an intercalating dye allows the detection of fungal amplicons.With the novel pathogen detection system, fungi, G + and G- bacteria in the same reaction tube can be differentiated within an hour after the DNA preparation via the melting temperatures of the amplicons and probes in the same tube. This modified FRET technique is specific and more rapid than the gold-standard culture-based methods. The fact that fungi, G + and G- bacteria were successfully identified in the same tube within an hour after the DNA preparation permits rapid and early evidence-based management of bloodstream infections in clinical practice.
Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert
2018-01-01
Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology. PMID:29425124
Higgins, Owen; Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert; Smith, Terry J
2018-02-09
Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae , Neisseria meningitidis and Haemophilus influenzae . Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae , N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.
Sanz, Juan Carlos; Ríos, Esther; Rodríguez-Avial, Iciar; Ramos, Belén; Marín, Mercedes; Cercenado, Emilia
2017-08-14
The aim was to evaluate the utility of a multiplex real-time PCR to detect Streptococcus pneumoniae lytA, plyA and psaA genes in pleural fluid (PF). A collection of 81 PF samples was used. Sixty were considered positive for S. pneumoniae according to previous results (54 by an in-house lytA gene PCR and eight by universal rRNA PCR). The sensitivity for detection of the lytA, plyA and psaA genes by multiplex PCR was 100% (60/60), 98.3% (59/60) and 91.7% (55/60), respectively. The detection of all three genes was negative in 21 samples formerly confirmed as negative for S. pneumoniae (100% specificity) by the other procedures (9 by in-house lytA PCR and 12 by rRNA PCR). The use of this multiplex PCR may be a useful option to identify S. pneumoniae directly in PF samples. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Rubio, Marcela da Silva; Penha Filho, Rafael Antonio Casarin; Almeida, Adriana Maria de; Berchieri, Angelo
2017-12-01
Currently there are 2659 Salmonella serovars. The host-specific biovars Salmonella Pullorum and Salmonella Gallinarum cause systemic infections in food-producing and wild birds. Fast diagnosis is crucial to control the dissemination in avian environments. The present work describes the development of a multiplex qPCR in real time using a low-cost DNA dye (SYBr Green) to identify and quantify these biovars. Primers were chosen based on genomic regions of difference (RoD) and optimized to control dimers. Primers pSGP detect both host-specific biovars but not other serovars and pSG and pSP differentiate biovars. Three amplicons showed different melting temperatures (Tm), allowing differentiation. The pSGP amplicon (97 bp) showed Tm of 78°C for both biovars. The pSG amplicon (273 bp) showed a Tm of 86.2°C for S. Gallinarum and pSP amplicon (260 bp) dissociated at 84.8°C for S. Pullorum identification. The multiplex qPCR in real time showed high sensitivity and was capable of quantifying 10 8 -10 1 CFU of these biovars.
Hendriks, Jan; Stojanovic, Ivan; Schasfoort, Richard B M; Saris, Daniël B F; Karperien, Marcel
2018-06-05
There is a large unmet need for reliable biomarker measurement systems for clinical application. Such systems should meet challenging requirements for large scale use, including a large dynamic detection range, multiplexing capacity, and both high specificity and sensitivity. More importantly, these requirements need to apply to complex biological samples, which require extensive quality control. In this paper, we present the development of an enhancement detection cascade for surface plasmon resonance imaging (SPRi). The cascade applies an antibody sandwich assay, followed by neutravidin and a gold nanoparticle enhancement for quantitative biomarker measurements in small volumes of complex fluids. We present a feasibility study both in simple buffers and in spiked equine synovial fluid with four cytokines, IL-1β, IL-6, IFN-γ, and TNF-α. Our enhancement cascade leads to an antibody dependent improvement in sensitivity up to 40 000 times, resulting in a limit of detection as low as 50 fg/mL and a dynamic detection range of more than 7 logs. Additionally, measurements at these low concentrations are highly reliable with intra- and interassay CVs between 2% and 20%. We subsequently showed this assay is suitable for multiplex measurements with good specificity and limited cross-reactivity. Moreover, we demonstrated robust detection of IL-6 and IL-1β in spiked undiluted equine synovial fluid with small variation compared to buffer controls. In addition, the availability of real time measurements provides extensive quality control opportunities, essential for clinical applications. Therefore, we consider this method is suitable for broad application in SPRi for multiplex biomarker detection in both research and clinical settings.
Designing robust watermark barcodes for multiplex long-read sequencing.
Ezpeleta, Joaquín; Krsticevic, Flavia J; Bulacio, Pilar; Tapia, Elizabeth
2017-03-15
To attain acceptable sample misassignment rates, current approaches to multiplex single-molecule real-time sequencing require upstream quality improvement, which is obtained from multiple passes over the sequenced insert and significantly reduces the effective read length. In order to fully exploit the raw read length on multiplex applications, robust barcodes capable of dealing with the full single-pass error rates are needed. We present a method for designing sequencing barcodes that can withstand a large number of insertion, deletion and substitution errors and are suitable for use in multiplex single-molecule real-time sequencing. The manuscript focuses on the design of barcodes for full-length single-pass reads, impaired by challenging error rates in the order of 11%. The proposed barcodes can multiplex hundreds or thousands of samples while achieving sample misassignment probabilities as low as 10-7 under the above conditions, and are designed to be compatible with chemical constraints imposed by the sequencing process. Software tools for constructing watermark barcode sets and demultiplexing barcoded reads, together with example sets of barcodes and synthetic barcoded reads, are freely available at www.cifasis-conicet.gov.ar/ezpeleta/NS-watermark . ezpeleta@cifasis-conicet.gov.ar. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Denison, Amy M; Amin, Bijal D; Nicholson, William L; Paddock, Christopher D
2014-09-01
Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari are the most common causes of spotted fever group rickettsioses indigenous to the United States. Infected patients characteristically present with a maculopapular rash, often accompanied by an inoculation eschar. Skin biopsy specimens are often obtained from these lesions for diagnostic evaluation. However, a species-specific diagnosis is achieved infrequently from pathologic specimens because immunohistochemical stains do not differentiate among the causative agents of spotted fever group rickettsiae, and existing polymerase chain reaction (PCR) assays generally target large gene segments that may be difficult or impossible to obtain from formalin-fixed tissues. This work describes the development and evaluation of a multiplex real-time PCR assay for the detection of these 3 Rickettsia species from formalin-fixed, paraffin-embedded (FFPE) skin biopsy specimens. The multiplex PCR assay was specific at discriminating each species from FFPE controls of unrelated bacterial, viral, protozoan, and fungal pathogens that cause skin lesions, as well as other closely related spotted fever group Rickettsia species. This multiplex real-time PCR demonstrates greater sensitivity than nested PCR assays in FFPE tissues and provides an effective method to specifically identify cases of Rocky Mountain spotted fever, rickettsialpox, and R. parkeri rickettsiosis by using skin biopsy specimens. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Gautam, Rashi; Mijatovic-Rustempasic, Slavica; Esona, Mathew D; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D
2016-01-01
Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8-100% sensitivity, 99.7-100% specificity, 85-95% efficiency and a limit of detection of 4-60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81-92% efficiency and limit of detection of 150-600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8-100% sensitivity, 100% specificity, 86-89% efficiency and a limit of detection of 12-400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82-90% efficiency and limit of detection of 120-4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains.
Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.
2016-01-01
Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8–100% sensitivity, 100% specificity, 86–89% efficiency and a limit of detection of 12–400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82–90% efficiency and limit of detection of 120–4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains. PMID:26839745
Large-memory real-time multichannel multiplexed pattern recognition
NASA Technical Reports Server (NTRS)
Gregory, D. A.; Liu, H. K.
1984-01-01
The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.
Velasco, Valeria; Sherwood, Julie S.; Rojas-García, Pedro P.; Logue, Catherine M.
2014-01-01
The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68–0.88 (from substantial to almost perfect agreement) and 0.29–0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0–0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using the standard culture method. PMID:24849624
Velasco, Valeria; Sherwood, Julie S; Rojas-García, Pedro P; Logue, Catherine M
2014-01-01
The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68-0.88 (from substantial to almost perfect agreement) and 0.29-0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0-0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using the standard culture method.
NASA Astrophysics Data System (ADS)
Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie
2014-10-01
Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems. Electronic supplementary information (ESI) available: Electrical characterization of fabricated n- and p-type nanowires, and influence of Debye screening on PSA sensing. See DOI: 10.1039/c4nr03210a
Sharma, Shashi; Tandel, Kundan; Danwe, Surabhi; Bhatt, Puneet; Dash, P K; Ranjan, Praveer; Rathi, K R; Gupta, Rajiv Mohan; Parida, M M
2018-03-01
Four antigenically different dengue virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) are known to cause infections in humans. Some of these are known to cause more severe disease than the others. Chances for developing Dengue hemorrhagic fever-dengue shock syndrome (DHF-DSS) increases significantly with history of previous infection with one of the four serotypes. Therefore, early diagnosis, serotyping and providing early warning of dengue fever epidemics to concerned authorities becomes very important for better patient outcome and to curb the rapid spread in the community. During the 2014 outbreak, a total of 100 samples from suspected cases of dengue were collected. NS1 antigen based rapid test was used for serological diagnosis. Dengue complex one step reverse transcription-polymerase chain reaction was performed to look for presence of viral RNA. Single tube multiplex RT-PCR was also performed to look for infecting serotype. CDC Dengue Multiplex Real Time PCR assay was performed for rapid diagnosis and simultaneous serotyping of the dengue virus. Out of the 100 samples screened, 69 were found to be positive by NS1Ag Rapid test. 34 samples were found positive by dengue consensus RT-PCR assay. 22 samples were found to be positive by single tube Dengue multiplex RT-PCR assay. Serotype DEN-2 was present in maximum numbers followed by DEN-3. 44 samples were found positive by DENV CDC Multiplex Real time PCR assay. DEN-2 was found in maximum numbers followed by DEN-1. Dengue remains to be an important health problem in India and across the globe. Few serotypes of dengue are more dangerous than the others. Rapid diagnosis and serotyping remains the key for better patient management and prevention of disease spreading in the community. Highly sensitive, specific and rapid CDC real time RT-PCR assay was found to be most promising tool among all available molecular diagnostic methods. This will serve a rapid and reliable simultaneous dengue virus detection as well serotyping assay in near future for rapid identification of dengue suspected sample screening.
Tat Trung, Ngo; Van Tong, Hoang; Lien, Tran Thi; Van Son, Trinh; Thanh Huyen, Tran Thi; Quyen, Dao Thanh; Hoan, Phan Quoc; Meyer, Christian G; Song, Le Huu
2018-02-01
For the identification of bacterial pathogens, blood culture is still the gold standard diagnostic method. However, several disadvantages apply to blood cultures, such as time and rather large volumes of blood sample required. We have previously established an optimised multiplex real-time PCR method in order to diagnose bloodstream infections. In the present study, we evaluated the diagnostic performance of this optimised multiplex RT-PCR in blood samples collected from 110 septicaemia patients enrolled at the 108 Military Central Hospital, Hanoi, Vietnam. Positive results were obtained by blood culture, the Light Cylcler-based SeptiFast ® assay and our multiplex RT-PCR in 35 (32%), 31 (28%), and 31 (28%) samples, respectively. Combined use of the three methods confirmed 50 (45.5%) positive cases of bloodstream infection, a rate significantly higher compared to the exclusive use of one of the three methods (P=0.052, 0.012 and 0.012, respectively). The sensitivity, specificity and area under the curve (AUC) of our assay were higher compared to that of the SeptiFast ® assay (77.4%, 86.1% and 0.8 vs. 67.7%, 82.3% and 0.73, respectively). Combined use of blood culture and multiplex RT-PCR assay showed a superior diagnostic performance, as the sensitivity, specificity, and AUC reached 83.3%, 100%, and 0.95, respectively. The concordance between blood culture and the multiplex RT-PCR assay was highest for Klebsiella pneumonia (100%), followed by Streptococcus spp. (77.8%), Escherichia coli (66.7%), Staphylococcus spp. (50%) and Salmonella spp. (50%). In addition, the use of the newly established multiplex RT-PCR assay increased the spectrum of identifiable agents (Acintobacter baumannii, 1/32; Proteus mirabilis, 1/32). The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Gago, Sara; Esteban, Cristina; Valero, Clara; Zaragoza, Oscar; Puig de la Bellacasa, Jorge; Buitrago, María José
2014-04-01
A molecular diagnostic technique based on real-time PCR was developed for the simultaneous detection of three of the most frequent causative agents of fungal opportunistic pneumonia in AIDS patients: Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii. This technique was tested in cultured strains and in clinical samples from HIV-positive patients. The methodology used involved species-specific molecular beacon probes targeted to the internal transcribed spacer regions of the rDNA. An internal control was also included in each assay. The multiplex real-time PCR assay was tested in 24 clinical strains and 43 clinical samples from AIDS patients with proven fungal infection. The technique developed showed high reproducibility (r(2) of >0.98) and specificity (100%). For H. capsulatum and Cryptococcus spp., the detection limits of the method were 20 and 2 fg of genomic DNA/20 μl reaction mixture, respectively, while for P. jirovecii the detection limit was 2.92 log10 copies/20 μl reaction mixture. The sensitivity in vitro was 100% for clinical strains and 90.7% for clinical samples. The assay was positive for 92.5% of the patients. For one of the patients with proven histoplasmosis, P. jirovecii was also detected in a bronchoalveolar lavage sample. No PCR inhibition was detected. This multiplex real-time PCR technique is fast, sensitive, and specific and may have clinical applications.
Leung, Eric T Y; Zheng, L; Wong, Rity Y K; Chan, Edward W C; Au, T K; Chan, Raphael C Y; Lui, Grace; Lee, Nelson; Ip, Margaret
2011-07-01
Rapid diagnosis and genotyping of Mycobacterium tuberculosis by molecular methods are often limited by the amount and purity of DNA extracted from body fluids. In this study, we evaluated 12 DNA extraction methods and developed a highly sensitive protocol for mycobacterial DNA extraction directly from sputa using surface-coated magnetic particles. We have also developed a novel multiplex real-time PCR for simultaneous identification of M. tuberculosis complex and the Beijing/W genotype (a hypervirulent sublineage of M. tuberculosis) by using multiple fluorogenic probes targeting both the M. tuberculosis IS6110 and the Rv0927c-pstS3 intergenic region. With reference strains and clinical isolates, our real-time PCR accurately identified 20 non-Beijing/W and 20 Beijing/W M. tuberculosis strains from 17 different species of nontuberculosis Mycobacterium (NTM). Further assessment of our DNA extraction protocol and real-time PCR with 335 nonduplicate sputum specimens correctly identified all 74 M. tuberculosis culture-positive specimens. In addition, 15 culture-negative specimens from patients with confirmed tuberculosis were also identified. No cross-reactivity was detected with NTM specimens (n = 31). The detection limit of the assay is 10 M. tuberculosis bacilli, as determined by endpoint dilution analysis. In conclusion, an optimized DNA extraction protocol coupled with a novel multiprobe multiplex real-time PCR for the direct detection of M. tuberculosis, including Beijing/W M. tuberculosis, was found to confer high sensitivity and specificity. The combined procedure has the potential to compensate for the drawbacks of conventional mycobacterial culture in routine clinical laboratory setting, such as the lengthy incubation period and the limitation to viable organisms.
Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots.
Petryayeva, Eleonora; Algar, W Russ
2014-03-18
Semiconductor quantum dot (QD) bioconjugates, with their unique and highly advantageous physicochemical and optical properties, have been extensively utilized as probes for bioanalysis and continue to generate widespread interest for these applications. An important consideration for expanding the utility of QDs and making their use routine is to make assays with QDs more accessible for laboratories that do not specialize in nanomaterials. Here, we show that digital color imaging of QD photoluminescence (PL) with a smartphone camera is a viable, easily accessible readout platform for quantitative, multiplexed, and real-time bioanalyses. Red-, green-, and blue-emitting CdSeS/ZnS QDs were conjugated with peptides that were labeled with a deep-red fluorescent dye, Alexa Fluor 647, and the dark quenchers, QSY9 and QSY35, respectively, to generate Förster resonance energy transfer (FRET) pairs sensitive to proteolytic activity. Changes in QD PL caused by the activity of picomolar to nanomolar concentrations of protease were detected as changes in the red-green-blue (RGB) channel intensities in digital color images. Importantly, measurements of replicate samples made with smartphone imaging and a sophisticated fluorescence plate reader yielded the same quantitative results, including initial proteolytic rates and specificity constants. Homogeneous two-plex and three-plex assays for the activity of trypsin, chymotrypsin, and enterokinase were demonstrated with RGB imaging. Given the ubiquity of smartphones, this work largely removes any instrumental impediments to the adoption of QDs as routine tools for bioanalysis in research laboratories and is a critical step toward the use of QDs for point-of-care diagnostics. This work also adds to the growing utility of smartphones in analytical methods by enabling multiplexed fluorimetric assays within a single sample volume and across multiple samples in parallel.
Kim, Ji Yeun; Lee, Jung-Lim
2014-10-01
This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL⁻¹ in pure culture and seawater, and 10 CFU g⁻¹ in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry.
Kim, Ji Yeun; Lee, Jung-Lim
2014-01-01
Background This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. Results The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL−1 in pure culture and seawater, and 10 CFU g−1 in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Conclusion Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24752974
NASA Astrophysics Data System (ADS)
Joyce, Malcolm J.; Gamage, Kelum A. A.; Aspinall, M. D.; Cave, F. D.; Lavietes, A.
2014-06-01
The design, principle of operation and the results of measurements made with a four-channel organic scintillator system are described. The system comprises four detectors and a multiplexed analyzer for the real-time parallel processing of fast neutron events. The function of the real-time, digital multiple-channel pulse-shape discrimination analyzer is described together with the results of laboratory-based measurements with 252Cf, 241Am-Li and plutonium. The analyzer is based on a single-board solution with integrated high-voltage supplies and graphical user interface. It has been developed to meet the requirements of nuclear materials assay of relevance to safeguards and security. Data are presented for the real-time coincidence assay of plutonium in terms of doubles count rate versus mass. This includes an assessment of the limiting mass uncertainty for coincidence assay based on a 100 s measurement period and samples in the range 0-50 g. Measurements of count rate versus order of multiplicity for 252Cf and 241Am-Li and combinations of both are also presented.
NASA Astrophysics Data System (ADS)
Villa, Carlos; Kumavor, Patrick; Donkor, Eric
2008-04-01
Photonics Analog-to-Digital Converters (ADCs) utilize a train of optical pulses to sample an electrical input waveform applied to an electrooptic modulator or a reverse biased photodiode. In the former, the resulting train of amplitude-modulated optical pulses is detected (converter to electrical) and quantized using a conversional electronics ADC- as at present there are no practical, cost-effective optical quantizers available with performance that rival electronic quantizers. In the latter, the electrical samples are directly quantized by the electronics ADC. In both cases however, the sampling rate is limited by the speed with which the electronics ADC can quantize the electrical samples. One way to increase the sampling rate by a factor N is by using the time-interleaved technique which consists of a parallel array of N electrical ADC converters, which have the same sampling rate but different sampling phase. Each operating at a quantization rate of fs/N where fs is the aggregated sampling rate. In a system with no real-time operation, the N channels digital outputs are stored in memory, and then aggregated (multiplexed) to obtain the digital representation of the analog input waveform. Alternatively, for real-time operation systems the reduction of storing time in the multiplexing process is desired to improve the time response of the ADC. The complete elimination of memories come expenses of concurrent timing and synchronization in the aggregation of the digital signal that became critical for a good digital representation of the analog signal waveform. In this paper we propose and demonstrate a novel optically synchronized encoder and multiplexer scheme for interleaved photonics ADCs that utilize the N optical signals used to sample different phases of an analog input signal to synchronize the multiplexing of the resulting N digital output channels in a single digital output port. As a proof of concept, four 320 Megasamples/sec 12-bit of resolution digital signals were multiplexed to form an aggregated 1.28 Gigasamples/sec single digital output signal.
Gadsby, N.J.; McHugh, M.P.; Russell, C.D.; Mark, H.; Conway Morris, A.; Laurenson, I.F.; Hill, A.T.; Templeton, K.E.
2015-01-01
The frequent lack of a positive and timely microbiological diagnosis in patients with lower respiratory tract infection (LRTI) is an important obstacle to antimicrobial stewardship. Patients are typically prescribed broad-spectrum empirical antibiotics while microbiology results are awaited, but, because these are often slow, negative, or inconclusive, de-escalation to narrow-spectrum agents rarely occurs in clinical practice. The aim of this study was to develop and evaluate two multiplex real-time PCR assays for the sensitive detection and accurate quantification of Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Moraxella catarrhalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. We found that all eight bacterial targets could be reliably quantified from sputum specimens down to a concentration of 100 CFUs/reaction (8333 CFUs/mL). Furthermore, all 249 positive control isolates were correctly detected with our assay, demonstrating effectiveness on both reference strains and local clinical isolates. The specificity was 98% on a panel of nearly 100 negative control isolates. Bacterial load was quantified accurately when three bacterial targets were present in mixtures of varying concentrations, mimicking likely clinical scenarios in LRTI. Concordance with culture was 100% for culture-positive sputum specimens, and 90% for bronchoalveolar lavage fluid specimens, and additional culture-negative bacterial infections were detected and quantified. In conclusion, a quantitative molecular test for eight key bacterial causes of LRTI has the potential to provide a more sensitive decision-making tool, closer to the time-point of patient admission than current standard methods. This should facilitate de-escalation from broad-spectrum to narrow-spectrum antibiotics, substantially improving patient management and supporting efforts to curtail inappropriate antibiotic use. PMID:25980353
Butcher, Robert; Houghton, Jo; Derrick, Tamsyn; Ramadhani, Athumani; Herrera, Beatriz; Last, Anna R; Massae, Patrick A; Burton, Matthew J; Holland, Martin J; Roberts, Chrissy H
2017-08-01
Trachoma, caused by the intracellular bacterium Chlamydia trachomatis (Ct), is the leading infectious cause of preventable blindness. Many commercial platforms are available that provide highly sensitive and specific detection of Ct DNA. However, the majority of these commercial platforms are inaccessible for population-level surveys in resource-limited settings typical to trachoma control programmes. We developed two low-cost quantitative PCR (qPCR) tests for Ct using readily available reagents on standard real-time thermocyclers. Each multiplex qPCR test targets one genomic and one plasmid Ct target in addition to an endogenous positive control for Homo sapiens DNA. The quantitative performance of the qPCR assays in clinical samples was determined by comparison to a previously evaluated droplet digital PCR (ddPCR) test. The diagnostic performance of the qPCR assays were evaluated against a commercial assay (artus C. trachomatis Plus RG PCR, Qiagen) using molecular diagnostics quality control standards and clinical samples. We examined the yield of Ct DNA prepared from five different DNA extraction kits and a cold chain-free dry-sample preservation method using swabs spiked with fixed concentrations of human and Ct DNA. The qPCR assay was highly reproducible (Ct plasmid and genomic targets mean total coefficients of variance 41.5% and 48.3%, respectively). The assay detected 8/8 core specimens upon testing of a quality control panel and performed well in comparison to commercially marketed comparator test (sensitivity and specificity>90%). Optimal extraction and sample preservation methods for research applications were identified. We describe a pipeline from collection to diagnosis providing the most efficient sample preservation and extraction with significant per test cost savings over a commercial qPCR diagnostic assay. The assay and its evaluation should allow control programs wishing to conduct independent research within the context of trachoma control, access to an affordable test with defined performance characteristics. Copyright © 2017. Published by Elsevier B.V.
Carloni, Elisa; Rotundo, Luca; Brandi, Giorgio; Amagliani, Giulia
2018-05-25
The application of rapid, specific, and sensitive methods for pathogen detection and quantification is very advantageous in diagnosis of human pathogens in several applications, including food analysis. The aim of this study was the evaluation of a method for the multiplexed detection and quantification of three significant foodborne pathogenic species (Escherichia coli O157, Salmonella spp., and Listeria monocytogenes). The assay combines specific DNA extraction by multiplex magnetic capture hybridization (mMCH) with multiplex real-time PCR. The amplification assay showed linearity in the range 10 6 -10 genomic units (GU)/PCR for each co-amplified species. The sensitivity corresponded to 1 GU/PCR for E. coli O157 and L. monocytogenes, and 10 GU/PCR for Salmonella spp. The immobilization process and the hybrid capture of the MCH showed good efficiency and reproducibility for all targets, allowing the combination in equal amounts of the different nanoparticle types in mMCH. MCH and mMCH efficiencies were similar. The detection limit of the method was 10 CFU in samples with individual pathogens and 10 2 CFU in samples with combination of the three pathogens in unequal amounts (amount's differences of 2 or 3 log). In conclusion, this multiplex molecular platform can be applied to determine the presence of target species in food samples after culture enrichment. In this way, this method could be a time-saving and sensitive tool to be used in routine diagnosis.
NASA Astrophysics Data System (ADS)
Yazdandoust, Fatemeh; Tatenguem Fankem, Hervé; Milde, Tobias; Jimenez, Alvaro; Sacher, Joachim
2018-02-01
We report the development of a platform, based-on a Field-Programmable Gate Arrays (FPGAs) and suitable for Time-Division-Multiplexed DFB lasers. The designed platform is subsequently combined with a spectroscopy setup, for detection and quantification of species in a gas mixture. The experimental results show a detection limit of 460 ppm, an uncertainty of 0.1% and a computation time of less than 1000 clock cycles. The proposed system offers a high level of flexibility and is applicable to arbitrary types of gas-mixtures.
Albrich, Werner C.; van der Linden, Mark P. G.; Bénet, Thomas; Chou, Monidarin; Sylla, Mariam; Barreto Costa, Patricia; Richard, Nathalie; Klugman, Keith P.; Endtz, Hubert P.; Paranhos-Baccalà, Gláucia; Telles, Jean-Noël
2016-01-01
For epidemiological and surveillance purposes, it is relevant to monitor the distribution and dynamics of Streptococcus pneumoniae serotypes. Conventional serotyping methods do not provide rapid or quantitative information on serotype loads. Quantitative serotyping may enable prediction of the invasiveness of a specific serotype compared to other serotypes carried. Here, we describe a novel, rapid multiplex real-time PCR assay for identification and quantification of the 40 most prevalent pneumococcal serotypes and the assay impacts in pneumonia specimens from emerging and developing countries. Eleven multiplex PCR to detect 40 serotypes or serogroups were optimized. Quantification was enabled by reference to standard dilutions of known bacterial load. Performance of the assay was evaluated to specifically type and quantify S. pneumoniae in nasopharyngeal and blood samples from adult and pediatric patients hospitalized with pneumonia (n = 664) from five different countries. Serogroup 6 was widely represented in nasopharyngeal specimens from all five cohorts. The most frequent serotypes in the French, South African, and Brazilian cohorts were 1 and 7A/F, 3 and 19F, and 14, respectively. When both samples were available, the serotype in blood was always present as carriage with other serotypes in the nasopharynx. Moreover, the ability of a serotype to invade the bloodstream may be linked to its nasopharyngeal load. The mean nasopharyngeal concentration of the serotypes that moved to the blood was 3 log-fold higher than the ones only found in the nasopharynx. This novel, rapid, quantitative assay may potentially predict some of the S. pneumoniae serotypes invasiveness and assessment of pneumococcal serotype distribution. PMID:26986831
Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo
NASA Astrophysics Data System (ADS)
McVeigh, Patrick Z.; Mallia, Rupananda J.; Veilleux, Israel; Wilson, Brian C.
2013-04-01
In recent years numerous studies have shown the potential advantages of molecular imaging in vitro and in vivo using contrast agents based on surface enhanced Raman scattering (SERS), however the low throughput of traditional point-scanned imaging methodologies have limited their use in biological imaging. In this work we demonstrate that direct widefield Raman imaging based on a tunable filter is capable of quantitative multiplex SERS imaging in vivo, and that this imaging is possible with acquisition times which are orders of magnitude lower than achievable with comparable point-scanned methodologies. The system, designed for small animal imaging, has a linear response from (0.01 to 100 pM), acquires typical in vivo images in <10 s, and with suitable SERS reporter molecules is capable of multiplex imaging without compensation for spectral overlap. To demonstrate the utility of widefield Raman imaging in biological applications, we show quantitative imaging of four simultaneous SERS reporter molecules in vivo with resulting probe quantification that is in excellent agreement with known quantities (R2>0.98).
NASA Astrophysics Data System (ADS)
Luchansky, Matthew Sam
In order to guide critical care therapies that are personalized to a patient's unique disease state, a diagnostic or theranostic medical device must quickly provide a detailed biomolecular understanding of disease onset and progression. This detailed molecular understanding of cellular processes and pathways requires the ability to measure multiple analytes in parallel. Though many traditional sensing technologies for biomarker analysis and fundamental biological studies (i.e. enzyme-linked immunosorbent assays, real-time polymerase chain reaction, etc.) rely on single-parameter measurements, it has become increasingly clear that the inherent complexity of many human illnesses and pathways necessitates quantitative and multiparameter analysis of biological samples. Currently used analytical methods are deficient in that they often provide either highly quantitative data for a single biomarker or qualitative data for many targets, but methods that simultaneously provide highly quantitative analysis of many targets have yet to be adequately developed. Fields such as medical diagnostics and cellular biology would benefit greatly from a technology that enables rapid, quantitative and reproducible assays for many targets within a single sample. In an effort to fill this unmet need, this doctoral dissertation describes the development of a clinically translational biosensing technology based on silicon photonics and developed in the chemistry research laboratory of Ryan C. Bailey. Silicon photonic microring resonators, a class of high-Q optical sensors, represent a promising platform for rapid, multiparameter in vitro measurements. The original device design utilizes 32-ring arrays for real-time biomolecular sensing without fluorescent labels, and these optical biosensors display great potential for more highly multiplexed (100s-1000s) measurements based on the impressive scalability of silicon device fabrication. Though this technology can be used to detect a variety of molecules, this dissertation establishes the utility of microring resonator chips for multiparameter analysis of several challenging protein targets in cell cultures, human blood sera, and other clinical samples such as cerebrospinal fluid. Various sandwich immunoassay formats for diverse protein analytes are described herein, but the bulk of this dissertation focuses on applying the technology to cytokine analysis. Cytokines are small signaling proteins that are present in serum and cell secretomes at concentrations in the pg/mL or ng/mL range. Cytokines are very challenging to quantitate due to their low abundance and small size, but play important roles in a variety of immune response and inflammatory pathways; cytokine quantitation is thus important in fundamental biological studies and diagnostics, and complex and overlapping cytokine roles make multiplexed measurements especially vital. In a typical experiment, microfluidics are used to spatially control chip functionalization by directing capture antibodies against a variety of protein targets to groups of microring sensors. In each case, binding of analytes to the rings causes a change in the local refractive index that is transduced into a real-time, quantitative optical signal. This photonic sensing modality is based on the interaction of the propagating evanescent field with molecules near the ring surface. Since each microring sensor in the array is monitored independently, this technology allows multiple proteins to be quantified in parallel from a single sample. This dissertation describes the fabrication, characterization, development, and application of silicon photonic microring resonator technology to multiplexed protein measurements in a variety of biological systems. Chapter 1 introduces the field of high-Q optical sensors and places microring resonator technology within the broader context of related whispering gallery mode devices. The final stages of cleanroom device fabrication, in which 8" silicon wafers that contain hundreds of ring resonator arrays are transformed into individual functional chips, are described in Chapter 2. Chapter 3 characterizes the physical and optical properties of the microring resonator arrays, especially focusing on the evanescent field profile and mass sensitivity metrics. Chapter 4 demonstrates the ability to apply ring resonator technology to cytokine detection and T cell secretion analysis. Chapter 5 builds on the initial cytokine work to demonstrate the simultaneous detection of multiple cytokines with higher throughput to enable studies of T cell differentiation. In preparation for reaching the goal of cytokine analysis in clinical samples, Chapter 6 describes magnetic bead-based signal enhancement of sandwich immunoassays for serum analysis. Additional examples of the utility of nanoparticles and sub-micron beads for signal amplification are described in Chapter 7, also demonstrating the ability to monitor single bead binding events. Chapter 8 describes an alternative cytokine signal enhancement strategy based on enzymatic amplification for human cerebrospinal fluid (CSF) analysis. Chapter 9 adds work with other CSF protein targets that are relevant to the continuing development of a multiparameter Alzheimer's Disease diagnostic chip. Future directions for multiplexed protein analysis as it pertains to important immunological studies and in vitro diagnostic applications are defined in Chapter 10. (Abstract shortened by UMI.).
Lee, Yuan-Ming; Chen, Yen-Ju; Lee, Cheng-Ming; Kuo, Lou-Hui; Wong, Wing-Wai; Chen, Yi-Ming Arthur
2011-12-01
In the past few years, many new subtypes in hepatitis C virus (HCV) genotype 6 have been identified. The aim of this study was to modify the multiplex real-time polymerase chain reaction (RT-PCR) protocol and use it to determine the HCV subtypes of a group of Taiwanese injection drug users (IDUs). We used 76 serum specimens collected in northern Taiwan in 2008. Multiplex RT-PCR was used for HCV subtyping among those serum samples having anti-HCV antibodies. Twenty cases were randomly selected for comparison with subtyping results from Inno-LiPa II tests and phylogenetic tree analysis using NS5B sequences. Multiplex RT-PCR assays showed that 60.5% (46/76) of IDUs had single HCV infection. Three out of 76 (3.9%) had double HCV infection (1b/6a, 2a/2b and 2b/6a). Besides this, 27.6% (21/76) had no HCV signal. One IDU had subtype 6n and two had subtype 6w infection. Inno-LiPa II tests misclassified all 6n and 6w cases as 1b subtype. Our modified multiplex RT-PCR protocol can be used to support molecular epidemiological studies and laboratory diagnoses of different HCV subtypes including genotype 6. Copyright © 2011. Published by Elsevier B.V.
Guion, Chase E; Ochoa, Theresa J; Walker, Christopher M; Barletta, Francesca; Cleary, Thomas G
2008-05-01
Diarrheagenic Escherichia coli strains are important causes of diarrhea in children from the developing world and are now being recognized as emerging enteropathogens in the developed world. Current methods of detection are too expensive and labor-intensive for routine detection of these organisms to be practical. We developed a real-time fluorescence-based multiplex PCR for the detection of all six of the currently recognized classes of diarrheagenic E. coli. The primers were designed to specifically amplify eight different virulence genes in the same reaction: aggR for enteroaggregative E. coli, stIa/stIb and lt for enterotoxigenic E. coli, eaeA for enteropathogenic E. coli and Shiga toxin-producing E. coli (STEC), stx(1) and stx(2) for STEC, ipaH for enteroinvasive E. coli, and daaD for diffusely adherent E. coli (DAEC). Eighty-nine of ninety diarrheagenic E. coli and 36/36 nonpathogenic E. coli strains were correctly identified using this approach (specificity, 1.00; sensitivity, 0.99). The single false negative was a DAEC strain. The total time between preparation of DNA from E. coli colonies on agar plates and completion of PCR and melting-curve analysis was less than 90 min. The cost of materials was low. Melting-point analysis of real-time multiplex PCR is a rapid, sensitive, specific, and inexpensive method for detection of diarrheagenic E. coli.
Wernike, Kerstin; Hoffmann, Bernd
2013-01-01
Detection of several pathogens with multiplexed real-time quantitative PCR (qPCR) assays in a one-step setup allows the simultaneous detection of two endemic porcine and four different selected transboundary viruses. Reverse transcription (RT)-qPCR systems for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), two of the most economically important pathogens of swine worldwide, were combined with a screening system for diseases notifiable to the World Organization of Animal Health, namely, classical and African swine fever, foot-and-mouth disease, and Aujeszky's disease. Background screening was implemented using the identical fluorophore for all four different RT-qPCR assays. The novel multiplex RT-qPCR system was validated with a large panel of different body fluids and tissues from pigs and other animal species. Both reference samples and clinical specimens were used for a complete evaluation. It could be demonstrated that a highly sensitive and specific parallel detection of the different viruses was possible. The assays for the notifiable diseases were even not affected by the simultaneous amplification of very high loads of PRRSV- and PCV2-specific sequences. The novel broad-spectrum multiplex assay allows in a unique form the routine investigation for endemic porcine pathogens with exclusion diagnostics of the most important transboundary diseases in samples from pigs with unspecific clinical signs, such as fever or hemorrhages. The new system could significantly improve early detection of the most important notifiable diseases of swine and could lead to a new approach in syndromic surveillance. PMID:23303496
Pan, Li; Iliuk, Anton; Yu, Shuai; Geahlen, Robert L.; Tao, W. Andy
2012-01-01
We report here for the first time the multiplexed quantitation of phosphorylation and protein expression based on a functionalized soluble nanopolymer. The soluble nanopolymer, pIMAGO, is functionalized with Ti (IV) ions for chelating phosphoproteins in high specificity, and with infrared fluorescent tags for direct, multiplexed assays. The nanopolymer allows for direct competition for epitopes on proteins of interest, thus facilitating simultaneous detection of phosphorylation by pIMAGO and total protein amount by protein antibody in the same well of microplates. The new strategy has a great potential to measure cell signaling events by clearly distinguishing actual phosphorylation signals from protein expression changes, thus providing a powerful tool to accurately profile cellular signal transduction in healthy and disease cells. We anticipate broad applications of this new strategy in monitoring cellular signaling pathways and discovering new signaling events. PMID:23088311
Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.
2000-05-05
Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCRmore » amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.« less
Gordon, Catherine A; McManus, Donald P; Acosta, Luz P; Olveda, Remigio M; Williams, Gail M; Ross, Allen G; Gray, Darren J; Gobert, Geoffrey N
2015-06-01
The global socioeconomic importance of helminth parasitic disease is underpinned by the considerable clinical impact on millions of people. While helminth polyparasitism is considered common in the Philippines, little has been done to survey its extent in endemic communities. High morphological similarity of eggs between related species complicates conventional microscopic diagnostic methods which are known to lack sensitivity, particularly in low intensity infections. Multiplex quantitative PCR diagnostic methods can provide rapid, simultaneous identification of multiple helminth species from a single stool sample. We describe a multiplex assay for the differentiation of Ascaris lumbricoides, Necator americanus, Ancylostoma, Taenia saginata and Taenia solium, building on our previously published findings for Schistosoma japonicum. Of 545 human faecal samples examined, 46.6% were positive for at least three different parasite species. High prevalences of S. japonicum (90.64%), A. lumbricoides (58.17%), T. saginata (42.57%) and A. duodenale (48.07%) were recorded. Neither T. solium nor N. americanus were found to be present. The utility of molecular diagnostic methods for monitoring helminth parasite prevalence provides new information on the extent of polyparasitism in the Philippines municipality of Palapag. These methods and findings have potential global implications for the monitoring of neglected tropical diseases and control measures. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Marras, Salvatore A E
2008-03-01
The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.
Multiplex Detection of Toxigenic Penicillium Species.
Rodríguez, Alicia; Córdoba, Juan J; Rodríguez, Mar; Andrade, María J
2017-01-01
Multiplex PCR-based methods for simultaneous detection and quantification of different mycotoxin-producing Penicillia are useful tools to be used in food safety programs. These rapid and sensitive techniques allow taking corrective actions during food processing or storage for avoiding accumulation of mycotoxins in them. In this chapter, three multiplex PCR-based methods to detect at least patulin- and ochratoxin A-producing Penicillia are detailed. Two of them are different multiplex real-time PCR suitable for monitoring and quantifying toxigenic Penicillium using the nonspecific dye SYBR Green and specific hydrolysis probes (TaqMan). All of them successfully use the same target genes involved in the biosynthesis of such mycotoxins for designing primers and/or probes.
Multiplex Detection of Aspergillus Species.
Martínez-Culebras, Pedro; Selma, María Victoria; Aznar, Rosa
2017-01-01
Multiplex real-time polymerase chain reaction (PCR) provides a fast and accurate DNA-based tool for the simultaneous amplification of more than one target sequence in a single reaction. Here a duplex real-time PCR assay is described for the simultaneous detection of Aspergillus carbonarius and members of the Aspergillus niger aggregate, which are the main responsible species for ochratoxin A (OTA) contamination in grapes. This single tube reaction targets the beta-ketosynthase and the acyl transferase domains of the polyketide synthase of A. carbonarius and the A. niger aggregate, respectively.Besides, a rapid and efficient fungi DNA extraction procedure is described suitable to be applied in wine grapes. It includes a pulsifier equipment to remove conidia from grapes which prevents releasing of PCR inhibitors.
Maksyutov, Rinat A; Gavrilova, Elena V; Shchelkunov, Sergei N
2016-10-01
A method of one-stage rapid detection and differentiation of epidemiologically important variola virus (VARV), monkeypox virus (MPXV), and varicella-zoster virus (VZV) utilizing multiplex real-time TaqMan PCR assay was developed. Four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were simultaneously used for the assay. The hybridization probes specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, JOE/BHQ1; VZV-specific, TAMRA/BHQ2; and internal control-specific, Cy5/BHQ3. The specificity and sensitivity of the developed method were assessed by analyzing DNA of 32 strains belonging to orthopoxvirus and herpesvirus species. Copyright © 2016 Elsevier B.V. All rights reserved.
Hahn, Cassidy M.; Iwanowicz, Luke R.; Cornman, Robert S.; Mazik, Patricia M.; Blazer, Vicki S.
2016-01-01
Environmental studies increasingly identify the presence of both contaminants of emerging concern (CECs) and legacy contaminants in aquatic environments; however, the biological effects of these compounds on resident fishes remain largely unknown. High throughput methodologies were employed to establish partial transcriptomes for three wild-caught, non-model fish species; smallmouth bass (Micropterus dolomieu), white sucker (Catostomus commersonii) and brown bullhead (Ameiurus nebulosus). Sequences from these transcriptome databases were utilized in the development of a custom nCounter CodeSet that allowed for direct multiplexed measurement of 50 transcript abundance endpoints in liver tissue. Sequence information was also utilized in the development of quantitative real-time PCR (qPCR) primers. Cross-species hybridization allowed the smallmouth bass nCounter CodeSet to be used for quantitative transcript abundance analysis of an additional non-model species, largemouth bass (Micropterus salmoides). We validated the nCounter analysis data system with qPCR for a subset of genes and confirmed concordant results. Changes in transcript abundance biomarkers between sexes and seasons were evaluated to provide baseline data on transcript modulation for each species of interest.
Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana
2015-08-18
Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.
Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie
2014-11-07
Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.
Lineage-Specific Real-Time RT-PCR for Yellow Fever Virus Outbreak Surveillance, Brazil.
Fischer, Carlo; Torres, Maria C; Patel, Pranav; Moreira-Soto, Andres; Gould, Ernest A; Charrel, Rémi N; de Lamballerie, Xavier; Nogueira, Rita Maria Ribeiro; Sequeira, Patricia C; Rodrigues, Cintia D S; Kümmerer, Beate M; Drosten, Christian; Landt, Olfert; Bispo de Filippis, Ana Maria; Drexler, Jan Felix
2017-11-01
The current yellow fever outbreak in Brazil prompted widespread yellow fever virus (YFV) vaccination campaigns, imposing a responsibility to distinguish between vaccine- and wild-type YFV-associated disease. We developed novel multiplex real-time reverse transcription PCRs that differentiate between vaccine and American wild-type YFV. We validated these highly specific and sensitive assays in an outbreak setting.
System Collects And Displays Demultiplexed Data
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Fariss, Julie L.; Kulecz, Walter B.; Paloski, William H.
1992-01-01
Electronic system collects, manipulates, and displays in real time results of manipulation of streams of data transmitted from remote scientific instrumentation. Interface circuit shifts data-and-clock signal from differential logic levels of multiplexer to single-ended logic levels of computer. System accommodates nonstandard data-transmission protocol. Software useful in applications where Macintosh computers used in real-time display and recording of data.
Aitichou, Mohamed; Saleh, Sharron; Kyusung, Park; Huggins, John; O'Guinn, Monica; Jahrling, Peter; Ibrahim, Sofi
2008-11-01
A real-time, multiplexed polymerase chain reaction (PCR) assay based on dried PCR reagents was developed. Only variola virus could be specifically detected by a FAM (6-carboxyfluorescein)-labeled probe while camelpox, cowpox, monkeypox and vaccinia viruses could be detected by a TET (6-carboxytetramethylrhodamine)-labeled probe in a single PCR reaction. Approximately 25 copies of cloned variola virus DNA and 50 copies of genomic orthopoxviruses DNA could be detected with high reproducibility. The assay exhibited a dynamic range of seven orders of magnitude with a correlation coefficient value greater than 0.97. The sensitivity and specificity of the assay, as determined from 100 samples that contained nucleic acids from a multitude of bacterial and viral species were 96% and 98%, respectively. The limit of detection, sensitivity and specificity of the assay were comparable to standard real-time PCR assays with wet reagents. Employing a multiplexed format in this assay allows simultaneous discrimination of the variola virus from other closely related orthopoxviruses. Furthermore, the implementation of dried reagents in real-time PCR assays is an important step towards simplifying such assays and allowing their use in areas where cold storage is not easily accessible.
Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster
Sonnett, Matthew; Yeung, Eyan; Wuhr, Martin
2018-03-09
We present that quantitative analysis of proteomes across multiple time points, organelles, and perturbations is essential for understanding both fundamental biology and disease states. The development of isobaric tags (e.g. TMT) have enabled the simultaneous measurement of peptide abundances across several different conditions. These multiplexed approaches are promising in principle because of advantages in throughput and measurement quality. However, in practice existing multiplexing approaches suffer from key limitations. In its simple implementation (TMT-MS2), measurements are distorted by chemical noise leading to poor measurement accuracy. The current state-of-the-art (TMT-MS3) addresses this, but requires specialized quadrupole-iontrap-Orbitrap instrumentation. The complement reporter ion approachmore » (TMTc) produces high accuracy measurements and is compatible with many more instruments, like quadrupole-Orbitraps. However, the required deconvolution of the TMTc cluster leads to poor measurement precision. Here, we introduce TMTc+, which adds the modeling of the MS2-isolation step into the deconvolution algorithm. The resulting measurements are comparable in precision to TMT-MS3/MS2. The improved duty cycle, and lower filtering requirements make TMTc+ more sensitive than TMT-MS3 and comparable with TMT-MS2. At the same time, unlike TMT-MS2, TMTc+ is exquisitely able to distinguish signal from chemical noise even outperforming TMT-MS3. Lastly, we compare TMTc+ to quantitative label-free proteomics of total HeLa lysate and find that TMTc+ quantifies 7.8k versus 3.9k proteins in a 5-plex sample. At the same time the median coefficient of variation improves from 13% to 4%. Furthermore, TMTc+ advances quantitative proteomics by enabling accurate, sensitive, and precise multiplexed experiments on more commonly used instruments.« less
Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnett, Matthew; Yeung, Eyan; Wuhr, Martin
We present that quantitative analysis of proteomes across multiple time points, organelles, and perturbations is essential for understanding both fundamental biology and disease states. The development of isobaric tags (e.g. TMT) have enabled the simultaneous measurement of peptide abundances across several different conditions. These multiplexed approaches are promising in principle because of advantages in throughput and measurement quality. However, in practice existing multiplexing approaches suffer from key limitations. In its simple implementation (TMT-MS2), measurements are distorted by chemical noise leading to poor measurement accuracy. The current state-of-the-art (TMT-MS3) addresses this, but requires specialized quadrupole-iontrap-Orbitrap instrumentation. The complement reporter ion approachmore » (TMTc) produces high accuracy measurements and is compatible with many more instruments, like quadrupole-Orbitraps. However, the required deconvolution of the TMTc cluster leads to poor measurement precision. Here, we introduce TMTc+, which adds the modeling of the MS2-isolation step into the deconvolution algorithm. The resulting measurements are comparable in precision to TMT-MS3/MS2. The improved duty cycle, and lower filtering requirements make TMTc+ more sensitive than TMT-MS3 and comparable with TMT-MS2. At the same time, unlike TMT-MS2, TMTc+ is exquisitely able to distinguish signal from chemical noise even outperforming TMT-MS3. Lastly, we compare TMTc+ to quantitative label-free proteomics of total HeLa lysate and find that TMTc+ quantifies 7.8k versus 3.9k proteins in a 5-plex sample. At the same time the median coefficient of variation improves from 13% to 4%. Furthermore, TMTc+ advances quantitative proteomics by enabling accurate, sensitive, and precise multiplexed experiments on more commonly used instruments.« less
Bondurant, Amy E; Huang, Zhiqing; Whitaker, Regina S; Simel, Lauren R; Berchuck, Andrew; Murphy, Susan K
2011-12-01
Detection of cell free tumor-specific DNA methylation has been proposed as a potentially useful noninvasive mechanism to detect malignancies, including ovarian cancer, and to monitor response to treatment. However, there are few easily implemented quantitative approaches available for DNA methylation analysis. Our objectives were to develop an absolute quantitative method for detection of DNA methylation using RASSF1A, a known target of promoter methylation in ovarian cancer, and test the ability to detect RASSF1A methylation in tumors and serum specimens of women with ovarian cancer. Bisulfite modified DNAs were subjected to real time PCR using nondiscriminatory PCR primers and a probe with sequence containing a single CpG site, theoretically able to capture the methylation status of that CpG for every allele within a given specimen. Input DNA was normalized to ACTB levels detected simultaneously by assay multiplexing. Methylation levels were established by comparison to results obtained from universally methylated DNA. The assay was able to detect one methylated RASSF1A allele in 100,000 unmethylated alleles. RASSF1A was methylated in 54 of 106 (51%) invasive serous ovarian cancers analyzed and methylation status was concordant in 20/20 matched preoperative serum-tumor pairs. Serial serum specimens taken over the course of treatment for 8 of 9 patients showed fluctuations in RASSF1A methylation concomitant with disease status. This novel assay provides a real-time PCR-based method for absolute quantitation of DNA methylation. Our results support feasibility of monitoring RASSF1A methylation from serum samples taken over the course of treatment from women with ovarian cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
High speed, long distance, data transmission multiplexing circuit
Mariotti, Razvan
1991-01-01
A high speed serial data transmission multiplexing circuit, which is operable to accurately transmit data over long distances (up to 3 Km), and to multiplex, select and continuously display real time analog signals in a bandwidth from DC to 100 Khz. The circuit is made fault tolerant by use of a programmable flywheel algorithm, which enables the circuit to tolerate one transmission error before losing synchronization of the transmitted frames of data. A method of encoding and framing captured and transmitted data is used which has a low overhead and prevents some particular transmitted data patterns from locking an included detector/decoder circuit.
Li, Wenbin; Abad, Jorge A; French-Monar, Ronald D; Rascoe, John; Wen, Aimin; Gudmestad, Neil C; Secor, Gary A; Lee, Ing-Ming; Duan, Yongping; Levy, Laurene
2009-07-01
The new Liberibacter species, 'Candidatus Liberibacter solanacearum' (Lso) recently associated with potato/tomato psyllid-transmitted diseases in tomato and capsicum in New Zealand, was found to be consistently associated with a newly emerging potato zebra chip (ZC) disease in Texas and other southwestern states in the USA. A species-specific primer LsoF was developed for both quantitative real-time PCR (qPCR) and conventional PCR (cPCR) to detect and quantify Lso in infected samples. In multiplex qPCR, a plant cytochrome oxidase (COX)-based probe-primer set was used as a positive internal control for host plants, which could be used to reliably access the DNA extraction quality and to normalize qPCR data for accurate quantification of the bacterial populations in environment samples. Neither the qPCR nor the cPCR using the primer and/or probe sets with LsoF reacted with other Liberibacter species infecting citrus or other potato pathogens. The low detection limit of the multiplex qPCR was about 20 copies of the target 16S rDNA templates per reaction for field samples. Lso was readily detected and quantified in various tissues of ZC-affected potato plants collected from fields in Texas. A thorough but uneven colonization of Lso was revealed in various tissues of potato plants. The highest Lso populations were about 3x10(8) genomes/g tissue in the root, which were 3-order higher than those in the above-ground tissues of potato plants. The Lso bacterial populations were normally distributed across the ZC-affected potato plants collected from fields in Texas, with 60% of ZC-affected potato plants harboring an average Lso population from 10(5) to 10(6) genomes/g tissue, 4% of plants hosting above 10(7) Lso genomes/g tissue, and 8% of plants holding below 10(3) Lso genomes/g tissue. The rapid, sensitive, specific and reliable multiplex qPCR showed its potential to become a powerful tool for early detection and quantification of the new Liberibacter species associated with potato ZC, and will be very useful for the potato quarantine programs and seed potato certification programs to ensure the availability of clean seed potato stocks and also for epidemiological studies on the disease.
Suntoke, T R; Hardick, A; Tobian, A A R; Mpoza, B; Laeyendecker, O; Serwadda, D; Opendi, P; Gaydos, C A; Gray, R H; Wawer, M J; Quinn, T C; Reynolds, S J
2009-04-01
To develop a real-time PCR assay that reliably and accurately detects the predominant sexually transmitted aetiological agents of genital ulcer disease (GUD) (Haemophilus ducreyi, Treponema pallidum and herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2)) and to assess the use of real-time PCR diagnostic testing in a rural African field site. Two multiplex real-time PCR reactions were used to detect H ducreyi/and HSV-1/HSV-2 in ulcer swabs from 100 people with symptomatic genital ulcers in rural Rakai, Uganda. Results were compared with syphilis, HSV-1 and HSV-2 serology. Of 100 GUD samples analysed from 43 HIV positive and 57 HIV negative individuals, 71% were positive for one or more sexually transmitted infection (STI) pathogens by real-time PCR (61% for HSV-2, 5% for T pallidum, 3% for HSV-1, 1% for H ducreyi and 1% for dual H ducreyi/HSV-2). The frequency of HSV in genital ulcers was 56% (32/57) in HIV negative individuals and 77% (33/43) in HIV positive individuals (p = 0.037). Assay reproducibility was evaluated by repeat PCR testing in the USA with 96% agreement (kappa = 0.85). STI pathogens were detected in the majority of GUD swab samples from symptomatic patients in Rakai, Uganda, by real-time PCR. HSV-2 was the predominant cause of genital ulcers. Real-time PCR technology can provide sensitive, rapid and reproducible evaluation of GUD aetiology in a resource-limited setting.
Wang, Ting; Liu, Jin-Hui; Zhang, Jie; Wang, Le; Chen, Chao; Dai, Peng-Gao
2015-04-01
Acquired resistance to endocrine-based therapies occurs in virtually all estrogen receptor-α (ERα, encoded by ESR1) positive breast cancer patients. The underlying molecular mechanism is attributed to the activating mutations in ESR1. These mutations provide an exciting opportunity for the development of new antagonists that specifically inhibit the mutant proteins. Therefore, accurate detection of ESR1 mutations is of critical importance in clinical practice. We carried out a single tube, multiplex allele-specific real-time PCR assay for the detection of four ESR1 mutations (Y537S, Y537C, Y537N, and D538G). The assay was found to be highly specific and sensitive. With this assay, as low as 1% mutant DNA template in wild type DNA could be detected. Fifteen DNA samples were prepared from archived formalin-fixed paraffin-embedded metastatic breast cancer biopsies. They were further screened with this assay, and three samples were identified as ESR1 mutant. The results were validated with pyrosequencing and complete concordance was observed between the two assays. The multiplex allele-specific real-time PCR assay provides a rapid and reliable diagnostic tool for accurate detection of ESR1 mutations. This procedure may be used in the clinical treatment of breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.
Maas, L; Dorigo-Zetsma, J W; de Groot, C J; Bouter, S; Plötz, F B; van Ewijk, B E
2014-06-01
The performance of a multiplex real-time PCR for the detection of Blastocystis, Dientamoeba fragilis, Giardia lamblia, Cryptosporidium species and Entamoeba species in faecal samples was evaluated in an observational prospective study. Paediatric patients (0-18 years) presenting with gastrointestinal symptoms and suspected of having enteroparasitic disease were included. A questionnaire on gastrointestinal symptoms and the chosen treatment was completed at the start of the study and after 6 weeks. Of 163 paediatric patients (mean age, 7.8 years), 114 (70%) had a PCR-positive faecal sample. D. fragilis was detected most frequently, in 101 patients, followed by Blastocystis in 49. In faecal samples of 47 patients, more than one protozoan was detected, mainly the combination of D. fragilis and Blastocystis. Reported gastrointestinal symptoms were abdominal pain (78%), nausea (30%), and altered bowel habits (28%). Eighty-nine of the PCR-positive patients were treated with antibiotics. A significant reduction in abdominal pain was observed both in treated and in untreated patients. This study demonstrated that multiplex real-time PCR detects a high percentage of intestinal protozoa in paediatric patients with gastrointestinal symptoms. However, interpretation and determination of the clinical relevance of a positive PCR result in this population are still difficult. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
Drali, Rezak; Boutellis, Amina; Raoult, Didier; Rolain, Jean Marc; Brouqui, Philippe
2013-01-01
Body louse or head louse? Once removed from their environment, body and head lice are indistinguishable. Neither the morphological criteria used since the mid-18th century nor the various genetic studies conducted since the advent of molecular biology tools have allowed body lice and head lice to be differentiated. In this work, using a portion of the Phum_PHUM540560 gene from the body louse, we aimed to develop a multiplex real-time polymerase chain reaction (PCR) assay to differentiate between body and head lice in a single reaction. A total of 142 human lice were collected from mono-infested hosts from 13 countries on five continents. We first identified the louse clade using a cytochrome b (CYTB) PCR sequence alignment. We then aligned a fragment of the Phum_PHUM540560 gene amplified from head and body lice to design-specific TaqMan(©) FAM- and VIC-labeled probes. All the analyzed lice were Clade A lice. A total of 22 polymorphisms between the body and head lice were characterized. The multiplex real-time PCR analysis enabled the body and head lice to be distinguished in two hours. This method is simple, with 100% specificity and sensitivity. We confirmed that the Phum_PHUM540560 gene is a useful genetic marker for the study of lice.
Wireless Multiplexed Surface Acoustic Wave Sensors Project
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.
2014-01-01
Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).
New multiplex real-time PCR approach to detect gene mutations for spinal muscular atrophy.
Liu, Zhidai; Zhang, Penghui; He, Xiaoyan; Liu, Shan; Tang, Shi; Zhang, Rong; Wang, Xinbin; Tan, Junjie; Peng, Bin; Jiang, Li; Hong, Siqi; Zou, Lin
2016-08-17
Spinal muscular atrophy (SMA) is the most common autosomal recessive disease in children, and the diagnosis is complicated and difficult, especially at early stage. Early diagnosis of SMA is able to improve the outcome of SMA patients. In our study, Real-time PCR was developed to measure the gene mutation or deletion of key genes for SMA and to further analyse genotype-phenotype correlation. The multiple real-time PCR for detecting the mutations of survival of motor neuron (SMN), apoptosis inhibitory protein (NAIP) and general transcription factor IIH, polypeptide 2 gene (GTF2H2) was established and confirmed by DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). The diagnosis and prognosis of 141 hospitalized children, 100 normal children and further 2000 cases of dry blood spot (DBS) samples were analysed by this multiple real-time PCR. The multiple real-time PCR was established and the accuracy of it to detect the mutations of SMN, NAIP and GTF2H2 was at least 98.8 % comparing with DNA sequencing and MLPA. Among 141 limb movement disorders children, 75 cases were SMA. 71 cases of SMA (94.67 %) were with SMN c.840 mutation, 9 cases (12 %) with NAIP deletion and 3 cases (4 %) with GTF2H2 deletion. The multiple real-time PCR was able to diagnose and predict the prognosis of SMA patients. Simultaneously, the real-time PCR was applied to detect trace DNA from DBS and able to make an early diagnosis of SMA. The clinical and molecular characteristics of SMA in Southwest of China were presented. Our work provides a novel way for detecting SMA in children by using real-time PCR and the potential usage in newborn screening for early diagnosis of SMA.
Percolation in real multiplex networks
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Radicchi, Filippo
2016-12-01
We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.
Reddington, Kate; O'Grady, Justin; Dorai-Raj, Siobhan; Maher, Majella; van Soolingen, Dick; Barry, Thomas
2011-01-01
Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC. PMID:21123525
Chemiluminescence microarrays in analytical chemistry: a critical review.
Seidel, Michael; Niessner, Reinhard
2014-09-01
Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.
Trends and advances in food analysis by real-time polymerase chain reaction.
Salihah, Nur Thaqifah; Hossain, Mohammad Mosharraf; Lubis, Hamadah; Ahmed, Minhaz Uddin
2016-05-01
Analyses to ensure food safety and quality are more relevant now because of rapid changes in the quantity, diversity and mobility of food. Food-contamination must be determined to maintain health and up-hold laws, as well as for ethical and cultural concerns. Real-time polymerase chain reaction (RT-PCR), a rapid and inexpensive quantitative method to detect the presence of targeted DNA-segments in samples, helps in determining both accidental and intentional adulterations of foods by biological contaminants. This review presents recent developments in theory, techniques, and applications of RT-PCR in food analyses, RT-PCR addresses the limitations of traditional food analyses in terms of sensitivity, range of analytes, multiplexing ability, cost, time, and point-of-care applications. A range of targets, including species of plants or animals which are used as food ingredients, food-borne bacteria or viruses, genetically modified organisms, and allergens, even in highly processed foods can be identified by RT-PCR, even at very low concentrations. Microfluidic RT-PCR eliminates the separate sample-processing step to create opportunities for point-of-care analyses. We also cover the challenges related to using RT-PCR for food analyses, such as the need to further improve sample handling.
Lin, Yii-Lih; Huang, Yen-Jun; Teerapanich, Pattamon; Leïchlé, Thierry
2016-01-01
Nanofluidic devices promise high reaction efficiency and fast kinetic responses due to the spatial constriction of transported biomolecules with confined molecular diffusion. However, parallel detection of multiple biomolecules, particularly proteins, in highly confined space remains challenging. This study integrates extended nanofluidics with embedded protein microarray to achieve multiplexed real-time biosensing and kinetics monitoring. Implementation of embedded standard-sized antibody microarray is attained by epoxy-silane surface modification and a room-temperature low-aspect-ratio bonding technique. An effective sample transport is achieved by electrokinetic pumping via electroosmotic flow. Through the nanoslit-based spatial confinement, the antigen-antibody binding reaction is enhanced with ∼100% efficiency and may be directly observed with fluorescence microscopy without the requirement of intermediate washing steps. The image-based data provide numerous spatially distributed reaction kinetic curves and are collectively modeled using a simple one-dimensional convection-reaction model. This study represents an integrated nanofluidic solution for real-time multiplexed immunosensing and kinetics monitoring, starting from device fabrication, protein immobilization, device bonding, sample transport, to data analysis at Péclet number less than 1. PMID:27375819
USDA-ARS?s Scientific Manuscript database
Multiplex real-time PCR detection of Escherichia coli O157:H7 is an efficient molecular tool with high sensitivity and specificity for meat safety and quality assurance in the beef industry. The Biocontrol GDS and the DuPont Qualicon BAX®-RT rapid detection systems are two commercial tests based on...
Nordstrom, Jessica L.; Vickery, Michael C. L.; Blackstone, George M.; Murray, Shelley L.; DePaola, Angelo
2007-01-01
Vibrio parahaemolyticus is an estuarine bacterium that is the leading cause of shellfish-associated cases of bacterial gastroenteritis in the United States. Our laboratory developed a real-time multiplex PCR assay for the simultaneous detection of the thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and thermostable-related hemolysin (trh) genes of V. parahaemolyticus. The tlh gene is a species-specific marker, while the tdh and trh genes are pathogenicity markers. An internal amplification control (IAC) was incorporated to ensure PCR integrity and eliminate false-negative reporting. The assay was tested for specificity against >150 strains representing eight bacterial species. Only V. parahaemolyticus strains possessing the appropriate target genes generated a fluorescent signal, except for a late tdh signal generated by three strains of V. hollisae. The multiplex assay detected <10 CFU/reaction of pathogenic V. parahaemolyticus in the presence of >104 CFU/reaction of total V. parahaemolyticus bacteria. The real-time PCR assay was utilized with a most-probable-number format, and its results were compared to standard V. parahaemolyticus isolation methodology during an environmental survey of Alaskan oysters. The IAC was occasionally inhibited by the oyster matrix, and this usually corresponded to negative results for V. parahaemolyticus targets. V. parahaemolyticus tlh, tdh, and trh were detected in 44, 44, and 52% of the oyster samples, respectively. V. parahaemolyticus was isolated from 33% of the samples, and tdh+ and trh+ strains were isolated from 19 and 26%, respectively. These results demonstrate the utility of the real-time PCR assay in environmental surveys and its possible application to outbreak investigations for the detection of total and pathogenic V. parahaemolyticus. PMID:17644647
Optical signal processing of spatially distributed sensor data in smart structures
NASA Technical Reports Server (NTRS)
Bennett, K. D.; Claus, R. O.; Murphy, K. A.; Goette, A. M.
1989-01-01
Smart structures which contain dense two- or three-dimensional arrays of attached or embedded sensor elements inherently require signal multiplexing and processing capabilities to permit good spatial data resolution as well as the adequately short calculation times demanded by real time active feedback actuator drive circuitry. This paper reports the implementation of an in-line optical signal processor and its application in a structural sensing system which incorporates multiple discrete optical fiber sensor elements. The signal processor consists of an array of optical fiber couplers having tailored s-parameters and arranged to allow gray code amplitude scaling of sensor inputs. The use of this signal processor in systems designed to indicate the location of distributed strain and damage in composite materials, as well as to quantitatively characterize that damage, is described. Extension of similar signal processing methods to more complicated smart materials and structures applications are discussed.
Zhao, Meng-Chuan; Li, Gui-Xia; Zhang, Dan; Zhou, Hang-Yu; Wang, Hao; Yang, Shuo; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun
2017-06-01
Respiratory Pathogen 13 Detection Kit (13× kit) is able to simultaneously detect 11 respiratory viruses, Mycoplasma pneumoniae (MP) and Chlamydia in a single reaction. Using 572 Nasopharyngeal aspirates collected from hospitalized children, the clinical performance of 13× kit for detecting 11 respiratory viruses was evaluated in comparison with a routinely used 2-tube multiplex reverse transcription PCR assay (2-tube assay) at provincial Centers for Disease Control and Prevention in China. The clinical performance of 13× kit for detecting MP and Chlamydia was evaluated by commercial real-time quantitative PCR (qPCR) kits or sequencing. For tested viruses, the assay concordance was 95.98% and the kappa coefficient was 0.89. All the MP and Chlamydia positive samples detected by 13× kit were confirmed as true positives. The utilization of the 13× kit in clinical settings will be helpful for doctors to assess clinical outcome according to virus type or multiple infections, and to limit the use of antibiotics. Copyright © 2017 Elsevier Inc. All rights reserved.
Apollo experience report: Real-time display system
NASA Technical Reports Server (NTRS)
Sullivan, C. J.; Burbank, L. W.
1976-01-01
The real time display system used in the Apollo Program is described; the systematic organization of the system, which resulted from hardware/software trade-offs and the establishment of system criteria, is emphasized. Each basic requirement of the real time display system was met by a separate subsystem. The computer input multiplexer subsystem, the plotting display subsystem, the digital display subsystem, and the digital television subsystem are described. Also described are the automated display design and the generation of precision photographic reference slides required for the three display subsystems.
Khairnar, Krishna; Martin, Donald; Lau, Rachel; Ralevski, Filip; Pillai, Dylan R
2009-12-09
Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. A total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR), and two rapid diagnostic immuno-chromatographic tests (ICT) in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD) analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated. QPCR is the most analytically sensitive method (sensitivity 99.41%), followed by CARESTART (sensitivity 88.24%), and BINAXNOW (sensitivity 86.47%) for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R(2) = 0.9746) in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/microl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more costly than reference microscopy. These data suggest that multiplex QPCR although more costly confers a significant diagnostic advantage in terms of LOD compared to reference microscopy and ICTs for all four species. Quality assurance of QPCR is essential to the maintenance of proficiency in the clinical laboratory. ICTs showed good concordance between readers however lacked sensitivity for non-falciparum species due to antigenic differences and low parasitemia. Multiplex QPCR but not ICTs is an essential adjunct to microscopy in the reference laboratory detection of malaria species specifically due to the superior LOD. ICTs are better suited to the non-reference laboratory where lower specimen volumes challenge microscopy proficiency in the non-endemic setting.
Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
Hsieh, Kuangwen; Ferguson, B Scott; Eisenstein, Michael; Plaxco, Kevin W; Soh, H Tom
2015-04-21
The capacity to achieve rapid, sensitive, specific, quantitative, and multiplexed genetic detection of pathogens via a robust, portable, point-of-care platform could transform many diagnostic applications. And while contemporary technologies have yet to effectively achieve this goal, the advent of microfluidics provides a potentially viable approach to this end by enabling the integration of sophisticated multistep biochemical assays (e.g., sample preparation, genetic amplification, and quantitative detection) in a monolithic, portable device from relatively small biological samples. Integrated electrochemical sensors offer a particularly promising solution to genetic detection because they do not require optical instrumentation and are readily compatible with both integrated circuit and microfluidic technologies. Nevertheless, the development of generalizable microfluidic electrochemical platforms that integrate sample preparation and amplification as well as quantitative and multiplexed detection remains a challenging and unsolved technical problem. Recognizing this unmet need, we have developed a series of microfluidic electrochemical DNA sensors that have progressively evolved to encompass each of these critical functionalities. For DNA detection, our platforms employ label-free, single-step, and sequence-specific electrochemical DNA (E-DNA) sensors, in which an electrode-bound, redox-reporter-modified DNA "probe" generates a current change after undergoing a hybridization-induced conformational change. After successfully integrating E-DNA sensors into a microfluidic chip format, we subsequently incorporated on-chip genetic amplification techniques including polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) to enable genetic detection at clinically relevant target concentrations. To maximize the potential point-of-care utility of our platforms, we have further integrated sample preparation via immunomagnetic separation, which allowed the detection of influenza virus directly from throat swabs and developed strategies for the multiplexed detection of related bacterial strains from the blood of septic mice. Finally, we developed an alternative electrochemical detection platform based on real-time LAMP, which not is only capable of detecting across a broad dynamic range of target concentrations, but also greatly simplifies quantitative measurement of nucleic acids. These efforts represent considerable progress toward the development of a true sample-in-answer-out platform for genetic detection of pathogens at the point of care. Given the many advantages of these systems, and the growing interest and innovative contributions from researchers in this field, we are optimistic that iterations of these systems will arrive in clinical settings in the foreseeable future.
Cross, Kristen E; Mercante, Jeffrey W; Benitez, Alvaro J; Brown, Ellen W; Diaz, Maureen H; Winchell, Jonas M
2016-07-01
Legionnaires' disease is a severe respiratory disease that is estimated to cause between 8,000 and 18,000 hospitalizations each year, though the exact burden is unknown due to under-utilization of diagnostic testing. Although Legionella pneumophila is the most common species detected in clinical cases (80-90%), other species have also been reported to cause disease. However, little is known about Legionnaires' disease caused by these non-pneumophila species. We designed a multiplex real-time PCR assay for detection of all Legionella spp. and simultaneous specific identification of four clinically-relevant Legionella species, L. anisa, L. bozemanii, L. longbeachae, and L. micdadei, using 5'-hydrolysis probe real-time PCR. The analytical sensitivity for detection of nucleic acid from each target species was ≤50fg per reaction. We demonstrated the utility of this assay in spiked human sputum specimens. This assay could serve as a tool for understanding the scope and impact of non-pneumophila Legionella species in human disease. Published by Elsevier Inc.
Trotta, Michele; Schönhuth, Susana; Pepe, Tiziana; Cortesi, M Luisa; Puyet, Antonio; Bautista, José M
2005-03-23
Mitochondrial 16S rRNA sequences from morphological validated grouper (Epinephelus aeneus, E. caninus, E. costae, and E. marginatus; Mycteroperca fusca and M. rubra), Nile perch (Lates niloticus), and wreck fish (Polyprion americanus) were used to develop an analytical system for group diagnosis based on two alternative Polymerase Chain Reaction (PCR) approaches. The first includes conventional multiplex PCR in which electrophoretic migration of different sizes of bands allowed identification of the fish species. The second approach, involving real-time PCR, produced a single amplicon from each species that showed different Tm values allowing the fish groups to be directly identified. Real-time PCR allows the quick differential diagnosis of the three groups of species and high-throughput screening of multiple samples. Neither PCR system cross-reacted with DNA samples from 41 common marketed fish species, thus conforming to standards for species validation. The use of these two PCR-based methods makes it now possible to discriminate grouper from substitute fish species.
Ballari, Rajashekhar V; Martin, Asha; Gowda, Lalitha R
2013-01-01
Brinjal is an important vegetable crop. Major crop loss of brinjal is due to insect attack. Insect-resistant EE-1 brinjal has been developed and is awaiting approval for commercial release. Consumer health concerns and implementation of international labelling legislation demand reliable analytical detection methods for genetically modified (GM) varieties. End-point and real-time polymerase chain reaction (PCR) methods were used to detect EE-1 brinjal. In end-point PCR, primer pairs specific to 35S CaMV promoter, NOS terminator and nptII gene common to other GM crops were used. Based on the revealed 3' transgene integration sequence, primers specific for the event EE-1 brinjal were designed. These primers were used for end-point single, multiplex and SYBR-based real-time PCR. End-point single PCR showed that the designed primers were highly specific to event EE-1 with a sensitivity of 20 pg of genomic DNA, corresponding to 20 copies of haploid EE-1 brinjal genomic DNA. The limits of detection and quantification for SYBR-based real-time PCR assay were 10 and 100 copies respectively. The prior development of detection methods for this important vegetable crop will facilitate compliance with any forthcoming labelling regulations. Copyright © 2012 Society of Chemical Industry.
Selection of fluorophore and quencher pairs for fluorescent nucleic acid hybridization probes.
Marras, Salvatore A E
2006-01-01
With the introduction of simple and relatively inexpensive methods for labeling nucleic acids with nonradioactive labels, doors have been opened that enable nucleic acid hybridization probes to be used for research and development, as well as for clinical diagnostic applications. The use of fluorescent hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. The use of hybridization probes that bind to the amplification products in real-time markedly improves the ability to obtain quantitative results. Furthermore, real-time nucleic acid amplification assays can be carried out in sealed tubes, eliminating carryover contamination. Because fluorescent hybridization probes are available in a wide range of colors, multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. It is therefore important to carefully select the labels of hybridization probes, based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This chapter outlines different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers.
Kowada, Kazuaki; Takeuchi, Kenji; Hirano, Eiko; Toho, Miho; Sada, Kiyonao
2018-01-01
There are many varieties of gastroenteritis viruses, of which norovirus (NoV) accounts for over 90% of the viral food poisoning incidents in Japan. However, protocols for rapidly identifying other gastroenteritis viruses need to be established to investigate NoV-negative cases intensively. In this study, a multiplex real-time PCR assay targeting rotavirus A, rotavirus C, sapovirus, astrovirus, adenovirus, and enterovirus was developed using stool samples collected from gastroenteritis patients between 2010 and 2013 in Fukui Prefecture, Japan. Of the 126 samples collected sporadically from pediatric patients with suspected infectious gastroenteritis, 51 were positive for non-NoV target viruses, whereas 27 were positive for NoV, showing a high prevalence of non-NoV viruses in pediatric patients. In contrast, testing in 382 samples of 58 gastroenteritis outbreaks showed that non-NoV viruses were detected in 13 samples, with NoV in 267. Of the 267 NoV-positive patients, only two were co-infected with non-NoV target viruses, suggesting that testing for non-NoV gastroenteritis viruses in NoV-positive samples was mostly unnecessary in outbreak investigations. Given these results, multiplex real-time PCR testing for non-NoV gastroenteritis viruses, conducted separately from NoV testing, may be helpful to deal with two types of epidemiological investigations, regular surveillance of infectious gastroenteritis and urgent testing when gastroenteritis outbreaks occur. © 2017 Wiley Periodicals, Inc.
Prevalence of Sexually Transmitted Diseases in Asymptomatic Renal Transplant Recipients.
Sarier, Mehmet; Sepin Ozen, Nevgun; Guler, Hicran; Duman, Ibrahim; Yüksel, Yücel; Tekin, Sabri; Yavuz, Asuman Havva; Yucetin, Levent; Erdogan Yilmaz, Mine
2018-04-04
Sexually transmitted diseases, which may be asymptomatic, have the potential to cause serious health problems in renal transplant recipients. The aim of this study was to determine the prevalence of sexually transmitted diseases in sexually active asymptomatic renal transplant patients by using real-time multiplex polymerase chain reaction assays. This prospective controlled study was conducted between November 2016 and January 2017 in our hospital. Our study group included 80 consecutive, sexually active asymptomatic patients (40 men and 40 women) who had undergone renal transplant in our hospital and who presented to our outpatient clinic for routine follow-up. We also included a control group of 80 consecutive, sexually active nontransplant patients (40 men and 40 women). All patient samples were tested for Gardnerella vaginalis and obligate anaerobes (Prevotella bivia, Porphyromonas species), Candida species, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma species, Trichomonas vaginalis, Neisseria gonorrhoeae, Chlamydia trachomatis, herpes simplex virus 1 and 2, and Cytomegalovirus by real-time multiplex polymerase chain reaction. The prevalences of infection with Gardnerella vaginalis and obligate anaerobes (P = .043), Ureaplasma species (P = .02), and Cytomegalovirus (P = .016) were found to be significantly higher in the study group versus the control group. However, there was no difference between the 2 groups regarding the prevalence of Mycoplasma infection (P = .70). Sexually transmitted diseases may occur more frequently in sexually active asymptomatic renal transplant recipients than in nontransplanted individuals. Real-time multiplex polymerase chain reaction analysis may be a suitable method for determining these pathogens.
Wagner, Karoline; Springer, Burkard; Pires, Valeria P.
2017-01-01
ABSTRACT Acute bacterial meningitis is a medical emergency, and delays in initiating effective antimicrobial therapy result in increased morbidity and mortality. Culture-based methods, thus far considered the “gold standard” for identifying bacterial microorganisms, require 24 to 48 h to provide a diagnosis. In addition, antimicrobial therapy is often started prior to clinical sample collection, thereby decreasing the probability of confirming the bacterial pathogen by culture-based methods. To enable a fast and accurate detection of the most important bacterial pathogens causing meningitis, namely, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Streptococcus agalactiae, and Listeria monocytogenes, we evaluated a commercially available multiplex LightMix real-time PCR (RT-PCR) in 220 cerebrospinal fluid (CSF) specimens. The majority of CSF samples were collected by lumbar puncture, but we also included some CSF samples from patients with symptoms of meningitis from the neurology department that were recovered from shunts. CSF samples were analyzed by multiplex RT-PCR enabling a first diagnosis within a few hours after sample arrival at our institute. In contrast, bacterial identification took between 24 and 48 h by culture. Overall, a high agreement of bacterial identification between culture and multiplex RT-PCR was observed (99%). Moreover, multiplex RT-PCR enabled the detection of pathogens, S. pneumoniae (n = 2), S. agalactiae (n = 1), and N. meningitidis (n = 1), in four culture-negative samples. As a complement to classical bacteriological CSF culture, the LightMix RT-PCR assay proved to be valuable by improving the rapidity and accuracy of the diagnosis of bacterial meningitis. PMID:29237781
Becherer, Lisa; Bakheit, Mohammed; Frischmann, Sieghard; Stinco, Silvina; Borst, Nadine; Zengerle, Roland; von Stetten, Felix
2018-04-03
A variety of real-time detection techniques for loop-mediated isothermal amplification (LAMP) based on the change in fluorescence intensity during DNA amplification enable simultaneous detection of multiple targets. However, these techniques depend on fluorogenic probes containing target-specific sequences. That complicates the adaption to different targets leading to time-consuming assay optimization. Here, we present the first universal real-time detection technique for multiplex LAMP. The novel approach allows simple assay design and is easy to implement for various targets. The innovation features a mediator displacement probe and a universal reporter. During amplification of target DNA the mediator is displaced from the mediator displacement probe. Then it hybridizes to the reporter generating a fluorescence signal. The novel mediator displacement (MD) detection was validated against state-of-the-art molecular beacon (MB) detection by means of a HIV-1 RT-LAMP: MD surpassed MB detection by accelerated probe design (MD: 10 min, MB: 3-4 h), shorter times to positive (MD 4.1 ± 0.1 min shorter than MB, n = 36), improved signal-to-noise fluorescence ratio (MD: 5.9 ± 0.4, MB: 2.7 ± 0.4; n = 15), and showed equally good or better analytical performance parameters. The usability of one universal mediator-reporter set in different multiplex assays was successfully demonstrated for a biplex RT-LAMP of HIV-1 and HTLV-1 and a biplex LAMP of Haemophilus ducreyi and Treponema pallidum, both showing good correlation between target concentration and time to positive. Due to its simple implementation it is suggested to extend the use of the universal mediator-reporter sets to the detection of various other diagnostic panels.
Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector
NASA Astrophysics Data System (ADS)
Choe, Hyeok-Jun; Choi, Yong; Hu, Wei; Yan, Jianhua; Jung, Jin Ho
2017-04-01
There has been great interest in developing a time-of-flight (TOF) PET to improve the signal-to-noise ratio of PET image relative to that of non-TOF PET. Silicon photomultiplier (SiPM) arrays have attracted attention for use as a fast TOF PET photosensor. Since numerous SiPM arrays are needed to construct a modern human PET, a multiplexing method providing both good timing performance and high channel reduction capability is required to develop a SiPM-based TOF PET. The purpose of this study was to develop a capacitive multiplexing circuit for the SiPM-based TOF PET. The proposed multiplexing circuit was evaluated by measuring the coincidence resolving time (CRT) and the energy resolution as a function of the overvoltage using three different capacitor values of 15, 30, and 51 pF. A flood histogram was also obtained and quantitatively assessed. Experiments were performed using a 4× 4 array of 3× 3 mm2 SiPMs. Regarding the capacitor values, the multiplexing circuit using a smaller capacitor value showed the best timing performance. On the other hand, the energy resolution and flood histogram quality of the multiplexing circuit deteriorated as the capacitor value became smaller. The proposed circuit was able to achieve a CRT of 260+/- 4 ps FWHM and an energy resolution of 17.1 % with a pair of 2× 2× 20 mm3 LYSO crystals using a capacitor value of 30 pF at an overvoltage of 3.0 V. It was also possible to clearly resolve a 6× 6 array of LYSO crystals in the flood histogram using the multiplexing circuit. The experiment results indicate that the proposed capacitive multiplexing circuit is useful to obtain an excellent timing performance and a crystal-resolving capability in the flood histogram with a minimal degradation of the energy resolution, as well as to reduce the number of the readout channels of the SiPM-based TOF PET detector.
Mahnke, Donna K.; Larson, Joshua M.; Ghanta, Sujana; Feng, Ying; Simpson, Pippa M.; Broeckel, Ulrich; Duffy, Kelly; Tweddell, James S.; Grossman, William J.; Routes, John M.; Mitchell, Michael E.
2010-01-01
22q11.2 Deletion syndrome (22q11.2 DS) [DiGeorge syndrome type 1 (DGS1)] occurs in ∼1:3,000 live births; 75% of children with DGS1 have severe congenital heart disease requiring early intervention. The gold standard for detection of DGS1 is fluorescence in situ hybridization (FISH) with a probe at the TUPLE1 gene. However, FISH is costly and is typically ordered in conjunction with a karyotype analysis that takes several days. Therefore, FISH is underutilized and the diagnosis of 22q11.2 DS is frequently delayed, often resulting in profound clinical consequences. Our goal was to determine whether multiplexed, quantitative real-time PCR (MQPCR) could be used to detect the haploinsufficiency characteristic of 22q11.2 DS. A retrospective blinded study was performed on 382 subjects who had undergone congenital heart surgery. MQPCR was performed with a probe localized to the TBX1 gene on human chromosome 22, a gene typically deleted in 22q11.2 DS. Cycle threshold (Ct) was used to calculate the relative gene copy number (rGCN). Confirmation analysis was performed with the Affymetrix 6.0 Genome-Wide SNP Array. With MQPCR, 361 subjects were identified as nondeleted with an rGCN near 1.0 and 21 subjects were identified as deleted with an rGCN near 0.5, indicative of a hemizygous deletion. The sensitivity (21/21) and specificity (361/361) of MQPCR to detect 22q11.2 deletions was 100% at an rGCN value drawn at 0.7. One of 21 subjects with a prior clinical (not genetically confirmed) DGS1 diagnosis was found not to carry the deletion, while another subject, not previously identified as DGS1, was detected as deleted and subsequently confirmed via microarray. The MQPCR assay is a rapid, inexpensive, sensitive, and specific assay that can be used to screen for 22q11.2 deletion syndrome. The assay is readily adaptable to high throughput. PMID:20551144
Finite-dimensional modeling of network-induced delays for real-time control systems
NASA Technical Reports Server (NTRS)
Ray, Asok; Halevi, Yoram
1988-01-01
In integrated control systems (ICS), a feedback loop is closed by the common communication channel, which multiplexes digital data from the sensor to the controller and from the controller to the actuator along with the data traffic from other control loops and management functions. Due to asynchronous time-division multiplexing in the network access protocols, time-varying delays are introduced in the control loop, which degrade the system dynamic performance and are a potential source of instability. The delayed control system is represented by a finite-dimensional, time-varying, discrete-time model which is less complex than the existing continuous-time models for time-varying delays; this approach allows for simpler schemes for analysis and simulation of the ICS.
Zhang, Cheng-Cheng; Li, Ru; Jiang, Honghui; Lin, Shujun; Rogalski, Jason C; Liu, Kate; Kast, Juergen
2015-02-06
Small GTPases are a family of key signaling molecules that are ubiquitously expressed in various types of cells. Their activity is often analyzed by western blot, which is limited by its multiplexing capability, the quality of isoform-specific antibodies, and the accuracy of quantification. To overcome these issues, a quantitative multiplexed small GTPase activity assay has been developed. Using four different binding domains, this assay allows the binding of up to 12 active small GTPase isoforms simultaneously in a single experiment. To accurately quantify the closely related small GTPase isoforms, a targeted proteomic approach, i.e., selected/multiple reaction monitoring, was developed, and its functionality and reproducibility were validated. This assay was successfully applied to human platelets and revealed time-resolved coactivation of multiple small GTPase isoforms in response to agonists and differential activation of these isoforms in response to inhibitor treatment. This widely applicable approach can be used for signaling pathway studies and inhibitor screening in many cellular systems.
Real-time multiple-look synthetic aperture radar processor for spacecraft applications
NASA Technical Reports Server (NTRS)
Wu, C.; Tyree, V. C. (Inventor)
1981-01-01
A spaceborne synthetic aperture radar (SAR) having pipeline multiple-look data processing is described which makes use of excessive azimuth bandwidth in radar echo signals to produce multiple-looking images. Time multiplexed single-look image lines from an azimuth correlator go through an energy analyzer which analyzes the mean energy in each separate look to determine the radar antenna electric boresight for use in generating the correct reference functions for the production of high quality SAR images. The multiplexed single look image lines also go through a registration delay to produce multi-look images.
Development of a Real-Time Pulse Processing Algorithm for TES-Based X-Ray Microcalorimeters
NASA Technical Reports Server (NTRS)
Tan, Hui; Hennig, Wolfgang; Warburton, William K.; Doriese, W. Bertrand; Kilbourne, Caroline A.
2011-01-01
We report here a real-time pulse processing algorithm for superconducting transition-edge sensor (TES) based x-ray microcalorimeters. TES-based. microca1orimeters offer ultra-high energy resolutions, but the small volume of each pixel requires that large arrays of identical microcalorimeter pixe1s be built to achieve sufficient detection efficiency. That in turn requires as much pulse processing as possible must be performed at the front end of readout electronics to avoid transferring large amounts of data to a host computer for post-processing. Therefore, a real-time pulse processing algorithm that not only can be implemented in the readout electronics but also achieve satisfactory energy resolutions is desired. We have developed an algorithm that can be easily implemented. in hardware. We then tested the algorithm offline using several data sets acquired with an 8 x 8 Goddard TES x-ray calorimeter array and 2x16 NIST time-division SQUID multiplexer. We obtained an average energy resolution of close to 3.0 eV at 6 keV for the multiplexed pixels while preserving over 99% of the events in the data sets.
Hahn, Cassidy M; Iwanowicz, Luke R; Cornman, Robert S; Mazik, Patricia M; Blazer, Vicki S
2016-12-01
Environmental studies increasingly identify the presence of both contaminants of emerging concern (CECs) and legacy contaminants in aquatic environments; however, the biological effects of these compounds on resident fishes remain largely unknown. High throughput methodologies were employed to establish partial transcriptomes for three wild-caught, non-model fish species; smallmouth bass (Micropterus dolomieu), white sucker (Catostomus commersonii) and brown bullhead (Ameiurus nebulosus). Sequences from these transcriptome databases were utilized in the development of a custom nCounter CodeSet that allowed for direct multiplexed measurement of 50 transcript abundance endpoints in liver tissue. Sequence information was also utilized in the development of quantitative real-time PCR (qPCR) primers. Cross-species hybridization allowed the smallmouth bass nCounter CodeSet to be used for quantitative transcript abundance analysis of an additional non-model species, largemouth bass (Micropterus salmoides). We validated the nCounter analysis data system with qPCR for a subset of genes and confirmed concordant results. Changes in transcript abundance biomarkers between sexes and seasons were evaluated to provide baseline data on transcript modulation for each species of interest. Published by Elsevier Inc.
Real-Time Fourier Transformed Holographic Associative Memory With Photorefractive Material
NASA Astrophysics Data System (ADS)
Changsuk, Oh; Hankyu, Park
1989-02-01
We describe a volume holographic associative memory using photorefractive material and conventional planar mirror. Multiple hologram is generated with two angular multiplexed writing beams and Fourier transformed object beam in BaTiO3 crystal at 0.6328 μm. Complete image can be recalled successfully by partial input of original stored image. It is proved that our system is useful for optical implementation of real-time associative memory and location addressable memory.
Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun
2015-06-01
A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.
2007-04-01
for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...Control Organization NRL Navy Research Laboratory nrtPS Non-real- time Polling Services OFDM Orthogonal frequency division multiplex OFDMA...Routeur IDentifier RTG RTO Task Group RTO Research & Technology Organization rtPS Real- time Polling Services SC Single-carrier modulation
Cottenet, Geoffrey; Blancpain, Carine; Sonnard, Véronique; Chuah, Poh Fong
2013-08-01
Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers' perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.
Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.
Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael
2009-01-01
A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.
Direct multiplexed measurement of gene expression with color-coded probe pairs.
Geiss, Gary K; Bumgarner, Roger E; Birditt, Brian; Dahl, Timothy; Dowidar, Naeem; Dunaway, Dwayne L; Fell, H Perry; Ferree, Sean; George, Renee D; Grogan, Tammy; James, Jeffrey J; Maysuria, Malini; Mitton, Jeffrey D; Oliveri, Paola; Osborn, Jennifer L; Peng, Tao; Ratcliffe, Amber L; Webster, Philippa J; Davidson, Eric H; Hood, Leroy; Dimitrov, Krassen
2008-03-01
We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.
Multiplexed operation of a micromachined ultrasonic droplet ejector array.
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2007-10-01
A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk between the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of approximately 5 microm diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.
Multiplexed operation of a micromachined ultrasonic droplet ejector array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2007-10-15
A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk betweenmore » the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of {approx}5 {mu}m diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.« less
Aqueous two-phase systems enable multiplexing of homogeneous immunoassays
Simon, Arlyne B.; Frampton, John P.; Huang, Nien-Tsu; Kurabayashi, Katsuo; Paczesny, Sophie; Takayama, Shuichi
2014-01-01
Quantitative measurement of protein biomarkers is critical for biomarker validation and early disease detection. Current multiplex immunoassays are time consuming costly and can suffer from low accuracy. For example, multiplex ELISAs require multiple, tedious, washing and blocking steps. Moreover, they suffer from nonspecific antibody cross-reactions, leading to high background and false-positive signals. Here, we show that co-localizing antibody-bead pairs in an aqueous two-phase system (ATPS) enables multiplexing of sensitive, no-wash, homogeneous assays, while preventing nonspecific antibody cross-reactions. Our cross-reaction-free, multiplex assay can simultaneously detect picomolar concentrations of four protein biomarkers ((C-X-C motif) ligand 10 (CXCL10), CXCL9, interleukin (IL)-8 and IL-6) in cell supernatants using a single assay well. The potential clinical utility of the assay is demonstrated by detecting diagnostic biomarkers (CXCL10 and CXCL9) in plasma from 88 patients at the onset of the clinical symptoms of chronic graft-versus-host disease (GVHD). PMID:25083509
Li, Lanlan; Pan, Lijia; Ma, Zhong; Yan, Ke; Cheng, Wen; Shi, Yi; Yu, Guihua
2018-06-13
Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip. However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors. Here, we report on a "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system. The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment. For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min. The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum samples are comparable. The inkjet printing process exhibited advantages of high efficiency and accuracy, which opens substantial possibilities for massive fabrication of integrated multiplexed biosensors for human health monitoring.
Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile; Bamford, Colleen
2017-01-01
Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation.
Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile
2017-01-01
Introduction Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. Methods We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. Results From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. Discussion In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation. PMID:28346504
Preliminary study of visual effect of multiplex hologram
NASA Astrophysics Data System (ADS)
Fu, Huaiping; Xiong, Bingheng; Yang, Hong; Zhang, Xueguo
2004-06-01
The process of any movement of real object can be recorded and displayed by a multiplex holographic stereogram. An embossing multiplex holographic stereogram and a multiplex rainbow holographic stereogram have been made by us, the multiplex rainbow holographic stereogram reconstructs the dynamic 2D line drawing of speech organs, the embossing multiplex holographic stereogram reconstructs the process of an old man drinking water. In this paper, we studied the visual result of an embossing multiplex holographic stereogram made with 80 films of 2-D pictures. Forty-eight persons of aged from 13 to 67 were asked to see the hologram and then to answer some questions about the feeling of viewing. The results indicate that this kind of holograms could be accepted by human visual sense organ without any problem. This paper also discusses visual effect of the multiplex holography stereograms base on visual perceptual psychology. It is open out that the planar multiplex holograms can be recorded and present the movement of real animal and object. Not only have the human visual perceptual constancy for shape, just as that size, color, etc... but also have visual perceptual constancy for binocular parallax.
On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System
NASA Technical Reports Server (NTRS)
Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie
2015-01-01
NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of air, surface, water, and clinical samples to monitor environmental pathogens and crew health. The validation flight of the WetLab-2 system using E. coli bacteria and mouse liver launched on SpaceX-7 in June 2015 and will remain on the ISS National Laboratory.
Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria
2003-12-15
Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.
Real-time ESI-MS of enzymatic conversion: impact of organic solvents and multiplexing.
Scheerle, Romy K; Grassmann, Johanna; Letzel, Thomas
2012-01-01
Different enzymatic assays were characterized systematically by real-time electrospray ionization mass spectrometry (ESI-MS) in the presence of organic solvents as well as in multiplex approaches and in a combination of both. Typically, biological enzymatic reactions are studied in aqueous solutions, since most enzymes show their full activity solely in aqueous solutions. However, in recent years, the use of organic solvents in combination with enzymatic reactions has gained increasing interest due to biotechnological advantages in chemical synthesis, development of online coupled setups screening for enzyme regulatory compounds, advantages regarding mass spectrometric detection and others. In the current study, the influence of several common organic solvents (methanol, ethanol, isopropanol, acetone, acetonitrile) on enzymatic activity (hen egg white lysozyme, chitinase, α-chymotrypsin, elastase from human neutrophils and porcine pancreas, acetylcholinesterase) was tested. Moreover, multiplexing is a promising approach enabling fast and cost-efficient screening methods, e.g. for determination of inhibitors in complex mixtures or in the field of biomedical research. Although in multiplexed setups the enzymatic activity may be affected by the presence of other substrates and/or enzymes, the expected advantages possibly will predominate. To investigate those effects, we measured multiple enzymatic assays simultaneously. For all conducted measurements, the conversion rate of the substrate(s) was calculated, which reflects the enzymatic activity. The results provide an overview about the susceptibility of the selected enzymes towards diverse factors and a reference point for many applications in analytical chemistry and biotechnology.
Kim, Young-gon; Kim, Min Young; Park, Kwisung; Cho, Chi Hyun; Yoon, Soo Young; Nam, Myung Hyun; Lee, Chang Kyu; Cho, Yun-Jung; Lim, Chae Seung
2016-01-01
ABSTRACT Nasopharyngeal swabs (NPSs) are being widely used as specimens for multiplex real-time reverse transcription (RT)-PCR for respiratory virus detection. However, it remains unclear whether NPS specimens are optimal for all viruses targeted by multiplex RT-PCR. In addition, the procedure to obtain NPS specimens causes coughing in most patients, which possibly increases the risk of nosocomial spread of viruses. In this study, paired NPS and saliva specimens were collected from 236 adult male patients with suspected acute respiratory illnesses. Specimens were tested for 16 respiratory viruses by multiplex real-time RT-PCR. Among the specimens collected from the 236 patients, at least 1 respiratory virus was detected in 183 NPS specimens (77.5%) and 180 saliva specimens (76.3%). The rates of detection of respiratory viruses were comparable for NPS and saliva specimens (P = 0.766). Nine virus species and 349 viruses were isolated, 256 from NPS specimens and 273 from saliva specimens (P = 0.1574). Adenovirus was detected more frequently in saliva samples (P < 0.0001), whereas influenza virus type A and human rhinovirus were detected more frequently in NPS specimens (P = 0.0001 and P = 0.0289, respectively). The possibility of false-positive adenovirus detection from saliva samples was excluded by direct sequencing. In conclusion, neither of the sampling methods was consistently more sensitive than the other. We suggest that these cost-effective methods for detecting respiratory viruses in mixed NPS-saliva specimens might be valuable for future studies. PMID:27807150
Malhotra, Bharti; Swamy, M Anjaneya; Janardhan Reddy, P V; Gupta, M L
2016-12-01
Severe acute respiratory infection (SARI) is one of the leading causes of death among children worldwide. As different respiratory viruses exhibit similar symptoms, simultaneous detection of these viruses in a single reaction mixture can save time and cost. The present study was done in a tertiary care children's hospital for rapid identification of viruses causing SARI among children less than or equal to five years of age using multiplex real-time reverse transcription polymerase chain reaction (RT-PCR) kit. A total of 155 throat swabs were collected from equal number of children suspected to have SARI and processed for extraction of nucleic acids using automated extraction system. Multiplex real-time RT-PCR was done to identify the viruses in the samples. The overall positivity for viruses in the study was found to be 72.9 per cent with a co-infection rate of 19.5 per cent. Human metapneumovirus (HMPV) was the predominant virus detected in 25.7 per cent children followed by influenza A (H1N1)pdm09, human rhinovirus (HRV) and human adenovirus (HAdV) in 19.9, 11.0 and 8.8 per cent children, respectively. The HMPV was at its peak in February 2013, HAdV showed two peaks in March-April, 2012 and November 2012-March 2013 while HRV was detected throughout the year. Multiplex real-time PCR helped in rapid identification of viruses. Seventeen viruses were detected in SARI cases with overall positivity of 72.9 per cent. HMPV was the most predominant virus. However, for better clinico-virological correlation, studies are required with complete work up of all the aetiological agents, clinical profile of patients and treatment outcome.
Dündar Yenilmez, Ebru; Kökbaş, Umut; Kartlaşmış, Kezban; Kayrın, Levent; Tuli, Abdullah
2018-01-01
Prenatal detection of the fetal RHD status can be useful in the management of RhD incompatibility to identify fetuses at risk of hemolytic disease. Hemolytic disease causes morbidity and mortality of the fetus in the neonatal period. The routine use of antenatal and postnatal anti-D prophylaxis has reduced the incidence of hemolytic disease of the fetus and newborn. This study describe the detection of fetal RhD antigens in blood of RhD negative pregnant women using a nanopolymer coated electrochemical biosensor for medical diagnosis. Cell free fetal DNA in maternal plasma was also used to genotyping fetal RHD status using multiplex real-time PCR. Twenty-six RhD negative pregnant women in different gestational ages were included in the study. RhD positive fetal antibodies detected with a developed biosensor in maternal blood of RhD negative mothers. The electrochemical measurements were performed on a PalmSens potentiostat, and corundum ceramic based screen printed gold electrode combined with the reference Ag/AgCl electrode, and the auxiliary Au/Pd (98/2%) electrode. Fetal RHD genotyping performed using fluorescence-based multiplex real-time PCR exons 5 and 7 of the RHD gene. The fetal RHD status of 26 RhD negative cases were detected 21 as RhD positive and 5 as RhD negative with electrochemical biosensor. Fetal RHD status confirmed with extracted fetal DNA in maternal plasma using multiplex real-time PCR RHD genotyping and by serological test after delivery. The new method for fetal RhD detection in early pregnancy is useful and can be carry out rapidly in clinical diagnosis. Using automated biosensors are reproducible, quick and results can be generated within a few minutes compared to noninvasive fetal RHD genotyping from maternal plasma with real-time PCR-based techniques. We suggest the biosensor techniques could become an alternative part of fetal RHD genotyping from maternal plasma as a prenatal screening in the management of RhD incompatibility.
NASA Astrophysics Data System (ADS)
Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei
2013-03-01
We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm-1 1750 to 3600 cm-1) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm-1 within 1.0 s with a spectral resolution of 3 to 6 cm-1 during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.
Optimization of the segmented method for optical compression and multiplexing system
NASA Astrophysics Data System (ADS)
Al Falou, Ayman
2002-05-01
Because of the constant increasing demands of images exchange, and despite the ever increasing bandwidth of the networks, compression and multiplexing of images is becoming inseparable from their generation and display. For high resolution real time motion pictures, electronic performing of compression requires complex and time-consuming processing units. On the contrary, by its inherent bi-dimensional character, coherent optics is well fitted to perform such processes that are basically bi-dimensional data handling in the Fourier domain. Additionally, the main limiting factor that was the maximum frame rate is vanishing because of the recent improvement of spatial light modulator technology. The purpose of this communication is to benefit from recent optical correlation algorithms. The segmented filtering used to store multi-references in a given space bandwidth product optical filter can be applied to networks to compress and multiplex images in a given bandwidth channel.
A Quantitative Approach to the Formal Verification of Real-Time Systems.
1996-09-01
Computer Science A Quantitative Approach to the Formal Verification of Real - Time Systems Sergio Vale Aguiar Campos September 1996 CMU-CS-96-199...ptisiic raieaiSI v Diambimos Lboiamtad _^ A Quantitative Approach to the Formal Verification of Real - Time Systems Sergio Vale Aguiar Campos...implied, of NSF, the Semiconduc- tor Research Corporation, ARPA or the U.S. government. Keywords: real - time systems , formal verification, symbolic
Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation
Yang, Jiun-Chan; Ji, Jin; Hogle, James M.; Larson, Dale N.
2009-01-01
We performed multiplexed sensing on nanohole array devices to simultaneously obtain information on molecular absorption, scattering, and refractive-index change, which were distinguished by using different array structures with distinct optical behavior. Up to 25 arrays were fabricated within a 65 μm × 50 μm area to provide real-time information of the local surface environment. The performance of multiplexed sensing was examined by flowing NaCl, coomassie blue, bovine serum albumin, and liposome solutions that exhibit different visible light absorption / scattering properties and different refractive indices. Experimental artifacts from light source fluctuation, sample injections, and light scattering induced by aggregates in solutions were detected by monitoring superwavelength holes or nanohole arrays with different periodicity and hole diameters. PMID:19157848
Gray, J; Coupland, L J
2014-01-01
On 14 January 2013, the US Food and Drug Administration (FDA) announced permission for a multiplex nucleic acid test, the xTAG® Gastrointestinal Pathogen Panel (GPP) (Luminex Corporation, USA), which simultaneously detects 11 common viral, bacterial and parasitic causes of infectious gastroenteritis, to be marketed in the USA. This announcement reflects the current move towards the development and commercialization of detection technologies based on nucleic acid amplification techniques for diagnosis of syndromic infections. We discuss the limitations and advantages of nucleic acid amplification techniques and the recent advances in Conformité Européene - in-vitro diagnostic (CE-IVD)-approved multiplex real-time PCR kits for the simultaneous detection of multiple targets within the clinical diagnostics market.
Development of VIS/NIR spectroscopic system for real-time prediction of fresh pork quality
NASA Astrophysics Data System (ADS)
Zhang, Haiyun; Peng, Yankun; Zhao, Songwei; Sasao, Akira
2013-05-01
Quality attributes of fresh meat will influence nutritional value and consumers' purchasing power. The aim of the research was to develop a prototype for real-time detection of quality in meat. It consisted of hardware system and software system. A VIS/NIR spectrograph in the range of 350 to 1100 nm was used to collect the spectral data. In order to acquire more potential information of the sample, optical fiber multiplexer was used. A conveyable and cylindrical device was designed and fabricated to hold optical fibers from multiplexer. High power halogen tungsten lamp was collected as the light source. The spectral data were obtained with the exposure time of 2.17ms from the surface of the sample by press down the trigger switch on the self-developed system. The system could automatically acquire, process, display and save the data. Moreover the quality could be predicted on-line. A total of 55 fresh pork samples were used to develop prediction model for real time detection. The spectral data were pretreated with standard normalized variant (SNV) and partial least squares regression (PLSR) was used to develop prediction model. The correlation coefficient and root mean square error of the validation set for water content and pH were 0.810, 0.653, and 0.803, 0.098 respectively. The research shows that the real-time non-destructive detection system based on VIS/NIR spectroscopy can be efficient to predict the quality of fresh meat.
Chan, Jasper Fuk-Woo; Choi, Garnet Kwan-Yue; Tsang, Alan Ka-Lun; Tee, Kah-Meng; Lam, Ho-Yin; Yip, Cyril Chik-Yan; To, Kelvin Kai-Wang; Cheng, Vincent Chi-Chung; Yeung, Man-Lung; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Chan, Kwok-Hung; Tang, Bone Siu-Fai
2015-01-01
Based on findings in small RNA-sequencing (Seq) data analysis, we developed highly sensitive and specific real-time reverse transcription (RT)-PCR assays with locked nucleic acid probes targeting the abundantly expressed leader sequences of Middle East respiratory syndrome coronavirus (MERS-CoV) and other human coronaviruses. Analytical and clinical evaluations showed their noninferiority to a commercial multiplex PCR test for the detection of these coronaviruses. PMID:26019210
2016-01-01
Sp3-rich compounds are underrepresented in libraries for probe- and drug-discovery, despite their promise of extending the range of accessible molecular shapes beyond planar geometries. With this in mind, a collection of single-enantiomer bicyclic, fused cyclopentenones underpinned by a complexity-generating Pauson–Khand cyclization was synthesized. A fingerprint of biological actions of these compounds was determined immediately after synthesis using real-time annotation−a process relying on multiplexed measurements of alterations in cell morphological features. PMID:27978655
Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna
2014-03-01
This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.
Jang, Hansol; Lim, Gukbin; Hong, Keum-Shik; Cho, Jaedu; Gulsen, Gultekin; Kim, Chang-Seok
2017-11-28
Diffuse optical tomography (DOT) has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM) DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM) DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D) pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.
Gene expression in the rectus abdominus muscle of patients with and without pelvic organ prolapse.
Hundley, Andrew F; Yuan, Lingwen; Visco, Anthony G
2008-02-01
The objective of the study was to compare gene expression in a group of actin and myosin-related proteins in the rectus muscle of 15 patients with pelvic organ prolapse and 13 controls. Six genes previously identified by microarray GeneChip analysis were examined using real-time quantitative reverse transcriptase-polymerase chain reaction analysis, including 2 genes showing differential expression in pubococcygeus muscle. Samples and controls were run in triplicate in multiplexed wells, and levels of gene expression were analyzed using the comparative critical threshold method. One gene, MYH3, was 3.2 times overexpressed in patients with prolapse (P = .032), but no significant differences in expression were seen for the other genes examined. An age-matched subset of 9 patients and controls showed that MYH3 gene expression was no longer significantly different (P = .058). Differential messenger ribonucleic acid levels of actin and myosin-related genes in patients with pelvic organ prolapse and controls may be limited to skeletal muscle from the pelvic floor.
NASA Astrophysics Data System (ADS)
Chirvi, Sajal
Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi-channel label-free biosensing applications is introduced. Simultaneous interrogation of multiple biosensors is achievable with a single spectral domain phase sensitive interferometer by coding the individual sensograms in coherence-multiplexed channels. Experimental results demonstrating multiplexed quantitative biomolecular interaction analysis of antibodies binding to antigen coated functionalized biosensor chip surfaces on different platforms are presented.
NASA Technical Reports Server (NTRS)
Jung, Jimmy; Parra, Macarena P.; Almeida, Eduardo; Boone, Travis; Chinn, Tori; Ricco, Antonio; Souza, Kenneth; Hyde, Liz; Rukhsana, Yousuf; Richey, C. Scott
2013-01-01
The primary objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform to facilitate gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens grown or cultured on orbit. The WetLab-2 equipment will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. In addition to the logistical benefits of in-situ sample processing and analysis, conducting qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms. The system can also validate terrestrial analyses of samples returned from ISS by providing quantitative on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experimental parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Finally, WetLab-2 can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-5 in Aug. 2014.Progress to date: The WetLab-2 project completed a thorough study of commercially available qRT-PCR systems and performed a downselect based on both scientific and engineering requirements. The selected instrument, the Cepheid SmartCycler, has advantages including modular design (16 independent PCR modules), low power consumption, and rapid ramp times. The SmartCycler has multiplex capabilities, assaying up to four genes of interest in each of the 16 modules. The WetLab-2 team is currently working with Cepheid to modify the unit for housing within an EXPRESS rack locker on the ISS. This will enable the downlink of data to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project is currently designing a module that will lyse the cells and extract RNA of sufficient quality for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. Current testing focuses on two promising commercial products and chemistries that allow for RNA extraction with minimal complexity and crew time.
Measuring and modeling correlations in multiplex networks.
Nicosia, Vincenzo; Latora, Vito
2015-09-01
The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.
Literature Reference for Influenza H5N1 (Emerging Infectious Diseases. 2005. 11(8): 1303–1305)
Procedures are described for analysis of clinical samples and may be adapted for assessment of solid, particulate, aerosol, liquid and water samples. This is a two-step, real-time reverse transcriptase-PCR multiplex assay.
Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Borchers, Christoph H
2013-07-01
An emerging approach for multiplexed targeted proteomics involves bottom-up LC-MRM-MS, with stable isotope-labeled internal standard peptides, to accurately quantitate panels of putative disease biomarkers in biofluids. In this paper, we used this approach to quantitate 27 candidate cancer-biomarker proteins in human plasma that had not been treated by immunoaffinity depletion or enrichment techniques. These proteins have been reported as biomarkers for a variety of human cancers, from laryngeal to ovarian, with breast cancer having the highest correlation. We implemented measures to minimize the analytical variability, improve the quantitative accuracy, and increase the feasibility and applicability of this MRM-based method. We have demonstrated excellent retention time reproducibility (median interday CV: 0.08%) and signal stability (median interday CV: 4.5% for the analytical platform and 6.1% for the bottom-up workflow) for the 27 biomarker proteins (represented by 57 interference-free peptides). The linear dynamic range for the MRM assays spanned four orders-of-magnitude, with 25 assays covering a 10(3) -10(4) range in protein concentration. The lowest abundance quantifiable protein in our biomarker panel was insulin-like growth factor 1 (calculated concentration: 127 ng/mL). Overall, the analytical performance of this assay demonstrates high robustness and sensitivity, and provides the necessary throughput and multiplexing capabilities required to verify and validate cancer-associated protein biomarker panels in human plasma, prior to clinical use. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Zhi; Luo, Yuling; McMaster, Gary K
2006-07-01
Accurate and precise quantification of mRNA in whole blood is made difficult by gene expression changes during blood processing, and by variations and biases introduced by sample preparations. We sought to develop a quantitative whole-blood mRNA assay that eliminates blood purification, RNA isolation, reverse transcription, and target amplification while providing high-quality data in an easy assay format. We performed single- and multiplex gene expression analysis with multiple hybridization probes to capture mRNA directly from blood lysate and used branched DNA to amplify the signal. The 96-well plate singleplex assay uses chemiluminescence detection, and the multiplex assay combines Luminex-encoded beads with fluorescent detection. The single- and multiplex assays could quantitatively measure as few as 6000 and 24,000 mRNA target molecules (0.01 and 0.04 amoles), respectively, in up to 25 microL of whole blood. Both formats had CVs < 10% and dynamic ranges of 3-4 logs. Assay sensitivities allowed quantitative measurement of gene expression in the minority of cells in whole blood. The signals from whole-blood lysate correlated well with signals from purified RNA of the same sample, and absolute mRNA quantification results from the assay were similar to those obtained by quantitative reverse transcription-PCR. Both single- and multiplex assay formats were compatible with common anticoagulants and PAXgene-treated samples; however, PAXgene preparations induced expression of known antiapoptotic genes in whole blood. Both the singleplex and the multiplex branched DNA assays can quantitatively measure mRNA expression directly from small volumes of whole blood. The assay offers an alternative to current technologies that depend on RNA isolation and is amenable to high-throughput gene expression analysis of whole blood.
Kim, Jeong-Uk; Ryu, Dae-Shick; Cha, Choong-Hwan; Park, Seon-Hee
2018-03-20
Mycobacterium tuberculosis and non-tuberculous mycobacteria (NTM) are clinically different, and the rapid detection and differentiation of M. tuberculosis complex (MTBC) and NTM is crucial for patient management and infection control. Given the slow growth of most pathogenic mycobacteria, nucleic acid amplification assays are excellent tools for direct identification of mycobacteria in clinical specimens. Recently, a multiplex real-time PCR assay was developed that can directly detect 20 mycobacterial species in clinical specimens. Here, we evaluated the diagnostic performance of the assay for diagnosing mycobacterial disease under routine laboratory conditions. A total of 3334 specimens collected from 1437 patients suspected of tuberculosis infection were subjected to acid-fast bacilli staining, conventional culture and the multiplex real-time PCR assay. To evaluate the sensitivity and specificity of the assay, the overall diagnosis of tuberculosis was defined by positive culture plus medical history, and the 2007 American Thoracic Society and Infectious Disease Society of America diagnostic criteria for NTM disease were applied. The sensitivity, specificity, positive predictive value and negative predictive value were 87.5%, 99.6%, 96.1% and 98.5%, respectively, for the detection of MTBC isolates and 53.3%, 99.9%, 95.2%, and 98.9%, respectively, for detecting NTM isolates. Thus, the assay can correctly differentiate between MTBC and NTM isolates in clinical specimens and would be a useful tool for the rapid differentiation of tuberculosis and NTM disease, despite its limited sensitivity for the diagnosis of NTM disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Park, Yongjung; Kim, Beom Seok; Choi, Kyu Hun; Shin, Dong Ho; Lee, Mi Jung; Cho, Yonggeun; Kim, Hyon-Suk
2012-01-01
A novel multiplex real-time PCR assay for concurrent detection of hepatitis viruses was evaluated for its clinical performance in screening patients with acute hepatitis. A total of 648 serum samples were collected from patients with acute symptoms of hepatitis. Concurrent detection of nucleic acids of HAV, HBV and HCV was performed using the Magicplex™ HepaTrio Real-time Detection test. Serum nucleic acid levels of HBV and HCV were also quantified by the Cobas® AmpliPrep/Cobas® TaqMan® (CAP/CTM) HBV and HCV tests. Patients' medical records were also reviewed. Concordance rates between the results from the HepaTrio and the CAP/CTM tests for the detection of HBV and HCV were 94.9% (k = 0.88) and 99.2% (k = 0.98), respectively. The cycle threshold values with the HepaTrio test were also correlated well with the levels of HBV DNA (r = -0.9230) and HCV RNA (r = -0.8458). The sensitivity and specificity of the HepaTrio test were 93.8% and 98.2%, respectively, for detecting HBV infection, and 99.1% and 100.0%, respectively, for HCV infection. For the HepaTrio test, 21 (3.2%) cases were positive for both HBV and HCV. Among the positive cases, 6 (0.9%) were true coinfections. This test also detected 18 (2.8%) HAV positives. The HepaTrio test demonstrated good clinical performance and produced results that agreed well with those of the CAP/CTM assays, especially for the detection of HCV. This assay was also able to detect HAV RNA from anti-HAV IgM-positive individuals. Therefore, this new multiplex PCR assay could be useful for the concurrent detection of the three hepatitis viruses.
Wisselink, Henk J; Cornelissen, Jan B W J; van der Wal, Fimme J; Kooi, Engbert A; Koene, Miriam G; Bossers, Alex; Smid, Bregtje; de Bree, Freddy M; Antonis, Adriaan F G
2017-07-13
Pasteurella multocida, Mannheimia haemolytica, Histophilus somni and Trueperella pyogenes are four bacterial agents commonly associated with bovine respiratory disease (BRD). In this study a bacterial multiplex real-time PCR (the RespoCheck PCR) was evaluated for the detection in bronchoalveolar lavage fluid (BALF) of these four bacterial agents. The analytical sensitivity of the multiplex real-time PCR assay determined on purified DNA and on bacterial cells of the four target pathogens was one to ten fg DNA/assay and 4 × 10 -1 to 2 × 10 0 CFU/assay. The analytical specificity of the test was, as evaluated on a collection of 118 bacterial isolates, 98.3% for M. haemolytica and 100% for the other three target bacteria. A set of 160 BALF samples of calves originating from ten different herds with health problems related to BRD was examined with bacteriological methods and with the RespoCheck PCR. Using bacteriological examination as the gold standard, the diagnostic sensitivities and specificities of the four bacterial agents were respectively between 0.72 and 1.00 and between 0.70 and 0.99. Kappa values for agreement between results of bacteriological examination and PCRs were low for H. somni (0.17), moderate for P. multocida (0.52) and M. haemolytica (0.57), and good for T. pyogenes (0.79). The low and moderate kappa values seemed to be related to limitations of the bacteriological examination, this was especially the case for H. somni. It was concluded that the RespoCheck PCR assay is a valuable diagnostic tool for the simultaneous detection of the four bacterial agents in BALF of calves.
Rumyantseva, Tatiana; Golparian, Daniel; Nilsson, Christian S; Johansson, Emma; Falk, My; Fredlund, Hans; Van Dam, Alje; Guschin, Alexander; Unemo, Magnus
2015-10-01
In this study, we performed an evaluation of the new CE-marked multiplex real-time AmpliSens N.gonorrhoeae/C.trachomatis/M.genitalium/T.vaginalis-MULTIPRIME-FRT PCR assay compared to APTIMA tests, i.e., APTIMA COMBO 2 assay, APTIMA Trichomonas vaginalis assay (FDA-approved), and two different APTIMA Mycoplasma genitalium assays (research use only; one of them only used for discrepancy analysis). Vaginal swabs (n = 209) and first-void urine (FVU) specimens from females (n = 498) and males (n = 554), consecutive attendees (n = 1261) at a dermatovenerological clinic in Sweden, were examined. The sensitivity of the AmpliSens PCR assay for detection of C. trachomatis (6.3% prevalence), M. genitalium (5.7% prevalence), N. gonorrhoeae (0.3% prevalence), and T. vaginalis (0.08% prevalence) was 97.5% (95% confidence interval (CI): 91.2-99.6%), 81.9% (95% CI: 70.7-89.7%), 100% (95% CI: 40.2-100%) and 100% (95% CI: 16.5-100%), respectively. The specificity of the AmpliSens PCR assay was 100% (95% CI: 99.6-100%) for all agents. The analytical sensitivity and specificity for N. gonorrhoeae detection was excellent, i.e., 55 international gonococcal strains detected and 135 isolates of 13 non-gonococcal Neisseria species were negative. In conclusion, the multiplex real-time AmpliSens N.gonorrhoeae/C.trachomatis/M.genitalium/T.vaginalis-MULTIPRIME-FRT PCR assay demonstrated high sensitivity and excellent specificity for the detection of C. trachomatis, N. gonorrhoeae, and T. vaginalis, and excellent specificity but suboptimal sensitivity for M. genitalium detection. © 2015 APMIS. Published by John Wiley & Sons Ltd.
Köller, Thomas; Kurze, Daniel; Lange, Mirjam; Scherdin, Martin; Podbielski, Andreas; Warnke, Philipp
2016-01-01
A fully automated multiplex real-time PCR assay—including a sample process control and a plasmid based positive control—for the detection and differentiation of herpes simplex virus 1 (HSV1), herpes simplex virus 2 (HSV2) and varicella-zoster virus (VZV) from cerebrospinal fluids (CSF) was developed on the BD Max platform. Performance was compared to an established accredited multiplex real time PCR protocol utilizing the easyMAG and the LightCycler 480/II, both very common devices in viral molecular diagnostics. For clinical validation, 123 CSF specimens and 40 reference samples from national interlaboratory comparisons were examined with both methods, resulting in 97.6% and 100% concordance for CSF and reference samples, respectively. Utilizing the BD Max platform revealed sensitivities of 173 (CI 95%, 88–258) copies/ml for HSV1, 171 (CI 95%, 148–194) copies/ml for HSV2 and 84 (CI 95%, 5–163) copies/ml for VZV. Cross reactivity could be excluded by checking 25 common viral, bacterial and fungal human pathogens. Workflow analyses displayed shorter test duration as well as remarkable fewer and easier preparation steps with the potential to reduce error rates occurring when manually assessing patient samples. This protocol allows for a fully automated PCR assay on the BD Max platform for the simultaneously detection of herpesviridae from CSF specimens. Singular or multiple infections due to HSV1, HSV2 and VZV can reliably be differentiated with good sensitivities. Control parameters are included within the assay, thereby rendering its suitability for current quality management requirements. PMID:27092772
Dörries, Hans-Henno; Remus, Ivonne; Grönewald, Astrid; Grönewald, Cordt; Berghof-Jäger, Kornelia
2010-03-01
The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.
Schaeffer, Anke; Henrich, Birgit
2008-01-01
Background Infection due to Chlamydia trachomatis is the most common sexually transmitted bacterial disease of global health significance, and especially the L-serovars causing lymphogranuloma venereum are increasingly being found in Europe in men who have sex with men. Results The design and evaluation of a rapid, multiplex, real-time PCR targeting the major outer membrane protein (omp-1) -gene and a L-serovar-specific region of the polymorphic protein H (pmp-H) -gene for the detection of Chlamydia trachomatis is reported here. The PCR takes place as a single reaction with an internal control. For L1-, L2- and L3-serovar differentiation a second set of real-time PCRs was evaluated based on the amplification of serovar-specific omp-1-regions. The detection limit of each real-time PCR, multiplexed or not, was 50 genome copies per reaction with an efficiency ranging from 90,5–95,2%. In a retrospective analysis of 50 ocular, rectal and urogenital specimens formerly tested to be positive for C. trachomatis we identified six L2-serovars in rectal specimens of HIV-positive men, one in a double-infection with L3, and one L2 in a urethral specimen of an HIV-negative male. Conclusion This unique real-time PCR is specific and convenient for the rapid routine-diagnostic detection of lymphogranuloma venereum-associated L-serovars and enables the subsequent differentiation of L1, L2 and L3 for epidemiologic studies. PMID:18447917
Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun
2016-01-01
We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.
Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator
NASA Astrophysics Data System (ADS)
Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua
2018-01-01
We propose a pilot-multiplexed continuous-variable quantum key distribution (CVQKD) scheme based on a local local oscillator (LLO). Our scheme utilizes time-multiplexing and polarization-multiplexing techniques to dramatically isolate the quantum signal from the pilot, employs two heterodyne detectors to separately detect the signal and the pilot, and adopts a phase compensation method to almost eliminate the multifrequency phase jitter. In order to analyze the performance of our scheme, a general LLO noise model is constructed. Besides the phase noise and the modulation noise, the photon-leakage noise from the reference path and the quantization noise due to the analog-to-digital converter (ADC) are also considered, which are first analyzed in the LLO regime. Under such general noise model, our scheme has a higher key rate and longer secure distance compared with the preexisting LLO schemes. Moreover, we also conduct an experiment to verify our pilot-multiplexed scheme. Results show that it maintains a low level of the phase noise and is expected to obtain a 554-Kbps secure key rate within a 15-km distance under the finite-size effect.
Sun, Zhihao; Qin, Tao; Meng, Feifei; Chen, Sujuan; Peng, Daxin; Liu, Xiufan
2017-10-18
Nine influenza virus neuraminidase (NA) subtypes have been identified in poultry and wild birds. Few methods are available for rapid and simple NA subtyping. Here we developed a multiplex probe combination-based one-step real-time reverse transcriptase PCR (rRT-PCR) to detect nine avian influenza virus NA subtypes. Nine primer-probe pairs were assigned to three groups based on the different fluorescent dyes of the probes (FAM, HEX, or Texas Red). Each probe detected only one NA subtype, without cross reactivity. The detection limit was less than 100 EID 50 or 100 copies of cDNA per reaction. Data obtained using this method with allantoic fluid samples isolated from live bird markets and H9N2-infected chickens correlated well with data obtained using virus isolation and sequencing, but was more sensitive. This new method provides a specific and sensitive alternative to conventional NA-subtyping methods.
Yu, Clinton; Huszagh, Alexander; Viner, Rosa; Novitsky, Eric J; Rychnovsky, Scott D; Huang, Lan
2016-10-18
Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.
Li, Haonan; Jin, Peng; Hao, Qian; Zhu, Wei; Chen, Xia; Wang, Ping
2017-11-01
Waardenburg syndrome (WS) is a rare autosomal dominant disorder associated with pigmentation abnormalities and sensorineural hearing loss. In this study, we investigated the genetic cause of WSII in a patient and evaluated the reliability of the targeted next-generation exome sequencing method for the genetic diagnosis of WS. Clinical evaluations were conducted on the patient and targeted next-generation sequencing (NGS) was used to identify the candidate genes responsible for WSII. Multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative polymerase chain reaction (qPCR) were performed to confirm the targeted NGS results. Targeted NGS detected the entire deletion of the coding sequence (CDS) of the SOX10 gene in the WSII patient. MLPA results indicated that all exons of the SOX10 heterozygous deletion were detected; no aberrant copy number in the PAX3 and microphthalmia-associated transcription factor (MITF) genes was found. Real-time qPCR results identified the mutation as a de novo heterozygous deletion. This is the first report of using a targeted NGS method for WS candidate gene sequencing; its accuracy was verified by using the MLPA and qPCR methods. Our research provides a valuable method for the genetic diagnosis of WS.
Mari, Viviana; Losurdo, Michele; Lucente, Maria Stella; Lorusso, Eleonora; Elia, Gabriella; Martella, Vito; Patruno, Giovanni; Buonavoglia, Domenico; Decaro, Nicola
2016-03-01
HoBi-like pestiviruses are emerging pestiviruses that infect cattle causing clinical forms overlapping to those induced by bovine viral diarrhea virus (BVDV) 1 and 2. As a consequence of their widespread distribution reported in recent years, molecular tools for rapid discrimination among pestiviruses infecting cattle are needed. The aim of the present study was to develop a multiplex real-time RT-PCR assay, based on the TaqMan technology, for the rapid and unambiguous characterisation of all bovine pestiviruses, including the emerging HoBi-like strains. The assay was found to be sensitive, specific and repeatable, ensuring detection of as few as 10(0)-10(1) viral RNA copies. No cross-reactions between different pestiviral species were observed even in samples artificially contaminated with more than one pestivirus. Analysis of field samples tested positive for BVDV-1, BVDV-2 or HoBi-like virus by a nested PCR protocol revealed that the developed TaqMan assay had equal or higher sensitivity and was able to discriminate correctly the viral species in all tested samples, whereas a real-time RT-PCR assay previously developed for HoBi-like pestivirus detection showed cross-reactivity with few high-titre BVDV-2 samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Naserpour Farivar, Taghi; Najafipour, Reza; Johari, Pouran; Aslanimehr, Masoumeh; Peymani, Amir; Jahani Hashemi, Hoasan; Mirzaui, Baman
2014-10-01
We developed and evaluated the utility of a quadruplex Taqman real-time PCR assay that allows simultaneous identification of vancomycin-resistant genotypes and clinically relevant enterococci. The specificity of the assay was tested using reference strains of vancomycin-resistant and susceptible enterococci. In total, 193 clinical isolates were identified and subsequently genotyped using a Quadruplex Taqman real-time PCR assay and melting curve analysis. Representative Quadruplex Taqman real-time PCR amplification curve were obtained for Enterococcus faecium, Enterococcus faecalis, vanA-containing E. faecium, vanB-containing E. faecalis. Phenotypic and genotypic analysis of the isolates gave same results for 82 enterococcal isolates, while in 5 isolates, they were inconsistent. We had three mixed strains, which were detected by the TaqMan real-time PCR assay and could not be identified correctly using phenotypic methods. Vancomycin resistant enterococci (VRE) genotyping and identification of clinically relevant enterococci were rapidly and correctly performed using TaqMan real-time multiplex real-time PCR assay.
Rasmussen Hellberg, Rosalee S; Morrissey, Michael T; Hanner, Robert H
2010-09-01
The purpose of this study was to develop a species-specific multiplex polymerase chain reaction (PCR) method that allows for the detection of salmon species substitution on the commercial market. Species-specific primers and TaqMan® probes were developed based on a comprehensive collection of mitochondrial 5' cytochrome c oxidase subunit I (COI) deoxyribonucleic acid (DNA) "barcode" sequences. Primers and probes were combined into multiplex assays and tested for specificity against 112 reference samples representing 25 species. Sensitivity and linearity tests were conducted using 10-fold serial dilutions of target DNA (single-species samples) and DNA admixtures containing the target species at levels of 10%, 1.0%, and 0.1% mixed with a secondary species. The specificity tests showed positive signals for the target DNA in both real-time and conventional PCR systems. Nonspecific amplification in both systems was minimal; however, false positives were detected at low levels (1.2% to 8.3%) in conventional PCR. Detection levels were similar for admixtures and single-species samples based on a 30 PCR cycle cut-off, with limits of 0.25 to 2.5 ng (1% to 10%) in conventional PCR and 0.05 to 5.0 ng (0.1% to 10%) in real-time PCR. A small-scale test with food samples showed promising results, with species identification possible even in heavily processed food items. Overall, this study presents a rapid, specific, and sensitive method for salmon species identification that can be applied to mixed-species and heavily processed samples in either conventional or real-time PCR formats. This study provides a newly developed method for salmon and trout species identification that will assist both industry and regulatory agencies in the detection and prevention of species substitution. This multiplex PCR method allows for rapid, high-throughput species identification even in heavily processed and mixed-species samples. An inter-laboratory study is currently being carried out to assess the ability of this method to identify species in a variety of commercial salmon and trout products.
NASA Astrophysics Data System (ADS)
Yin, Stuart (Shizhuo); Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Dubinskiy, Mark; Hoffman, Robert C.
2017-08-01
In this paper, we present a novel large capacity (a 1000+ channel) time division multiplexing (TDM) laser beam combining technique by harnessing a state-of-the-art nanosecond speed potassium tantalate niobate (KTN) electro-optic (EO) beam deflector as the time division multiplexer. The major advantages of TDM approach are: (1) large multiplexing capability (over 1000 channels), (2) high spatial beam quality (the combined beam has the same spatial profile as the individual beam), (3) high spectral beam quality (the combined beam has the same spectral width as the individual beam, and (4) insensitive to the phase fluctuation of individual laser because of the nature of the incoherent beam combining. The quantitative analyses show that it is possible to achieve over one hundred kW average power, single aperture, single transverse mode solid state and/or fiber laser by pursuing this innovative beam combining method, which represents a major technical advance in the field of high energy lasers. Such kind of 100+ kW average power diffraction limited beam quality lasers can play an important role in a variety of applications such as laser directed energy weapons (DEW) and large-capacity high-speed laser manufacturing, including cutting, welding, and printing.
Surface plasmon resonance biosensors for highly sensitive detection in real samples
NASA Astrophysics Data System (ADS)
Sepúlveda, B.; Carrascosa, L. G.; Regatos, D.; Otte, M. A.; Fariña, D.; Lechuga, L. M.
2009-08-01
In this work we summarize the main results obtained with the portable surface plasmon resonance (SPR) device developed in our group (commercialised by SENSIA, SL, Spain), highlighting its applicability for the real-time detection of extremely low concentrations of toxic pesticides in environmental water samples. In addition, we show applications in clinical diagnosis as, on the one hand, the real-time and label-free detection of DNA hybridization and single point mutations at the gene BRCA-1, related to the predisposition in women to develop an inherited breast cancer and, on the other hand, the analysis of protein biomarkers in biological samples (urine, serum) for early detection of diseases. Despite the large number of applications already proven, the SPR technology has two main drawbacks: (i) not enough sensitivity for some specific applications (where pM-fM or single-molecule detection are needed) (ii) low multiplexing capabilities. In order solve such drawbacks, we work in several alternative configurations as the Magneto-optical Surface Plasmon Resonance sensor (MOSPR) based on a combination of magnetooptical and ferromagnetic materials, to improve the SPR sensitivity, or the Localized Surface Plasmon Resonance (LSPR) based on nanostructures (nanoparticles, nanoholes,...), for higher multiplexing capabilities.
Afrimzon, E; Botchkina, G; Zurgil, N; Shafran, Y; Sobolev, M; Moshkov, S; Ravid-Hermesh, O; Ojima, I; Deutsch, M
2016-03-21
Specific phenotypic subpopulations of cancer stem cells (CSCs) are responsible for tumor development, production of heterogeneous differentiated tumor mass, metastasis, and resistance to therapies. The development of therapeutic approaches based on targeting rare CSCs has been limited partially due to the lack of appropriate experimental models and measurement approaches. The current study presents new tools and methodologies based on a hydrogel microstructure array (HMA) for identification and multiplex analyses of CSCs. Low-melt agarose integrated with type I collagen, a major component of the extracellular matrix (ECM), was used to form a solid hydrogel array with natural non-adhesive characteristics and high optical quality. The array contained thousands of individual pyramidal shaped, nanoliter-volume micro-chambers (MCs), allowing concomitant generation and measurement of large populations of free-floating CSC spheroids from single cells, each in an individual micro-chamber (MC). The optical live cell platform, based on an imaging plate patterned with HMA, was validated using CSC-enriched prostate and colon cancer cell lines. The HMA methodology and quantitative image analysis at single-element resolution clearly demonstrates several levels of tumor cell heterogeneity, including morphological and phenotypic variability, differences in proliferation capacity and in drug response. Moreover, the system facilitates real-time examination of single stem cell (SC) fate, as well as drug-induced alteration in expression of stemness markers. The technology may be applicable in personalized cancer treatment, including multiplex ex vivo analysis of heterogeneous patient-derived tumor specimens, precise detection and characterization of potentially dangerous cell phenotypes, and for representative evaluation of drug sensitivity of CSCs and other types of tumor cells.
Multiplexed Holographic Data Storage in Bacteriorhodopsin
NASA Technical Reports Server (NTRS)
Mehrl, David J.; Krile, Thomas F.
1997-01-01
High density optical data storage, driven by the information revolution, remains at the forefront of current research areas. Much of the current research has focused on photorefractive materials (SBN and LiNbO3) and polymers, despite various problems with expense, durability, response time and retention periods. Photon echo techniques, though promising, are questionable due to the need for cryogenic conditions. Bacteriorhodopsin (BR) films are an attractive alternative recording medium. Great strides have been made in refining BR, and materials with storage lifetimes as long as 100 days have recently become available. The ability to deposit this robust polycrystalline material as high quality optical films suggests the use of BR as a recording medium for commercial optical disks. Our own recent research has demonstrated the suitability of BR films for real time spatial filtering and holography. We propose to fully investigate the feasibility of performing holographic mass data storage in BR. Important aspects of the problem to be investigated include various data multiplexing techniques (e.g. angle- amplitude- and phase-encoded multiplexing, and in particular shift-multiplexing), multilayer recording techniques, SLM selection and data readout using crossed polarizers for noise rejection. Systems evaluations of storage parameters, including access times, memory refresh constraints, erasure, signal-to-noise ratios and bit error rates, will be included in our investigations.
Pillet, Sylvie; Verhoeven, Paul O; Epercieux, Amélie; Bourlet, Thomas; Pozzetto, Bruno
2015-06-01
A multiplex real-time PCR (quantitative PCR [qPCR]) assay detecting herpes simplex virus (HSV) and varicella-zoster virus (VZV) DNA together with an internal control was developed on the BD Max platform combining automated DNA extraction and an open amplification procedure. Its performance was compared to those of PCR assays routinely used in the laboratory, namely, a laboratory-developed test for HSV DNA on the LightCycler instrument and a test using a commercial master mix for VZV DNA on the ABI7500fast system. Using a pool of negative cerebrospinal fluid (CSF) samples spiked with either calibrated controls for HSV-1 and VZV or dilutions of a clinical strain that was previously quantified for HSV-2, the empirical limit of detection of the BD Max assay was 195.65, 91.80, and 414.07 copies/ml for HSV-1, HSV-2, and VZV, respectively. All the samples from HSV and VZV DNA quality control panels (Quality Control for Molecular Diagnostics [QCMD], 2013, Glasgow, United Kingdom) were correctly identified by the BD Max assay. From 180 clinical specimens of various origins, 2 CSF samples were found invalid by the BD Max assay due to the absence of detection of the internal control; a concordance of 100% was observed between the BD Max assay and the corresponding routine tests. The BD Max assay detected the PCR signal 3 to 4 cycles earlier than did the routine methods. With results available within 2 h on a wide range of specimens, this sensitive and fully automated PCR assay exhibited the qualities required for detecting simultaneously HSV and VZV DNA on a routine basis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
QoS for Real Time Applications over Next Generation Data Networks
NASA Technical Reports Server (NTRS)
Ivancic, William; Atiquzzaman, Mohammed; Bai, Haowei; Su, Hongjun; Chitri, Jyotsna; Ahamed, Faruque
2001-01-01
Viewgraphs on Qualtity of Service (QOS) for real time applications over next generation data networks are presented. The progress to date include: Task 1: QoS in Integrated Services over DiffServ networks (UD); Task 2: Interconnecting ATN with the next generation Internet (UD); Task 3: QoS in DiffServ over ATM (UD); Task 4: Improving Explicit Congestion Notification with the Mark-Front Strategy (OSU); Task 5: Multiplexing VBR over VBR (OSU); and Task 6: Achieving QoS for TCP traffic in Satellite Networks with Differentiated Services (OSU).
Multiplex real-time PCR detection and differentiation of Colletotrichum species infecting soybean
USDA-ARS?s Scientific Manuscript database
Colletotrichum species are fungal plant pathogens of worldwide significance. We isolated Colletotrichum species from soybean [Glycine max (L.) Merr.] with anthracnose symptoms in the U.S. states of Alabama, Arkansas, Illinois, Mississippi, and North Dakota from 2009 to 2013. Thirty-five strains from...
Uplink Packet-Data Scheduling in DS-CDMA Systems
NASA Astrophysics Data System (ADS)
Choi, Young Woo; Kim, Seong-Lyun
In this letter, we consider the uplink packet scheduling for non-real-time data users in a DS-CDMA system. As an effort to jointly optimize throughput and fairness, we formulate a time-span minimization problem incorporating the time-multiplexing of different simultaneous transmission schemes. Based on simple rules, we propose efficient scheduling algorithms and compare them with the optimal solution obtained by linear programming.
Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei
2013-03-01
We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm⁻¹; 1750 to 3600 cm⁻¹) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm⁻¹ within 1.0 s with a spectral resolution of 3 to 6 cm⁻¹ during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.
Guldmann-Christensen, Mariann; Hauge Kyneb, Majbritt; Voogd, Kirsten; Andersen, Christina; Epistolio, Samantha; Merlo, Elisabetta; Yding Wolff, Tine; Hamilton-Dutoit, Stephen; Lorenzen, Jan; Christensen, Ulf Bech
2017-01-01
Activating mutations in codon 12 and codon 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) gene are implicated in the development of several human cancer types and influence their clinical evaluation, treatment and prognosis. Numerous different methods for KRAS genotyping are currently available displaying a wide range of sensitivities, time to answer and requirements for laboratory equipment and user skills. Here we present SensiScreen® KRAS exon 2 simplex and multiplex CE IVD assays, that use a novel real-time PCR-based method for KRAS mutation detection based on PentaBase’s proprietary DNA analogue technology and designed to work on standard real-time PCR instruments. By means of the included BaseBlocker™ technology, we show that SensiScreen® specifically amplifies the mutated alleles of interest with no or highly subdued amplification of the wild type allele. Furthermore, serial dilutions of mutant DNA in a wild type background demonstrate that all SensiScreen® assays display a limit of detection that falls within the range of 0.25–1%. Finally, in three different colorectal cancer patient populations, SensiScreen® assays confirmed the KRAS genotype previously determined by commonly used methods for KRAS mutation testing, and notably, in two of the populations, SensiScreen® identified additional mutant positive cases not detected by common methods. PMID:28636636
[Monitoring AIDS patients for the development of cytomegalovirus (CMV) disease using multiplex PCR].
Terra, A P; Silva-Vergara, M L; Gomes, R A; Pereira, C L; Simpson, A J; Caballero, O L
2000-01-01
The human cytomegalovirus is an important pathogen in patients infected with the human immunodeficiency virus (HIV). The CMV viral load seems to be predictor of the development of the CMV disease in these patients. We used a multiplex PCR protocol that also provides quantitative information in those samples from which a single band is amplified and contains fewer viral genomes than those from which both targets are amplified. Monthly blood samples were collected from 270 AIDS patients. From twenty patients, two CMV targets were amplified three or more consecutive times and these patients developed CMV related disease during the study. In contrast, patients who did not result positive for both viral targets, for three or more consecutive times, or who had alternating positive and negative samples during the follow up did not present CMV related disease. The results suggest that the PCR multiplex can be used for the identification of HIV positive patients with higher risk of development of CMV disease.
Computing Quantitative Characteristics of Finite-State Real-Time Systems
1994-05-04
Current methods for verifying real - time systems are essentially decision procedures that establish whether the system model satisfies a given...specification. We present a general method for computing quantitative information about finite-state real - time systems . We have developed algorithms that...our technique can be extended to a more general representation of real - time systems , namely, timed transition graphs. The algorithms presented in this
Detection and forecasting of oyster norovirus outbreaks: recent advances and future perspectives.
Wang, Jiao; Deng, Zhiqiang
2012-09-01
Norovirus is a highly infectious pathogen that is commonly found in oysters growing in fecally contaminated waters. Norovirus outbreaks can cause the closure of oyster harvesting waters and acute gastroenteritis in humans associated with consumption of contaminated raw oysters. Extensive efforts and progresses have been made in detection and forecasting of oyster norovirus outbreaks over the past decades. The main objective of this paper is to provide a literature review of methods and techniques for detecting and forecasting oyster norovirus outbreaks and thereby to identify the future directions for improving the detection and forecasting of norovirus outbreaks. It is found that (1) norovirus outbreaks display strong seasonality with the outbreak peak occurring commonly in December-March in the U.S. and April-May in the Europe; (2) norovirus outbreaks are affected by multiple environmental factors, including but not limited to precipitation, temperature, solar radiation, wind, and salinity; (3) various modeling approaches may be employed to forecast norovirus outbreaks, including Bayesian models, regression models, Artificial Neural Networks, and process-based models; and (4) diverse techniques are available for near real-time detection of norovirus outbreaks, including multiplex PCR, seminested PCR, real-time PCR, quantitative PCR, and satellite remote sensing. The findings are important to the management of oyster growing waters and to future investigations into norovirus outbreaks. It is recommended that a combined approach of sensor-assisted real time monitoring and modeling-based forecasting should be utilized for an efficient and effective detection and forecasting of norovirus outbreaks caused by consumption of contaminated oysters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Košir, Alexandra Bogožalec; Spilsberg, Bjørn; Holst-Jensen, Arne; Žel, Jana; Dobnik, David
2017-08-17
Quantification of genetically modified organisms (GMOs) in food and feed products is often required for their labelling or for tolerance thresholds. Standard-curve-based simplex quantitative polymerase chain reaction (qPCR) is the prevailing technology, which is often combined with screening analysis. With the rapidly growing number of GMOs on the world market, qPCR analysis becomes laborious and expensive. Innovative cost-effective approaches are therefore urgently needed. Here, we report the development and inter-laboratory assessment of multiplex assays to quantify GMO soybean using droplet digital PCR (ddPCR). The assays were developed to facilitate testing of foods and feed for compliance with current GMO regulations in the European Union (EU). Within the EU, the threshold for labelling is 0.9% for authorised GMOs per ingredient. Furthermore, the EU has set a technical zero tolerance limit of 0.1% for certain unauthorised GMOs. The novel multiplex ddPCR assays developed target 11 GMO soybean lines that are currently authorised, and four that are tolerated, pending authorisation in the EU. Potential significant improvements in cost efficiency are demonstrated. Performance was assessed for the critical parameters, including limits of detection and quantification, and trueness, repeatability, and robustness. Inter-laboratory performance was also determined on a number of proficiency programme and real-life samples.
Machado, Jessica M D; Soares, Ruben R G; Chu, Virginia; Conde, João P
2018-01-15
The field of microfluidics holds great promise for the development of simple and portable lab-on-a-chip systems. The use of capillarity as a means of fluidic manipulation in lab-on-a-chip systems can potentially reduce the complexity of the instrumentation and allow the development of user-friendly devices for point-of-need analyses. In this work, a PDMS microchannel-based, colorimetric, autonomous capillary chip provides a multiplexed and semi-quantitative immunodetection assay. Results are acquired using a standard smartphone camera and analyzed with a simple gray scale quantification procedure. The performance of this device was tested for the simultaneous detection of the mycotoxins ochratoxin A (OTA), aflatoxin B1 (AFB1) and deoxynivalenol (DON) which are strictly regulated food contaminants with severe detrimental effects on human and animal health. The multiplexed assay was performed approximately within 10min and the achieved sensitivities of<40, 0.1-0.2 and<10ng/mL for OTA, AFB1 and DON, respectively, fall within the majority of currently enforced regulatory and/or recommended limits. Furthermore, to assess the potential of the device to analyze real samples, the immunoassay was successfully validated for these 3 mycotoxins in a corn-based feed sample after a simple sample preparation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.
Akiyama, Hiroshi; Nakamura, Fumi; Yamada, Chihiro; Nakamura, Kosuke; Nakajima, Osamu; Kawakami, Hiroshi; Harikai, Naoki; Furui, Satoshi; Kitta, Kazumi; Teshima, Reiko
2009-11-01
To screen for unauthorized genetically modified organisms (GMO) in the various crops, we developed a multiplex real-time polymerase chain reaction high-resolution melting-curve analysis method for the simultaneous qualitative detection of 35S promoter sequence of cauliflower mosaic virus (35SP) and the nopaline synthase terminator (NOST) in several crops. We selected suitable primer sets for the simultaneous detection of 35SP and NOST and designed the primer set for the detection of spiked ColE1 plasmid to evaluate the validity of the polymerase chain reaction (PCR) analyses. In addition, we optimized the multiplex PCR conditions using the designed primer sets and EvaGreen as an intercalating dye. The contamination of unauthorized GMO with single copy similar to NK603 maize can be detected as low as 0.1% in a maize sample. Furthermore, we showed that the present method would be applicable in identifying GMO in various crops and foods like authorized GM soybean, authorized GM potato, the biscuit which is contaminated with GM soybeans and the rice which is contaminated with unauthorized GM rice. We consider this method to be a simple and reliable assay for screening for unauthorized GMO in crops and the processing food products.
Kwon, Yong Seok; Ko, Myeong Ock; Jung, Mi Sun; Park, Ik Gon; Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Park, Kyung Hyun; Jeon, Min Yong
2013-01-01
We report a high-speed (∼2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement. PMID:23899934
Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.
Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L
2016-07-01
Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR.
High-throughput real-time quantitative reverse transcription PCR.
Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F
2006-02-01
Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.
USDA-ARS?s Scientific Manuscript database
Vibrio anguillarum is an aggressive and halophilic bacterial pathogen commonly found in seawater. Its presence in aquaculture facilities causes significant morbidity and mortality among aquaculture species primarily from hemorrhaging of the body and skin of the infected fish that eventually leads t...
NASA Astrophysics Data System (ADS)
Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-08-01
Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.
Quantitative and Qualitative Changes in V-J α Rearrangements During Mouse Thymocytes Differentiation
Pasqual, Nicolas; Gallagher, Maighréad; Aude-Garcia, Catherine; Loiodice, Mélanie; Thuderoz, Florence; Demongeot, Jacques; Ceredig, Rod; Marche, Patrice Noël; Jouvin-Marche, Evelyne
2002-01-01
Knowledge of the complete nucleotide sequence of the mouse TCRAD locus allows an accurate determination V-J rearrangement status. Using multiplex genomic PCR assays and real time PCR analysis, we report a comprehensive and systematic analysis of the V-J recombination of TCR α chain in normal mouse thymocytes during development. These respective qualitative and quantitative approaches give rise to four major points describing the control of gene rearrangements. (a) The V-J recombination pattern is not random during ontogeny and generates a limited TCR α repertoire; (b) V-J rearrangement control is intrinsic to the thymus; (c) each V gene rearranges to a set of contiguous J segments with a gaussian-like frequency; (d) there are more rearrangements involving V genes at the 3′ side than 5′ end of V region. Taken together, this reflects a preferential association of V and J gene segments according to their respective positions in the locus, indicating that accessibility of both V and J regions is coordinately regulated, but in different ways. These results provide a new insight into TCR α repertoire size and suggest a scenario for V usage during differentiation. PMID:12417627
Targeting GPR30 in Abiraterone and MDV3100 Resistant Prostate Cancer
2017-12-01
ID Labs, London, ON, Canada) following the manufacturer’s protocols. Quantitative real- time PCR Total RNA was treated with RNase-free DNase (Qiagen...99-gene panel for confirmation based on a literature search showing their relatedness to cell-mediated immune responses. Quantitative real- time PCR...mouse neutrophils (Geiser et al. 1993, Schaider et al. 2003), we analyzed murine neutrophil-related cytokine genes using quantitative real- time PCR
Vernel-Pauillac, Frédérique; Merien, Fabrice
2006-12-01
For many years, the pathogenic bacterium Neisseria gonorrhoeae, the etiologic agent of gonorrhea, was generally susceptible to penicillin, until the emergence of resistant strains. Well-characterized genetic variations in the penicillin resistance-determining region correlate with decreased susceptibility to penicillin. At least 5 genes (penA, penB, mtrR, ponA, and penC) are involved in the chromosomally mediated resistance to this antibiotic. To date, no development of multiplex PCR assays targeting a range of gonococcal genes and variations as a means of predicting antibiotic resistance has been reported. The aim of this study was to develop a duplex assay using DNA from isolated strains. We describe the development and evaluation on the LightCycler platform of a real-time duplex PCR assay (hybridization probe format) for rapid and specific detection of ponA and penA variations, predicting penicillin susceptibilities. The real-time duplex PCR assay successfully detected variations in ponA and penA genes by use of distinct melting temperatures from a total of 120 Neisseria gonorrhoeae isolates. Moreover, the variation profiles obtained with the real-time PCR and the melting analysis showed good correlation with the pattern of penicillin susceptibility generated with classical antibiograms. Nucleotide sequencing data were in complete agreement with multiplex assay results. The presented assay is suitable for the detection of chromosomally mediated resistant strains of Neisseria gonorrhoeae in genotyping studies and could be valuable in the effective antimicrobial strategy to gonococci.
Selck, David A; Karymov, Mikhail A; Sun, Bing; Ismagilov, Rustem F
2013-11-19
Quantitative bioanalytical measurements are commonly performed in a kinetic format and are known to not be robust to perturbation that affects the kinetics itself or the measurement of kinetics. We hypothesized that the same measurements performed in a "digital" (single-molecule) format would show increased robustness to such perturbations. Here, we investigated the robustness of an amplification reaction (reverse-transcription loop-mediated amplification, RT-LAMP) in the context of fluctuations in temperature and time when this reaction is used for quantitative measurements of HIV-1 RNA molecules under limited-resource settings (LRS). The digital format that counts molecules using dRT-LAMP chemistry detected a 2-fold change in concentration of HIV-1 RNA despite a 6 °C temperature variation (p-value = 6.7 × 10(-7)), whereas the traditional kinetic (real-time) format did not (p-value = 0.25). Digital analysis was also robust to a 20 min change in reaction time, to poor imaging conditions obtained with a consumer cell-phone camera, and to automated cloud-based processing of these images (R(2) = 0.9997 vs true counts over a 100-fold dynamic range). Fluorescent output of multiplexed PCR amplification could also be imaged with the cell phone camera using flash as the excitation source. Many nonlinear amplification schemes based on organic, inorganic, and biochemical reactions have been developed, but their robustness is not well understood. This work implies that these chemistries may be significantly more robust in the digital, rather than kinetic, format. It also calls for theoretical studies to predict robustness of these chemistries and, more generally, to design robust reaction architectures. The SlipChip that we used here and other digital microfluidic technologies already exist to enable testing of these predictions. Such work may lead to identification or creation of robust amplification chemistries that enable rapid and precise quantitative molecular measurements under LRS. Furthermore, it may provide more general principles describing robustness of chemical and biological networks in digital formats.
Mass cytometry: a highly multiplexed single-cell technology for advancing drug development.
Atkuri, Kondala R; Stevens, Jeffrey C; Neubert, Hendrik
2015-02-01
Advanced single-cell analysis technologies (e.g., mass cytometry) that help in multiplexing cellular measurements in limited-volume primary samples are critical in bridging discovery efforts to successful drug approval. Mass cytometry is the state-of-the-art technology in multiparametric single-cell analysis. Mass cytometers (also known as cytometry by time-of-flight or CyTOF) combine the cellular analysis principles of traditional fluorescence-based flow cytometry with the selectivity and quantitative power of inductively coupled plasma-mass spectrometry. Standard flow cytometry is limited in the number of parameters that can be measured owing to the overlap in signal when detecting fluorescently labeled antibodies. Mass cytometry uses antibodies tagged to stable isotopes of rare earth metals, which requires minimal signal compensation between the different metal tags. This unique feature enables researchers to seamlessly multiplex up to 40 independent measurements on single cells. In this overview we first present an overview of mass cytometry and compare it with traditional flow cytometry. We then discuss the emerging and potential applications of CyTOF technology in the pharmaceutical industry, including quantitative and qualitative deep profiling of immune cells and their applications in assessing drug immunogenicity, extensive mapping of signaling networks in single cells, cell surface receptor quantification and multiplexed internalization kinetics, multiplexing sample analysis by barcoding, and establishing cell ontologies on the basis of phenotype and/or function. We end with a discussion of the anticipated impact of this technology on drug development lifecycle with special emphasis on the utility of mass cytometry in deciphering a drug's pharmacokinetics and pharmacodynamics relationship. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Quantitative real-time imaging of glutathione
USDA-ARS?s Scientific Manuscript database
Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can quantitatively monitor the real-time ...
A rocket-borne pulse-height analyzer for energetic particle measurements
NASA Technical Reports Server (NTRS)
Leung, W.; Smith, L. G.; Voss, H. D.
1979-01-01
The pulse-height analyzer basically resembles a time-sharing multiplexing data-acquisition system which acquires analog data (from energetic particle spectrometers) and converts them into digital code. The PHA simultaneously acquires pulse-height information from the analog signals of the four input channels and sequentially multiplexes the digitized data to a microprocessor. The PHA together with the microprocessor form an on-board real-time data-manipulation system. The system processes data obtained during the rocket flight and reduces the amount of data to be sent back to the ground station. Consequently the data-reduction process for the rocket experiments is speeded up. By using a time-sharing technique, the throughput rate of the microprocessor is increased. Moreover, data from several particle spectrometers are manipulated to share one information channel; consequently, the TM capacity is increased.
Deffuant model of opinion formation in one-dimensional multiplex networks
NASA Astrophysics Data System (ADS)
Shang, Yilun
2015-10-01
Complex systems in the real world often operate through multiple kinds of links connecting their constituents. In this paper we propose an opinion formation model under bounded confidence over multiplex networks, consisting of edges at different topological and temporal scales. We determine rigorously the critical confidence threshold by exploiting probability theory and network science when the nodes are arranged on the integers, {{Z}}, evolving in continuous time. It is found that the existence of ‘multiplexity’ impedes the convergence, and that working with the aggregated or summarized simplex network is inaccurate since it misses vital information. Analytical calculations are confirmed by extensive numerical simulations.
NASA Astrophysics Data System (ADS)
Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung
2015-11-01
Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05839b
Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells.
Tan, Hwee Tong; Tan, Sandra; Lin, Qingsong; Lim, Teck Kwang; Hew, Choy Leong; Chung, Maxey C M
2008-06-01
Colorectal cancer is one of the most common cancers in developed countries, and its incidence is negatively associated with high dietary fiber intake. Butyrate, a short-chain fatty acid fermentation by-product of fiber induces cell maturation with the promotion of growth arrest, differentiation, and/or apoptosis of cancer cells. The stimulation of cell maturation by butyrate in colonic cancer cells follows a temporal progression from the early phase of growth arrest to the activation of apoptotic cascades. Previously we performed two-dimensional DIGE to identify differentially expressed proteins induced by 24-h butyrate treatment of HCT-116 colorectal cancer cells. Herein we used quantitative proteomics approaches using iTRAQ (isobaric tags for relative and absolute quantitation), a stable isotope labeling methodology that enables multiplexing of four samples, for a temporal study of HCT-116 cells treated with butyrate. In addition, cleavable ICAT, which selectively tags cysteine-containing proteins, was also used, and the results complemented those obtained from the iTRAQ strategy. Selected protein targets were validated by real time PCR and Western blotting. A model is proposed to illustrate our findings from this temporal analysis of the butyrate-responsive proteome that uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. These signature clusters of butyrate-regulated pathways are potential targets for novel chemopreventive and therapeutic drugs for treatment of colorectal cancer.
NASA Astrophysics Data System (ADS)
Zonta, Daniele; Pozzi, Matteo; Wu, Huayong; Inaudi, Daniele
2008-03-01
This paper introduces a concept of smart structural elements for the real-time condition monitoring of bridges. These are prefabricated reinforced concrete elements embedding a permanent sensing system and capable of self-diagnosis when in operation. The real-time assessment is automatically controlled by a numerical algorithm founded on Bayesian logic: the method assigns a probability to each possible damage scenario, and estimates the statistical distribution of the damage parameters involved (such as location and extent). To verify the effectiveness of the technology, we produced and tested in the laboratory a reduced-scale smart beam prototype. The specimen is 3.8 m long and has cross-section 0.3 by 0.5m, and has been prestressed using a Dywidag bar, in such a way as to control the preload level. The sensor system includes a multiplexed version of SOFO interferometric sensors mounted on a composite bar, along with a number of traditional metal-foil strain gauges. The method allowed clear recognition of increasing fault states, simulated on the beam by gradually reducing the prestress level.
Castigliego, Lorenzo; Armani, Andrea; Tinacci, Lara; Gianfaldoni, Daniela; Guidi, Alessandra
2015-01-01
Anglerfish (Lophius spp.) is consumed worldwide and is an important economic resource though its seven species are often fraudulently interchanged due to their different commercial value, especially when sold in the form of fillets or pieces. Molecular analysis is the only possible mean to verify traceability and counteract fraud. We developed two multiplex PCRs, one end-point and one real-time with melting curve post-amplification analysis, which can even be run with the simplest two-channel thermocyclers. The two methods were tested on seventy-five reference samples. Their specificity was checked in twenty more species of those most commonly available on the market and in other species of the Lophiidae family. Both methods, the choice of which depends on the equipment and budget of the lab, provide a rapid and easy-to-read response, improving both the simplicity and cost-effectiveness of existing methods for identifying Lophius species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metallic Nanohole Arrays on Fluoropolymer Substrates as Small Label-Free Real-Time Bioprobes
Yang, Jiun-Chan; Ji, Jin; Hogle, James M.; Larson, Dale N.
2009-01-01
We describe a nanoplasmonic probing platform that exploits small-dimension (≤ 20 μm2) ordered arrays of subwavelength holes for multiplexed, high spatial resolution, and real-time analysis on biorecognition events. Nanohole arrays are perforated on a super smooth gold surface (roughness RMS < 2.7 Å) attached on a fluoropolymer (FEP) substrate fabricated by a replica technique. The smooth surface of gold provides a superb environment for fabricating nanometer features and uniform immobilization of biomolecules. The refractive index matching between FEP and biological solutions contributes to ∼ 20% improvement on the sensing performance. Spectral studies on a series of small-dimension nanohole arrays from 1 μm2 to 20 μm2 indicate that the plasmonic sensing sensitivity improves as the gold-solution contact area increases. Our results also demonstrate that nanohole arrays with dimension as small as 1 μm2 can be used to effectively detect biomolecular binding events and analyze the binding kinetics. The future scientific opportunities opened by this nanohole platform include highly multiplexed analysis of ligand interactions with membrane proteins on high quality supported lipid bilayers. PMID:18710296
Fernández, Angel L; Varela, Eduardo; Martínez, Lucía; Martínez, Amparo; Sierra, Juan; González-Juanatey, José R; Regueiro, Benito
2010-10-01
With a novel real-time multiplex polymerase chain reaction test, the LightCycler SeptiFast® test, 25 bacterial and fungal species can be identified directly in blood. The SeptiFast® test has been used for rapid etiologic diagnosis in infectious endocarditis using blood samples but has not been evaluated directly on cardiac vegetations in patients being treated for infectious endocarditis. We prospectively analyzed 15 samples of heart valve tissue with active infectious endocarditis using the SeptiFast® test and compared the test's sensitivity with that of blood culture, valve tissue culture, and the SeptiFast® test in blood. The sensitivity of the SeptiFast test in heart valve tissue was 100%. The test results confirmed the diagnosis obtained using blood culture in 13 cases and identified the pathogen in 2 cases where blood culture tested negative. The sensitivity of the SeptiFast® test in heart valve tissue was greater than that obtained with conventional culture of vegetations or with the SeptiFast test in blood.
Rojas, Alejandra; Diagne, Cheikh T; Stittleburg, Victoria D; Mohamed-Hadley, Alisha; de Guillén, Yvalena Arévalo; Balmaseda, Angel; Faye, Oumar; Faye, Ousmane; Sall, Amadou A; Harris, Eva; Pinsky, Benjamin A; Waggoner, Jesse J
2018-04-02
The differential diagnosis of dengue virus (DENV) and yellow fever virus (YFV) infections in endemic areas is complicated by nonspecific early clinical manifestations. In this study, we describe an internally controlled, multiplex real-time reverse transcription PCR (rRT-PCR) for the detection of DENV and YFV. The DENV-YFV assay demonstrated specific detection and had a dynamic range of 2.0-8.0 log 10 copies/μL of eluate for each DENV serotype and YFV. Clinical performance was similar to a published pan-DENV assay: 48/48 acute-phase samples from dengue cases were detected in both assays. For YFV detection, mock samples were prepared with nine geographically diverse YFV isolates over a range of concentrations. The DENV-YFV assay detected 62/65 replicates, whereas 54/65 were detected using a reference YFV rRT-PCR. Given the reemergence of DENV and YFV in areas around the world, the DENV-YFV assay should be a useful tool to narrow the differential diagnosis and provide early case detection.
Tewson, Paul H; Quinn, Anne Marie; Hughes, Thomas E
2013-08-01
There is a growing need in drug discovery and basic research to measure multiple second-messenger components of cell signaling pathways in real time and in relevant tissues and cell types. Many G-protein-coupled receptors activate the heterotrimeric protein, Gq, which in turn activates phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce two second messengers: diacylglycerol (DAG), which remains in the plasma membrane, and inositol triphosphate (IP3), which diffuses through the cytosol to release stores of intracellular calcium ions (Ca(2+)). Our goal was to create a series of multiplex sensors that would make it possible to simultaneously measure two different components of the Gq pathway in living cells. Here we describe new fluorescent sensors for DAG and PIP2 that produce robust changes in green or red fluorescence and can be combined with one another, or with existing Ca(2+) sensors, in a live-cell assay. These assays can detect multiple components of Gq signaling, simultaneously in real time, on standard fluorescent plate readers or live-cell imaging systems.
Quantitative multiplex detection of biomarkers on a waveguide-based biosensor using quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Hongzhi; Mukundan, Harshini; Martinez, Jennifer S
2009-01-01
The quantitative, simultaneous detection of multiple biomarkers with high sensitivity and specificity is critical for biomedical diagnostics, drug discovery and biomarker characterization [Wilson 2006, Tok 2006, Straub 2005, Joos 2002, Jani 2000]. Detection systems relying on optical signal transduction are, in general, advantageous because they are fast, portable, inexpensive, sensitive, and have the potential for multiplex detection of analytes of interest. However, conventional immunoassays for the detection of biomarkers, such as the Enzyme Linked Immunosorbant Assays (ELISAs) are semi-quantitative, time consuming and insensitive. ELISA assays are also limited by high non-specific binding, especially when used with complex biological samples suchmore » as serum and urine (REF). Organic fluorophores that are commonly used in such applications lack photostability and possess a narrow Stoke's shift that makes simultaneous detection of multiple fluorophores with a single excitation source difficult, thereby restricting their use in multiplex assays. The above limitations with traditional assay platforms have resulted in the increased use of nanotechnology-based tools and techniques in the fields of medical imaging [ref], targeted drug delivery [Caruthers 2007, Liu 2007], and sensing [ref]. One such area of increasing interest is the use of semiconductor quantum dots (QDs) for biomedical research and diagnostics [Gao and Cui 2004, Voura 2004, Michalet 2005, Chan 2002, Jaiswal 2004, Gao 2005, Medintz 2005, So 2006 2006, Wu 2003]. Compared to organic dyes, QDs provide several advantages for use in immunoassay platforms, including broad absorption bands with high extinction coefficients, narrow and symmetric emission bands with high quantum yields, high photostablility, and a large Stokes shift [Michalet 2005, Gu 2002]. These features prompted the use of QDs as probes in biodetection [Michalet 2005, Medintz 2005]. For example, Jaiswal et al. reported long term multiple color imaging of live cells using QD-bioconjugates [Jaiswal 2003]. Gao [Gao 2004] and So [So 2006] have used QDs as probes for in-vivo cancer targeting and imaging. Medintz et al. reported self-assembled QD-based biosensors for detection of analytes based on energy transfer [Medintz 2003]. Others have developed an approach for multiplex optical encoding of biomolecules using QDs [Han 2001]. Immunoassays have also benefited from the advantages of QDs. Recently, dihydrolipoic acid (DHLA) capped-QDs have been attached to antibodies and used as fluorescence reporters in plate-based multiplex immunoassays [Goodman 2004]. However, DHLA-QDs are associated with low quantum efficiency and are unstable at neutral pH. These problems limit the application of this technology to the sensitive detection of biomolecules, especially in complex biological samples. Thus, the development of a rapid, sensitive, quantitative, and specific multiplex platform for the detection of biomarkers in difficult samples remains an elusive target. The goal stated above has applications in many fields including medical diagnostics, biological research, and threat reduction. The current decade alone has seen the development of a need to rapidly and accurately detect potential biological warfare agents. For example, current methods for the detection of anthrax are grossly inadequate for a variety of reasons including long incubation time (5 days from time of exposure to onset of symptoms) and non-specific ('flu-like') symptoms. When five employees of the United State Senate were exposed to B. anthracis in the mail (2001), only one patient had a confirmed diagnosis before death. Since then, sandwich immunoassays using both colorimetric and fluorescence detectors have been developed for key components of the anthrax lethal toxin, namely protective antigen (PA), lethal factor (LF), and the edema factor [Mourez 2001]. While these platforms were successful in assays against anthrax toxins, the sensitivity was poor. Furthermore, no single platform exists for the simultaneous and quantitative detection of multiple components of the B. anthracis toxin. Addressing multiple biomarkers at the same time will increase confidence in a positive result, and may lead to application in the simultaneous detection of anthrax and other biowarfare agents.« less
Noguchi, Akio; Nakamura, Kosuke; Sakata, Kozue; Sato-Fukuda, Nozomi; Ishigaki, Takumi; Mano, Junichi; Takabatake, Reona; Kitta, Kazumi; Teshima, Reiko; Kondo, Kazunari; Nishimaki-Mogami, Tomoko
2016-04-19
A number of genetically modified (GM) maize events have been developed and approved worldwide for commercial cultivation. A screening method is needed to monitor GM maize approved for commercialization in countries that mandate the labeling of foods containing a specified threshold level of GM crops. In Japan, a screening method has been implemented to monitor approved GM maize since 2001. However, the screening method currently used in Japan is time-consuming and requires generation of a calibration curve and experimental conversion factor (C(f)) value. We developed a simple screening method that avoids the need for a calibration curve and C(f) value. In this method, ΔC(q) values between the target sequences and the endogenous gene are calculated using multiplex real-time PCR, and the ΔΔC(q) value between the analytical and control samples is used as the criterion for determining analytical samples in which the GM organism content is below the threshold level for labeling of GM crops. An interlaboratory study indicated that the method is applicable independently with at least two models of PCR instruments used in this study.
Filla, Robert T; Schrell, Adrian M; Coulton, John B; Edwards, James L; Roper, Michael G
2018-02-20
A method for multiplexed sample analysis by mass spectrometry without the need for chemical tagging is presented. In this new method, each sample is pulsed at unique frequencies, mixed, and delivered to the mass spectrometer while maintaining a constant total flow rate. Reconstructed ion currents are then a time-dependent signal consisting of the sum of the ion currents from the various samples. Spectral deconvolution of each reconstructed ion current reveals the identity of each sample, encoded by its unique frequency, and its concentration encoded by the peak height in the frequency domain. This technique is different from other approaches that have been described, which have used modulation techniques to increase the signal-to-noise ratio of a single sample. As proof of concept of this new method, two samples containing up to 9 analytes were multiplexed. The linear dynamic range of the calibration curve was increased with extended acquisition times of the experiment and longer oscillation periods of the samples. Because of the combination of the samples, salt had little effect on the ability of this method to achieve relative quantitation. Continued development of this method is expected to allow for increased numbers of samples that can be multiplexed.
Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung
2015-12-14
Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.
Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method
NASA Astrophysics Data System (ADS)
Nikitin, M. P.; Orlov, A. V.; Znoyko, S. L.; Bragina, V. A.; Gorshkov, B. G.; Ksenevich, T. I.; Cherkasov, V. R.; Nikitin, P. I.
2018-08-01
Unique properties of magnetic nanoparticles (MNP) have provided many breakthrough solutions for life science. The immense potential of MNP as labels in advanced immunoassays stems from the fact that they, unlike optical labels, can be easily detected inside 3D opaque porous biosensing structures or in colored mediums, manipulated by an external magnetic field, exhibit high stability and negligible background signal in biological samples, etc. In this research, the magnetic nanolabels and an original technique of their quantification by non-linear magnetization have permitted development of novel methods of multiplex biosensing. Several types of highly sensitive multi-channel readers that offer an extremely wide linear dynamic range are developed to count MNP in different recognition zones for quantitative concentration measurements of various analytes. Four approaches to multiplex biosensing based on MNP have been demonstrated in one-run tests based on several 3D porous structures; flat and micropillar microfluidic sensor chips; multi-line lateral flow strips and modular architecture of the strips, which is the first 3D multiplexing method that goes beyond the traditional planar techniques. Detection of cardio- and cancer markers, small molecules and oligonucleotides were used in the experiments. The analytical characteristics of the developed multiplex methods are on the level of the modern time-consuming laboratory techniques. The developed multiplex biosensing platforms are promising for medical and veterinary diagnostics, food inspection, environmental and security monitoring, etc.
Gousia, Panagiota; Economou, Vangelis; Bozidis, Petros; Papadopoulou, Chrissanthy
2015-03-01
In the present study, 500 raw beef, pork, and chicken meat samples and 100 pooled egg samples were analyzed for the presence of vancomycin-resistant enterococci, vancomycin-resistance phenotypes, and resistance genes. Of 141 isolates of enterococci, 88 strains of Enterococcus faecium and 53 strains of E. faecalis were identified. The most prevalent species was E. faecium. Resistance to ampicillin (n = 93, 66%), ciprofloxacin (n = 74, 52.5%), erythromycin (n = 73, 51.8%), penicillin (n = 59, 41.8%) and tetracycline (n = 52, 36.9%) was observed, while 53.2% (n = 75) of the isolates were multiresistant and 15.6% (n = 22) were susceptible to all antibiotics. Resistance to vancomycin was exhibited in 34.1% (n = 30) of the E. faecium isolates (n = 88) and 1.9% (n = 1) of the E. faecalis isolates (n = 53) using the disc-diffusion test and the E-test. All isolates were tested for vanA and vanB using real-time polymerase chain reaction (PCR) and multiplex PCR, and for vanC, vanD, vanE, vanG genes using multiplex PCR only. Among E. faecalis isolates, no resistance genes were identified. Among the E. faecium isolates, 28 carried the vanA gene when tested by multiplex PCR and 29 when tested with real-time PCR. No isolate carrying the vanC, vanD, vanE, or vanG genes was identified. Melting-curve analysis of the positive real-time PCR E. faecium isolates showed that 22 isolates carried the vanA gene only, 2 isolates the vanB2,3 genes only, and seven isolates carried both the vanA and vanB2,3 genes. Enterococci should be considered a significant zoonotic pathogen and a possible reservoir of genes encoding resistance potentially transferred to other bacterial species.
Li, Yinbao; Yang, Fan; Chen, Zuanguang; Shi, Lijuan; Zhang, Beibei; Pan, Jianbin; Li, Xinchun; Sun, Duanping; Yang, Hongzhi
2014-01-01
Pharmaceutical safety testing requires a cheap, fast and highly efficient platform for real-time evaluation of drug toxicity and secondary effects. In this study, we have developed a microfluidic system for phenotype-based evaluation of toxic and teratogenic effects of drugs using zebrafish (Danio rerio) embryos and larvae as the model organism. The microfluidic chip is composed of two independent functional units, enabling the assessment of zebrafish embryos and larvae. Each unit consists of a fluidic concentration gradient generator and a row of seven culture chambers to accommodate zebrafish. To test the accuracy of this new chip platform, we examined the toxicity and teratogenicity of an anti-asthmatic agent-aminophylline (Apl) on 210 embryos and 210 larvae (10 individuals per chamber). The effect of Apl on zebrafish embryonic development was quantitatively assessed by recording a series of physiological indicators such as heart rate, survival rate, body length and hatch rate. Most importantly, a new index called clonic convulsion rate, combined with mortality was used to evaluate the toxicities of Apl on zebrafish larvae. We found that Apl can induce deformity and cardiovascular toxicity in both zebrafish embryos and larvae. This microdevice is a multiplexed testing apparatus that allows for the examination of indexes beyond toxicity and teratogenicity at the sub-organ and cellular levels and provides a potentially cost-effective and rapid pharmaceutical safety assessment tool.
Li, Guimin; Li, Wangfeng; Liu, Lixia
2012-01-01
Real-time PCR has engendered wide acceptance for quantitation of hepatitis B virus (HBV) DNA in the blood due to its improved rapidity, sensitivity, reproducibility, and reduced contamination. Here we describe a cost-effective and highly sensitive HBV real-time quantitative assay based on the light upon extension real-time PCR platform and a simple and reliable HBV DNA preparation method using silica-coated magnetic beads.
Monitoring of Viral Induced Cell Death Using Real Time Cell Analysis
2016-11-01
studies have shown that real- time cell analysis (RTCA) platforms such as the xCELLigence can be used to gather quantitative measurements of viral...Teng, Z., Kuang, X., Wang, J., Zhang, X. Real- time cell analysis – A new method for dynamic, quantitative measurement of infectious viruses and...cytopathogenicity. A) Real- time monitoring of BSR cells infected with a 1:10 dilution series of Gan Gan virus. The curve is an average of eight
Targeting neuroendocrine differentiation for prostate cancer radiosensitization
2017-12-01
Secondary HRP-conjugated antibodies were purchased fromGEHealthcare UK Ltd. (Buckinghamshire, UK). 2.5. RNA isolation and quantitative real- time PCR (qRT...gene expression data using real- time quantitative PCR and the 2(-Delta Delta C(T))Method,Methods 25 (2001) 402–408. [47] T.K. Kelly, T.B. Miranda, G...relative gene expression data using real- time quantitative PCR and the 2(−Delta Delta C(T)) method, Methods 25 (2001) 402–408. [37] J. Ren, L. Wen, X
GSTM1 and GSTT1 Genes are Associated With DNA Damage of p53 Gene in Coke-oven Workers.
He, Yuefeng; Qi, Jun; He, Fang; Zhang, Yongchang; Wang, Youlian; Zhang, Ruobing; Li, Gang
2017-06-01
This study investigated whether variations in GSTT1 and GSTM1 gene are associated with the DNA damage level of p53 gene. We quantified urinary 1-hydroxypyrene using high-performance liquid chromatography, and examined the DNA damage level of p53 gene by real-time quantitative PCR in 756 coke-oven workers. Multiplex PCR was used to detect the presence or absence of genes. DNA damage levels of p53 gene in the high exposure group and intermediate exposure group were significantly higher than that of p53 gene in the low exposure group (P < 0.01). In coke-oven workers, the DNA damage levels of subjects with non-null genotype in GSTT1 or GSTM1 gene were significantly higher than that of those with the null genotype (P < 0.01). GSTT1 and GSTM1 may modulate DNA damage levels of p53 gene when exposed to polycyclic aromatic hydrocarbons.
Zhao, Lihong; Li, Ruiying; Liu, Aihua; Zhao, Shuping
2015-07-01
The objective of this study was to build and apply a duplex real time quantitative reverse transcription-polymerase chain reaction (RT-PCR) for rubella virus. Firstly, a 60-bp-long armored RV RNA was constructed in the laboratory. Secondly, a duplex real time RT-PCR assay was established. Thirdly, the 60-bp-long armored RV RNA was used as an internal positive control (IPC) for the duplex real time RT-PCR. And finally the duplex real time RT-PCR assay was applied to detect RV RNA in clinical specimens. The in-house assay has a high amplification efficiency (0.99), a high analytical sensitivity (200 copies/mL), and a good reproducibility. The diagnostic specificity and sensitivity of the in-house assay were both 100%, due to the monitoring of the armored RV RNA IPC. Therefore, the in-house duplex real time quantitative RT-PCR assay is a specific, sensitive, reproducible and accurate assay for quantitation of RV RNA in clinical specimens. And noncompetitive armored RV RNA IPC can monitor RT-PCR inhibition and prevent false-negative and inaccurate results in the real time detection system. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun
2018-01-01
A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.
Quantitative and multiplexed detection for blood typing based on quantum dot-magnetic bead assay.
Xu, Ting; Zhang, Qiang; Fan, Ya-Han; Li, Ru-Qing; Lu, Hua; Zhao, Shu-Ming; Jiang, Tian-Lun
2017-01-01
Accurate and reliable blood grouping is essential for safe blood transfusion. However, conventional methods are qualitative and use only single-antigen detection. We overcame these limitations by developing a simple, quantitative, and multiplexed detection method for blood grouping using quantum dots (QDs) and magnetic beads. In the QD fluorescence assay (QFA), blood group A and B antigens were quantified using QD labeling and magnetic beads, and the blood groups were identified according to the R value (the value was calculated with the fluorescence intensity from dual QD labeling) of A and B antigens. The optimized performance of QFA was established by blood typing 791 clinical samples. Quantitative and multiplexed detection for blood group antigens can be completed within 35 min with more than 10 5 red blood cells. When conditions are optimized, the assay performance is satisfactory for weak samples. The coefficients of variation between and within days were less than 10% and the reproducibility was good. The ABO blood groups of 791 clinical samples were identified by QFA, and the accuracy obtained was 100% compared with the tube test. Receiver-operating characteristic curves revealed that the QFA has high sensitivity and specificity toward clinical samples, and the cutoff points of the R value of A and B antigens were 1.483 and 1.576, respectively. In this study, we reported a novel quantitative and multiplexed method for the identification of ABO blood groups and presented an effective alternative for quantitative blood typing. This method can be used as an effective tool to improve blood typing and further guarantee clinical transfusion safety.
Zhao, Ming; Li, Yu; Peng, Leilei
2014-01-01
We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778
USDA-ARS?s Scientific Manuscript database
Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...
2017-07-01
panels of MIBI multiplexed in situ detection reagents, and compare the quantitative data to the conventional clinically derived “one at a time” and...Measure standard curves for each analyte against western blots using cell lines and tumor samples. Compare quantitation dynamic ranges to...GSTM1, CD68, BAG1, ER, PGR, BCL2, SCUBE2, ACTB, GAPDH, RPLPO, GUS, TFRC) IIa. Compare hybridization results for mass tagged probe designs from both
Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T
2018-06-01
We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.
NASA Astrophysics Data System (ADS)
Barman, Ishan; Li, Ming
2017-02-01
Two critical, unmet needs in breast cancer are the early detection of cancer metastasis and recurrence, and the sensitive assessment of temporal changes in tumor burden in response to therapy. The present research is directed towards developing a non-invasive, ultrasensitive and specific tool that provides a comprehensive real-time picture of the metastatic tumor burden and provides a radically new route to address these overarching challenges. As the continuing search for better diagnostic and prognostic clues has shifted away from a singular focus on primary tumor lesions, circulating and disseminated biomarkers have surfaced as attractive candidates due to the intrinsic advantages of a non-invasive, repeatable "liquid biopsy" procedure. However, a reproducible, facile blood-based test for diagnosis and follow-up of breast cancer has yet to be incorporated into a clinical laboratory assay due to the limitations of existing assays in terms of sensitivity, extensive sample processing requirements and, importantly, multiplexing capability. Here, by architecting nano-structured probes for detection of specific molecular species, we engineer a novel plasmon-enhanced Raman spectroscopic platform that offers a paradigmatic shift from the capabilities of today's diagnostic test platforms. Specifically, quantitative single-droplet serum tests reveal ultrasensitive and multiplexed detection of three key breast cancer biomarkers, cancer antigen 15-3 (CA15-3), CA27-29 and carcinoembryonic antigen (CEA), over several order of magnitude range of biomarker concentration and clear segmentation of the sera between normal and metastatic cancer levels.
NASA Astrophysics Data System (ADS)
Valdes, Pablo A.; Angelo, Joseph; Gioux, Sylvain
2015-03-01
Fluorescence imaging has shown promise as an adjunct to improve the extent of resection in neurosurgery and oncologic surgery. Nevertheless, current fluorescence imaging techniques do not account for the heterogeneous attenuation effects of tissue optical properties. In this work, we present a novel imaging system that performs real time quantitative fluorescence imaging using Single Snapshot Optical Properties (SSOP) imaging. We developed the technique and performed initial phantom studies to validate the quantitative capabilities of the system for intraoperative feasibility. Overall, this work introduces a novel real-time quantitative fluorescence imaging method capable of being used intraoperatively for neurosurgical guidance.
Multiplexing 200 spatial modes with a single hologram
NASA Astrophysics Data System (ADS)
Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew
2017-11-01
The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.
High-speed wavelength-division multiplexing quantum key distribution system.
Yoshino, Ken-ichiro; Fujiwara, Mikio; Tanaka, Akihiro; Takahashi, Seigo; Nambu, Yoshihiro; Tomita, Akihisa; Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Sasaki, Masahide; Tajima, Akio
2012-01-15
A high-speed quantum key distribution system was developed with the wavelength-division multiplexing (WDM) technique and dedicated key distillation hardware engines. Two interferometers for encoding and decoding are shared over eight wavelengths to reduce the system's size, cost, and control complexity. The key distillation engines can process a huge amount of data from the WDM channels by using a 1 Mbit block in real time. We demonstrated a three-channel WDM system that simultaneously uses avalanche photodiodes and superconducting single-photon detectors. We achieved 12 h continuous key generation with a secure key rate of 208 kilobits per second through a 45 km field fiber with 14.5 dB loss.
Flow cytometric detection method for DNA samples
Nasarabadi, Shanavaz [Livermore, CA; Langlois, Richard G [Livermore, CA; Venkateswaran, Kodumudi S [Round Rock, TX
2011-07-05
Disclosed herein are two methods for rapid multiplex analysis to determine the presence and identity of target DNA sequences within a DNA sample. Both methods use reporting DNA sequences, e.g., modified conventional Taqman.RTM. probes, to combine multiplex PCR amplification with microsphere-based hybridization using flow cytometry means of detection. Real-time PCR detection can also be incorporated. The first method uses a cyanine dye, such as, Cy3.TM., as the reporter linked to the 5' end of a reporting DNA sequence. The second method positions a reporter dye, e.g., FAM.TM. on the 3' end of the reporting DNA sequence and a quencher dye, e.g., TAMRA.TM., on the 5' end.
Flow cytometric detection method for DNA samples
Nasarabadi, Shanavaz [Livermore, CA; Langlois, Richard G [Livermore, CA; Venkateswaran, Kodumudi S [Livermore, CA
2006-08-01
Disclosed herein are two methods for rapid multiplex analysis to determine the presence and identity of target DNA sequences within a DNA sample. Both methods use reporting DNA sequences, e.g., modified conventional Taqman.RTM. probes, to combine multiplex PCR amplification with microsphere-based hybridization using flow cytometry means of detection. Real-time PCR detection can also be incorporated. The first method uses a cyanine dye, such as, Cy3.TM., as the reporter linked to the 5' end of a reporting DNA sequence. The second method positions a reporter dye, e.g., FAM, on the 3' end of the reporting DNA sequence and a quencher dye, e.g., TAMRA, on the 5' end.
Quantitative Tracking of Combinatorially Engineered Populations with Multiplexed Binary Assemblies.
Zeitoun, Ramsey I; Pines, Gur; Grau, Willliam C; Gill, Ryan T
2017-04-21
Advances in synthetic biology and genomics have enabled full-scale genome engineering efforts on laboratory time scales. However, the absence of sufficient approaches for mapping engineered genomes at system-wide scales onto performance has limited the adoption of more sophisticated algorithms for engineering complex biological systems. Here we report on the development and application of a robust approach to quantitatively map combinatorially engineered populations at scales up to several dozen target sites. This approach works by assembling genome engineered sites with cell-specific barcodes into a format compatible with high-throughput sequencing technologies. This approach, called barcoded-TRACE (bTRACE) was applied to assess E. coli populations engineered by recursive multiplex recombineering across both 6-target sites and 31-target sites. The 31-target library was then tracked throughout growth selections in the presence and absence of isopentenol (a potential next-generation biofuel). We also use the resolution of bTRACE to compare the influence of technical and biological noise on genome engineering efforts.
Nolan, John P.; Mandy, Francis
2008-01-01
While the term flow cytometry refers to the measurement of cells, the approach of making sensitive multiparameter optical measurements in a flowing sample stream is a very general analytical approach. The past few years have seen an explosion in the application of flow cytometry technology for molecular analysis and measurements using micro-particles as solid supports. While microsphere-based molecular analyses using flow cytometry date back three decades, the need for highly parallel quantitative molecular measurements that has arisen from various genomic and proteomic advances has driven the development in particle encoding technology to enable highly multiplexed assays. Multiplexed particle-based immunoassays are now common place, and new assays to study genes, protein function, and molecular assembly. Numerous efforts are underway to extend the multiplexing capabilities of microparticle-based assays through new approaches to particle encoding and analyte reporting. The impact of these developments will be seen in the basic research and clinical laboratories, as well as in drug development. PMID:16604537
Kamau, Everlyn; Agoti, Charles N; Lewa, Clement S; Oketch, John; Owor, Betty E; Otieno, Grieven P; Bett, Anne; Cane, Patricia A; Nokes, D James
2017-03-01
Direct immuno-fluorescence test (IFAT) and multiplex real-time RT-PCR have been central to RSV diagnosis in Kilifi, Kenya. Recently, these two methods showed discrepancies with an increasing number of PCR undetectable RSV-B viruses. Establish if mismatches in the primer and probe binding sites could have reduced real-time RT-PCR sensitivity. Nucleoprotein (N) and glycoprotein (G) genes were sequenced for real-time RT-PCR positive and negative samples. Primer and probe binding regions in N gene were checked for mismatches and phylogenetic analyses done to determine molecular epidemiology of these viruses. New primers and probe were designed and tested on the previously real-time RT-PCR negative samples. N gene sequences revealed 3 different mismatches in the probe target site of PCR negative, IFAT positive viruses. The primers target sites had no mismatches. Phylogenetic analysis of N and G genes showed that real-time RT-PCR positive and negative samples fell into distinct clades. Newly designed primers-probe pair improved detection and recovered previous PCR undetectable viruses. An emerging RSV-B variant is undetectable by a quite widely used real-time RT-PCR assay due to polymorphisms that influence probe hybridization affecting PCR accuracy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
2010-01-01
Background Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR) for detection of S. pneumoniae (9802 gene fragment), H. influenzae (omp P6 gene) and N. meningitidis (ctrA gene). The method was evaluated on bronchoalveolar lavage (BAL) samples from 156 adults with lower respiratory tract infection (LRTI) and 31 controls, and on 87 cerebrospinal fluid (CSF) samples from meningitis patients. Results The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis) in single tubes. By blood- and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 105 genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively. In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both bacteria. Conclusions The PCR provides increased sensitivity and the multiplex format facilitates diagnosis of S. pneumoniae, H. influenzae and N. meningitidis and the assay enable detection after antibiotic treatment has been installed. Quantification increases the specificity of the etiology for pneumonia. PMID:21129171
Abdeldaim, Guma M K; Strålin, Kristoffer; Korsgaard, Jens; Blomberg, Jonas; Welinder-Olsson, Christina; Herrmann, Björn
2010-12-03
Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR) for detection of S. pneumoniae (9802 gene fragment), H. influenzae (omp P6 gene) and N. meningitidis (ctrA gene). The method was evaluated on bronchoalveolar lavage (BAL) samples from 156 adults with lower respiratory tract infection (LRTI) and 31 controls, and on 87 cerebrospinal fluid (CSF) samples from meningitis patients. The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis) in single tubes. By blood- and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 10⁵ genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively.In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both bacteria. The PCR provides increased sensitivity and the multiplex format facilitates diagnosis of S. pneumoniae, H. influenzae and N. meningitidis and the assay enable detection after antibiotic treatment has been installed. Quantification increases the specificity of the etiology for pneumonia.
Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.
Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...
WetLab-2: Tools for Conducting On-Orbit Quantitative Real-Time Gene Expression Analysis on ISS
NASA Technical Reports Server (NTRS)
Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Schonfeld, Julie
2014-01-01
The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR system, the Cepheid SmartCycler and will fly it in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid ramp times and the ability to detect up to four separate fluorescent channels at one time enabling multiplex assays that can be used for normalization and to study multiple genes of interest in each module. The team is currently working with Cepheid to enable the downlink of data from the ISS to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project has adapted commercial technology to design a module that can lyse cells and extract RNA of sufficient quality and quantity for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. The WetLab-2 system is capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experiment parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Researchers will also be able to sample multigenerational changes in organisms. Finally, the system can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-7 in June 2015.
Use of Multiplex Real-Time PCR To Diagnose Scrub Typhus.
Tantibhedhyangkul, Wiwit; Wongsawat, Ekkarat; Silpasakorn, Saowaluk; Waywa, Duangdao; Saenyasiri, Nuttawut; Suesuay, Jintapa; Thipmontree, Wilawan; Suputtamongkol, Yupin
2017-05-01
Scrub typhus, caused by Orientia tsutsugamushi , is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targeting O. tsutsugamushi 47-kDa, groEL , and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness. Copyright © 2017 American Society for Microbiology.
Suppressing disease spreading by using information diffusion on multiplex networks.
Wang, Wei; Liu, Quan-Hui; Cai, Shi-Min; Tang, Ming; Braunstein, Lidia A; Stanley, H Eugene
2016-07-06
Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.
Keshishian, Hasmik; Burgess, Michael W; Specht, Harrison; Wallace, Luke; Clauser, Karl R; Gillette, Michael A; Carr, Steven A
2017-08-01
Proteomic characterization of blood plasma is of central importance to clinical proteomics and particularly to biomarker discovery studies. The vast dynamic range and high complexity of the plasma proteome have, however, proven to be serious challenges and have often led to unacceptable tradeoffs between depth of coverage and sample throughput. We present an optimized sample-processing pipeline for analysis of the human plasma proteome that provides greatly increased depth of detection, improved quantitative precision and much higher sample analysis throughput as compared with prior methods. The process includes abundant protein depletion, isobaric labeling at the peptide level for multiplexed relative quantification and ultra-high-performance liquid chromatography coupled to accurate-mass, high-resolution tandem mass spectrometry analysis of peptides fractionated off-line by basic pH reversed-phase (bRP) chromatography. The overall reproducibility of the process, including immunoaffinity depletion, is high, with a process replicate coefficient of variation (CV) of <12%. Using isobaric tags for relative and absolute quantitation (iTRAQ) 4-plex, >4,500 proteins are detected and quantified per patient sample on average, with two or more peptides per protein and starting from as little as 200 μl of plasma. The approach can be multiplexed up to 10-plex using tandem mass tags (TMT) reagents, further increasing throughput, albeit with some decrease in the number of proteins quantified. In addition, we provide a rapid protocol for analysis of nonfractionated depleted plasma samples analyzed in 10-plex. This provides ∼600 quantified proteins for each of the ten samples in ∼5 h of instrument time.
Zhu, Zhi; Zhang, Wenhua; Leng, Xuefei; Zhang, Mingxia; Guan, Zhichao; Lu, Jiangquan; Yang, Chaoyong James
2012-10-21
Genetic alternations can serve as highly specific biomarkers to distinguish fatal bacteria or cancer cells from their normal counterparts. However, these mutations normally exist in very rare amount in the presence of a large excess of non-mutated analogs. Taking the notorious pathogen E. coli O157:H7 as the target analyte, we have developed an agarose droplet-based microfluidic ePCR method for highly sensitive, specific and quantitative detection of rare pathogens in the high background of normal bacteria. Massively parallel singleplex and multiplex PCR at the single-cell level in agarose droplets have been successfully established. Moreover, we challenged the system with rare pathogen detection and realized the sensitive and quantitative analysis of a single E. coli O157:H7 cell in the high background of 100,000 excess normal K12 cells. For the first time, we demonstrated rare pathogen detection through agarose droplet microfluidic ePCR. Such a multiplex single-cell agarose droplet amplification method enables ultra-high throughput and multi-parameter genetic analysis of large population of cells at the single-cell level to uncover the stochastic variations in biological systems.
Tran, Thi-Nguyen-Ny; Signoli, Michel; Fozzati, Luigi; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel
2011-03-10
Historical records suggest that multiple burial sites from the 14th-16th centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics. High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype. These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century.
Real-time optical laboratory solution of parabolic differential equations
NASA Technical Reports Server (NTRS)
Casasent, David; Jackson, James
1988-01-01
An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.
High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for Quantitative Proteomics
2015-01-01
Multiplex isobaric tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ)) are a valuable tool for high-throughput mass spectrometry based quantitative proteomics. We have developed our own multiplex isobaric tags, DiLeu, that feature quantitative performance on par with commercial offerings but can be readily synthesized in-house as a cost-effective alternative. In this work, we achieve a 3-fold increase in the multiplexing capacity of the DiLeu reagent without increasing structural complexity by exploiting mass defects that arise from selective incorporation of 13C, 15N, and 2H stable isotopes in the reporter group. The inclusion of eight new reporter isotopologues that differ in mass from the existing four reporters by intervals of 6 mDa yields a 12-plex isobaric set that preserves the synthetic simplicity and quantitative performance of the original implementation. We show that the new reporter variants can be baseline-resolved in high-resolution higher-energy C-trap dissociation (HCD) spectra, and we demonstrate accurate 12-plex quantitation of a DiLeu-labeled Saccharomyces cerevisiae lysate digest via high-resolution nano liquid chromatography–tandem mass spectrometry (nanoLC–MS2) analysis on an Orbitrap Elite mass spectrometer. PMID:25405479
Agardh, Elisabet; Gustavsson, Carin; Hagert, Per; Nilsson, Marie; Agardh, Carl-David
2006-02-01
The aim of the study was to evaluate messenger RNA and protein expression in limited amounts of tissue with low protein content. The Chomczynski method was used for simultaneous extraction of RNA, and protein was modified in the protein isolation step. Template mass and cycling time for the complementary DNA synthesis step of real-time reverse transcription-polymerase chain reaction (RT-PCR) for analysis of catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, the catalytic subunit of glutamylcysteine ligase, glutathione peroxidase 1, and the endogenous control cyclophilin B (CypB) were optimized before PCR. Polymerase chain reaction accuracy and efficacy were demonstrated by calculating the regression (R2) values of the separate amplification curves. Appropriate antibodies, blocking buffers, and running conditions were established for Western blot, and protein detection and multiplex assays with CypB were performed for each target. During the extraction procedure, the protein phase was dissolved in a modified washing buffer containing 0.1% sodium dodecyl sulfate, followed by ultrafiltration. Enzyme expression on real-time RT-PCR was accomplished with high reliability and reproducibility (R2, 0.990-0.999), and all enzymes except for glutathione peroxidase 1 were detectable in individual retinas on Western blot. Western blot multiplexing with CypB was possible for all targets. In conclusion, connecting gene expression directly to protein levels in the individual rat retina was possible by simultaneous extraction of RNA and protein. Real-time RT-PCR and Western blot allowed accurate detection of retinal protein expressions and levels.
Dupré, Mathieu; Gilquin, Benoit; Fenaille, François; Feraudet-Tarisse, Cécile; Dano, Julie; Ferro, Myriam; Simon, Stéphanie; Junot, Christophe; Brun, Virginie; Becher, François
2015-08-18
The development of rapid methods for unambiguous identification and precise quantification of protein toxins in various matrices is essential for public health surveillance. Nowadays, analytical strategies classically rely on sensitive immunological assays, but mass spectrometry constitutes an attractive complementary approach thanks to direct measurement and protein characterization ability. We developed here an innovative multiplex immuno-LC-MS/MS method for the simultaneous and specific quantification of the three potential biological warfare agents, ricin, staphylococcal enterotoxin B, and epsilon toxin, in complex human biofluids and food matrices. At least 7 peptides were targeted for each toxin (43 peptides in total) with a quadrupole-Orbitrap high-resolution instrument for exquisite detection specificity. Quantification was performed using stable isotope-labeled toxin standards spiked early in the sample. Lower limits of quantification were determined at or close to 1 ng·mL(-1). The whole process was successfully applied to the quantitative analysis of toxins in complex samples such as milk, human urine, and plasma. Finally, we report new data on toxin stability with no evidence of toxin degradation in milk in a 48 h time frame, allowing relevant quantitative toxin analysis for samples collected in this time range.
Detection and quantitation of HPV in genital and oral tissues and fluids by real time PCR
2010-01-01
Background Human papillomaviruses (HPVs) remain a serious world health problem due to their association with anogenital/oral cancers and warts. While over 100 HPV types have been identified, a subset is associated with malignancy. HPV16 and 18 are the most prevalent oncogenic types, while HPV6 and 11 are most commonly responsible for anogenital warts. While other quantitative PCR (qPCR) assays detect oncogenic HPV, there is no single tube assay distinguishing the most frequent oncogenic types and the most common types found in warts. Results A Sybr Green-based qPCR assay was developed utilizing degenerate primers to the highly conserved HPV E1 theoretically detecting any HPV type. A single tube multiplex qPCR assay was also developed using type-specific primer pairs and TaqMan probes that allowed for detection and quantitation of HPV6,11,16,18. Each HPV type was detected over a range from 2 × 101 to 2 × 106copies/reaction providing a reliable method of quantitating type-specific HPV in 140 anogenital/cutaneous/oral benign and malignant specimens. 35 oncogenic and low risk alpha genus HPV types were detected. Concordance was detected in previously typed specimens. Comparisons to the gold standard detected an overall sensitivity of 89% (95% CI: 77% - 96%) and specificity of 90% (95%CI: 52% - 98%). Conclusion There was good agreement between the ability of the qPCR assays described here to identify HPV types in malignancies previously typed using standard methods. These novel qPCR assays will allow rapid detection and quantitation of HPVs to assess their role in viral pathogenesis. PMID:20723234
Gopaul, Krishna K; Sells, Jessica; Lee, Robin; Beckstrom-Sternberg, Stephen M; Foster, Jeffrey T; Whatmore, Adrian M
2014-12-11
The zoonosis brucellosis causes economically significant reproductive problems in livestock and potentially debilitating disease of humans. Although the causative agent, organisms from the genus Brucella, can be differentiated into a number of species based on phenotypic characteristics, there are also significant differences in genotype that are concordant with individual species. This paper describes the development of a five target multiplex assay to identify five terrestrial Brucella species using real-time polymerase chain reaction (PCR) and subsequent high resolution melt curve analysis. This technology offers a robust and cost effective alternative to previously described hydrolysis-probe Single Nucleotide Polymorphism (SNP)-based species defining assays. Through the use of Brucella whole genome sequencing five species defining SNPs were identified. Individual HRM assays were developed to these target these changes and, following optimisation of primer concentrations, it was possible to multiplex all five assays in a single tube. In a validation exercise using a panel of 135 Brucella strains of terrestrial and marine origin, it was possible to distinguish the five target species from the other species within this panel. The HRM multiplex offers a number of diagnostic advantages over previously described SNP-based typing approaches. Further, and uniquely for HRM, the successful multiplexing of five assays in a single tube allowing differentiation of five Brucella species in the diagnostic laboratory in a cost-effective and timely manner is described. However there are possible limitations to using this platform on DNA extractions direct from clinical material.
Ta, Tang Thuy-Huong; Salas, Ana; Ali-Tammam, Marwa; Martínez, María Del Carmen; Lanza, Marta; Arroyo, Eduardo; Rubio, Jose Miguel
2010-07-27
Previously, Plasmodium knowlesi was not considered as a species of Plasmodium that could cause malaria in human beings, as it is parasite of long-tailed (Macaca fascicularis) and pig-tailed (Macaca nemestrina) macaques found in Southeast Asia. A case of infection by P. knowlesi is described in a Spanish traveller, who came back to Spain with daily fever after his last overseas travel, which was a six-month holiday in forested areas of Southeast Asia between 2008 and 2009. His P. knowlesi infection was detected by multiplex Real time quantitative PCR and confirmed by sequencing the amplified fragment. Using nested multiplex malaria PCR (reference method in Spain) and a rapid diagnostic test, the P. knowlesi infection was negative. This patient was discharged and asymptomatic when the positive result to P. knowlesi was reported. Prior to this case, there have been two more reports of European travellers with malaria caused by P. knowlesi, a Finnish man who travelled to Peninsular Malaysia during four weeks in March 2007, and a Swedish man who did a short visit to Malaysian Borneo in October 2006. Taken together with this report of P. knowlesi infection in a Spanish traveller returning from Southeast Asia, this is the third case of P. knowlesi infection in Europe, indicating that this simian parasite can infect visitors to endemic areas in Southeast Asia. This last European case is quite surprising, given that it is an untreated-symptomatic P. knowlesi in human, in contrast to what is currently known about P. knowlesi infection. Most previous reports of human P. knowlesi malaria infections were in adults, often with symptoms and relatively high parasite densities, up to the recent report in Ninh Thuan province, located in the southern part of central Vietnam, inhabited mainly by the Ra-glai ethnic minority, in which all P. knowlesi infections were asymptomatic, co-infected with P. malariae, with low parasite densities and two of the three identified cases were very young children under five years old.
2010-01-01
Previously, Plasmodium knowlesi was not considered as a species of Plasmodium that could cause malaria in human beings, as it is parasite of long-tailed (Macaca fascicularis) and pig-tailed (Macaca nemestrina) macaques found in Southeast Asia. A case of infection by P. knowlesi is described in a Spanish traveller, who came back to Spain with daily fever after his last overseas travel, which was a six-month holiday in forested areas of Southeast Asia between 2008 and 2009. His P. knowlesi infection was detected by multiplex Real time quantitative PCR and confirmed by sequencing the amplified fragment. Using nested multiplex malaria PCR (reference method in Spain) and a rapid diagnostic test, the P. knowlesi infection was negative. This patient was discharged and asymptomatic when the positive result to P. knowlesi was reported. Prior to this case, there have been two more reports of European travellers with malaria caused by P. knowlesi, a Finnish man who travelled to Peninsular Malaysia during four weeks in March 2007, and a Swedish man who did a short visit to Malaysian Borneo in October 2006. Taken together with this report of P. knowlesi infection in a Spanish traveller returning from Southeast Asia, this is the third case of P. knowlesi infection in Europe, indicating that this simian parasite can infect visitors to endemic areas in Southeast Asia. This last European case is quite surprising, given that it is an untreated-symptomatic P. knowlesi in human, in contrast to what is currently known about P. knowlesi infection. Most previous reports of human P. knowlesi malaria infections were in adults, often with symptoms and relatively high parasite densities, up to the recent report in Ninh Thuan province, located in the southern part of central Vietnam, inhabited mainly by the Ra-glai ethnic minority, in which all P. knowlesi infections were asymptomatic, co-infected with P. malariae, with low parasite densities and two of the three identified cases were very young children under five years old. PMID:20663184
NASA Astrophysics Data System (ADS)
Taoka, Hidekazu; Higuchi, Kenichi; Sawahashi, Mamoru
This paper presents experimental results in real propagation channel environments of real-time 1-Gbps packet transmission using antenna-dependent adaptive modulation and channel coding (AMC) with 4-by-4 MIMO multiplexing in the downlink Orthogonal Frequency Division Multiplexing (OFDM) radio access. In the experiment, Maximum Likelihood Detection employing QR decomposition and the M-algorithm (QRM-MLD) with adaptive selection of the surviving symbol replica candidates (ASESS) is employed to achieve such a high data rate at a lower received signal-to-interference plus background noise power ratio (SINR). The field experiments, which are conducted at the average moving speed of 30km/h, show that real-time packet transmission of greater than 1Gbps in a 100-MHz channel bandwidth (i.e., 10bits/second/Hz) is achieved at the average received SINR of approximately 13.5dB using 16QAM modulation and turbo coding with the coding rate of 8/9. Furthermore, we show that the measured throughput of greater than 1Gbps is achieved at the probability of approximately 98% in a measurement course, where the maximum distance from the cell site was approximately 300m with the respective transmitter and receiver antenna separation of 1.5m and 40cm with the total transmission power of 10W. The results also clarify that the minimum required receiver antenna spacing is approximately 10cm (1.5 carrier wave length) to suppress the loss in the required received SINR at 1-Gbps throughput to within 1dB compared to that assuming the fading correlation between antennas of zero both under non-line-of-sight (NLOS) and line-of-sight (LOS) conditions.
USDA-ARS?s Scientific Manuscript database
Introduction: The three common foodborne pathogens implicated in foodborne outbreaks are Salmonella spp., Escherichia coli O157:H7 and Listeria monocytogenes. Hence, it is important to identify these pathogens in contaminated foods so that they can be eliminated from the marketplace. At present, the...
USDA-ARS?s Scientific Manuscript database
Contamination of powdered infant formula (PIF) by the bacteria Cronobacter sakazakii and Salmonella enterica was deemed a matter of great concern by the World Health Organization and the Food and Agriculture Organization of the United Nations in 2004. Therefore, we developed a rapid and sensitive m...
Wu, Jinlong; Chen, Lin; Lin, Dingbo; Ma, Zhaocheng; Deng, Xiuxin
2016-11-30
The effects of tissue type, harvest maturity, and genetic factors on the expression of genes that related to citrus fruit allergies remain poorly understood. In the present study, a multiplex real-time PCR assay was developed to monitor the expression of citrus allergen genes individually with the advantages of much fewer sample requirements and simultaneously multiple target genes detection. Gene specific primer pairs and Taqman probes of three citrus allergen genes Cit s 1.01, Cit s 2.01, and Cit s 3.01 and the house-keeping gene β-actin were designed based on gene sequence differences. The PCR results showed that differential expression patterns were found during the ripening process. The expression levels of Cit s 3.01 were much higher than those of Cit s 1.01 and Cit s 2.01 in both peel and pulp tissues among 10 citrus cultivars. Data suggested that Kao Phuang Pummelo could be safely consumed with a potential low risk in allergenicity. Considering that assessing allergenicity is one of the tests in food safety, this assay might also facilitate the breeding and production of "allergy-friendly" citrus fruits.
Quantifying viable Vibrio parahaemolyticus and Listeria monocytogenes simultaneously in raw shrimp.
Zhang, Zhaohuan; Liu, Haiquan; Lou, Yang; Xiao, Lili; Liao, Chao; Malakar, Pradeep K; Pan, Yingjie; Zhao, Yong
2015-08-01
A novel TaqMan-based multiplex real-time PCR method combined with propidium monoazide (PMA) treatment was firstly developed for the simultaneous quantification of viable Vibrio parahaemolyticus and Listeria monocytogenes in raw shrimp. The optimization of PMA concentration showed that 100 μM was considered optimal to effectively inhibit 10(8) CFU/mL dead cells of both bacteria. The high specificity of this method was confirmed on tests using 96 target and non-target strains. The optimized assay could detect as low as 10(1)-10(2) CFU/g of each strain on the artificially contaminated shrimp, and its amplification efficiencies were up to 100 and 106 % for V. parahaemolyticus and L. monocytogenes, respectively. Furthermore, this assay has been successfully applied to describe the behavior of these two pathogens in raw shrimps stored at 4 °C. In conclusion, this PMA TaqMan-based multiplex real-time PCR technique, where the whole procedure takes less than 5 h, provides an effective and rapid tool for monitoring contamination of viable V. parahaemolyticus and L. monocytogenes in seafood, improving seafood safety and protecting public health.
Auricchio, Bruna; Woudstra, Cédric; Fach, Patrick; Fiore, Alfonsina; Skarin, Hanna; Bano, Luca; Segerman, Bo; Knutsson, Rickard; De Medici, Dario
2013-01-01
Botulism is a neuroparalytic disease that can occur in all warm-blooded animals, birds, and fishes. The disease in animals is mainly caused by toxins produced by Clostridium botulinum strains belonging to group III, although outbreaks due to toxins produced by group I and II organisms have been recognized. Group III strains are capable of producing botulinum toxins of type C, D, and C/D and D/C mosaic variants. Definitive diagnosis of animal botulism is made by combining clinical findings with laboratory investigations. Detection of toxins in clinical specimens and feed is the gold standard for laboratory diagnosis. Since toxins may be degraded by organisms contained in the gastrointestinal tract or may be present at levels below the detection limit, the recovery of C. botulinum from sick animal specimens is consistent for laboratory confirmation. In this article we report the development and in-house validation of a new multiplex real-time PCR for detecting and typing the neurotoxin genes found in C. botulinum group III organisms. Validation procedures have been carried out according to ISO 16140, using strains and samples recovered from cases of animal botulism in Italy and France. PMID:23971808
Optimal percolation on multiplex networks.
Osat, Saeed; Faqeeh, Ali; Radicchi, Filippo
2017-11-16
Optimal percolation is the problem of finding the minimal set of nodes whose removal from a network fragments the system into non-extensive disconnected clusters. The solution to this problem is important for strategies of immunization in disease spreading, and influence maximization in opinion dynamics. Optimal percolation has received considerable attention in the context of isolated networks. However, its generalization to multiplex networks has not yet been considered. Here we show that approximating the solution of the optimal percolation problem on a multiplex network with solutions valid for single-layer networks extracted from the multiplex may have serious consequences in the characterization of the true robustness of the system. We reach this conclusion by extending many of the methods for finding approximate solutions of the optimal percolation problem from single-layer to multiplex networks, and performing a systematic analysis on synthetic and real-world multiplex networks.
Mero, Sointu; Kirveskari, Juha; Antikainen, Jenni; Ursing, Johan; Rombo, Lars; Kofoed, Poul-Erik; Kantele, Anu
2017-09-01
In developing countries, diarrhoea is the most common cause of death for children under five years of age, with Giardia lamblia, Cryptosporidium and Entamoeba histolytica as the most frequent pathogenic parasites. Traditional microscopy for stool parasites has poor sensitivity and specificity, while new molecular methods may provide more accurate diagnostics. In poor regions with sample storage hampered by uncertain electricity supply, research would benefit from a method capable of analysing dried stools. A real-time multiplex PCR method with internal inhibition control was developed for detecting Giardia lamblia, Cryptosporidium hominis/parvum and Entamoeba histolytica directly from stool specimens. Applicability to dried samples was checked by comparing with fresh ones in a small test material. Finally, the assay was applied to dried specimens collected from Guinea-Bissauan children with diarrhoea. The PCR's analytical sensitivity limit was 0.1 ng/ml for G. lamblia DNA, 0.01 ng/ml for E. histolytica DNA and 0.1 ng/ml for Cryptosporidium sp. In the test material, the assay performed similarly with fresh and dried stools. Of the 52 Guinea-Bissauan samples, local microscopy revealed a parasite in 15%, while PCR detected 62% positive for at least one parasite: 44% of the dried samples had Giardia, 23% Cryptosporidium and 0% E. histolytica. Our new multiplex real-time PCR for protozoa presents a sensitive method applicable to dried samples. As proof of concept, it worked well on stools collected from Guinea-Bissauan children with diarrhoea. It provides an epidemiological tool for analysing dried specimens from regions poor in resources.
Ikten, Cengiz; Ustun, Rustem; Catal, Mursel; Yol, Engin; Uzun, Bulent
2016-01-01
Phyllody, a destructive and economically important disease worldwide caused by phytoplasma infections, is characterized by the abnormal development of floral structures into stunted leafy parts and contributes to serious losses in crop plants, including sesame (Sesamum indicum L.). Accurate identification, differentiation, and quantification of phyllody-causing phytoplasmas are essential for effective management of this plant disease and for selection of resistant sesame varieties. In this study, a diagnostic multiplex qPCR assay was developed using TaqMan® chemistry based on detection of the 16S ribosomal RNA gene of phytoplasmas and the 18S ribosomal gene of sesame. Phytoplasma and sesame specific primers and probes labeled with different fluorescent dyes were used for simultaneous amplification of 16SrII and 16SrIX phytoplasmas in a single tube. The multiplex real-time qPCR assay allowed accurate detection, differentiation, and quantification of 16SrII and 16SrIX groups in 109 sesame plant and 92 insect vector samples tested. The assay was found to have a detection sensitivity of 1.8 x 102 and 1.6 x 102 DNA copies for absolute quantification of 16SrII and 16SrIX group phytoplasmas, respectively. Relative quantification was effective and reliable for determination of phyllody phytoplasma DNA amounts normalized to sesame DNA in infected plant tissues. The development of this qPCR assay provides a method for the rapid measurement of infection loads to identify resistance levels of sesame genotypes against phyllody phytoplasma disease. PMID:27195795
Optical Fiber Sensors for Advanced Civil Structures
NASA Astrophysics Data System (ADS)
de Vries, Marten Johannes Cornelius
1995-01-01
The objective of this dissertation is to develop, analyze, and implement optical fiber-based sensors for the nondestructive quantitative evaluation of advanced civil structures. Based on a comparative evaluation of optical fiber sensors that may be used to obtain quantitative information related to physical perturbations in the civil structure, the extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor is selected as the most attractive sensor. The operation of the EFPI sensor is explained using the Kirchhoff diffraction approach. As is shown in this dissertation, this approach better predicts the signal-to-noise ratio as a function of gap length than methods employed previously. The performance of the optical fiber sensor is demonstrated in three different implementations. In the first implementation, performed with researchers in the Civil Engineering Department at the University of Southern California in Los Angeles, optical fiber sensors were used to obtain quantitative strain information from reinforced concrete interior and exterior column-to-beam connections. The second implementation, performed in cooperation with researchers at the United States Bureau of Mines in Spokane, Washington, used optical fiber sensors to monitor the performance of roof bolts used in mines. The last implementation, performed in cooperation with researchers at the Turner-Fairbanks Federal Highway Administration Research Center in McLean, Virginia, used optical fiber sensors, attached to composite prestressing strands used for reinforcing concrete, to obtain absolute strain information. Multiplexing techniques including time, frequency and wavelength division multiplexing are briefly discussed, whereas the principles of operation of spread spectrum and optical time domain reflectometery (OTDR) are discussed in greater detail. Results demonstrating that spread spectrum and OTDR techniques can be used to multiplex optical fiber sensors are presented. Finally, practical considerations that have to be taken into account when implementing optical fiber sensors into a civil structure environment are discussed, and possible solutions to some of these problems are proposed.
Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals.
Berrada, H; Soriano, J M; Mañes, J; Picó, Y
2006-01-01
Staphylococcus aureus is considered the second most common pathogen to cause outbreaks of food poisoning, exceeded only by Campylobacter. Consumption of foods containing this microorganism is often identified as the cause of illness. In this study, a rapid, reliable, and sensitive real-time quantitative PCR was developed and compared with conventional culture methods. Real-time quantitative PCR was carried out by purifying DNA extracts of S. aureus with a Staphylococcus sample preparation kit and quantifying it in the LightCycler system with hybridization probes. The assay was linear from a range of 10 to 10(6) S. aureus cells (r2 > 0.997). The PCR reaction presented an efficiency of >85%. Accuracy of the PCR-based assay, expressed as percent bias, was around 13%, and the precision, expressed as a percentage of the coefficient of variation, was 7 to 10%. Intraday and interday variability were studied at 10(2) CFU/g and was 12 and 14%, respectively. The proposed method was applied to the analysis of 77 samples of restaurant meals in Valencia (Spain). In 11.6% of samples S. aureus was detected by real-time quantitative PCR, as well as by the conventional microbiological method. An excellent correspondence between real-time quantitative PCR and microbiological numbers (CFU/g) was observed with deviations of < 28%.
Brault, Aaron C.; Fang, Ying; Reisen, William K.
2015-01-01
Following the introduction of West Nile virus into California during the summer of 2003, public health and vector control programs expanded surveillance efforts and were in need of diagnostics capable of rapid, sensitive, and specific detection of arbovirus infections of mosquitoes to inform decision support for intervention. Development of a multiplex TaqMan or real-time semiquantitative reverse transcription polymerase chain reaction (RT-PCR) assay in which three virus specific primer–probe sets were used in the same reaction is described herein for the detection of western equine encephalomyelitis, St. Louis encephalitis and West Nile viral RNA. Laboratory validation and field data from 10 transmission seasons are reported. The comparative sensitivity and specificity of this multiplex assay to singleplex RT-PCR as well as an antigen detection (rapid analyte measurement platform) and standard plaque assays indicate this assay to be rapid and useful in providing mosquito infection data to estimate outbreak risk. PMID:26334826
Binnicker, Matthew J
2015-12-01
Gastrointestinal disease is a major cause of morbidity and mortality worldwide, especially among young children and immunocompromised patients. Diarrhea may result from infection with a variety of microbial pathogens, including bacteria, viruses, or parasites. Historically, the diagnosis of infectious diarrhea has been made using microscopy, antigen tests, culture, and real-time PCR. A combination of these traditional tests is often required due to the inability to distinguish between infectious etiologies based on the clinical presentation alone. Recently, several multiplex molecular assays have been developed for the detection of gastrointestinal pathogens directly from clinical stool samples. These panels allow for the detection and identification of up to 20 pathogens in as little as 1 h. This review will focus on the multiplex molecular panels that have received clearance from the FDA for the diagnosis of diarrheal disease and will highlight issues related to test performance, result interpretation, and cost-effectiveness of these new molecular diagnostic tools.
Sensitive Molecular Diagnostics for Cutaneous Leishmaniasis.
Sagi, Orli; Berkowitz, Anat; Codish, Shlomi; Novack, Victor; Rashti, Aviv; Akad, Fouad; Shemer-Avni, Yonat
2017-01-01
Rapid diagnosis of cutaneous leishmaniasis (CL) and identification of Leishmania species is highly important for the disease management. In Israel, CL is caused mainly by Leishmania major and Leishmania tropica species. We established an easy to handle point of care lesion-swabbing, combined with a highly sensitive multiplex real time PCR (multiplex qPCR) for accurate and rapid diagnosis of Leishmania species. Using three probes: one general for: Leishmania species, and two specific for L major , and L tropica , we screened 1783 clinical samples collected during two years. Leishmania species was found in 1086 individuals, 1008 L major , and 70 L tropica . Eight samples positive for Leishmania species only, were further tested using a second set of multiplex qPCR developed, and were found positive for Leishmania braziliensis and Leishmania infantum/donovani (2 and 6 samples, concomitantly). Taken together, the test enabled diagnostics and better treatment of Leishmania infections from the Old World (1078 samples) and the New World (8 samples), and the subtyping of the dominant strains in the region, as well as in returning travelers'.
An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples.
Nicklas, Janice A; Buel, Eric
2005-09-01
The forensic community needs quick, reliable methods to quantitate human DNA in crime scene samples to replace the laborious and imprecise slot blot method. A real-time PCR based method has the possibility of allowing development of a faster and more quantitative assay. Alu sequences are primate-specific and are found in many copies in the human genome, making these sequences an excellent target or marker for human DNA. This paper describes the development of a real-time Alu sequence-based assay using MGB Eclipse primers and probes. The advantages of this assay are simplicity, speed, less hands-on-time and automated quantitation, as well as a large dynamic range (128 ng/microL to 0.5 pg/microL).
Scherrer, Simone; Frei, Daniel; Wittenbrink, Max Michael
2016-12-01
Progressive atrophic rhinitis (PAR) in pigs is caused by toxigenic Pasteurella multocida. In Switzerland, PAR is monitored by selective culture of nasal swabs and subsequent polymerase chain reaction (PCR) screening of bacterial colonies for the P. multocida toxA gene. A panel of 203 nasal swabs from a recent PAR outbreak were used to evaluate a novel quantitative real-time PCR for toxigenic P. multocida in porcine nasal swabs. In comparison to the conventional PCR with a limit of detection of 100 genome equivalents per PCR reaction, the real-time PCR had a limit of detection of 10 genome equivalents. The real-time PCR detected toxA-positive P. multocida in 101 samples (49.8%), whereas the conventional PCR was less sensitive with 90 toxA-positive samples (44.3%). In comparison to the real-time PCR, 5.4% of the toxA-positive samples revealed unevaluable results by conventional PCR. The approach of culture-coupled toxA PCR for the monitoring of PAR in pigs is substantially improved by a novel quantitative real-time PCR.
Agasti, Sarit S; Liong, Monty; Peterson, Vanessa M; Lee, Hakho; Weissleder, Ralph
2012-11-14
DNA barcoding is an attractive technology, as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative, and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification, and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells.
Li, Gang; Wang, Zhenhai; Mao, Xinyu; Zhang, Yinghuang; Huo, Xiaoye; Liu, Haixiao; Xu, Shengyong
2016-01-01
Dynamic mapping of an object’s local temperature distribution may offer valuable information for failure analysis, system control and improvement. In this letter we present a computerized measurement system which is equipped with a hybrid, low-noise mechanical-electrical multiplexer for real-time two-dimensional (2D) mapping of surface temperatures. We demonstrate the performance of the system on a device embedded with 32 pieces of built-in Cr-Pt thin-film thermocouples arranged in a 4 × 8 matrix. The system can display a continuous 2D mapping movie of relative temperatures with a time interval around 1 s. This technique may find applications in a variety of practical devices and systems. PMID:27347969
Human fecal source identification with real-time quantitative PCR
Waterborne diseases represent a significant public health risk worldwide, and can originate from contact with water contaminated with human fecal material. We describe a real-time quantitative PCR (qPCR) method that targets a Bacteroides dori human-associated genetic marker for...
Wang, Jun; Ahmad, Habib; Ma, Chao; Shi, Qihui; Vermesh, Ophir; Vermesh, Udi; Heath, James
2010-11-21
We describe an automated, self-powered chip based on lateral flow immunoassay for rapid, quantitative, and multiplex protein detection from pinpricks of whole blood. The device incorporates on-chip purification of blood plasma by employing inertial forces to focus blood cells away from the assay surface, where plasma proteins are captured and detected on antibody "barcode" arrays. Power is supplied from the capillary action of a piece of adsorbent paper, and sequentially drives, over a 40 minute period, the four steps required to capture serum proteins and then develop a multiplex immunoassay. An 11 protein panel is assayed from whole blood, with high sensitivity and high reproducibility. This inexpensive, self-contained, and easy to operate chip provides a useful platform for point-of-care diagnoses, particularly in resource-limited settings.
Performance optimization of PM-16QAM transmission system enabled by real-time self-adaptive coding.
Qu, Zhen; Li, Yao; Mo, Weiyang; Yang, Mingwei; Zhu, Shengxiang; Kilper, Daniel C; Djordjevic, Ivan B
2017-10-15
We experimentally demonstrate self-adaptive coded 5×100 Gb/s WDM polarization multiplexed 16 quadrature amplitude modulation transmission over a 100 km fiber link, which is enabled by a real-time control plane. The real-time optical signal-to-noise ratio (OSNR) is measured using an optical performance monitoring device. The OSNR measurement is processed and fed back using control plane logic and messaging to the transmitter side for code adaptation, where the binary data are adaptively encoded with three types of low-density parity-check (LDPC) codes with code rates of 0.8, 0.75, and 0.7 of large girth. The total code-adaptation latency is measured to be 2273 ms. Compared with transmission without adaptation, average net capacity improvements of 102%, 36%, and 7.5% are obtained, respectively, by adaptive LDPC coding.
Mandappa, I M; Joglekar, Prasanna; Manonmani, H K
2015-07-01
A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.
Automated high-throughput flow-through real-time diagnostic system
Regan, John Frederick
2012-10-30
An automated real-time flow-through system capable of processing multiple samples in an asynchronous, simultaneous, and parallel fashion for nucleic acid extraction and purification, followed by assay assembly, genetic amplification, multiplex detection, analysis, and decontamination. The system is able to hold and access an unlimited number of fluorescent reagents that may be used to screen samples for the presence of specific sequences. The apparatus works by associating extracted and purified sample with a series of reagent plugs that have been formed in a flow channel and delivered to a flow-through real-time amplification detector that has a multiplicity of optical windows, to which the sample-reagent plugs are placed in an operative position. The diagnostic apparatus includes sample multi-position valves, a master sample multi-position valve, a master reagent multi-position valve, reagent multi-position valves, and an optical amplification/detection system.
Vaïtilingom, M; Pijnenburg, H; Gendre, F; Brignon, P
1999-12-01
A fast and quantitative method was developed to detect transgenic "Maximizer" maize "event 176" (Novartis) and "Roundup Ready" soybean (Monsanto) in food by real-time quantitative PCR. The use of the ABI Prism 7700 sequence detection system allowed the determination of the amplified product accumulation through a fluorogenic probe (TaqMan). Fluorescent dyes were chosen in such a way as to coamplify total and transgenic DNA in the same tube. Using real-time quantitative PCR, 2 pg of transgenic or total DNA per gram of starting sample was detected in 3 h after DNA extraction and the relative amounts of "Maximizer" maize and "Roundup Ready" soybean in some representative food products were quantified.
Janse, Ingmar; Hamidjaja, Raditijo A; Bok, Jasper M; van Rotterdam, Bart J
2010-12-08
Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum.
2010-01-01
Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum PMID:21143837
Saliva has an important advantage over serum as a medium for antibody detection due to non-invasive sampling, which is critical for community-based epidemiological surveys. The development of a Luminex multiplex immunoassay for measurement of salivary IgG and IgA responses to pot...
Choice of Illumination System & Fluorophore for Multiplex Immunofluorescence on FFPE Tissue Sections
Kishen, Ria E. B.; Kluth, David C.; Bellamy, Christopher O. C.
2016-01-01
The recent availability of novel dyes and alternative light sources to facilitate complex tissue immunofluorescence studies such as multiplex labelling has not been matched by reports critically evaluating the considerations and relative benefits of these new tools, particularly in combination. Product information is often limited to wavelengths used for older fluorophores (FITC, TRITC & corresponding Alexa dyes family). Consequently, novel agents such as Quantum dots are not widely appreciated or used, despite highly favourable properties including extremely bright emission, stability and potentially reduced tissue autofluorescence at the excitation wavelength. Using spectral analysis, we report here a detailed critical appraisal and comparative evaluation of different light sources and fluorophores in multiplex immunofluorescence of clinical biopsy sections. The comparison includes mercury light, metal halide and 3 different LED-based systems, using 7 Qdots (525, 565, 585, 605, 625, 705), Cy3 and Cy5. We discuss the considerations relevant to achieving the best combination of light source and fluorophore for accurate multiplex fluorescence quantitation. We highlight practical limitations and confounders to quantitation with filter-based approaches. PMID:27632367
NASA Astrophysics Data System (ADS)
Arnold, F.; DeMallie, I.; Florence, L.; Kashinski, D. O.
2015-03-01
This manuscript addresses the design, hardware details, construction, and programming of an apparatus allowing an experimenter to monitor and record high-temperature thermocouple measurements of dynamic systems in real time. The apparatus uses wireless network technology to bridge the gap between a dynamic (moving) sample frame and the static laboratory frame. Our design is a custom solution applied to samples that rotate through large angular displacements where hard-wired and typical slip-ring solutions are not practical because of noise considerations. The apparatus consists of a Raspberry PI mini-Linux computer, an Arduino micro-controller, an Ocean Controls thermocouple multiplexer shield, and k-type thermocouples.
Arnold, F; DeMallie, I; Florence, L; Kashinski, D O
2015-03-01
This manuscript addresses the design, hardware details, construction, and programming of an apparatus allowing an experimenter to monitor and record high-temperature thermocouple measurements of dynamic systems in real time. The apparatus uses wireless network technology to bridge the gap between a dynamic (moving) sample frame and the static laboratory frame. Our design is a custom solution applied to samples that rotate through large angular displacements where hard-wired and typical slip-ring solutions are not practical because of noise considerations. The apparatus consists of a Raspberry PI mini-Linux computer, an Arduino micro-controller, an Ocean Controls thermocouple multiplexer shield, and k-type thermocouples.
Single-shot ultrafast tomographic imaging by spectral multiplexing
NASA Astrophysics Data System (ADS)
Matlis, N. H.; Axley, A.; Leemans, W. P.
2012-10-01
Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.
High Throughput, Multiplexed Pathogen Detection Authenticates Plague Waves in Medieval Venice, Italy
Tran, Thi-Nguyen-Ny; Signoli, Michel; Fozzati, Luigi; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel
2011-01-01
Background Historical records suggest that multiple burial sites from the 14th–16th centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics. Methodology/Principal Findings High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype. Conclusions These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century. PMID:21423736
Crouse, Cecelia A; Yeung, Stephanie; Greenspoon, Susan; McGuckian, Amy; Sikorsky, Julie; Ban, Jeff; Mathies, Richard
2005-08-01
To present validation studies performed for the implementation of existing and new technologies to increase the efficiency in the forensic DNA Section of the Palm Beach County Sheriff's Office (PBSO) Crime Laboratory. Using federally funded grants, internal support, and an external Process Mapping Team, the PBSO collaborated with forensic vendors, universities, and other forensic laboratories to enhance DNA testing procedures, including validation of the DNA IQ magnetic bead extraction system, robotic DNA extraction using the BioMek2000, the ABI7000 Sequence Detection System, and is currently evaluating a micro Capillary Array Electrophoresis device. The PBSO successfully validated and implemented both manual and automated Promega DNA IQ magnetic bead extractions system, which have increased DNA profile results from samples with low DNA template concentrations. The Beckman BioMek2000 DNA robotic workstation has been validated for blood, tissue, bone, hair, epithelial cells (touch evidence), and mixed stains such as semen. There has been a dramatic increase in the number of samples tested per case since implementation of the robotic extraction protocols. The validation of the ABI7000 real-time quantitative polymerase chain reaction (qPCR) technology and the single multiplex short tandem repeat (STR) PowerPlex16 BIO amplification system has provided both a time and a financial benefit. In addition, the qPCR system allows more accurate DNA concentration data and the PowerPlex 16 BIO multiplex generates DNA profiles data in half the time when compared to PowerPlex1.1 and PowerPlex2.1 STR systems. The PBSO's future efficiency requirements are being addressed through collaboration with the University of California at Berkeley and the Virginia Division of Forensic Science to validate microcapillary array electrophoresis instrumentation. Initial data demonstrated the electrophoresis of 96 samples in less than twenty minutes. The PBSO demonstrated, through the validation of more efficient extraction and quantification technology, an increase in the number of evidence samples tested using robotic/DNA IQ magnetic bead DNA extraction, a decrease in the number of negative samples amplified due to qPCR and implementation of a single multiplex amplification system. In addition, initial studies show the microcapillary array electrophoresis device (microCAE) evaluation results provide greater sensitivity and faster STR analysis output than current platforms.
Shinozuka, Hiroshi; Forster, John W
2016-01-01
Background. Multiplexed sequencing is commonly performed on massively parallel short-read sequencing platforms such as Illumina, and the efficiency of library normalisation can affect the quality of the output dataset. Although several library normalisation approaches have been established, none are ideal for highly multiplexed sequencing due to issues of cost and/or processing time. Methods. An inexpensive and high-throughput library quantification method has been developed, based on an adaptation of the melting curve assay. Sequencing libraries were subjected to the assay using the Bio-Rad Laboratories CFX Connect(TM) Real-Time PCR Detection System. The library quantity was calculated through summation of reduction of relative fluorescence units between 86 and 95 °C. Results.PCR-enriched sequencing libraries are suitable for this quantification without pre-purification of DNA. Short DNA molecules, which ideally should be eliminated from the library for subsequent processing, were differentiated from the target DNA in a mixture on the basis of differences in melting temperature. Quantification results for long sequences targeted using the melting curve assay were correlated with those from existing methods (R (2) > 0.77), and that observed from MiSeq sequencing (R (2) = 0.82). Discussion.The results of multiplexed sequencing suggested that the normalisation performance of the described method is equivalent to that of another recently reported high-throughput bead-based method, BeNUS. However, costs for the melting curve assay are considerably lower and processing times shorter than those of other existing methods, suggesting greater suitability for highly multiplexed sequencing applications.
Hill, Ryan C; Oman, Trent J; Shan, Guomin; Schafer, Barry; Eble, Julie; Chen, Cynthia
2015-08-26
Currently, traditional immunochemistry technologies such as enzyme-linked immunosorbent assays (ELISA) are the predominant analytical tool used to measure levels of recombinant proteins expressed in genetically engineered (GE) plants. Recent advances in agricultural biotechnology have created a need to develop methods capable of selectively detecting and quantifying multiple proteins in complex matrices because of increasing numbers of transgenic proteins being coexpressed or "stacked" to achieve tolerance to multiple herbicides or to provide multiple modes of action for insect control. A multiplexing analytical method utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and validated to quantify three herbicide-tolerant proteins in soybean tissues: aryloxyalkanoate dioxygenase (AAD-12), 5-enol-pyruvylshikimate-3-phosphate synthase (2mEPSPS), and phosphinothricin acetyltransferase (PAT). Results from the validation showed high recovery and precision over multiple analysts and laboratories. Results from this method were comparable to those obtained with ELISA with respect to protein quantitation, and the described method was demonstrated to be suitable for multiplex quantitation of transgenic proteins in GE crops.
USDA-ARS?s Scientific Manuscript database
Introduction: On average, about 48 million people per year in the U.S. are affected by food borne diseases. A major portion of these illnesses are caused by Salmonella spp., Escherichia coli O157:H7 and Listeria monocytogenes. Hence, it is important to identify the specific pathogens in contaminate...
USDA-ARS?s Scientific Manuscript database
Seed-borne pathogens pose a serious threat to modern agricultural cropping systems as they can be disseminated to many geographical regions around the world. With trends of increasing global seed production and trade, seed-health testing is an important quality control step to prevent the introduct...
USDA-ARS?s Scientific Manuscript database
Salmonella enterica is a human pathogen with over 2,500 serovars characterized. S. enterica serovars Choleraesuis (Cs) and Paratyphi C (Pc) are two globally distributed serovars. We have developed a rapid molecular typing method to detect Cs and Pc in food samples by using a comparative genomics ap...
Emergence of Multiplex Communities in Collaboration Networks.
Battiston, Federico; Iacovacci, Jacopo; Nicosia, Vincenzo; Bianconi, Ginestra; Latora, Vito
2016-01-01
Community structures in collaboration networks reflect the natural tendency of individuals to organize their work in groups in order to better achieve common goals. In most of the cases, individuals exploit their connections to introduce themselves to new areas of interests, giving rise to multifaceted collaborations which span different fields. In this paper, we analyse collaborations in science and among movie actors as multiplex networks, where the layers represent respectively research topics and movie genres, and we show that communities indeed coexist and overlap at the different layers of such systems. We then propose a model to grow multiplex networks based on two mechanisms of intra and inter-layer triadic closure which mimic the real processes by which collaborations evolve. We show that our model is able to explain the multiplex community structure observed empirically, and we infer the strength of the two underlying social mechanisms from real-world systems. Being also able to correctly reproduce the values of intra-layer and inter-layer assortativity correlations, the model contributes to a better understanding of the principles driving the evolution of social networks.
Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei
2017-08-01
To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell‑free DNA (cfDNA) extracted from the plasma of advanced non‑small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) ‑sensitive (19DEL, L858R) and TKI‑resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR‑TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra‑sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR‑TKI decision‑making for advanced NSCLC patients.
Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei
2017-01-01
To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell-free DNA (cfDNA) extracted from the plasma of advanced non-small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) -sensitive (19DEL, L858R) and TKI-resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR-TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra-sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR-TKI decision-making for advanced NSCLC patients. PMID:29067441
Houssin, Timothée; Cramer, Jérémy; Grojsman, Rébecca; Bellahsene, Lyes; Colas, Guillaume; Moulet, Hélène; Minnella, Walter; Pannetier, Christophe; Leberre, Maël; Plecis, Adrien; Chen, Yong
2016-04-21
To control future infectious disease outbreaks, like the 2014 Ebola epidemic, it is necessary to develop ultrafast molecular assays enabling rapid and sensitive diagnoses. To that end, several ultrafast real-time PCR systems have been previously developed, but they present issues that hinder their wide adoption, notably regarding their sensitivity and detection volume. An ultrafast, sensitive and large-volume real-time PCR system based on microfluidic thermalization is presented herein. The method is based on the circulation of pre-heated liquids in a microfluidic chip that thermalize the PCR chamber by diffusion and ultrafast flow switches. The system can achieve up to 30 real-time PCR cycles in around 2 minutes, which makes it the fastest PCR thermalization system for regular sample volume to the best of our knowledge. After biochemical optimization, anthrax and Ebola simulating agents could be respectively detected by a real-time PCR in 7 minutes and a reverse transcription real-time PCR in 7.5 minutes. These detections are respectively 6.4 and 7.2 times faster than with an off-the-shelf apparatus, while conserving real-time PCR sample volume, efficiency, selectivity and sensitivity. The high-speed thermalization also enabled us to perform sharp melting curve analyses in only 20 s and to discriminate amplicons of different lengths by rapid real-time PCR. This real-time PCR microfluidic thermalization system is cost-effective, versatile and can be then further developed for point-of-care, multiplexed, ultrafast and highly sensitive molecular diagnoses of bacterial and viral diseases.
Elges, Sandra; Arnold, Renate; Liesenfeld, Oliver; Kofla, Grzegorz; Mikolajewska, Agata; Schwartz, Stefan; Uharek, Lutz; Ruhnke, Markus
2017-12-01
We prospectively evaluated a multiplex real-time PCR assay (SeptiFast, SF) in a cohort of patients undergoing allo-BMT in comparison to an in-house PCR method (IH-PCR). Overall 847 blood samples (mean 8 samples/patient) from 104 patients with haematological malignancies were analysed. The majority of patients had acute leukaemia (62%) with a mean age of 52 years (54% female). Pathogens could be detected in 91 of 847 (11%) samples by SF compared to 38 of 205 (18.5%) samples by BC, and 57 of 847 (6.7%) samples by IH-PCR. Coagulase-negative staphylococci (n=41 in SF, n=29 in BC) were the most frequently detected bacteria followed by Escherichia coli (n=9 in SF, n=6 in BC). Candida albicans (n=17 in SF, n=0 in BC, n=24 in IH-PCR) was the most frequently detected fungal pathogen. SF gave positive results in 5% of samples during surveillance vs in 26% of samples during fever episodes. Overall, the majority of blood samples gave negative results in both PCR methods resulting in 93% overall agreement resulting in a negative predictive value of 0.96 (95% CI: 0.95-0.97), and a positive predictive value of 0.10 (95% CI: -0.01 to 0.21). SeptiFast appeared to be superior over BC and the IH-PCR method. © 2017 Blackwell Verlag GmbH.
Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan (trademark)) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glab...
A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...
[Study on high accuracy detection of multi-component gas in oil-immerse power transformer].
Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang
2013-12-01
In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.
Monitoring of protease catalyzed reactions by quantitative MALDI MS using metal labeling.
Gregorius, Barbara; Jakoby, Thomas; Schaumlöffel, Dirk; Tholey, Andreas
2013-05-21
Quantitative mass spectrometry is a powerful tool for the determination of enzyme activities as it does not require labeled substrates and simultaneously allows for the identification of reaction products. However, major restrictions are the limited number of samples which can be measured in parallel due to the need for isotope labeled internal standards. Here we describe the use of metal labeling of peptides for the setup of multiplexed enzyme activity assays. After proteolytic reaction, using the protease trypsin, remaining substrates and peptide products formed in the reaction were labeled with metal chelators complexing rare earth metal ions. Labeled peptides were quantified with high accuracy and over a wide dynamic range (at least 2 orders of magnitude) using MALDI MS in case of simple peptide mixtures or by LC-MALDI MS for complex substrate mixtures and used for the monitoring of time-dependent product formation and substrate consumption. Due to multiplexing capabilities and accuracy, the presented approach will be useful for the determination of enzyme activities with a wide range of biochemical and biotechnological applications.
Avci, Oguzhan; Lortlar Ünlü, Nese; Yalçın Özkumur, Ayça; Ünlü, M. Selim
2015-01-01
Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS), and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i) low-magnification (ensemble biomolecular mass measurements) and (ii) high-magnification (digital detection of individual nanoparticles) along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses. PMID:26205273
Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6
Gootenberg, Jonathan S.; Abudayyeh, Omar O.; Kellner, Max J.; Joung, Julia; Collins, James J.; Zhang, Feng
2018-01-01
Rapid detection of nucleic acids is integral for clinical diagnostics and biotechnological applications. We recently developed a platform termed SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing) that combines isothermal pre-amplification with Cas13 to detect single molecules of RNA or DNA. Through characterization of CRISPR enzymology and application development, we report here four advances integrated into SHERLOCKv2: 1) 4-channel single reaction multiplexing using orthogonal CRISPR enzymes; 2) quantitative measurement of input down to 2 aM; 3) 3.5-fold increase in signal sensitivity by combining Cas13 with Csm6, an auxilary CRISPR-associated enzyme; and 4) lateral flow read-out. SHERLOCKv2 can detect Dengue or Zika virus ssRNA as well as mutations in patient liquid biopsy samples via lateral flow, highlighting its potential as a multiplexable, portable, rapid, and quantitative detection platform of nucleic acids. PMID:29449508
Wang, Jun; Ahmad, Habib; Ma, Chao; Shi, Qihui; Vermesh, Ophir; Vermesh, Udi; Heath, James
2012-01-01
We describe an automated, self-powered chip based on lateral flow immunoassay for rapid, quantitative, and multiplex protein detection from pinpricks of whole blood. The device incorporates on-chip purification of blood plasma by employing inertial forces to focus blood cells away from the assay surface, where plasma proteins are captured and detected on antibody “barcode” arrays. Power is supplied from the capillary action of a piece of adsorbent paper, and sequentially drives, over a 40 minute period, the four steps required to capture serum proteins and then develop a multiplex immunoassay. An 11 protein panel is assayed from whole blood, with high sensitivity and high reproducibility. This inexpensive, self-contained, and easy to operate chip provides a useful platform for point-of-care diagnoses, particularly in resource-limited settings. PMID:20924527
Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong
2016-08-02
Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging.
In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...
There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method ...
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...
There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...
Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....
There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...
The ease and rapidity of quantitative DNA sequence detection by real-time PCR instruments promises to make their use increasingly common for the microbial analysis many different types of environmental samples. To fully exploit the capabilities of these instruments, correspondin...
NASA Astrophysics Data System (ADS)
Dou, Xinyu; Yin, Hongxi; Yue, Hehe; Jin, Yu; Shen, Jing; Li, Lin
2015-09-01
In this paper, a real-time online fault monitoring technique for chaos-based passive optical networks (PONs) is proposed and experimentally demonstrated. The fault monitoring is performed by the chaotic communication signal. The proof-of-concept experiments are demonstrated for two PON structures, i.e., wavelength-division-multiplexing (WDM) PON and Ethernet PON (EPON), respectively. For WDM PON, two monitoring approaches are investigated, one deploying a chaotic optical time domain reflectometry (OTDR) for each transmitter, and the other using only one tunable chaotic OTDR. The experimental results show that the faults at beyond 20 km from the OLT can be detected and located. The spatial resolution of the tunable chaotic OTDR is an order of magnitude of centimeter. Meanwhile, the monitoring process can operate in parallel with the chaotic optical secure communications. The proposed technique has benefits of real-time, online, precise fault location, and simple realization, which will significantly reduce the cost of operation, administration and maintenance (OAM) of PON.
Real-Time Spatio-Temporal Twice Whitening for MIMO Energy Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Mitra, Pramita; Barhen, Jacob
2010-01-01
While many techniques exist for local spectrum sensing of a primary user, each represents a computationally demanding task to secondary user receivers. In software-defined radio, computational complexity lengthens the time for a cognitive radio to recognize changes in the transmission environment. This complexity is even more significant for spatially multiplexed receivers, e.g., in SIMO and MIMO, where the spatio-temporal data sets grow in size with the number of antennae. Limits on power and space for the processor hardware further constrain SDR performance. In this report, we discuss improvements in spatio-temporal twice whitening (STTW) for real-time local spectrum sensing by demonstratingmore » a form of STTW well suited for MIMO environments. We implement STTW on the Coherent Logix hx3100 processor, a multicore processor intended for low-power, high-throughput software-defined signal processing. These results demonstrate how coupling the novel capabilities of emerging multicore processors with algorithmic advances can enable real-time, software-defined processing of large spatio-temporal data sets.« less
2013-01-01
Background Persistent infection of Penaeus stylirostris densovirus (PstDNV) (also called IHHNV) and its non-infectious inserts in the black tiger shrimp, Penaeus monodon (P. monodon) genome are commonly found without apparent disease. Here, we introduced the method of multiplex PCR in order to differentiate shrimp with viral inserts from ones with the infectious virus. The method allowed us to study the effect of pre-infection of IHHNV, in comparison to IHHNV inserts, on WSSV resistance in P. monodon. Results A multiplex PCR system was developed to amplify the entire IHHNV genome, ensuring the accurate diagnosis. Field samples containing IHHNV DNA templates as low as 20 pg or equivalent 150 viral copies can be detected by this method. By challenging the two groups of diagnosed shrimp with WSSV, we found that shrimp with IHHNV infection and those with viral inserts responded to WSSV differently. Considering cumulative mortality, average time to death of shrimp in IHHNV-infected group (day 14) was significantly delayed relative to that (day 10) of IHHNV-inserted group. Real-time PCR analysis of WSSV copy number indicated the lower amount of WSSV in the IHHNV-infected group than the virus-inserted group. The ratio of IHHNV: WSSV copy number in all determined IHHNV-infected samples ranged from approximately 4 to 300-fold. Conclusion The multiplex PCR assay developed herein proved optimal for convenient differentiation of shrimp specimens with real IHHNV infection and those with insert types. Diagnosed shrimp were also found to exhibit different WSSV tolerance. After exposed to WSSV, the naturally pre-infected IHHNV P. monodon were less susceptible to WSSV and, consequently, survived longer than the IHHNV-inserted shrimp. PMID:23414329
Puenpa, Jiratchaya; Suwannakarn, Kamol; Chansaenroj, Jira; Vongpunsawad, Sompong; Poovorawan, Yong
2017-10-01
Real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) has facilitated the rapid and accurate identification of the two most common etiological agents underlying hand, foot, and mouth disease (HFMD). However, the worldwide emergence of CV-A6 infection in HFMD necessitates development of an improved multiplex rRT-PCR method. To rapidly determine the etiology of HFMD, two rRT-PCR assays using TaqMan probes were developed to differentiate among three selected common enteroviruses (EV-A71, CV-A16 and CV-A6) and to enable broad detection of enteroviruses (pan-enterovirus assay). No cross-reactions were observed with other RNA viruses examined. The detection limits of both assays were 10 copies per microliter for EV-A71, CV-A6 and CV-A16, and pan-enterovirus. The methods showed high accuracy (EV-A71, 90.6%; CV-A6, 92.0%; CV-A16, 100%), sensitivity (EV-A71, 96.5%; CV-A6, 95.8%; CV-A16, 99.0%), and specificity (EV-A71, 100%; CV-A6, 99.9%; CV-A16, 99.9%) in testing clinical specimens (n=1049) during 2014-2016, superior to those of conventional RT-PCR. Overall, the multiplex rRT-PCR assays enabled highly sensitive detection and rapid simultaneous typing of EV-A71, CV-A6 and CV-A16, and enteroviruses, rendering them feasible and attractive methods for large-scale surveillance of enteroviruses associated with HFMD outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, X-B; Gong, Y-H; He, J; Guo, A-L; Zhi, E-L; Yao, J-E; Zhu, B-S; Zhang, A-J; Li, Z
2017-06-01
Azoospermia factor (AZF) genes on the long arm of the human Y chromosome are involved in spermatogenesis, and microdeletions in the AZF region have been recognised to be the second major genetic cause of spermatogenetic failure resulting in male infertility. While screening for these microdeletions can avoid unnecessary medical and surgical treatments, current methods are generally time-consuming. Therefore, we established a new method to detect and analyse microdeletions in the AZF region quickly, safely and efficiently. In total, 1,808 patients with spermatogenetic failure were recruited from three hospitals in southern China, of which 600 patients were randomly selected for screening for Y chromosome microdeletions in AZF regions employing real-time polymerase chain reaction with a TaqMan probe. In our study, of 1,808 infertile patients, 150 (8.3%) were found to bear microdeletions in the Y chromosome using multiplex PCR, while no deletions were found in the controls. Among the AZF deletions detected, two were in AZFa, three in AZFb, 35 in AZFc, three in AZFb+c and two in AZFa+b+c. Our method is fast-it permits the scanning of DNA from a patient in one and a half hours-and reliable, minimising the risk of cross-contamination and false-positive and false-negative results. © 2016 Blackwell Verlag GmbH.
A multiplexed system for quantitative comparisons of chromatin landscapes
van Galen, Peter; Viny, Aaron D.; Ram, Oren; Ryan, Russell J.H.; Cotton, Matthew J.; Donohue, Laura; Sievers, Cem; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Carroll, Kaitlin M.; Cross, Michael B.; Levine, Ross L.; Bernstein, Bradley E.
2015-01-01
Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of P300, EZH2 or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions and drug treatments. PMID:26687680
Dong, Juyao; Salem, Daniel P; Sun, Jessica H; Strano, Michael S
2018-04-24
The high-throughput, label-free detection of biomolecules remains an important challenge in analytical chemistry with the potential of nanosensors to significantly increase the ability to multiplex such assays. In this work, we develop an optical sensor array, printable from a single-walled carbon nanotube/chitosan ink and functionalized to enable a divalent ion-based proximity quenching mechanism for transducing binding between a capture protein or an antibody with the target analyte. Arrays of 5 × 6, 200 μm near-infrared (nIR) spots at a density of ≈300 spots/cm 2 are conjugated with immunoglobulin-binding proteins (proteins A, G, and L) for the detection of human IgG, mouse IgM, rat IgG2a, and human IgD. Binding kinetics are measured in a parallel, multiplexed fashion from each sensor spot using a custom laser scanning imaging configuration with an nIR photomultiplier tube detector. These arrays are used to examine cross-reactivity, competitive and nonspecific binding of analyte mixtures. We find that protein G and protein L functionalized sensors report selective responses to mouse IgM on the latter, as anticipated. Optically addressable platforms such as the one examined in this work have potential to significantly advance the real-time, multiplexed biomolecular detection of complex mixtures.
Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV.
Mohammadi-Yeganeh, S; Paryan, M; Mirab Samiee, S; Kia, V; Rezvan, H
2012-06-01
Developed in 1991, nucleic acid sequence-based amplification (NASBA) has been introduced as a rapid molecular diagnostic technique, where it has been shown to give quicker results than PCR, and it can also be more sensitive. This paper describes the development of a molecular beacon-based multiplex NASBA assay for simultaneous detection of HIV-1 and HCV in plasma samples. A well-conserved region in the HIV-1 pol gene and 5'-NCR of HCV genome were used for primers and molecular beacon design. The performance features of HCV/HIV-1 multiplex NASBA assay including analytical sensitivity and specificity, clinical sensitivity and clinical specificity were evaluated. The analysis of scalar concentrations of the samples indicated that the limit of quantification of the assay was <1000 copies/ml for HIV-1 and <500 copies/ml for HCV with 95% confidence interval. Multiplex NASBA assay showed a 98% sensitivity and 100% specificity. The analytical specificity study with BLAST software demonstrated that the primers do not attach to any other sequences except for that of HIV-1 or HCV. The primers and molecular beacon probes detected all HCV genotypes and all major variants of HIV-1. This method may represent a relatively inexpensive isothermal method for detection of HIV-1/HCV co-infection in monitoring of patients.
NASA Technical Reports Server (NTRS)
Ferris, Alice T.; White, William C.
1988-01-01
Balance dynamic display unit (BDDU) is compact system conditioning six dynamic analog signals so they are monitored simultaneously in real time on single-trace oscilloscope. Typical BDDU oscilloscope display in scan mode shows each channel occupying one-sixth of total trace. System features two display modes usable with conventional, single-channel oscilloscope: multiplexed six-channel "bar-graph" format and single-channel display. Two-stage visual and audible limit alarm provided for each channel.
Holographic three-dimensional telepresence using large-area photorefractive polymer.
Blanche, P-A; Bablumian, A; Voorakaranam, R; Christenson, C; Lin, W; Gu, T; Flores, D; Wang, P; Hsieh, W-Y; Kathaperumal, M; Rachwal, B; Siddiqui, O; Thomas, J; Norwood, R A; Yamamoto, M; Peyghambarian, N
2010-11-04
Holography is a technique that is used to display objects or scenes in three dimensions. Such three-dimensional (3D) images, or holograms, can be seen with the unassisted eye and are very similar to how humans see the actual environment surrounding them. The concept of 3D telepresence, a real-time dynamic hologram depicting a scene occurring in a different location, has attracted considerable public interest since it was depicted in the original Star Wars film in 1977. However, the lack of sufficient computational power to produce realistic computer-generated holograms and the absence of large-area and dynamically updatable holographic recording media have prevented realization of the concept. Here we use a holographic stereographic technique and a photorefractive polymer material as the recording medium to demonstrate a holographic display that can refresh images every two seconds. A 50 Hz nanosecond pulsed laser is used to write the holographic pixels. Multicoloured holographic 3D images are produced by using angular multiplexing, and the full parallax display employs spatial multiplexing. 3D telepresence is demonstrated by taking multiple images from one location and transmitting the information via Ethernet to another location where the hologram is printed with the quasi-real-time dynamic 3D display. Further improvements could bring applications in telemedicine, prototyping, advertising, updatable 3D maps and entertainment.
2010-01-01
Background Recent controversy has surrounded the question of whether xenotropic murine leukaemia virus-related virus (XMRV) contributes to the pathogenesis of chronic fatigue syndrome (CFS). To investigate the question in a Chinese population, 65 CFS patients and 85 blood donor controls were enrolled and multiplex real-time PCR or reverse transcriptase PCR (RT-PCR) was developed to analyze the XMRV infection status of the study participants. The assay was standardized by constructing plasmid DNAs and armored RNAs as XMRV standards and competitive internal controls (CICs), respectively. Results The sensitivities of the multiplex real-time PCR and RT-PCR assays were 20 copies/reaction and 10 IU/ml, respectively, with 100% specificity. The within-run precision coefficient of variation (CV) ranged from 1.76% to 2.80% and 1.70% to 2.59%, while the between-run CV ranged from 1.07% to 2.56% and 1.06% to 2.74%. XMRV was not detected in the 65 CFS patients and 65 normal individuals out of 85 controls. Conclusions This study failed to show XMRV in peripheral blood mononuclear cells (PBMCs) and plasma of Chinese patients with CFS. The absence of XMRV nucleic acids does not support an association between XMRV infection and the development of CFS in Chinese. PMID:20836869
Tagliafierro, Teresa; Cucura, D. Moses; Rochlin, Ilia; Sameroff, Stephen; Lipkin, W. Ian
2017-01-01
ABSTRACT Ixodes scapularis ticks are implicated in transmission of Anaplasma phagocytophilum, Borrelia burgdorferi, Borrelia miyamotoi, Babesia microti, and Powassan virus. We describe the establishment and implementation of the first multiplex real-time PCR assay with the capability to simultaneously detect and differentiate all five pathogens in a single reaction. The application of this assay for analysis of ticks at sites in New York and Connecticut revealed a high prevalence of B. microti in ticks from Suffolk County, NY. These findings are consistent with reports of a higher incidence of babesiosis from clinicians managing the care of patients with tick-borne diseases in this region. IMPORTANCE The understanding of pathogen prevalence is an important factor in the determination of human risks for tick-borne diseases and can help guide diagnosis and treatment. The implementation of our assay addresses a critical need in surveillance of tick-borne diseases, through generation of a comprehensive assessment of pathogen prevalence in I. scapularis. Our finding of a high frequency of ticks infected with Babesia microti in Suffolk County, NY, implicates this agent as a probable frequent cause of non-Lyme tick-borne disease in this area. PMID:28435891
Tokarz, Rafal; Tagliafierro, Teresa; Cucura, D Moses; Rochlin, Ilia; Sameroff, Stephen; Lipkin, W Ian
2017-01-01
Ixodes scapularis ticks are implicated in transmission of Anaplasma phagocytophilum , Borrelia burgdorferi , Borrelia miyamotoi , Babesia microti , and Powassan virus. We describe the establishment and implementation of the first multiplex real-time PCR assay with the capability to simultaneously detect and differentiate all five pathogens in a single reaction. The application of this assay for analysis of ticks at sites in New York and Connecticut revealed a high prevalence of B. microti in ticks from Suffolk County, NY. These findings are consistent with reports of a higher incidence of babesiosis from clinicians managing the care of patients with tick-borne diseases in this region. IMPORTANCE The understanding of pathogen prevalence is an important factor in the determination of human risks for tick-borne diseases and can help guide diagnosis and treatment. The implementation of our assay addresses a critical need in surveillance of tick-borne diseases, through generation of a comprehensive assessment of pathogen prevalence in I. scapularis . Our finding of a high frequency of ticks infected with Babesia microti in Suffolk County, NY, implicates this agent as a probable frequent cause of non-Lyme tick-borne disease in this area.
A Single Molecular Beacon Probe Is Sufficient for the Analysis of Multiple Nucleic Acid Sequences
Gerasimova, Yulia V.; Hayson, Aaron; Ballantyne, Jack; Kolpashchikov, Dmitry M.
2010-01-01
Molecular beacon (MB) probes are dual-labeled hairpin-shaped oligodeoxyribonucleotides that are extensively used for real-time detection of specific RNA/DNA analytes. In the MB probe, the loop fragment is complementary to the analyte: therefore, a unique probe is required for the analysis of each new analyte sequence. The conjugation of an oligonucleotide with two dyes and subsequent purification procedures add to the cost of MB probes, thus reducing their application in multiplex formats. Here we demonstrate how one MB probe can be used for the analysis of an arbitrary nucleic acid. The approach takes advantage of two oligonucleotide adaptor strands, each of which contains a fragment complementary to the analyte and a fragment complementary to an MB probe. The presence of the analyte leads to association of MB probe and the two DNA strands in quadripartite complex. The MB probe fluorescently reports the formation of this complex. In this design, the MB does not bind the analyte directly; therefore, the MB sequence is independent of the analyte. In this study one universal MB probe was used to genotype three human polymorphic sites. This approach promises to reduce the cost of multiplex real-time assays and improve the accuracy of single-nucleotide polymorphism genotyping. PMID:20665615
Optimizing diffusion in multiplexes by maximizing layer dissimilarity
NASA Astrophysics Data System (ADS)
Serrano, Alfredo B.; Gómez-Gardeñes, Jesús; Andrade, Roberto F. S.
2017-05-01
Diffusion in a multiplex depends on the specific link distribution between the nodes in each layer, but also on the set of the intralayer and interlayer diffusion coefficients. In this work we investigate, in a quantitative way, the efficiency of multiplex diffusion as a function of the topological similarity among multiplex layers. This similarity is measured by the distance between layers, taken among the pairs of layers. Results are presented for a simple two-layer multiplex, where one of the layers is held fixed, while the other one can be rewired in a controlled way in order to increase or decrease the interlayer distance. The results indicate that, for fixed values of all intra- and interlayer diffusion coefficients, a large interlayer distance generally enhances the global multiplex diffusion, providing a topological mechanism to control the global diffusive process. For some sets of networks, we develop an algorithm to identify the most sensitive nodes in the rewirable layer, so that changes in a small set of connections produce a drastic enhancement of the global diffusion of the whole multiplex system.
Validating multiplexes for use in conjunction with modern interpretation strategies.
Taylor, Duncan; Bright, Jo-Anne; McGoven, Catherine; Hefford, Christopher; Kalafut, Tim; Buckleton, John
2016-01-01
In response to requests from the forensic community, commercial companies are generating larger, more sensitive, and more discriminating STR multiplexes. These multiplexes are now applied to a wider range of samples including complex multi-person mixtures. In parallel there is an overdue reappraisal of profile interpretation methodology. Aspects of this reappraisal include 1. The need for a quantitative understanding of allele and stutter peak heights and their variability, 2. An interest in reassessing the utility of smaller peaks below the often used analytical threshold, 3. A need to understand not just the occurrence of peak drop-in but also the height distribution of such peaks, and 4. A need to understand the limitations of the multiplex-interpretation strategy pair implemented. In this work we present a full scheme for validation of a new multiplex that is suitable for informing modern interpretation practice. We predominantly use GlobalFiler™ as an example multiplex but we suggest that the aspects investigated here are fundamental to introducing any multiplex in the modern interpretation environment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster are considered to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. In response, the United States Environmental Protectio...
There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method p...
Human fecal pollution of recreational waters remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality research and manag...
Molecular detection methods such as PCR have been extensively used to type Cryptosporidium oocysts detected in the environment. More recently, studies have developed quantitative real-time PCR assays for detection and quantification of microbial contaminants in water as well as ...
Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...
USDA-ARS?s Scientific Manuscript database
Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...
The Salt Creek watershed in northwest Indiana drains into Lake Michigan near several heavily used recreational beaches. This study aimed to investigate the levels of fecal indicator bacteria, enterococci and Bacteroidales, in Salt Creek using real-time quantitative PCR (qPCR) an...
Designing Two-Layer Optical Networks with Statistical Multiplexing
NASA Astrophysics Data System (ADS)
Addis, B.; Capone, A.; Carello, G.; Malucelli, F.; Fumagalli, M.; Pedrin Elli, E.
The possibility of adding multi-protocol label switching (MPLS) support to transport networks is considered an important opportunity by telecom carriers that want to add packet services and applications to their networks. However, the question that arises is whether it is suitable to have MPLS nodes just at the edge of the network to collect packet traffic from users, or also to introduce MPLS facilities on a subset of the core nodes in order to exploit packet switching flexibility and multiplexing, thus providing induction of a better bandwidth allocation. In this article, we address this complex decisional problem with the support of a mathematical programming approach. We consider two-layer networks where MPLS is overlaid on top of transport networks-synchronous digital hierarchy (SDH) or wavelength division multiplexing (WDM)-depending on the required link speed. The discussions' decisions take into account the trade-off between the cost of adding MPLS support in the core nodes and the savings in the link bandwidth allocation due to the statistical multiplexing and the traffic grooming effects induced by MPLS nodes. The traffic matrix specifies for each point-to-point request a pair of values: a mean traffic value and an additional one. Using this traffic model, the effect of statistical multiplexing on a link allows the allocation of a capacity equal to the sum of all the mean values of the traffic demands routed on the link and only the highest additional one. The proposed approach is suitable to solve real instances in reasonable time.
Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).
Phillips, Zachary F; Chen, Michael; Waller, Laura
2017-01-01
We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.
Reconstructing the world trade multiplex: The role of intensive and extensive biases
NASA Astrophysics Data System (ADS)
Mastrandrea, Rossana; Squartini, Tiziano; Fagiolo, Giorgio; Garlaschelli, Diego
2014-12-01
In economic and financial networks, the strength of each node has always an important economic meaning, such as the size of supply and demand, import and export, or financial exposure. Constructing null models of networks matching the observed strengths of all nodes is crucial in order to either detect interesting deviations of an empirical network from economically meaningful benchmarks or reconstruct the most likely structure of an economic network when the latter is unknown. However, several studies have proved that real economic networks and multiplexes topologically differ from configurations inferred only from node strengths. Here we provide a detailed analysis of the world trade multiplex by comparing it to an enhanced null model that simultaneously reproduces the strength and the degree of each node. We study several temporal snapshots and almost 100 layers (commodity classes) of the multiplex and find that the observed properties are systematically well reproduced by our model. Our formalism allows us to introduce the (static) concept of extensive and intensive bias, defined as a measurable tendency of the network to prefer either the formation of extra links or the reinforcement of link weights, with respect to a reference case where only strengths are enforced. Our findings complement the existing economic literature on (dynamic) intensive and extensive trade margins. More generally, they show that real-world multiplexes can be strongly shaped by layer-specific local constraints.
Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.
2012-01-01
Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858
Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T
2012-09-28
Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.
Multiplex Quantitative Histologic Analysis of Human Breast Cancer Cell Signaling and Cell Fate
2010-05-01
Breast cancer, cell signaling, cell proliferation, histology, image analysis 15. NUMBER OF PAGES - 51 16. PRICE CODE 17. SECURITY CLASSIFICATION...revealed by individual stains in multiplex combinations; and (3) software (FARSIGHT) for automated multispectral image analysis that (i) segments...Task 3. Develop computational algorithms for multispectral immunohistological image analysis FARSIGHT software was developed to quantify intrinsic
A multiplex branched DNA assay for parallel quantitative gene expression profiling.
Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling
2006-05-01
We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.
GMR biosensor arrays: a system perspective.
Hall, D A; Gaster, R S; Lin, T; Osterfeld, S J; Han, S; Murmann, B; Wang, S X
2010-05-15
Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1-8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4s). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multiplexing capability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. 2010 Elsevier B.V. All rights reserved.
Health monitoring of unmanned aerial vehicle based on optical fiber sensor array
NASA Astrophysics Data System (ADS)
Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande
2017-10-01
The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.
Seo, K H; Valentin-Bon, I E; Brackett, R E
2006-03-01
Salmonellosis caused by Salmonella Enteritidis (SE) is a significant cause of foodborne illnesses in the United States. Consumption of undercooked eggs and egg-containing products has been the primary risk factor for the disease. The importance of the bacterial enumeration technique has been enormously stressed because of the quantitative risk analysis of SE in shell eggs. Traditional enumeration methods mainly depend on slow and tedious most-probable-number (MPN) methods. Therefore, specific, sensitive, and rapid methods for SE quantitation are needed to collect sufficient data for risk assessment and food safety policy development. We previously developed a real-time quantitative PCR assay for the direct detection and enumeration of SE and, in this study, applied it to naturally contaminated ice cream samples with and without enrichment. The detection limit of the real-time PCR assay was determined with artificially inoculated ice cream. When applied to the direct detection and quantification of SE in ice cream, the real-time PCR assay was as sensitive as the conventional plate count method in frequency of detection. However, populations of SE derived from real-time quantitative PCR were approximately 1 log higher than provided by MPN and CFU values obtained by conventional culture methods. The detection and enumeration of SE in naturally contaminated ice cream can be completed in 3 h by this real-time PCR method, whereas the cultural enrichment method requires 5 to 7 days. A commercial immunoassay for the specific detection of SE was also included in the study. The real-time PCR assay proved to be a valuable tool that may be useful to the food industry in monitoring its processes to improve product quality and safety.
NASA Astrophysics Data System (ADS)
Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen
2008-10-01
Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.
Wiklander, Oscar P. B.; Bostancioglu, R. Beklem; Welsh, Joshua A.; Zickler, Antje M.; Murke, Florian; Corso, Giulia; Felldin, Ulrika; Hagey, Daniel W.; Evertsson, Björn; Liang, Xiu-Ming; Gustafsson, Manuela O.; Mohammad, Dara K.; Wiek, Constanze; Hanenberg, Helmut; Bremer, Michel; Gupta, Dhanu; Björnstedt, Mikael; Giebel, Bernd; Nordin, Joel Z.; Jones, Jennifer C.; EL Andaloussi, Samir; Görgens, André
2018-01-01
Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell’s activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.
Wiklander, Oscar P B; Bostancioglu, R Beklem; Welsh, Joshua A; Zickler, Antje M; Murke, Florian; Corso, Giulia; Felldin, Ulrika; Hagey, Daniel W; Evertsson, Björn; Liang, Xiu-Ming; Gustafsson, Manuela O; Mohammad, Dara K; Wiek, Constanze; Hanenberg, Helmut; Bremer, Michel; Gupta, Dhanu; Björnstedt, Mikael; Giebel, Bernd; Nordin, Joel Z; Jones, Jennifer C; El Andaloussi, Samir; Görgens, André
2018-01-01
Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell's activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.
Bogema, D. R.; Deutscher, A. T.; Fell, S.; Collins, D.; Eamens, G. J.
2015-01-01
Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease. PMID:25588653
Multiplex visibility graphs to investigate recurrent neural network dynamics
NASA Astrophysics Data System (ADS)
Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert
2017-03-01
A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.
Multiplexed phase-space imaging for 3D fluorescence microscopy.
Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura
2017-06-26
Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.
Multiplex visibility graphs to investigate recurrent neural network dynamics
Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert
2017-01-01
A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods. PMID:28281563
Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun
2017-01-01
ABSTRACT The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis (M. tuberculosis) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680, and (iv) simultaneously detect five clinically important NTM (M. avium, M. intracellulare, M. abscessus, M. massiliense, and M. kansasii) by targeting IS1311, DT1, mass_3210, and mkan_rs12360. An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 103 and 104 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis, M. tuberculosis Beijing genotype, and major NTM species. PMID:28659320
Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae
2017-09-01
The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis ( M. tuberculosis ) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680 , and (iv) simultaneously detect five clinically important NTM ( M. avium , M. intracellulare , M. abscessus , M. massiliense , and M. kansasii ) by targeting IS 1311 , DT1, mass_3210 , and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10 3 and 10 4 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis , M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.
Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging
NASA Astrophysics Data System (ADS)
Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier
2017-07-01
Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.
Digital image compression for a 2f multiplexing optical setup
NASA Astrophysics Data System (ADS)
Vargas, J.; Amaya, D.; Rueda, E.
2016-07-01
In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.
Quantitative multiplex detection of pathogen biomarkers
Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.
2016-02-09
The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.
Quantitative multiplex detection of pathogen biomarkers
Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K
2014-10-14
The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.
Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress
USDA-ARS?s Scientific Manuscript database
Lolium temulentum is a valuable model grass species for the study of stress in forage and turf grasses. Gene expression analysis by quantitative real time RT-PCR relies on the use of proper internal standards. The aim of this study was to identify and evaluate reference genes for use in real-time q...
USDA-ARS?s Scientific Manuscript database
The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...
Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali
2012-03-01
Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Weiying; Lou, Inchio; Ung, Wai Kin; Kong, Yijun; Mok, Kai Meng
2014-06-01
Freshwater algal blooms have become a growing concern world-wide. They are caused by a high level of cyanobacteria, predominantly Microcystis spp. and Cylindrospermopsis raciborskii, which can produce microcystin and cylindrospermopsin, respectively. Longtime exposure to these cyanotoxins may affect public health, thus reliable detection, quantification, and enumeration of these harmful algae species has become a priority in water quality management. Traditional manual enumeration of algal bloom cells primarily involves microscopic identification which limited by inaccuracy and time-consumption.With the development of molecular techniques and an increasing number of microbial sequences available in the Genbank database, the use of molecular methods can be used for more rapid, reliable, and accurate detection and quantification. In this study, multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) techniques were developed and applied for monitoring cyanobacteria Microcystis spp. and C. raciborskii in the Macau Storage Reservoir (MSR). The results showed that the techniques were successful for identifying and quantifying the species in pure cultures and mixed cultures, and proved to be a potential application for water sampling in MSR. When the target species were above 1 million cells/L, similar cell numbers estimated by microscopic enumeration and qPCR were obtained. Further quantification in water samples indicated that the ratio of the estimated number of cell by microscopy and qPCR was 0.4-12.9 for cyanobacteria and 0.2-3.9 for C. raciborskii. However, Microcystis spp. was not observed by manual enumeration, while it was detected at low levels by qPCR, suggesting that qPCR is more sensitive and accurate. Thus the molecular approaches provide an additional reliable monitoring option to traditional microscopic enumeration for the ecosystems monitoring program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hyejin; Jeong, Sinyoung; Ko, Eunbyeol
2015-05-15
Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, wemore » analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.« less
Graphite nanocomposites sensor for multiplex detection of antioxidants in food.
Ng, Khan Loon; Tan, Guan Huat; Khor, Sook Mei
2017-12-15
Butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and tert-butylhydroquinone (TBHQ) are synthetic antioxidants used in the food industry. Herein, we describe the development of a novel graphite nanocomposite-based electrochemical sensor for the multiplex detection and measurement of BHA, BHT, and TBHQ levels in complex food samples using a linear sweep voltammetry technique. Moreover, our newly established analytical method exhibited good sensitivity, limit of detection, limit of quantitation, and selectivity. The accuracy and reliability of analytical results were challenged by method validation and comparison with the results of the liquid chromatography method, where a linear correlation of more than 0.99 was achieved. The addition of sodium dodecyl sulfate as supporting additive further enhanced the LSV response (anodic peak current, I pa ) of BHA and BHT by 2- and 20-times, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson
2013-01-01
A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of those species during ripening of derived dairy products. A major increase in understanding the starter culture contribution to cheese ecosystem could be harnessed to control cheese ripening and flavor formation. Copyright © 2012 Elsevier B.V. All rights reserved.
Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)
2017-01-01
We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023
Digitally synthesized beat frequency-multiplexed fluorescence lifetime spectroscopy
Chan, Jacky C. K.; Diebold, Eric D.; Buckley, Brandon W.; Mao, Sien; Akbari, Najva; Jalali, Bahram
2014-01-01
Frequency domain fluorescence lifetime imaging is a powerful technique that enables the observation of subtle changes in the molecular environment of a fluorescent probe. This technique works by measuring the phase delay between the optical emission and excitation of fluorophores as a function of modulation frequency. However, high-resolution measurements are time consuming, as the excitation modulation frequency must be swept, and faster low-resolution measurements at a single frequency are prone to large errors. Here, we present a low cost optical system for applications in real-time confocal lifetime imaging, which measures the phase vs. frequency spectrum without sweeping. Deemed Lifetime Imaging using Frequency-multiplexed Excitation (LIFE), this technique uses a digitally-synthesized radio frequency comb to drive an acousto-optic deflector, operated in a cat’s-eye configuration, to produce a single laser excitation beam modulated at multiple beat frequencies. We demonstrate simultaneous fluorescence lifetime measurements at 10 frequencies over a bandwidth of 48 MHz, enabling high speed frequency domain lifetime analysis of single- and multi-component sample mixtures. PMID:25574449
Zhou, Xian; Chen, Xue
2011-05-09
The digital coherent receivers combine coherent detection with digital signal processing (DSP) to compensate for transmission impairments, and therefore are a promising candidate for future high-speed optical transmission system. However, the maximum symbol rate supported by such real-time receivers is limited by the processing rate of hardware. In order to cope with this difficulty, the parallel processing algorithms is imperative. In this paper, we propose a novel parallel digital timing recovery loop (PDTRL) based on our previous work. Furthermore, for increasing the dynamic dispersion tolerance range of receivers, we embed a parallel adaptive equalizer in the PDTRL. This parallel joint scheme (PJS) can be used to complete synchronization, equalization and polarization de-multiplexing simultaneously. Finally, we demonstrate that PDTRL and PJS allow the hardware to process 112 Gbit/s POLMUX-DQPSK signal at the hundreds MHz range. © 2011 Optical Society of America
Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro
2012-06-27
The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.
Multiplexer and time duration measuring circuit
Gray, Jr., James
1980-01-01
A multiplexer device is provided for multiplexing data in the form of randomly developed, variable width pulses from a plurality of pulse sources to a master storage. The device includes a first multiplexer unit which includes a plurality of input circuits each coupled to one of the pulse sources, with all input circuits being disabled when one input circuit receives an input pulse so that only one input pulse is multiplexed by the multiplexer unit at any one time.
Multiplexed MRM-based assays for the quantitation of proteins in mouse plasma and heart tissue.
Percy, Andrew J; Michaud, Sarah A; Jardim, Armando; Sinclair, Nicholas J; Zhang, Suping; Mohammed, Yassene; Palmer, Andrea L; Hardie, Darryl B; Yang, Juncong; LeBlanc, Andre M; Borchers, Christoph H
2017-04-01
The mouse is the most commonly used laboratory animal, with more than 14 million mice being used for research each year in North America alone. The number and diversity of mouse models is increasing rapidly through genetic engineering strategies, but detailed characterization of these models is still challenging because most phenotypic information is derived from time-consuming histological and biochemical analyses. To expand the biochemists' toolkit, we generated a set of targeted proteomic assays for mouse plasma and heart tissue, utilizing bottom-up LC/MRM-MS with isotope-labeled peptides as internal standards. Protein quantitation was performed using reverse standard curves, with LC-MS platform and curve performance evaluated by quality control standards. The assays comprising the final panel (101 peptides for 81 proteins in plasma; 227 peptides for 159 proteins in heart tissue) have been rigorously developed under a fit-for-purpose approach and utilize stable-isotope labeled peptides for every analyte to provide high-quality, precise relative quantitation. In addition, the peptides have been tested to be interference-free and the assay is highly multiplexed, with reproducibly determined protein concentrations spanning >4 orders of magnitude. The developed assays have been used in a small pilot study to demonstrate their application to molecular phenotyping or biomarker discovery/verification studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Miju; Yoo, Insuk; Lee, Shin-Young; Hong, Yeun; Kim, Hae-Yeong
2016-11-01
The TaqMan® real-time PCR assay using the mitochondrial D-loop region was developed for the quantitative detection of pork in processed meat products. The newly designed primers and probe specifically amplified pork without any cross-reactivity with non-target animal species. The limit of detection of the real-time PCR assay was 0.1pg of heat-treated pork meat and 0.1% (w/w) pork meat in beef and chicken meat mixtures. The quantitative real-time PCR assay was applied to analyze the pork meat content in 22 commercial processed meat products including jerkies, press hams, sausages, hamburger patties and steaks, grilled short rib patties, and nuggets. The developed real-time PCR method was able to detect pork meat in various types of processed meat products that declared the use of pork meat on their label. All processed meat products that declared no use of pork meat showed a negative result in the assay. The method developed in this study showed sensitivity and specificity in the quantification of pork meat in commercial processed meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung
2016-10-01
In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4 × 4 LGSO crystals, each with a dimension of 3 × 3 × 20 mm3, and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.
The U.S. EPA is currently evaluating rapid, real-time quantitative PCR (qPCR) methods for determining recreational water quality based on measurements of fecal indicator bacteria DNA sequences. In order to potentially use qPCR for other Clean Water Act needs, such as updating cri...
USDA-ARS?s Scientific Manuscript database
A SYBR® Green-based real-time quantitative reverse transcription PCR (qRT-PCR) assay in combination with melt curve analysis (MCA) was developed for the detection of nine grapevine viruses. The detection limits for singleplex qRT-PCR for all nine grapevine viruses were determined to be in the range ...
Chen, Yue-yue; Peng, Zhi-lan; Liu, Shan-ling; He, Bing; Hu, Min
2007-06-01
To establish a method of using real-time fluorescence quantitative PCR and RT-PCR to detect the E6 and E7 genes of human papillomavirus type 16 (HPV-16). Plasmids containing HPV-16 E6 or E7 were used to generate absolute standard curves. Three cervical carcinoma cell lines CaSki, SiHa and HeLa were tested by real-time fluorescence quantitative PCR and RT-PCR analyses for the expressions of HPV-16 E6 and E7. The correlation coefficients of standard curves were larger than 0. 99, and the PCR efficiency was more than 90%. The relative levels of HPV-16 E6 and E7 DNA and RNA were CaSki>SiHa>HeLa cell. HPV-16 E6 and E7 quantum by real-time fluorescence quantitative PCR and RT-PCR analyses may serve as a reliable and sensitive tool. This study provides the possibility of further researches on the relationship between HPV-16 E6 or E7 copy number and cervical carcinoma.
A three-gene panel on urine increases PSA specificity in the detection of prostate cancer.
Rigau, Marina; Ortega, Israel; Mir, Maria Carmen; Ballesteros, Carlos; Garcia, Marta; Llauradó, Marta; Colás, Eva; Pedrola, Núria; Montes, Melania; Sequeiros, Tamara; Ertekin, Tugce; Majem, Blanca; Planas, Jacques; Ruiz, Anna; Abal, Miguel; Sánchez, Alex; Morote, Juan; Reventós, Jaume; Doll, Andreas
2011-12-01
Several studies have demonstrated the usefulness of monitoring an RNA transcript, such as PCA3, in post-prostate massage (PM) urine for increasing the specificity of prostate-specific antigen (PSA) in the detection of prostate cancer (PCa). However, a single marker may not necessarily reflect the multifactorial nature of PCa. We analyzed post-PM urine samples from 154 consecutive patients, who presented for prostate biopsies because of elevated serum PSA (>4 ng/ml) and/or abnormal digital rectal exam. We tested whether the putative PCa biomarkers PSMA, PSGR, and PCA3 could be detected by quantitative real-time PCR in post-PM urine sediment. We combined these findings to test if a combination of these biomarkers could improve the specificity of actual diagnosis. Afterwards, we specifically tested our model for clinical usefulness in the PSA diagnostic "gray zone" (4-10 ng/ml) on a target subset of 82 men with no prior biopsy. By univariate analysis, we found that the PSMA, PSGR, and PCA3 scores were significant predictors of PCa. Using a multiplex model, the area under the multi receiver-operating characteristic curve was 0.74 versus 0.82 in the diagnostic "gray zone." Fixing the sensitivity at 96%, we obtained a specificity of 34% and 50% in the gray zone. Taken together, these results provide a strategy for the development of a more accurate model for PCa diagnosis. In the future, a multiplexed, urine-based diagnostic test for PCa with a higher specificity, but the same sensitivity as the serum-PSA test, could be used to determine better which patients should undergo biopsy. Copyright © 2011 Wiley Periodicals, Inc.
Waggoner, Jesse J; Gresh, Lionel; Vargas, Maria Jose; Ballesteros, Gabriela; Tellez, Yolanda; Soda, K James; Sahoo, Malaya K; Nuñez, Andrea; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A
2016-12-15
Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) cocirculate in Nicaragua. In this study, we sought to compare the quantified viremia and clinical presentation of patients infected with 1 or more of these viruses. Acute-phase serum samples from 346 patients with a suspected arboviral illness were tested using a multiplex real-time reverse-transcription polymerase chain reaction for ZIKV, CHIKV, and DENV. Viremia was quantitated for each detected virus, and clinical information from request forms submitted with each sample was recorded. A total of 263 patients tested positive for 1 or more viruses: 192 patients tested positive for a single virus (monoinfections) and 71 patients tested positive for 2 or all 3 viruses (coinfections). Quantifiable viremia was lower in ZIKV infections compared with CHIKV or DENV (mean 4.70 vs 6.42 and 5.84 log 10 copies/mL serum, respectively; P < .001 for both comparisons), and for each virus, mean viremia was significantly lower in coinfections than in monoinfections. Compared with patients with CHIKV or DENV, ZIKV patients were more likely to have a rash (P < .001) and less likely to be febrile (P < .05) or require hospitalization (P < .001). Among all patients, hospitalized cases had higher viremia than those who did not require hospitalization (7.1 vs 4.1 log10 copies/mL serum, respectively; P < .001). ZIKV, CHIKV, and DENV result in similar clinical presentations, and coinfections may be relatively common. Our findings illustrate the need for accurate, multiplex diagnostics for patient care and epidemiologic surveillance. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.
Waggoner, Jesse J.; Gresh, Lionel; Vargas, Maria Jose; Ballesteros, Gabriela; Tellez, Yolanda; Soda, K. James; Sahoo, Malaya K.; Nuñez, Andrea; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A.
2016-01-01
Background. Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) cocirculate in Nicaragua. In this study, we sought to compare the quantified viremia and clinical presentation of patients infected with 1 or more of these viruses. Methods. Acute-phase serum samples from 346 patients with a suspected arboviral illness were tested using a multiplex real-time reverse-transcription polymerase chain reaction for ZIKV, CHIKV, and DENV. Viremia was quantitated for each detected virus, and clinical information from request forms submitted with each sample was recorded. Results. A total of 263 patients tested positive for 1 or more viruses: 192 patients tested positive for a single virus (monoinfections) and 71 patients tested positive for 2 or all 3 viruses (coinfections). Quantifiable viremia was lower in ZIKV infections compared with CHIKV or DENV (mean 4.70 vs 6.42 and 5.84 log10 copies/mL serum, respectively; P < .001 for both comparisons), and for each virus, mean viremia was significantly lower in coinfections than in monoinfections. Compared with patients with CHIKV or DENV, ZIKV patients were more likely to have a rash (P < .001) and less likely to be febrile (P < .05) or require hospitalization (P < .001). Among all patients, hospitalized cases had higher viremia than those who did not require hospitalization (7.1 vs 4.1 log10 copies/mL serum, respectively; P < .001). Conclusions. ZIKV, CHIKV, and DENV result in similar clinical presentations, and coinfections may be relatively common. Our findings illustrate the need for accurate, multiplex diagnostics for patient care and epidemiologic surveillance. PMID:27578819
Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON
NASA Astrophysics Data System (ADS)
Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling
2017-12-01
WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.
Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-05-28
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.
Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-01-01
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087
Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long
2018-03-05
Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Jung, Jae Hwan; Kim, Gha-Young; Seo, Tae Seok
2011-10-21
Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (∼10(4)) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.
Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Dickinson, Matthew
2009-01-01
Primers and probes based on the 23S rRNA gene have been utilized to design a range of real-time PCR assays for routine phytoplasma diagnostics. These assays have been authenticated as phytoplasma specific and shown to be at least as sensitive as nested PCR. A universal assay to detect all phytoplasmas has been developed, along with a multiplex assay to discriminate 16SrI group phytoplasmas from members of all of the other 16Sr groups. Assays for the 16SrII, 16SrIV, and 16SrXII groups have also been developed to confirm that the 23S rRNA gene can be used to design group-specific assays. PMID:19270148
Staggemeier, Rodrigo; Pilger, Diogo André; Spilki, Fernando Rosado; Cantarelli, Vlademir Vicente
2014-01-01
A novel SYBR® green-real time polymerase chain reaction (qPCR) was developed to detect two Bartonella species, B. henselae and B. clarridgeiae, directly from blood samples. The test was used in blood samples obtained from cats living in animal shelters in Southern Brazil. Results were compared with those obtained by conventional PCR targeting Bartonella spp. Among the 47 samples analyzed, eight were positive using the conventional PCR and 12 were positive using qPCR. Importantly, the new qPCR detected the presence of both B. henselae and B. clarridgeiae in two samples. The results show that the qPCR described here may be a reliable tool for the screening and differentiation of two important Bartonella species. PMID:24626408
Staggemeier, Rodrigo; Pilger, Diogo André; Spilki, Fernando Rosado; Cantarelli, Vlademir Vicente
2014-01-01
A novel SYBR® green-real time polymerase chain reaction (qPCR) was developed to detect two Bartonella species, B. henselae and B. clarridgeiae, directly from blood samples. The test was used in blood samples obtained from cats living in animal shelters in Southern Brazil. Results were compared with those obtained by conventional PCR targeting Bartonella spp. Among the 47 samples analyzed, eight were positive using the conventional PCR and 12 were positive using qPCR. Importantly, the new qPCR detected the presence of both B. henselae and B. clarridgeiae in two samples. The results show that the qPCR described here may be a reliable tool for the screening and differentiation of two important Bartonella species.
Zhang, Yunqing; Zhang, Xinju; Xu, Xiao; Kang, Zhihua; Li, Shibao; Zhang, Chen; Su, Bing
2014-01-01
A multiplex snapback primer system was developed for the simultaneous detection of JAK2 V617F and MPL W515L/K mutations in Philadelphia chromosome- (Ph-) negative myeloproliferative neoplasms (MPNs). The multiplex system comprises two snapback versus limiting primer sets for JAK2 and MPL mutation enrichment and detection, respectively. Linear-After exponential (LATE) PCR strategy was employed for the primer design to maximize the amplification efficiency of the system. Low ionic strength buffer and rapid PCR protocol allowed for selective amplification of the mutant alleles. Amplification products were analyzed by melting curve analysis for mutation identification. The multiplex system archived 0.1% mutation load sensitivity and <5% coefficient of variation inter-/intra-assay reproducibility. 120 clinical samples were tested by the multiplex snapback primer assay, and verified with amplification refractory system (ARMS), quantitative PCR (qPCR) and Sanger sequencing method. The multiplex system, with a favored versatility, provided the molecular diagnosis of Ph-negative MPNs with a suitable implement and simplified the genetic test process. PMID:24729973
Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina
2014-01-01
Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.
Percy, Andrew J; Yang, Juncong; Hardie, Darryl B; Chambers, Andrew G; Tamura-Wells, Jessica; Borchers, Christoph H
2015-06-15
Spurred on by the growing demand for panels of validated disease biomarkers, increasing efforts have focused on advancing qualitative and quantitative tools for more highly multiplexed and sensitive analyses of a multitude of analytes in various human biofluids. In quantitative proteomics, evolving strategies involve the use of the targeted multiple reaction monitoring (MRM) mode of mass spectrometry (MS) with stable isotope-labeled standards (SIS) used for internal normalization. Using that preferred approach with non-invasive urine samples, we have systematically advanced and rigorously assessed the methodology toward the precise quantitation of the largest, multiplexed panel of candidate protein biomarkers in human urine to date. The concentrations of the 136 proteins span >5 orders of magnitude (from 8.6 μg/mL to 25 pg/mL), with average CVs of 8.6% over process triplicate. Detailed here is our quantitative method, the analysis strategy, a feasibility application to prostate cancer samples, and a discussion of the utility of this method in translational studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Mohammed, Yassene; Percy, Andrew J; Chambers, Andrew G; Borchers, Christoph H
2015-02-06
Multiplexed targeted quantitative proteomics typically utilizes multiple reaction monitoring and allows the optimized quantification of a large number of proteins. One challenge, however, is the large amount of data that needs to be reviewed, analyzed, and interpreted. Different vendors provide software for their instruments, which determine the recorded responses of the heavy and endogenous peptides and perform the response-curve integration. Bringing multiplexed data together and generating standard curves is often an off-line step accomplished, for example, with spreadsheet software. This can be laborious, as it requires determining the concentration levels that meet the required accuracy and precision criteria in an iterative process. We present here a computer program, Qualis-SIS, that generates standard curves from multiplexed MRM experiments and determines analyte concentrations in biological samples. Multiple level-removal algorithms and acceptance criteria for concentration levels are implemented. When used to apply the standard curve to new samples, the software flags each measurement according to its quality. From the user's perspective, the data processing is instantaneous due to the reactivity paradigm used, and the user can download the results of the stepwise calculations for further processing, if necessary. This allows for more consistent data analysis and can dramatically accelerate the downstream data analysis.
Shao, Ning; Jiang, Shi-Meng; Zhang, Miao; Wang, Jing; Guo, Shu-Juan; Li, Yang; Jiang, He-Wei; Liu, Cheng-Xi; Zhang, Da-Bing; Yang, Li-Tao; Tao, Sheng-Ce
2014-01-21
The monitoring of genetically modified organisms (GMOs) is a primary step of GMO regulation. However, there is presently a lack of effective and high-throughput methodologies for specifically and sensitively monitoring most of the commercialized GMOs. Herein, we developed a multiplex amplification on a chip with readout on an oligo microarray (MACRO) system specifically for convenient GMO monitoring. This system is composed of a microchip for multiplex amplification and an oligo microarray for the readout of multiple amplicons, containing a total of 91 targets (18 universal elements, 20 exogenous genes, 45 events, and 8 endogenous reference genes) that covers 97.1% of all GM events that have been commercialized up to 2012. We demonstrate that the specificity of MACRO is ~100%, with a limit of detection (LOD) that is suitable for real-world applications. Moreover, the results obtained of simulated complex samples and blind samples with MACRO were 100% consistent with expectations and the results of independently performed real-time PCRs, respectively. Thus, we believe MACRO is the first system that can be applied for effectively monitoring the majority of the commercialized GMOs in a single test.
Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich
2013-10-30
Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.
USDA-ARS?s Scientific Manuscript database
The “top-six” non-O157 STEC (O26, O45, O103, O111, O121, and O145) most frequently associated with outbreaks and cases of food-borne illnesses have been declared as adulterants in beef by the USDA Food Safety and Inspection Service (FSIS), and regulatory testing for these serogroups in beef began in...
Ramilo, Andrea; Navas, J Ignacio; Villalba, Antonio; Abollo, Elvira
2013-05-27
Bonamia ostreae and B. exitiosa have caused mass mortalities of various oyster species around the world and co-occur in some European areas. The World Organisation for Animal Health (OIE) has included infections with both species in the list of notifiable diseases. However, official methods for species-specific diagnosis of either parasite have certain limitations. In this study, new species-specific conventional PCR (cPCR) and real-time PCR techniques were developed to diagnose each parasite species. Moreover, a multiplex PCR method was designed to detect both parasites in a single assay. The analytical sensitivity and specificity of each new method were evaluated. These new procedures were compared with 2 OIE-recommended methods, viz. standard histology and PCR-RFLP. The new procedures showed higher sensitivity than the OIE recommended ones for the diagnosis of both species. The sensitivity of tests with the new primers was higher using oyster gills and gonad tissue, rather than gills alone. The lack of a 'gold standard' prevented accurate estimation of sensitivity and specificity of the new methods. The implementation of statistical tools (maximum likelihood method) for the comparison of the diagnostic tests showed the possibility of false positives with the new procedures, although the absence of a gold standard precluded certainty. Nevertheless, all procedures showed negative results when used for the analysis of oysters from a Bonamia-free area.
Traore, Lassina; Tao, Issoufou; Bisseye, Cyrille; Diarra, Birama; Compaore, Tegwindé Rebeca; Nebie, Yacouba; Assih, Maleki; Ouedraogo, Alice; Zohoncon, Theodora; Djigma, Florencia; Ouermi, Djénéba; Barro, Nicolas; Sanou, Mahamoudou; Ouedraogo, Rasmata Traore; Simpore, Jacques
2016-01-01
In most developing countries, Cytomegalovirus (CMV), Epstein Barr virus (EBV) and Herpes virus 6 (HHV-6) are not diagnosed in blood donors. The aim of this study is to determine the prevalence of these viruses in blood donors from the city of Ouagadougou, Burkina Faso. The study included 198 blood donors of the Regional Blood Transfusion Centre of Ouagadougou. Multiplex real time PCR was used to diagnose the three viruses. Statistical analysis was performed with the software EpiInfo version 6 and SPSS version 17. P values ≤ 0.05 were considered significant. Of 198 samples tested, 18 (9.1%) were positive to at least one of the three viruses. In fact, 10 (5.1%) were positive for EBV, 10 (5.1%) positive for CMV and 12 (6.1%) positive for HHV-6. Viral infections were higher in women than in men, EBV (8,6% versus 4.3%), CMV (8.6% versus 3.7%) and HHV-6 (11.4% versus 4.9%). EBV / CMV / HHV-6 co-infection was found in 3.5% (7/198) of blood donors. The prevalence recorded in this study is low compared to those found in previous studies from the sub-region among blood donors. The molecular diagnostic test used in our study could explain the differences with previous studies.
Hui, Yiang; Manna, Pradip; Ou, Joyce J; Kerley, Spencer; Zhang, Cunxian; Sung, C James; Lawrence, W Dwayne; Quddus, M Ruhul
2015-09-01
High-risk human papillomavirus infection usually is seen at one anatomic site in an individual. Rarely, infection at multiple anatomic sites of the female lower genital tract in the same individual is encountered either simultaneously and/or at a later date. The current study identifies the various subtypes of high-risk human papillomavirus infection in these scenarios and analyzes the potential significance of these findings. High-risk human papillomavirus infection involving 22 anatomic sites from 7 individuals was identified after institutional review board approval. Residual paraffin-embedded tissue samples were retrieved, and all 15 high-risk human papillomavirus were identified and viral load quantified using multiplex real-time polymerase chain reaction-based method. Multiple high-risk human papillomavirus subtypes were identified in 32% of the samples and as many as 5 different subtypes of high-risk human papillomavirus infection in a single anatomic site. In general, each anatomic site has unique combination of viral subtypes, although one individual showed overlapping subtypes in the vagina, cervix, and vulvar samples. Higher viral load and rare subtypes are more frequent in younger patients and in dysplasia compared with carcinoma. Follow-up ranging from 3 to 84 months revealed persistent high-risk human papillomavirus infection in 60% of cases. Copyright © 2015 Elsevier Inc. All rights reserved.
Eyeglasses based wireless electrolyte and metabolite sensor platform.
Sempionatto, Juliane R; Nakagawa, Tatsuo; Pavinatto, Adriana; Mensah, Samantha T; Imani, Somayeh; Mercier, Patrick; Wang, Joseph
2017-05-16
The demand for wearable sensors has grown rapidly in recent years, with increasing attention being given to epidermal chemical sensing. Here, we present the first example of a fully integrated eyeglasses wireless multiplexed chemical sensing platform capable of real-time monitoring of sweat electrolytes and metabolites. The new concept has been realized by integrating an amperometric lactate biosensor and a potentiometric potassium ion-selective electrode into the two nose-bridge pads of the glasses and interfacing them with a wireless electronic backbone placed on the glasses' arms. Simultaneous real-time monitoring of sweat lactate and potassium levels with no apparent cross-talk is demonstrated along with wireless signal transduction. The electrochemical sensors were screen-printed on polyethylene terephthalate (PET) stickers and placed on each side of the glasses' nose pads in order to monitor sweat metabolites and electrolytes. The electronic backbone on the arms of the glasses' frame offers control of the amperometric and potentiometric transducers and enables Bluetooth wireless data transmission to the host device. The new eyeglasses system offers an interchangeable-sensor feature in connection with a variety of different nose-bridge amperometric and potentiometric sensor stickers. For example, the lactate bridge-pad sensor was replaced with a glucose one to offer convenient monitoring of sweat glucose. Such a fully integrated wireless "Lab-on-a-Glass" multiplexed biosensor platform can be readily expanded for the simultaneous monitoring of additional sweat electrolytes and metabolites.
Vital, Pierangeli G; Van Ha, Nguyen Thi; Tuyet, Le Thi Hong; Widmer, Kenneth W
2017-02-01
Surface water samples in Vietnam were collected from the Saigon River, rural and suburban canals, and urban runoff canals in Ho Chi Minh City, Vietnam, and were processed to enumerate Escherichia coli. Quantification was done through membrane filtration and quantitative real-time polymerase chain reaction (PCR). Mean log colony-forming unit (CFU)/100 ml E. coli counts in the dry season for river/suburban canals and urban canals were log 2.8 and 3.7, respectively, using a membrane filtration method, while using Taqman quantitative real-time PCR they were log 2.4 and 2.8 for river/suburban canals and urban canals, respectively. For the wet season, data determined by the membrane filtration method in river/suburban canals and urban canals samples had mean counts of log 3.7 and 4.1, respectively. While mean log CFU/100 ml counts in the wet season using quantitative PCR were log 3 and 2, respectively. Additionally, the urban canal samples were significantly lower than those determined by conventional culture methods for the wet season. These results show that while quantitative real-time PCR can be used to determine levels of fecal indicator bacteria in surface waters, there are some limitations to its application and it may be impacted by sources of runoff based on surveyed samples.
Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.
Harris, S C; Walker, D S
2000-09-01
This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.
Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.
ABSTRACT
DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...
Equivalence of time-multiplexed and frequency-multiplexed signals in digital communications.
NASA Technical Reports Server (NTRS)
Timor, U.
1972-01-01
In comparing different techniques for multiplexing N binary data signals into a single channel, time-division multiplexing (TDM) is known to have a theoretic efficiency of 100 percent (neglecting sync power) and thus seems to outperform frequency-division multiplexing systems (FDM). By considering more general FDM systems, we will show that both TDM and FDM are equivalent and have an efficiency of 100 percent. The difference between the systems is in the multiplexing and demultiplexing subsystems, but not in the performance or in the generated waveforms.
Lass, Anna; Szostakowska, Beata; Korzeniewski, Krzysztof; Karanis, Panagiotis
2017-10-01
Giardia intestinalis is a protozoan parasite, transmitted to humans and animals by the faecal-oral route, mainly through contaminated water and food. Knowledge about the distribution of this parasite in surface water in Poland is fragmentary and incomplete. Accordingly, 36 environmental water samples taken from surface water reservoirs and wells were collected in Pomerania and Warmia-Masuria provinces, Poland. The 50 L samples were filtered and subsequently analysed with three molecular detection methods: loop-mediated isothermal amplification (LAMP), real-time polymerase chain reaction (real-time PCR) and nested PCR. Of the samples examined, Giardia DNA was found in 15 (42%) samples with the use of LAMP; in 12 (33%) of these samples, Giardia DNA from this parasite was also detected using real-time PCR; and in 9 (25%) using nested PCR. Sequencing of selected positive samples confirmed that the PCR products were fragments of the Giardia intestinalis small subunit rRNA gene. Genotyping using multiplex real-time PCR indicated the presence of assemblages A and B, with the latter predominating. The results indicate that surface water in Poland, as well as water taken from surface wells, may be a source of Giardia strains which are potentially pathogenic for humans. It was also demonstrated that LAMP assay is more sensitive than the other two molecular assays.
Whiteaker, Jeffrey R.; Zhao, Lei; Yan, Ping; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Paulovich, Amanda G.
2015-01-01
In most cell signaling experiments, analytes are measured one Western blot lane at a time in a semiquantitative and often poorly specific manner, limiting our understanding of network biology and hindering the translation of novel therapeutics and diagnostics. We show the feasibility of using multiplex immuno-MRM for phospho-pharmacodynamic measurements, establishing the potential for rapid and precise quantification of cell signaling networks. A 69-plex immuno-MRM assay targeting the DNA damage response network was developed and characterized by response curves and determinations of intra- and inter-assay repeatability. The linear range was ≥3 orders of magnitude, the median limit of quantification was 2.0 fmol/mg, the median intra-assay variability was 10% CV, and the median interassay variability was 16% CV. The assay was applied in proof-of-concept studies to immortalized and primary human cells and surgically excised cancer tissues to quantify exposure–response relationships and the effects of a genomic variant (ATM kinase mutation) or pharmacologic (kinase) inhibitor. The study shows the utility of multiplex immuno-MRM for simultaneous quantification of phosphorylated and nonmodified peptides, showing feasibility for development of targeted assay panels to cell signaling networks. PMID:25987412
Yin, Chang-Xin; Jiang, Qian-Li; He, Han; Yu, Guo-Pan; Xu, Yue; Meng, Fan-Yi; Yang, Mo
2012-02-01
This study was aimed to establish a method for rapid detecting BK polyomavirus (BKV) and to investigate the feasibility and value used in leukemia patients undergoing hematopoietic stem cell transplantation. Primers were designed according to BKV gene sequence; the quantitative standards for BKV and a real-time fluorescent quantitative PCR for BKV were established. The BKV level in urine samples from 36 patients after hematopoietic stem cell transplantation were detected by established method. The results showed that the standard of reconstructed plasmid and real time fluorescent quantitative PCR method were successfully established, its good specificity, sensitivity and stability were confirmed by experiments. BKV was found in 55.56% of urine samples, and the BKV load in urine was 2.46 × 10(4) - 7.8 × 10(9) copy/ml. It is concluded that the establishment of real-time fluorescent quantitative PCR for BKV detection provides a method for early diagnosis of the patients with hemorrhagic cystitis after hematopoietic stem cell transplantation.