Science.gov

Sample records for multiplex rt-pcr assay

  1. Comparison of the conventional multiplex RT-PCR, real time RT-PCR and Luminex xTAG® RVP fast assay for the detection of respiratory viruses.

    PubMed

    Choudhary, Manohar L; Anand, Siddharth P; Tikhe, Shamal A; Walimbe, Atul M; Potdar, Varsha A; Chadha, Mandeep S; Mishra, Akhilesh C

    2016-01-01

    Detection of respiratory viruses using polymerase chain reaction (PCR) is sensitive, specific and cost effective, having huge potential for patient management. In this study, the performance of an in-house developed conventional multiplex RT-PCR (mRT-PCR), real time RT-PCR (rtRT-PCR) and Luminex xTAG(®) RVP fast assay (Luminex Diagnostics, Toronto, Canada) for the detection of respiratory viruses was compared. A total 310 respiratory clinical specimens predominantly from pediatric patients, referred for diagnosis of influenza A/H1N1pdm09 from August 2009 to March 2011 were tested to determine performance characteristic of the three methods. A total 193 (62.2%) samples were detected positive for one or more viruses by mRT-PCR, 175 (56.4%) samples by real time monoplex RT-PCR, and 138 (44.5%) samples by xTAG(®) RVP fast assay. The overall sensitivity of mRT-PCR was 96.9% (95% CI: 93.5, 98.8), rtRT-PCR 87.9% (95% CI: 82.5, 92.1) and xTAG(®) RVP fast was 68.3% (95% CI: 61.4, 74.6). Rhinovirus was detected most commonly followed by respiratory syncytial virus group B and influenza A/H1N1pdm09. The monoplex real time RT-PCR and in-house developed mRT-PCR are more sensitive, specific and cost effective than the xTAG(®) RVP fast assay.

  2. Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing's sarcoma.

    PubMed Central

    Downing, J. R.; Khandekar, A.; Shurtleff, S. A.; Head, D. R.; Parham, D. M.; Webber, B. L.; Pappo, A. S.; Hulshof, M. G.; Conn, W. P.; Shapiro, D. N.

    1995-01-01

    Cytogenetic analysis has defined specific translocations associated with two of the most common small round cell tumors of childhood, t(11;22) in Ewing's sarcoma and t(2;13) in alveolar rhabdomyosarcoma. We and others have previously demonstrated the diagnostic utility of a reverse transcriptase polymerase chain reaction (RT-PCR) assay for the detection of the t(11;22) encoded EWS/FLI-1 chimeric message in Ewing's sarcoma. More recently, we have cloned the t(2;13)(q35;q14) translocation and have shown that it results in the fusion of the PAX3 gene on chromosome 2 to FKHR, a novel member of the fork-head family of transcription factors on chromosome 13. To define the morphological spectrum of childhood sarcomas that express the t(2;13) encoded PAX3/FKHR chimeric message, we have performed RT-PCR analysis on samples from 44 primary pediatric sarcomas and 8 sarcoma cell lines. PAX3/FKHR chimeric messages were detected in 24 of 27 alveolar, 2 of 12 embryonal, and 0 of 1 pleomorphic rhabdomyosarcoma and in 1 of 2 ectomesenchymomas. In contrast, none of 8 Ewing's sarcomas or 2 undifferentiated sarcomas expressed this message. Chimeric transcripts were detected in all cases with cytogenetic evidence of the (2;13) translocation, and in each case the chimeric PAX3/FKHR message had the identical junction sequence, suggesting that genomic chromosome breaks were clustered in a single intron in both genes. By combining the PAX3/FKHR RT-PCR assay with primers for detection of the Ewing's sarcoma t(11;22) encoded EWS/FLI-1 chimeric transcript, we have developed a multiplex RT-PCR reaction that allows the rapid and accurate identification of either translocation in a biopsy sample. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7887445

  3. Detection of enteroviruses and parechoviruses by a multiplex real-time RT-PCR assay.

    PubMed

    Pabbaraju, Kanti; Wong, Sallene; Wong, Anita A; Tellier, Raymond

    2015-04-01

    Detection of all enteroviruses while excluding cross-detection of rhinoviruses is challenging because of sequence similarities in the commonly used conserved targets for molecular assays. In addition, simultaneous detection and differentiation of enteroviruses and parechoviruses would be beneficial because of a similar clinical picture presented by these viruses. A sensitive and specific real-time RT-PCR protocol that can address these clinical needs would be valuable to molecular diagnostic laboratories. Here we report a multiplex nucleic acid based assay using hydrolysis probes targeting the 5' non-translated region for the detection and differentiation of enteroviruses and parechoviruses without cross-detection of rhinoviruses. This assay has been shown to detect enteroviruses belonging to the different species in a variety of specimen types without detecting the different species of rhinoviruses. Laboratory validation shows the assay to be sensitive, specific, reproducible, easy to set up and uses generic cycling conditions. This assay can be implemented for diagnostic testing of patient samples in a high throughput fashion.

  4. Development of a multiplex real-time RT-PCR assay for simultaneous detection of dengue and chikungunya viruses.

    PubMed

    Cecilia, D; Kakade, M; Alagarasu, K; Patil, J; Salunke, A; Parashar, D; Shah, P S

    2015-01-01

    Dengue and chikungunya viruses co-circulate and cause infections that start with similar symptoms but progress to radically different outcomes. Therefore, an early diagnostic test that can differentiate between the two is needed. A single-step multiplex real-time RT-PCR assay was developed that can simultaneously detect and quantitate RNA of all dengue virus (DENV) serotypes and chikungunya virus (CHIKV). The sensitivity was 100 % for DENV and 95.8 % for CHIKV, whilst the specificity was 100 % for both viruses when compared with conventional RT-PCR. The detection limit ranged from 1 to 50 plaque-forming units. The assay was successfully used for differential diagnosis of dengue and chikungunya in Pune, where the viruses co-circulate.

  5. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    SciTech Connect

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  6. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth and look-alike disease viruses

    SciTech Connect

    Hindson, B J; Baker, B R; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; Reid, S M; Ebert, K; Ferris, N P; King, D P

    2007-09-18

    A high-throughput multiplexed assay (Multiplex Version 1.0) was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRTPCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  7. The development of a mRNA multiplex RT-PCR assay for the definitive identification of body fluids.

    PubMed

    Fleming, Rachel I; Harbison, SallyAnn

    2010-07-01

    With current methodology, DNA profiling can identify an individual from a sample of biological material but it does not reveal what body fluid or tissue source the DNA profile originated from. We have developed a multiplex PCR system using messenger RNA (mRNA) that can identify blood, saliva, semen and menstrual blood in individual stains or in mixtures of body fluids. Messenger RNA transcripts specific to each type of body fluid have been identified and a multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) system developed to identify these body fluids along with three housekeeping genes. This multiplex can detect semen and seminal fluid (semen without spermatozoa present). Furthermore, we have targeted the co-isolation of RNA and DNA from the same sample and, with the RT-PCR multiplex, we can determine the type of body fluid present as well as generate a DNA profile(s) from the same stain.

  8. The development of a mRNA multiplex RT-PCR assay for the definitive identification of body fluids.

    PubMed

    Fleming, Rachel I; Harbison, SallyAnn

    2010-07-01

    With current methodology, DNA profiling can identify an individual from a sample of biological material but it does not reveal what body fluid or tissue source the DNA profile originated from. We have developed a multiplex PCR system using messenger RNA (mRNA) that can identify blood, saliva, semen and menstrual blood in individual stains or in mixtures of body fluids. Messenger RNA transcripts specific to each type of body fluid have been identified and a multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) system developed to identify these body fluids along with three housekeeping genes. This multiplex can detect semen and seminal fluid (semen without spermatozoa present). Furthermore, we have targeted the co-isolation of RNA and DNA from the same sample and, with the RT-PCR multiplex, we can determine the type of body fluid present as well as generate a DNA profile(s) from the same stain. PMID:20457026

  9. Multiplexed one-step RT-PCR VP7 and VP4 genotyping assays for rotaviruses using updated primers.

    PubMed

    Esona, Mathew D; Gautam, Rashi; Tam, Ka Ian; Williams, Alice; Mijatovic-Rustempasic, Slavica; Bowen, Michael D

    2015-10-01

    The current two-step VP7 and VP4 genotyping RT-PCR assays for rotaviruses have been linked consistently to genotyping failure in an estimated 30% of RVA positive samples worldwide. We have developed a VP7 and VP4 multiplexed one-step genotyping assays using updated primers generated from contemporary VP7 and VP4 sequences. To determine assay specificity and sensitivity, 17 reference virus strains, 6 non-target gastroenteritis viruses and 725 clinical samples carrying the most common VP7 (G1, G2, G3, G4, G9, and G12) and VP4 (P[4], P[6], P[8], P[9] and P[10]) genotypes were tested in this study. All reference RVA strain targets yielded amplicons of the expected sizes and non-target genotypes and gastroenteritis viruses were not detected by either assay. Out of the 725 clinical samples tested, the VP7 and VP4 assays were able to assigned specific genotypes to 711 (98.1%) and 714 (98.5%), respectively. The remaining unassigned samples were re-tested for RVA antigen using EIA and qRT-PCR assays and all were found to be negative. The overall specificity, sensitivity and limit of detection of the VP7 assay were in the ranges of 99.0-100%, 94.0-100% and 8.6×10(1) to 8.6×10(2) copies of RNA/reaction, respectively. For the VP4 assay, the overall specificity, sensitivity and limit of detection assay were in the ranges of 100%, 94.0-100% and ≤1 to 8.6×10(2) copies of RNA/reaction, respectively. Here we report two highly robust, accurate, efficient, affordable and documentable gel-based genotyping systems which are capable of genotyping 97.8% of the six common VP7 and 98.3% of the five common VP4 genotypes of RVA strains which are responsible for approximately 88.2% of all RVA infections worldwide.

  10. Development of novel AllGlo-probe-based one-step multiplex qRT-PCR assay for rapid identification of avian influenza virus H7N9.

    PubMed

    Zhang, Yanjun; Mao, Haiyan; Yan, Juying; Wang, Xinying; Zhang, Lei; Guus, Koch; Li, Hui; Li, Zhen; Chen, Yin; Gong, Liming; Chen, Zhiping; Xia, Shichang

    2014-07-01

    Recently, human deaths have resulted from infection with low-pathogenicity avian influenza virus H7N9 strains that have emerged recently in China. To strengthen H7N9 surveillance and outbreak control, rapid and reliable diagnostic methods are needed. To develop a sensitive quantitative real-time RT-PCR assay for rapid detection of H7N9 viral RNA, primers and AllGlo probes were designed to target the HA and NA genes of H7N9. Conserved sequences in the HA and NA genes were identified by phylogenic analysis and used as targets for H7N9 virus detection. The similarities of the targeted HA and NA gene sequences from different H7 and N9 influenza virus strains were 93.2-99.9 % and 96.0-99.6 %, respectively The specificity and sensitivity of the new multiplex real-time qRT-PCR was established. The test was used for the detection of viral RNA in human pharyngeal swabs and environmental samples. The detection limit of the multiplex qRT-PCR was estimated to be about 10(-1) TCID50/reaction. Finally, the diagnostic sensitivities of the multiplex qRT-PCR, virus isolation and TaqMan qRT-PCR were compared using pharyngeal swabs and environmental samples. These analyses yielded positive results in 46.7 %, 43.3 % and 20.0 % of the samples, respectively. The novel multiplex AllGlo qRT-PCR is a rapid and sensitive method to identify H7N9 virus in clinical and environmental samples and can be used to facilitate studies on the epidemiology of H7N9 virus.

  11. Multiplex RT-PCR and indirect immunofluorescence assays for detection and subtyping of human influenza virus in Tunisia.

    PubMed

    Ben M'hadheb, Manel; Harrabi, Myriam; Souii, Amira; Jrad-Battikh, Nadia; Gharbi, Jawhar

    2015-03-01

    Influenza viruses are negative stranded segmented RNA viruses belonging to Orthomyxoviridae family. They are classified into three types A, B, and C. Type A influenza viruses are classified into subtypes according to the antigenic characters of the surface glycoproteins: hemagglutinin (H) and neuraminidase (N). The aim of the present study is to develop a fast and reliable multiplex RT-PCR technique for detecting simultaneously the subtypes A/H1N1 and A/H3N2 of influenza virus. Our study included 398 patients (mean age 30.33 ± 19.92 years) with flu or flu-like syndromes, consulting physicians affiliated with collaborating teams. A multiplex RT-PCR detecting A/H1N1 and A/H3N2 influenza viruses and an examination by indirect immunofluorescence (IFI) were performed. In the optimized conditions, we diagnosed by IFI a viral infection in 90 patients (22.6 %): 85 cases of influenza type A, four cases of influenza type B, and only one case of coinfection with types A and B. An evaluation of the technique was performed on 19 clinical specimens positive in IFI, and we detected eight cases of A/H3N2, five cases of A/H1N1, one case of influenza virus type A which is not an H1N1 nor H3N2, and five negative cases. Multiplex RT-PCR is a sensitive technique allowing an effective and fast diagnosis of respiratory infections caused by influenza viruses in which the optimization often collides with problems of sensibility.

  12. The current incidence of viral disease in korean sweet potatoes and development of multiplex rt-PCR assays for simultaneous detection of eight sweet potato viruses.

    PubMed

    Kwak, Hae-Ryun; Kim, Mi-Kyeong; Shin, Jun-Chul; Lee, Ye-Ji; Seo, Jang-Kyun; Lee, Hyeong-Un; Jung, Mi-Nam; Kim, Sun-Hyung; Choi, Hong-Soo

    2014-12-01

    Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded.

  13. The current incidence of viral disease in korean sweet potatoes and development of multiplex rt-PCR assays for simultaneous detection of eight sweet potato viruses.

    PubMed

    Kwak, Hae-Ryun; Kim, Mi-Kyeong; Shin, Jun-Chul; Lee, Ye-Ji; Seo, Jang-Kyun; Lee, Hyeong-Un; Jung, Mi-Nam; Kim, Sun-Hyung; Choi, Hong-Soo

    2014-12-01

    Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded. PMID:25506306

  14. The Current Incidence of Viral Disease in Korean Sweet Potatoes and Development of Multiplex RT-PCR Assays for Simultaneous Detection of Eight Sweet Potato Viruses

    PubMed Central

    Kwak, Hae-Ryun; Kim, Mi-Kyeong; Shin, Jun-Chul; Lee, Ye-Ji; Seo, Jang-Kyun; Lee, Hyeong-Un; Jung, Mi-Nam; Kim, Sun-Hyung; Choi, Hong-Soo

    2014-01-01

    Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded. PMID:25506306

  15. Comprehensive Multiplex One-Step Real-Time TaqMan qRT-PCR Assays for Detection and Quantification of Hemorrhagic Fever Viruses

    PubMed Central

    Li, Jiandong; Qu, Jing; He, Chengcheng; Zhang, Shuo; Li, Chuan; Zhang, Quanfu; Liang, Mifang; Li, Dexin

    2014-01-01

    Background Viral hemorrhagic fevers (VHFs) are a group of animal and human illnesses that are mostly caused by several distinct families of viruses including bunyaviruses, flaviviruses, filoviruses and arenaviruses. Although specific signs and symptoms vary by the type of VHF, initial signs and symptoms are very similar. Therefore rapid immunologic and molecular tools for differential diagnosis of hemorrhagic fever viruses (HFVs) are important for effective case management and control of the spread of VHFs. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay is one of the reliable and desirable methods for specific detection and quantification of virus load. Multiplex PCR assay has the potential to produce considerable savings in time and resources in the laboratory detection. Results Primers/probe sets were designed based on appropriate specific genes for each of 28 HFVs which nearly covered all the HFVs, and identified with good specificity and sensitivity using monoplex assays. Seven groups of multiplex one-step real-time qRT-PCR assays in a universal experimental system were then developed by combining all primers/probe sets into 4-plex reactions and evaluated with serial dilutions of synthesized viral RNAs. For all the multiplex assays, no cross-reactivity with other HFVs was observed, and the limits of detection were mainly between 45 and 150 copies/PCR. The reproducibility was satisfactory, since the coefficient of variation of Ct values were all less than 5% in each dilution of synthesized viral RNAs for both intra-assays and inter-assays. Evaluation of the method with available clinical serum samples collected from HFRS patients, SFTS patients and Dengue fever patients showed high sensitivity and specificity of the related multiplex assays on the clinical specimens. Conclusions Overall, the comprehensive multiplex one-step real-time qRT-PCR assays were established in this study, and proved to be specific, sensitive

  16. Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses

    PubMed Central

    Haines, Felicity J.; Hofmann, Martin A.; King, Donald P.; Drew, Trevor W.; Crooke, Helen R.

    2013-01-01

    A single-step, multiplex, real-time polymerase chain reaction (RT-PCR) was developed for the simultaneous and differential laboratory diagnosis of Classical swine fever virus (CSFV) and African swine fever virus (ASFV) alongside an exogenous internal control RNA (IC-RNA). Combining a single extraction methodology and primer and probe sets for detection of the three target nucleic acids CSFV, ASFV and IC-RNA, had no effect on the analytical sensitivity of the assay and the new triplex RT-PCR was comparable to standard PCR techniques for CSFV and ASFV diagnosis. After optimisation the assay had a detection limit of 5 CSFV genome copies and 22 ASFV genome copies. Analytical specificity of the triplex assay was validated using a panel of viruses representing 9 of the 11 CSFV subgenotypes, at least 8 of the 22 ASFV genotypes as well as non-CSFV pestiviruses. Positive and negative clinical samples from animals infected experimentally, due to field exposure or collected from the UK which is free from both swine diseases, were used to evaluate the diagnostic sensitivity and specificity for detection of both viruses. The diagnostic sensitivity was 100% for both viruses whilst diagnostic specificity estimates were 100% for CSFV detection and 97.3% for ASFV detection. The inclusion of a heterologous internal control allowed identification of false negative results, which occurred at a higher level than expected. The triplex assay described here offers a valuable new tool for the differential detection of the causative viruses of two clinically indistinguishable porcine diseases, whose geographical occurrence is increasingly overlapping. PMID:23923045

  17. Development and Evaluation of a SYBR Green-Based Real-Time Multiplex RT-PCR Assay for Simultaneous Detection and Serotyping of Dengue and Chikungunya Viruses.

    PubMed

    Chen, Huixin; Parimelalagan, Mariya; Lai, Yee Ling; Lee, Kim Sung; Koay, Evelyn Siew-Chuan; Hapuarachchi, Hapuarachchige C; Ng, Lee Ching; Ho, Phui San; Chu, Justin Jang Hann

    2015-11-01

    Chikungunya virus (CHIKV) and dengue virus (DENV) have emerged as the two most important arbovirus diseases of global health significance. Similar clinical manifestations, transmission vectors, geographical distribution, and seasonal correlation often result in misdiagnosis of chikungunya infections as dengue cases and vice versa. In this study, we developed a rapid and accurate laboratory confirmative method to simultaneously detect, quantify, and differentiate DENV serotypes 1, 2, 3, and 4 and CHIKV. This SYBR Green I-based one-step multiplex real-time RT-PCR assay is highly sensitive and specific for CHIKV and DENV. Melting temperature analysis of PCR amplicons was used to serotype DENV and to differentiate from CHIKV. The detection limit of the assay was 20, 10, 50, 5, and 10 RNA copies/reaction for DENV-1, DENV-2, DENV-3, DENV-4, and CHIKV, respectively. Our assay did not cross-react with a panel of viruses that included other flaviviruses, alphaviruses, influenza viruses, human enteroviruses, and human coronaviruses. The feasibility of using this assay for clinical diagnosis was evaluated in DENV- and CHIKV-positive patient sera. Accordingly, the assay sensitivity for DENV-1, DENV-2, DENV-3, DENV-4, and CHIKV was 89.66%, 96.67%, 96.67%, 94.12%, and 95.74%, respectively, with 100% specificity. These findings confirmed the potential of our assay to be used as a rapid test for simultaneous detection and serotyping of DENV and CHIKV in clinical samples.

  18. Development of a multiplex RT-PCR assay for the identification of recombination types at different genomic regions of vaccine-derived polioviruses.

    PubMed

    Dimitriou, T G; Kyriakopoulou, Z; Tsakogiannis, D; Fikatas, A; Gartzonika, C; Levidiotou-Stefanou, S; Markoulatos, P

    2016-08-01

    Polioviruses (PVs) are the causal agents of acute paralytic poliomyelitis. Since the 1960s, poliomyelitis has been effectively controlled by the use of two vaccines containing all three serotypes of PVs, the inactivated poliovirus vaccine and the live attenuated oral poliovirus vaccine (OPV). Despite the success of OPV in polio eradication programme, a significant disadvantage was revealed: the emergence of vaccine-associated paralytic poliomyelitis (VAPP). VAPP is the result of accumulated mutations and putative recombination events located at the genome of attenuated vaccine Sabin strains. In the present study, ten Sabin isolates derived from OPV vaccinees and environmental samples were studied in order to identify recombination types located from VP1 to 3D genomic regions of virus genome. The experimental procedure that was followed was virus RNA extraction, reverse transcription to convert the virus genome into cDNA, PCR and multiplex-PCR using specific designed primers able to localize and identify each recombination following agarose gel electrophoresis. This multiplex RT-PCR assay allows for the immediate detection and identification of multiple recombination types located at the viral genome of OPV derivatives. After the eradication of wild PVs, the remaining sources of poliovirus infection worldwide would be the OPV derivatives. As a consequence, the immediate detection and molecular characterization of recombinant derivatives are important to avoid epidemics due to the circulation of neurovirulent viral strains. PMID:27098645

  19. Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out

    SciTech Connect

    Smith, S M; Danganan, L; Tammero, L; Vitalis, B; Lenhoff, R; Naraghi-arani, P; Hindson, B

    2007-08-06

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed candidate multiplexed assays that may potentially be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the ability to improve our nation's capability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect food and agricultural resources with a diagnostic test which could enhance the nation's capabilities for early detection of a foreign animal disease. In FY2005 with funding from the DHS, LLNL developed the first version (Version 1.0) of a multiplexed (MUX) nucleic-acid-based RT-PCR assay that included signatures for foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases (FADs) of swine, Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease Virus (SVDV), and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus [BPSV], Orf of sheep, and Pseudocowpox). In FY06, LLNL has developed Bovine and Porcine species-specific panel which included existing signatures from Version 1.0 panel as well as new signatures. The MUX RT-PCR porcine assay for detection of FMDV includes the FADs, VESV and SVD in addition to vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome (PRRS). LLNL has also developed a MUX RT-PCR bovine assay for detection of FMDV with rule out tests for the two bovine FADs malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis virus (VSV

  20. Simultaneous detection of influenza viruses A, B, and swine origin influenza A using multiplex one-step real-time RT-PCR assay.

    PubMed

    Monavari, S H R; Mollaie, H R; Fazlalipour, M

    2014-01-01

    Every year, seasonal epidemics of influenza viruses are causing considerable morbidity and mortality worldwide. Also infrequent novel and rearranged strains of influenza viruses have caused quick, acute universal pandemics resulting in millions of mortalities. The usage of efficient and accurate detection is superior for infection control, effective treatment, and epidemiological supervision. Therefore, evaluation of useful real-time PCR molecular tests for the detection of pandemic viruses is important before the next wave of the pandemic. A novel quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) assay with specific primers was used successfully for detection and monitoring of the influenza A, B, and swine influenza. The newly designed primers target highly conserved regions in influenza viruses. Our qRT-PCR assay is highly specific for detecting influenza A, B, and swine influenza viruses. The cutoff CT value was determined <38 for domestic human diagnostic test, under conditions of FDA emergency, and the reaction efficiency of the InfA, swInfA, and InfB assays were thereby estimated to be 97.9 % (R2 = 0.998), 98.3 % (R2 = 0.986), and 99.5 % (R2 = 0.995), respectively. Interestingly, based on our finding, there is no cross reactivity of detecting other viruses.

  1. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples.

    PubMed

    Gautam, Rashi; Mijatovic-Rustempasic, Slavica; Esona, Mathew D; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8-100% sensitivity, 99.7-100% specificity, 85-95% efficiency and a limit of detection of 4-60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81-92% efficiency and limit of detection of 150-600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98

  2. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples

    PubMed Central

    Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8

  3. Simultaneous detection and differentiation of three viruses in pear plants by a multiplex RT-PCR.

    PubMed

    Yao, Bingyu; Wang, Guoping; Ma, Xiaofang; Liu, Wenbin; Tang, Huihui; Zhu, Hui; Hong, Ni

    2014-02-01

    A multiplex RT-PCR (mRT-PCR) assay was developed for detection and differentiation of the Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV), which are viruses frequently occurring in pear trees. Different combinations of mixed primer pairs were tested for their specificity and sensitivity for the simultaneous detection of the three viruses. Three primer pairs were used to amplify their fragments of 247bp, 358bp and 500bp, respectively. The primer pair for ASPV was designed in this work, while the primer pairs for ACLSV and ASGV were from previous reports. The sensitivity and specificity of the mRT-PCR assay for the three viruses were comparable to that of each uniplex RT-PCR. The mRT-PCR was applied successfully for the detection of three viruses in leaves of pear and apple plants, but was unreliable in the detection of ASGV in dormant barks. In conclusion, this mRT-PCR provides a useful tool for the routine and rapid detection and the differentiation of three pear viruses.

  4. A two-tube multiplex real-time RT-PCR assay for the detection of four hemorrhagic fever viruses: severe fever with thrombocytopenia syndrome virus, Hantaan virus, Seoul virus, and dengue virus.

    PubMed

    Li, Zhifeng; Qi, Xian; Zhou, Minghao; Bao, Changjun; Hu, Jianli; Wu, Bin; Wang, Shenjiao; Tan, Zhongmin; Fu, Jianguang; Shan, Jun; Zhu, Yefei; Tang, Fenyang

    2013-09-01

    The aim of this study was to develop and evaluate a two-tube multiplex real-time RT-PCR assay for the detection and identification of four viral hemorrhagic fever (VHF) pathogens, severe fever with thrombocytopenia syndrome virus (SFTSV), Hantaan virus (HTNV), Seoul virus (SEOV), and dengue virus (DENV), from human clinical samples. The two-tube multiplex real-time RT-PCR assay we developed has a sensitivity of 10 copies/μL for each of the targets, and the performance was linear within the range of at least 10(7) transcript copies. Moreover, we evaluated the specificity of the assay using other virus RNA as template, and found no cross-reactivity. This new assay is able to detect SFTSV, HTNV, SEOV and DENV in two reactions and brings a cost of 40 % compared to separate reactions. Evaluation of this assay with clinical serum samples from laboratory-confirmed patients and healthy donors showed 100 % clinical diagnostic sensitivity and over 99 % specificity. The assay was applied for scanning 346 clinical samples collected from patients admitted to the hospital with suspected VHF and compared with virus isolation and immunofluorescence assay (IFA). The assay indentified 59 SFTSV-, 12 HTNV-, 11 SEOV- and 9 DENV-positive samples and showed higher sensitivity. This assay thus provides a reliable and cost-effective screening tool for early clinical diagnosis of SFTSV, HTNV, SEOV and DENV in the acute phase.

  5. A multiplex RT-PCR assay for rapid and differential diagnosis of four porcine diarrhea associated viruses in field samples from pig farms in East China from 2010 to 2012.

    PubMed

    Zhao, Jin; Shi, Bao-jun; Huang, Xiao-guo; Peng, Ming-yi; Zhang, Xiao-min; He, Dan-ni; Pang, Ran; Zhou, Bin; Chen, Pu-yan

    2013-12-01

    Since October 2010, clinical outbreaks of diarrhea in suckling piglets have reemerged in pig-producing areas of China, causing an acute increase in the morbidity and mortality in young piglets. Four viruses, porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine group A rotaviruses (GAR), and porcine circovirus 2 (PCV2), are the major causative agents of enteric disease in piglets. A novel multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed for simultaneous detection of the four viruses in field samples from piglets. A mixture of four previously published pairs of primers were used for amplification of viral gene, yielding four different amplicons with sizes of 481 bp for PCV2, 651 bp for PEDV, 859 bp for TGEV, and 309 bp for GAR, respectively. The sensitivity of the mRT-PCR using plasmids containing the specific viral target fragments was 2.17 × 10(3), 2.1 × 10(3), 1.74 × 10(4) and 1.26 × 10(4)copies for the four viruses, respectively. A total of 378 field samples were collected from suckling piglets with diarrhea in East China from October 2010 to December 2012, and detected by mRT-PCR. The PEDV-positive rates of the three years were 69.2%, 62.8% and 54.9%, respectively, suggesting that PEDV was a major pathogen in these diarrheal outbreaks. Taken together, all data indicated that this mRT-PCR assay was a simple, rapid, sensitive, and cost-effective detection method for clinical diagnosis of mixed infections of porcine diarrhea associated viruses.

  6. Development a of multiplex TaqMan real-time RT-PCR assay for simultaneous detection of Asian prunus viruses, plum bark necrosis stem pitting associated virus, and peach latent mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian prunus viruses (APV 1, APV 2 and APV 3) and Plum bark necrosis stem pitting associated virus (PBNSPaV) are two recently described viruses infecting Prunus spp., and Peach latent mosaic viroid (PLMVd) is a viroid that infects the same species. A single-tube multiplex, TaqMan real-time RT-PCR as...

  7. Simultaneous detection of four causal agents of tobacco bushy top disease by a multiplex one-step RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tobacco bushy top disease is a complex disease caused by mixed infection of Tobacco bushy top virus (TBTV), Tobacco vein distorting virus (TVDV), satellite RNA of TBTV (Sat-TBTV) and Tobacco vein distorting virus associate RNA (TVDVaRNA). A one-tube multiplex reverse transcription-PCR (RT-PCR) assay...

  8. Development and Characterization of a Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out Supplemental Materials

    SciTech Connect

    Smith, S; Danganan, L; Tammero, L; Lenhoff, R; Naraghi-arani, P; Hindson, B

    2007-08-06

    which are of two bovine types bovine papular stomatitis virus (BPSV) and psuedocowpox (PCP). This document provides details of signature generation, evaluation, and testing, as well as the specific methods and materials used. A condensed summary of the development, testing and performance of the multiplexed assay panel was presented in a 126 page separate document, entitled 'Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out'. This supplemental document provides additional details of large amount of data collected for signature generation, evaluation, and testing, as well as the specific methods and materials used for all steps in the assay development and utilization processes. In contrast to last years effort, the development of the bovine and porcine panels is pending additional work to complete analytical characterization of FMDV, VESV, VSV, SVD, RPV and MCF. The signature screening process and final panel composition impacts this effort. The unique challenge presented this year was having strict predecessor limitations in completing characterization, where efforts at LLNL must preceed efforts at PIADC, such challenges were alleviated in the 2006 reporting by having characterization data from the interlaboratory comparison and at Plum Island under AgDDAP project. We will present an addendum at a later date with additional data on the characterization of the porcine and bovine multiplex assays when that data is available.

  9. Multiplex RT-PCR-based detections of CEA, CK20 and EGFR in colorectal cancer patients

    PubMed Central

    Tsouma, Aikaterini; Aggeli, Chrysanthi; Lembessis, Panagiotis; Zografos, George N; Korkolis, Dimitris P; Pectasides, Dimitrios; Skondra, Maria; Pissimissis, Nikolaos; Tzonou, Anastasia; Koutsilieris, Michael

    2010-01-01

    AIM: To develop a multiplex reverse transcription polymerase chain reaction (RT-PCR) method detecting circulating tumor cells in the peripheral blood of colorectal cancer (CRC) patients. METHODS: Peripheral blood samples were collected from 88 CRC patients and 40 healthy individuals from the blood donors’ clinic and subsequently analyzed by multiplex RT-RCR for the expression of carcinoembryonic antigen (CEA), cytokeratin 20 (CK20) and epidermal growth factor receptor (EGFR) mRNA. The analysis involved determining the detection rates of CEA, CK20 and EGFR transcripts vs disease stage and overall survival. Median follow-up period was 19 mo (range 8-28 mo). RESULTS: Rates of CEA, CK20 and EGFR detection in CRC patients were 95.5%, 78.4% and 19.3%, respectively. CEA transcripts were detected in 3 healthy volunteer samples (7.5%), whereas all control samples were tested negative for CK20 and EGFR transcripts. The increasing number of positive detections for CEA, CK20 and EGFR transcripts in each blood sample was positively correlated with Astler-Coller disease stage (P < 0.001) and preoperative serum levels of CEA (P = 0.029) in CRC patients. Data analysis using Kaplan-Meier estimator documented significant differences in the overall survival of the different CRC patient groups as formed according to the increasing number of positivity for CEA, CK20 and EGFR transcripts. CONCLUSION: These data suggest that multiplex RT-PCR assay can provide useful information concerning disease stage and overall survival of CRC patients. PMID:21157973

  10. Multiplex real-time RT-PCR for the simultaneous detection and quantification of GI, GII and GIV noroviruses.

    PubMed

    Farkas, Tibor; Singh, Amy; Le Guyader, Françoise S; La Rosa, Giuseppina; Saif, Linda; McNeal, Monica

    2015-10-01

    Noroviruses are important causes of acute gastroenteritis and are classified into six genogroups with GI, GII and GIV containing human pathogens. This high genetic diversity represents a significant challenge for diagnostic assay development. Genogroup specific monoplex and multiplex real time RT-PCR assays are widely used for the detection of GI and GII noroviruses. On the other hand, GIV norovirus detection is not part of routine laboratory diagnosis. This study describes the development and evaluation of a one tube, real time RT-PCR assay for the simultaneous detection and quantification of GI, GII and GIV noroviruses, including both GIV.1 (human) and GIV.2 (animal) strains. Assay performance was evaluated on a panel of norovirus positive clinical samples by comparison of monoplex and multiplex standard curves and Ct values. The multiplex assay demonstrated equal sensitivity and specificity to the monoplex assays and was able to detect all GI, GII and GIV noroviruses with Ct values equal to that of the monoplex assays. The multiplex assay described in this study will be instrumental for the better understanding of GIV norovirus epidemiology, including their possible zoonotic nature. PMID:26248055

  11. A multiple RT-PCR assay for simultaneous detection and differentiation of latent viruses and apscarviroids in apple trees.

    PubMed

    Hao, Lu; Xie, Jipeng; Chen, Shanyi; Wang, Shaojie; Gong, Zhuoqun; Ling, Kai-Shu; Guo, Liyun; Fan, Zaifeng; Zhou, Tao

    2016-08-01

    Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), and Apple stem pitting virus (ASPV) are three latent viruses frequently occurring in apple trees worldwide. In field orchards, these viruses are frequently found in a mixed infection with viroids in the genus Apscarviroid, including Apple scar skin viroid, and Apple dimple fruit viroid. Together these viruses and viroids could cause serious damage to apple fruit production worldwide. Rapid and efficient detection methods are pivotal to identify and select the virus-free propagation material for healthy apple orchard management. In this study a multiplex Reverse Transcription-PCR (RT-PCR) was developed and optimized for simultaneous detection and differentiation of the three latent viruses and apscarviroids. With newly designed specific primers for ACLSV, ASGV, APSV, and EF-1α (as an internal control), and a pair of degenerate primers for apscarviroids, optimized parameters for multiplex RT-PCR were determined. The resulting PCR products from each target virus and viroid could be easily identified because their product sizes differ by at least a 100bp. The multiplex RT-PCR method is expected to detect different variants of the viruses as the test results showed that a variety of isolates from different regions in China gave positive results. To the best of our knowledge, this multiplex RT-PCR assay is the first to simultaneously detect multiple viruses and viroids infecting apple trees in a single reaction tube. This assay, therefore, offers a useful tool for routine certification and quarantine programs. PMID:27054889

  12. A multiple RT-PCR assay for simultaneous detection and differentiation of latent viruses and apscarviroids in apple trees.

    PubMed

    Hao, Lu; Xie, Jipeng; Chen, Shanyi; Wang, Shaojie; Gong, Zhuoqun; Ling, Kai-Shu; Guo, Liyun; Fan, Zaifeng; Zhou, Tao

    2016-08-01

    Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), and Apple stem pitting virus (ASPV) are three latent viruses frequently occurring in apple trees worldwide. In field orchards, these viruses are frequently found in a mixed infection with viroids in the genus Apscarviroid, including Apple scar skin viroid, and Apple dimple fruit viroid. Together these viruses and viroids could cause serious damage to apple fruit production worldwide. Rapid and efficient detection methods are pivotal to identify and select the virus-free propagation material for healthy apple orchard management. In this study a multiplex Reverse Transcription-PCR (RT-PCR) was developed and optimized for simultaneous detection and differentiation of the three latent viruses and apscarviroids. With newly designed specific primers for ACLSV, ASGV, APSV, and EF-1α (as an internal control), and a pair of degenerate primers for apscarviroids, optimized parameters for multiplex RT-PCR were determined. The resulting PCR products from each target virus and viroid could be easily identified because their product sizes differ by at least a 100bp. The multiplex RT-PCR method is expected to detect different variants of the viruses as the test results showed that a variety of isolates from different regions in China gave positive results. To the best of our knowledge, this multiplex RT-PCR assay is the first to simultaneously detect multiple viruses and viroids infecting apple trees in a single reaction tube. This assay, therefore, offers a useful tool for routine certification and quarantine programs.

  13. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  14. Simultaneous detection and differentiation of four closely related sweet potato potyviruses by a multiplex one-step RT-PCR.

    PubMed

    Li, Fan; Zuo, Ruijuan; Abad, Jorge; Xu, Donglin; Bao, Gaili; Li, Ruhui

    2012-12-01

    Four closely related potyviruses, Sweet potato feathery mottle virus (SPFMV), Sweet potato virus C (SPVC), Sweet potato virus G (SPVG) and/or Sweet potato virus 2 (SPV2), are involved in sweet potato virus disease complexes worldwide. Identification and detection of these viruses are complicated by high similarity among their genomic sequences, frequent occurrence as mixed infections and low titer in many sweet potato cultivars. A one-tube multiplex reverse transcription-PCR (mRT-PCR) assay was developed for simultaneous detection and differentiation of SPFMV, SPVC, SPVG and SPV2. Four specific forward primers unique to each virus and one reverse primer based on the region conserved in all four viruses were selected and used in the assay. The mRT-PCR assay was optimized for primer concentration and cycling conditions. It was tested using sweet potato plants infected naturally with one to four target viruses and then evaluated using field samples collected from southwestern China. The mRT-PCR assay is reliable and sensitive as a simple, rapid and cost-effective method to detect these pathogens in sweet potato. This assay will be useful to quarantine and certification programs and virus surveys when large numbers of samples are tested.

  15. DEVELOPMENT OF HOMOLOGOUS VIRAL INTERNAL CONTROLS FOR USE IN RT-PCR ASSAYS OF WATERBORNE ENTERIC VIRUSES

    EPA Science Inventory

    Enteric viruses often contaminate water sources causing frequent outbreaks of gastroenteritis. Reverse transcription-polymerase chain reaction (RT-PCR) assays are commonly used for detection of human enteric viruses in environmental and drinking water samples. RT-PCR provides ...

  16. Genome-wide mRNA profiling and multiplex quantitative RT-PCR for forensic body fluid identification.

    PubMed

    Park, Seong-Min; Park, Seong-Yeon; Kim, Jeong-Hwan; Kang, Tae-Wook; Park, Jong-Lyul; Woo, Kwang-Man; Kim, Jong-Sik; Lee, Han-Chul; Kim, Seon-Young; Lee, Seung-Hwan

    2013-01-01

    In forensic science, identifying a tissue where a forensic specimen was originated is one of the principal challenges. Messenger RNA (mRNA) profile clearly reveals tissue-specific gene expression patterns that many attempts have been made to use RNA for forensic tissue identification. To systematically investigate the body-fluid-specific expression of mRNAs and find novel mRNA markers for forensic body fluid identification, we performed DNA microarray experiment with 24 Korean body fluid samples. Shannon entropy and Q-values were calculated for each gene, and 137 body-fluid-specific candidate genes were selected. By applying more stringent criteria, we further selected 28 candidate genes and validated them by RT-PCR and qRT-PCR. As a result, we suggest a novel combination of four body-fluid-specific mRNA makers: PPBP for blood, FDCSP for saliva, MSMB for semen and MSLN for vaginal secretion. Multiplex qRT-PCR assay was designed using the four mRNA markers and DNA/RNA co-extraction method was tested for forensic use. This study will provide a thorough examination of body-fluid-specifically expressed mRNAs, which will enlarge the possibility of practical use of RNA for forensic purpose.

  17. Multiplex RT-PCR method for the simultaneous detection of nine grapevine viruses.

    PubMed

    Gambino, Giorgio

    2015-01-01

    Viral diseases are a serious pathological problem for grapevines, and in recent years the need for increasingly specific and rapid diagnostic methods for the selection of propagation materials has grown. Arabis mosaic virus, Grapevine fanleaf virus, Grapevine virus A, Grapevine virus B, Grapevine rupestris stem pitting-associated virus, Grapevine fleck virus, and Grapevine leafroll-associated viruses 1, 2, and 3 are nine of the most widespread viruses that naturally infect grapevines. A multiplex RT-PCR was developed for simultaneous detection of these nine grapevine viruses, in combination with a plant RNA internal control used as an indicator of the effectiveness of the reaction. One to ten fragments specific for the viruses and an internal control were simultaneously amplified from infected samples and identified by their specific molecular sizes in agarose gel. The protocol reported is an update of previously published protocols for RNA extraction and multiplex diagnosis of viruses. After several years of use and hundreds of samples tested, and following validation in several laboratories, this multiplex RT-PCR provides a reliable and rapid method for detecting grapevine viruses from a large number of samples.

  18. Multiplex qRT-PCR for the Detection of Western Equine Encephalomyelitis, St. Louis Encephalitis, and West Nile Viral RNA in Mosquito Pools (Diptera: Culicidae).

    PubMed

    Brault, Aaron C; Fang, Ying; Reisen, William K

    2015-05-01

    Following the introduction of West Nile virus into California during the summer of 2003, public health and vector control programs expanded surveillance efforts and were in need of diagnostics capable of rapid, sensitive, and specific detection of arbovirus infections of mosquitoes to inform decision support for intervention. Development of a multiplex TaqMan or real-time semiquantitative reverse transcription polymerase chain reaction (RT-PCR) assay in which three virus specific primer-probe sets were used in the same reaction is described herein for the detection of western equine encephalomyelitis, St. Louis encephalitis and West Nile viral RNA. Laboratory validation and field data from 10 transmission seasons are reported. The comparative sensitivity and specificity of this multiplex assay to singleplex RT-PCR as well as an antigen detection (rapid analyte measurement platform) and standard plaque assays indicate this assay to be rapid and useful in providing mosquito infection data to estimate outbreak risk. PMID:26334826

  19. Multiplex qRT-PCR for the Detection of Western Equine Encephalomyelitis, St. Louis Encephalitis, and West Nile Viral RNA in Mosquito Pools (Diptera: Culicidae).

    PubMed

    Brault, Aaron C; Fang, Ying; Reisen, William K

    2015-05-01

    Following the introduction of West Nile virus into California during the summer of 2003, public health and vector control programs expanded surveillance efforts and were in need of diagnostics capable of rapid, sensitive, and specific detection of arbovirus infections of mosquitoes to inform decision support for intervention. Development of a multiplex TaqMan or real-time semiquantitative reverse transcription polymerase chain reaction (RT-PCR) assay in which three virus specific primer-probe sets were used in the same reaction is described herein for the detection of western equine encephalomyelitis, St. Louis encephalitis and West Nile viral RNA. Laboratory validation and field data from 10 transmission seasons are reported. The comparative sensitivity and specificity of this multiplex assay to singleplex RT-PCR as well as an antigen detection (rapid analyte measurement platform) and standard plaque assays indicate this assay to be rapid and useful in providing mosquito infection data to estimate outbreak risk.

  20. Facing the problem of "false positives": re-assessment and improvement of a multiplex RT-PCR procedure for the diagnosis of A. flavus mycotoxin producers.

    PubMed

    Degola, F; Berni, E; Spotti, E; Ferrero, I; Restivo, F M

    2009-02-28

    The aim of our research project was to consolidate a multiplex RT-PCR protocol to detect aflatoxigenic strains of Aspergillus flavus. Several independent A. flavus strains were isolated from corn and flour samples from the North of Italy and from three European countries. Aflatoxin producing/not producing phenotype was assessed by qualitative and quantitative assays at day five of growth in aflatoxin inducing conditions. Expression of 16 genes belonging to the aflatoxin cluster was assayed by multiplex or monomeric RT-PCR. There is a good correlation between gene expression and aflatoxin production. Strains that apparently transcribed all the relevant genes but did not release aflatoxin in the medium ("false positives") were re-assessed for mycotoxin production after extended growth in inducing condition. All the "false positive" strains in actual fact were positive when aflatoxin determination was performed after 10 days of growth. These strains should then be re-classified as "slow aflatoxin accumulators". To optimise the diagnostic procedure, a quintuplex RT-PCR procedure was designed consisting of a primer set directed against four informative aflatoxin cluster genes and the beta-tubulin gene as an internal amplification control. In conclusion we have provided evidence for the robustness and reliability of our RT-PCR protocol in discriminating mycotoxin producer from non-producer strains of A. flavus. and the molecular procedure we devised is a promising tool with which to screen and control the endemic population of A. flavus colonising different areas of the World.

  1. Simultaneous detection and identification of four cherry viruses by two step multiplex RT-PCR with an internal control of plant nad5 mRNA.

    PubMed

    Noorani, Md Salik; Awasthi, Prachi; Sharma, Maheshwar Prasad; Ram, Raja; Zaidi, Aijaz Asgar; Hallan, Vipin

    2013-10-01

    A multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed and standardized for the simultaneous detection of four cherry viruses: Cherry virus A (CVA, Genus; Capillovirus), Cherry necrotic rusty mottle virus (CNRMV, unassigned species of the Betaflexiviridae), Little cherry virus 1 (LChV-1, Genus; Closterovirus) and Prunus necrotic ringspot virus (PNRSV, Genus; Ilarvirus) with nad5 as plant internal control. A reliable and quick method for total plant RNA extraction from pome and stone fruit trees was also developed. To minimize primer dimer formation, a single antisense primer for CVA and CNRMV was used. A mixture of random hexamer and oligo (dT) primer was used for cDNA synthesis, which was highly suited and economic for multiplexing. All four viruses were detected successfully by mRT-PCR in artificially created viral RNA mixture and field samples of sweet cherry. The identity of the viruses was confirmed by sequencing. The assay could detect above viruses in diluted cDNA (10(-4)) and RNA (10(-3), except PNRSV which was detected only till ten times lesser dilution). The developed mRT-PCR will not only be useful for the detection of viruses from single or multiple infections of sweet cherry plants but also for other stone and pome fruits. The developed method will be therefore quite helpful for virus indexing, plant quarantine and certification programs. This is the first report for the simultaneous detection of four cherry viruses by mRT-PCR.

  2. Universal Single-Probe RT-PCR Assay for Diagnosis of Dengue Virus Infections

    PubMed Central

    Alm, Erik; Lesko, Birgitta; Lindegren, Gunnel; Ahlm, Clas; Söderholm, Sandra; Falk, Kerstin I.; Lagerqvist, Nina

    2014-01-01

    Background Dengue is a mosquito-borne viral disease that has become more prevalent in the last few decades. Most patients are viremic when they present with symptoms, and early diagnosis of dengue is important in preventing severe clinical complications associated with this disease and also represents a key factor in differential diagnosis. Here, we designed and validated a hydrolysis-probe-based one-step real-time RT-PCR assay that targets the genomes of dengue virus serotypes 1–4. Methodology/Principal Findings The primers and probe used in our RT-PCR assay were designed to target the 3′ untranslated region of all complete genome sequences of dengue virus available in GenBank (n = 3,305). Performance of the assay was evaluated using in vitro transcribed RNA, laboratory-adapted virus strains, external control panels, and clinical specimens. The linear dynamic range was found to be 104–1011 GCE/mL, and the detection limit was between 6.0×102 and 1.1×103 GCE/mL depending on target sequence. The assay did not cross-react with human RNA, nor did it produce false-positive results for other human pathogenic flaviviruses or clinically important etiological agents of febrile illnesses. We used clinical serum samples obtained from returning travelers with dengue-compatible symptomatology (n = 163) to evaluate the diagnostic relevance of our assay, and laboratory diagnosis performed by the RT-PCR assay had 100% positive agreement with diagnosis performed by NS1 antigen detection. In a retrospective evaluation including 60 archived serum samples collected from confirmed dengue cases 1–9 days after disease onset, the RT-PCR assay detected viral RNA up to 9 days after appearance of symptoms. Conclusions/Significance The validation of the RT-PCR assay presented here indicates that this technique can be a reliable diagnostic tool, and hence we suggest that it be introduced as the method of choice during the first 5 days of dengue symptoms. PMID:25522325

  3. Quantitative one-step RT-PCR assay for rapid and sensitive identification and titration of polioviruses in clinical specimens.

    PubMed

    Laassri, Majid; Dipiazza, Anthony; Bidzhieva, Bella; Zagorodnyaya, Tatiana; Chumakov, Konstantin

    2013-04-01

    Rapid identification and quantitation of polioviruses in clinical specimens is important for surveillance and analysis of virus shedding by vaccine recipients, which could be used to assess the level of mucosal immunity. A quantitative one step RT-PCR was developed for identification and titration of all three poliovirus serotypes. The assay could be an alternative to the traditional procedure based on cell culture isolation and subsequent determination of poliovirus serotype and virus titration. The method is based on quantitative PCR performed with reverse transcription reaction in the same tube. The multiplex assay that quantifies all three serotypes of poliovirus was found to be highly specific, sensitive, and takes only one day to complete.

  4. A spot multiplex nested RT-PCR for the simultaneous and generic detection of viruses involved in the aetiology of grapevine leafroll and rugose wood of grapevine.

    PubMed

    Dovas, C I; Katis, N I

    2003-05-01

    A spot nested RT-PCR assay using degenerate deoxyinosine-containing primers was developed, allowing rapid and simultaneous detection of Closterovirus sequences. Nested PCR amplification increased the specificity and sensitivity of detection. The sensitivity was also increased by a factor of 10 by using in addition to the deoxyinosine (dI)-containing primers, respective homologous primers in which dI was substituted by dG in the region of sequence homology. These homologous primers are shorter, having lower degeneracy and higher amplification efficiency than the dI-containing primers. This method was coupled to a similar nested RT-PCR detection method for Vitivirus and Foveavirus sequences. This permitted multiplex RT-PCR amplification of sequences belonging to the three genera in the same reaction tube and the two subsequent nested PCR amplifications (one for closteroviruses and one for viti- and foveaviruses) to run in parallel. Different primers and amplification parameters (additives and thermocycling conditions) were evaluated and optimised, respectively, in order to amplify efficiently all different templates. These improvements permitted the multiplex detection of fovea- and closteroviruses in petiole and cortical scraping preparations from 23 infected field-grown grapevines throughout the year, with the exception of GLRaV-1 in petioles that was only possible from June onwards. Preliminary results show that this method can detect reliably virus species from three genera in grapevine allowing simple, fast and cost-effective testing of a large number of samples in certification schemes.

  5. Development of a Rapid Automated Influenza A, Influenza B, and Respiratory Syncytial Virus A/B Multiplex Real-Time RT-PCR Assay and Its Use during the 2009 H1N1 Swine-Origin Influenza Virus Epidemic in Milwaukee, Wisconsin

    PubMed Central

    Beck, Eric T.; Jurgens, Lisa A.; Kehl, Sue C.; Bose, Michael E.; Patitucci, Teresa; LaGue, Elizabeth; Darga, Patrick; Wilkinson, Kimberly; Witt, Lorraine M.; Fan, Jiang; He, Jie; Kumar, Swati; Henrickson, Kelly J.

    2010-01-01

    Rapid, semiautomated, and fully automated multiplex real-time RT-PCR assays were developed and validated for the detection of influenza (Flu) A, Flu B, and respiratory syncytial virus (RSV) from nasopharyngeal specimens. The assays can detect human H1N1, H3N2, and swine-origin (S-OIV) H1N1 Flu A viruses and were effectively used to distinguish Flu A infections (of all subtypes) from Flu B and RSV infections during the current S-OIV outbreak in Milwaukee, WI. The analytical limits of detection were 10−2 to 101 TCID50/ml depending on the platform and analyte and showed only one minor cross-reaction among 23 common respiratory pathogens (intermittent cross-reaction to adenovirus at >107 TCID50/ml). A total of 100 clinical samples were tested by tissue culture, both automated assays, and the US Food and Drug Administration-approved ProFlu+ assay. Both the semiautomated and fully automated assays exhibited greater overall (Flu A, Flu B, and RSV combined) clinical sensitivities (93 and 96%, respectively) and individual Flu A sensitivities (100%) than the Food and Drug Administration-approved test (89% overall sensitivity and 93% Flu A sensitivity). All assays were 99% specific. During the S-OIV outbreak in Milwaukee, WI, the fully automated assay was used to test 1232 samples in 2 weeks. Flu A was detected in 134 clinical samples (126 H1N1 S-OIV, 5 H1N1 [human], and 1 untyped) with 100% positive agreement compared with other “in-house” validated molecular assays, with only 2 false-positive results. Such accurate testing using automated high-throughput molecule systems should allow clinicians and public health officials to react quickly and effectively during viral outbreaks. PMID:19959800

  6. Development of a rapid automated influenza A, influenza B, and respiratory syncytial virus A/B multiplex real-time RT-PCR assay and its use during the 2009 H1N1 swine-origin influenza virus epidemic in Milwaukee, Wisconsin.

    PubMed

    Beck, Eric T; Jurgens, Lisa A; Kehl, Sue C; Bose, Michael E; Patitucci, Teresa; LaGue, Elizabeth; Darga, Patrick; Wilkinson, Kimberly; Witt, Lorraine M; Fan, Jiang; He, Jie; Kumar, Swati; Henrickson, Kelly J

    2010-01-01

    Rapid, semiautomated, and fully automated multiplex real-time RT-PCR assays were developed and validated for the detection of influenza (Flu) A, Flu B, and respiratory syncytial virus (RSV) from nasopharyngeal specimens. The assays can detect human H1N1, H3N2, and swine-origin (S-OIV) H1N1 Flu A viruses and were effectively used to distinguish Flu A infections (of all subtypes) from Flu B and RSV infections during the current S-OIV outbreak in Milwaukee, WI. The analytical limits of detection were 10(-2) to 10(1) TCID(50)/ml depending on the platform and analyte and showed only one minor cross-reaction among 23 common respiratory pathogens (intermittent cross-reaction to adenovirus at >10(7) TCID(50)/ml). A total of 100 clinical samples were tested by tissue culture, both automated assays, and the US Food and Drug Administration-approved ProFlu+ assay. Both the semiautomated and fully automated assays exhibited greater overall (Flu A, Flu B, and RSV combined) clinical sensitivities (93 and 96%, respectively) and individual Flu A sensitivities (100%) than the Food and Drug Administration-approved test (89% overall sensitivity and 93% Flu A sensitivity). All assays were 99% specific. During the S-OIV outbreak in Milwaukee, WI, the fully automated assay was used to test 1232 samples in 2 weeks. Flu A was detected in 134 clinical samples (126 H1N1 S-OIV, 5 H1N1 [human], and 1 untyped) with 100% positive agreement compared with other "in-house" validated molecular assays, with only 2 false-positive results. Such accurate testing using automated high-throughput molecule systems should allow clinicians and public health officials to react quickly and effectively during viral outbreaks.

  7. Development and comparison of the real-time amplification based methods--NASBA-Beacon, RT-PCR taqman and RT-PCR hybridization probe assays--for the qualitative detection of sars coronavirus.

    PubMed

    Chantratita, Wasun; Pongtanapisit, Wiroj; Piroj, Wantanich; Srichunrasmi, Chutatip; Seesuai, Somying

    2004-09-01

    The aim of this study was to develop a rapid, sensitive and robust procedure for the qualitative detection of SARS coronavirus RNA. Three unique detection formats were developed for real-time RNA amplification assays: a post amplification detection step with a virus-specific internal capture probe based on Taqman (RT-PCR TaqMan assay), hybridization probe (RT-PCR hybridization probe assay) and a real-time assay with virus-specific molecular beacon probes (NASBA-Beacon assay). The analytical sensitivity or reproducibility of the test results among those three assays was compared. All assays yielded results by detecting SARS coronavirus targeting the BNI-1 region in less than 2 hours. RNA detection by all the formats was unaffected by the presence of human sputum. The limits of detection were at least 10 copies of input RNA for both RT-PCR formats (RT-PCR TaqMan and RT-PCR hybridization probe assays), while the NASBA-Beacon assay could detect as little as 1 copy per reaction, with high reproducibility of the coefficient of variation (CV) of <10. These results demonstrate that real-time NASBA provides a rapid and sensitive alternative to RT-PCR for the routine qualitative assay of sputum for SARS corona viral RNA detection.

  8. mRNA profiling for body fluid identification by multiplex quantitative RT-PCR.

    PubMed

    Juusola, Jane; Ballantyne, Jack

    2007-11-01

    An alternative approach to conventional protein-based body fluid identification is gene expression profiling analysis. In the present work, we report the development of sensitive and robust multiplex quantitative reverse transcriptase-PCR assays for the identification of blood, saliva, semen, and menstrual blood. Each body fluid assay comprises a triplex system that detects transcripts from two body fluid-specific genes and a housekeeping gene GAPDH. The body fluid-specific genes include erythroid delta-aminolevulinate synthase (ALAS2) and beta-spectrin (SPTB) for blood, statherin (STATH) and histatin 3 (HTN3) for saliva, protamine 1 (PRM1) and protamine 2 (PRM2) for semen, and matrix metalloproteinase 7 (MMP7) and matrix metalloproteinase 10 (MMP10) for menstrual blood. Normalization of both body fluid-specific genes to the housekeeping gene by means of appropriate cycle threshold metrics ensures the high specificity of each assay for its cognate body fluid.

  9. Development of Multiplex RT-PCR for Simultaneous Detection of Garlic Viruses and the Incidence of Garlic Viral Disease in Garlic Genetic Resources

    PubMed Central

    Nam, Moon; Lee, Yeong-Hoon; Park, Chung Youl; Lee, Min-A; Bae, Yang-Soo; Lim, Seungmo; Lee, Joong Hwan; Moon, Jae Sun; Lee, Su-Heon

    2015-01-01

    Garlic generally becomes coinfected with several types of viruses belonging to the Potyvirus, Carlavirus, and Allexivirus genera. These viruses produce characteristically similar symptoms, they cannot be easily identified by electron microscopy (EM) or immunological detection methods, and they are currently widespread around the world, thereby affecting crop yields and crop quality adversely. For the early and reliable detection of garlic viruses, virus-specific sets of primers, including species-specific and genus-specific primers were designed. To effectively detect the twelve different types of garlic viruses, primer mixtures were tested and divided into two independent sets for multiplex polymerase chain reaction (PCR). The multiplex PCR assays were able to detect specific targets up to the similar dilution series with monoplex reverse transcription (RT)-PCR. Seventy-two field samples collected by the Gyeongbuk Agricultural Technology Administration were analyzed by multiplex RT-PCR. All seventy two samples were infected with at least one virus, and the coinfection rate was 78%. We conclude that the simultaneous detection system developed in this study can effectively detect and differentiate mixed viral infections in garlic. PMID:25774116

  10. A qRT-PCR assay for the expression of all Mal d 1 isoallergen genes

    PubMed Central

    2013-01-01

    Background A considerable number of individuals suffer from oral allergy syndrome (OAS) to apple, resulting in the avoidance of apple consumption. Apple cultivars differ greatly in their allergenic properties, but knowledge of the causes for such differences is incomplete. Mal d 1 is considered the major apple allergen. For Mal d 1, a wide range of isoallergens and variants exist, and they are encoded by a large gene family. To identify the specific proteins/genes that are potentially involved in the allergy, we developed a PCR assay to monitor the expression of each individual Mal d 1 gene. Gene-specific primer pairs were designed for the exploitation of sequence differences among Mal d 1 genes. The specificity of these primers was validated using both in silico and in vitro techniques. Subsequently, this assay was applied to the peel and flesh of fruits from the two cultivars ‘Florina’ and ‘Gala’. Results We successfully developed gene-specific primer pairs for each of the 31 Mal d 1 genes and incorporated them into a qRT-PCR assay. The results from the application of the assay showed that 11 genes were not expressed in fruit. In addition, differential expression was observed among the Mal d 1 genes that were expressed in the fruit. Moreover, the expression levels were tissue and cultivar dependent. Conclusion The assay developed in this study facilitated the first characterisation of the expression levels of all known Mal d 1 genes in a gene-specific manner. Using this assay on different fruit tissues and cultivars, we obtained knowledge concerning gene relevance in allergenicity. This study provides new perspectives for research on both plant breeding and immunotherapy. PMID:23522122

  11. Methods for detection and differentiation of existing and new crinivirus species through multiplex and degenerate primer RT-PCR.

    PubMed

    Wintermantel, William M; Hladky, Laura L

    2010-12-01

    A method was developed for rapid identification and differentiation of both known and novel crinivirus species involving both multiplex and degenerate reverse transcription-polymerase chain reaction (RT-PCR). The multiplex method can discriminate among known criniviruses infecting vegetable and small fruit crops, and rapidly identify viruses associated with disease symptoms, as well as identification of mixed crinivirus infections. Four host groups for multiplex detection of criniviruses were selected based on the types of crops where specific criniviruses would be expected to occur. Each detection group contained three to four crop-specific primers designed to the same region of the gene encoding the highly conserved RNA-dependent RNA polymerase gene (RdRp) of criniviruses for rapid, single-reaction determination of which crinivirus(es) may be infecting a plant. Degenerate reverse primers used for RT and in PCR were designed to amplify all members of each host group, and were coupled with species-specific forward primers resulting in four separate single-reaction cocktails for detection of most criniviruses sequenced to date, whether present in single or mixed virus infections. Additional viruses can be added to multiplex detection by adjustment of primer concentration for balanced detection of target viruses. In order to identify unknown putative criniviruses or those for which sequence information is not yet available, a genus-wide, universal degenerate primer set was developed. These primers also targeted the crinivirus RdRp gene, and amplify a wide range of crinivirus sequences. Both detection systems can be used with most RNA extraction methods, and with RT-PCR reagents common in most laboratories.

  12. Quantification of Hantaan virus with a SYBR green I-based one-step qRT-PCR assay.

    PubMed

    Jiang, Wei; Yu, Hai-tao; Zhao, Ke; Zhang, Ye; Du, Hong; Wang, Ping-zhong; Bai, Xue-fan

    2013-01-01

    Hantaan virus (HTNV) is a major zoonotic pathogen that causes hemorrhagic fever with renal syndrome (HFRS) in Asia, especially in China. Shaanxi province, which is located in northwest of China, is one of the areas in China most severely afflicted with HFRS epidemics annually. This study aims to establish a quantitative RT-PCR (qRT-PCR) assay to detect HTNV both in cell culture and clinical serum samples. We established a SYBR Green I-based one-step qRT-PCR assay that targets the S segment of the HTNV genome for rapid detection and quantification. The HTNV cRNA standards were constructed by in vitro transcription, and the copy numbers of the HTNV cRNA were quantified. Standard curve was generated by determining the mean cycle threshold (Ct) values versus 10-fold serial dilutions of the HTNV cRNA over a range of 1 × 10(8) to 1 × 10(3) copies/μl. The standard curve had a reaction efficiency of 102.1%, a correlation coefficient (R(2)) of 0.998, and a slope of -3.273. The coefficient of variation (CV) of the intra- and inter-assays ranged from 0.68% to 3.00% and from 0.86% to 3.21%, respectively. The cycle intervals of the qRT-PCR assay between each dilution ranged from 2.9 to 3.8 cycles, and the lowest detection limit of the qRT-PCR assay was 10 copies/μl. The assay exhibited high specificity that was confirmed by melting curve analysis, and no cross reaction with the Seoul virus (SEOV) and other viruses (HBV, HCV and HIV) was observed. HTNV RNA was also detected in the 27 serum samples of clinical HFRS patients using the assay, and the HTNV RNA viral load ranged from 2.06 × 10(1) to 1.95 × 10(5) copies/μl. The SYBR Green I-based one-step qRT-PCR assay is a sensitive, specific, reproducible, and simple method for detecting and quantifying HTNV in cell culture and clinical samples.

  13. Quantification of Hantaan virus with a SYBR green I-based one-step qRT-PCR assay.

    PubMed

    Jiang, Wei; Yu, Hai-tao; Zhao, Ke; Zhang, Ye; Du, Hong; Wang, Ping-zhong; Bai, Xue-fan

    2013-01-01

    Hantaan virus (HTNV) is a major zoonotic pathogen that causes hemorrhagic fever with renal syndrome (HFRS) in Asia, especially in China. Shaanxi province, which is located in northwest of China, is one of the areas in China most severely afflicted with HFRS epidemics annually. This study aims to establish a quantitative RT-PCR (qRT-PCR) assay to detect HTNV both in cell culture and clinical serum samples. We established a SYBR Green I-based one-step qRT-PCR assay that targets the S segment of the HTNV genome for rapid detection and quantification. The HTNV cRNA standards were constructed by in vitro transcription, and the copy numbers of the HTNV cRNA were quantified. Standard curve was generated by determining the mean cycle threshold (Ct) values versus 10-fold serial dilutions of the HTNV cRNA over a range of 1 × 10(8) to 1 × 10(3) copies/μl. The standard curve had a reaction efficiency of 102.1%, a correlation coefficient (R(2)) of 0.998, and a slope of -3.273. The coefficient of variation (CV) of the intra- and inter-assays ranged from 0.68% to 3.00% and from 0.86% to 3.21%, respectively. The cycle intervals of the qRT-PCR assay between each dilution ranged from 2.9 to 3.8 cycles, and the lowest detection limit of the qRT-PCR assay was 10 copies/μl. The assay exhibited high specificity that was confirmed by melting curve analysis, and no cross reaction with the Seoul virus (SEOV) and other viruses (HBV, HCV and HIV) was observed. HTNV RNA was also detected in the 27 serum samples of clinical HFRS patients using the assay, and the HTNV RNA viral load ranged from 2.06 × 10(1) to 1.95 × 10(5) copies/μl. The SYBR Green I-based one-step qRT-PCR assay is a sensitive, specific, reproducible, and simple method for detecting and quantifying HTNV in cell culture and clinical samples. PMID:24278449

  14. Development of reverse transcription (RT)-PCR and real-time RT-PCR assays for rapid detection and quantification of viable yeasts and molds contaminating yogurts and pasteurized food products.

    PubMed

    Bleve, Gianluca; Rizzotti, Lucia; Dellaglio, Franco; Torriani, Sandra

    2003-07-01

    Reverse transcriptase PCR (RT-PCR) and real-time RT-PCR assays have been used to detect and quantify actin mRNA from yeasts and molds. Universal primers were designed based on the available fungal actin sequences, and by RT-PCR they amplified a specific 353-bp fragment from fungal species involved in food spoilage. From experiments on heat-treated cells, actin mRNA was a good indicator of cell viability: viable cells and cells in a nonculturable state were detected, while no signal was observed from dead cells. The optimized RT-PCR assay was able to detect 10 CFU of fungi ml(-1) in pure culture and 10(3) and 10(2) CFU ml(-1) in artificially contaminated yogurts and pasteurized fruit-derived products, respectively. Real-time RT-PCR, performed on a range of spoiled commercial food products, validated the suitability of actin mRNA detection for the quantification of naturally contaminating fungi. The specificity and sensitivity of the procedure, combined with its speed, its reliability, and the potential automation of the technique, offer several advantages to routine analysis programs that assess the presence and viability of fungi in food commodities.

  15. Low cost HIV-1 quantitative RT-PCR assay in resource-limited settings: improvement and implementation.

    PubMed

    Fibriani, Azzania; Farah, Nadya; Kusumadewi, Inri; Pas, Suzan D; van Crevel, Reinout; van der Ven, Andre; Boucher, Charles A B; Schutten, Martin

    2012-10-01

    Monitoring of HIV viral load in low and middle income settings is limited by high cost of the commercial assays. Therefore, we developed a novel RT-PCR quantitative assay was developed. This assay targets the HIV-1 pol integrase gene (INT). Subsequently, the performance of the INT assay, described previously as a Long Terminal Repeat (LTR) assay and a combined INT/LTR dual target RT-PCR assay was compared. The LTR-assay was found to be sensitive and cost-effective (50-70% cheaper than commercial assays) with the lowest coefficient of variation (%CV). Introduction of an internal standard further improved assay reliability. Therefore, this LTR assay was implemented in West Java, Indonesia. Linearity and precision of the LTR assay were good: %CV ranged from 1.0% to 10.4%. The limit of quantitation was 616 copies/ml. Performance was comparable with the commercial assay (Abbott assay) (r(2)=0.01), although on average the viral loads were 0.39 log(10)copies/ml lower. In clinical practice, it had excellent capability for monitoring treatment failure, the positive predictive value was 99% and the negative predictive value was 93%. In conclusion, the implementation of the improved HIV-1 viral load LTR-assay for routine diagnosis in resource poor settings can be a good alternative when commercial assays are unaffordable.

  16. Ultra-sensitive detection of two garlic potyviruses using a real-time fluorescent (Taqman) RT-PCR assay.

    PubMed

    Lunello, Pablo; Mansilla, Carmen; Conci, Vilma; Ponz, Fernando

    2004-06-01

    A method for the detection of Onion yellow dwarf virus (OYDV) and Leek yellow stripe virus (LYSV), the two most prevalent garlic potyviruses, has been developed that combines IC-RT-PCR/RT-PCR with the use of TaqMan probes. Comparisons with ELISA results obtained with identical OYDV and LYSV infected samples showed sensitivity in detecting these viruses increased up to 10(6)-fold. OYDV and LYSV were detected using different fluorochromes in the probe, thus allowing unequivocal diagnosis for each of them. The polyvalence of the designed virus-specific primers and probes was shown through their application to the detection of three isolates from very different geographical areas and from different hosts. A second version of the method avoids the need for an immunocapture step through the performance of a TaqMan RT-PCR assay directly on extracts of garlic cloves. This modification on the proposed basic method allows the analysis of bulb samples in 3-4h but did not give reproducible results with leaves. Both versions of the new diagnostic method bear great potential for their implementation in virus-free certification schemes in garlic, a vegetatively propagated crop for which such a certification is critical for a high-quality product.

  17. Utilizing Low-Volume Aqueous Acoustic Transfer with the Echo 525 to Enable Miniaturization of qRT-PCR Assay.

    PubMed

    Agrawal, Sony; Cifelli, Steven; Johnstone, Richard; Pechter, David; Barbey, Deborah A; Lin, Karen; Allison, Tim; Agrawal, Shree; Rivera-Gines, Aida; Milligan, James A; Schneeweis, Jonathan; Houle, Kevin; Struck, Alice J; Visconti, Richard; Sills, Matthew; Wildey, Mary Jo

    2016-02-01

    Quantitative reverse transcription PCR (qRT-PCR) is a valuable tool for characterizing the effects of inhibitors on viral replication. The amplification of target viral genes through the use of specifically designed fluorescent probes and primers provides a reliable method for quantifying RNA. Due to reagent costs, use of these assays for compound evaluation is limited. Until recently, the inability to accurately dispense low volumes of qRT-PCR assay reagents precluded the routine use of this PCR assay for compound evaluation in drug discovery. Acoustic dispensing has become an integral part of drug discovery during the past decade; however, acoustic transfer of microliter volumes of aqueous reagents was time consuming. The Labcyte Echo 525 liquid handler was designed to enable rapid aqueous transfers. We compared the accuracy and precision of a qPCR assay using the Labcyte Echo 525 to those of the BioMek FX, a traditional liquid handler, with the goal of reducing the volume and cost of the assay. The data show that the Echo 525 provides higher accuracy and precision compared to the current process using a traditional liquid handler. Comparable data for assay volumes from 500 nL to 12 µL allowed the miniaturization of the assay, resulting in significant cost savings of drug discovery and process streamlining.

  18. Development of allele-specific PCR and RT-PCR assays for clustered resistance genes using a potato late blight resistance transgene as a model.

    PubMed

    Millett, B P; Bradeen, J M

    2007-02-01

    Members of the NBS-LRR gene family impart resistance to a wide variety of pathogens and are often found clustered within a plant genome. This clustering of homologous sequences can complicate PCR-based characterizations, especially the study of transgenes. We have developed allele-specific PCR and RT-PCR assays for the potato late blight resistance gene RB. Our assay utilizes two approaches toward primer design, allowing discrimination between the RB transgene and both the endogenous RB gene and numerous RB homeologs. First, a reverse primer was designed to take advantage of an indel present in the RB transgene but absent in rb susceptibility alleles, enhancing specificity for the transgene, though not fully discriminating against RB homeologs. Second, a forward primer was designed according to the principles of mismatch amplification mutation assay (MAMA) PCR, targeting SNPs introduced during the cloning of RB. Together, the indel reverse primer and the MAMA forward primer provide an assay that is highly specific for the RB transgene, being capable of distinguishing the transgene from all RB endogenous gene copies and from all RB paralogs in a diverse collection of wild and cultivated potato genotypes. These primers have been successfully multiplexed with primers of an internal control. The multiplexed assay is useful for both PCR and RT-PCR applications. Double MAMA-PCR, in which both PCR primers target separate transgene-specific SNPs, was also tested and shown to be equally specific for the RB transgene. We propose extending the use of MAMA for the characterization of resistance transgenes. PMID:17177064

  19. [Development, optimization and application of the expression analysis platform based on multiplex quantitative RT-PCR using fluorescent universal primers].

    PubMed

    Wang, Qin-Xi; Li, Kai; Zhou, Yu-Xun; Xiao, Jun-Hua

    2009-05-01

    A multiplex quantitative RT-PCR technology with a universal fluorescent primer was established. This technology employs a chimeric-primer-induced-universal-primer amplification method that ensures target genes amplified in a constant ratio. This technique was cost-effective, moderate-throughput, and reliable in quantification of gene expression. It is complementary to cDNA chip, which has low quantitative accuracy , and Real-time quantitative PCR with low throughput, through improving the entire process of expression profiling analysis. Eleven genes within a QTL segment regulating mouse puberty onset on chromosome X were investigated to construct and optimize the method. The sensitivity of detection (102 copies) was determined, the concentration ratio of universal primer and chimeric forward primers (1:1) was optimized, and the accuracy and repeatability were validated. The method of Touchdown PCR with addition of universal primers significantly improved amplification of genes expressed in low abundance. After testing the expression profile of 11 genes in hypothalamus and testis in two mouse strains C3H/HeJ and C57BL/6J at the age of 15 d, one gene named PHF6 was found differentially expressed for further function analysis.

  20. Development and Preliminary Evaluation of a New Real-Time RT-PCR Assay For Detection of Peste des petits Ruminants Virus Genome.

    PubMed

    Polci, A; Cosseddu, G M; Ancora, M; Pinoni, C; El Harrak, M; Sebhatu, T T; Ghebremeskel, E; Sghaier, S; Lelli, R; Monaco, F

    2015-06-01

    A duplex real-time reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed for a simple and rapid diagnosis of Peste des petits ruminants (PPR). qRT-PCR primers and TaqMan probe were designed on a conserved region of nucleocapsid protein (Np) of PPR virus (PPRV) genome. An in vitro transcript of the target region was constructed and tested to determine analytical sensitivity. Commercial heterologous Armored RNA(®) was used as an internal positive control (IPC) for either RNA isolation or RT-PCR steps. The detection limit of the newly designed duplex real-time RT-PCR (qRT-PCR PPR_Np) was approximately 20 copies/μl with a 95% probability. No amplification signals were recorded when the qRT-PCR PPR_Np was applied to viruses closely related or clinically similar to PPRV- or to PPR-negative blood samples. A preliminary evaluation of the diagnostic performance was carried out by testing a group of 43 clinical specimens collected from distinct geographic areas of Africa and Middle East. qRT-PCR PPR_Np showed higher sensitivity than the conventional gel-based RT-PCR assays, which have been used as reference standards. Internal positive control made it possible to identify the occurrence of 5 false-negative results caused by the amplification failure, thus improving the accuracy of PPRV detection.

  1. RSV Growth and Quantification by Microtitration and qRT-PCR Assays.

    PubMed

    Caidi, Hayat; Harcourt, Jennifer L; Haynes, Lia M

    2016-01-01

    Defective interfering viral particles have been reported as important determinants of the course of viral infection, and they can markedly temper the virulence of the infection. Here, we describe a simple method, based on limiting dilution, for the removal of defective interfering particles from RSV. This method results in a high-titer viral preparation from both HEp-2 and Vero cell lines. We evaluated two concentrations of sucrose to stabilize the virus preparation, and demonstrate that RSV is stable when prepared and stored in 25 % sucrose at -152 °C. In addition, this chapter describes some commonly used methods of RSV titration, detection using microtitration and quantitative real-time RT-PCR, and the use of immunostaining for antigenic characterization.

  2. RSV Growth and Quantification by Microtitration and qRT-PCR Assays.

    PubMed

    Caidi, Hayat; Harcourt, Jennifer L; Haynes, Lia M

    2016-01-01

    Defective interfering viral particles have been reported as important determinants of the course of viral infection, and they can markedly temper the virulence of the infection. Here, we describe a simple method, based on limiting dilution, for the removal of defective interfering particles from RSV. This method results in a high-titer viral preparation from both HEp-2 and Vero cell lines. We evaluated two concentrations of sucrose to stabilize the virus preparation, and demonstrate that RSV is stable when prepared and stored in 25 % sucrose at -152 °C. In addition, this chapter describes some commonly used methods of RSV titration, detection using microtitration and quantitative real-time RT-PCR, and the use of immunostaining for antigenic characterization. PMID:27464684

  3. Semi-quantitative immunohistochemical assay versus oncotype DX(®) qRT-PCR assay for estrogen and progesterone receptors: an independent quality assurance study.

    PubMed

    Kraus, James A; Dabbs, David J; Beriwal, Sushil; Bhargava, Rohit

    2012-06-01

    Estrogen receptor (ER) status is a strong predictor of response to hormonal therapy in breast cancer patients. Presence of ER and level of expression have been shown to correlate with time to recurrence in patients undergoing therapy with tamoxifen or aromatase inhibitors. Risk reduction is also known to occur in ER-negative, progesterone receptor (PR)-positive patients treated with hormonal therapy. Since the 1990s, immunohistochemistry has been the primary method for assessing hormone receptor status. Recently, as a component of its oncotype DX(®) assay, Genomic Health began reporting quantitative estrogen and PR results determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). As part of an ongoing quality assurance program at our institution, we reviewed 464 breast cancer cases evaluated by both immunohistochemistry and oncotype DX(®) assay for estrogen and PR. We found good correlation for ER status between both assays (98.9% concordance), with immunohistochemistry being slightly more sensitive. Concordance for PR was 94.2% between immunohistochemistry and qRT-PCR with immunohistochemistry again more sensitive than RT-PCR. The results also showed linear correlation between immunohistochemistry H-scores and qRT-PCR expression values for ER (correlation coefficient of 0.579), and PR (correlation coefficient of 0.685). Due to the higher sensitivity of hormone receptor immunohistochemistry and additional advantages (ie preservation of morphology, less expensive, faster, more convenient), we conclude immunohistochemistry is preferable to qRT-PCR for determination of estrogen and PR expression.

  4. Generic detection of poleroviruses using an RT-PCR assay targeting the RdRp coding sequence.

    PubMed

    Lotos, Leonidas; Efthimiou, Konstantinos; Maliogka, Varvara I; Katis, Nikolaos I

    2014-03-01

    In this study a two-step RT-PCR assay was developed for the generic detection of poleroviruses. The RdRp coding region was selected as the primers' target, since it differs significantly from that of other members in the family Luteoviridae and its sequence can be more informative than other regions in the viral genome. Species specific RT-PCR assays targeting the same region were also developed for the detection of the six most widespread poleroviral species (Beet mild yellowing virus, Beet western yellows virus, Cucurbit aphid-borne virus, Carrot red leaf virus, Potato leafroll virus and Turnip yellows virus) in Greece and the collection of isolates. These isolates along with other characterized ones were used for the evaluation of the generic PCR's detection range. The developed assay efficiently amplified a 593bp RdRp fragment from 46 isolates of 10 different Polerovirus species. Phylogenetic analysis using the generic PCR's amplicon sequence showed that although it cannot accurately infer evolutionary relationships within the genus it can differentiate poleroviruses at the species level. Overall, the described generic assay could be applied for the reliable detection of Polerovirus infections and, in combination with the specific PCRs, for the identification of new and uncharacterized species in the genus. PMID:24374125

  5. Development of quantitative RT-PCR assays for detection of three classes of HHV-6B gene transcripts.

    PubMed

    Ihira, Masaru; Enomoto, Yoshihiko; Kawamura, Yoshiki; Nakai, Hidetaka; Sugata, Ken; Asano, Yoshizo; Tsuzuki, Motohiro; Emi, Nobuhiko; Goto, Tatsunori; Miyamura, Koichi; Matsumoto, Kimikazu; Kato, Koji; Takahashi, Yoshiyuki; Kojima, Seiji; Yoshikawa, Tetsushi

    2012-09-01

    The monitoring of active human herpesvirus 6 (HHV-6) B infection is important for distinguishing between the reactivation and latent state of the virus. The aim of this present study is to develop a quantitative reverse transcription polymerase chain reaction (RT-PCR) assay for diagnosis of active viral infection. Primers and probes for in house quantitative RT-PCR methods were designed to detect the three kinetic classes of HHV-6B mRNAs (U90, U12, U100). Stored PBMCs samples collected from 10 patients with exanthem subitum (primary HHV-6B infection) and 15 hematopoietic stem cell transplant recipients with HHV-6B reactivation were used to evaluate reliability for testing clinical samples. Excellent linearity was obtained with high correlation efficiency between the diluted RNA (1-100 ng/reaction) and C(t) value of each gene transcript. The U90 and U12 gene transcripts were detected in all of the peripheral blood mononuclear cells (PBMCs) samples collected in acute period of primary HHV-6B infection. Only one convalescent PBMCs sample was positive for the U90 gene transcript. Additionally, the reliability of HHV-6B quantitative RT-PCRs for diagnosis of viral reactivation in hematopoietic transplant recipients was evaluated. Relative to virus culture, U90 quantitative RT-PCR demonstrated the highest assay sensitivity, specificity, positive predictive value, and negative predictive value. Thus, this method could be a rapid and lower cost alternative to virus culture, which is difficult to perform generally, for identifying active HHV-6B infection. PMID:22825817

  6. A high sensitivity RT-PCR assay for the diagnosis of grapevine viroids in field and tissue culture samples.

    PubMed

    Wan Chow Wah, Y F; Symons, R H

    1997-01-01

    An RNA extraction procedure, modified from published methods, and a high sensitivity reverse transcription-polymerase chain reaction (RT-PCR) assay have been developed for the detection of the five viroids in grapevines. All five viroids have been found in the 10 different grape varieties tested so far. This assay, specially optimised for viroids in low copy number by careful selection of DNA primers, has been used in conjunction with dot blot hybridization assay for the study of viroids in vines regenerated by shoot apical meristem culture (SAMC) and fragmented shoot apex culture (FSAC). The data indicate a differential reduction of viroids, rather than viroid elimination, in the regenerated vines. Transmission of viroids via grape seeds was also observed.

  7. Development of a One-Step Immunocapture Real-Time RT-PCR Assay for Detection of Tobacco Mosaic Virus in Soil

    PubMed Central

    Yang, Jin-Guang; Wang, Feng-Long; Chen, De-Xin; Shen, Li-Li; Qian, Yu-Mei; Liang, Zhi-Yong; Zhou, Wen-Chang; Yan, Tai-He

    2012-01-01

    Tobacco mosaic virus (TMV) causes significant losses in many economically important crops. Contaminated soils may play roles as reservoirs and sources of transmission for TMV. In this study we report the development of an immunocapture real-time RT-PCR (IC-real-time RT-PCR) assay for direct detection of TMV in soils without RNA isolation. A series of TMV infected leaf sap dilutions of 1:101, 1:102, 1:103, 1:104, 1:105 and 1:106 (w/v, g/mL) were added to one gram of soil. The reactivity of DAS-ELISA and conventional RT-PCR was in the range of 1:102 and 1:103 dilution in TMV-infested soils, respectively. Meanwhile, the detection limit of IC-real-time RT-PCR sensitivity was up to 1:106 dilution. However, in plant sap infected by TMV, both IC-real-time RT-PCR and real-time RT-PCR were up to 1:106 dilution, DAS-ELISA could detect at least 1:103 dilution. IC-real-time RT-PCR method can use either plant sample extracts or cultivated soils, and show higher sensitivity than RT-PCR and DAS-ELISA for detection of TMV in soils. Therefore, the proposed IC-real-time RT-PCR assay provides an alternative for quick and very sensitive detection of TMV in soils, with the advantage of not requiring a concentration or RNA purification steps while still allowing detection of TMV for disease control. PMID:23211755

  8. Development of a real-time RT-PCR assay for the simultaneous identification, quantitation and differentiation of avian metapneumovirus subtypes A and B.

    PubMed

    Cecchinato, Mattia; Lupini, Caterina; Munoz Pogoreltseva, Olga Svetlana; Listorti, Valeria; Mondin, Alessandra; Drigo, Michele; Catelli, Elena

    2013-01-01

    In recent years, special attention has been paid to real-time polymerase chain reaction (PCR) for avian metapneumovirus (AMPV) diagnosis, due to its numerous advantages over classical PCR. A new multiplex quantitative real-time reverse transcription-PCR (qRT-PCR) with molecular beacon probe assay, designed to target the SH gene, was developed. The test was evaluated in terms of specificity, sensitivity and repeatability, and compared with conventional RT nested-PCR based on the G gene. All of the AMPV subtype A and B strains tested were amplified and specifically detected while no amplification occurred with other non-target bird respiratory pathogens. The detection limit of the assay was 10(-0.41) median infectious dose/ml and 10(1.15) median infectious dose/ml when the AMPV-B strain IT/Ty/B/Vr240/87 and the AMPV-A strain IT/Ty/A/259-01/03 were used, respectively, as templates. In all cases, the amplification efficiency was approximately 2 and the error values were <0.2. Standard curves, generated either using the serial dilution of an RNA suspension or RNA extracted from the serial dilution of titrated viral suspensions as templates, exhibited good linearity (R (2)>0.9375) between crossing point values and virus quantities, making the assay herein designed reliable for quantification. When the newly developed qRT-PCR was compared with a conventional RT nested-PCR, it showed greater sensitivity with RNA extracted from both positive controls and from experimentally infected birds. This assay can be effectively used for the detection, identification, differentiation and quantitation of AMPV subtype A or subtype B to assist in disease diagnosis and to carry out rapid surveillance with high levels of sensitivity and specificity.

  9. Evaluation of a broad range real-time polymerase chain reaction (RT-PCR) assay for the diagnosis of septic synovitis in horses

    PubMed Central

    Elmas, Colette R.; Koenig, Judith B.; Bienzle, Dorothee; Cribb, Nicola C.; Cernicchiaro, Natalia; Coté, Nathalie M.; Weese, J. Scott

    2013-01-01

    Septic synovitis is a potentially debilitating and life-threatening disorder in horses. We hypothesized that a universal bacterial real-time PCR (RT-PCR) assay would have improved sensitivity and decreased turn-around time for detection of bacteria in synovial fluid (SF) samples. Forty-eight SF samples were collected from 36 horses that presented to two referral institutions with suspected septic synovitis. Universal RT-PCR, bacterial culture and SF analysis were performed on all samples, and an interpretation on the sample being septic or not was derived by three board certified specialists from the history, clinical assessment and SF characteristics. RT-PCR results were compared to a composite standard comprised of positive culture and interpretation by all three specialists of samples as “septic”. For 41 of 48 samples (85%), culture and RT-PCR results were concordant. Compared to the composite standard, 83% of samples were correctly classified by RT-PCR (turn-around time of approximately 4 hours). Relative sensitivity and specificity of RT-PCR were 87% and 72% respectively, and 56% and 86% for culture. Hence, universal RT-PCR was a rapid and highly sensitive test, which may accelerate diagnosis and improve outcome for horses with septic synovitis. PMID:24101798

  10. Evaluation of a broad range real-time polymerase chain reaction (RT-PCR) assay for the diagnosis of septic synovitis in horses.

    PubMed

    Elmas, Colette R; Koenig, Judith B; Bienzle, Dorothee; Cribb, Nicola C; Cernicchiaro, Natalia; Coté, Nathalie M; Weese, J Scott

    2013-07-01

    Septic synovitis is a potentially debilitating and life-threatening disorder in horses. We hypothesized that a universal bacterial real-time PCR (RT-PCR) assay would have improved sensitivity and decreased turn-around time for detection of bacteria in synovial fluid (SF) samples. Forty-eight SF samples were collected from 36 horses that presented to two referral institutions with suspected septic synovitis. Universal RT-PCR, bacterial culture and SF analysis were performed on all samples, and an interpretation on the sample being septic or not was derived by three board certified specialists from the history, clinical assessment and SF characteristics. RT-PCR results were compared to a composite standard comprised of positive culture and interpretation by all three specialists of samples as "septic". For 41 of 48 samples (85%), culture and RT-PCR results were concordant. Compared to the composite standard, 83% of samples were correctly classified by RT-PCR (turn-around time of approximately 4 hours). Relative sensitivity and specificity of RT-PCR were 87% and 72% respectively, and 56% and 86% for culture. Hence, universal RT-PCR was a rapid and highly sensitive test, which may accelerate diagnosis and improve outcome for horses with septic synovitis.

  11. Quantitative RT-PCR assay for high-throughput screening (HTS) of drugs against the growth of Cryptosporidium parvum in vitro

    PubMed Central

    Zhang, Haili; Zhu, Guan

    2015-01-01

    Our laboratory has previously developed a qRT-PCR assay to assess drug efficacy on the growth of Cryptosporidium parvum in vitro by detecting the levels of parasite 18S rRNA. This approach displayed up to four orders of magnitude of linear dynamic range and was much less labor-intensive than the traditional microscopic methods. However, conventional qRT-PCR protocol is not very amendable to high-throughput analysis when total RNA needs to be purified by lengthy, multi-step procedures. Recently, several commercial reagents are available for preparing cell lysates that could be directly used in downstream qRT-PCR analysis (e.g., Ambion Cell-to-cDNA kit and Bio-Rad iScript sample preparation reagent). Using these reagents, we are able to adapt the qRT-PCR assay into high-throughput screening of drugs in vitro (i.e., 96-well and 384-well formats for the cultivation of parasites and qRT-PCR detection, respectively). This qRT-PCR protocol is able to give a >150-fold linear dynamic range using samples isolated from cells infected with various numbers of parasites. The new assay is also validated by the NIH-recommended intra-plate, inter-plate, and inter-day uniformity tests. The robustness and effectiveness of the assay are also confirmed by evaluating the anti-cryptosporidial efficacy of paromomycin and by a small scale screening of compounds. PMID:26441920

  12. Quantitative RT-PCR assay for high-throughput screening (HTS) of drugs against the growth of Cryptosporidium parvum in vitro.

    PubMed

    Zhang, Haili; Zhu, Guan

    2015-01-01

    Our laboratory has previously developed a qRT-PCR assay to assess drug efficacy on the growth of Cryptosporidium parvum in vitro by detecting the levels of parasite 18S rRNA. This approach displayed up to four orders of magnitude of linear dynamic range and was much less labor-intensive than the traditional microscopic methods. However, conventional qRT-PCR protocol is not very amendable to high-throughput analysis when total RNA needs to be purified by lengthy, multi-step procedures. Recently, several commercial reagents are available for preparing cell lysates that could be directly used in downstream qRT-PCR analysis (e.g., Ambion Cell-to-cDNA kit and Bio-Rad iScript sample preparation reagent). Using these reagents, we are able to adapt the qRT-PCR assay into high-throughput screening of drugs in vitro (i.e., 96-well and 384-well formats for the cultivation of parasites and qRT-PCR detection, respectively). This qRT-PCR protocol is able to give a >150-fold linear dynamic range using samples isolated from cells infected with various numbers of parasites. The new assay is also validated by the NIH-recommended intra-plate, inter-plate, and inter-day uniformity tests. The robustness and effectiveness of the assay are also confirmed by evaluating the anti-cryptosporidial efficacy of paromomycin and by a small scale screening of compounds.

  13. Strand-specific, real-time RT-PCR assays for quantification of genomic and positive-sense RNAs of the fish rhabdovirus, Infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Purcell, Maureen K.; Hart, S. Alexandra; Kurath, Gael; Winton, James R.

    2006-01-01

    The fish rhabdovirus, Infectious hematopoietic necrosis virus (IHNV), is an important pathogen of salmonids. Cell culture assays have traditionally been used to quantify levels of IHNV in samples; however, real-time or quantitative RT-PCR assays have been proposed as a rapid alternative. For viruses having a single-stranded, negative-sense RNA genome, standard qRT-PCR assays do not distinguish between the negative-sense genome and positive-sense RNA species including mRNA and anti-genome. Thus, these methods do not determine viral genome copy number. This study reports development of strand-specific, qRT-PCR assays that use tagged primers for enhancing strand specificity during cDNA synthesis and quantitative PCR. Protocols were developed for positive-strand specific (pss-qRT-PCR) and negative-strand specific (nss-qRT-PCR) assays for IHNV glycoprotein (G) gene sequences. Validation with synthetic RNA transcripts demonstrated the assays could discriminate the correct strand with greater than 1000-fold fidelity. The number of genome copies in livers of IHNV-infected fish determined by nss-qRT-PCR was, on average, 8000-fold greater than the number of infectious units as determined by plaque assay. We also compared the number of genome copies with the quantity of positive-sense RNA and determined that the ratio of positive-sense molecules to negative-sense genome copies was, on average, 2.7:1. Potential future applications of these IHNV strand-specific qRT-PCR assays are discussed.

  14. A One-Step Real-Time RT-PCR Assay for the Detection and Quantitation of Sugarcane Streak Mosaic Virus

    PubMed Central

    Fu, Wei-Lin; Sun, Sheng-Ren; Fu, Hua-Ying; Chen, Ru-Kai; Su, Jin-Wei; Gao, San-Ji

    2015-01-01

    Sugarcane mosaic disease is caused by the Sugarcane streak mosaic virus (SCSMV; genus Poacevirus, family Potyviridae) which is common in some Asian countries. Here, we established a protocol of a one-step real-time quantitative reverse transcription PCR (real-time qRT-PCR) using the TaqMan probe for the detection of SCSMV in sugarcane. Primers and probes were designed within the conserved region of the SCSMV coat protein (CP) gene sequences. Standard single-stranded RNA (ssRNA) generated by PCR-based gene transcripts of recombinant pGEM-CP plasmid in vitro and total RNA extracted from SCSMV-infected sugarcane were used as templates of qRT-PCR. We further performed a sensitivity assay to show that the detection limit of the assay was 100 copies of ssRNA and 2 pg of total RNA with good reproducibility. The values obtained were approximately 100-fold more sensitive than those of the conventional RT-PCR. A higher incidence (68.6%) of SCSMV infection was detected by qRT-PCR than that (48.6%) with conventional RT-PCR in samples showing mosaic symptoms. SCSMV-free samples were verified by infection with Sugarcane mosaic virus (SCMV) or Sorghum mosaic virus (SrMV) or a combination of both. The developed qRT-PCR assay may become an alternative molecular tool for an economical, rapid, and efficient detection and quantification of SCSMV. PMID:26185758

  15. Comparative study of a modified competitive RT-PCR and Amplicor HCV monitor assays for quantitation of hepatitis C virus RNA in serum.

    PubMed

    Olmedo, E; Costa, J; López-Labrador, F X; Forns, X; Ampurdanés, S; Maluenda, M D; Guilera, M; Sánchez-Tapias, J M; Rodes, J; Jimenez de Anta, M T

    1999-05-01

    A modified competitive RT-PCR (mcRT-PCR) to measure HCV RNA in serum and the Amplicor HCV Monitor assay were compared. For mcRT-PCR, the RNA extracted was retrotranscribed and coamplified in one step with a known amount of a DNA internal control (IC). Digoxigenin-labeled amplified products were hybridized to specific HCV DNA and IC-DNA probes and quantified by colorimetry. HCV RNA concentration was calculated by plotting the ratio of HCV/IC ODs against a calibration curve. Multiple samples were analyzed in the same round and tedious titration of each sample with a competitor was unnecessary. The mcRT-PCR assay was linear from 6 x 10(3) to 6 x 10(7) copies/ml, whereas Amplicor was linear up to 1-2 x 10(6) copies/ml. HCV RNA was measured in samples from 75 carriers. There was agreement between both methods in type 1 infections but not in type 2 or type 3 infections, in which the values measured by Amplicor were, on average, 15 times lower than those measured by the mcRT-PCR. HCV RNA measured by Amplicor was higher in type 1 infections than in type 2 or 3 infections, but no differences were found when viral load was assessed by mcRT-PCR. The binding efficiency of the Amplicor-probe was greater for type 1 than for types 2 or 3, suggesting Amplicor underestimates the viral load in the latter types. In contrast, the mcRT-PCR is not affected by genotype-related variation of HCV. This study suggests that mcRT-PCR assay is reliable for sensitive and accurate measurement of HCV RNA over a broad range of values independently of the HCV genotype.

  16. Development of a two-step SYBR Green I based real time RT-PCR assay for detecting and quantifying peste des petits ruminants virus in clinical samples.

    PubMed

    Abera, Tsegalem; Thangavelu, Ardhanary

    2014-12-01

    A two-step SYBR Green I based real time RT-PCR targeting the matrix (M) gene of Peste des petits ruminants virus (PPRV) was developed. The specificity of the assay was assessed against viral nucleic acid extracted from a range of animal viruses of clinical and structural similarities to PPRV including canine distemper virus, measles virus, bluetongue virus and Newcastle disease virus. But none of the viruses and no template control showed an amplification signal. Sensitivity of the same assay was assessed based on plasmid DNA copy number and with respect to infectivity titre. The lower detection limit achieved was 2.88 plasmid DNA copies/μl with corresponding Ct value of 35.93. Based on tissue culture infectivity titre the lower detection limits were 0.0001TCID50/ml and 1TCID50/ml for the SYBR green I based real time RT-PCR and conventional RT-PCR, respectively. The calculated coefficient of variations values for intra- and inter-assay variability were low, ranging from 0.21% to 1.83% and 0.44% to 1.97%, respectively. The performance of newly developed assay was evaluated on a total of 36 clinical samples suspected of PPR and compared with conventional RT-PCR. The SYBR Green I based real time RT-PCR assay detected PPRV in 32 (88.8%) of clinical samples compared to 19 (52.7%) by conventional RT-PCR. Thus, the two-step SYBR Green I based real time RT-PCR assay targeting the M gene of PPRV reported in this study was highly sensitive, specific and reproducible for detection and quantitation of PPRV nucleic acids.

  17. Clinical Evaluation of a Single-Tube Multiple RT-PCR Assay for the Detection of 13 Common Virus Types/Subtypes Associated with Acute Respiratory Infection.

    PubMed

    Zhang, Dan; Feng, Zhishan; Zhao, Mengchuan; Wang, Hao; Wang, Le; Yang, Shuo; Li, Guixia; Lu, Li; Ma, Xuejun

    2016-01-01

    Respiratory viruses are among the most important causes of human morbidity and mortality worldwide, especially for infants and young children. In the past years, a few commercial multiplex RT-PCR assays have been used to detect respiratory viruses in spite of the high cost. In the present study, an improved single-tube multiplex reverse transcription PCR assay for simultaneous detection of 13 respiratory viruses was evaluated and compared with a previously reported two-tube assay as the reference method using clinical nasopharyngeal aspirates samples. Of 310 prospectively tested respiratory specimens selected from children hospitalized with acute respiratory illness, 226 (72.90%, 226/310) and 214 (69.03%, 214/310) positive for one or more viruses were identified by the single-tube and the two-tube assays, respectively, with combined test results showing good concordance (Kappa value = 0.874). Individually, the single-tube assay for adenovirus (Adv), human metapneumovirus (HMPV), human rhinovirus (HRV), parainfluenza virus type 1 (PIV1), parainfluenza virus type 3 (PIV3) and parainfluenza virus type 4 (PIV4) showed the significantly superior sensitivities to those of the two-tube assay. No false positives were found. In conclusion, our results demonstrates the one-tube assay revealed significant improvements over the two-tube assay in terms of the better sensitivity, more accurate quality control, less nonspecific amplification, more cost-effective and shorter turn-around time and will be a valuable tool for routine surveillance of respiratory virus infection in China.

  18. Clinical Evaluation of a Single-Tube Multiple RT-PCR Assay for the Detection of 13 Common Virus Types/Subtypes Associated with Acute Respiratory Infection

    PubMed Central

    Wang, Hao; Wang, Le; Yang, Shuo; Li, Guixia; Lu, Li; Ma, Xuejun

    2016-01-01

    Respiratory viruses are among the most important causes of human morbidity and mortality worldwide, especially for infants and young children. In the past years, a few commercial multiplex RT-PCR assays have been used to detect respiratory viruses in spite of the high cost. In the present study, an improved single-tube multiplex reverse transcription PCR assay for simultaneous detection of 13 respiratory viruses was evaluated and compared with a previously reported two-tube assay as the reference method using clinical nasopharyngeal aspirates samples. Of 310 prospectively tested respiratory specimens selected from children hospitalized with acute respiratory illness, 226 (72.90%, 226/310) and 214 (69.03%, 214/310) positive for one or more viruses were identified by the single-tube and the two-tube assays, respectively, with combined test results showing good concordance (Kappa value = 0.874). Individually, the single-tube assay for adenovirus (Adv), human metapneumovirus (HMPV), human rhinovirus (HRV), parainfluenza virus type 1 (PIV1), parainfluenza virus type 3 (PIV3) and parainfluenza virus type 4 (PIV4) showed the significantly superior sensitivities to those of the two-tube assay. No false positives were found. In conclusion, our results demonstrates the one-tube assay revealed significant improvements over the two-tube assay in terms of the better sensitivity, more accurate quality control, less nonspecific amplification, more cost-effective and shorter turn-around time and will be a valuable tool for routine surveillance of respiratory virus infection in China. PMID:27043208

  19. Clinical Evaluation of a Single-Tube Multiple RT-PCR Assay for the Detection of 13 Common Virus Types/Subtypes Associated with Acute Respiratory Infection.

    PubMed

    Zhang, Dan; Feng, Zhishan; Zhao, Mengchuan; Wang, Hao; Wang, Le; Yang, Shuo; Li, Guixia; Lu, Li; Ma, Xuejun

    2016-01-01

    Respiratory viruses are among the most important causes of human morbidity and mortality worldwide, especially for infants and young children. In the past years, a few commercial multiplex RT-PCR assays have been used to detect respiratory viruses in spite of the high cost. In the present study, an improved single-tube multiplex reverse transcription PCR assay for simultaneous detection of 13 respiratory viruses was evaluated and compared with a previously reported two-tube assay as the reference method using clinical nasopharyngeal aspirates samples. Of 310 prospectively tested respiratory specimens selected from children hospitalized with acute respiratory illness, 226 (72.90%, 226/310) and 214 (69.03%, 214/310) positive for one or more viruses were identified by the single-tube and the two-tube assays, respectively, with combined test results showing good concordance (Kappa value = 0.874). Individually, the single-tube assay for adenovirus (Adv), human metapneumovirus (HMPV), human rhinovirus (HRV), parainfluenza virus type 1 (PIV1), parainfluenza virus type 3 (PIV3) and parainfluenza virus type 4 (PIV4) showed the significantly superior sensitivities to those of the two-tube assay. No false positives were found. In conclusion, our results demonstrates the one-tube assay revealed significant improvements over the two-tube assay in terms of the better sensitivity, more accurate quality control, less nonspecific amplification, more cost-effective and shorter turn-around time and will be a valuable tool for routine surveillance of respiratory virus infection in China. PMID:27043208

  20. Simultaneous detection of five notifiable viral diseases of cattle by single-tube multiplex real-time RT-PCR.

    PubMed

    Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2015-06-01

    Multiplexed real-time PCR (qPCR) assays enable the detection of several target genes in a single reaction, which is applicable for simultaneous testing for the most important viral diseases in samples obtained from ruminants with unspecific clinical symptoms. Here, reverse transcription qPCR (RT-qPCR) systems for the detection of bovine viral diarrhoea virus (BVDV) and bluetongue virus (BTV) were combined with an internal control system based on the beta-actin gene. Additionally, a background screening for three further major pathogens of cloven-hoofed animals reportable to the World Organisation for Animal Health, namely foot-and-mouth disease virus, epizootic haemorrhagic disease virus, and Rift Valley fever virus, was integrated using the identical fluorophore for the respective RT-qPCR assays. Every pathogen-specific assay had an analytical sensitivity of at least 100 genome copies per reaction within the multiplex approach, and a series of reference samples and clinical specimens obtained from cattle, but also from small ruminants, were detected reliably. The qPCR systems integrated in the background screening were even not influenced by the simultaneous amplification of very high BVDV and BTV genome copy numbers. The newly developed multiplex qPCR allows the specific and sensitive detection of five of the most important diseases of ruminants and could be used in the context of monitoring programs or for differential diagnostics. PMID:25746154

  1. Simultaneous detection of five notifiable viral diseases of cattle by single-tube multiplex real-time RT-PCR.

    PubMed

    Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2015-06-01

    Multiplexed real-time PCR (qPCR) assays enable the detection of several target genes in a single reaction, which is applicable for simultaneous testing for the most important viral diseases in samples obtained from ruminants with unspecific clinical symptoms. Here, reverse transcription qPCR (RT-qPCR) systems for the detection of bovine viral diarrhoea virus (BVDV) and bluetongue virus (BTV) were combined with an internal control system based on the beta-actin gene. Additionally, a background screening for three further major pathogens of cloven-hoofed animals reportable to the World Organisation for Animal Health, namely foot-and-mouth disease virus, epizootic haemorrhagic disease virus, and Rift Valley fever virus, was integrated using the identical fluorophore for the respective RT-qPCR assays. Every pathogen-specific assay had an analytical sensitivity of at least 100 genome copies per reaction within the multiplex approach, and a series of reference samples and clinical specimens obtained from cattle, but also from small ruminants, were detected reliably. The qPCR systems integrated in the background screening were even not influenced by the simultaneous amplification of very high BVDV and BTV genome copy numbers. The newly developed multiplex qPCR allows the specific and sensitive detection of five of the most important diseases of ruminants and could be used in the context of monitoring programs or for differential diagnostics.

  2. Performance of Simplexa dengue molecular assay compared to conventional and SYBR green RT-PCR for detection of dengue infection in Indonesia.

    PubMed

    Sasmono, R Tedjo; Aryati, Aryati; Wardhani, Puspa; Yohan, Benediktus; Trimarsanto, Hidayat; Fahri, Sukmal; Setianingsih, Tri Y; Meutiawati, Febrina

    2014-01-01

    Diagnostic tests based on detection of dengue virus (DENV) genome are available with varying sensitivities and specificities. The Simplexa Dengue assay (Focus Diagnostics) is a newly developed real-time RT-PCR method designed to detect and serotype DENV simultaneously. To assess the performance of the Simplexa Dengue assay, we performed comparison with conventional RT-PCR and SYBR Green real-time RT-PCR on patients sera isolated from eight cities across Indonesia, a dengue endemic country. A total of 184 sera that were confirmed using NS1 and/or IgM and IgG ELISA were examined. Using conventional and SYBR Green real-time RT-PCR, we detected DENV in 53 (28.8%) and 81 (44.0%) out of 184 sera, respectively. When the Simplexa Dengue assay was employed, the detection rate was increased to 76.6% (141 out of 184 samples). When tested in 40 sera that were confirmed by virus isolation as the gold standard, the conventional RT-PCR yielded 95% sensitivity while the sensitivity of SYBR Green real-time RT-PCR and Simplexa Dengue assay reached 97.5% and 100%, respectively. The specificities of all methods were 100% when tested in 43 non-dengue illness and 20 healthy human samples. Altogether, our data showed the higher detection rate of Simplexa Dengue compared to conventional and SYBR Green real-time RT-PCR in field/surveillance setting. In conclusion, Simplexa Dengue offers rapid and accurate detection and typing of dengue infection and is suitable for both routine diagnostic and surveillance.

  3. Multiplex titration RT-PCR: rapid determination of gene expression patterns for a large number of genes

    NASA Technical Reports Server (NTRS)

    Nebenfuhr, A.; Lomax, T. L.

    1998-01-01

    We have developed an improved method for determination of gene expression levels with RT-PCR. The procedure is rapid and does not require extensive optimization or densitometric analysis. Since the detection of individual transcripts is PCR-based, small amounts of tissue samples are sufficient for the analysis of expression patterns in large gene families. Using this method, we were able to rapidly screen nine members of the Aux/IAA family of auxin-responsive genes and identify those genes which vary in message abundance in a tissue- and light-specific manner. While not offering the accuracy of conventional semi-quantitative or competitive RT-PCR, our method allows quick screening of large numbers of genes in a wide range of RNA samples with just a thermal cycler and standard gel analysis equipment.

  4. Factors Affecting Detection of Hepatitis E Virus on Canadian Retail Pork Chops and Pork Livers Assayed Using Real-Time RT-PCR.

    PubMed

    Wilhelm, B J; Leblanc, D; Avery, B; Pearl, D L; Houde, A; Rajić, A; McEwen, S A

    2016-03-01

    We collected 599 Canadian retail pork chops and 283 pork livers routinely (usually weekly) from April 2011 to March 2012 using the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) retail sampling platform. Samples were assayed using validated real-time (q) reverse transcriptase polymerase chain reaction (RT-PCR) and nested classical RT-PCR for the detection of hepatitis E virus (HEV), porcine enteric calicivirus (PEC) and rotavirus (RV). The presence of Escherichia coli, Salmonella spp. and Campylobacter spp. was measured on a subset of our samples. Exact logistic regression models were fitted for predictors for HEV detection, for each assay. For both assays, sample type (pork chop versus liver) was a significant predictor for HEV RNA detection. For nested classical RT-PCR but not qRT-PCR, region of sample collection was a significant predictor (P = 0.008) of HEV detection. Odds of HEV detection were greatest in spring relative to other seasons. E. coli was a significant predictor for HEV RNA detection using the qRT-PCR (P = 0.03). Overall, the prevalence of E. coli, Salmonella spp. and Campylobacter spp. was significantly greater than HEV, PEC or RV on our retail pork samples. Our sparse data set for the detection of PEC and RV precluded modelling of risk factors for the detection of these viruses. PMID:26192650

  5. The survey of porcine teschoviruses in field samples in China with a universal rapid probe real-time RT-PCR assay.

    PubMed

    Zhang, Chaofan; Wang, Zhongtian; Hu, Feng; Liu, Yebing; Qiu, Zheng; Zhou, Shun; Cui, Shangjin; Wang, Ming

    2013-04-01

    A real-time reverse transcription polymerase chain reaction (RT-PCR) based on TaqMan was established and evaluated for quantitative detection of porcine teschoviruses (PTVs). A pair of primers and a TaqMan probe targeting on the highly conserved sequence of the 5'-untranslated region (5'-UTR) of one to 11 serotypes of PTV were designed. Standard plasmid DNA containing PCR amplification of the 5'-UTR were constructed and used to develop the real-time RT-PCR. The results indicated that the real-time RT-PCR was specific for detection of PTV with a detection limit of 10 copies/μL, but not for porcine parvovirus, porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, pseudorabies virus, classical swine fever virus. The coefficient of variation of inter-assay and intra-assay were less than 3 %. A total of 91 clinical samples were tested by the real-time RT-PCR and virus isolation (OIE 2008) and positive rates were 79.12 % (72/91) and 57.14 % (48/91), respectively. In conclusion, the developed real-time RT-PCR assay was an effective method for detection and quantification of PTV in fields or organs of infected pigs.

  6. Development of a one-step SYBR Green I real-time RT-PCR assay for the detection and quantitation of Araraquara and Rio Mamore hantavirus.

    PubMed

    Machado, Alex Martins; de Souza, William Marciel; de Pádua, Michelly; da Silva Rodrigues Machado, Aline Rafaela; Figueiredo, Luiz Tadeu Moraes

    2013-09-19

    Hantaviruses are members of the family Bunyaviridae and are an emerging cause of disease worldwide with high lethality in the Americas. In Brazil, the diagnosis for hantaviruses is based on immunologic techniques associated with conventional RT-PCR. A novel one-step SYBR Green real-time RT-PCR was developed for the detection and quantitation of Araraquara (ARAV) and Rio Mamore hantavirus (RIOMV). The detection limit of assay was 10 copies/μL of RNA in vitro transcribed of segment S. The specificity of assay was evaluated by melting curve analysis, which showed that the Araraquara virus amplified product generated a melt peak at 80.83 ± 0.89 °C without generating primer-dimers or non-specific products. The assay was more sensitive than conventional RT-PCR and we detected two samples undetected by conventional RT-PCR. The one-step SYBR Green real-time quantitative RT-PCR is specific, sensible and reproducible, which makes it a powerful tool in both diagnostic applications and general research of ARAV and RIOMV and possibly other Brazilian hantaviruses.

  7. A rapid real-time qRT-PCR assay for ovine beta-actin mRNA.

    PubMed

    Bjarnadottir, Helga; Jonsson, Jon J

    2005-05-01

    Beta-Actin mRNA is often used for normalization in gene expression experiments. We describe a sensitive, rapid and specific quantitative assay for the cytoplasmic ovine beta-actin mRNA. The assay was based on the polymerase chain reaction (PCR) with real-time fluorescence resonance energy transfer (FRET) measurements to amplify cDNA products reverse transcribed from mRNA. A part of the ovine beta-actin sequence was amplified from cDNA from fetal ovine synovial (FOS) cells with mRNA-specific primers and cloned into a plasmid clone. The assay standard curve was constructed with dilutions of this plasmid. The assay was linear over five orders of magnitude and detected down to 600 copies per reaction of target DNA. Intraassay coefficient of variation was 12%. Detection of the beta-actin gene was eliminated by designing FRET probes at splice junctions and detection of putative processed pseudogenes was minimized by using FRET assay design with four oligonucleotides. We measured 0.2 copies per cell in RNA preparations without reverse transcription and DNase digestion. This might represent processed pseudogenes. In constrast, we measured 1400 beta-actin mRNA copies per cell in RNA preparations after the RT and DNase steps. The assay should, therefore, be sensitive enough to measure beta-actin from a single individual cell. Dilution of target DNA in murine RNA or ovine cDNA preparations did not effect efficiency of PCR or linearity of the assay. The quantitative assay described in this work can be used to correct for variations in various real-time qRT-PCR experiments in ovine cells with diverse goals, including gene expression studies, quantitation of viral load in infected cells and in various gene therapy experiments measuring vector load and expression in transduced cells. PMID:15823406

  8. Development of a real-time RT-PCR assay for the detection of Crimean-Congo hemorrhagic fever virus.

    PubMed

    Atkinson, Barry; Chamberlain, John; Logue, Christopher H; Cook, Nicola; Bruce, Christine; Dowall, Stuart D; Hewson, Roger

    2012-09-01

    Crimean-Congo hemorrhagic fever (CCHF) is a virulent tick-borne disease with a case fatality rate ranging from 10-50% for tick-borne transmission, and up to 80% for nosocomial transmission. Human cases have been reported in over 30 countries across Europe, Asia, and Africa. It appears to be spreading to new areas with several countries reporting their first human cases of CCHF disease within the past 10 years. We report a novel real-time RT-PCR assay designed to amplify a conserved region of the CCHF virus S segment. It is capable of detecting strains from all 7 groups of CCHF, including the AP92 strain that until recently represented a lineage of strains that were not associated with human disease. The limit of detection of the assay is 5 copies of target RNA, and the assay shows no cross-reactivity with other viruses from within the same genus, or with viruses causing similar human disease.

  9. One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees.

    PubMed

    Malandraki, Ioanna; Varveri, Christina; Olmos, Antonio; Vassilakos, Nikon

    2015-03-01

    A one-step multiplex real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan chemistry was developed for the simultaneous detection of Pear blister canker viroid and Apple scar skin viroid along with universal detection of phytoplasmas, in pome trees. Total nucleic acids (TNAs) extraction was performed according to a modified CTAB protocol. Primers and TaqMan MGB probes for specific detection of the two viroids were designed in this study, whereas for phytoplasma detection published universal primers and probe were used, with the difference that the later was modified to carry a MGB quencher. The pathogens were detected simultaneously in 10-fold serial dilutions of TNAs from infected plant material into TNAs of healthy plant up to dilutions 10(-5) for viroids and 10(-4) for phytoplasmas. The multiplex real-time assay was at least 10 times more sensitive than conventional protocols for viroid and phytoplasma detection. Simultaneous detection of the three targets was achieved in composite samples at least up to a ratio of 1:100 triple-infected to healthy tissue, demonstrating that the developed assay has the potential to be used for rapid and massive screening of viroids and phytoplasmas of pome fruit trees in the frame of certification schemes and surveys.

  10. A real time RT-PCR assay for the specific detection of Peste des petits ruminants virus.

    PubMed

    Batten, Carrie A; Banyard, Ashley C; King, Donald P; Henstock, Mark R; Edwards, Lorraine; Sanders, Anna; Buczkowski, Hubert; Oura, Chris C L; Barrett, Tom

    2011-02-01

    Peste des petits ruminants virus (PPRV) causes a devastating disease of small ruminants present across much of Africa and Asia. Recent surveillance activities and phylogenetic analyses have suggested that the virus is an emerging problem as it is now being detected in areas previously free of the disease. As such, the virus not only is threatening small ruminant production and agricultural stability in the developing world, but also poses an economic threat to livestock in the European Union (EU) through introduction from European Turkey and North Africa. This report describes the development of a high throughput, rapid, real time RT-PCR method for the sensitive and specific detection of PPRV using robotic RNA extraction. This assay targets the nucleocapsid (N) gene of PPRV and has been shown to detect all four genetic lineages of PPRV in tissues, ocular and nasal swabs and blood samples collected in the field. The lowest detection limit achieved was approximately 10 genome copies/reaction, making this assay an ideal tool for the sensitive and rapid detection of PPRV in diagnostic laboratories.

  11. Development of a reliable dual-gene amplification RT-PCR assay for the detection of Turkey Meningoencephalitis virus in Turkey brain tissues.

    PubMed

    Davidson, Irit; Raibstein, Israel; Al-Tori, Amira; Khinich, Yevgeny; Simanov, Michael; Yuval, Chanoch; Perk, Shimon; Lublin, Avishai

    2012-11-01

    The Turkey Meningoencephalitis virus (TMEV) causes neuroparalytic signs, paresis, in-coordination, morbidity and mortality in turkeys. In parallel to the increased worldwide scientific interest in veterinary avian flaviviruses, including the Bagaza, Tembusu and Tembusu-related BYD virus, TMEV-caused disease also reemergence in commercial turkeys during late summer of 2010. While initially TMEV was detected by NS5-gene RT-PCR, subsequently, the env-gene RT-PCR was employed. As lately several inconsistencies were observed between the clinical, serological and molecular detection of the TMEV env gene, this study evaluated whether genetic changes occurred in the recently isolated viruses, and sought to optimize and improve the direct TMEV amplification from brain tissues of affected turkeys. The main findings indicated that no changes occurred during the years in the TMEV genome, but the PCR detection sensitivities of the env and NS5 genes differed. The RT-PCR and RNA purification were optimized for direct amplification from brain tissues without pre-replication of clinical samples in tissue cultures or in embryonated eggs. The amplification sensitivity of the NS5-gene was 10-100 times more than the env-gene when separate. The new dual-gene amplification RT-PCR was similar to that of the NS5 gene, therefore the assay can be considered as a reliable diagnostic assay. Cases where one of the two amplicons would be RT-PCR negative would alert and warn on the virus identity, and possible genetic changes. In addition, the biochemical environment of the dual-gene amplification reaction seemed to contribute in deleting non-specific byproducts that occasionally appeared in the singular RT-PCR assays on RNA purified from brain tissues.

  12. Development and Evaluation of Real Time RT-PCR Assays for Detection and Typing of Bluetongue Virus

    PubMed Central

    Maan, Narender Singh; Belaganahalli, Manjunatha N.; Potgieter, Abraham C.; Kumar, Vinay; Batra, Kanisht; Wright, Isabel M.; Kirkland, Peter D.; Mertens, Peter P. C.

    2016-01-01

    Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple ‘TaqMan’ fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the ‘Orbivirus Reference Collection’ (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures. PMID:27661614

  13. Establishment of a nanoparticle-assisted RT-PCR assay to distinguish field strains and attenuated strains of porcine epidemic diarrhea virus.

    PubMed

    Zhu, Yu; Wang, Gui-Hua; Cui, Yu-Dong; Cui, Shang-Jin

    2016-09-01

    Porcine epidemic diarrhea virus (PEDV) can cause serious disease and even death in neonatal piglets, resulting in serious damage to the swine industry worldwide. Open reading frame 3 (ORF3) is the only accessory gene in the PEDV genome. Previous studies have indicated that PEDV vaccine strains have a partial deletion in ORF3. In this study, a nanoparticle-assisted polymerase chain reaction (nanoparticle-assisted RT-PCR) assay targeting the ORF3 of PEDV was developed to distinguish PEDV field strains from attenuated strains by using a specific pair of primers. The PCR products of field strains and attenuated strains were 264 bp and 215 bp in length, respectively. The sensitivity and specificity of this assay were also assessed. The nanoparticle-assisted RT-PCR assay was 10-100 times more sensitive than the conventional RT-PCR assay, with no cross-reactions when amplifying porcine pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (RV), and porcine transmissible gastroenteritis virus (TGEV). The nanoparticle-assisted RT-PCR assay we describe here can be used to distinguish field strains from vaccine strains of PEDV, and it shows promise for reducing economic loss due to PEDV infection. PMID:27287433

  14. Generation of HIV-1 and Internal Control Transcripts as Standards for an In-House Quantitative Competitive RT-PCR Assay to Determine HIV-1 Viral Load

    PubMed Central

    Armas Cayarga, Anny; Perea Hernández, Yenitse; González González, Yaimé J.; Dueñas Carrera, Santiago; González Pérez, Idania; Robaina Álvarez, René

    2011-01-01

    Human immunodeficiency virus type-1 (HIV-1) viral load is useful for monitoring disease progression in HIV-infected individuals. We generated RNA standards of HIV-1 and internal control (IC) by in vitro transcription and evaluated its performance in a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. HIV-1 and IC standards were obtained at high RNA concentrations, without DNA contamination. When these transcripts were included as standards in a qRT-PCR assay, it was obtained a good accuracy (±0.5 log10 unit of the expected results) in the quantification of the HIV-1 RNA international standard and controls. The lower limit detection achieved using these standards was 511.0 IU/mL. A high correlation (r = 0.925) was obtained between the in-house qRT-PCR assay and the NucliSens easyQ HIV-1 test (bioMerieux) for HIV-1 RNA quantitation with clinical samples (N = 14). HIV-1 and IC RNA transcripts, generated in this study, proved to be useful as standards in an in-house qRT-PCR assay for determination of HIV-1 viral load. PMID:21766036

  15. A SYBR Green I based real time RT-PCR assay for specific detection and quantitation of Peste des petits ruminants virus

    PubMed Central

    2014-01-01

    Background Peste des petits ruminants (PPR) is an economically important disease of small ruminants such as sheep and goats. The disease is characterized by severe pyrexia, oculo-nasal discharge, pneumonia, necrosis and ulceration of the mucous membrane and inflammation of the gastro-intestinal tract leading to severe diarrhea. A SYBR Green I based real time RT-PCR targeting the N gene of PPRV has not been established for PPRV detection. Thus, the objective of present study was to develop highly sensitive N gene target SYBR Green I real time RT-PCR for specific detection and quantification of PPRV in clinical samples. A set of primers was designed to detect the nucleocapsid (N) gene of PPRV. Results The assay exhibited high specificity as all the viruses which have clinical and structural similarities to PPRV including Canine distemper virus (CDV), Measles virus (MV), Bluetongue virus (BTV) and Newcastle disease virus (NDV) failed to show an amplification signal. The lower detection limit of the assay was 5.11 copies/μl (Ct value of 33.67 ± 0.5) and 0.001 TCID50/ml (Ct value of 34.7 ± 0.5) based on plasmid copy number and tissue culture infectivity titre. The assay was 3-log more sensitive than the conventional RT-PCR. The coefficient of variation (CV) values for intra- and inter-assay variability were low, ranging from 0.32% - 2.31%, and 0.71% - 5.32%, respectively. To evaluate the performance of the newly developed assay, a total of 36 clinical samples suspected of PPR were screened for the presence of PPRV in parallel with conventional RT-PCR. The real time RT-PCR assay detected PPRV in 30 (83.3%) of clinical samples compared to 16 (44.4%) by conventional RT-PCR. Conclusions The two-step SYBR Green I based real time RT-PCR assay reported here is highly sensitive, specific, reproducible and rapid for detection and quantification of PPRV nucleic acids. PMID:24423231

  16. Design and testing of multiplex RT-PCR primers for the rapid detection of influenza A virus genomic segments: Application to equine influenza virus.

    PubMed

    Lee, EunJung; Kim, Eun-Ju; Shin, Yeun-Kyung; Song, Jae-Young

    2016-02-01

    The avian influenza A virus causes respiratory infections in animal species. It can undergo genomic recombination with newly obtained genetic material through an interspecies transmission. However, the process is an unpredictable event, making it difficult to predict the emergence of a new pandemic virus and distinguish its origin, especially when the virus is the result of multiple infections. Therefore, identifying a novel influenza is entirely dependent on sequencing its whole genome. Occasionally, however, it can be time-consuming, costly, and labor-intensive when sequencing many influenza viruses. To compensate for the difficulty, we developed a rapid, cost-effective, and simple multiplex RT-PCR to identify the viral genomic segments. As an example to evaluate its performance, H3N8 equine influenza virus (EIV) was studied for the purpose. In developing this protocol to amplify the EIV eight-segments, a series of processes, including phylogenetic analysis based on different influenza hosts, in silico analyses to estimate primer specificity, coverage, and variation scores, and investigation of host-specific amino acids, were progressively conducted to reduce or eliminate the negative factors that might affect PCR amplification. Selectively, EIV specific primers were synthesized with dual priming oligonucleotides (DPO) system to increase primer specificity. As a result, 16 primer pairs were selected to screen the dominantly circulating H3N8 EIV 8 genome segments: PA (3), PB2 (1), PA (3), NP (3), NA8 (2), HA3 (1), NS (1), and M (2). The diagnostic performance of the primers was evaluated with eight sets composing of four segment combinations using viral samples from various influenza hosts. The PCR results suggest that the multiplex RT-PCR has a wide range of applications in detection and diagnosis of newly emerging EIVs. Further, the proposed procedures of designing multiplex primers are expected to be used for detecting other animal influenza A viruses. PMID

  17. Quadraplex qRT-PCR assay for the simultaneous detection of Eastern equine encephalitis virus and West Nile virus.

    PubMed

    Zink, Steven D; Jones, Susan A; Maffei, Joseph G; Kramer, Laura D

    2013-10-01

    In order to increase testing throughput and reduce cost, we developed a multiplex real-time assay that identifies both Eastern equine encephalitis virus and West Nile virus. The assay allows for the screening for the presence of both the nonstructural and envelope genes of both viruses simultaneously allowing for confirmatory testing to be done in a single assay. We utilized newly designed primers and probes, each labeled with a unique fluorescent label allowing for differentiation using an ABI 7500 real-time PCR machine. The use of Quanta Biosciences qScript XLT One-Step RT-qPCR® Toughmix allowed for a quadraplex assay without loss of sensitivity when compared to the previously run singleplex reaction as seen with viral RNA PFU control dilution series. There was no cross reactivity between the viruses within the reaction, and upon utilization of the assay during surveillance, there was no cross reactivity with other historically encountered arthropod-borne viruses. The results from the quantitative Reverse Transcriptase - Polymerase Chain Reaction were comparable to those achieved by cell culture which was performed on a subset of the field mosquito pools screened during the 2012 surveillance season. The multiplex assay resulted in savings in both time and resources for the lab and faster turn-around of results.

  18. Establishment and validation of two duplex one-step real-time RT-PCR assays for diagnosis of foot-and-mouth disease.

    PubMed

    Gorna, K; Relmy, A; Romey, A; Zientara, S; Blaise-Boisseau, S; Bakkali-Kassimi, L

    2016-09-01

    Two duplex one-step TaqMan-based RT-PCR protocols for detection of foot-and-mouth disease virus (FMDV) were established and validated. Each RT-PCR test consists of a ready-to-use master mix for simultaneous detection of the well established 3D or IRES FMDV targets and incorporates the host β-actin mRNA as an internal control target, in a single-tube assay. The two real-time RT-PCR 3D/β-actin and IRES/β-actin tests are highly sensitive and able to detect up to 7TCID50/ml of FMDV and 10 copies/1μl of viral RNA. In field epithelium samples, the diagnostic sensitivity was 100% (95% CI; 91-100%) for the 3D/β-actin test and 97% (95% CI; 87-100%) for the IRES/β-actin test. The diagnostic specificity was 100% (95% CI; 95-100%) for both RT-PCRs. In addition, the two protocols proved to be robust, showing inter-assay coefficients of variation ranging from 1.94% to 6.73% for the IRES target and from 2.33% to 5.42% for the 3D target for different RNA extractions and different RT-PCR conditions. The internally controlled one-step real-time RT-PCR protocols described in this study provide a rapid, effective and reliable method for the detection of FMDV and thus may improve the routine diagnosis for foot-and-mouth disease. PMID:27317973

  19. Establishment and validation of two duplex one-step real-time RT-PCR assays for diagnosis of foot-and-mouth disease.

    PubMed

    Gorna, K; Relmy, A; Romey, A; Zientara, S; Blaise-Boisseau, S; Bakkali-Kassimi, L

    2016-09-01

    Two duplex one-step TaqMan-based RT-PCR protocols for detection of foot-and-mouth disease virus (FMDV) were established and validated. Each RT-PCR test consists of a ready-to-use master mix for simultaneous detection of the well established 3D or IRES FMDV targets and incorporates the host β-actin mRNA as an internal control target, in a single-tube assay. The two real-time RT-PCR 3D/β-actin and IRES/β-actin tests are highly sensitive and able to detect up to 7TCID50/ml of FMDV and 10 copies/1μl of viral RNA. In field epithelium samples, the diagnostic sensitivity was 100% (95% CI; 91-100%) for the 3D/β-actin test and 97% (95% CI; 87-100%) for the IRES/β-actin test. The diagnostic specificity was 100% (95% CI; 95-100%) for both RT-PCRs. In addition, the two protocols proved to be robust, showing inter-assay coefficients of variation ranging from 1.94% to 6.73% for the IRES target and from 2.33% to 5.42% for the 3D target for different RNA extractions and different RT-PCR conditions. The internally controlled one-step real-time RT-PCR protocols described in this study provide a rapid, effective and reliable method for the detection of FMDV and thus may improve the routine diagnosis for foot-and-mouth disease.

  20. Development of a highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus 71 in hand, foot, and mouth disease.

    PubMed

    Niu, Peihua; Qi, Shunxiang; Yu, Benzhang; Zhang, Chen; Wang, Ji; Li, Qi; Ma, Xuejun

    2016-11-01

    Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease (HFMD). A commercial TaqMan probe-based real-time PCR assay has been widely used for the differential detection of EV71 despite its relatively high cost and failure to detect samples with a low viral load (Ct value > 35). In this study, a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of EV71 in HFMD was developed. The sensitivity and specificity of this assay were evaluated using a reference EV71 stock and a panel of controls consisting of coxsackievirus A16 (CVA16) and common respiratory viruses, respectively. The clinical performance of this assay was evaluated and compared with those of a commercial TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional two-step nested RT-PCR assay. The limit of detection for the RTN RT-PCR assay was 0.01 TCID50/ml, with a Ct value of 38.3, which was the same as that of the traditional two-step nested RT-PCR assay and approximately tenfold lower than that of the qRT-PCR assay. When testing the reference strain EV71, this assay showed favorable detection reproducibility and no obvious cross-reactivity. The testing results of 100 clinical throat swabs from HFMD-suspected patients revealed that 41 samples were positive for EV71 by both RTN RT-PCR and traditional two-step nested RT-PCR assays, whereas only 29 were EV71 positive by qRT-PCR assay. PMID:27475103

  1. Development of a highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus 71 in hand, foot, and mouth disease.

    PubMed

    Niu, Peihua; Qi, Shunxiang; Yu, Benzhang; Zhang, Chen; Wang, Ji; Li, Qi; Ma, Xuejun

    2016-11-01

    Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease (HFMD). A commercial TaqMan probe-based real-time PCR assay has been widely used for the differential detection of EV71 despite its relatively high cost and failure to detect samples with a low viral load (Ct value > 35). In this study, a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of EV71 in HFMD was developed. The sensitivity and specificity of this assay were evaluated using a reference EV71 stock and a panel of controls consisting of coxsackievirus A16 (CVA16) and common respiratory viruses, respectively. The clinical performance of this assay was evaluated and compared with those of a commercial TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional two-step nested RT-PCR assay. The limit of detection for the RTN RT-PCR assay was 0.01 TCID50/ml, with a Ct value of 38.3, which was the same as that of the traditional two-step nested RT-PCR assay and approximately tenfold lower than that of the qRT-PCR assay. When testing the reference strain EV71, this assay showed favorable detection reproducibility and no obvious cross-reactivity. The testing results of 100 clinical throat swabs from HFMD-suspected patients revealed that 41 samples were positive for EV71 by both RTN RT-PCR and traditional two-step nested RT-PCR assays, whereas only 29 were EV71 positive by qRT-PCR assay.

  2. Real-time fluorescent quantitative RT-PCR assay for the expression of metallothioneins in rat hippocampal neurons

    NASA Astrophysics Data System (ADS)

    Qin, Hai-Hong; Wang, Fu-Di; Guo, Jun-Sheng; Shen, Hui; Li, Run-Ping

    2004-07-01

    Metallothioneins (MTs) are short, cysteine-rich proteins for heavy metal homeostasis and detoxification; they can bind a variety of heavy metals and also act as radical scavengers. In brain cells, they play a neuroprotective role in many aspects. However, because the previous methods can't quantify their gene expression at the mRNA level, their regulation in brain, especially in neurons, is not well known by now. In this study, we use a more accurate method, the real-time fluorescent quantitative RT-PCR technique, to determine the expression of three MT isomers on 100 μM zinc exposure after 0, 2, 4, 6 and 8 hours in primary culture rat hippocampal neurons. The result shows that the expression of all three MT isomers was higher compared with the values determined by other methods. This means that the roles played by neuron MTs in protecting neurons injury on zinc fluctuation was even stronger than what has been suspected before. In conclusion, our study proved that the real-time fluorescent quantitative RT-PCR technique is a simple, rapid and more precise method than previous techniques in the detection of gene expression, especially for those genes with low abundant mRNA. Our study also suggest that may of the past studies about gene expression should be verified by real-time Fluorescent quantitative RT-PCR once more in order to reach a more scientific explanation on certain problem.

  3. Development and validation of a real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay for investigation of wild poliovirus type 1-South Asian (SOAS) strain reintroduced into Israel, 2013 to 2014.

    PubMed

    Hindiyeh, M Y; Moran-Gilad, J; Manor, Y; Ram, D; Shulman, L M; Sofer, D; Mendelson, E

    2014-02-20

    In February 2013, wild poliovirus type 1 (WPV1) was reintroduced into southern Israel and resulted in continuous silent circulation in the highly immune population. As a part of the public health emergency response, a novel real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed, to allow for the sensitive and specific detection of the circulatingWPV1-South Asian (SOAS) strain. Specific primers and probes derived from the VP-1 region were designed, based on sequenced sewage isolates, and used to simultaneously amplify this WPV1-SOAS sequence together with bacteriophage MS-2 as internal control. High titre WPV1-SOAS stock virus was used for assay optimisation and 50 processed sewage samples collected from southern Israel and tested by reference culture based methods were used for analytical validation of the assay’s performance. The limit of detection of the multiplex qRT-PCR (SOAS/MS-2) assay was 0.1 plaque-forming unit (pfu)/reaction (20 pfu/mL) for WPV1-SOAS RNA with 100% sensitivity, specificity, positive and negative predictive values when compared to the culture based method. The turnaround time was rapid, providing results for environmental samples within 24 to 48 hours from completion of sewage processing, instead of five to seven days by culture-based analysis. Direct sewage testing by qRT-PCR assay proved to be a useful tool for rapid detection and environmental surveillance of WPV1-SOAS circulating strain during emergency response. Application of the approach for detection of WPV1-SOAS in stool samples obtained during acute flaccid paralysis (AFP) surveillance or field surveys should be further evaluated.

  4. A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves, and tubers.

    PubMed

    Nie, X; Singh, R P

    2001-01-01

    A multiplex reverse transcription polymerase chain reaction (m-RT-PCR) was developed for the simultaneous detection of five potato viruses and a viroid. The synthesis of cDNAs used for amplification was primed by hexanucleotides (random primers, RP). An RNA extraction procedure employing DNase I, is routinely used to isolate potato viruses and viroid (Potato virus S, PVS; Potato leafroll virus, PLRV; Potato virus X, PVX; Potato virus A and Y, PVA, PVY; and Potato spindle tuber viroid, PSTVd) from infected tissues. This extraction method produced deoxy-oligonucleotides, which in turn were used to prime the reverse transcription of RNA templates of all the viruses and the viroid. A time-course study from 15 s to 30 min showed optimal oligonucleotide generation by DNase I occurred at 10 min, an incubation time already incorporated in the extraction protocol. The presence of oligonucleotides capable of priming cDNA synthesis was also demonstrated in RNA preparations from aphids, leaves, and tubers. In order to duplicate the priming of templates by oligonucleotides, commercially available hexanucleotides were used as RP. When fragments were amplified from 5'- and 3'-ends of the random primed cDNA of PVY genome, bands of similar intensity were observed. In contrast, when two fragments (short and long) from the P1 gene region of the PVA genome were amplified, the yield of the short fragment was significantly higher in intensity than that of the long fragment in random primed cDNA. Irrespective of the origin of the primers (generated during extraction vs. commercially purchased), single or multiple viruses or the viroid were detected by amplification of random primed cDNAs present individually in the reaction or in a cDNA pool consisting of five viruses and the viroid. The cDNA produced by RP or virus specific primers (SP) was used to detect PLRV and PVY from infected tubers in a duplex reverse transcription polymerase chain reaction (d-RT-PCR). The RP cDNA gave increased

  5. Novel molecular beacon probe-based real-time RT-PCR assay for diagnosis of Crimean-Congo hemorrhagic fever encountered in India.

    PubMed

    Kamboj, Aman; Pateriya, Atul Kumar; Mishra, Anamika; Ranaware, Pradip; Kulkarni, Diwakar D; Raut, Ashwin Ashok

    2014-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is an emerging zoonotic disease in India and requires immediate detection of infection both for preventing further transmission and for controlling the infection. The present study describes development, optimization, and evaluation of a novel molecular beacon-based real-time RT-PCR assay for rapid, sensitive, and specific diagnosis of Crimean-Congo hemorrhagic fever virus (CCHFV). The developed assay was found to be a better alternative to the reported TaqMan assay for routine diagnosis of CCHF.

  6. Microfluidic based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in sera of prostate cancer patients

    PubMed Central

    Moltzahn, Felix; Olshen, Adam B.; Baehner, Lauren; Peek, Andrew; Fong, Lawrence; Stöppler, Hubert; Simko, Jeffry; Hilton, Joan F.; Carroll, Peter; Blelloch, Robert

    2010-01-01

    Recent prostate specific antigen (PSA) based screening trials indicate an urgent need for novel and non-invasive biomarker identification strategies to improve the prediction of prostate cancer behavior. Non-coding microRNAs (miRNAs) in the serum and plasma have been shown to have potential as non-invasive markers for physiological and pathological conditions. To identify serum miRNAs that diagnose and correlate with prognosis of prostate cancer, we developed a multiplex quantitative reverse transcription PCR (qRT-PCR) method involving purification of multiplex PCR products followed by uniplex analysis on a microfluidics chip to evaluate 384 human miRNAs. Using Dgcr8 and Dicer knockout (small RNA - deficient) mouse ES cells (mESC) as the benchmark, we confirmed the validity of our technique, while uncovering a significant lack of accuracy in previously published methods. Profiling 48 sera from healthy men and untreated prostate cancer patients with differing CAPRA (Cancer of the Prostate Risk Assessment) scores, we identified miRNA signatures that allow to diagnose cancer patients and correlate with prognosis. These serum signatures include oncogenic and tumor suppressive miRNAs suggesting functional roles in prostate cancer progression. PMID:21098088

  7. A Family-Wide RT-PCR Assay for Detection of Paramyxoviruses and Application to a Large-Scale Surveillance Study

    PubMed Central

    van Boheemen, Sander; Bestebroer, Theo M.; Verhagen, Josanne H.; Osterhaus, Albert D. M. E.; Pas, Suzan D.; Herfst, Sander; Fouchier, Ron A. M.

    2012-01-01

    Family-wide molecular diagnostic assays are valuable tools for initial identification of viruses during outbreaks and to limit costs of surveillance studies. Recent discoveries of paramyxoviruses have called for such assay that is able to detect all known and unknown paramyxoviruses in one round of PCR amplification. We have developed a RT-PCR assay consisting of a single degenerate primer set, able to detect all members of the Paramyxoviridae family including all virus genera within the subfamilies Paramyxovirinae and Pneumovirinae. Primers anneal to domain III of the polymerase gene, with the 3′ end of the reverse primer annealing to the conserved motif GDNQ, which is proposed to be the active site for nucleotide polymerization. The assay was fully optimized and was shown to indeed detect all available paramyxoviruses tested. Clinical specimens from hospitalized patients that tested positive for known paramyxoviruses in conventional assays were also detected with the novel family-wide test. A high-throughput fluorescence-based RT-PCR version of the assay was developed for screening large numbers of specimens. A large number of samples collected from wild birds was tested, resulting in the detection of avian paramyxoviruses type 1 in both barnacle and white-fronted geese, and type 8 in barnacle geese. Avian metapneumovirus type C was found for the first time in Europe in mallards, greylag geese and common gulls. The single round family-wide RT-PCR assay described here is a useful tool for the detection of known and unknown paramyxoviruses, and screening of large sample collections from humans and animals. PMID:22496880

  8. High-throughput quantitative real-time RT-PCR assay for determining expression profiles of types I and III interferon subtypes.

    PubMed

    Renn, Lynnsey A; Theisen, Terence C; Navarro, Maria B; Mane, Viraj P; Schramm, Lynnsie M; Kirschman, Kevin D; Fabozzi, Giulia; Hillyer, Philippa; Puig, Montserrat; Verthelyi, Daniela; Rabin, Ronald L

    2015-01-01

    Described in this report is a qRT-PCR assay for the analysis of seventeen human IFN subtypes in a 384-well plate format that incorporates highly specific locked nucleic acid (LNA) and molecular beacon (MB) probes, transcript standards, automated multichannel pipetting, and plate drying. Determining expression among the type I interferons (IFN), especially the twelve IFN-α subtypes, is limited by their shared sequence identity; likewise, the sequences of the type III IFN, especially IFN-λ2 and -λ3, are highly similar. This assay provides a reliable, reproducible, and relatively inexpensive means to analyze the expression of the seventeen interferon subtype transcripts.

  9. A multiplex reverse transcription-polymerase chain reaction assay for Newcastle disease virus and avian pneumovirus (Colorado strain).

    PubMed

    Ali, A; Reynolds, D L

    2000-01-01

    Newcastle disease virus (NDV) and avian pneumovirus (APV) cause Newcastle disease and rhinotracheitis respectively, in turkeys. Both of these viruses infect the respiratory system. A one-tube, multiplex, reverse transcription-polymerase chain reaction (RT-PCR) assay for the detection of both NDV and Colorado strain of APV (APV-Col) was developed and evaluated. The primers, specific for each virus, were designed from the matrix protein gene of APV-Col and the fusion protein gene of NDV to amplify products of 631 and 309 nucleotides, respectively. The multiplex RT-PCR assay, for detecting both viruses simultaneously, was compared with the single-virus RT-PCR assays for its sensitivity and specificity. The specific primers amplified products of predicted size from each virus in the multiplex as well as the single-virus RT-PCR assays. The multiplex RT-PCR assay was determined to be equivalent to the single-virus RT-PCR assays for detecting both NDV and APV-Col. This multiplex RT-PCR assay proved to be a sensitive method for the simultaneous and rapid detection of NDV and APV-Col. This assay has the potential for clinical diagnostic applications.

  10. Development of sensitive single-round pol or env RT-PCR assays to screen for XMRV in multiple sample types

    PubMed Central

    Tang, Ning; Frank, Andrea; Leckie, Gregor; Hackett, John; Simmons, Graham; Busch, Michael; Abravaya, Klara

    2013-01-01

    The potential association between xenotropic murine leukemia virus-related virus (XMRV) and prostate cancer and chronic fatigue syndrome (CFS) has been much debated. To help resolve the potential role of XMRV in human disease, it is critical to develop sensitive and accurate reverse transcriptase (RT)-PCR assays to screen for the virus. Single-round RT-PCR assays were developed on the automated m2000™ system for detection of the pol or env regions of XMRV in whole blood, plasma, urine cell pellets and urogenital swab samples. Assay performance was assessed by testing two blinded panels, one comprised of whole blood and the other of plasma spiked with serial dilutions of XMRV-infected tissue culture cells and supernatant, respectively, prepared by the Blood XMRV Scientific Research Working Group (SRWG). For both whole blood and plasma panel testing, the assays showed excellent specificity and sensitivity as compared to the other tests included in the SRWG phase I study. Analytical specificity of the assays was also evaluated. Neither pol nor env PCR assays detected a panel of potential cross-reactive microorganisms, although some cross-reaction was observed with mouse genomic DNA. Screening of 196 normal human blood donor plasma, 214 HIV-1 seropositive plasma, 20 formalin-fixed paraffin-embedded (FFPE) prostate cancer specimens, 4 FFPE benign prostate specimens, 400 urine pellets from prostate cancer patients, 166 urine pellets from non-prostate cancer patients, and 135 cervical swab specimens, detected no samples as unequivocally XMRV positive. PMID:22057262

  11. A multiplex nested RT-PCR for the detection and differentiation of wild-type viruses from C-strain vaccine of classical swine fever virus.

    PubMed

    Li, Yan; Zhao, Jian-Jun; Li, Na; Shi, Zixue; Cheng, Dan; Zhu, Qing-Hu; Tu, Changchun; Tong, Guang-Zhi; Qiu, Hua-Ji

    2007-07-01

    A multiplex nested RT-PCR (RT-nPCR) was developed for the detection and differentiation of classical swine fever virus (CSFV). A fragment of 447 or 343 bp was amplified from the genomic RNA of C-strain or virulent Shimen strain, respectively, and two fragments of 447 and 343 bp were simultaneously amplified from the mixed samples of C-strain and Shimen. When detecting several wild-type isolates representative of different subgroups (1.1, 2.1, 2.2, and 2.3) circulating in Mainland China and samples from pigs experimentally infected with Shimen strain, the RT-nPCR resulted in an amplification pattern similar to Shimen. No amplification was achieved for uninfected cells, or cells infected with bovine viral diarrhea virus (BVDV), and other viruses of porcine origin. The RT-nPCR was able to detect as little as 0.04 pg of CSFV RNA. The restrictive fragment length polymorphism (RFLP) demonstrated unique patterns of wild-type viruses and C-strain. Among the 133 field samples, 42 were tested to contain wild-type viruses and 18 showing presence of C-strain. The RT-nPCR can be used to detect and differentiate pigs infected with wild-type CSFV from those vaccinated with C-strain vaccine, thus minimizing the risk of culling vaccinates during outbreaks.

  12. Evaluation of a multiplex real-time polymerase chain reaction assay for the detection of influenza and respiratory syncytial viruses.

    PubMed

    Esposito, Susanna; Scala, Alessia; Tagliabue, Claudia; Zampiero, Alberto; Bianchini, Sonia; Principi, Nicola

    2016-01-01

    Nasopharyngeal swabs from 424 children were used to compare the performances of the new multiplex real-time polymerase chain reaction (RT-PCR) RIDA®GENE Flu & RSV kit and monospecific RT-PCR assays in detecting respiratory syncytial and influenza viruses. The easy-to-use kit was highly sensitive and specific and is recommended for routine practice.

  13. A one-step duplex rRT-PCR assay for the simultaneous detection of duck hepatitis A virus genotypes 1 and 3.

    PubMed

    Hu, Qin; Zhu, Dekang; Ma, Guangpeng; Cheng, Anchun; Wang, Mingshu; Chen, Shun; Jia, Renyong; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue

    2016-10-01

    Duck hepatitis A virus (DHAV) is a highly infectious pathogen that causes significant bleeding lesions in the viscera of ducklings less than 3 weeks old. There are three serotypes of DHAV: serotype 1 (DHAV-1), serotype 2 (DHAV-2) and serotype 3 (DHAV-3). These serotypes have no cross-antigenicity with each other. To establish an rRT-PCR assay for the rapid detection of a mixed infection of DHAV-1 and DHAV-3, two pairs of primers and a pair of matching TaqMan probes were designed based on conserved regions of DHAV-1 VP0 and DHAV-3 VP3. Finally, we established a one-step duplex rRT-PCR assay with high specificity and sensitivity for the simultaneous detection of DHAV-1 and DHAV-3. This method showed no cross-antigenicity with the other pathogens tested, including duck plague virus, Muscovy duck parvovirus, Riemerella anatipestifer, and pathogenic E. coli from ducks. Sensitivity tests identified the minimum detection limits of this method as 98 (DHAV-1) and 10 (DHAV-3) copies/reaction. To validate the method, thirty-eight clinical samples and thirty artificially infected samples collected from dead duck embryos were studied. Thirty-seven samples were positive for DHAV-1, seventeen samples were positive for DHAV-3, and fourteen samples were positive for a mixed infection using the duplex rRT-PCR method. The method established in this study is specific, sensitive, convenient and timesaving and is a powerful tool for detecting DHAV-1, DHAV-3, and their mixed infection and for conducting surveys of pandemic virus strains. PMID:27435338

  14. A one-step duplex rRT-PCR assay for the simultaneous detection of duck hepatitis A virus genotypes 1 and 3.

    PubMed

    Hu, Qin; Zhu, Dekang; Ma, Guangpeng; Cheng, Anchun; Wang, Mingshu; Chen, Shun; Jia, Renyong; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue

    2016-10-01

    Duck hepatitis A virus (DHAV) is a highly infectious pathogen that causes significant bleeding lesions in the viscera of ducklings less than 3 weeks old. There are three serotypes of DHAV: serotype 1 (DHAV-1), serotype 2 (DHAV-2) and serotype 3 (DHAV-3). These serotypes have no cross-antigenicity with each other. To establish an rRT-PCR assay for the rapid detection of a mixed infection of DHAV-1 and DHAV-3, two pairs of primers and a pair of matching TaqMan probes were designed based on conserved regions of DHAV-1 VP0 and DHAV-3 VP3. Finally, we established a one-step duplex rRT-PCR assay with high specificity and sensitivity for the simultaneous detection of DHAV-1 and DHAV-3. This method showed no cross-antigenicity with the other pathogens tested, including duck plague virus, Muscovy duck parvovirus, Riemerella anatipestifer, and pathogenic E. coli from ducks. Sensitivity tests identified the minimum detection limits of this method as 98 (DHAV-1) and 10 (DHAV-3) copies/reaction. To validate the method, thirty-eight clinical samples and thirty artificially infected samples collected from dead duck embryos were studied. Thirty-seven samples were positive for DHAV-1, seventeen samples were positive for DHAV-3, and fourteen samples were positive for a mixed infection using the duplex rRT-PCR method. The method established in this study is specific, sensitive, convenient and timesaving and is a powerful tool for detecting DHAV-1, DHAV-3, and their mixed infection and for conducting surveys of pandemic virus strains.

  15. Radiolabeled semi-quantitative RT-PCR assay for the analysis of alternative splicing of interleukin genes.

    PubMed

    Shakola, Felitsiya; Byrne, Stephen; Javed, Kainaat; Ruggiu, Matteo

    2014-01-01

    Alternative splicing evolved as a very efficient way to generate proteome diversity from a limited number of genes, while at the same time modulating posttranscriptional events of gene expression-such as stability, turnover, subcellular localization, binding properties, and general activity of both mRNAs and proteins. Since the vast majority of human genes undergo alternative splicing, it comes to no surprise that interleukin genes also show extensive alternative splicing. In fact, there is a growing body of evidence indicating that alternative splicing plays a central role in modulating the pleiotropic functions of cytokines, and aberrant expression of alternatively spliced interleukin mRNAs has been linked to disease. However, while several interleukin splice variants have been described, their function is still poorly understood. This is particularly relevant, since alternatively spliced cytokine isoforms can act both as disease biomarkers and as candidate entry points for therapeutic intervention. In this chapter we describe a protocol that uses radiolabeled semi-quantitative RT-PCR to efficiently detect, analyze, and quantify alternative splicing patterns of cytokine genes. PMID:24908320

  16. Radiolabeled semi-quantitative RT-PCR assay for the analysis of alternative splicing of interleukin genes.

    PubMed

    Shakola, Felitsiya; Byrne, Stephen; Javed, Kainaat; Ruggiu, Matteo

    2014-01-01

    Alternative splicing evolved as a very efficient way to generate proteome diversity from a limited number of genes, while at the same time modulating posttranscriptional events of gene expression-such as stability, turnover, subcellular localization, binding properties, and general activity of both mRNAs and proteins. Since the vast majority of human genes undergo alternative splicing, it comes to no surprise that interleukin genes also show extensive alternative splicing. In fact, there is a growing body of evidence indicating that alternative splicing plays a central role in modulating the pleiotropic functions of cytokines, and aberrant expression of alternatively spliced interleukin mRNAs has been linked to disease. However, while several interleukin splice variants have been described, their function is still poorly understood. This is particularly relevant, since alternatively spliced cytokine isoforms can act both as disease biomarkers and as candidate entry points for therapeutic intervention. In this chapter we describe a protocol that uses radiolabeled semi-quantitative RT-PCR to efficiently detect, analyze, and quantify alternative splicing patterns of cytokine genes.

  17. Comparison of two real-time RT-PCR assays for differentiation of C-strain vaccinated from classical swine fever infected pigs and wild boars.

    PubMed

    Widén, F; Everett, H; Blome, S; Fernandez Pinero, J; Uttenthal, A; Cortey, M; von Rosen, T; Tignon, M; Liu, L

    2014-10-01

    Classical swine fever is one of the most important infectious diseases for the pig industry worldwide due to its economic impact. Vaccination is an effective means to control disease, however within the EU its regular use is banned owing to the inability to differentiate infected and vaccinated animals, the so called DIVA principle. This inability complicates monitoring of disease and stops international trade thereby limiting use of the vaccine in many regions. The C-strain vaccine is safe to use and gives good protection. It is licensed for emergency vaccination in the EU in event of an outbreak. Two genetic assays that can distinguish between wild type virus and C-strain vaccines have recently been developed. Here the results from a comparison of these two real-time RT-PCR assays in an interlaboratory exercise are presented. Both assays showed similar performance.

  18. Development of a rapid, sensitive TaqMan real-time RT-PCR assay for the detection of Rose rosette virus using multiple gene targets.

    PubMed

    Babu, Binoy; Jeyaprakash, Ayyamperumal; Jones, Debra; Schubert, Timothy S; Baker, Carlye; Washburn, Brian K; Miller, Steven H; Poduch, Kristina; Knox, Gary W; Ochoa-Corona, Francisco M; Paret, Mathews L

    2016-09-01

    Rose rosette virus (RRV), belonging to the genus Emaravirus, is a highly destructive pathogen that causes rose rosette disease. The disease is a major concern for the rose industry in the U.S. due to the lack of highly sensitive methods for early detection of RRV. This is critical, as early identification of the infected plants and eradication is necessary in minimizing the risks associated with the spread of the disease. A highly reliable, specific and sensitive detection assay is thus required to test and confirm the presence of RRV in suspected plant samples. In this study a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for the detection of RRV from infected roses, utilizing multiple gene targets. Four pairs of primers and probes; two of them (RRV_2-1 and RRV_2-2) based on the consensus sequences of the glycoprotein gene (RNA2) and the other two (RRV_3-2 and RRV_3-5) based on the nucleocapsid gene (RNA3) were designed. The specificity of the primers and probes was evaluated against other representative viruses infecting roses, belonging to the genera Alfamovirus, Cucumovirus, Ilarvirus, Nepovirus, Tobamovirus, and Tospovirus and one Emaravirus (Wheat mosaic virus). Dilution assays using the in vitro transcripts (spiked with total RNA from healthy plants, and non-spiked) showed that all the primers and probes are highly sensitive in consistently detecting RRV with a detection limit of 1 fg. Testing of the infected plants over a period of time (three times in monthly intervals) indicated high reproducibility, with the primer/probe RRV_3-5 showing 100% positive detection, while RRV_2-1, RRV_2-2 and RRV_3-2 showed 90% positive detection. The developed real-time RT-PCR assay is reliable, highly sensitive, and can be easily used in diagnostic laboratories for testing and confirmation of RRV. PMID:27210549

  19. Real-Time RT-PCR assay to quantify the expression of fum1 and fum19 genes from the Fumonisin-producing Fusarium verticillioides.

    PubMed

    López-Errasquín, Elena; Vázquez, Covadonga; Jiménez, Misericordia; González-Jaén, Maria Teresa

    2007-02-01

    Fumonisins are a group of mycotoxins produced by Fusarium species of the Gibberella fujikuroi species complex that contaminate food and feed products, and represent a risk for human and animal health. In this work, we have developed a specific real-time reverse transcription-PCR (RT-PCR) assay to quantify the level of expression of two genes of the fumonisin biosynthetic cluster in F. verticillioides: fum1 (that encodes a polyketide synthase enzyme) and the ABC transporter encoding gene fum19. The level of expression of both genes was compared with the amount of fumonisin B(1) (FB(1)), measured by HPLC, produced by several strains of F. verticillioides in liquid culture. The results indicated a good correspondence between the levels of fum1 and fum19 expression and the production of fumonisin B(1). The analysis described provides a good approach for the rapid and specific detection and characterization of the potential ability of F. verticillioides strains to produce fumonisins.

  20. Quantitative assay for measuring the Taura syndrome virus and yellow head virus load in shrimp by real-time RT-PCR using SYBR Green chemistry.

    PubMed

    Dhar, Arun K; Roux, Michelle M; Klimpel, Kurt R

    2002-06-01

    Taura syndrome virus (TSV) and yellow head virus (YHV) are the two RNA viruses infecting penaeid shrimp (Penaeus sp.) that have caused major economic losses to shrimp aquaculture. A rapid and highly sensitive detection and quantification method for TSV and YHV was developed using the GeneAmp 5700 Sequence Detection System and SYBR Green chemistry. The reverse transcriptase polymerase chain reaction (RT-PCR) mixture contained a fluorescent dye, SYBR Green, which exhibits fluorescence enhancement upon binding to double strand cDNA. The enhancement of fluorescence was found to be proportional to the initial concentration of the template cDNA. A linear relationship was observed between input plasmid DNA and cycle threshold (C(T)) values for 10(6) down to a single copy of both viruses. To control for the variation in sample processing and in reverse transcription reaction among samples, shrimp beta-actin and elongation factor-1alpha (EF-1alpha) genes were amplified in parallel with the viral cDNA. The sensitivity and the efficiency of amplification of EF-1alpha was greater than beta-actin when compared to TSV and YHV amplification efficiency suggesting that EF-1alpha is a better internal control for the RT-PCR detection of TSV and YHV. In addition, sample to sample variation in EF-1alpha C(T) value was lower than the variation in beta-actin C(T) value of the corresponding samples. The specificity of TSV, YHV, EF-1alpha and beta-actin amplifications was confirmed by analyzing the dissociation curves of the target amplicon. The C(T) values of TSV and YHV samples were normalized against EF-1alpha C(T) values for determining the absolute copy number from the standard curve of the corresponding virus. The method described here is highly robust and is amenable to high throughput assays making it a useful tool for diagnostic, epidemiological and genetic studies in shrimp aquaculture. PMID:12020794

  1. A duplex real-time RT-PCR assay for the detection of St. Louis encephalitis and Eastern equine encephalitis viruses

    PubMed Central

    Hull, Rene; Nattanmai, Seela; Kramer, Laura D.; Bernard, Kristen A.; Tavakoli, Norma P.

    2008-01-01

    A duplex TaqMan real-time RT-PCR assay was developed for the detection of St. Louis encephalitis virus (SLEV) and Eastern equine encephalitis virus (EEEV), for use in human and vector surveillance. The respective targets selected for the assay were the conserved NS5 and E1 genes of the two viruses. Due to the insufficient number of NS5 sequences from SLEV strains in the GenBank database, we determined the sequence of an approximately 1-kb region for each of 25 strains of SLEV in order to select primers and probes in a conserved region. Our assay has a sensitivity of 5 gene copies/reaction for EEEV and 10 gene copies/reaction for SLEV, and it’s performance is linear over at least 6 log10 gene copies. The assay is specific and detected all strains of SLEV (69) and EEEV (12) that were tested. An internal control ensures detection of efficient nucleic acid extraction and possible PCR inhibition. PMID:18715737

  2. Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of human coronavirus causing severe acute respiratory syndrome (SARS-CoV): a general methodology for detecting rapidly mutating viruses.

    PubMed

    Hadjinicolaou, Andreas V; Farcas, Gabriella A; Demetriou, Victoria L; Mazzulli, Tony; Poutanen, Susan M; Willey, Barbara M; Low, Donald E; Butany, Jagdish; Asa, Sylvia L; Kain, Kevin C; Kostrikis, Leondios G

    2011-04-01

    Emerging infectious diseases have caused a global effort for development of fast and accurate detection techniques. The rapidly mutating nature of viruses presents a major difficulty, highlighting the need for specific detection of genetically diverse strains. One such infectious agent is SARS-associated coronavirus (SARS-CoV), which emerged in 2003. This study aimed to develop a real-time RT-PCR detection assay specific for SARS-CoV, taking into account its intrinsic polymorphic nature due to genetic drift and recombination and the possibility of continuous and multiple introductions of genetically non-identical strains into the human population, by using mismatch-tolerant molecular beacons designed to specifically detect the SARS-CoV S, E, M and N genes. These were applied in simple, reproducible duplex and multiplex real-time PCR assays on 25 post-mortem samples and constructed RNA controls, and they demonstrated high target detection ability and specificity. This assay can readily be adapted for detection of other emerging and rapidly mutating pathogens.

  3. Comparison of a multiplex reverse transcription-PCR-enzyme hybridization assay with conventional viral culture and immunofluorescence techniques for the detection of seven viral respiratory pathogens.

    PubMed

    Liolios, L; Jenney, A; Spelman, D; Kotsimbos, T; Catton, M; Wesselingh, S

    2001-08-01

    A multiplex reverse transcription-PCR-enzyme hybridization assay (RT-PCR-EHA; Hexaplex; Prodesse Inc., Waukesha, Wis.) was used for the simultaneous detection of human parainfluenza virus types 1, 2, and 3, influenza virus types A and B, and respiratory syncytial virus types A and B. One hundred forty-three respiratory specimens from 126 patients were analyzed by RT-PCR-EHA, and the results were compared to those obtained by conventional viral culture and immunofluorescence (IF) methods. RT-PCR-EHA proved to be positive for 17 of 143 (11.9%) specimens, whereas 8 of 143 (5.6%) samples were positive by viral culture and/or IF. Eight samples were positive by both RT-PCR-EHA and conventional methods, while nine samples were RT-PCR-EHA positive and viral culture and IF negative. Eight of the nine samples with discordant results were then independently tested by a different multiplex RT-PCR assay for influenza virus types A and B, and all eight proved to be positive. In comparison to viral culture and IF methods, RT-PCR-EHA gave a sensitivity and a specificity of 100 and 93%, respectively. Since RT-PCR-EHA was able to detect more positive samples, which would otherwise have been missed by routine methods, we suggest that this multiplex RT-PCR-EHA provides a highly sensitive and specific means of diagnostic detection of major respiratory viruses.

  4. One-step multiplex real time RT-PCR for the detection of bovine respiratory syncytial virus, bovine herpesvirus 1 and bovine parainfluenza virus 3

    PubMed Central

    2012-01-01

    Background Detection of respiratory viruses in veterinary species has traditionally relied on virus detection by isolation or immunofluorescence and/or detection of circulating antibody using ELISA or serum neutralising antibody tests. Multiplex real time PCR is increasingly used to diagnose respiratory viruses in humans and has proved to be superior to traditional methods. Bovine respiratory disease (BRD) is one of the most common causes of morbidity and mortality in housed cattle and virus infections can play a major role. We describe here a one step multiplex reverse transcriptase quantitative polymerase chain reaction (mRT-qPCR) to detect the viruses commonly implicated in BRD. Results A mRT-qPCR assay was developed and optimised for the simultaneous detection of bovine respiratory syncytial virus (BRSV), bovine herpes virus type 1 (BoHV-1) and bovine parainfluenza virus type 3 (BPI3 i & ii) nucleic acids in clinical samples from cattle. The assay targets the highly conserved glycoprotein B gene of BoHV-1, nucleocapsid gene of BRSV and nucleoprotein gene of BPI3. This mRT-qPCR assay was assessed for sensitivity, specificity and repeatability using in vitro transcribed RNA and recent field isolates. For clinical validation, 541 samples from clinically affected animals were tested and mRT-qPCR result compared to those obtained by conventional testing using virus isolation (VI) and/or indirect fluorescent antibody test (IFAT). Conclusions The mRT-qPCR assay was rapid, highly repeatable, specific and had a sensitivity of 97% in detecting 102 copies of BRSV, BoHV-1 and BPI3 i & ii. This is the first mRT-qPCR developed to detect the three primary viral agents of BRD and the first multiplex designed using locked nucleic acid (LNA), minor groove binding (MGB) and TaqMan probes in one reaction mix. This test was more sensitive than both VI and IFAT and can replace the aforesaid methods for virus detection during outbreaks of BRD. PMID:22455597

  5. Semi-quantitative RT-PCR-based assay, improved by Southern hybridization technique, for polarity-specific influenza virus RNAs in cultured cells.

    PubMed

    Uchide, Noboru; Ohyama, Kunio; Bessho, Toshio; Yamakawa, Toshio

    2002-10-01

    Complementary (c) DNAs against viral (v) RNA of negative polarity and complementary and/or messenger (c/m) RNA of positive polarity for influenza virus hemagglutinin (HA) were synthesized from total cellular RNA extracted from influenza virus- and mock-infected cells using polarity-specific primers, respectively. HA vRNA and c/mRNA were amplified readily by polymerase chain reaction (PCR) from influenza virus-infected cells during a virus productive period; however, non-specific PCR product was prone to amplification from mock-infected cells and cells at once after virus infection. Southern blots of the PCR products were hybridized with biotinylated DNA probe, which enabled the generation of specific signals to HA vRNA and c/mRNA. Mock-infected cells produced no signals. Furthermore, titration analyses revealed linear relationships between amount of target RNAs and generated signals. Accordingly, Southern hybridization made possible the quantitation of specific PCR products for HA vRNA and c/mRNA in cell culture and proved the lack of HA RNAs in mock-infected cells in the absence of virus. The RT-PCR based assay combined with Southern hybridization methodology was useful with respect for investigating the processes of replication and transcription of viral genes in cell culture before and during the virus productive period.

  6. Incidence in diverse pig populations of an IGF2 mutation with potential influence on meat quality and quantity: An assay based on real time PCR (RT-PCR).

    PubMed

    Carrodeguas, José Alberto; Burgos, Carmen; Moreno, Carlos; Sánchez, Ana Cristina; Ventanas, Sonia; Tarrafeta, Luis; Barcelona, José Antonio; López, Maria Otilia; Oria, Rosa; López-Buesa, Pascual

    2005-11-01

    IGF2, insulin-like growth factor 2, is implicated in myogenesis and lean meat content. A mutation in a single base (A for G substitution) of the gene for IGF2 (position 3072 in intron 3) has been recently described as the cause of a major QTL effect on muscle growth in pigs [Van Laere, A. S, Nguyen, M., Braunschweig, M., Nezer, C., Collete, C., & Moreau, L. et al. (2003). Nature, 425, 832-836]. We describe here a rapid assay based on real time PCR (RT-PCR) to detect this mutation. We have evaluated the incidence of the mutation in commercial pig crosses, in three populations of purebred Iberian or Iberian×Duroc crosses, and in cured meat products and wild boars. The incidence of the mutation varies among these groups. Penetrance of the A mutation is about 80% in the commercial population. Purebred Iberian pigs were all homozygous G/G whereas crosses of Iberian pigs were heterozygous (90%) or homozygous A/A (10%). The implications of this gene for the selection of Iberian pigs are discussed.

  7. Development, application and validation of a Taqman real-time RT-PCR assay for the detection of infectious salmon anaemia virus (ISAV) in Atlantic salmon (Salmo salar).

    PubMed

    Snow, M; McKay, P; McBeath, A J A; Black, J; Doig, F; Kerr, R; Cunningham, C O; Nylund, A; Devold, M

    2006-01-01

    Infectious salmon anaemia (ISA) is a disease of cultured Atlantic salmon (Salmo salar) which was successfully eradicated from Scotland following its emergence in 1998. The rapid deployment of sensitive diagnostic methods for the detection of ISA virus (ISAV) was fundamental to the swift eradication of ISA disease in Scotland and continues to be of crucial importance to surveillance of the aquaculture industry. This study reports the development, validation, application and interpretation of two independent, highly sensitive and specific semi-quantitative Taqman real-time RT-PCR (qRT-PCR) methods for the detection of ISAV. Such technology offers considerable advantages over conventional RT-PCR methods in current routine use for ISAV surveillance. These include an increased sensitivity, enhanced specificity, semi-quantification using endogenous controls, a lack of subjectivity in results interpretation, speed of processing and improved contamination control. PMID:17058489

  8. Comparison of the AdvanSure™ real-time RT-PCR and Seeplex(®) RV12 ACE assay for the detection of respiratory viruses.

    PubMed

    Jung, Yu Jung; Kwon, Hyeon Jeong; Huh, Hee Jae; Ki, Chang-Seok; Lee, Nam Yong; Kim, Jong-Won

    2015-11-01

    The AdvanSure™ RV real-time PCR kit (AdvanSure; LG Life Sciences, Korea) is based on multiplex real-time PCR and can simultaneously detect 14 respiratory viruses. We compared the performance of the AdvanSure assay with the Seeplex RV 12 ACE detection kit (Seeplex; Seegene, Seoul, South Korea), a multiplex end-point PCR assay. A total of 454 consecutive respiratory specimens were tested with both AdvanSure and Seeplex assays; AdvanSure detected 153 (33.7%) positive cases and Seeplex detected 145 (31.9%) positive cases. The positive percent agreement, negative percent agreement, and kappa value for the two assays were 87.2% (95% CI, 80.3-92.1), 91.1% (95% CI, 87.2-93.9), and 0.77 (95% CI, 0.70-0.83), respectively. Compared with the Seeplex assay, the AdvanSure assay had a shorter turnaround time (3h vs. 8h) and a shorter hands-on time (<1h vs 2h). In conclusion, the AdvanSure assay demonstrated comparable performance to the Seeplex assay.

  9. A duplex SYBR Green I-based real-time RT-PCR assay for the simultaneous detection and differentiation of Massachusetts and non-Massachusetts serotypes of infectious bronchitis virus.

    PubMed

    Acevedo, Ana M; Perera, Carmen L; Vega, Armando; Ríos, Liliam; Coronado, Liani; Relova, Damarys; Frías, Maria T; Ganges, Llilianne; Núñez, José I; Pérez, Lester J

    2013-01-01

    Infectious bronchitis is a highly contagious viral disease of poultry caused by infectious bronchitis virus (IBV) and is considered one of the most economically important viral diseases of chickens. Control of IBV has been attempted using live attenuated and inactivated vaccines. Live attenuated vaccines of the Massachusetts (Mass.) serotype are the most commonly used for this purpose. Due to the continuous emergence of new variants of the infectious bronchitis virus, the identification of the type of IBV causing an outbreak in commercial poultry is important in the selection of the appropriate vaccine(s) capable of inducing a protective immune response. The present work was aimed at developing and evaluating a duplex SYBR Green I-based real-time RT-PCR (rRT-PCR) assay for the simultaneous detection and differentiation of Mass. and non-Mass. serotypes of IBV. The duplex rRT-PCR yielded curves of amplification with two specific melting curves (Tm1 = 83 °C ± 0.5 °C and Tm2 = 87 °C ± 0.5 °C) and only one specific melting peak (Tm = 87 °C ± 0.5 °C) when the IBV Mass. serotype and IBV non-Mass. serotype strains were evaluated, respectively. The detection limit of the assay was 8.2 gene copies/μL based on in vitro transcribed RNA and 0.1 EID50/mL. The assay was able to detect all the IBV strains assessed and discriminated well among the IBV Mass. and the IBV non-Mass. serotypes strains. In addition, amplification curves were not obtained with any of the other viruses tested. From the 300 field samples tested, the duplex rRT-PCR yielded a total of 80 samples that were positive for IBV (26.67%), 73 samples identified as the IBV Mass. serotype and seven samples as identified as the IBV non-Mass. serotype. A comparison of the performance of test as assessed with field samples revealed that the duplex rRT-PCR detected a higher number of IBV-positive samples than when conventional RT-PCR or virus isolation tests were used. The duplex rRT-PCR presented here is a

  10. Multiplex Flow Assays

    PubMed Central

    2016-01-01

    Lateral flow or dipstick assays (e.g., home pregnancy tests), where an analyte solution is drawn through a porous membrane and is detected by localization onto a capture probe residing at a specific site on the flow strip, are the most commonly and extensively used type of diagnostic assay. However, after over 30 years of use, these assays are constrained to measuring one or a few analytes at a time. Here, we describe a completely general method, in which any single-plex lateral flow assay is transformed into a multiplex assay capable of measuring an arbitrarily large number of analytes simultaneously. Instead of identifying the analyte by its localization onto a specific geometric location in the flow medium, the analyte-specific capture probe is identified by its association with a specific optically encoded region within the flow medium. The capture probes for nucleic acids, antigens, or antibodies are attached to highly porous agarose beads, which have been encoded using multiple lanthanide emitters to create a unique optical signature for each capture probe. The optically encoded capture probe-derivatized beads are placed in contact with the analyte-containing porous flow medium and the analytes are captured onto the encoded regions as the solution flows through the porous medium. To perform a multiplex diagnostic assay, a solution comprising multiple analytes is passed through the flow medium containing the capture probe-derivatized beads, and the captured analyte is treated with a suitable fluorescent reporter. We demonstrate this multiplex analysis technique by simultaneously measuring DNA samples, antigen–antibody pairs, and mixtures of multiple nucleic acids and antibodies.

  11. Quantitative RT-PCR assay of HER2 mRNA expression in formalin-fixed and paraffin-embedded breast cancer tissues.

    PubMed

    Park, Sangjung; Wang, Hye-Young; Kim, Sunghyun; Ahn, Sungwoo; Lee, Dongsup; Cho, Yoonjung; Park, Kwang Hwa; Jung, Dongju; Kim, Seung Il; Lee, Hyeyoung

    2014-01-01

    Detection of human epidermal growth factor receptor 2 gene (HER2, also known as erbB2) expression is a preparatory process to decide a treatment strategy for breast cancer patients. 20-30% of breast cancer patients have HER2 overexpression, and they usually show poor recovery rate. For detection of HER2 expression, immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) methods are conventionally used. Although these methods are accurate and reliable, their time-consuming process and high cost need a concise method with high sensitivity and accuracy. As a complementary method to the current IHC/FISH standard techniques, PCR-based methods have been developed. Here we employed a quantitative PCR method to detect HER2 expression in one hundred ninety nine formalin-fixed and paraffin-embedded (FFPE) breast cancer tissue samples from the patients treated over two years at the Yonsei University Severance Hospital, Republic of Korea. Relative expression of HER2 mRNA in the FFPE samples was analyzed using a quantitative RT-PCR (RT-qPCR) method and the obtained HER2 expression levels were compared with those from IHC/FISH methods. Our results show that the RT-qPCR method was highly concordant with IHC/FISH methods for detecting HER2 expression. Overall sensitivity and specificity of the BrightGen HER2 RT-qDx assay kit (Syantra, Calgary, Canada), which is a kit we used for RT-qPCR analyses, were 93.0% and 89.8% (P < 0.0001), respectively. The diagnostic cut-off value of HER2 RT-qDx for the clinical samples was determined by likelihood ratio, among which the highest likelihood ratio of relative HER2 mRNA levels was over 105.5 (AUC = 0.9466) with the highest sensitivity and specificity. Our study indicates that quantification of HER2 mRNA expression with the RT-qPCR could be an alternative method of conventional IHC/FISH methods.

  12. Analytical approach for selecting normalizing genes from a cDNA microarray platform to be used in q-RT-PCR assays: a cnidarian case study.

    PubMed

    Rodriguez-Lanetty, Mauricio; Phillips, Wendy S; Dove, Sophie; Hoegh-Guldberg, Ove; Weis, Virginia M

    2008-04-24

    Research in gene function using Quantitative Reverse Transcription PCR (q-RT-PCR) and microarray approaches are emerging and just about to explode in the field of coral and cnidarian biology. These approaches are showing the great potential to significantly advance our understanding of how corals respond to abiotic and biotic stresses, and how host cnidarians/dinoflagellates symbioses are maintained and regulated. With these genomic advances, however, new analytical challenges are also emerging, such as the normalization of gene expression data derived from q-RT-PCR. In this study, an effective analytical method is introduced to identify candidate housekeeping genes (HKG) from a sea anemone (Anthopleura elegantissima) cDNA microarray platform that can be used as internal control genes to normalize q-RT-PCR gene expression data. It is shown that the identified HKGs were stable among the experimental conditions tested in this study. The three most stables genes identified, in term of gene expression, were beta-actin, ribosomal protein L12, and a Poly(a) binding protein. The applications of these HKGs in other cnidarian systems are further discussed. PMID:17913235

  13. Padlock probe-mediated qRT-PCR for DNA computing answer determination.

    PubMed

    Xiong, Fusheng; Frasch, Wayne D

    2011-06-01

    Padlock probe-mediated quantitative real time PCR (PLP-qRT-PCR) was adapted to quantify the abundance of sequential 10mer DNA sequences for use in DNA computing to identify optimal answers of traveling salesman problems. The protocol involves: (i) hybridization of a linear PLP with a target DNA sequence; (ii) PLP circularization through enzymatic ligation; and (iii) qRT-PCR amplification of the circularized PLP after removal of non-circularized templates. The linear PLP was designed to consist of two 10-mer sequence-detection arms at the 5' and 3' ends separated by a core sequence composed of universal PCR primers, and a qRT-PCR reporter binding site. Circularization of each PLP molecule is dependent upon hybridization with target sequence and high-fidelity ligation. Thus, the number of PLP circularized is determined by the abundance of target in solution. The amplification efficiency of the PLP was 98.7% within a 0.2 pg-20 ng linear detection range between thermal cycle threshold (C(t) value) and target content. The C(t) values derived from multiplex qRT-PCR upon three targets did not differ significantly from those obtained with singleplex assays. The protocol provides a highly sensitive and efficient means for the simultaneous quantification of multiple short nucleic acid sequences that has a wide range of applications in biotechnology.

  14. Ultrasensitive amplification refractory mutation system real-time PCR (ARMS RT-PCR) assay for detection of minority hepatitis B virus-resistant strains in the era of personalized medicine.

    PubMed

    Ntziora, Fotinie; Paraskevis, Dimitrios; Haida, Catherine; Manesis, Emanuel; Papatheodoridis, George; Manolakopoulos, Spilios; Elefsiniotis, Ioannis; Karamitros, Timokratis; Vassilakis, Alexis; Hatzakis, Angelos

    2013-09-01

    Resistance to antiviral treatment for chronic hepatitis B virus (HBV) has been associated with mutations in the HBV polymerase region. This study aimed at developing an ultrasensitive method for quantifying viral populations with all major HBV resistance-associated mutations, combining the amplification refractory mutation system real-time PCR (ARMS RT-PCR) with a molecular beacon using a LightCycler. The discriminatory ability of this method, the ARMS RT-PCR with molecular beacon assay, was 0.01 to 0.25% for the different HBV resistance-associated mutations, as determined by laboratory-synthesized wild-type (WT) and mutant (Mut) target sequences. The assay showed 100% sensitivity for the detection of mutant variants A181V, T184A, and N236T in samples from 41 chronically HBV-infected patients under antiviral therapy who had developed resistance-associated mutations detected by direct PCR Sanger sequencing. The ratio of mutant to wild-type viral populations (the Mut/WT ratio) was >1% in 38 (63.3%) of 60 samples from chronically HBV-infected nucleos(t)ide analogue-naive patients; combinations of mutations were also detected in half of these samples. The ARMS RT-PCR with molecular beacon assay achieved high sensitivity and discriminatory ability compared to the gold standard of direct PCR Sanger sequencing in identifying resistant viral populations in chronically HBV-infected patients receiving antiviral therapy. Apart from the dominant clones, other quasispecies were also quantified. In samples from chronically HBV-infected nucleos(t)ide analogue-naive patients, the assay proved to be a useful tool in detecting minor variant populations before the initiation of the treatment. These observations need further evaluation with prospective studies before they can be implemented in daily practice.

  15. Development and evaluation of a one-step SYBR-Green I-based real-time RT-PCR assay for the detection and quantification of Chikungunya virus in human, monkey and mosquito samples.

    PubMed

    Ummul Haninah, A; Vasan, S S; Ravindran, T; Chandru, A; Lee, H L; Shamala Devi, S

    2010-12-01

    This paper reports the development of a one-step SYBR-Green I-based realtime RT-PCR assay for the detection and quantification of Chikungunya virus (CHIKV) in human, monkey and mosquito samples by targeting the E1 structural gene. A preliminary evaluation of this assay has been successfully completed using 71 samples, consisting of a panel of negative control sera, sera from healthy individuals, sera from patients with acute disease from which CHIKV had been isolated, as well as monkey sera and adult mosquito samples obtained during the chikungunya fever outbreak in Malaysia in 2008. The assay was found to be 100-fold more sensitive than the conventional RT-PCR with a detection limit of 4.12x10(0) RNA copies/μl. The specificity of the assay was tested against other related viruses such as Dengue (serotypes 1-4), Japanese encephalitis, Herpes Simplex, Parainfluenza, Sindbis, Ross River, Yellow fever and West Nile viruses. The sensitivity, specificity and efficiency of this assay were 100%, 100% and 96.8% respectively. This study on early diagnostics is of importance to all endemic countries, especially Malaysia, which has been facing increasingly frequent and bigger outbreaks due to this virus since 1999.

  16. Reverse-transcription PCR (RT-PCR).

    PubMed

    Bachman, Julia

    2013-01-01

    RT-PCR is commonly used to test for genetic diseases and to characterize gene expression in various tissue types, cell types, and over developmental time courses. This serves as a form of expression profiling, but typically as a candidate approach. RT-PCR is also commonly used to clone cDNAs for further use with other molecular biology techniques (e.g., see Oligo(dT)-primed RT-PCR isolation of polyadenylated RNA degradation intermediates and Circularized RT-PCR (cRT-PCR): analysis of RNA 5' ends, 3' ends, and poly(A) tails).

  17. Detection of Grapevine leafroll-associated virus 7 using real time qRT-PCR and conventional RT-PCR.

    PubMed

    Al Rwahnih, Maher; Osman, Fatima; Sudarshana, Mysore; Uyemoto, Jerry; Minafra, Angelantonio; Saldarelli, Pasquale; Martelli, Giovanni; Rowhani, Adib

    2012-02-01

    Nine isolates of Grapevine leafroll-associated virus 7 (GLRaV-7) from diverse geographical regions were sequenced to design more sensitive molecular diagnostic tools. The coat protein (CP) and heat shock protein 70 homologue (HSP70h) genes of these nine isolates were sequenced. Sequences were then used to design more sensitive molecular diagnostic tools. Sequence identity among these isolates ranged between 90 to 100% at the nucleotide and amino acid levels. One RT-PCR and two qRT-PCR assays were used to survey 86 different grapevines from the University of California, Davis Grapevine Virus Collection, the Foundation Plant Services collection and the USDA National Clonal Germplasm Repository, Davis, CA with primers designed in conserved regions of the CP and HSP70h genes. Results revealed that qRT-PCR assays designed in the HSP70h gene was more sensitive (29.07% positives) than that designed in the CP gene (22.09% positives) and both qRT-PCR assays proved to be more sensitive than RT-PCR.

  18. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  19. Molecular characterization of two Rocio flavivirus strains isolated during the encephalitis epidemic in São Paulo State, Brazil and the development of a one-step RT-PCR assay for diagnosis.

    PubMed

    Coimbra, Terezinha Lisieux Moraes; Santos, Raimundo N; Petrella, Selma; Nagasse-Sugahara, Teresa Keico; Castrignano, Silvana Beres; Santos, Cecília L Simões

    2008-01-01

    Rocio virus (ROCV) was responsible for an explosive encephalitis epidemic in the 1970s affecting about 1,000 residents of 20 coastland counties in São Paulo State, Brazil. ROCV was first isolated in 1975 from the cerebellum of a fatal human case of encephalitis. Clinical manifestations of the illness are similar to those described for St. Louis encephalitis. ROCV shows intense antigenic cross-reactivity with Japanese encephalitis complex (JEC) viruses, particularly with Ilheus (ILHV), St. Louis encephalitis, Murray Valley and West Nile viruses. In this study, we report a specific RT-PCR assay for ROCV diagnosis and the molecular characterization of the SPAn37630 and SPH37623 strains. Partial nucleotide sequences of NS5 and E genes determined from both strains were used in phylogenetic analysis. The results indicated that these strains are closely related to JEC viruses, but forming a distinct subclade together with ILHV, in accordance with results recently reported by Medeiros et al. (2007).

  20. Development and evaluation of a SYBR Green real-time RT-PCR assay for evaluation of cytokine gene expression in horse.

    PubMed

    Sánchez-Matamoros, A; Kukielka, D; De las Heras, A I; Sánchez-Vizcaíno, J M

    2013-01-01

    Cytokine secretion is one of the main mechanisms by which the immune system is regulated in response to pathogens. Therefore, the measurement of cytokine expression is fundamental to characterizing the immune response to infections. Real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) is widely used to measure cytokine mRNA levels, but assay conditions should be properly evaluated before analyzing important equine infections through relative quantification of gene expression. The aim of this study was to develop and evaluate a set of RT-qPCR assays for a panel of the most common cytokines in horses involved in innate and adaptive immune responses. Eight cytokines (interleukin (IL)-1β, IL-2, IL-4, IL-10, IL-12, TNFα, IFNβ and IFNγ) and a housekeeping gene (β-actin) were detected and amplified with the same annealing temperature in a SYBR Green RT-qPCR assay of samples of mitogen-stimulated peripheral blood mononuclear cells from a healthy horse and whole blood from a horse infected with African horse sickness virus. The method gave good efficiency for all genes tested, allowing quantification of relative expression levels. These SYBR Green RT-qPCR assays may be useful for examining cytokine gene expression in horses in response to exposure to economically important pathogens.

  1. Development and evaluation of a SYBR Green real-time RT-PCR assay for evaluation of cytokine gene expression in horse.

    PubMed

    Sánchez-Matamoros, A; Kukielka, D; De las Heras, A I; Sánchez-Vizcaíno, J M

    2013-01-01

    Cytokine secretion is one of the main mechanisms by which the immune system is regulated in response to pathogens. Therefore, the measurement of cytokine expression is fundamental to characterizing the immune response to infections. Real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) is widely used to measure cytokine mRNA levels, but assay conditions should be properly evaluated before analyzing important equine infections through relative quantification of gene expression. The aim of this study was to develop and evaluate a set of RT-qPCR assays for a panel of the most common cytokines in horses involved in innate and adaptive immune responses. Eight cytokines (interleukin (IL)-1β, IL-2, IL-4, IL-10, IL-12, TNFα, IFNβ and IFNγ) and a housekeeping gene (β-actin) were detected and amplified with the same annealing temperature in a SYBR Green RT-qPCR assay of samples of mitogen-stimulated peripheral blood mononuclear cells from a healthy horse and whole blood from a horse infected with African horse sickness virus. The method gave good efficiency for all genes tested, allowing quantification of relative expression levels. These SYBR Green RT-qPCR assays may be useful for examining cytokine gene expression in horses in response to exposure to economically important pathogens. PMID:23103121

  2. Development of generic Taqman PCR and RT-PCR assays for the detection of DNA and mRNA of β-actin-encoding sequences in a wide range of animal species.

    PubMed

    Piorkowski, Géraldine; Baronti, Cécile; de Lamballerie, Xavier; de Fabritus, Lauriane; Bichaud, Laurence; Pastorino, Boris A; Bessaud, Maël

    2014-06-01

    As a member of the European Virus Archive (EVA) consortium, our laboratory is developing and maintaining a large collection of viruses. This collection implies the use of a panel of cell lines originating from various animal species. In order to make easier the handling of such a large panel of cell lines, wide spectrum real-time PCR and RT-PCR assays were developed to allow the detection and the quantification of DNA and mRNA of β-actin, one of the most commonly used eukaryotic housekeeping genes. By using two degenerated primers and a unique probe, these two assays were shown to detect nucleic acids of a panel of vertebrate and invertebrate cell lines commonly used in animal virology. This panel included human, monkey, rodent, dog, pig, fish, batrachian, mosquito and tick cell lines. Additionally, the two assays amplified successfully β-actin-encoding sequences of sandflies. Sensitivity evaluation performed on synthetic DNA and RNA sequences showed that the two assays were very sensitive and suitable for accurate quantification. The two assays constitute together a convenient method suitable for multiple purposes. They can be used for instance to estimate the amount of contaminating cellular genetic material prior to sequence-independent amplification of viral genomes achieved before high-throughput sequencing, to evaluate the efficiency of DNase and/or RNase treatments performed on cellular extract and to check nucleic acid extraction by using β-actin-encoding sequences as endogenous control. This assay will constitute a precious tool for virologists working with multiple cell lines or animal models.

  3. A highly specific q-RT-PCR assay to address the relevance of the JAK2WT and JAK2V617F expression levels and control genes in Ph-negative myeloproliferative neoplasms.

    PubMed

    Fantasia, Francesca; Di Capua, Emma Nora; Cenfra, Natalia; Pessina, Gloria; Mecarocci, Sergio; Rago, Angela; Cotroneo, Ettore; Busanello, Anna; Equitani, Francesco; Lo-Coco, Francesco; Nervi, Clara; Cimino, Giuseppe

    2014-04-01

    In Ph- myeloproliferative neoplasms, the quantification of the JAK2V617F transcripts may provide some advantages over the DNA allele burden determination. We developed a q-RT-PCR to assess the JAK2WT and JAK2V617F mRNA expression in 105 cases (23 donors, 13 secondary polycythemia, 22 polycythemia vera (PV), 38 essential thrombocythemia (ET), and 9 primary myelofibrosis (PMF)). Compared with the standard allele-specific oligonucleotide (ASO)-PCR technique, our assay showed a 100 % concordance rate detecting the JAK2V617F mutation in 22/22 PV (100 %), 29/38 (76.3 %) ET, and 5/9 (55.5 %) PMF cases, respectively. The sensitivity of the assay was 0.01 %. Comparing DNA and RNA samples, we found that the JAK2V617F mutational ratios were significantly higher at the RNA level both in PV (p = 0.005) and ET (p = 0.001) samples. In PV patients, JAK2WT expression levels positively correlated with the platelets (PLTs) (p = 0.003) whereas a trend to negative correlation was observed with the Hb levels (p = 0.051). JAK2V617F-positive cases showed the lowest JAK2WT and ABL1 mRNA expression levels. In all the samples, the expression pattern of beta-glucoronidase (GUSB) was more homogeneous than that of ABL1 or β2 microglobulin (B2M). Using GUSB as normalizator gene, a significant increase of the JAK2V617F mRNA levels was seen in two ET patients at time of progression to PV. In conclusion, the proposed q-RT-PCR is a sensitive and accurate method to quantify the JAK2 mutational status that can also show clinical correlations suggesting the impact of the residual amount of the JAK2WT allele on the Ph- MPN disease phenotype. Our observations also preclude the use of ABL1 as a housekeeping gene for these neoplasms.

  4. Development and validation of a multiplex reverse transcription PCR assay for simultaneous detection of three papaya viruses.

    PubMed

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-10-21

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay's specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya.

  5. Rapid Differential Diagnosis between Extrapulmonary Tuberculosis and Focal Complications of Brucellosis Using a Multiplex Real-Time PCR Assay

    PubMed Central

    Queipo-Ortuño, María Isabel; Colmenero, Juan D.; Bermudez, Pilar; Bravo, María José; Morata, Pilar

    2009-01-01

    Background Arduous to differ clinically, extrapulmonary tuberculosis and focal complications of brucellosis remain important causes of morbidity and mortality in many countries. We developed and applied a multiplex real-time PCR assay (M RT-PCR) for the simultaneous detection of Mycobacterium tuberculosis complex and Brucella spp. Methodology Conventional microbiological techniques and M RT-PCR for M. tuberculosis complex and Brucella spp were performed on 45 clinical specimens from patients with focal complications of brucellosis or extrapulmonary tuberculosis and 26 control samples. Fragments of 207 bp and 164 bp from the conserved region of the genes coding for an immunogenic membrane protein of 31 kDa of B. abortus (BCSP31) and the intergenic region SenX3-RegX3 were used for the identification of Brucella and M. tuberculosis complex, respectively. Conclusions The detection limit of the M RT-PCR was 2 genomes per reaction for both pathogens and the intra- and inter-assay coefficients of variation were 0.44% and 0.93% for Brucella and 0.58% and 1.12% for Mycobacterium. M RT-PCR correctly identified 42 of the 45 samples from patients with tuberculosis or brucellosis and was negative in all the controls. Thus, the overall sensitivity, specificity, PPV and NPV values of the M RT PCR assay were 93.3%, 100%, 100% and 89.7%, respectively, with an accuracy of 95.8% (95% CI, 91.1%–100%). Since M RT-PCR is highly reproducible and more rapid and sensitive than conventional microbiological tests, this technique could be a promising and practical approach for the differential diagnosis between extrapulmonary tuberculosis and focal complications of brucellosis. PMID:19225565

  6. A quantitative real-time RT-PCR assay to measure TGF-beta mRNA and its correlation with hematologic, plasma chemistry and organo-somatic indices responses in triamcinolone-treated Atlantic menhaden, Brevoortia tyrannus.

    PubMed

    Johnson, A K; Harms, C A; Levine, J F; Law, J McHugh

    2006-01-01

    A quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) assay was developed to measure transforming growth factor-beta (TGF-beta) in Atlantic menhaden (Brevoortia tyrannus), an estuarine-dependent species plagued by ulcerative skin lesions in the estuaries along the eastern United States. Atlantic menhaden were acclimated in a closed system for two weeks prior to initiation of the study. The synthetic glucocorticoid, triamcinolone acetonide (10mg/kg body weight) was administered by intracoelomic injection and its effect on the splenic mononuclear cell TGF-beta mRNA transcription, liver-somatic index, spleno-somatic index, hematology, and plasma chemistry were compared to untreated fish at 48 and 96h post-treatment. Triamcinolone-treated Atlantic menhaden showed suppression of TGF-beta mRNA production, neutrophilia, monocytosis, lymphopenia, and an increase in blood glucose concentrations. The health indices used in this study may help us interpret some of the changes observed during the development of ulcerative skin lesions in wild-caught menhaden. PMID:16139358

  7. Simultaneous measurement of multiple ear proteins with multiplex ELISA assays.

    PubMed

    Trune, Dennis R; Larrain, Barbara E; Hausman, Frances A; Kempton, J Beth; MacArthur, Carol J

    2011-05-01

    RT-PCR. The Quansys array showed a limit of detection for ear IL-6 down to 2-4 pg/ml, indicating it is sufficiently sensitive to detect ear proteins present in low concentrations. Thus, the multiplex ELISA procedures appear suitable and reliable for the study of hearing related proteins, providing accurate, quantitative, reproducible results with considerable improvement in sensitivity and economy.

  8. Prevalence study of Bovine viral diarrhea virus by evaluation of antigen capture ELISA and RT-PCR assay in Bovine, Ovine, Caprine, Buffalo and Camel aborted fetuses in Iran

    PubMed Central

    2011-01-01

    Bovine viral diarrhea virus is a pestivirus in the family Flaviviridae that cause abortions and stillbirths in livestock and its traditional diagnosis is based on cell culture and virus neutralization test. In this study, for more sensitive, specific detection and determined the prevalence of virus in aborted Bovine, Ovine, Caprine, Buffalo and Camel fetuses the antigen capture ELISA and RT-PCR were recommended. From the total of 2173 aborted fetuses, 347 (15.96%) and 402 (18.49%) were positive for presence of Bovine viral diarrhea virus by antigen capture ELISA and RT-PCR respectively. Statistical analysis of data showed significant differences between ELISA and RT-PCR for detection of virus in aborted fetuses. These results indicate a high presence of this pathogen in Iran and that RT- PCR is considerably faster and more accurate than ELISA for identification of Bovine viral diarrhea virus. To our knowledge the Camels and Bovine are the most resistant and sensitive to Bovine viral diarrhea's abortions respectively and the prevalence of virus in Caprine is more than Ovine aborted fetuses. This study is the first prevalence report of Bovine viral diarrhea virus in aborted Bovine, Ovine, Caprine, Buffalo and Camel fetuses by evaluation of ELISA and RT-PCR in Iran. PMID:22018096

  9. Evaluation of a Multiplex Real-time PCR Assay for the Detection of Respiratory Viruses in Clinical Specimens

    PubMed Central

    Rheem, Insoo; Park, Joowon; Kim, Tae-Hyun

    2012-01-01

    Background In this study, we evaluated the analytical performance and clinical potential of a one-step multiplex real-time PCR assay for the simultaneous detection of 14 types of respiratory viruses using the AdvanSure RV real-time PCR Kit (LG Life Sciences, Korea). Methods Three hundred and twenty clinical specimens were tested with the AdvanSure RV real-time PCR Kit and conventional multiplex reverse transcription (RT)-PCR assay. The assay results were analyzed and the one-step AdvanSure RV real-time PCR Kit was compared with the conventional multiplex RT-PCR assay with respect to the sensitivity and specificity of the detection of respiratory viruses. Results The limit of detection (LOD) was 1.31 plaque-forming units (PFU)/mL for human rhinoviruses (hRVs), 4.93 PFU/mL for human coronavirus HCoV-229E/NL63, 2.67 PFU/mL for human coronavirus HCoV-OC43, 18.20 PFU/mL for parainfluenza virus 1 (PIV)-1, 24.57 PFU/mL for PIV-2, 1.73 PFU/mL for PIV-3, 1.79 PFU/mL for influenza virus group (Flu) A, 59.51 PFU/mL for FluB, 5.46 PFU/mL for human respiratory syncytial virus (hRSV)-A, 17.23 PFU/mL for hRSV-B, 9.99 PFU/mL for human adenovirus (ADVs). The cross-reactivity test for this assay against 23 types of non-respiratory viruses showed negative results for all viruses tested. The agreement between the one-step AdvanSure multiplex real-time PCR assay and the conventional multiplex RT-PCR assay was 98%. Conclusions The one-step AdvanSure RV multiplex real-time PCR assay is a simple assay with high potential for specific, rapid and sensitive laboratory diagnosis of respiratory viruses compared to conventional multiplex RT-PCR. PMID:23130338

  10. Design of Multiplexed Detection Assays for Identification of Avian Influenza A Virus Subtypes Pathogenic to Humans by SmartCycler Real-Time Reverse Transcription-PCR ▿

    PubMed Central

    Wang, Wei; Ren, Peijun; Mardi, Sek; Hou, Lili; Tsai, Cheguo; Chan, Kwok Hung; Cheng, Peter; Sheng, Jun; Buchy, Philippe; Sun, Bing; Toyoda, Tetsuya; Lim, Wilina; Peiris, J. S. Malik; Zhou, Paul; Deubel, Vincent

    2009-01-01

    Influenza A virus (IAV) epidemics are the result of human-to-human or poultry-to-human transmission. Tracking seasonal outbreaks of IAV and other avian influenza virus (AIV) subtypes that can infect humans, aquatic and migratory birds, poultry, and pigs is essential for epidemiological surveillance and outbreak alerts. In this study, we performed four real-time reverse transcription-PCR (rRT-PCR) assays for identification of the IAV M and hemagglutinin (HA) genes from six known AIVs infecting pigs, birds, and humans. IAV M1 gene-positive samples tested by single-step rRT-PCR and a fluorogenic Sybr green I detection system were further processed for H5 subtype identification by using two-primer-set multiplex and Sybr green I rRT-PCR assays. H5 subtype-negative samples were then tested with either a TaqMan assay for subtypes H1 and H3 or a TaqMan assay for subtypes H2, H7, and H9 and a beacon multiplex rRT-PCR identification assay. The four-tube strategy was able to detect 10 RNA copies of the HA genes of subtypes H1, H2, H3, H5, and H7 and 100 RNA copies of the HA gene of subtype H9. At least six H5 clades of H5N1 viruses isolated in Southeast Asia and China were detected by that test. Using rRT-PCR assays for the M1 and HA genes in 202 nasopharyngeal swab specimens from children with acute respiratory infections, we identified a total of 39 samples positive for the IAV M1 gene and subtypes H1 and H3. When performed with a portable SmartCycler instrument, the assays offer an efficient, flexible, and reliable platform for investigations of IAV and AIV in remote hospitals and in the field. PMID:18971359

  11. design of multiplexed detection assays for identification of avian influenza a virus subtypes pathogenic to humans by SmartCycler real-time reverse transcription-PCR.

    PubMed

    Wang, Wei; Ren, Peijun; Mardi, Sek; Hou, Lili; Tsai, Cheguo; Chan, Kwok Hung; Cheng, Peter; Sheng, Jun; Buchy, Philippe; Sun, Bing; Toyoda, Tetsuya; Lim, Wilina; Peiris, J S Malik; Zhou, Paul; Deubel, Vincent

    2009-01-01

    Influenza A virus (IAV) epidemics are the result of human-to-human or poultry-to-human transmission. Tracking seasonal outbreaks of IAV and other avian influenza virus (AIV) subtypes that can infect humans, aquatic and migratory birds, poultry, and pigs is essential for epidemiological surveillance and outbreak alerts. In this study, we performed four real-time reverse transcription-PCR (rRT-PCR) assays for identification of the IAV M and hemagglutinin (HA) genes from six known AIVs infecting pigs, birds, and humans. IAV M1 gene-positive samples tested by single-step rRT-PCR and a fluorogenic Sybr green I detection system were further processed for H5 subtype identification by using two-primer-set multiplex and Sybr green I rRT-PCR assays. H5 subtype-negative samples were then tested with either a TaqMan assay for subtypes H1 and H3 or a TaqMan assay for subtypes H2, H7, and H9 and a beacon multiplex rRT-PCR identification assay. The four-tube strategy was able to detect 10 RNA copies of the HA genes of subtypes H1, H2, H3, H5, and H7 and 100 RNA copies of the HA gene of subtype H9. At least six H5 clades of H5N1 viruses isolated in Southeast Asia and China were detected by that test. Using rRT-PCR assays for the M1 and HA genes in 202 nasopharyngeal swab specimens from children with acute respiratory infections, we identified a total of 39 samples positive for the IAV M1 gene and subtypes H1 and H3. When performed with a portable SmartCycler instrument, the assays offer an efficient, flexible, and reliable platform for investigations of IAV and AIV in remote hospitals and in the field.

  12. Comparative detection of rotavirus RNA by conventional RT-PCR, TaqMan RT-PCR and real-time nucleic acid sequence-based amplification.

    PubMed

    Mo, Qiu-Hua; Wang, Hai-Bo; Tan, Hua; Wu, Bi-Mei; Feng, Zi-Li; Wang, Qi; Lin, Ji-Can; Yang, Ze

    2015-03-01

    Rotavirus is one of the major viral pathogens leading to diarrhea. Diagnosis has been conducted by either traditional cultural, serological methods or molecular biology techniques, which include RT-PCR and nucleic acid sequence-based amplification (NASBA). However, their differences regarding accuracy and sensitivity remain unknown. In this study, an in-house conventional RT-PCR assay and more importantly, an in-house real-time NASBA (RT-NASBA) were established, and compared with a commercial TaqMan RT-PCR assay. The results showed that all of these methods were able to detect and distinguish rotavirus from other diarrhea viruses with a 100% concordance rate during the course of an evaluation on 20 clinical stool samples. However, RT-NASBA was much quicker than the other two methods. More importantly, the limit of detection of RT-NASBA could reach seven copies per reaction and was one to two logs lower than that of conventional RT-PCR and TaqMan RT-PCR. These results indicate that this in-house assay was more sensitive, and thus could be used as an efficient diagnosis tool for rotavirus. To the best of our knowledge, this is the first direct comparison among three different assays for the detection of rotavirus. These findings would provide implication for the rational selection of diagnosis tool for rotavirus.

  13. Gene amplification and qRT-PCR.

    PubMed

    Jones, Cerith; Filloux, Alain

    2014-01-01

    This chapter includes methods for the use of the polymerase chain reaction (PCR) with Pseudomonas, and several specific tips for their successful application in this organism. The first part of the chapter includes methods for purifying genomic DNA from, and amplifying genes from, Pseudomonas, in addition to methods which describe how to prepare a cell lysate from Pseudomonas species for colony PCR reactions. The chapter continues with a switch in focus from DNA to RNA, describing methods for RNA isolation from Pseudomonas, cDNA generation, and finally q-RT-PCR to investigate relative changes in gene expression. PMID:24818925

  14. DETECTION OF HUMAN ENTERIC VIRUSES IN STREAM WATER WITH RT-PCR AND CELL CULTURE

    EPA Science Inventory

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison to traditional cell culture and Escherich...

  15. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    PubMed

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.

  16. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    PubMed

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya. PMID:26666186

  17. Multiplexed Molecular Assays for Rapid Rule-Out of Foot-and-Mouth Disease

    SciTech Connect

    Lenhoff, R; Naraghi-Arani, P; Thissen, J; Olivas, J; Carillo, C; Chinn, C; Rasmussen, M; Messenger, S; Suer, L; Smith, S M; Tammero, L; Vitalis, E; Slezak, T R; Hullinger, P J; Hindson, B J; Hietala, S; Crossley, B; Mcbride, M

    2007-06-26

    A nucleic acid-based multiplexed assay was developed that combines detection of foot-and-mouth disease virus (FMDV) with rule-out assays for two other foreign animal diseases and four domestic animal diseases that cause vesicular or ulcerative lesions indistinguishable from FMDV infection in cattle, sheep and swine. The FMDV 'look-alike' diagnostic assay panel contains five PCR and twelve reverse transcriptase PCR (RT-PCR) signatures for a total of seventeen simultaneous PCR amplifications for seven diseases plus incorporating four internal assay controls. It was developed and optimized to amplify both DNA and RNA viruses simultaneously in a single tube and employs Luminex{trademark} liquid array technology. Assay development including selection of appropriate controls, a comparison of signature performance in single and multiplex testing against target nucleic acids, as well of limits of detection for each of the individual signatures is presented. While this assay is a prototype and by no means a comprehensive test for FMDV 'look-alike' viruses, an assay of this type is envisioned to have benefit to a laboratory network in routine surveillance and possibly for post-outbreak proof of freedom from foot-and-mouth disease.

  18. Multiplex assays to diagnose celiac disease.

    PubMed

    Lochman, Ivo; Martis, Peter; Burlingame, Rufus W; Lochmanová, Alexandra

    2007-08-01

    Patients with celiac disease are sensitive to the gluten fractions of wheat. Symptoms include gastrointestinal problems and a failure to thrive in children, but may range from headaches to general malaise in adults. Thus, it is difficult to diagnose celiac disease by symptoms alone. The standard diagnostic criteria include the presence of the characteristic anti-gliadin or anti-tissue transglutaminase antibodies (anti-tTG) in serum, flattened mucosa on intestinal biopsy, and improved symptoms on a gluten-free diet. Because of the ease of use of the tTG enzyme-linked immunosorbent assay (ELISA) compared to endomysial by indirect immunofluorescence assay, there has been much more screening for celiac disease in recent years. This increased screening showed that celiac disease was more prevalent than previously believed. We compared a new multiplex assay that includes a novel form of deamidated gliadin and recombinant human tTG as the antigens to other assays using standard antigens. In addition, the new assay detects the presence of selective IgA deficiency, which shows a 10-fold increase in prevalence in patients with celiac disease compared to the general population. The combination of sensitivity and specificity of the new multiplex assay was equal or better than those for standard assays. Thus the performance, ease of use, and ability to measure three clinically important parameters in a single test make the new multiplex assay a viable alternative to standard assays in a clinical lab.

  19. The effects of reference genes in qRT-PCR assays for determining the immune response of bovine cells (MDBK) infected with the Bovine Viral Diarrhea Virus 1 (BVDV-1).

    PubMed

    Fredericksen, Fernanda; Delgado, Fredy; Cabrera, Cristian; Yáñez, Alejandro; Gonzalo, Carrasco; Villalba, Melina; Olavarría, Víctor H

    2015-09-10

    The bovine viral diarrhea virus (BVDV) causes significant economic losses to the dairy industry worldwide, and understanding its infection mechanisms would be extremely useful in designing new and efficient treatments. Due to the limited number of specific antibodies against bovine proteins, differential gene expression analyses are vital for researching host immune responses to viral infection. qRT-PCR provides a sensitive platform to conduct such gene expression analyses, but suitable housekeeping genes are needed for accurate transcript normalization. The present study assessed nine reference genes in bovine kidney cells under conditions of BVDV-1 infection, incubation with pathogen-associated molecular patterns, and co-incubation with BAY117085, a pharmacological inhibitor of the NF-κB signaling pathway. Analyses of Ct values using the BestKeeper and Normfinder programs ranked CD81, RPL4, and GAPDH as the most reliable reference genes. This determination of a stable set of reference genes in this culture system will facilitate analyses of expression levels for genes of interest.

  20. Comparison of electron microscopy, ELISA, real time RT-PCR and insulated isothermal RT-PCR for the detection of Rotavirus group A (RVA) in feces of different animal species.

    PubMed

    Soltan, Mohamed A; Tsai, Yun-Long; Lee, Pei-Yu A; Tsai, Chuan-Fu; Chang, Hsiao-Fen G; Wang, Hwa-Tang T; Wilkes, Rebecca P

    2016-09-01

    There is no gold standard for detection of Rotavirus Group A (RVA), one of the main causes of diarrhea in neonatal animals. Sensitive and specific real-time RT-PCR (rtRT-PCR) assays are available for RVA but require submission of the clinical samples to diagnostic laboratories. Patient-side immunoassays for RVA protein detection have shown variable results, particularly with samples from unintended species. A sensitive and specific test for detection of RVA on the farm would facilitate rapid management decisions. The insulated isothermal RT-PCR (RT-iiPCR) assay works in a portable machine to allow sensitive and specific on-site testing. The aim of this investigation was to evaluate a commercially available RT-iiPCR assay for RVA detection in feces from different animal species. This assay was compared to an in-house rtRT-PCR assay and a commercially available rtRT-PCR kit, as well as an ELISA and EM for RVA detection. All three PCR assays targeted the well-conserved NSP5 gene. Clinical fecal samples from 108 diarrheic animals (mainly cattle and horses) were tested. The percentage of positive samples by ELISA, EM, in-house rtRT-PCR, commercial rtRT-PCR, and RT-iiPCR was 29.4%, 31%, 36.7%, 51.4%, 56.9%, respectively. The agreement between different assays was high (81.3-100%) in samples containing high viral loads. The sensitivity of the RT-iiPCR assay appeared to be higher than the commercially available rtRT-PCR assay, with a limit of detection (95% confidence index) of 3-4 copies of in vitro transcribed dsRNA. In conclusion, the user-friendly, field-deployable RT-iiPCR system holds substantial promise for on-site detection of RVA.

  1. Comparison of electron microscopy, ELISA, real time RT-PCR and insulated isothermal RT-PCR for the detection of Rotavirus group A (RVA) in feces of different animal species.

    PubMed

    Soltan, Mohamed A; Tsai, Yun-Long; Lee, Pei-Yu A; Tsai, Chuan-Fu; Chang, Hsiao-Fen G; Wang, Hwa-Tang T; Wilkes, Rebecca P

    2016-09-01

    There is no gold standard for detection of Rotavirus Group A (RVA), one of the main causes of diarrhea in neonatal animals. Sensitive and specific real-time RT-PCR (rtRT-PCR) assays are available for RVA but require submission of the clinical samples to diagnostic laboratories. Patient-side immunoassays for RVA protein detection have shown variable results, particularly with samples from unintended species. A sensitive and specific test for detection of RVA on the farm would facilitate rapid management decisions. The insulated isothermal RT-PCR (RT-iiPCR) assay works in a portable machine to allow sensitive and specific on-site testing. The aim of this investigation was to evaluate a commercially available RT-iiPCR assay for RVA detection in feces from different animal species. This assay was compared to an in-house rtRT-PCR assay and a commercially available rtRT-PCR kit, as well as an ELISA and EM for RVA detection. All three PCR assays targeted the well-conserved NSP5 gene. Clinical fecal samples from 108 diarrheic animals (mainly cattle and horses) were tested. The percentage of positive samples by ELISA, EM, in-house rtRT-PCR, commercial rtRT-PCR, and RT-iiPCR was 29.4%, 31%, 36.7%, 51.4%, 56.9%, respectively. The agreement between different assays was high (81.3-100%) in samples containing high viral loads. The sensitivity of the RT-iiPCR assay appeared to be higher than the commercially available rtRT-PCR assay, with a limit of detection (95% confidence index) of 3-4 copies of in vitro transcribed dsRNA. In conclusion, the user-friendly, field-deployable RT-iiPCR system holds substantial promise for on-site detection of RVA. PMID:27180038

  2. Detection of human enteric viruses in stream water with RT-PCR and cell culture.

    USGS Publications Warehouse

    Denis-Mize, K.; Fout, G.S.; Dahling, D.R.; Francy, D.S.

    2004-01-01

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison with traditional cell culture and Escherichia coli membrane filtration assays. The study incorporated multiple quality controls and included a control for virus recovery during the sampling procedure as well as controls to detect potentially false-negative and false-positive data. Poliovirus recovery ranged from 16 to 65% and was variable, even in samples collected within the same stream. All five sites were positive for viruses by both molecular and cell culture-based virus assays. Enteroviruses, reoviruses, rotaviruses, and hepatitis A viruses were detected, but the use of the quality controls proved critical for interpretation of the molecular data. All sites showed evidence of faecal contamination, and culturable viruses were detected in four samples that would have met the US Environmental Protection Agency's recommended E. coli guideline for safe recreational water.

  3. Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation.

    PubMed

    Le, Mai Q; Pagter, Majken; Hincha, Dirk K

    2015-01-01

    During cold acclimation plants increase in freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, plants of many species, including Arabidopsis thaliana, become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures after cold acclimation. There is hardly any information available about the molecular basis of this adaptation. Here, we have used microarrays and a qRT-PCR primer platform covering 1,880 genes encoding transcription factors (TFs) to monitor changes in gene expression in the Arabidopsis accessions Columbia-0, Rschew and Tenela during the first 3 days of sub-zero acclimation at -3 °C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY TFs may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes are down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription are up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation.

  4. Detection of Zika virus by SYBR green one-step real-time RT-PCR.

    PubMed

    Xu, Ming-Yue; Liu, Si-Qing; Deng, Cheng-Lin; Zhang, Qiu-Yan; Zhang, Bo

    2016-10-01

    The ongoing Zika virus (ZIKV) outbreak has rapidly spread to new areas of Americas, which were the first transmissions outside its traditional endemic areas in Africa and Asia. Due to the link with newborn defects and neurological disorder, numerous infected cases throughout the world and various mosquito vectors, the virus has been considered to be an international public health emergency. In the present study, we developed a SYBR Green based one-step real-time RT-PCR assay for rapid detection of ZIKV. Our results revealed that the real-time assay is highly specific and sensitive in detection of ZIKV in cell samples. Importantly, the replication of ZIKV at different time points in infected cells could be rapidly monitored by the real-time RT-PCR assay. Specifically, the real-time RT-PCR showed acceptable performance in measurement of infectious ZIKV RNA. This assay could detect ZIKV at a titer as low as 1PFU/mL. The real-time RT-PCR assay could be a useful tool for further virology surveillance and diagnosis of ZIKV. PMID:27444120

  5. Detection of Zika virus by SYBR green one-step real-time RT-PCR.

    PubMed

    Xu, Ming-Yue; Liu, Si-Qing; Deng, Cheng-Lin; Zhang, Qiu-Yan; Zhang, Bo

    2016-10-01

    The ongoing Zika virus (ZIKV) outbreak has rapidly spread to new areas of Americas, which were the first transmissions outside its traditional endemic areas in Africa and Asia. Due to the link with newborn defects and neurological disorder, numerous infected cases throughout the world and various mosquito vectors, the virus has been considered to be an international public health emergency. In the present study, we developed a SYBR Green based one-step real-time RT-PCR assay for rapid detection of ZIKV. Our results revealed that the real-time assay is highly specific and sensitive in detection of ZIKV in cell samples. Importantly, the replication of ZIKV at different time points in infected cells could be rapidly monitored by the real-time RT-PCR assay. Specifically, the real-time RT-PCR showed acceptable performance in measurement of infectious ZIKV RNA. This assay could detect ZIKV at a titer as low as 1PFU/mL. The real-time RT-PCR assay could be a useful tool for further virology surveillance and diagnosis of ZIKV.

  6. Development of SYBR Green real-time RT-PCR for rapid detection, quantitation and diagnosis of unclassified bovine enteric calicivirus.

    PubMed

    Park, Sang-Ik; Park, Da-Hae; Saif, Linda J; Jeong, Young-Ju; Shin, Dong-Jun; Chun, Young-Hyun; Park, Su-Jin; Kim, Hyun-Jeong; Hosmillo, Myra; Kwon, Hyung-Jun; Kang, Mun-Il; Cho, Kyoung-Oh

    2009-07-01

    Unclassified bovine enteric calicivirus (BECV) is a newly recognized bovine enteric calicivirus that differs from bovine norovirus, and which causes diarrhea in the small intestines of calves. To date, methods such as real-time reverse transcription-polymerase chain reaction (RT-PCR) have not been developed for the rapid detection, quantitation and diagnosis of BECV. Presently, a BECV-specific SYBR Green real-time RT-PCR assay was evaluated and optimized. Diarrheic specimens (n=118) collected from 2004 to 2005 were subjected to RT-PCR, nested PCR and SYBR Green real-time RT-PCR. By conventional RT-PCR and nested PCR, 9 (7.6%) and 59 (50%) samples tested positive, respectively, whereas the SYBR Green assay detected BECV in 91 (77.1%) samples. Using BECV RNA standards generated by in vitro transcription, the SYBR Green real-time RT-PCR assay sensitively detected BECV RNA to 1.1 x 10(0)copies/microl (correlation coefficiency=0.98). The detection limits of the RT-PCR and nested PCR were 1.1 x 10(5) and 1.1 x 10(2)copies/microl, respectively. These results indicate that the SYBR Green real-time RT-PCR assay is more sensitive than conventional RT-PCR and nested PCR assays, and has potential as a reliable, reproducible, specific, sensitive and rapid tool for the detection, quantitation and diagnosis of unclassified BECV.

  7. Detection and typing of human-infecting influenza viruses in China by using a multiplex DNA biochip assay.

    PubMed

    Wang, Yongqiang; Qu, Jiuxin; Ba, Qi; Dong, Jiuhong; Zhang, Liang; Zhang, Hong; Wu, Aiping; Wang, Dayan; Xia, Zanxian; Peng, Daxin; Shu, Yuelong; Cao, Bin; Jiang, Taijiao

    2016-08-01

    Rapid identification of the infections of specific subtypes of influenza viruses is critical for patient treatment and pandemic control. Here we report the application of multiplex reverse transcription polymerase chain reaction (RT-PCR) coupled with membrane-based DNA biochip to the detection and discrimination of the type (A and B) and subtype (human H1N1, human H3N2, avian H5N1 and avian H7N9) of influenza viruses in circulation in China. A multiplex one-step RT-PCR assay was designed to simultaneously amplify the HA and NA genes of the four subtypes of influenza A viruses and NS genes to discriminate type A and B viruses. PCR products were analyzed by a membrane-based biochip. The analytical sensitivity of the assay was determined at a range of 2-100 copies/reactions for each of the gene transcripts. Eighty one clinical samples, containing 66 positive samples with evident seasonal influenza virus infections, were tested, which gives the clinical sensitivity and specificity of 95.5% and 100% respectively. For the avian influenza samples, 3 out of 4 H5N1 samples and 2 out of 2 H7N9 avian samples were correctly identified. We argue this method could allow a rapid, reliable and inexpensive detection and differentiation of human-infecting influenza viruses. PMID:27150046

  8. Predicting Gene Structures from Multiple RT-PCR Tests

    NASA Astrophysics Data System (ADS)

    Kováč, Jakub; Vinař, Tomáš; Brejová, Broňa

    It has been demonstrated that the use of additional information such as ESTs and protein homology can significantly improve accuracy of gene prediction. However, many sources of external information are still being omitted from consideration. Here, we investigate the use of product lengths from RT-PCR experiments in gene finding. We present hardness results and practical algorithms for several variants of the problem and apply our methods to a real RT-PCR data set in the Drosophila genome. We conclude that the use of RT-PCR data can improve the sensitivity of gene prediction and locate novel splicing variants.

  9. Development and Validation of a Quantitative, One-Step, Multiplex, Real-Time Reverse Transcriptase PCR Assay for Detection of Dengue and Chikungunya Viruses.

    PubMed

    Simmons, Monika; Myers, Todd; Guevara, Carolina; Jungkind, Donald; Williams, Maya; Houng, Huo-Shu

    2016-07-01

    Dengue virus (DENV) and chikungunya virus (CHIKV) are important human pathogens with common transmission vectors and similar clinical presentations. Patient care may be impacted by the misdiagnosis of DENV and CHIKV in areas where both viruses cocirculate. In this study, we have developed and validated a one-step multiplex reverse transcriptase PCR (RT-PCR) to simultaneously detect, quantify, and differentiate between four DENV serotypes (pan-DENV) and chikungunya virus. The assay uses TaqMan technology, employing two forward primers, three reverse primers, and four fluorophore-labeled probes in a single-reaction format. Coextracted and coamplified RNA was used as an internal control (IC), and in vitro-transcribed DENV and CHIKV RNAs were used to generate standard curves for absolute quantification. The diagnostic 95% limits of detection (LOD) within the linear range were 50 and 60 RNA copies/reaction for DENV (serotypes 1 to 4) and CHIKV, respectively. Our assay was able to detect 53 different strains of DENV, representing four serotypes, and six strains of CHIKV. No cross-reactivity was observed with related flaviviruses and alphaviruses, To evaluate diagnostic sensitivity and specificity, 89 clinical samples positive or negative for DENV (serotypes 1 to 4) and CHIKV by the standard virus isolation method were tested in our assay. The multiplex RT-PCR assay showed 95% sensitivity and 100% specificity for DENV and 100% sensitivity and specificity for CHIKV. With an assay turnaround time of less than 2 h, including extraction of RNA, the multiplex quantitative RT-PCR assay provides rapid diagnosis for the differential detection of two clinically indistinguishable diseases, whose geographical occurrence is increasingly overlapping. PMID:27098955

  10. Duplex-immunocapture-RT-PCR for detection and discrimination of two distinct potyviruses naturally infecting sugarcane (Saccharum spp. hybrid).

    PubMed

    Reddy, Ch V Subba; Sreenivasulu, P; Sekhar, G

    2011-01-01

    A sensitive duplex-immunocapture-RT-PCR (D-IC-RT-PCR) technique was developed for detection and discrimination of taxonomically distinct Sugarcane streak mosaic virus (SCSMV) and Sugarcane mosaic virus (SCMV) that naturally infect sugarcane. D-IC-RT-PCR was performed using polyclonal antisera for capture of virions. Oligo 5'-d(T)18(AGC)-3' as a common reverse primer for both viruses and virus specific forward primers, 5'-AAGTGGTTAAACGCCTGTGG-3' and 5'-ATGTC(GA)AAGAA(GA)ATGCGCTTGC-3' were used for amplifying approximately 1400 and approximately 900 bp fragments of SCSMV and SCMV genomes, respectively from their 3' termini. To assess the applicability of the developed technique, 67 mosaic affected sugarcane samples were initially screened by direct antigen coating-enzyme-linked immunosorbent assay (DAC-ELISA) followed by D-IC-RT-PCR. In DAC-ELISA, approximately 69% of tested samples were shown to be positive for presence of SCSMV, approximately 28% for SCMV and approximately 10% for both viruses. In D-IC-RT-PCR both viruses were detected up to the dilution of 10(-4). In D-IC-RT-PCR, approximately 76% of tested samples were found to be positive for SCSMV, approximately 37% for SCMV and approximately 16% for both viruses. The sequence analyses of D-IC-RT-PCR amplicons of 3 isolates of each virus revealed that the designed primers were virus-specific. The developed technique had potential application for sensitive parallel detection of two viruses in sugarcane.

  11. Quantitative RT-PCR for titration of replication-defective recombinant Semliki Forest virus.

    PubMed

    Puglia, Ana L P; Rezende, Alexandre G; Jorge, Soraia A C; Wagner, Renaud; Pereira, Carlos A; Astray, Renato M

    2013-11-01

    Virus titration may constitute a drawback in the development and use of replication-defective viral vectors like Semliki Forest virus (SFV). The standardization and validation of a reverse transcription quantitative PCR (qRT-PCR) method for SFV titration is presented here. The qRT-PCR target is located within the nsp1 gene of the non-structural polyprotein SFV region (SFV RNA), which allows the strategy to be used for several different recombinant SFV constructs. Titer determinations were carried out by performing virus titration and infection assays with SFVs containing an RNA coding region for the rabies virus glycoprotein (RVGP) or green fluorescent protein (GFP). Results showed that the standardized qRT-PCR is applicable for different SFV constructs, and showed good reproducibility. To evaluate the correlation between the amount of functional SFV RNA in a virus lot and its infectivity in BHK-21 cell cultures, a temperature mediated titer decrease was performed and successfully quantitated by qRT-PCR. When used for cell infection at the same multiplicity of infection (MOI), the temperature treated SFV-RVGP samples induced the same levels of RVGP expression. Similarly, when different SFV-GFP lots with different virus titers, as accessed by qRT-PCR, were used for cell infection at the same MOI, the cultures showed comparable amounts of fluorescent cells. The data demonstrate a good correlation between the amount of virus used for infection, as measured by its SFV RNA, and the protein synthesis in the cells. In conclusion, the qRT-PCR method developed here is accurate and enables the titration of replication-defective SFV vectors, an essential aid for viral vector development as well as for establishment of production bioprocesses.

  12. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia.

    PubMed

    Jamal, Syed M; Belsham, Graham J

    2015-01-01

    Rapid and accurate diagnosis of foot-and-mouth disease (FMD) and virus serotyping are of paramount importance for control of this disease in endemic areas where vaccination is practiced. Ideally this virus characterization should be achieved without the need for virus amplification in cell culture. Due to the heterogeneity of FMD viruses (FMDVs) in different parts of the world, region specific diagnostic tests are required. In this study, hydrolysable probe-based real time reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays were developed for specific detection and serotyping of the FMDVs currently circulating in West Eurasia. These assays were evaluated, in parallel with pan-FMDV diagnostic assays and earlier serotype-specific assays, using field samples originating from Pakistan and Afghanistan containing FMD viruses belonging to different sublineages of O-PanAsia, A-Iran05 and Asia-1 (Group-II and Group-VII (Sindh-08)). In addition, field samples from Iran and Bulgaria, containing FMDVs belonging to the O-PanAsiaANT-10 sublineage were also tested. Each of the three primer/probe sets was designed to be specific for just one of the serotypes O, A and Asia-1 of FMDV and detected the RNA from the target viruses with cycle threshold (CT) values comparable with those obtained with the serotype-independent pan-FMDV diagnostic assays. No cross-reactivity was observed in these assays between the heterotypic viruses circulating in the region. The assays reported here have higher diagnostic sensitivity (100% each for serotypes O and Asia-1, and 92% [95% CI = 81.4-100%] for serotype A positive samples) and specificity (100% each for serotypes O, A and Asia-1 positive samples) for the viruses currently circulating in West Eurasia compared to the serotyping assays reported earlier. Comparisons of the sequences of the primers and probes used in these assays and the corresponding regions of the circulating viruses provided explanations for the poor

  13. Probe-free and sensitive detection of diarrhea-causing pathogens using RT-PCR combined high resolution melting analysis.

    PubMed

    Wang, Hai-Bo; Mo, Qiu-Hua; Wang, Qi; Wu, Bi-Mei; Feng, Zi-Li; Lin, Ji-Can; Yang, Ze

    2016-09-01

    Rapid and sensitive diagnostic methods are needed to help physicians make faster and better treatment decision for patients suffered from diarrhea. In the present study, a probe-free and sensitive RT-PCR combined high resolution melting analysis (HRMA) assay was established successfully for the detection of four major diarrhea-causing pathogens. The lower limit of detection of the assay were 10(0), 10(2), 10(0) and 10(3) copies/reaction for rotaviruses group A, astroviruses serotype 1, noroviruses genogroup II, and sapoviruses genegroup I, respectively, which were 1000-fold, 10-fold, 1000-fold and 10-fold more sensitive than conventional RT-PCR assay developed in parallel and comparable to or higher than commercially available real-time RT-PCR assay. Blinded sample evaluation showed that the assay was 100% concordant to both conventional RT-PCR and commercial real-time RT-PCR, indicating high reliability of the new assay. Therefore, the assay could provide a valuable platform for the probe-free and sensitive diagnosis of these pathogens. PMID:27461241

  14. Molecular detection of Papaya meleira virus in the latex of Carica papaya by RT-PCR.

    PubMed

    Araújo, Marília Mendes Melo de; Tavares, Eder Torres; Silva, Felipe Rodrigues da; Marinho, Vera Lúcia de Almeida; Júnior, Manoel Teixeira Souza

    2007-12-01

    A RT-PCR assay was developed for early and accurate detection of Papaya meleira virus (PMeV) in the latex from infected papayas. The meleira disease is characterized by an excessive exudation of more fluidic latex from fruits, leaves and stems. This latex oxidises and gives the fruit a "sticky" texture. In the field, disease symptoms are seen almost exclusively on fruit. However, infected plants can be a source of virus for dissemination by insects. Primers specific for PMeV were designed based on nucleotide sequences of the viral dsRNA obtained using a RT-RAPD approach. When tested for RT-PCR amplification, one of these primers (C05-3') amplified a 669-nucleotide fragment using dsRNA obtained from purified virus particles as a template. The translated sequence of this DNA fragment showed a certain degree of similarity to the amino acid sequence of RNA-dependent RNA polymerases from other dsRNA viruses. When used as the single primer in two RT-PCR kits available commercially, primer C05-3' also amplified the DNA fragment from papaya latex of infected, but not from healthy plants. The RT-PCR-based method developed in this study could simplify early plant disease diagnosis, assist in monitoring the dissemination of the pathogen within and between fields, and assist in guiding plant disease management.

  15. Development and evaluation of a real-time RT-PCR assay for the detection of Ebola virus (Zaire) during an Ebola outbreak in Guinea in 2014-2015.

    PubMed

    Dedkov, V G; Magassouba, N' F; Safonova, M V; Deviatkin, A A; Dolgova, A S; Pyankov, O V; Sergeev, A A; Utkin, D V; Odinokov, G N; Safronov, V A; Agafonov, A P; Maleev, V V; Shipulin, G A

    2016-02-01

    In early February 2014, an outbreak of the Ebola virus disease caused by Zaire ebolavirus (EBOV) occurred in Guinea; cases were also recorded in other West African countries with a combined population of approximately 25 million. A rapid, sensitive and inexpensive method for detecting EBOV is needed to effectively control such outbreak. Here, we report a real-time reverse-transcription PCR assay for Z. ebolavirus detection used by the Specialized Anti-epidemic Team of the Russian Federation during the Ebola virus disease prevention mission in the Republic of Guinea. The analytical sensitivity of the assay is 5 × 10(2) viral particles per ml, and high specificity is demonstrated using representative sampling of viral, bacterial and human nucleic acids. This assay can be applied successfully for detecting the West African strains of Z. ebolavirus as well as on strains isolated in the Democratic Republic of the Congo in 2014.

  16. Development and evaluation of a real-time RT-PCR assay for the detection of Ebola virus (Zaire) during an Ebola outbreak in Guinea in 2014-2015.

    PubMed

    Dedkov, V G; Magassouba, N' F; Safonova, M V; Deviatkin, A A; Dolgova, A S; Pyankov, O V; Sergeev, A A; Utkin, D V; Odinokov, G N; Safronov, V A; Agafonov, A P; Maleev, V V; Shipulin, G A

    2016-02-01

    In early February 2014, an outbreak of the Ebola virus disease caused by Zaire ebolavirus (EBOV) occurred in Guinea; cases were also recorded in other West African countries with a combined population of approximately 25 million. A rapid, sensitive and inexpensive method for detecting EBOV is needed to effectively control such outbreak. Here, we report a real-time reverse-transcription PCR assay for Z. ebolavirus detection used by the Specialized Anti-epidemic Team of the Russian Federation during the Ebola virus disease prevention mission in the Republic of Guinea. The analytical sensitivity of the assay is 5 × 10(2) viral particles per ml, and high specificity is demonstrated using representative sampling of viral, bacterial and human nucleic acids. This assay can be applied successfully for detecting the West African strains of Z. ebolavirus as well as on strains isolated in the Democratic Republic of the Congo in 2014. PMID:26597659

  17. Development and evaluation of multiplex RT-LAMP assays for rapid and sensitive detection of foot-and-mouth disease virus.

    PubMed

    Yamazaki, Wataru; Mioulet, Valérie; Murray, Lee; Madi, Mikidache; Haga, Takeshi; Misawa, Naoaki; Horii, Yoichiro; King, Donald P

    2013-09-01

    This paper describes the evaluation of four novel real-time multiplex reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for rapid and sensitive diagnosis of foot-and-mouth disease (FMD). In order to overcome the genetic diversity of FMD viruses (FMDV), these multiplex RT-LAMP assay pairs were established by combining four newly designed primer sets with two primer sets that had been previously published. Using a real-time turbidimeter to detect amplification products and a panel of 300 samples collected throughout the world over a 78-year period, the performance of the multiplex RT-LAMP assays was compared with a FMDV-specific real-time RT-PCR assay. The most successful of the four multiplex RT-LAMP assays achieved a diagnostic sensitivity and specificity of 98.0% and 98.1%, and did not falsely detect FMDV in known negatives or samples containing swine vesicular disease virus, vesicular stomatitis virus or vesicular exanthema of swine virus. Furthermore, the analytical sensitivity of this multiplex RT-LAMP assay was at least as good as the individual component RT-LAMP tests. This is the first report of the development of a multiplex RT-LAMP to accommodate the high sequence variability encountered in RNA virus genomes and these results support the use of RT-LAMP as a cost-effective tool for simple diagnosis of FMD. PMID:23583488

  18. VARIATION OF THE EXPRESSION OF ENDOGENOUS "HOUSEKEEPING" GENES IN B[A]P TREATED MOUSE LUNGS MEASURED BY qRT-PCR

    EPA Science Inventory

    Quantitative RT-PCR is frequently used to analyze gene expression in different experimental systems. In this assay, housekeeping genes are frequently used to normalize for the variability between samples (relative quantification). We have examined the utility of using qRT-PCR and...

  19. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    SciTech Connect

    Letant, S E; .Ortiz, J I; Tammero, L; Birch, J M; Derlet, R W; Cohen, S; Manning, D; McBride, M T

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. This article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.

  20. Real-time RT-PCR for quantitation of hepatitis C virus RNA.

    PubMed

    Yang, Ji Hong; Lai, Jian Ping; Douglas, Steven D; Metzger, David; Zhu, Xian Hua; Ho, Wen Zhe

    2002-04-01

    A newly developed real-time RT-polymerase chain reaction assay for quantitation of hepatitis C virus (HCV) RNA in human plasma and serum was applied. A pair of primers and a probe (molecular beacon) were designed that are specific for the recognition of a highly conservative 5'-non-coding region (5'-NCR) in HCV genome. HCV real-time RT-PCR assay had a sensitivity of 1000 RNA copies per reaction, with a dynamic range of detection between 10(3) and 10(7) RNA copies. The coefficient variation of threshold cycle (Ct) values in intra- and inter-runs were less than 1.37 and 4.66%, respectively. The real-time RT-PCR assay on the HCV sero-positive samples yielded reproducible data, with less than 2.09% of the inter-assay variation. In order to determine its potential for clinical diagnosis, real-time RT-PCR was used to examine the HCV RNA levels in plasma from sero-positive and negative subjects, showing that the assay is highly sensitive and has specificity of 100%. It was demonstrated that the real-time RT-PCR was able to amplify HCV RNA in reference sera with seven genotypes (1A, 1B, 2B, 3A, 4, 5A and 6A) that include six major HCV genotypes circulated in the world. Since HCV is a major pathogen of post-transfusion and community-transmitted non-A, non-B hepatitis, this assay has a broad application for basic and clinical investigations.

  1. Development and evaluation of ELISA and qRT-PCR for identification of Squash vein yellowing virus in cucurbits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzyme linked-immunosorbent assay (ELISA) and quantitative reverse transcription-PCR (qRT-PCR) assays were developed for identification of Squash vein yellowing virus (SqVYV), the cause of viral watermelon vine decline. Both assays were capable of detecting SqVYV in a wide range of cucurbit hosts. ...

  2. Quantification of transcript levels with quantitative RT-PCR.

    PubMed

    Carleton, Karen L

    2011-01-01

    Differential gene expression is a key factor driving phenotypic divergence. Determining when and where gene expression has diverged between organisms requires a quantitative method. While large-scale approaches such as microarrays or high-throughput mRNA sequencing can identify candidates, quantitative RT-PCR is the definitive method for confirming gene expression differences. Here, we describe the steps for performing qRT-PCR including extracting total RNA, reverse-transcribing it to make a pool of cDNA, and then quantifying relative expression of a few candidate genes using real-time or quantitative PCR.

  3. RT-PCR detection of HIV in Republic of Macedonia.

    PubMed

    Bosevska, Golubinka; Panovski, Nikola; Dokić, Eleni; Grunevska, Violeta

    2008-11-01

    The aim of the study was to detect HIV RNA in seropositive patients using RT-PCR method and thus, to establish PCR methodology in the routine laboratory works. The total of 33 examined persons were divided in two groups: 1) 13 persons seropositive for HIV; and 2) 20 healthy persons - randomly selected blood donors that made the case control group. The subjects age was between 25 and 52 years (average 38,5). ELFA test for combined detection of HIV p24 antigen and anti HIV-1+2 IgG and ELISA test for detection of antibodies against HIV-1 and HIV-2, were performed for each examined person. RNA from the whole blood was extracted using a commercial kit based on salt precipitation. Detection of HIV RNA was performed using RT-PCR kit. Following nested PCR, the product was separated by electrophoresis in 1,5 % agarose gel. The result was scored positive if the band of 210bp was visible regardless of intensity. Measures of precaution were taken during all the steps of the work and HIV infected materials were disposed of accordingly. In the group of blood donors ELFA, ELISA and RT-PCR were negative. Assuming that prevalence of HIV infection is zero, the clinical specificity of RT-PCR is 100 %. The analytical specificity of RT-PCR method was tested against Hepatitis C and B, Human Papiloma Virus, Cytomegalovirus, Herpes Simplex Virus, Rubella Virus, Mycobacterium tuberculosis, Chlamydia trachomatis. None of these templates yielded amplicon. In the group of 13 seropositive persons, 33 samples were analyzed. HIV RNA was detected in 15 samples. ELISA and ELFA test were positive in all samples. Different aliquots of the samples were tested independently and showed the same results. After different periods of storing the RNA samples at -70 masculineC, RT-PCR reaction was identical to the one performed initially. The obtained amplicons were maintained frozen at -20 masculineC for a week and the subsequently performed electrophoresis was identical to the previous one. The reaction is

  4. [Development of a real-time RT-PCR for detection of equine influenza virus].

    PubMed

    Aeschbacher, S; Santschi, E; Gerber, V; Stalder, H P; Zanoni, R G

    2015-04-01

    Equine influenza is a highly contagious respiratory disease in horses caused by influenza A viruses. In this work a real-time RT-PCR for fast and sensitive diagnosis of equine influenza viruses (EIV) targeting a highly conserved region of the matrix gene was developed. In addition two RT-PCR methods for the amplification of large parts of the matrix- and HA gene were adapted for molecular-epidemiological characterization of viruses. The primers of the real-time RT-PCR had homologies of 99.4% to EIV- and 97.7% to all influenza A viral sequences, whereas the minor groove binder (MGB) probe showed homologies of 99.3% and 99.6%, respectively. These high values allow application of the assay for influenza viruses in other species. Using 20 equine, 11 porcine and 2 avian samples, diagnostic suitability of the assay was confirmed. High specificity for influenza viruses was shown both experimentally and by software simulation. The assay analytical sensitivity was at 10(2)-10(3) copies of RNA and 10(0)-10(1) copies of DNA, respectively. This allows virus detection also in circumstances of minor viral shedding. All amplified EIV sequences were classified phylogenetically within the known lineages. PMID:26757582

  5. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses.

    PubMed

    Shi, Xiju; Liu, Xuming; Wang, Qin; Das, Amaresh; Ma, Guiping; Xu, Lu; Sun, Qing; Peddireddi, Lalitha; Jia, Wei; Liu, Yanhua; Anderson, Gary; Bai, Jianfa; Shi, Jishu

    2016-10-01

    Mixed infection with different pathogens is common in swine production systems especially under intensive production conditions. Quick and accurate detection and differentiation of different pathogens are necessary for epidemiological surveillance, disease management and import and export controls. In this study, we developed and validated a panel of multiplex real-time PCR/RT-PCR assays composed of four subpanels, each detects three common swine pathogens. The panel detects 12 viruses or viral serotypes, namely, VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU and SIV. Correlation coefficients (R(2)) and PCR amplification efficiencies of all singular and triplex real-time PCR reactions are within the acceptable range. Comparison between singular and triplex real-time PCR assays of each subpanel indicates that there is no significant interference on assay sensitivities caused by multiplexing. Specificity tests on 226 target clinical samples or 4 viral strains and 91 non-target clinical samples revealed that the real-time PCR panel is 100% specific, and there is no cross amplification observed. The limit of detection of each triplex real-time PCR is less than 10 copies per reaction for DNA, and less than 16 copies per reaction for RNA viruses. The newly developed multiplex real-time PCR panel also detected different combinations of co-infections as confirmed by other means of detections.

  6. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses.

    PubMed

    Shi, Xiju; Liu, Xuming; Wang, Qin; Das, Amaresh; Ma, Guiping; Xu, Lu; Sun, Qing; Peddireddi, Lalitha; Jia, Wei; Liu, Yanhua; Anderson, Gary; Bai, Jianfa; Shi, Jishu

    2016-10-01

    Mixed infection with different pathogens is common in swine production systems especially under intensive production conditions. Quick and accurate detection and differentiation of different pathogens are necessary for epidemiological surveillance, disease management and import and export controls. In this study, we developed and validated a panel of multiplex real-time PCR/RT-PCR assays composed of four subpanels, each detects three common swine pathogens. The panel detects 12 viruses or viral serotypes, namely, VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU and SIV. Correlation coefficients (R(2)) and PCR amplification efficiencies of all singular and triplex real-time PCR reactions are within the acceptable range. Comparison between singular and triplex real-time PCR assays of each subpanel indicates that there is no significant interference on assay sensitivities caused by multiplexing. Specificity tests on 226 target clinical samples or 4 viral strains and 91 non-target clinical samples revealed that the real-time PCR panel is 100% specific, and there is no cross amplification observed. The limit of detection of each triplex real-time PCR is less than 10 copies per reaction for DNA, and less than 16 copies per reaction for RNA viruses. The newly developed multiplex real-time PCR panel also detected different combinations of co-infections as confirmed by other means of detections. PMID:27506582

  7. Monitoring gene expression: quantitative real-time rt-PCR.

    PubMed

    Wagner, Elke M

    2013-01-01

    Two-step quantitative real-time RT-PCR (RT-qPCR), also known as real-time RT-PCR, kinetic RT-PCR, or quantitative fluorescent RT-PCR, has become the method of choice for gene expression analysis during the last few years. It is a fast and convenient PCR method that combines traditional RT-PCR with the phenomenon of fluorescence resonance energy transfer (FRET) using fluorogenic primers. The detection of changes in fluorescence intensity during the reaction enables the user to follow the PCR reaction in real time.RT-qPCR comprises several steps: (1) RNA is isolated from target tissue/cells; (2) mRNA is reverse-transcribed to cDNA; (3) modified gene-specific PCR primers are used to amplify a segment of the cDNA of interest, following the reaction in real time; and (4) the initial concentration of the selected transcript in a specific tissue or cell type is calculated from the exponential phase of the reaction. Relative quantification or absolute quantification compared to standards that are run in parallel can be performed.This chapter describes the entire procedure from isolation of total RNA from liver and fatty tissues/cells to the use of RT-qPCR to study gene expression in these tissues. We perform relative quantification of transcripts to calculate the fold-difference of a certain mRNA level between different samples. In addition, tips for choosing primers and performing analyses are provided to help the beginner in understanding the technique.

  8. Detection of Banana mild mosaic virus and Banana virus X by polyvalent degenerate oligonucleotide RT-PCR (PDO-RT-PCR).

    PubMed

    Teycheney, Pierre-Yves; Acina, Isabelle; Lockhart, Benham E L; Candresse, Thierry

    2007-06-01

    Viruses are important constraints to the movement and propagation of plant germplasm, especially for vegetatively propagated crops such as banana and plantain. Their control relies primarily on the use of virus-free plant material, whose production and certification requires sensitive and reliable detection methods. An existing polyvalent degenerate oligonucleotide RT-PCR (PDO-RT-PCR) assay was adapted to the detection of Banana mild mosaic virus (BanMMV) and Banana virus X, two Flexiviridae infecting Musa spp. PDO inosine-containing primers were found to be well suited to the detection of BanMMV, despite its high molecular diversity, but not to that of the highly conserved BVX, for which species-specific primers were designed. Sampling and sample processing steps were optimized in order to avoid nucleic acid purification prior to the reverse transcription step. A polyclonal anti-BanMMV antiserum was raised and successfully used for the immunocapture (IC) of BanMMV viral particles from leaf extracts, leading to the development of a PDO-IC-RT-nested PCR assay. Although the anti-BanMMV antiserum could to some extent recognize BVX viral particles, direct binding (DB) was shown to be a more efficient method for processing BVX-infected samples and a PDO-DB-RT-nested PCR assay was developed for the detection of BVX from leaf extracts. PMID:17280722

  9. Detection of Banana mild mosaic virus and Banana virus X by polyvalent degenerate oligonucleotide RT-PCR (PDO-RT-PCR).

    PubMed

    Teycheney, Pierre-Yves; Acina, Isabelle; Lockhart, Benham E L; Candresse, Thierry

    2007-06-01

    Viruses are important constraints to the movement and propagation of plant germplasm, especially for vegetatively propagated crops such as banana and plantain. Their control relies primarily on the use of virus-free plant material, whose production and certification requires sensitive and reliable detection methods. An existing polyvalent degenerate oligonucleotide RT-PCR (PDO-RT-PCR) assay was adapted to the detection of Banana mild mosaic virus (BanMMV) and Banana virus X, two Flexiviridae infecting Musa spp. PDO inosine-containing primers were found to be well suited to the detection of BanMMV, despite its high molecular diversity, but not to that of the highly conserved BVX, for which species-specific primers were designed. Sampling and sample processing steps were optimized in order to avoid nucleic acid purification prior to the reverse transcription step. A polyclonal anti-BanMMV antiserum was raised and successfully used for the immunocapture (IC) of BanMMV viral particles from leaf extracts, leading to the development of a PDO-IC-RT-nested PCR assay. Although the anti-BanMMV antiserum could to some extent recognize BVX viral particles, direct binding (DB) was shown to be a more efficient method for processing BVX-infected samples and a PDO-DB-RT-nested PCR assay was developed for the detection of BVX from leaf extracts.

  10. Role of real-time PCR (RT-PCR) in rapid diagnosis of tuberculous mycobacteria in different clinical samples.

    PubMed

    2014-02-01

    The study was aimed for molecular detection of mycobacterial DNA in different clinical samples using real-time polymerase chain reaction (RT-PCR) system and rapid diagnosis of tuberculosis. A total of 508 clinical specimens (blood 343, menstrual fluid 53, endometrial tissue 43, body fluid 36, pus from lymph nodes 18, sputum 8, urine 5 and semen 2) were included in this study. We extracted DNA using QIAamp DNA Mini Kit (QIAGEN, Germany) and performed real-time assay using Rotor-Gene Q machine from Corbett Research, Australia for specific amplification of IS6110 sequence of mycobacterial genome. The RT-PCR result was also compared with bacterial culture and acid-fast bacillus staining. RT-PCR assay showed positivity in 52 cases and negative in 456 cases. Corresponding positive results in culture and acid-fast bacillus staining methods were 49 cases and 24 cases respectively. The sensitivity and specificity of detecting Mycobacterium tuberculosis by RT-PCR were 93.87% and 98.69% respectively taking positive culture results as reference standards. The overall positive and negative predictive values were 88.46% and 99.34% respectively. RT-PCR is a useful diagnostic tool for rapid and sensitive detection of mycobacteria in different clinical samples. The easy processing, fast reporting and relative lack of contamination issues make it worthy as a possible replacement to time consuming culture techniques. Moreover, it has added advantage of quantification of mycobacterial DNA, hence bacterial load.

  11. Multiplexing a high-throughput liability assay to leverage efficiencies.

    PubMed

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  12. Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat.

    PubMed

    Brusa, Victoria; Galli, Lucía; Linares, Luciano H; Ortega, Emanuel E; Lirón, Juan P; Leotta, Gerardo A

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) are recognized as food-borne pathogens. We developed and validated two SYBR green PCR (SYBR-PCR) and a real-time multiplex PCR (RT-PCR) to detect stx1 and stx2 genes in meat samples, and compared these techniques in ground beef samples from retail stores. One set of primers and one hydrolysis probe were designed for each stx gene. For RT-PCR, an internal amplification control (IAC) was used. All PCR intra-laboratory validations were performed using pure strains and artificially contaminated ground beef samples. A total of 50 STEC and 30 non-STEC strains were used. Naturally contaminated ground beef samples (n=103) were obtained from retail stores and screened with SYBR-PCR and RT-PCR, and stx-positive samples were processed for STEC isolation. In the intra-laboratory validation, each PCR obtained a 1×10(2) CFU mL(-1) limit of detection and 100% inclusivity and exclusivity. The same results were obtained when different laboratory analysts in alternate days performed the assay. The level of agreement obtained with SYBR-PCR and RT-PCR was kappa=0.758 and 0.801 (P<0.001) for stx1 and stx2 gene detection, respectively. Two PCR strategies were developed and validated, and excellent performance with artificially contaminated ground beef samples was obtained. However, the efforts made to isolate STEC from retail store samples were not enough. Only 11 STEC strains were isolated from 35 stx-positive ground beef samples identically detected by all PCRs. The combination of molecular approaches based on the identification of a virulence genotypic profile of STEC must be considered to improve isolation.

  13. Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat.

    PubMed

    Brusa, Victoria; Galli, Lucía; Linares, Luciano H; Ortega, Emanuel E; Lirón, Juan P; Leotta, Gerardo A

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) are recognized as food-borne pathogens. We developed and validated two SYBR green PCR (SYBR-PCR) and a real-time multiplex PCR (RT-PCR) to detect stx1 and stx2 genes in meat samples, and compared these techniques in ground beef samples from retail stores. One set of primers and one hydrolysis probe were designed for each stx gene. For RT-PCR, an internal amplification control (IAC) was used. All PCR intra-laboratory validations were performed using pure strains and artificially contaminated ground beef samples. A total of 50 STEC and 30 non-STEC strains were used. Naturally contaminated ground beef samples (n=103) were obtained from retail stores and screened with SYBR-PCR and RT-PCR, and stx-positive samples were processed for STEC isolation. In the intra-laboratory validation, each PCR obtained a 1×10(2) CFU mL(-1) limit of detection and 100% inclusivity and exclusivity. The same results were obtained when different laboratory analysts in alternate days performed the assay. The level of agreement obtained with SYBR-PCR and RT-PCR was kappa=0.758 and 0.801 (P<0.001) for stx1 and stx2 gene detection, respectively. Two PCR strategies were developed and validated, and excellent performance with artificially contaminated ground beef samples was obtained. However, the efforts made to isolate STEC from retail store samples were not enough. Only 11 STEC strains were isolated from 35 stx-positive ground beef samples identically detected by all PCRs. The combination of molecular approaches based on the identification of a virulence genotypic profile of STEC must be considered to improve isolation. PMID:26410309

  14. Development of a duplex real-time RT-PCR for the simultaneous detection and differentiation of Theiler's murine encephalomyelitis virus and rat theilovirus.

    PubMed

    Yuan, Wen; Wang, Jing; Xu, Fengjiao; Huang, Bihong; Lian, Yuexiao; Rao, Dan; Yin, Xueqin; Wu, Miaoli; Zhu, Yujun; Zhang, Yu; Huang, Ren; Guo, Pengju

    2016-10-01

    Theiler's murine encephalomyelitis virus (TMEV) and rat theilovirus (RTV), the member of the genus Cardiovirus, are widespread in laboratory mice and rats, and are potential contaminants of biological materials. Cardioviruses infection may cause serious complications in biomedical research. To improve the efficiency of routine screening for Cardioviruses infection, a duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was developed for simultaneous detection and differentiation of TMEV and RTV. The duplex assay was specific for reference strains of TMEV and RTV, and no cross-reaction was found with seven other rodent viruses. The limits of detection of both TMEV and RTV were 4×10(1) copies RNA/reaction. Reproducibility was estimated using standard dilutions, with coefficients of variation <3.1%. 439 clinical samples were evaluated by both duplex real-time RT-PCR and conventional RT-PCR. For 439 clinical samples,95 samples were positive for TMEV and 72 samples were positive for RTV using duplex real-time RT-PCR approach, whereas only 77 samples were positive for TMEV and 66 samples were positive for RTV when conventional RT-PCR was applied. Mixed infections were found in 20 samples when analyzed by conventional RT-PCR whereas 30 samples were found to be mixed infection when duplex real-time RT-PCR was applied. This duplex assay provides a useful tool for routine health monitoring and screening of contaminated biological materials of these two viruses.

  15. Rapid discrimination of Tomato chlorosis virus, Tomato infectious chlorosis virus and co-amplification of plant internal control using real-time RT-PCR.

    PubMed

    Papayiannis, Lambros C; Harkou, Ivi S; Markou, Yiannis M; Demetriou, Christos N; Katis, Nikolaos I

    2011-09-01

    Tomato chlorosis virus (ToCV) and Tomato infectious chlorosis virus (TICV) (genus: Crinivirus, family: Closteroviridae) are two emergent whitefly-transmitted viruses that have been associated with yellowing symptoms of tomato crops during the last two decades. A real-time, one-step reverse transcription (RT) TaqMan(®) polymerase chain reaction (PCR) assay was developed and optimized for the multiplex detection of TICV, ToCV and an internal control of mitochondrion cytochrome oxidase subunit I (mtCOXI) gene from plants. The plant mtCOXI assay can be used as an internal control in at least 77 plant species from 28 different families. The one-step RT TaqMan PCR assay successfully detected and discriminated the two virus species in infected tomato plants, other host plants and their whitefly vectors. In direct comparison, the assay was approximately 10,000-fold and 100-fold more sensitive than conventional one-step RT-PCR and two-step nested RT-PCR, respectively. The increased sensitivity allowed the use of alternative template preparation methods that do not require RNA purification. The assay can be performed either by the direct addition of crude plant extract into the real-time reaction mixture or alternatively, the sap extract can be blotted on a positively charged nylon membrane, eluted and added in the reaction mixture. The developed assay allows the simple, fast and cost-effective testing of a large number of samples and can be easily applied in surveys and certification schemes.

  16. Digital-Direct-RT-PCR: a sensitive and specific method for quantification of CTC in patients with cervical carcinoma

    PubMed Central

    Pfitzner, Claudia; Schröder, Isabel; Scheungraber, Cornelia; Dogan, Askin; Runnebaum, Ingo Bernhard; Dürst, Matthias; Häfner, Norman

    2014-01-01

    The detection of circulating tumour cells (CTC) in cancer patients may be useful for therapy monitoring and prediction of relapse. A sensitive assay based on HPV-oncogene transcripts which are highly specific for cervical cancer cells was established. The Digital-Direct-RT-PCR (DD-RT-PCR) combines Ficoll-separation, ThinPrep-fixation and one-step RT-PCR in a low-throughput digital-PCR format enabling the direct analysis and detection of individual CTC without RNA isolation. Experimental samples demonstrated a sensitivity of one HPV-positive cell in 500,000 HPV-negative cells. Spike-in experiments with down to 5 HPV-positive cells per millilitre EDTA-blood resulted in concordant positive results by PCR and immunocytochemistry. Blood samples from 3 of 10 CxCa patients each contained a single HPV-oncogene transcript expressing CTC among 5 to 15*105 MNBC. Only 1 of 7 patients with local but 2 of 3 women with systemic disease had CTC. This highly sensitive DD-RT-PCR for the detection of CTC may also be applied to other tumour entities which express tumour-specific transcripts. Abbreviations: CTC – circulating tumour cells, CxCa – cervical cancer, DD-RT-PCR – Digital-Direct Reverse Transcriptase PCR, HPV – Human Papilloma Virus, MNBC – mononuclear blood cells, ICC – immunocytochemistry. PMID:24496006

  17. Development of real-time RT-PCR for the detection of low concentrations of Rift Valley fever virus.

    PubMed

    Maquart, Marianne; Temmam, Sarah; Héraud, Jean-Michel; Leparc-Goffart, Isabelle; Cêtre-Sossah, Catherine; Dellagi, Koussay; Cardinale, Eric; Pascalis, Hervé

    2014-01-01

    In recent years, Madagascar and the Comoros archipelago have been affected by epidemics of Rift Valley fever (RVF), however detection of Rift Valley fever virus (RVFV) in zebu, sheep and goats during the post epidemic periods was frequently unsuccessful. Thus, a highly sensitive real-time RT-PCR assay was developed for the detection of RVFV at low viral loads. A new RVF SYBR Green RT-PCR targeting the M segment was tested on serum from different RVF seronegative ruminant species collected from May 2010 to August 2011 in Madagascar and the Comoros archipelago and compared with a RVF specific quantitative real time RT-PCR technique, which is considered as the reference technique. The specificity was tested on a wide range of arboviruses or other viruses giving RVF similar clinical signs. A total of 38 out of 2756 serum samples tested positive with the new RT-PCR, whereas the reference technique only detected 5 out of the 2756. The described RT-PCR is an efficient diagnostic tool for the investigation of enzootic circulation of the RVF virus. It allows the detection of low viral RNA loads adapted for the investigations of reservoirs or specific epidemiological situations such as inter-epizootic periods.

  18. Minimizing DNA recombination during long RT-PCR.

    PubMed

    Fang, G; Zhu, G; Burger, H; Keithly, J S; Weiser, B

    1998-12-01

    Recent developments have made it possible to reverse transcribe RNA and amplify cDNA molecules of > 10 kb in length, including the HIV-1 genome. To use long reverse transcription combined with polymerase chain reaction (RT-PCR) to best advantage, it is necessary to determine the frequency of recombination during the combined procedure and then take steps to reduce it. We investigated the requirements for minimizing DNA recombination during long RT-PCR of HIV-1 by experimenting with three different aspects of the procedure: conditions for RT, conditions for PCR, and the molar ratios of different templates. We used two distinct HIV-1 strains as templates and strain-specific probes to detect recombination. The data showed that strategies aimed at completing DNA strand synthesis and the addition of proofreading function to the PCR were most effective in reducing recombination during the combined procedure. This study demonstrated that by adjusting reaction conditions, the recombination frequency during RT-PCR can be controlled and greatly reduced.

  19. Sodium sulphite inhibition of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR.

    PubMed

    Singh, R P; Nie, X; Singh, M; Coffin, R; Duplessis, P

    2002-01-01

    Phenolic compounds from plant tissues inhibit reverse transcription-polymerase chain reaction (RT-PCR). Multiple-step protocols using several additives to inhibit polyphenolic compounds during nucleic acid extraction are common, but time consuming and laborious. The current research highlights that the inclusion of 0.65 to 0.70% of sodium sulphite in the extraction buffer minimizes the pigmentation of nucleic acid extracts and improves the RT-PCR detection of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in potato (Solanum tuberosum) tubers and Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) in leaves and bark in the sweet cherry (Prunus avium) tree. Substituting sodium sulphite in the nucleic acid extraction buffer eliminated the use of proteinase K during extraction. Reagents phosphate buffered saline (PBS)-Tween 20 and polyvinylpyrrolidone (PVP) were also no longer required during RT or PCR phase. The resultant nucleic acid extracts were suitable for both duplex and multiplex RT-PCR. This simple and less expensive nucleic acid extraction protocol has proved very effective for potato cv. Russet Norkotah, which contains a high amount of polyphenolics. Comparing commercially available RNA extraction kits (Catrimox and RNeasy), the sodium sulphite based extraction protocol yielded two to three times higher amounts of RNA, while maintaining comparable virus detection by RT-PCR. The sodium sulphite based extraction protocol was equally effective in potato tubers, and in leaves and bark from the cherry tree.

  20. Misidentification of Bordetella bronchiseptica as Bordetella pertussis using a Newly Described RT-PCR Targeting the Pertactin Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently a real-time PCR (RT-PCT) assay based on sequence from the gene for pertactin was proposed for identification of Bordetella pertussis. Here we report that the B. pertussis pertactin gene sequence for the region encompassing the RT-PCR probe and primers is nearly identical to that of many B....

  1. Diagnostic real-time RT-PCR for the simultaneous detection of Citrus exocortis viroid and Hop stunt viroid.

    PubMed

    Papayiannis, Lambros C

    2014-02-01

    Citrus exocortis viroid (CEVd) and Hop stunt viroid (HSVd) are two important viroids known to infect several plant species worldwide. In this study, a real-time reverse transcription (RT) TaqMan polymerase chain reaction (PCR) assay was developed and optimized for the simultaneous detection of CEVd and HSVd. The assay's analytical and diagnostic sensitivity and specificity were evaluated using reference isolates. Two different RNA extraction methods and one rapid crude template preparation procedure were compared in terms of extraction purity and efficiency for PCR applications. Extraction method Q included a commercially available kit, whereas method C was a modified chloroform-phase extraction in house protocol. Procedure S involved blotting the sap extract on a positively charged nylon membrane and elution. The multiplex RT-TaqMan PCR assay successfully discriminated the two viroid species from all reference samples and its recorded diagnostic sensitivity (Dse) and specificity (Dsp) was 100%. On the contrary, in conventional RT-PCR tests, the overall Dse and Dsp were lower and estimated at 94 and 95% for CEVd, and 97 and 98% for HSVd, respectively. In a direct comparison, the developed assay presented 1000-fold more analytical sensitivity. Spectrophotometric results showed that RNA extraction methods Q and C, yielded the purest RNA, and gave the lowest mean Ct values. Alternative template preparation method S resulted in Ct values statistically similar to those obtained with methods Q to C when tested by RT-TaqMan PCR. The developed assay, using crude template preparation S, allows the simple, accurate and cost-effective testing of a large number of plant samples, and can be applied in surveys and certification schemes.

  2. Combining RT-PCR-seq and RNA-seq to catalog all genic elements encoded in the human genome.

    PubMed

    Howald, Cédric; Tanzer, Andrea; Chrast, Jacqueline; Kokocinski, Felix; Derrien, Thomas; Walters, Nathalie; Gonzalez, Jose M; Frankish, Adam; Aken, Bronwen L; Hourlier, Thibaut; Vogel, Jan-Hinnerk; White, Simon; Searle, Stephen; Harrow, Jennifer; Hubbard, Tim J; Guigó, Roderic; Reymond, Alexandre

    2012-09-01

    Within the ENCODE Consortium, GENCODE aimed to accurately annotate all protein-coding genes, pseudogenes, and noncoding transcribed loci in the human genome through manual curation and computational methods. Annotated transcript structures were assessed, and less well-supported loci were systematically, experimentally validated. Predicted exon-exon junctions were evaluated by RT-PCR amplification followed by highly multiplexed sequencing readout, a method we called RT-PCR-seq. Seventy-nine percent of all assessed junctions are confirmed by this evaluation procedure, demonstrating the high quality of the GENCODE gene set. RT-PCR-seq was also efficient to screen gene models predicted using the Human Body Map (HBM) RNA-seq data. We validated 73% of these predictions, thus confirming 1168 novel genes, mostly noncoding, which will further complement the GENCODE annotation. Our novel experimental validation pipeline is extremely sensitive, far more than unbiased transcriptome profiling through RNA sequencing, which is becoming the norm. For example, exon-exon junctions unique to GENCODE annotated transcripts are five times more likely to be corroborated with our targeted approach than with extensive large human transcriptome profiling. Data sets such as the HBM and ENCODE RNA-seq data fail sampling of low-expressed transcripts. Our RT-PCR-seq targeted approach also has the advantage of identifying novel exons of known genes, as we discovered unannotated exons in ~11% of assessed introns. We thus estimate that at least 18% of known loci have yet-unannotated exons. Our work demonstrates that the cataloging of all of the genic elements encoded in the human genome will necessitate a coordinated effort between unbiased and targeted approaches, like RNA-seq and RT-PCR-seq.

  3. Characterization of Chinook head salmon embryo phenotypes of infectious salmon anemia virus by real-time RT-PCR.

    PubMed

    Munir, Khalid

    2006-06-01

    We have previously described the development of a onetube SYBR Green real-time RT-PCR assay for the detection and quantitation of infectious salmon anemia virus (ISAV) in various biological samples. The twofold aim of the present study was to verify that the optimized SYBR Green real-time RT-PCR conditions could detect ISAV isolates of different geographic origins, and to analyze the growth patterns of the selected ISAV isolates in the Chinook head salmon embryo (CHSE) -214 cells by this assay to better characterize their CHSE-phenotypes. A total of 24 ISAV isolates were used in this study. The results indicated that the SYBR Green real-time RT-PCR could detect ISAV of different geographic origins or laboratory sources. The capacity of ISAV isolates to cause cytopathic effects (CPE) in the CHSE-214 cell line, viral titration of the infected CHSE-cell harvests, and analysis of viral RNA levels in CHSE-214 cells at post-infection day zero, 7 and 14 by SYBR Green real-time RT-PCR confirmed the existence of three CHSE-phenotypes of ISAV: replicating cytopathic, replicating non-cytopathic, and non-replicating non-cytopathic. The identification of these three CHSE- phenotypes of ISAV has important implications from diagnostic and biological points of view.

  4. Inactivation conditions for human Norovirus measured by an in situ capture-qRT-PCR Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses (HuNoVs) are the major cause of epidemic non-bacterial gastroenteritis. Due to the inability to cultivate HuNoVs, it has been a challenge to determine their infectivity. Quantitative real-time RT-PCR (qRT-PCR) is widely used in detecting HuNoVs. However, qRT-PCR only detects the...

  5. Detection of Staphylococcus aureus enterotoxin production genes from patient samples using an automated extraction platform and multiplex real-time PCR.

    PubMed

    Chiefari, Amy K; Perry, Michael J; Kelly-Cirino, Cassandra; Egan, Christina T

    2015-12-01

    To minimize specimen volume, handling and testing time, we have developed two TaqMan(®) multiplex real-time PCR (rtPCR) assays to detect staphylococcal enterotoxins A-E and Toxic Shock Syndrome Toxin production genes directly from clinical patient stool specimens utilizing a novel lysis extraction process in parallel with the Roche MagNA Pure Compact. These assays are specific, sensitive and reliable for the detection of the staphylococcal enterotoxin encoding genes and the tst1 gene from known toxin producing strains of Staphylococcus aureus. Specificity was determined by testing a total of 47 microorganism strains, including 8 previously characterized staphylococcal enterotoxin producing strains against each rtPCR target. Sensitivity for these assays range from 1 to 25 cfu per rtPCR reaction for cultured isolates and 8-20 cfu per rtPCR for the clinical stool matrix.

  6. Rapid detection of lineage IV peste des petits ruminants virus by real-time RT-PCR.

    PubMed

    Li, Lin; Wu, Xiaodong; Liu, Fuxiao; Wang, Zhiliang; Liu, Chunju; Wang, Qinghua; Bao, Jingyue

    2016-09-01

    Peste des petits ruminants virus (PPRV) is the cause agent of peste des petitis ruminants (PPR). A novel lineage IV PPRV has reemerged in China in 2013 and 2014. Mass vaccination was implemented in most provinces in China. In order to detect lineage IV PPRV in clinical samples and to distinguish rapidly it from the other lineages PPRVs, a real-time RT-PCR assay was developed. This assay showed high sensitivity, specificity and efficiency in differentiating the lineage IV PPRV from others. The performance of this assay was evaluated by positive clinical samples of lineage IV viruses. This new real-time RT-PCR assay will facilitate epidemiological investigations and rapid differentiatial diagnosis in areas where lineage IV viruses are circulating. PMID:27260657

  7. Rapid detection of mecA and nuc genes in staphylococci by real-time multiplex polymerase chain reaction.

    PubMed

    Costa, Anna-Maria; Kay, Ian; Palladino, Silvano

    2005-01-01

    A multiplex real-time polymerase chain reaction (RT-PCR) targeting the mecA and nuc genes was developed for the detection of methicillin resistance and identification of Staphylococcus aureus. Novel mecA and nuc primers and fluorescence resonance energy transfer hybridization probes specific for the mecA and nuc genes were evaluated. The assay was performed using the LightCycler system (Roche Molecular Biochemicals, Mannheim, Germany) and evaluated against the traditional gel-based multiplex PCR (PCR-gel) method currently used at Royal Perth Hospital. Clinical isolates (n = 222) and isolates from a culture collection library (n = 206) were tested by both assays in parallel. The RT-PCR assay was 100% sensitive and specific for the detection of methicillin resistance and for the identification of S. aureus when compared with the PCR-gel assay. Results from the RT-PCR assay showed 5 isolates with lower efficiency fluorescence curves for the nuc gene PCR fragment. DNA sequencing showed mutations within the region of the probe-binding sites compared with the reference strain. The results of the RT-PCR assay were available within 2 h. This rapid mecA/nuc RT-PCR assay is a suitable and practical tool for the routine detection of methicillin resistance and identification of S. aureus, which can be easily incorporated into the diagnostic molecular microbiology laboratory work flow.

  8. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems.

    PubMed

    Bustin, S A

    2002-08-01

    The fluorescence-based real-time reverse transcription PCR (RT-PCR) is widely used for the quantification of steady-state mRNA levels and is a critical tool for basic research, molecular medicine and biotechnology. Assays are easy to perform, capable of high throughput, and can combine high sensitivity with reliable specificity. The technology is evolving rapidly with the introduction of new enzymes, chemistries and instrumentation. However, while real-time RT-PCR addresses many of the difficulties inherent in conventional RT-PCR, it has become increasingly clear that it engenders new problems that require urgent attention. Therefore, in addition to providing a snapshot of the state-of-the-art in real-time RT-PCR, this review has an additional aim: it will describe and discuss critically some of the problems associated with interpreting results that are numerical and lend themselves to statistical analysis, yet whose accuracy is significantly affected by reagent and operator variability.

  9. Simple, specific molecular typing of dengue virus isolates using one-step RT-PCR and restriction fragment length polymorphism.

    PubMed

    Ortiz, Alma; Capitan, Zeuz; Mendoza, Yaxelis; Cisneros, Julio; Moreno, Brechla; Zaldivar, Yamitzel; Garcia, Mariana; Smith, Rebecca E; Motta, Jorge; Pascale, Juan Miguel

    2012-10-01

    A one-step RT-PCR and one-enzyme RFLP was used to detect and distinguish among flaviviruses, including the four serotypes of dengue and the St. Louis Encephalitis, West Nile and Yellow Fever viruses in cultured virus samples or acute-phase human serum. Using a previously described RT-PCR, but novel RFLP procedure, results are obtained in 24 h with basic PCR and electrophoresis equipment. There is 95% agreement between RT-PCR/RFLP results and those achieved by indirect immunofluorescence assays, and 100% agreement between RT-PCR/RFLP results and gene sequencing. This method is more rapid than tests of cytopathic effect based on virus isolation in tissue culture, and simpler than real-time PCR. It does not require specialized equipment, radioisotopes or computer analysis and is a method that can be applied widely in the developing world. It allows for prompt determination of whether a flavivirus is the cause of illness in a febrile patient, rapid identification of dengue serotypes in circulation, and improved patient management in cases where prior dengue exposure make dengue hemorrhagic fever or dengue shock syndrome a risk.

  10. Detection of dermcidin for sweat identification by real-time RT-PCR and ELISA.

    PubMed

    Sakurada, Koichi; Akutsu, Tomoko; Fukushima, Hisayo; Watanabe, Ken; Yoshino, Mineo

    2010-01-30

    We evaluated the performance of real-time RT-PCR and ELISA assays for detection of dermcidin (DCD) in sweat and body-fluid stains. DCD, a small antibiotic peptide secreted into human sweat, was detected by real-time RT-PCR in 7-day-old stains containing as small as 10 microL of sweat, and the assay showed high specificity when testing 7-day-old stains containing 30 microL of other body-fluid. ELISA using anti-human dermcidin mouse monoclonal antibody detected DCD sweat diluted up to approximately 10,000-fold and could specifically detect DCD in 10 microL of body-fluid stains. The performance of the two assays was tested during winter on samples that simulated forensic case samples: an undershirt and a sock worn for 20 h, a handkerchief used to wipe the brow several times within 12h, a cap and a cotton glove worn for 4h, and a white robe worn at intervals for 2 years. The result showed that the former assay detected DCD in all sites of the undershirt examined (armpit, back, and breast), and the latter gave a relatively high OD value in the armpit among the three sites. For the socks, although the latter assay gave very high OD values in both the center and toe of the foot sole, the former could not detect DCD in both of them. These results indicate that highly damp conditions, such as inside a shoe, might promote the degradation of mRNA in samples such as socks. In the other case samples, sweat was adequately detected by both assays. This study is the first demonstration of the use of real-time RT-PCR to sensitively identify sweat among body-fluid stains, and it confirmed that dermcidin was an excellent marker for sweat identification. In addition, the usefulness of ELISA was also verified. Positive sweat identification using these assays is expected to assist forensic practice.

  11. Multiplex Real-time Polymerase Chain Reaction Assays for Simultaneous Detection of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus

    PubMed Central

    Park, Jie Yeun; Jeon, Semi; Kim, Jun Young; Park, Misun; Kim, Seonghan

    2013-01-01

    Objectives A multiplex real-time polymerase chain reaction (RT-PCR) method was developed for the identification of three Vibrio species: Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Methods Specific primers and probes targeting the hlyA, tlh, and vvhA genes were selected and used for multiplex real-time PCR to confirm the identification of V. cholerae, V. parahaemolyticus, and V. vulnificus, respectively. This method was applied to screen Vibrio species from environmental samples and combining it with a culture-based method, its effectiveness was evaluated in comparison with culture-based methods alone. Results Specific PCR fragments were obtained from isolates belonging to the target species, indicating a high specificity of this multiplex real-time PCR. No cross-reactivity with the assay was observed between the tested bacteria. The sensitivity of the multiplex real-time PCR was found to have a lower limit of 104 colony-forming units/reaction for all three Vibrio species. The combination strategy raised the isolation ratio of all three Vibrio species 1.26- to 2.75-fold. Conclusion This assay provides a rapid, sensitive, and specific technique to detect these three Vibrio species in the environment. PMID:24159544

  12. Data transformation methods for multiplexed assays

    DOEpatents

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2013-07-23

    Methods to improve the performance of an array assay are described. A correlation between fluorescence intensity-related parameters and negative control values of the assay is determined. The parameters are then adjusted as a function of the correlation. As a result, sensitivity of the assay is improved without changes in its specificity.

  13. The genotyping of infectious bronchitis virus in Taiwan by a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction.

    PubMed

    Huang, Shr-Wei; Ho, Chia-Fang; Chan, Kun-Wei; Cheng, Min-Chung; Shien, Jui-Hung; Liu, Hung-Jen; Wang, Chi-Young

    2014-11-01

    Infectious bronchitis virus (IBV; Avian coronavirus) causes acute respiratory and reproductive and urogenital diseases in chickens. Following sequence alignment of IBV strains, a combination of selective primer sets was designed to individually amplify the IBV wild-type and vaccine strains using a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) approach. This system was shown to discriminate the IBV wild-type and vaccine strains. Moreover, an ARMS real-time RT-PCR (ARMS qRT-PCR) was combined with a high-resolution analysis (HRMA) to establish a melt curve analysis program. The specificity of the ARMS RT-PCR and the ARMS qRT-PCR was verified using unrelated avian viruses. Different melting temperatures and distinct normalized and shifted melting curve patterns for the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were detected. The new assays were used on samples of lung and trachea as well as virus from allantoic fluid and cell culture. In addition to being able to detect the presence of IBV vaccine and wild-type strains by ARMS RT-PCR, the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were distinguished using ARMS qRT-PCR by their melting temperatures and by HRMA. These approaches have acceptable sensitivities and specificities and therefore should be able to serve as options when carrying out differential diagnosis of IBV in Taiwan and China.

  14. Simultaneous detection of West Nile and Japanese encephalitis virus RNA by duplex TaqMan RT-PCR.

    PubMed

    Barros, Silvia C; Ramos, Fernanda; Zé-Zé, Líbia; Alves, Maria J; Fagulha, Teresa; Duarte, Margarida; Henriques, Margarida; Luís, Tiago; Fevereiro, Miguel

    2013-11-01

    West Nile virus (WNV) and Japanese encephalitis virus (JEV) are important mosquito-borne viruses of the Flaviviridae family, associated with encephalitis, mainly in humans and horses. WNV is also pathogen for many bird species. The incidence of human and animal WNV infections in Europe has risen, mostly in recent years, and JEV was detected in 2011 in mosquitoes collected in Italy and may emerge in Europe in the same way as other flaviviruses had emerged recently (USUTU and Bagaza virus) and should be regarded as a potential threat to public health. Prompt identification and discrimination between WNV and JEV provides critical epidemiological data for prevalence studies and public and animal health management policies. Here we describe a quantitative one-step duplex TaqMan RT-PCR, targeting non-structural protein 2A gene (NS2A-qRT-PCR), based on only one primer pair and two probes for differential diagnosis of WNV and JEV. Also this assay enables the detection of both WNV lineages (WNV-1 and WNV-2). To access the specificity of NS2A-qRT-PCR a panel of different arboviruses were used. The assay was shown to be specific for both WNV lineages (WNV-1 and WNV-2), WNV related Kunjin virus and JEV, since no cross-reactions were observed with other tested arboviruses. Sensitivity of the assay was determined using serial dilutions of in vitro-transcribed RNA from WNV and JEV. The duplex NS2A-qRT-PCR assay was shown to be very sensitive, being able to detect 10 copies of WNV and JEV RNA. This assay is a suitable tool for the diagnosis of WNV and JEV, and provides a valuable addition to the methods currently available for routine diagnosis of these zoonoses and for surveillance studies.

  15. Influenza A virus drift variants reduced the detection sensitivity of a commercial multiplex nucleic acid amplification assay in the season 2014/15.

    PubMed

    Huzly, Daniela; Korn, Klaus; Bierbaum, Sibylle; Eberle, Björn; Falcone, Valeria; Knöll, Antje; Steininger, Philipp; Panning, Marcus

    2016-09-01

    The influenza season 2014/15 was dominated by drift variants of influenza A(H3N2), which resulted in a reduced vaccine effectiveness. It was not clear if the performance of commercial nucleic-acid-based amplification (NAT) assays for the detection of influenza was affected. The purpose of this study was to perform a real-life evaluation of two commercial NAT assays. During January-April 2015, we tested a total of 665 samples from patients with influenza-like illness using the Fast Track Diagnostics Respiratory pathogens 21, a commercial multiplex kit, (cohorts 1 and 2, n = 563 patients) and the Xpert Flu/RSV XC assay (cohort 3, n = 102 patients), a single-use cartridge system. An in-house influenza real-time RT-PCR (cohort 1) and the RealStar Influenza RT-PCR 1.0 Kit (cohort 2 and 3) served as reference tests. Compared to the reference assay, an overall agreement of 95.9 % (cohort 1), 95 % (cohort 2), and 98 % (cohort 3) was achieved. A total of 24 false-negative results were observed using the Fast Track Diagnostics Respiratory pathogens 21 kit. No false-negative results occurred using the Xpert Flu/RSV XC assay. The Fast Track Diagnostics Respiratory pathogens 21 kit and the Xpert Flu/RSV XC assay had sensitivities of 90.7 % and 100 % and specificities of 100 % and 94.1 %, respectively, compared to the RealStar 1.0 kit. Upon modification of the Fast Track Diagnostics Respiratory pathogens 21 kit, the sensitivity increased to 97.3 %. Influenza virus strains circulating during the 2014/15 season reduced the detection sensitivity of a commercial NAT assay, and continuous monitoring of test performance is therefore necessary. PMID:27316440

  16. Efficacy of quantitative RT-PCR for detection of the nucleoprotein gene from different porcine rubulavirus strains.

    PubMed

    Rivera-Benitez, José Francisco; García-Contreras, Adelfa del Carmen; Reyes-Leyva, Julio; Hernández, Jesús; Sánchez-Betancourt, José Iván; Ramírez-Mendoza, Humberto

    2013-09-01

    Blue-eye disease is an emergent viral swine infection caused by porcine rubulavirus (PoRV). We have developed a qRT-PCR method to detect and quantify expression of the nucleoprotein gene for different PoRV strains. The limit of detection for this assay was 10(2) copies of synthetic RNA. Viral RNA from PoRV was detectable at a TCID50 of 0.01. Significant differences were observed between viral RNA quantification and virus titration results for nine PoRV strains. For nasal and oral swab samples that were collected from experimentally infected pigs, the qRT-PCR assay was more sensitive (87.1-83.9 %) for the detection of positive samples than methods involving isolation of virus. The implementation of highly sensitive assays that yield results quickly will be of great assistance in the eradication of PoRV from Mexico. We also believe that the newly developed qRT-PCR assay will help reduce the spread of this viral infection to other countries.

  17. The use of collagenase to improve the detection of plant viruses in vector nematodes by RT-PCR.

    PubMed

    Martin, Robert R; Pinkerton, Jack N; Kraus, Jennifer

    2009-01-01

    Tomato ringspot virus (ToRSV), Tobacco ringspot virus (TRSV) and Tobacco rattle virus (TRV) are transmitted to healthy plants by viruliferous nematodes in the soil. A method was developed for extraction of genomic viral RNA from virus particles carried within nematodes and a sensitive nested RT-PCR detection assay. The procedure has been adapted to microscale for handling multiple samples. This assay is effective for detection of ToRSV or TRSV in Xiphinema americanum or TRV in Paratrichodorus allius. With this method, viruses can be detected in nematodes fed on infected plants or from field-collected nematodes where the percentage of viruliferous nematodes is unknown. Soil samples from four red raspberry fields infected with ToRSV were collected in 2003 and 2004. Nematodes isolated from these samples were assayed for ToRSV by RT-PCR and compared to cucumber baiting bioassay for virus transmission from the same soil samples. ToRSV was detected in nematodes throughout the season with similar frequencies by the RT-PCR assay and the transmission bioassay.

  18. Multiplexed Recombinase Polymerase Amplification Assay To Detect Intestinal Protozoa.

    PubMed

    Crannell, Zachary; Castellanos-Gonzalez, Alejandro; Nair, Gayatri; Mejia, Rojelio; White, A Clinton; Richards-Kortum, Rebecca

    2016-02-01

    This work describes a proof-of-concept multiplex recombinase polymerase amplification (RPA) assay with lateral flow readout that is capable of simultaneously detecting and differentiating DNA from any of the diarrhea-causing protozoa Giardia, Cryptosporidium, and Entamoeba. Together, these parasites contribute significantly to the global burden of diarrheal illness. Differential diagnosis of these parasites is traditionally accomplished via stool microscopy. However, microscopy is insensitive and can miss up to half of all cases. DNA-based diagnostics such as polymerase chain reaction (PCR) are far more sensitive; however, they rely on expensive thermal cycling equipment, limiting their availability to centralized reference laboratories. Isothermal DNA amplification platforms, such as the RPA platform used in this study, alleviate the need for thermal cycling equipment and have the potential to broaden access to more sensitive diagnostics. Until now, multiplex RPA assays have not been developed that are capable of simultaneously detecting and differentiating infections caused by different pathogens. We developed a multiplex RPA assay to detect the presence of DNA from Giardia, Cryptosporidium, and Entamoeba. The multiplex assay was characterized using synthetic DNA, where the limits-of-detection were calculated to be 403, 425, and 368 gene copies per reaction of the synthetic Giardia, Cryptosporidium, and Entamoeba targets, respectively (roughly 1.5 orders of magnitude higher than for the same targets in a singleplex RPA assay). The multiplex assay was also characterized using DNA extracted from live parasites spiked into stool samples where the limits-of-detection were calculated to be 444, 6, and 9 parasites per reaction for Giardia, Cryptosporidium, and Entamoeba parasites, respectively. This proof-of-concept assay may be reconfigured to detect a wide variety of targets by re-designing the primer and probe sequences.

  19. Multiplexed Recombinase Polymerase Amplification Assay To Detect Intestinal Protozoa.

    PubMed

    Crannell, Zachary; Castellanos-Gonzalez, Alejandro; Nair, Gayatri; Mejia, Rojelio; White, A Clinton; Richards-Kortum, Rebecca

    2016-02-01

    This work describes a proof-of-concept multiplex recombinase polymerase amplification (RPA) assay with lateral flow readout that is capable of simultaneously detecting and differentiating DNA from any of the diarrhea-causing protozoa Giardia, Cryptosporidium, and Entamoeba. Together, these parasites contribute significantly to the global burden of diarrheal illness. Differential diagnosis of these parasites is traditionally accomplished via stool microscopy. However, microscopy is insensitive and can miss up to half of all cases. DNA-based diagnostics such as polymerase chain reaction (PCR) are far more sensitive; however, they rely on expensive thermal cycling equipment, limiting their availability to centralized reference laboratories. Isothermal DNA amplification platforms, such as the RPA platform used in this study, alleviate the need for thermal cycling equipment and have the potential to broaden access to more sensitive diagnostics. Until now, multiplex RPA assays have not been developed that are capable of simultaneously detecting and differentiating infections caused by different pathogens. We developed a multiplex RPA assay to detect the presence of DNA from Giardia, Cryptosporidium, and Entamoeba. The multiplex assay was characterized using synthetic DNA, where the limits-of-detection were calculated to be 403, 425, and 368 gene copies per reaction of the synthetic Giardia, Cryptosporidium, and Entamoeba targets, respectively (roughly 1.5 orders of magnitude higher than for the same targets in a singleplex RPA assay). The multiplex assay was also characterized using DNA extracted from live parasites spiked into stool samples where the limits-of-detection were calculated to be 444, 6, and 9 parasites per reaction for Giardia, Cryptosporidium, and Entamoeba parasites, respectively. This proof-of-concept assay may be reconfigured to detect a wide variety of targets by re-designing the primer and probe sequences. PMID:26669715

  20. Specific detection of avian pneumovirus (APV) US isolates by RT-PCR.

    PubMed

    Shin, H J; Rajashekara, G; Jirjis, F F; Shaw, D P; Goyal, S M; Halvorson, D A; Nagaraja, K V

    2000-01-01

    This report details the development of an RT-PCR assay for the specific detection of US isolates of avian pneumovirus (APV). Of the several primer pairs tested, two sets of primers derived from the matrix gene of APV were able to specifically detect the viral RNA of APV. The nucleotide sequence comparison of the PCR products of APV isolates from Minnesota suggested that these viruses were closely related to the Colorado strain of APV, but were distinct from subtypes A and B European isolates of turkey APV (turkey rhinotracheitis: TRT). This M gene-based PCR was found to be very specific and sensitive. APV as low as 8 x 10(-5) TCID50 (0.0323 microg/ml) could be detected using this assay. In addition, the two primers were able to differentiate isolates from turkeys in Minnesota.

  1. Methods for threshold determination in multiplexed assays

    SciTech Connect

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2014-06-24

    Methods for determination of threshold values of signatures comprised in an assay are described. Each signature enables detection of a target. The methods determine a probability density function of negative samples and a corresponding false positive rate curve. A false positive criterion is established and a threshold for that signature is determined as a point at which the false positive rate curve intersects the false positive criterion. A method for quantitative analysis and interpretation of assay results together with a method for determination of a desired limit of detection of a signature in an assay are also described.

  2. Evaluation of viral extraction methods on a broad range of Ready-To-Eat foods with conventional and real-time RT-PCR for Norovirus GII detection.

    PubMed

    Baert, Leen; Uyttendaele, Mieke; Debevere, Johan

    2008-03-31

    Noroviruses (NoV) are a common cause of foodborne outbreaks. In spite of that, no standard viral detection method is available for food products. Therefore, three viral elution-concentration methods and one direct RNA isolation method were evaluated on a broad range of Ready-To-Eat (RTE) food products (mixed lettuce, fruit salad, raspberries and two RTE dishes) artificially seeded with a diluted stool sample contaminated with NoV genogroup II. These seeding experiments revealed two categories of RTE products, fruits and vegetables grouped together and RTE dishes (penne and tagliatelle salads) which are rich in proteins and fat formed another category. The RNA extracts were amplified and detected with two conventional RT-PCR systems (Booster and Semi-nested GII) and one real-time RT-PCR (Real-time GII) assay. A fast direct RNA isolation method detected 10(2) RT-PCRU on 10 g penne and tagliatelle salads with the conventional RT-PCR assays. However real-time RT-PCR was less sensitive for penne salad. A viral elution-concentration method, including a buffer solution for the elution step and one polyethylene glycol (PEG) precipitation step, was able to detect 10(2) RT-PCRU on 50 g frozen raspberries with conventional and real-time RT-PCR assays. Moreover the latter extraction method used no environmental hazardous chemical reagents and was easy to perform.

  3. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation.

    PubMed

    Zubakov, Dmitry; Boersma, Anton W M; Choi, Ying; van Kuijk, Patricia F; Wiemer, Erik A C; Kayser, Manfred

    2010-05-01

    MicroRNAs (miRNAs) are non-protein coding molecules with important regulatory functions; many have tissue-specific expression patterns. Their very small size in principle makes them less prone to degradation processes, unlike messenger RNAs (mRNAs), which were previously proposed as molecular tools for forensic body fluid identification. To identify suitable miRNA markers for forensic body fluid identification, we first screened total RNA samples derived from saliva, semen, vaginal secretion, and venous and menstrual blood for the expression of 718 human miRNAs using a microarray platform. All body fluids could be easily distinguished from each other on the basis of complete array-based miRNA expression profiles. Results from quantitative reverse transcription PCR (RT-PCR; TaqMan) assays for microarray candidate markers confirmed strong over-expression in the targeting body fluid of several miRNAs for venous blood and several others for semen. However, no candidate markers from array experiments for other body fluids such as saliva, vaginal secretion, or menstrual blood could be confirmed by RT-PCR. Time-wise degradation of venous blood and semen stains for at least 1 year under lab conditions did not significantly affect the detection sensitivity of the identified miRNA markers. The detection limit of the TaqMan assays tested for selected venous blood and semen miRNA markers required only subpicogram amounts of total RNA per single RT-PCR test, which is considerably less than usually needed for reliable mRNA RT-PCR detection. We therefore propose the application of several stable miRNA markers for the forensic identification of blood stains and several others for semen stain identification, using commercially available TaqMan assays. Additional work remains necessary in search for suitable miRNA markers for other forensically relevant body fluids.

  4. Evaluation of Nanogen MGB Alert Detection Reagents in a multiplex real-time PCR for influenza virus types A and B and respiratory syncytial virus.

    PubMed

    Hymas, Weston C; Hillyard, David R

    2009-03-01

    A multiplex real-time RT-PCR assay that detects influenza A, influenza B and respiratory syncytial virus (RSV) using the MGB Alert Influenza A&B/RSV Detection Reagent RUO (Nanogen, San Diego, CA) was developed. The Nanogen detection reagents consist of PCR primers and minor groove binder-conjugated hybridization probes for each virus and an internal control. Virus typing was determined by post-PCR melt curve analysis. A non-competitive armored RNA internal control was co-extracted with each sample to monitor nucleic acid extraction and RT-PCR. The assay was evaluated using a collection of culture, DFA and RT-PCR (Hexaplex, Prodesse, Waukesha, WI) positive and negative samples. The real-time multiplex assay detected 236 of 237 positive specimens for a 99% correlation. Of 30 Hexaplex negative samples tested, the multiplex real-time assay detected an additional 7 positives confirmed using additional PCR assays. Melt curve analysis for each virus produced average melting peaks of 60.4 degrees C, 66.7 degrees C and 69.4 degrees C for influenza A, influenza B and RSV respectively. Sequence analysis of 7 influenza A samples producing aberrant melt curves, confirmed the presence of a single nucleotide polymorphism beneath the influenza A probe. The limit of detection of each virus in 4 different sample types was measured to be between 7 and 806 copies. Overall, the multiplexed real-time RT-PCR assay was sensitive, robust and easy to use.

  5. Comparative analysis of viral concentration methods for detecting the HAV genome using real-time RT-PCR amplification.

    PubMed

    Lee, Kang Bum; Lee, Hyeokjin; Ha, Sang-Do; Cheon, Doo-Sung; Choi, Changsun

    2012-06-01

    Hepatitis A is a major infectious disease epidemiologically associated with foodborne and waterborne outbreaks. Molecular detection using real-time RT-PCR to detect the hepatitis A virus (HAV) in contaminated vegetables can be hindered by low-virus recoveries during the concentration process and by natural PCR inhibitors in vegetables. This study evaluated three virus concentration methods from vegetables: polyethylene glycol (PEG) precipitation, ultrafiltration (UF), and immunomagnetic separation (IMS). UF was the most efficient concentration method, while PEG and IMS were very low for the recovery rate of HAV. These results demonstrate that UF is the most appropriate method for recovering HAV from contaminated vegetables and that this method combined with the real-time RT-PCR assay may be suitable for routine laboratory use.

  6. RT-PCR testing of allograft musculoskeletal tissue: is it time for culture-based methods to move over?

    PubMed

    Varettas, Kerry

    2014-12-01

    Allograft musculoskeletal tissue samples are assessed for microbial bioburden to reduce the risk of post-transplant infection. Traditionally, solid agar and broth culture media have been used however, nucleic acid testing, such as real-time (RT) polymerase chain reaction (PCR), has been described as more sensitive. This study evaluated the recovery of low numbers of challenge organisms from inoculated swab and musculoskeletal biopsy samples using solid agar culture, cooked meat medium, blood culture bottles and a RT-PCR assay. It was found that broth culture methods were the most sensitive with RT-PCR unable to detect low numbers of bacteria from these samples. Investigation of other non-culture methods may be worthwhile.

  7. Detection of Langat virus by TaqMan real-time one-step qRT-PCR method.

    PubMed

    Muhd Radzi, Siti Fatimah; Rückert, Claudia; Sam, Sing-Sin; Teoh, Boon-Teong; Jee, Pui-Fong; Phoon, Wai-Hong; Abubakar, Sazaly; Zandi, Keivan

    2015-09-11

    Langat virus (LGTV), one of the members of the tick-borne encephalitis virus (TBEV) complex, was firstly isolated from Ixodes granulatus ticks in Malaysia. However, the prevalence of LGTV in ticks in the region remains unknown. Surveillance for LGTV is therefore important and thus a tool for specific detection of LGTV is needed. In the present study, we developed a real-time quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) for rapid detection of LGTV. Our findings showed that the developed qRT-PCR could detect LGTV at a titre as low as 0.1 FFU/ml. The detection limit of the qRT-PCR assay at 95% probability was 0.28 FFU/ml as determined by probit analysis (p ≤ 0.05). Besides, the designed primers and probe did not amplify ORF of the E genes for some closely related and more pathogenic viruses including TBEV, Louping ill virus, Omsk hemorrhagic fever virus (OHFV), Alkhurma virus (ALKV), Kyasanur Forest Disease virus (KFDV) and Powassan virus (POWV) which showed the acceptable specificity of the developed assay. The sensitivity of the developed method also has been confirmed by determining the LGTV in infected tick cell line as well as LGTV- spiked tick tissues.

  8. Detection of Langat virus by TaqMan real-time one-step qRT-PCR method

    PubMed Central

    Muhd Radzi, Siti Fatimah; Rückert, Claudia; Sam, Sing-Sin; Teoh, Boon-Teong; Jee, Pui-Fong; Phoon, Wai-Hong; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    Langat virus (LGTV), one of the members of the tick-borne encephalitis virus (TBEV) complex, was firstly isolated from Ixodes granulatus ticks in Malaysia. However, the prevalence of LGTV in ticks in the region remains unknown. Surveillance for LGTV is therefore important and thus a tool for specific detection of LGTV is needed. In the present study, we developed a real-time quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) for rapid detection of LGTV. Our findings showed that the developed qRT-PCR could detect LGTV at a titre as low as 0.1 FFU/ml. The detection limit of the qRT-PCR assay at 95% probability was 0.28 FFU/ml as determined by probit analysis (p ≤ 0.05). Besides, the designed primers and probe did not amplify ORF of the E genes for some closely related and more pathogenic viruses including TBEV, Louping ill virus, Omsk hemorrhagic fever virus (OHFV), Alkhurma virus (ALKV), Kyasanur Forest Disease virus (KFDV) and Powassan virus (POWV) which showed the acceptable specificity of the developed assay. The sensitivity of the developed method also has been confirmed by determining the LGTV in infected tick cell line as well as LGTV- spiked tick tissues. PMID:26360297

  9. A real-time RT-PCR for rapid detection and quantification of mosquito-borne alphaviruses.

    PubMed

    Romeiro, Marilia Farignoli; de Souza, William Marciel; Tolardo, Aline Lavado; Vieira, Luiz Carlos; Henriques, Dyana Alves; de Araujo, Jansen; Siqueira, Carlos Eduardo Hassegawa; Colombo, Tatiana Elias; Aquino, Victor Hugo; da Fonseca, Benedito Antonio Lopes; de Morais Bronzoni, Roberta Vieira; Nogueira, Maurício Lacerda; Durigon, Edison Luiz; Figueiredo, Luiz Tadeu Moraes

    2016-11-01

    Mosquito-borne alphaviruses are widely distributed throughout the world, causing important human illnesses. Therefore, the development of methods to enable early diagnosis of infections by alphavirus is essential. We show here the development and evaluation of a quantitative real-time RT-PCR using genus-specific primers to the nsP1 viral gene of all mosquito-borne alphaviruses. The specificity and sensitivity of the assay were tested using seven alphaviruses and RNA transcribed from Venezuelan equine encephalitis virus. The detection limits of real-time RT-PCR ranged from 10 to 76 copies per ml. The melting temperature (TM) values for amplification of the alphavirus genomes were 83.05 °C and 85.28 °C. Interestingly, the assay suggested the possibility the arthritogenic alphaviruses with TM peaks of 84.83 to 85.28 °C and encephalitic alphaviruses of 83.34 °C to 84.68 °C could be discriminated both diseases. Real-time RT-PCR may prove very useful for the screening and preliminary diagnosis in outbreaks and surveillance studies as well as for measuring the viral load in pathogenesis studies.

  10. Evaluation of reference genes in Vibrio parahaemolyticus for gene expression analysis using quantitative RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize the viru...

  11. Identification and Validation of Reference Genes for qRT-PCR Studies of Gene Expression in Dioscorea opposita.

    PubMed

    Zhao, Xiting; Zhang, Xiaoli; Guo, Xiaobo; Li, Shujie; Han, Linlin; Song, Zhihui; Wang, Yunying; Li, Junhua; Li, Mingjun

    2016-01-01

    Quantitative real-time polymerase chain reaction (qRT-PCR) is one of the most common methods for gene expression studies. Data normalization based on reference genes is essential for obtaining reliable results for qRT-PCR assays. This study evaluated potential reference genes of Chinese yam (Dioscorea opposita Thunb.), which is an important tuber crop and medicinal plant in East Asia. The expression of ten candidate reference genes across 20 samples from different organs and development stages was assessed. We identified the most stable genes for qRT-PCR studies using combined samples from different organs. Our results also suggest that different suitable reference genes or combinations of reference genes for normalization should be applied according to different organs and developmental stages. To validate the suitability of the reference genes, we evaluated the relative expression of PE2.1 and PE53, which are two genes that may be associated with microtuber formation. Our results provide the foundation for reference gene(s) selection in D. opposita and will contribute toward more accurate gene analysis studies of the genus Dioscorea.

  12. Identification and Validation of Reference Genes for qRT-PCR Studies of Gene Expression in Dioscorea opposita

    PubMed Central

    Zhao, Xiting; Zhang, Xiaoli; Guo, Xiaobo; Li, Shujie; Han, Linlin; Song, Zhihui; Wang, Yunying; Li, Junhua; Li, Mingjun

    2016-01-01

    Quantitative real-time polymerase chain reaction (qRT-PCR) is one of the most common methods for gene expression studies. Data normalization based on reference genes is essential for obtaining reliable results for qRT-PCR assays. This study evaluated potential reference genes of Chinese yam (Dioscorea opposita Thunb.), which is an important tuber crop and medicinal plant in East Asia. The expression of ten candidate reference genes across 20 samples from different organs and development stages was assessed. We identified the most stable genes for qRT-PCR studies using combined samples from different organs. Our results also suggest that different suitable reference genes or combinations of reference genes for normalization should be applied according to different organs and developmental stages. To validate the suitability of the reference genes, we evaluated the relative expression of PE2.1 and PE53, which are two genes that may be associated with microtuber formation. Our results provide the foundation for reference gene(s) selection in D. opposita and will contribute toward more accurate gene analysis studies of the genus Dioscorea. PMID:27314014

  13. Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR.

    PubMed

    Donia, D; Divizia, M; Pana', A

    2005-06-01

    Armored Enterovirus RNA was used to standardize a real-time reverse transcription (RT)-PCR for environmental testing. Armored technology is a system to produce a robust and stable RNA standard, trapped into phage proteins, to be used as internal control. The Armored Enterovirus RNA protected sequence includes 263 bp of highly conserved sequences in 5' UTR region. During these tests, Armored RNA has been used to produce a calibration curve, comparing three different fluorogenic chemistry: TaqMan system, Syber Green I and Lux-primers. The effective evaluation of three amplifying commercial reagent kits, in use to carry out real-time RT-PCR, and several extraction procedures of protected viral RNA have been carried out. The highest Armored RNA recovery was obtained by heat treatment while chemical extraction may decrease the quantity of RNA. The best sensitivity and specificity was obtained using the Syber Green I technique since it is a reproducible test, easy to use and the cheapest one. TaqMan and Lux-primer assays provide good RT-PCR efficiency in relationship to the several extraction methods used, since labelled probe or primer request in these chemistry strategies, increases the cost of testing.

  14. A novel approach to quantitating leukemia fusion transcripts by qRT-PCR without the need for standard curves.

    PubMed

    Schumacher, Jonathan A; Scott Reading, N; Szankasi, Philippe; Matynia, Anna P; Kelley, Todd W

    2015-08-01

    Acute myeloid leukemia patients with recurrent cytogenetic abnormalities including inv(16);CBFB-MYH11 and t(15;17);PML-RARA may be assessed by monitoring the levels of the corresponding abnormal fusion transcripts by quantitative reverse transcription-PCR (qRT-PCR). Such testing is important for evaluating the response to therapy and for the detection of early relapse. Existing qRT-PCR methods are well established and in widespread use in clinical laboratories but they are laborious and require the generation of standard curves. Here, we describe a new method to quantitate fusion transcripts in acute myeloid leukemia by qRT-PCR without the need for standard curves. Our approach uses a plasmid calibrator containing both a fusion transcript sequence and a reference gene sequence, representing a perfect normalized copy number (fusion transcript copy number/reference gene transcript copy number; NCN) of 1.0. The NCN of patient specimens can be calculated relative to that of the single plasmid calibrator using experimentally derived PCR efficiency values. We compared the data obtained using the plasmid calibrator method to commercially available assays using standard curves and found that the results obtained by both methods are comparable over a broad range of values with similar sensitivities. Our method has the advantage of simplicity and is therefore lower in cost and may be less subject to errors that may be introduced during the generation of standard curves.

  15. Whole genome alignment based one-step real-time RT-PCR for universal detection of avian orthoreoviruses of chicken, pheasant and turkey origins.

    PubMed

    Tang, Yi; Lu, Huaguang

    2016-04-01

    Newly emerging avian orthoreovirus (ARV) variants have been continuously detected in Pennsylvania poultry since 2011. In this paper, we report our recent diagnostic assay development of one-step real-time RT-PCR (rRT-PCR) for the rapid and universal detection of all ARVs or reference strains of chicken, pheasant and turkey origins and six σC genotypes of the newly emerging field ARV variants in Pennsylvania (PA) poultry. Primers and probes for the rRT-PCR were designed from the conserved region of the M1 genome segment 5' end based on the whole-genome alignment of various ARV strains, including six field variants or novel strains obtained in PA poultry. The detection limit of the newly developed rRT-PCR for ARV was as low as 10 copies/reaction of viral RNA, and 10(0.50)-10(0.88) tissue culture infectious dose (TCID50)/100 μL of viruses. This new rRT-PCR detected all six σC genotypes from the 66 ARV field variant strains and reference strains tested in this study. There were no cross-reactions with other avian viruses. Reproducibility of the assay was confirmed by intra- and inter-assay tests with variability from 0.12% to 2.19%. Sensitivity and specificity of this new rRT-PCR for ARV were achieved at 100% and 88%, respectively, in comparison with virus isolation as the "gold standard" in testing poultry tissue specimen. PMID:26812128

  16. Whole genome alignment based one-step real-time RT-PCR for universal detection of avian orthoreoviruses of chicken, pheasant and turkey origins.

    PubMed

    Tang, Yi; Lu, Huaguang

    2016-04-01

    Newly emerging avian orthoreovirus (ARV) variants have been continuously detected in Pennsylvania poultry since 2011. In this paper, we report our recent diagnostic assay development of one-step real-time RT-PCR (rRT-PCR) for the rapid and universal detection of all ARVs or reference strains of chicken, pheasant and turkey origins and six σC genotypes of the newly emerging field ARV variants in Pennsylvania (PA) poultry. Primers and probes for the rRT-PCR were designed from the conserved region of the M1 genome segment 5' end based on the whole-genome alignment of various ARV strains, including six field variants or novel strains obtained in PA poultry. The detection limit of the newly developed rRT-PCR for ARV was as low as 10 copies/reaction of viral RNA, and 10(0.50)-10(0.88) tissue culture infectious dose (TCID50)/100 μL of viruses. This new rRT-PCR detected all six σC genotypes from the 66 ARV field variant strains and reference strains tested in this study. There were no cross-reactions with other avian viruses. Reproducibility of the assay was confirmed by intra- and inter-assay tests with variability from 0.12% to 2.19%. Sensitivity and specificity of this new rRT-PCR for ARV were achieved at 100% and 88%, respectively, in comparison with virus isolation as the "gold standard" in testing poultry tissue specimen.

  17. RT-PCR analysis of dystrophin mRNA in DND/BMD patients

    SciTech Connect

    Ciafaloni, E.; Silva, H.A.R. de; Roses, A.D.

    1994-09-01

    Duchenne and Becker muscular dystrophies (DMD, BMD) are X-linked recessive disorders caused by mutations in the dystrophin (dys) gene. The majority of these mutations are intragenic deletions of duplications routinely detected by Southern biots and multiplex PCR. The remainder are very likely, smaller mutations, mostly point-mutations. Detection of these mutations is very difficult due to the size and complexity of the dys gene. We applied RT-PCR to analyse the entire dys mRNA of three DMD patients with no detectable genomic defect. In two unrelated patients, a duplication of the 62 bp exon 2 was identified. This causes a frameshift sufficient to explain the DMD phenotype. In the third patient, who had congenital DMD and severe mental retardation, a complex pattern of aberrant splicing at the 3-prime exons 67-79 was observed. Sural nerve biopsy in this patient showed the complete absence of Dp116. PCR-SSCP studies are presently in progress to identify the mutations responsible for the aberrant splicing patterns.

  18. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral panel multiplex nucleic acid assay is a qualitative in vitro diagnostic device intended...

  19. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral panel multiplex nucleic acid assay is a qualitative in vitro diagnostic device intended...

  20. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral panel multiplex nucleic acid assay is a qualitative in vitro diagnostic device intended...

  1. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral panel multiplex nucleic acid assay is a qualitative in vitro diagnostic device intended...

  2. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral panel multiplex nucleic acid assay is a qualitative in vitro diagnostic device intended...

  3. Assessment of a novel multiplex real-time PCR assay for the detection of the CBPP agent Mycoplasma mycoides subsp. mycoides SC through experimental infection in cattle

    PubMed Central

    2011-01-01

    Background Mycoplasma mycoides subsp. mycoides SC is the pathogenic agent of contagious bovine pleuropneumonia (CBPP), the most important disease of cattle in Africa causing significant economic losses. The re-emergence of CBPP in Europe in the 1980s and 1990s illustrates that it is still a threat also to countries that have successfully eradicated the disease in the past. Nowadays, probe-based real-time PCR techniques are among the most advanced tools for a reliable identification and a sensitive detection of many pathogens, but only few protocols have been published so far for CBPP diagnosis. Therefore we developed a novel TaqMan®-based real-time PCR assay comprising the amplification of two independent targets (MSC_0136 and MSC_1046) and an internal exogenous amplification control in a multiplex reaction and evaluated its diagnostic performance with clinical samples. Results The assays detected 49 MmmSC strains from diverse temporal and geographical origin, but did not amplify DNA from 82 isolates of 20 non-target species confirming a specificity of 100%. The detection limit was determined to be 10 fg DNA per reaction for the MSC_0136 assay and 100 fg per reaction for the MSC_1046 assay corresponding to 8 and 80 genome equivalents, respectively. The diagnostic performance of the assay was evaluated with clinical samples from 19 experimentally infected cattle and from 20 cattle without CBPP and compared to those of cultivation and a conventional PCR protocol. The two rt-PCR tests proved to be the most sensitive methods and identified all 19 infected animals. The different sample types used were not equally suitable for MmmSC detection. While 94.7% of lung samples from the infected cohort were positively tested in the MSC_0136 assay, only 81% of pulmonal lymph nodes, 31% of mediastinal lymph nodes and 25% of pleural fluid samples gave a positive result. Conclusions The developed multiplex rt-PCR assay is recommended as an efficient tool for rapid confirmation of

  4. Development of a real-time RT-PCR method for detection of porcine rubulavirus (PoRV-LPMV).

    PubMed

    Cuevas-Romero, Sandra; Blomström, Anne-Lie; Alvarado, Arcelia; Hernández-Jauregui, Pablo; Rivera-Benitez, Francisco; Ramírez-Mendoza, Humberto; Berg, Mikael

    2013-04-01

    In order to provide a rapid and sensitive method for detection of the Porcine rubulavirus La Piedad-Michoacan-Mexico Virus (PoRV-LPMV), we have developed a specific real-time reverse transcriptase polymerase chain reaction assay. The detection of PoRV-LPMV, represents a diagnostic challenge due to the viral RNA being present in very small amounts in tissue samples. In this study, a TaqMan(®) real-time PCR assay was designed based on the phosphoprotein gene of PoRV-LPMV, to allow specific amplification and detection of viral RNA in clinical samples. Assay conditions for the primers and probe were optimized using infected PK15 cells and ten-fold serial dilutions of a plasmid containing the whole P-gene. The sensitivity of the developed TaqMan(®) assay was approximately 10 plasmid copies per reaction, and was shown to be 1000 fold better than a conventional nested RT-PCR. The performance of this real-time RT-PCR method enables studies of various aspects of PoRV-LPMV infection. Finally, the assay detects all current known variants of the virus.

  5. A universal TaqMan-based RT-PCR protocol for cost-efficient detection of small noncoding RNA

    PubMed Central

    Jung, Ulrike; Jiang, Xiaoou; Kaufmann, Stefan H.E.; Patzel, Volker

    2013-01-01

    Several methods for the detection of RNA have been developed over time. For small RNA detection, a stem–loop reverse primer-based protocol relying on TaqMan RT-PCR has been described. This protocol requires an individual specific TaqMan probe for each target RNA and, hence, is highly cost-intensive for experiments with small sample sizes or large numbers of different samples. We describe a universal TaqMan-based probe protocol which can be used to detect any target sequence and demonstrate its applicability for the detection of endogenous as well as artificial eukaryotic and bacterial small RNAs. While the specific and the universal probe-based protocol showed the same sensitivity, the absolute sensitivity of detection was found to be more than 100-fold lower for both than previously reported. In subsequent experiments, we found previously unknown limitations intrinsic to the method affecting its feasibility in determination of mature template RISC incorporation as well as in multiplexing. Both protocols were equally specific in discriminating between correct and incorrect small RNA targets or between mature miRNA and its unprocessed RNA precursor, indicating the stem–loop RT-primer, but not the TaqMan probe, triggers target specificity. The presented universal TaqMan-based RT-PCR protocol represents a cost-efficient method for the detection of small RNAs. PMID:24149841

  6. Field-based multiplex and quantitative assay platforms for diagnostics

    NASA Astrophysics Data System (ADS)

    Venkatasubbarao, Srivatsa; Dixon, C. Edward; Chipman, Russell; Scherer, Axel; Beshay, Manal; Kempen, Lothar U.; Chandra Sekhar, Jai Ganesh; Yan, Hong; Puccio, Ava; Okonkwo, David; McClain, Stephen; Gilbert, Noah; Vyawahare, Saurabh

    2011-06-01

    The U.S. military has a continued interest in the development of handheld, field-usable sensors and test kits for a variety of diagnostic applications, such as traumatic brain injury (TBI) and infectious diseases. Field-use presents unique challenges for biosensor design, both for the readout unit and for the biological assay platform. We have developed robust biosensor devices that offer ultra-high sensitivity and also meet field-use needs. The systems under development include a multiplexed quantitative lateral flow test strip for TBI diagnostics, a field test kit for the diagnosis of pathogens endemic to the Middle East, and a microfluidic assay platform with a label-free reader for performing complex biological automated assays in the field.

  7. Evaluation of Four Different Systems for Extraction of RNA from Stool Suspensions Using MS-2 Coliphage as an Exogenous Control for RT-PCR Inhibition

    PubMed Central

    Shulman, Lester M.; Hindiyeh, Musa; Muhsen, Khitam; Cohen, Dani; Mendelson, Ella; Sofer, Danit

    2012-01-01

    Knowing when, and to what extent co-extracted inhibitors interfere with molecular RNA diagnostic assays is of utmost importance. The QIAamp Viral RNA Mini Kit (A); MagNA Pure LC2.0 Automatic extractor (B); KingFisher (C); and NucliSENS EasyMag (D) RNA extraction systems were evaluated for extraction efficiency and co-purification of inhibitors from stool suspensions. Real-Time Reverse Transcriptase Polymerase Chain Reaction (rRT-PCR) of MS-2 coliphage spiked into each system’s lysis buffer served as an external control for both. Cycle thresholds (Cts) of the MS2 were determined for RNA extracted from stool suspensions containing unknown (n = 93) or varying amounts of inhibitors (n = 92). Stool suspensions from the latter group were also used to determine whether MS-2 and enterovirus rRT-PCR inhibitions were correlated. Specifically 23 RNA extracts from stool suspensions were spiked with enterovirus RNA after extraction and 13 of these stool suspension were spiked with intact enterovirus before extraction. MS2 rRT-PCR inhibition varied for RNAs extracted by the different systems. Inhibition was noted in 12 (13.0%), 26 (28.3%), 7 (7.6%), and 7 (7.6%) of the first 93 RNA extracts, and 58 (63.0%), 55 (59.8%), 37 (40.2%) and 30 (32.6%) of the second 92 extracts for A, B, C, and D, respectively. Furthermore, enterovirus rRT-PCR inhibition correlated with MS2 rRT-PCR inhibition for added enterovirus RNA or virus particles. In conclusion, rRT-PCR for MS-2 RNA is a good predictor of inhibition of enterovirus RNA extracted from stool suspensions. EasyMag performed the best, however all four extraction methods were suitable provided that external controls identified problematic samples. PMID:22815706

  8. Multiplex real-time PCR assay for Legionella species.

    PubMed

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies.

  9. Development of an indirect ELISA and immunocapture rt-PCR for Lily virus detection.

    PubMed

    Kim, Jin Ha; Yoo, Ha Na; Bae, Eun Hye; Jung, Yong-Tae

    2012-12-01

    Multiple viruses such as Lily symptomless virus (LSV), Lily mottle virus (LMoV), and cucumber mosaic virus (CMV) are the most prevalent viruses infecting lilies in Korea. Leaf samples and bulbs showing characteristic symptoms of virus infection were collected from Gangwon, Chungnam, and Jeju provinces of Korea in 2008-2011. Coat protein (CP) genes of LSV and LMoV were amplified from collected samples by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into a pET21d(+) expression vector to generate recombinant CPs. The resulting carboxy-terminal His-tagged CPs were expressed in Escherichia coli strain BL21(DE3) by isopropyl-1-thio- beta-D-galactoside induction. The recombinant proteins were purified using Ni-NTA agarose beads, and the purified proteins were used as an immunogen to produce polyclonal antibodies in rabbits. The resulting polyclonal antisera recognized specifically LSV and LMoV from infected plant tissues in Western blotting assays. Indirect enzyme-linked immunosorbent assay and immunocapture RTPCR using these polyclonal antisera were developed for the sensitive, efficient, economic, and rapid detection of Lily viruses. These results suggest that large-scale bulb tests and economic detection of Lily viruses in epidemiological studies can be performed routinely using these polyclonal antisera.

  10. Ethidium monoazide does not inhibit RT-PCR amplification of nonviable avian influenza RNA.

    PubMed

    Graiver, David A; Saunders, Samuel E; Topliff, Christina L; Kelling, Clayton L; Bartelt-Hunt, Shannon L

    2010-03-01

    A critical obstacle to using PCR to quantify viral titers is the distinguishment of viable and nonviable genomic material. Pretreatments of ethidium monoazide (EMA) have been effective in preventing PCR amplification of DNA from nonviable bacteria. To test whether an EMA pretreatment could be used with RT-PCR to quantify viable RNA virions, avian influenza virus (AIV) survival was measured in water through 28d using cell culture titration and real-time RT-PCR with or without EMA pretreatment. Cell culture titration yielded significantly lower titers than both RT-PCR procedures, and there was no significant difference between RT-PCR results with or without EMA. Ineffective binding of EMA to AIV RNA may have allowed nonviable AIV RNA to amplify. Furthermore, since AIV inactivation may take place by means other than membrane disruption, any pretreatment distinguishing viable and nonviable AIV virions by membrane integrity may not be practical.

  11. Simultaneous detection of eight swine reproductive and respiratory pathogens using a novel GeXP analyser-based multiplex PCR assay.

    PubMed

    Zhang, Minxiu; Xie, Zhixun; Xie, Liji; Deng, Xianwen; Xie, Zhiqin; Luo, Sisi; Liu, Jiabo; Pang, Yaoshan; Khan, Mazhar I

    2015-11-01

    A new high-throughput GenomeLab Gene Expression Profiler (GeXP) analyser-based multiplex PCR assay was developed for the detection of eight reproductive and respiratory pathogens in swine. The reproductive and respiratory pathogens include North American porcine reproductive and respiratory syndrome virus (PRRSV-NA), classical swine fever virus (CSFV), porcine circovirus 2 (PCV-2), swine influenza virus (SIV) (including H1 and H3 subtypes), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV). Nine pairs of specific chimeric primers were designed and used to initiate PCRs, and one pair of universal primers was used for subsequent PCR cycles. The specificity of the GeXP assay was examined using positive controls for each virus. The sensitivity was evaluated using serial ten-fold dilutions of in vitro-transcribed RNA from all of the RNA viruses and plasmids from DNA viruses. The GeXP assay was further evaluated using 114 clinical specimens and was compared with real-time PCR/single RT-PCR methods. The specificity of the GeXP assay for each pathogen was examined using single cDNA/DNA template. Specific amplification peaks of the reproductive and respiratory pathogens were observed on the GeXP analyser. The minimum copies per reaction detected for each virus by the GeXP assay were as follows: 1000 copies/μl for PRV; 100 copies/μl for CSFV, JEV, PCV-2 and PPV; and 10 copies/μl for SIV-H1, SIV-H3 and PRRSV-NA. Analysis of 114 clinical samples using the GeXP assay demonstrated that the GeXP assay had comparable detection to real-time PCR/single RT-PCR. This study demonstrated that the GeXP assay is a new method with high sensitivity and specificity for the identification of these swine reproductive and respiratory pathogens. The GeXP assay may be adopted for molecular epidemiological surveys of these reproductive and respiratory pathogens in swine populations. PMID:26259690

  12. Development of a quantitative real-time RT-PCR for kinetic analysis of immediate-early transcripts of rat cytomegalovirus.

    PubMed

    Loh, H S; Mohd-Azmi, M L

    2009-01-01

    One-step real-time RT-PCR assay was developed for quantification of the immediate-early (IE), namely IE1 and IE2 transcripts of Rat cytomegalovirus (RCMV), strain ALL-03 in rat embryonic fibroblast cells (REF). This in-house SYBR Green I based RT-PCR was shown to have higher amplification efficiency and detection limit as compared to a commercially available real-time RT-PCR kit in quantifying these two transcripts. The quantification histogram revealed the divergence of transcription activities of the two IE genes. The IE1 transcript had a concentration peak at 7 hrs post infection (p.i.), whereas IE2 transcript at 20 hrs p.i. Regulation of IE expression is critical for determination, whether the infection is going to be abortive, lytic or latent. Therefore, this in-house developed quantitative RT-PCR assay offers an alternative for diagnosis and monitoring of the acute cytomegalovirus (CMV) infection directed at IE transcript detection.

  13. Diagnosis of hand, foot, and mouth disease caused by EV71 and other enteroviruses by a one-step, single tube, duplex RT-PCR.

    PubMed

    Jiang, Bingfu; Zhang, Jianhua; You, Xianhui; Dong, Chen; Cheng, Xianfeng; Dai, Xing; Meng, Jihong

    2012-11-01

    Hand, foot, and mouth disease (HFMD) is caused mainly by enterovirus 71 (EV71) and other enteroviruses (EVs) such as Coxsackie A16 in China. EV71 infection can lead to severe clinical manifestations and even death. Other EVs, however, generally cause mild symptoms. Thus, early and accurate distinction of EV71 from other EVs for HFMD will offer significant benefits. A one-step, single tube, duplex RT-PCR assay is described in the present study to detect simultaneously EV71 and other EVs. The primers used for the duplex RT-PCR underwent screening and optimization. The detection threshold was 0.001 TCID(50)/ml for EV71 and 0.01 TCID(50)/ml for other EVs. The positive rate of enterovirus detection in 165 clinical samples reached 68.5%, including 46.1% for EV71 and 22.4% for other EVs. Of all the severe HFMD cases, EV71 was responsible for 85.3% cases. The positive rate of EV71 fell markedly by day 8 after onset. In addition, sequencing of EV71 specific amplicons from duplex RT-PCR revealed that C4a was the predominant subgenotype of EV71 circulating in Nanjing, China. The accuracy and reliability of the assay suggest strongly that the one-step, single tube, duplex RT-PCR will be useful for early diagnosis and monitoring of EV71 and other EV infections.

  14. Cytokine mRNA quantification in histologically normal canine duodenal mucosa by real-time RT-PCR.

    PubMed

    Peters, I R; Helps, C R; Calvert, E L; Hall, E J; Day, M J

    2005-01-10

    CD4(+) T helper cells are important for the regulation of immune responses in the intestinal mucosa and they exert their effects through the secretion of pro-inflammatory and immunomodulatory cytokines. Human patients with inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis have alterations in the normal intestinal cytokine profile. These cytokine abnormalities have been shown at both the protein and messenger RNA (mRNA) level. The role that mucosal cytokines play in the pathogenesis of canine IBD has only been investigated using semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis of gut tissue, as cytokine antisera are not available for this species. Real-time RT-PCR has been recognised to be a more accurate and sensitive method of quantifying mRNA transcripts, so in this study TaqMan real-time RT-PCR assays for the quantification of mRNA encoding IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-18, IFN-gamma, TNF-alpha and TGF-beta in canine intestinal mucosa were developed. The amount of these templates was quantified in normal canine duodenal mucosa (n = 8). IL-18, TGF-beta and TNF-alpha were found to be the most abundant transcripts, with IL-10 and IFN-gamma present at levels approximately 10-fold less. IL-2, IL-4, IL-5, IL-6 and IL-12 were the least abundant templates, with some RNA samples having no detectable mRNA copies. The methods developed in this study will form the basis of further work investigating the expression of mRNA encoding cytokines in mucosa from dogs with chronic enteropathies. In addition, these real-time PCR assays can also be used for the quantification of canine cytokine mRNA in other diseases.

  15. Multiple RT-PCR markers for the detection of circulating tumour cells of metastatic canine mammary tumours.

    PubMed

    da Costa, A; Kohn, B; Gruber, A D; Klopfleisch, R

    2013-04-01

    In humans, detection of circulating tumour cells (CTCs) using nucleic acid-based methods such as reverse transcription polymerase chain reaction (RT-PCR) has proven to be of prognostic relevance. However, similar procedures are still lacking in veterinary oncology. To assess the correlation of CTC markers with the metastatic potential of canine mammary tumours, 120 peripheral blood samples from bitches with mammary carcinomas with (group 1) and without (group 2) histological evidence of vascular invasion and/or presence of lymph node metastases and mammary adenomas (group 3) were analyzed. Blood samples were collected in EDTA tubes and RNA was extracted within 48 h. Subsequently, the samples were tested by RT-PCR for a panel of seven CTC mRNA markers. CRYAB was the most sensitive single marker with a sensitivity of 35% and also the most specific marker with a specificity of 100% to detect group 1 blood samples. A multimarker assay combining four genes enhanced the sensitivity up to 77.5%, but decreased the specificity to 80%. CRYAB appeared to be highly specific but only moderately sensitive at detecting blood samples from dogs with metastatic tumours and detection significantly correlated with vascular invasion of primary mammary tumours. However, a multimarker assay of four genes significantly enhanced the sensitivity of the assay and is therefore preferable for CTC detection. PMID:23036177

  16. Multiplexed Dosing Assays by Digitally Definable Hydrogel Volumes.

    PubMed

    Faralli, Adele; Melander, Fredrik; Larsen, Esben Kjaer Unmack; Chernyy, Sergey; Andresen, Thomas L; Larsen, Niels B

    2016-01-21

    Stable and low-cost multiplexed drug sensitivity assays using small volumes of cells or tissue are in demand for personalized medicine, including patient-specific combination chemotherapy. Spatially defined projected light photopolymerization of hydrogels with embedded active compounds is introduced as a flexible and cost-efficient method for producing multiplexed dosing assays. The high spatial resolution of light projector technology defines multiple compound doses by the volume of individual compound-embedded hydrogel segments. Quantitative dosing of multiple proteins with a dynamic range of 1-2 orders of magnitude is demonstrated using fluorescently labeled albumins. The hydrogel matrix results from photopolymerization of low-cost poly(ethylene glycol) diacrylates (PEGDA), and tuning of the PEGDA composition enables fast complete dosing of all tested species. Dosing of hydrophilic and hydrophobic compounds is demonstrated using two first-line chemotherapy regimens combining oxaliplatin, SN-38, 5-fluorouracil, and folinic acid, with each compound being dosed from a separate light-defined hydrogel segment. Cytotoxicity studies using a colorectal cancer cell line show equivalent effects of dissolved and released compounds. Further control of the dosing process is demonstrated by liposomal encapsulation of oxaliplatin, stable embedding of the liposomes in hydrogels for more than 3 months, and heat-triggered complete release of the loaded oxaliplatin. PMID:26619161

  17. Fluorescence-based RT PCR analysis: determination of the ratio of soluble to membrane-bound forms of Fc gamma RIIA transcripts in hematopoietic cell lines.

    PubMed

    Keller, M A; Cassel, D L; Rappaport, E F; McKenzie, S E; Schwartz, E; Surrey, S

    1993-08-01

    We have developed a fluorescence-based RT PCR assay for determination of the ratio of two alternatively spliced transcripts in different cell types. Fluorescence detection, by an automated DNA sequencer, allows enhanced sensitivity and ease of data processing. PCR products are fluorescently tagged using a dye-labeled oligonucleotide primer during the PCR reaction. Assay conditions were first defined so that fluorescence intensity of the PCR products was linear with respect to input RNA and exponential relative to PCR cycle number. Sensitivity and reproducibility of detection were evaluated with serial dilutions of RT PCR reactions. We have applied this assay to an analysis of the lineage-specific expression of two human Fc gamma RIIA transcripts, Fc gamma RIIa1 and Fc gamma RIIa2, in different hematopoietic cell lines. Previously, we noted that when standard RT PCR conditions are used with primers that bracket the TM exon, the pattern of expression of these transcripts as assessed by ethidium bromide staining of agarose gels varied in different hematopoietic cell lineages. Using the fluorescence-based RT PCR method, we now confirm our previous findings and quantitate transcript ratios (Fc gamma RIIa2/Fc gamma RIIa1) in several hematopoietic cell lines. The ratio varies from 0.70 (41% Fc gamma RIIa2) in the erythroleukemic cell line HEL, to 0.14 (12% Fc gamma RIIa2) in the monocytic cell line U937, to 0.07 (6% Fc gamma RIIa2) in the multipotential cell line K562. This fluorescent RT PCR method provides a general approach to quantitating mRNA levels and ratios of PCR products in other gene systems.

  18. Microdroplet Sandwich Real-Time RT-PCR for Detection of Pandemic and Seasonal Influenza Subtypes

    PubMed Central

    Angione, Stephanie L.; Inde, Zintis; Beck, Christina M.; Artenstein, Andrew W.; Opal, Steven M.; Tripathi, Anubhav

    2013-01-01

    As demonstrated by the recent 2012/2013 flu epidemic, the continual emergence of new viral strains highlights the need for accurate medical diagnostics in multiple community settings. If rapid, robust, and sensitive diagnostics for influenza subtyping were available, it would help identify epidemics, facilitate appropriate antiviral usage, decrease inappropriate antibiotic usage, and eliminate the extra cost of unnecessary laboratory testing and treatment. Here, we describe a droplet sandwich platform that can detect influenza subtypes using real-time reverse-transcription polymerase chain reaction (rtRT-PCR). Using clinical samples collected during the 2010/11 season, we effectively differentiate between H1N1p (swine pandemic), H1N1s (seasonal), and H3N2 with an overall assay sensitivity was 96%, with 100% specificity for each subtype. Additionally, we demonstrate the ability to detect viral loads as low as 104 copies/mL, which is two orders of magnitude lower than viral loads in typical infected patients. This platform performs diagnostics in a miniaturized format without sacrificing any sensitivity, and can thus be easily developed into devices which are ideal for small clinics and pharmacies. PMID:24066051

  19. Quantitative RT-PCR methods for evaluating toxicant-induced effects on steroidogenesis using the H295R cell line.

    PubMed

    Zhang, Xiaowei; Yu, Richard M K; Jones, Paul D; Lam, Gabriel K W; Newsted, John L; Gracia, Tannia; Hecker, Markus; Hilscherova, Klara; Sanderson, Thomas; Wu, Rudolf S S; Giesy, John P

    2005-04-15

    Gene expression profiles show considerable promise for the evaluation of the toxic potential of environmental contaminants. For example, any alterations in the pathways of steroid synthesis or breakdown have the potential to Cause endocrine disruption. Therefore monitoring these pathways can provide information relative to a chemical's ability to impact endocrine function. One approach to monitoring these pathways has been to use a human adrenocortical carcinoma cell line (H295R) that expresses all the key enzymes necessary for steroidogenesis. In this study we have further developed these methods using accurate and specific quantification methods utilizing molecular beacon-based quantitative RT-PCR (Q-RT-PCR). The assay system was used to analyze the expression patterns of 11 steroidogenic genes in H295R cells. The expression of gene transcripts was measured using a real-time PCR system and quantified based on both a standard curve method using a dilution series of RNA standards and a comparative Ct method. To validate the optimized method, cells were exposed to specific and nonspecific model compounds (inducers and inhibitors of various steroidogenic enzymes) for gene expression profiling. Similar gene expression profiles were exhibited by cells treated with chemicals acting through common mechanisms of action. Overall, our findings demonstrated that the present assay can facilitate the development of compound-specific response profiles, and will provide a sensitive and integrative screen for the effects of chemicals on steroidogenesis.

  20. Development of a strand-specific real-time qRT-PCR for the accurate detection and quantitation of West Nile virus RNA.

    PubMed

    Lim, Stephanie M; Koraka, Penelope; Osterhaus, Albert D M E; Martina, Byron E E

    2013-12-01

    Studying the tropism and replication kinetics of West Nile virus (WNV) in different cell types in vitro and in tissues in animal models is important for understanding its pathogenesis. As detection of the negative strand viral RNA is a more reliable indicator of active replication for single-stranded positive-sense RNA viruses, the specificity of qRT-PCR assays currently used for the detection of WNV positive and negative strand RNA was reassessed. It was shown that self- and falsely-primed cDNA was generated during the reverse transcription step in an assay employing unmodified primers and several reverse transcriptases. As a result, a qRT-PCR assay using the thermostable rTth in combination with tagged primers was developed, which greatly improved strand specificity by circumventing the events of self- and false-priming. The reliability of the assay was then addressed in vitro using BV-2 microglia cells as well as in C57/BL6 mice. It was possible to follow the kinetics of positive and negative-strand RNA synthesis both in vitro and in vivo; however, the sensitivity of the assay will need to be optimized in order to detect and quantify negative-strand RNA synthesis in the very early stages of infection. Overall, the strand-specific qRT-PCR assay developed in this study is an effective tool to quantify WNV RNA, reassess viral replication, and study tropism of WNV in the context of WNV pathogenesis.

  1. Detection of adenoviruses and enteroviruses in tap water and river water by reverse transcription multiplex PCR.

    PubMed

    Cho, H B; Lee, S H; Cho, J C; Kim, S J

    2000-05-01

    A reverse transcription (RT) multiplex polymerase chain reaction (PCR) assay was developed to simultaneously detect adenoviruses and enteroviruses, both of which have attracted much attention as molecular indices of viral pollution in environmental samples. The method involves a reverse transcription step, followed by a multiplex nested PCR in which the combination of primers amplifies cDNA from enteroviruses and adenoviruses. The sensitivity of this assay was found to be similar to that of each monoplex PCR or RT-PCR assay, and to be consistent regardless of relative concentrations of adenoviruses and enteroviruses. To assess suitability and environmental application of the RT multiplex PCR assay, a total of 12 river water samples and 4 tap water samples were analyzed by RT multiplex PCR, each monoplex PCR or RT-PCR, and cell culture assay on the Buffalo Green Monkey kidney cell line. The sensitivity of the RT multiplex PCR was also found to be similar to that of each monoplex PCR in environmental samples. This suggests the RT multiplex PCR assay could be applied to the routine monitoring of viral pollution in environmental waters.

  2. Molecular analysis of dolphin morbillivirus: A new sensitive detection method based on nested RT-PCR.

    PubMed

    Centelleghe, Cinzia; Beffagna, Giorgia; Zanetti, Rossella; Zappulli, Valentina; Di Guardo, Giovanni; Mazzariol, Sandro

    2016-09-01

    Cetacean Morbillivirus (CeMV) has been identified as the most pathogenic virus for cetaceans. Over the past three decades, this RNA virus has caused several outbreaks of lethal disease in odontocetes and mysticetes worldwide. Isolation and identification of CeMV RNA is very challenging in whales because of the poor preservation status frequently shown by tissues from stranded animals. Nested reverse transcription polymerase chain reaction (nested RT-PCR) is used instead of conventional RT-PCR when it is necessary to increase the sensitivity and the specificity of the reaction. This study describes a new nested RT-PCR technique useful to amplify small amounts of the cDNA copy of Cetacean morbillivirus (CeMV) when it is present in scant quantity in whales' biological specimens. This technique was used to analyze different tissues (lung, brain, spleen and other lymphoid tissues) from one under human care seal and seven cetaceans stranded along the Italian coastline between October 2011 and September 2015. A well-characterized, 200 base pair (bp) fragment of the dolphin Morbillivirus (DMV) haemagglutinin (H) gene, obtained by nested RT-PCR, was sequenced and used to confirm DMV positivity in all the eight marine mammals under study. In conclusion, this nested RT-PCR protocol can represent a sensitive detection method to identify CeMV-positive, poorly preserved tissue samples. Furthermore, this is also a rather inexpensive molecular technique, relatively easy to apply. PMID:27220282

  3. Identification of nasal blood by real-time RT-PCR.

    PubMed

    Sakurada, Koichi; Akutsu, Tomoko; Watanabe, Ken; Yoshino, Mineo

    2012-07-01

    A new approach for the identification of body fluid stains by comparing specific mRNA expression levels has been extensively studied in recent years. Here, we examine whether nasal blood, which is regarded as one of the most difficult types of blood to identify, can be identified by comparing mRNA expression levels of target genes specific to saliva, nasal secretion, and blood. The saliva-specific statherin gene (STATH) was found to be expressed at high levels in not only saliva (dCt value: 1.32±1.39, n=5), but also nasal secretions (dCt value: 0.90±1.14, n=5), while the histatin gene (HTN3) was only expressed at high levels in saliva (dCt value: 1.08±2.35, n=5). We also confirmed that the hemoglobin-beta gene (HBB) showed high expression levels in blood (dCt value: -9.51±0.40, n=5). Four nasal blood stains were found to highly express STATH (dCt value: 5.65±3.98) and HBB (dCt value: -8.79±1.67) but not HTN3, suggesting that the stain samples contained both nasal secretions and blood and can therefore be identified as nasal blood stains. Although menstrual blood showed the same expression pattern as nasal blood, the menstrual blood-specific protein matrix metallopeptidase 7 (MMP7) was not expressed in all nasal blood stain samples. Therefore, its expression levels could be used to discriminate between nasal and menstrual blood. In conclusion, real-time RT-PCR was able to identify nasal blood, although the stability of gene expression in nasal blood stains was low over time, suggesting that this assay may not be effective for older stains. Future work should examine the usefulness of this assay under various environmental conditions.

  4. Comparative evaluation of 'TaqMan' RT-PCR and RT-PCR ELISA for immunological monitoring of renal transplant recipients.

    PubMed

    Gibbs, Paul J; Tan, Lam Chin; Sadek, Sami A; Howell, W Martin

    2003-01-01

    By sequentially monitoring cytokine gene expression (using RT-PCR ELISA technology) in peripheral blood cells of renal transplant recipients in the early post-operatively period we have shown that expression patterns correlate with clinical events, namely acute allograft rejection. This strategy may have the potential of predicting acute rejection prior to clinical detection. Unfortunately, the technique used was time consuming and only semi-quantitative and, therefore, not suitable for clinical application. In this study, we have sought to confirm the results of the early work using a real time quantitative RT-PCR technique ('TaqMan'), which may be applicable in the clinical laboratory. 'TaqMan' primers and probes were designed for Interleukin (IL)-4 and IL-10 using Primer Express software. Cytokine gene expression for both cytokines was re-measured in stored cDNA samples from 27 non-rejectors and 14 patients experiencing an episode of biopsy proven acute rejection. Compared to pre-transplant levels, IL-4 gene expression fell significantly on post-operative days 2 and 7 before returning to baseline values by day 14 in the non-rejectors. In the rejectors, the initial significant fall was again seen, but with an earlier return to pre-transplant levels at the time of rejection diagnosis. This was followed by a further significant fall in levels 48 h after the initiation of anti-rejection therapy. These different patterns for rejectors and non-rejectors were seen using both techniques. For IL-10, gene expression increased significantly following transplantation throughout the study period when compared to baseline values. This pattern was seen using both techniques. In the rejectors, there were different patterns seen depending on the technique used. When using RT-PCR ELISA, the initial rise was again seen followed by a return to baseline values at the time of rejection diagnosis followed by a further significant rise in gene expression after the start of anti

  5. A simplified strategy for sensitive detection of Rose rosette virus compatible with three RT-PCR chemistries.

    PubMed

    Dobhal, Shefali; Olson, Jennifer D; Arif, Mohammad; Garcia Suarez, Johnny A; Ochoa-Corona, Francisco M

    2016-06-01

    Rose rosette disease is a disorder associated with infection by Rose rosette virus (RRV), a pathogen of roses that causes devastating effects on most garden cultivated varieties, and the wild invasive rose especially Rosa multiflora. Reliable and sensitive detection of this disease in early phases is needed to implement proper control measures. This study assesses a single primer-set based detection method for RRV and demonstrates its application in three different chemistries: Endpoint RT-PCR, TaqMan-quantitative RT-PCR (RT-qPCR) and SYBR Green RT-qPCR with High Resolution Melting analyses. A primer set (RRV2F/2R) was designed from consensus sequences of the nucleocapsid protein gene p3 located in the RNA 3 region of RRV. The specificity of primer set RRV2F/2R was validated in silico against published GenBank sequences and in-vitro against infected plant samples and an exclusivity panel of near-neighbor and other viruses that commonly infect Rosa spp. The developed assay is sensitive with a detection limit of 1fg from infected plant tissue. Thirty rose samples from 8 different states of the United States were tested using the developed methods. The developed methods are sensitive and reliable, and can be used by diagnostic laboratories for routine testing and disease management decisions. PMID:26850142

  6. Identification of the valid reference genes for quantitative RT-PCR in annual ryegrass (Lolium multiflorum) under salt stress.

    PubMed

    Wang, Xia; Ma, Xiao; Huang, Linkai; Zhang, Xinquan

    2015-01-01

    Annual ryegrass (Lolium multiflorum) is a cool-season annual grass cultivated worldwide for its high yield and quality. With the areas of saline soil increasing, investigation of the molecular mechanisms of annual ryegrass tolerance under salt stress has become a significant topic. qRT-PCR has been a predominant assay for determination of the gene expression, in which selecting a valid internal reference gene is a crucial step. The objective of present study was to evaluate and identify suitable reference genes for qRT-PCR in annual ryegrass under salt stress. The results calculated by RefFinder indicated that eEF1A(s) was the most stable reference gene in leaves, whereas EF1-a was the least stable; meanwhile, TBP-1 was the most optimal in roots and in all samples, and the eIF-5A shouldn't be utilized for normalization of the gene expression. eEF1A(s) is more suitable than TBP-1 as reference gene in leaves when verified with P5CS1 and Cyt-Cu/Zn SOD genes. We should choose optimal reference genes in specific tissues instead of the most stable one selected from different conditions and tissues.

  7. Inactivation conditions for human norovirus measured by an in situ capture-qRT-PCR method.

    PubMed

    Wang, Dapeng; Tian, Peng

    2014-02-17

    Human norovirus (HuNoV) is a leading cause of foodborne gastroenteritis. Unfortunately, the inactivation parameters for HuNoV in clinical, food and environmental samples have not been established. Due to the inability to cultivate HuNoV in vitro, quantitative real-time RT-PCR (qRT-PCR) is widely-used for detecting HuNoVs. However, qRT-PCR does not indicate viral infectivity. Our method employs histo-blood group antigens (HBGAs) as viral receptors/co-receptors and container-affixed capture agents to concentrate HuNoVs. The captured viruses are denatured and its genome is amplified in the same module by in situ capture qRT-PCR (ISC-qRT-PCR). Greater than three log10 reduction in the receptor-captured viral genomic signal (RCVGS) was observed when HuNoV was treated by heat at 72 °C for 4 min, by chlorine at a final concentration of 16 ppm in less than 1 min, and by UV irradiation at 1J/cm². Treatment of low-titer HuNoV (<10³ copies/sample) with 70% ethanol for 20 s reduced the RCVGS of HuNoV by two log10. However, ethanol had a limited effect on high-titer samples of HuNoV (>10³ copies/sample). The results demonstrate that ISC-qRT-PCR method could be used as an alternative method to measure encapsidated viral RNA and indirectly indicate the inactivation status of HuNoV caused by physical treatment such as heat, and chemical treatment such as chlorine, that damage the ability of the virus to bind to its receptor.

  8. Evaluation of two singleplex reverse transcription-Insulated isothermal PCR tests and a duplex real-time RT-PCR test for the detection of porcine epidemic diarrhea virus and porcine deltacoronavirus.

    PubMed

    Zhang, Jianqiang; Tsai, Yun-Long; Lee, Pei-Yu Alison; Chen, Qi; Zhang, Yan; Chiang, Cheng-Jen; Shen, Yu-Han; Li, Fu-Chun; Chang, Hsiao-Fen Grace; Gauger, Phillip C; Harmon, Karen M; Wang, Hwa-Tang Thomas

    2016-08-01

    Recent outbreaks of porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) in multiple countries have caused significant economic losses and remain a serious challenge to the swine industry. Rapid diagnosis is critical for the implementation of efficient control strategies before and during PEDV and PDCoV outbreaks. Insulated isothermal PCR (iiPCR) on the portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, a singleplex PEDV RT-iiPCR, a singleplex PDCoV RT-iiPCR, and a duplex PEDV/PDCoV real-time RT-PCR (rRT-PCR) commercial reagents targeting the M gene were compared to an N gene-based PEDV rRT-PCR and an M gene-based PDCoV rRT-PCR that were previously published and used as reference PCRs. All PCR assays were highly specific and did not cross react with other porcine enteric pathogens. Analytical sensitivities of the PEDV RT-iiPCR, PDCoV RT-iiPCR and duplex PEDV/PDCoV rRT-PCR were determined using in vitro transcribed RNA as well as viral RNA extracted from ten-fold serial dilutions of PEDV and PDCoV cell culture isolates. Performance of each PCR assay was further evaluated using 170 clinical samples (86 fecal swabs, 24 feces, 19 intestines, and 41 oral fluids). Compared to the reference PEDV rRT-PCR, the sensitivity, specificity and accuracy of the PEDV RT-iiPCR were 97.73%, 98.78%, and 98.24%, respectively, and those of the duplex PEDV/PDCoV rRT-PCR were 98.86%, 96.34%, and 97.65%, respectively. Compared to the reference PDCoV rRT-PCR, the sensitivity, specificity and accuracy of the PDCoV RT-iiPCR were 100%, 100%, and 100%, respectively, and those of the PEDV/PDCoV duplex rRT-PCR were 96.34%, 100%, and 98.24%, respectively. Overall, all three new PCR assays were comparable to the reference rRT-PCRs for detection of PEDV and/or PDCoV. The PEDV and PDCoV RT-iiPCRs are potentially useful tools for on-site detection and the duplex PEDV/PDCoV rRT-PCR provides a convenient method to simultaneously detect

  9. Evaluation of two singleplex reverse transcription-Insulated isothermal PCR tests and a duplex real-time RT-PCR test for the detection of porcine epidemic diarrhea virus and porcine deltacoronavirus.

    PubMed

    Zhang, Jianqiang; Tsai, Yun-Long; Lee, Pei-Yu Alison; Chen, Qi; Zhang, Yan; Chiang, Cheng-Jen; Shen, Yu-Han; Li, Fu-Chun; Chang, Hsiao-Fen Grace; Gauger, Phillip C; Harmon, Karen M; Wang, Hwa-Tang Thomas

    2016-08-01

    Recent outbreaks of porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) in multiple countries have caused significant economic losses and remain a serious challenge to the swine industry. Rapid diagnosis is critical for the implementation of efficient control strategies before and during PEDV and PDCoV outbreaks. Insulated isothermal PCR (iiPCR) on the portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, a singleplex PEDV RT-iiPCR, a singleplex PDCoV RT-iiPCR, and a duplex PEDV/PDCoV real-time RT-PCR (rRT-PCR) commercial reagents targeting the M gene were compared to an N gene-based PEDV rRT-PCR and an M gene-based PDCoV rRT-PCR that were previously published and used as reference PCRs. All PCR assays were highly specific and did not cross react with other porcine enteric pathogens. Analytical sensitivities of the PEDV RT-iiPCR, PDCoV RT-iiPCR and duplex PEDV/PDCoV rRT-PCR were determined using in vitro transcribed RNA as well as viral RNA extracted from ten-fold serial dilutions of PEDV and PDCoV cell culture isolates. Performance of each PCR assay was further evaluated using 170 clinical samples (86 fecal swabs, 24 feces, 19 intestines, and 41 oral fluids). Compared to the reference PEDV rRT-PCR, the sensitivity, specificity and accuracy of the PEDV RT-iiPCR were 97.73%, 98.78%, and 98.24%, respectively, and those of the duplex PEDV/PDCoV rRT-PCR were 98.86%, 96.34%, and 97.65%, respectively. Compared to the reference PDCoV rRT-PCR, the sensitivity, specificity and accuracy of the PDCoV RT-iiPCR were 100%, 100%, and 100%, respectively, and those of the PEDV/PDCoV duplex rRT-PCR were 96.34%, 100%, and 98.24%, respectively. Overall, all three new PCR assays were comparable to the reference rRT-PCRs for detection of PEDV and/or PDCoV. The PEDV and PDCoV RT-iiPCRs are potentially useful tools for on-site detection and the duplex PEDV/PDCoV rRT-PCR provides a convenient method to simultaneously detect

  10. A Multiplex Assay for Detection of Staphylococcal and Streptococcal Exotoxins

    PubMed Central

    Sharma, Preeti; Wang, Ningyan; Chervin, Adam S.; Quinn, Cheryl L.; Stone, Jennifer D.; Kranz, David M.

    2015-01-01

    Staphylococcal and streptococcal exotoxins, also known as superantigens, mediate a range of diseases including toxic shock syndrome, and they exacerbate skin, pulmonary and systemic infections caused by these organisms. When present in food sources they can cause enteric effects commonly known as food poisoning. A rapid, sensitive assay for the toxins would enable testing of clinical samples and improve surveillance of food sources. Here we developed a bead-based, two-color flow cytometry assay using single protein domains of the beta chain of T cell receptors engineered for high-affinity for staphylococcal (SEA, SEB and TSST-1) and streptococcal (SpeA and SpeC) toxins. Site-directed biotinylated forms of these high-affinity agents were used together with commercial, polyclonal, anti-toxin reagents to enable specific and sensitive detection with SD50 values of 400 pg/ml (SEA), 3 pg/ml (SEB), 25 pg/ml (TSST-1), 6 ng/ml (SpeA), and 100 pg/ml (SpeC). These sensitivities were in the range of 4- to 80-fold higher than achieved with standard ELISAs using the same reagents. A multiplex format of the assay showed reduced sensitivity due to higher noise associated with the use of multiple polyclonal agents, but the sensitivities were still well within the range necessary for detection in food sources or for rapid detection of toxins in culture supernatants. For example, the assay specifically detected toxins in supernatants derived from cultures of Staphylococcus aureus. Thus, these reagents can be used for simultaneous detection of the toxins in food sources or culture supernatants of potential pathogenic strains of Staphylococcus aureus and Streptococcus pyogenes. PMID:26305471

  11. Multiplex RT-PCR for the detection of Astroviruses and Rotaviruses in Poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viral enteric diseases cause substantial economic loss to the US poultry industry because they lead to decreased weight gain, increased morbidity, increased mortality, and increased production costs from poor feed conversions and increased use of therapeutic anti-microbial treatments. Astroviruses a...

  12. Insulated Isothermal Reverse Transcriptase PCR (iiRT-PCR) for Rapid and Sensitive Detection of Classical Swine Fever Virus.

    PubMed

    Lung, O; Pasick, J; Fisher, M; Buchanan, C; Erickson, A; Ambagala, A

    2016-10-01

    Classical swine fever (CSF) is an OIE-listed disease that can have a severe impact on the swine industry. User-friendly, sensitive, rapid diagnostic tests that utilize low-cost field-deployable instruments for CSF diagnosis can be useful for disease surveillance and outbreak monitoring. In this study, we describe validation of a new probe-based insulated isothermal reverse transcriptase PCR (iiRT-PCR) assay for rapid detection of classical swine fever virus (CSFV) on a compact, user-friendly device (POCKIT(™) Nucleic Acid Analyzer) that does not need data interpretation by the user. The assay accurately detected CSFV RNA from a diverse panel of 33 CSFV strains representing all three genotypes plus an additional in vitro-transcribed RNA from cloned sequences representing a vaccine strain. No cross-reactivity was observed with a panel of 18 viruses associated with livestock including eight other pestivirus strains (bovine viral diarrhoea virus type 1 and type 2, border disease virus, HoBi atypical pestivirus), African swine fever virus, swine vesicular disease virus, swine influenza virus, porcine respiratory and reproductive syndrome virus, porcine circovirus 1, porcine circovirus 2, porcine respiratory coronavirus, vesicular exanthema of swine virus, bovine herpes virus type 1 and vesicular stomatitis virus. The iiRT-PCR assay accurately detected CSFV as early as 2 days post-inoculation in RNA extracted from serum samples of experimentally infected pigs, before appearance of clinical signs. The limit of detection (LOD95% ) calculated by probit regression analysis was 23 copies per reaction. The assay has a sample to answer turnaround time of less than an hour using extracted RNA or diluted or low volume of neat serum. The user-friendly, compact device that automatically analyses and displays results could potentially be a useful tool for surveillance and monitoring of CSF in a disease outbreak. PMID:25644051

  13. Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with INNO-LiPA HPV genotyping extra assay.

    PubMed

    Else, Elizabeth A; Swoyer, Ryan; Zhang, Yuhua; Taddeo, Frank J; Bryan, Janine T; Lawson, John; Van Hyfte, Inez; Roberts, Christine C

    2011-05-01

    Real-time type-specific multiplex human papillomavirus (HPV) PCR assays were developed to detect HPV DNA in samples collected for the efficacy determination of the quadrivalent HPV (type 6, 11, 16, and 18) L1 virus-like particle (VLP) vaccine (Gardasil). Additional multiplex (L1, E6, and E7 open reading frame [ORF]) or duplex (E6 and E7 ORF) HPV PCR assays were developed to detect high-risk HPV types, including HPV type 31 (HPV31), HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, HPV56, HPV58, and HPV59. Here, we evaluated clinical specimen concordance and compared the limits of detection (LODs) between multiplex HPV PCR assays and the INNO-LiPA HPV Genotyping Extra assay, which detects 28 types, for the 14 HPV types common to both of these methods. Overall HPV detection agreement rates were >90% for swabs and >95% for thin sections. Statistically significant differences in detection were observed for HPV6, HPV16, HPV18, HPV35, HPV39, HPV45, HPV56, HPV58, and HPV59 in swabs and for HPV45, HPV58, and HPV59 in thin sections. Where P was <0.05, discordance was due to detection of more HPV-positive samples by the multiplex HPV PCR assays. LODs were similar for eight HPV types, significantly lower in multiplex assays for five HPV types, and lower in INNO-LiPA for HPV6 only. LODs were under 50 copies for all HPV types, with the exception of HPV39, HPV58, and HPV59 in the INNO-LiPA assay. The overall percent agreement for detection of 14 HPV types between the type-specific multiplex HPV PCR and INNO-LiPA genotyping assays was good. The differences in positive sample detection favored multiplex HPV PCR, suggesting increased sensitivity of HPV DNA detection by type-specific multiplex HPV PCR assays.

  14. Rapid diagnosis of acute hemorrhagic conjunctivitis due to coxsackievirus A24 variant by real-time one-step RT-PCR.

    PubMed

    Lévêque, Nicolas; Lahlou Amine, Idriss; Tcheng, Remy; Falcon, Delphine; Rivat, Nathalie; Dussart, Philippe; Muyembe, Jean-Jacques; Chomel, Jean-Jacques; Norder, Helene; Eugene, Maxime; Lina, Bruno

    2007-06-01

    Coxsackievirus A24 variant is, together with enterovirus 70 and adenoviruses, the major etiological agent involved in acute hemorrhagic conjunctivitis outbreaks worldwide. However, the standard virus isolation method followed by serotyping or VP1 region sequencing is time-consuming. A rapid method for the detection of coxsackievirus A24 variant from conjunctival swab specimens would be useful in the context of explosive and extensive outbreaks. A one-step real-time RT-PCR assay based on TaqMan technology was thus developed and assessed on 36 conjunctival swabs from outbreaks of conjunctivitis in Morocco in 2004 due to a coxsackievirus A24 variant and in Corsica in 2006 due to adenovirus type 3, and 83 virus strains including 41 coxsackievirus A24 variant collected in French Guiana and Guadeloupe in 2003, in the Democratic Republic of the Congo in 2003, in Morocco in 2004 and 42 other virus species genetically close or known to be responsible for conjunctivitis. All the conjunctival swabs from coxsackievirus A24 variant related outbreak and the 41 coxsackievirus A24 variant strains were tested positive by the RT-PCR assay within 4h. This novel single-tube real-time RT-PCR assay is sensitive and specific, and consists in a reliable and faster alternative to the viral culture for recent and future acute hemorrhagic conjunctivitis outbreaks caused by coxsackievirus A24 variant.

  15. Detection, discrimination and quantitation of 22 bluetongue virus serotypes using real-time RT-PCR with TaqMan MGB probes.

    PubMed

    Feng, Yufei; Yang, Tao; Xu, Qingyuan; Sun, Encheng; Li, Junping; Lv, Shuang; Wang, Haixiu; Zhang, Qin; Zhang, Jikai; Wu, Donglai

    2015-09-01

    Bluetongue virus (BTV) is the etiological agent of bluetongue (BT) disease, a noncontagious insect-transmitted disease of international importance. To date, 26 BTV serotypes have been recognized worldwide. Methods to discriminate BTV serotypes in clinical samples are essential to epidemiological surveillance efforts and BTV vaccination programs. The BTV VP2 major outer capsid protein, encoded by genomic segment 2 (Seg-2), is the most highly variable BTV protein and is the primary determinant of the virus serotype. Here, we report the development of rapid and reliable real-time RT-PCR assays to detect and discriminate 22 BTV serotypes on the basis of VP2-encoding genomic sequences. Serotype-specific primers and probes detected only the targeted BTV serotype and displayed no cross-amplification of off-target BTV serotypes or other closely related Reoviridae and Bunyaviridae family members. The real-time RT-PCR assays developed were highly sensitive, and the majority of serotype-specific reactions could detect template when present at ≥10 copies. These BTV serotype-specific real-time RT-PCR assays represent a rapid, sensitive, and reliable method for the identification, differentiation and quantification of 22 BTV serotypes. PMID:26115692

  16. RT-PCR and real-time RT-PCR methods for the detection of potato virus Y in potato leaves and tubers.

    PubMed

    MacKenzie, Tyler D B; Nie, Xianzhou; Singh, Mathuresh

    2015-01-01

    Potato virus Y (PVY) is a major threat to potato crops around the world. It is an RNA virus of the family Potyviridae, exhibiting many different strains that cause a range of symptoms in potato. ELISA detection of viral proteins has traditionally been used to quantify virus incidence in a crop or seed lot. ELISA, however, cannot reliably detect the virus directly in dormant tubers, requiring several weeks of sprouting tubers to produce detectable levels of virus. Nor can ELISA fully discriminate between the wide range of strains of the virus. Several techniques for directly detecting the viral RNA have been developed which allow rapid detection of PVY in leaf or tuber tissue, and that can be used to easily distinguish between different strains of the virus. Described in this chapter are several protocols for the extraction of RNA from leaf and tuber tissues, and three detection methods based upon reverse-transcription-PCR (RT-PCR). First described is a traditional two-step protocol with separate reverse transcription of viral RNA into cDNA, then PCR to amplify the viral cDNA fragment. Second described is a one-step RT-PCR protocol combining the cDNA production and PCR in one tube and one step, which greatly reduces material and labor costs for PVY detection. The third protocol is a real-time RT-PCR procedure which not only saves on labor but also allows for more precise quantification of PVY titre. The three protocols are described in detail, and accompanied with a discussion of their relative advantages, costs, and possibilities for cost-saving modifications. While these techniques have primarily been developed for large-scale screening of many samples for determining viral incidence in commercial fields or seed lots, they are also amenable to use in smaller-scale research applications.

  17. Identification of Dobrava, Hantaan, Seoul, and Puumala viruses by one-step real-time RT-PCR.

    PubMed

    Aitichou, Mohamed; Saleh, Sharron S; McElroy, Anita K; Schmaljohn, C; Ibrahim, M Sofi

    2005-03-01

    We developed four assays for specifically identifying Dobrava (DOB), Hantaan (HTN), Puumala (PUU), and Seoul (SEO) viruses. The assays are based on the real-time one-step reverse transcriptase polymerase chain reaction (RT-PCR) with the small segment used as the target sequence. The detection limits of DOB, HTN, PUU, and SEO assays were 25, 25, 25, and 12.5 plaque-forming units, respectively. The assays were evaluated in blinded experiments, each with 100 samples that contained Andes, Black Creek Canal, Crimean-Congo hemorrhagic fever, Rift Valley fever and Sin Nombre viruses in addition to DOB, HTN, PUU and SEO viruses. The sensitivity levels of the DOB, HTN, PUU, and SEO assays were 98%, 96%, 92% and 94%, respectively. The specificity of DOB, HTN and SEO assays was 100% and the specificity of the PUU assay was 98%. Because of the high levels of sensitivity, specificity, and reproducibility, we believe that these assays can be useful for diagnosing and differentiating these four Old-World hantaviruses.

  18. Identification and evaluation of reference genes for qRT-PCR normalization in Ganoderma lucidum.

    PubMed

    Xu, Jiang; Xu, ZhiChao; Zhu, YingJie; Luo, HongMei; Qian, Jun; Ji, AiJia; Hu, YuanLei; Sun, Wei; Wang, Bo; Song, JingYuan; Sun, Chao; Chen, ShiLin

    2014-01-01

    Quantitative real-time reverse transcription PCR (qRT-PCR) is a rapid, sensitive, and reliable technique for gene expression studies. The accuracy and reliability of qRT-PCR results depend on the stability of the reference genes used for gene normalization. Therefore, a systematic process of reference gene evaluation is needed. Ganoderma lucidum is a famous medicinal mushroom in East Asia. In the current study, 10 potential reference genes were selected from the G. lucidum genomic data. The sequences of these genes were manually curated, and primers were designed following strict criteria. The experiment was conducted using qRT-PCR, and the stability of each candidate gene was assessed using four commonly used statistical programs-geNorm, NormFinder, BestKeeper, and RefFinder. According to our results, PP2A was expressed at the most stable levels under different fermentation conditions, and RPL4 was the most stably expressed gene in different tissues. RPL4, PP2A, and β-tubulin are the most commonly recommended reference genes for normalizing gene expression in the entire sample set. The current study provides a foundation for the further use of qRT-PCR in G. lucidum gene analysis.

  19. Detecting the Presence of Nora Virus in "Drosophila" Utilizing Single Fly RT-PCR

    ERIC Educational Resources Information Center

    Munn, Bethany; Ericson, Brad; Carlson, Darby J.; Carlson, Kimberly A.

    2015-01-01

    A single fly RT-PCR protocol has recently been developed to detect the presence of the persistent, horizontally transmitted Nora virus in "Drosophila." Wild-caught flies from Ohio were tested for the presence of the virus, with nearly one-fifth testing positive. The investigation presented can serve as an ideal project for biology…

  20. Bone marrow micrometastasis detected by RT-PCR in esophageal squamous cell carcinoma.

    PubMed

    Natsugoe, Shoji; Nakashima, Saburo; Nakajo, Akihiro; Matsumoto, Masataka; Okumura, Hiroshi; Tokuda, Koki; Miyazono, Futoshi; Kijima, Fumio; Aridome, Kuniaki; Ishigami, Sumiya; Takao, Sonshin; Aikou, Takashi

    2003-01-01

    The clinical implications of bone marrow micrometastases (BMM) detected by RT-PCR in esophageal squamous cell carcinoma (ESCC) have not been elucidated. We evaluated the relation between the presence of BMM, both before and after surgery, and clinicopathologic findings in patients with ESCC. Bone marrow samples from 48 patients with ESCC were obtained from the iliac crest before and after surgery. After total RNA was extracted from each bone marrow sample, carcinoembryonic antigen (CEA)-specific RT-PCR was performed. BMM was detected by RT-PCR in 10 of the 48 patients. Four patients each had positive signals only before or only after surgery and 2 patients had positive signals both before and after surgery. There were no significant differences in clinicopathologic factors, including neoadjuvant therapy, between patients with BMM and without BMM. To date, the rates of recurrent disease in patients with BMM and without BMM are 80% (8/10) and 50% (19/38), respectively, a difference which is not significant. The 4-year survival rates of patients with BMM and without BMM are 10.0% and 47.3%, respectively. Recurrence and survival rates were poorer in patients with RT-PCR positivity, although the differences were not significant. A larger study is required to clarify the clinical impact of BMM.

  1. Salmonella detection from chicken rinsate with surface enhanced Raman spectroscopy and RT-PCR validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical detection of bacteria has been approached in recent years as a bacteria detection method that can counter time restraints of traditional plating or the high reoccurring cost of real-time polymerase chain reaction (RT-PCR). The goal of optical detection is to identify bacteria with spectral s...

  2. RT-PCR for detection of all seven genotypes of Lyssavirus genus.

    PubMed

    Vázquez-Morón, S; Avellón, A; Echevarría, J E

    2006-08-01

    The Lyssavirus genus includes seven species or genotypes named 1-7. Rabies genotypes correlate with geographical distribution and specific hosts. Co-circulation of different lyssaviruses, imported cases, and the presence of unknown viruses, such as Aravan, Khujand, Irkut and West Caucasian Bat Virus, make it necessary to use generic methods able to detect all lyssaviruses. Primer sequences were chosen from conserved regions in all genotypes in order to optimise a generic RT-PCR. Serial dilutions of 12 RNA extracts from all seven Lyssavirus genotypes were examined to compare the sensitivity of the RT-PCR standardised in this study with a published RT-PCR optimised for EBLV1 detection and capable of amplifying RNA from all seven lyssaviruses. All seven genotypes were detected by both RT-PCRs, however, the sensitivity was higher with the new version of the test. Twenty samples submitted for rabies diagnosis were tested by the new RT-PCR. Eight out of 20 samples from six dogs, one horse and one bat were found positive, in agreement with immunofluorescence results. Seven samples from terrestrial mammals were genotype 1 and one from a bat was genotype 5. In conclusion, this method can be used to complement immunofluorescence for the diagnosis of rabies, enabling the detection of unexpected lyssaviruses during rabies surveillance.

  3. In vivo quantification of formulated and chemically modified small interfering RNA by heating-in-Triton quantitative reverse transcription polymerase chain reaction (HIT qRT-PCR)

    PubMed Central

    2010-01-01

    Background While increasing numbers of small interfering RNA (siRNA) therapeutics enter into clinical trials, the quantification of siRNA from clinical samples for pharmacokinetic studies remains a challenge. This challenge is even more acute for the quantification of chemically modified and formulated siRNAs such as those typically required for systemic delivery. Results Here, we describe a novel method, heating-in-Triton quantitative reverse transcription PCR (HIT qRT-PCR) that improves upon the stem-loop RT-PCR technique for the detection of formulated and chemically modified siRNAs from plasma and tissue. The broad dynamic range of this assay spans five orders of magnitude and can detect as little as 70 pg duplex in 1 g of liver or in 1 ml of plasma. We have used this assay to quantify intravenously administrated siRNA in rodents and have reliably correlated target reduction with tissue drug concentrations. We were able to detect siRNA in rat liver for at least 10 days post injection and determined that for a modified factor VII (FVII) siRNA, on average, approximately 500 siRNA molecules per cell are required to achieve a 50% target reduction. Conclusions HIT qRT-PCR is a novel approach that simplifies the in vivo quantification of siRNA and provides a highly sensitive and reproducible tool to measure the silencing efficiency of chemically modified and formulated siRNAs. PMID:20731861

  4. High-throughput chemiluminometric determination of prostate-specific membrane antigen mRNA in peripheral blood by RT-PCR using a synthetic RNA internal standard.

    PubMed

    Emmanouilidou, Evaggelia; Ioannou, Penelope C; Christopoulos, Theodore K

    2004-09-01

    A quantitative reverse transcriptase polymerase chain reaction (RT-PCR) method, employing internal standard (IS) RNA and a simplified chemiluminometric hybridization assay, is described for the determination of prostate-specific membrane antigen (PSMA) mRNA. The recombinant RNA IS has the same binding sites and size as the amplified PSMA mRNA. Biotinylated PCR products (263 bp) from PSMA mRNA and RNA IS are captured in microtiter wells coated with streptavidin, and hybridized with alkaline phosphatase-conjugated probes. The bound alkaline phosphatase (AP) is measured by using a chemiluminogenic substrate. The ratio of the luminescence values obtained for PSMA mRNA and the RNA IS is a linear function of the initial amount of PSMA mRNA present in the sample before RT-PCR. The linear range extends from 500 to 5,000,000 PSMA mRNA copies and the overall reproducibility of the assay, including RT-PCR and hybridization, ranges from 7.4 to 16.6%. Samples containing total RNA from PSMA-expressing LNCaP cells give luminescence ratios linearly related to the number of cells in the range 0.5-5,000 cells.

  5. Application of F⁺RNA Coliphages as Source Tracking Enteric Viruses on Parsley and Leek Using RT-PCR.

    PubMed

    Shahrampour, Dina; Yavarmanesh, Masoud; Najafi, Mohammad Bagher Habibi; Mohebbi, Mohebbat

    2015-12-01

    The objective of this study was to identify sources of fecal contamination in leek and parsley, by using four different F(+)RNA coliphage genogroups (IV, I indicate animal fecal contamination and II, III indicate human fecal contamination). Three different concentrations (10(2), 10(4), 10(6) pfu/ml) of MS2 coliphage were inoculated on the surface of parsley and leek samples for detection of phage recovery efficiency among two methods of elution concentration (PEG-precipitation and Ultracentrifugation) by performing double agar layer (DAL) assay in three replications. Highest recovery of MS2 was observed in PEG method and in 10(6) inoculation concentration. Accordingly, the PEG method was used for washing and isolation of potentially contaminated phages of 30 collected samples (15 samples from the market and 15 samples from the farm). The final solutions of PEG method were tested for the enumeration of plaques by DAL assay. Total RNA was then extracted from recovered phages, and RT-PCR was performed by using four primer sets I, II, III, and IV. Incidence of F(+)RNA coliphages was observed in 12/15 (80 %) and 10/15 (66/6 %) of samples were obtained from farm and market, respectively, using both DAL and RT-PCR test methods. Different genotypes (I, II, and IV) of F(+)RNA coliphages were found in farm samples, while only genotype I was detected in market samples by using the primer sets. Due to the higher frequency of genotype I and IV, the absence of genotype III, and also the low frequency of genotype II, it is concluded that the contamination of vegetable (parsley and leek) in Neyshabour, Iran is most likely originated from animal sources.

  6. Quantitative single-cell ion-channel gene expression profiling through an improved qRT-PCR technique combined with whole cell patch clamp.

    PubMed

    Veys, K; Labro, A J; De Schutter, E; Snyders, D J

    2012-07-30

    Cellular excitability originates from a concerted action of different ion channels. The genomic diversity of ion channels (over 100 different genes) underlies the functional diversity of neurons in the central nervous system (CNS) and even within a specific type of neurons large differences in channel expression have been observed. Patch-clamp is a powerful technique to study the electrophysiology of excitability at the single cell level, allowing exploration of cell-to-cell variability. Only a few attempts have been made to link electrophysiological profiling to mRNA transcript levels and most suffered from experimental noise precluding conclusive quantitative correlations. Here we describe a refinement to the technique that combines patch-clamp analysis with quantitative real-time (qRT) PCR at the single cell level. Hereto the expression of a housekeeping gene was used to normalize for cell-to-cell variability in mRNA isolation and the subsequent processing steps for performing qRT-PCR. However, the mRNA yield from a single cell was insufficient for performing a valid qRT-PCR assay; this was resolved by including a RNA amplification step. The technique was validated on a stable Ltk(-) cell line expressing the Kv2.1 channel and on embryonic dorsal root ganglion (DRG) cells probing for the expression of Kv2.1. Current density and transcript quantity displayed a clear correlation when the qRT-PCR assay was done in twofold and the data normalized to the transcript level of the housekeeping gene GAPD. Without this normalization no significant correlation was obtained. This improved technique should prove very valuable for studying the molecular background of diversity in cellular excitability.

  7. Electronic microarray assays for avian influenza and Newcastle disease virus.

    PubMed

    Lung, Oliver; Beeston, Anne; Ohene-Adjei, Samuel; Pasick, John; Hodko, Dalibor; Hughes, Kimberley Burton; Furukawa-Stoffer, Tara; Fisher, Mathew; Deregt, Dirk

    2012-11-01

    Microarrays are suitable for multiplexed detection and typing of pathogens. Avian influenza virus (AIV) is currently classified into 16 H (hemagglutinin) and 9 N (neuraminidase) subtypes, whereas Newcastle disease virus (NDV) strains differ in virulence and are broadly classified into high and low pathogenicity types. In this study, three assays for detection and typing of poultry viruses were developed on an automated microarray platform: a multiplex assay for simultaneous detection of AIV and detection and pathotyping of NDV, and two separate assays for differentiating all AIV H and N subtypes. The AIV-NDV multiplex assay detected all strains in a 63 virus panel, and accurately typed all high pathogenicity NDV strains tested. A limit of detection of 10(1)-10(3) TCID(50)/mL and 200-400 EID(50)/mL was obtained for NDV and AIV, respectively. The AIV typing assays accurately typed all 41 AIV strains and a limit of detection of 4-200 EID(50)/mL was obtained. Assay validation showed that the microarray assays were generally comparable to real-time RT-PCR. However, the AIV typing microarray assays detected more positive clinical samples than the AIV matrix real-time RT-PCR, and also provided information regarding the subtype. The AIV-NDV multiplex and AIV H typing microarray assays detected mixed infections and could be useful for detection and typing of AIV and NDV.

  8. Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae.

    PubMed

    Che Omar, Sarena; Bentley, Michael A; Morieri, Giulia; Preston, Gail M; Gurr, Sarah J

    2016-01-01

    The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed during infection, vegetative growth and under exogenous wall stress, demand robust choice of reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We describe the expression stability of nine candidate reference genes profiled by qRT-PCR with cDNAs derived during asexual germling development, from sexual stage perithecia and from vegetative mycelium grown under various exogenous stressors. Our Minimum Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a set of robust reference genes used to track changes in the expression of the cell wall remodelling gene MGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their expression stability (M) and report the best gene combination needed for reliable gene expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and Global) frequently used in M. oryzae expression studies. We found that MGG_Actin (MGG_03982) and the 40S 27a ribosomal subunit MGG_40s (MGG_02872) proved to be robust reference genes for the Infection group and MGG_40s and MGG_Ef1 (Elongation Factor1-α) for both Vegetative and Global groups. Using the above validated reference genes, M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated three-fold during vegetative growth as compared with dormant spores and two fold higher under cell wall stress (Congo Red) compared to growth under optimal conditions. We recommend the combinatorial use of two reference genes, belonging to the cytoskeleton and ribosomal synthesis functional groups, MGG_Actin, MGG_40s, MGG_S8 (Ribosomal subunit 40S S8) or MGG

  9. Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae.

    PubMed

    Che Omar, Sarena; Bentley, Michael A; Morieri, Giulia; Preston, Gail M; Gurr, Sarah J

    2016-01-01

    The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed during infection, vegetative growth and under exogenous wall stress, demand robust choice of reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We describe the expression stability of nine candidate reference genes profiled by qRT-PCR with cDNAs derived during asexual germling development, from sexual stage perithecia and from vegetative mycelium grown under various exogenous stressors. Our Minimum Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a set of robust reference genes used to track changes in the expression of the cell wall remodelling gene MGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their expression stability (M) and report the best gene combination needed for reliable gene expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and Global) frequently used in M. oryzae expression studies. We found that MGG_Actin (MGG_03982) and the 40S 27a ribosomal subunit MGG_40s (MGG_02872) proved to be robust reference genes for the Infection group and MGG_40s and MGG_Ef1 (Elongation Factor1-α) for both Vegetative and Global groups. Using the above validated reference genes, M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated three-fold during vegetative growth as compared with dormant spores and two fold higher under cell wall stress (Congo Red) compared to growth under optimal conditions. We recommend the combinatorial use of two reference genes, belonging to the cytoskeleton and ribosomal synthesis functional groups, MGG_Actin, MGG_40s, MGG_S8 (Ribosomal subunit 40S S8) or MGG

  10. Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Che Omar, Sarena; Bentley, Michael A.; Morieri, Giulia; Preston, Gail M.; Gurr, Sarah J.

    2016-01-01

    The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed during infection, vegetative growth and under exogenous wall stress, demand robust choice of reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We describe the expression stability of nine candidate reference genes profiled by qRT-PCR with cDNAs derived during asexual germling development, from sexual stage perithecia and from vegetative mycelium grown under various exogenous stressors. Our Minimum Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a set of robust reference genes used to track changes in the expression of the cell wall remodelling gene MGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their expression stability (M) and report the best gene combination needed for reliable gene expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and Global) frequently used in M. oryzae expression studies. We found that MGG_Actin (MGG_03982) and the 40S 27a ribosomal subunit MGG_40s (MGG_02872) proved to be robust reference genes for the Infection group and MGG_40s and MGG_Ef1 (Elongation Factor1-α) for both Vegetative and Global groups. Using the above validated reference genes, M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated three-fold during vegetative growth as compared with dormant spores and two fold higher under cell wall stress (Congo Red) compared to growth under optimal conditions. We recommend the combinatorial use of two reference genes, belonging to the cytoskeleton and ribosomal synthesis functional groups, MGG_Actin, MGG_40s, MGG_S8 (Ribosomal subunit 40S S8) or MGG

  11. Multiplex nested reverse transcription-polymerase chain reaction for respiratory viruses in acute otitis media.

    PubMed

    Ishibashi, Toshio; Monobe, Hiroko; Nomura, Yuka; Shinogami, Masanobu; Yano, Jun

    2003-03-01

    Because respiratory viruses play an important role in the causation and pathogenesis of acute otitis media (AOM), determining which virus has infected a child is important with respect to vaccines and antiviral drugs. In some instances, this information might be used to prevent the occurrence of AOM. We used a rapid, economical, and sensitive diagnostic system involving a multiplex nested reverse transcription-polymerase chain reaction (RT-PCR) assay to detect various respiratory viruses in clinical specimens of middle ear fluid (MEF) from children with AOM in our hospital. Multiplex RT-PCR was completed on 40 MEF samples from 28 infants and children less than 6 years old with AOM. Viral RNA was detected in 17 MEF samples (43%). Respiratory syncytial virus type A was present in 12 samples, adenovirus in 3, rhinovirus in 2, and influenza A (H3N2) in 1. The multiplex RT-PCR assay is recommended to clinical laboratories that are considering adoption of a molecular technique for viral diagnosis.

  12. Molecular-beacon multiplex real-time PCR assay for detection of Vibrio cholerae.

    PubMed

    Gubala, Aneta J; Proll, David F

    2006-09-01

    A multiplex real-time PCR assay was developed using molecular beacons for the detection of Vibrio cholerae by targeting four important virulence and regulatory genes. The specificity and sensitivity of this assay, when tested with pure culture and spiked environmental water samples, were high, surpassing those of currently published PCR assays for the detection of this organism.

  13. Selection and validation of endogenous reference genes for qRT-PCR analysis in leafy spurge (Euphorbia esula)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative real-time polymerase chain reaction (qRT-PCR) is the most important tool in measuring levels of gene expression due to its accuracy, specificity, and sensitivity. However, the accuracy of qRT-PCR analysis strongly depends on transcript normalization using stably expressed reference gene...

  14. Comparison of conventional RT-PCR, reverse-transcription loop-mediated isothermal amplification, and SYBR green I-based real-time RT-PCR in the rapid detection of bovine viral diarrhea virus nucleotide in contaminated commercial bovine sera batches.

    PubMed

    Zhang, Shu-Qin; Tan, Bin; Li, Peng; Wang, Feng-Xue; Guo, Li; Yang, Yong; Sun, Na; Zhu, Hong-Wei; Wen, Yong-Jun; Cheng, Shi-Peng

    2014-10-01

    Bovine viral diarrhea virus (BVDV) can contaminate biological products produced in bovine or porcine cells or manufactured using bovine sera. A rapid, specific, sensitive, and practical method of detecting BVDV in bio-products is needed. The purpose of this study was to compare three assays with respect to their ability to accurately detect BVDV in biological samples, namely reverse-transcription loop-mediated isothermal amplification (RT-LAMP), SYBR green I-based real-time RT-PCR, and conventional RT-PCR. All assays detected BVDV nucleotide and differentiated between BVDV-free and -contaminated bovine sera successfully. In addition, the results were specific to BVDV: the amplification of samples containing the closely related classical swine fever virus or other pathogenic bovine viruses yielded negative results. The lowest detection threshold, 10(1) copies, was displayed by the SYBR green I-based real-time RT-PCR and RT-LAMP assay. This assay was also the most effective in the detection of BVDV contamination in a set of commercially available bovine sera. The field conditions suggest that RT-LAMP is specific and sensitive to detecting BVDV in biological samples and may be used for quality control of biomaterials.

  15. Selection of suitable reference genes for normalization of quantitative RT-PCR in peripheral blood samples of bottlenose dolphins (Tursiops truncatus)

    PubMed Central

    Chen, I-Hua; Chou, Lien-Siang; Chou, Shih-Jen; Wang, Jiann-Hsiung; Stott, Jeffrey; Blanchard, Myra; Jen, I-Fan; Yang, Wei-Cheng

    2015-01-01

    Quantitative RT-PCR is often used as a research tool directed at gene transcription. Selection of optimal housekeeping genes (HKGs) as reference genes is critical to establishing sensitive and reproducible qRT-PCR-based assays. The current study was designed to identify the appropriate reference genes in blood leukocytes of bottlenose dolphins (Tursiops truncatus) for gene transcription research. Seventy-five blood samples collected from 7 bottlenose dolphins were used to analyze 15 candidate HKGs (ACTB, B2M, GAPDH, HPRT1, LDHB, PGK1, RPL4, RPL8, RPL18, RPS9, RPS18, TFRC, YWHAZ, LDHA, SDHA). HKG stability in qRT-PCR was determined using geNorm, NormFinder, BestKeeper and comparative delta Ct algorithms. Utilization of RefFinder, which combined all 4 algorithms, suggested that PGK1, HPRT1 and RPL4 were the most stable HKGs in bottlenose dolphin blood. Gene transcription perturbations in blood can serve as an indication of health status in cetaceans as it occurs prior to alterations in hematology and chemistry. This study identified HKGs that could be used in gene transcript studies, which may contribute to further mRNA relative quantification research in the peripheral blood leukocytes in captive cetaceans. PMID:26486099

  16. Selection of suitable reference genes for normalization of quantitative RT-PCR in peripheral blood samples of bottlenose dolphins (Tursiops truncatus).

    PubMed

    Chen, I-Hua; Chou, Lien-Siang; Chou, Shih-Jen; Wang, Jiann-Hsiung; Stott, Jeffrey; Blanchard, Myra; Jen, I-Fan; Yang, Wei-Cheng

    2015-10-21

    Quantitative RT-PCR is often used as a research tool directed at gene transcription. Selection of optimal housekeeping genes (HKGs) as reference genes is critical to establishing sensitive and reproducible qRT-PCR-based assays. The current study was designed to identify the appropriate reference genes in blood leukocytes of bottlenose dolphins (Tursiops truncatus) for gene transcription research. Seventy-five blood samples collected from 7 bottlenose dolphins were used to analyze 15 candidate HKGs (ACTB, B2M, GAPDH, HPRT1, LDHB, PGK1, RPL4, RPL8, RPL18, RPS9, RPS18, TFRC, YWHAZ, LDHA, SDHA). HKG stability in qRT-PCR was determined using geNorm, NormFinder, BestKeeper and comparative delta Ct algorithms. Utilization of RefFinder, which combined all 4 algorithms, suggested that PGK1, HPRT1 and RPL4 were the most stable HKGs in bottlenose dolphin blood. Gene transcription perturbations in blood can serve as an indication of health status in cetaceans as it occurs prior to alterations in hematology and chemistry. This study identified HKGs that could be used in gene transcript studies, which may contribute to further mRNA relative quantification research in the peripheral blood leukocytes in captive cetaceans.

  17. Duplex real-time qRT-PCR for the detection of hepatitis A virus in water and raspberries using the MS2 bacteriophage as a process control.

    PubMed

    Blaise-Boisseau, Sandra; Hennechart-Collette, Catherine; Guillier, Laurent; Perelle, Sylvie

    2010-06-01

    Hepatitis A virus (HAV) infection is the leading worldwide cause of acute viral hepatitis. An important aspect of viral control is rapid diagnosis. Epidemiological studies have linked hepatitis A outbreaks to the consumption of drinking water or soft fruits exposed to faecal contamination. Real-time reverse transcriptase PCR (qRT-PCR) is now widely used for detecting RNA viruses in food samples. Efficiency of viral concentration, nucleic acid extraction and the presence of potential inhibitors of the RT-PCR reaction must be monitored to prevent false negative results. In this study, the MS2 bacteriophage used as a process control was detected simultaneously with HAV in a one-step duplex real-time qRT-PCR. The assay was developed for testing water and raspberries. Adding MS2 showed no loss of sensitivity for HAV detection in water and raspberry samples. The limit of detection of HAV with this new approach was 10PFU for 1.5L of bottled water, 100PFU for 1.5L of tap water, 50PFU for 25g of fresh raspberries and 100PFU for 25g of frozen raspberries. The data show that the MS2 offers a very reliable and simple way to monitor false-negative results, making it a valuable tool in the routine diagnostics laboratory.

  18. A rapid RT-PCR based method for the detection of BCR-ABL translocation.

    PubMed Central

    Sidorova JYu; Saltykova, L B; Lyschov, A A; Zaritskey AYu; Abdulkadyrov, K M; Blinov, M N

    1997-01-01

    AIMS: To optimise a one step reverse transcriptase polymerase chain reaction (RT-PCR) protocol for BCR-ABL chimaera detection. METHODS: Compared with published RT-PCR procedures, this novel approach has at least two advantages. First, the same enzyme is used for both reverse transcription and PCR. Second, amplification of the target (BCR-ABL chimaera) and control gene (ABL) is performed simultaneously in the same tube. RESULTS: On testing 40 chronic myelogenous leukaemia patients and 10 healthy donors there was a specificity for the newly developed technique. In addition, dilution experiments demonstrated that the protocol was highly sensitive. CONCLUSIONS: The suggested one step PCR strategy is a simple and reliable way to reveal BCR-ABL chimaeras. Images PMID:9497918

  19. How Many Microorganisms Are Present? Quantitative Reverse Transcription PCR (qRT-PCR)

    NASA Astrophysics Data System (ADS)

    Price, Andy; Álvarez, Laura Acuña; Whitby, Corinne; Larsen, Jan

    Quantitative reverse transcription PCR (qRT-PCR) is a variation of conventional quantitative or real-time PCR, whereby mRNA is first converted into the complementary DNA (cDNA) by reverse transcription, the cDNA is then subsequently quantified by qPCR. The use of mRNA as the initial template allows the quantification of gene transcripts, rather than gene copy numbers. mRNA is only produced by actively metabolising cells and is produced by its corresponding gene to provide a 'blueprint' in order for a cell to manufacture a specific protein. Conventional qPCR detects not only DNA present in actively metabolising cells but also inactive and dead cells. qRT-PCR has the advantage that only actively metabolising cells are detected, hence provides a more reliable measure of microbial activity in oilfield samples. When qRT-PCR is combined with primers and probes for specific genes, the activity of microbial processes important in the oilfield, such as sulphate reduction, methanogenesis and nitrate reduction can be monitored.

  20. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    PubMed

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data.

  1. Investigation of Reference Genes in Vibrio parahaemolyticus for Gene Expression Analysis Using Quantitative RT-PCR

    PubMed Central

    Ma, Yue-jiao; Sun, Xiao-hong; Xu, Xiao-yan; Zhao, Yong; Pan, Ying-jie; Hwang, Cheng-An; Wu, Vivian C. H.

    2015-01-01

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize its virulence factors and understand the effect of environmental conditions on its pathogenicity. However, there is not a stable gene in V. parahaemolyticus that has been identified for use as a reference gene for qRT-PCR. This study evaluated the stability of 6 reference genes (16S rRNA, recA, rpoS, pvsA, pvuA, and gapdh) in 5 V. parahaemolyticus strains (O3:K6-clinical strain-tdh+, ATCC33846-tdh+, ATCC33847-tdh+, ATCC17802-trh+, and F13-environmental strain-tdh+) cultured at 4 different temperatures (15, 25, 37 and 42°C). Stability values were calculated using GeNorm, NormFinder, BestKeeper, and Delta CT algorithms. The results indicated that recA was the most stably expressed gene in the V. parahaemolyticus strains cultured at different temperatures. This study examined multiple V. parahaemolyticus strains and growth temperatures, hence the finding provided stronger evidence that recA can be used as a reference gene for gene expression studies in V. parahaemolyticus. PMID:26659406

  2. Validation of reference genes for real-time quantitative RT-PCR studies in Talaromyces marneffei.

    PubMed

    Dankai, Wiyada; Pongpom, Monsicha; Vanittanakom, Nongnuch

    2015-11-01

    Talaromyces marneffei (or Penicillium marneffei) is an opportunistic pathogen that can cause disseminated disease in human immunodeficiency virus (HIV)-infected patients, especially in Southeast Asia. T. marneffei is a thermally dimorphic fungus. Typically, T. marneffei has an adaptive morphology. It grows in a filamentous form (mould) at 25°C and can differentiate to produce asexual spores (conidia). In contrast, at 37°C, it grows as yeast cells that divide by fission. This study aimed to validate a quantitative reverse-transcription polymerase chain reaction (qRT-PCR) for gene expression analysis in T. marneffei. Analysis of relative gene expression by qRT-PCR requires normalization of data using a proper reference gene. However, suitable reference genes have not been identified in gene expression studies across different cell types or under different experimental conditions in T. marneffei. In this study, four housekeeping genes were selected for analysis: β-actin (act); glyceraldehyde-3-phosphate dehydrogenase (gapdh); β-tubulin (benA) and 18S rRNA. Two analysis programs; BestKeeper and geNorm software tools were used to validate the expression of the candidate normalized genes. The results indicated that the actin gene was the one which was most stably expressed and was recommended for use as the endogenous control for gene expression analysis of all growth forms in T. marneffei by qRT-PCR under normal and stress conditions.

  3. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    SciTech Connect

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  4. DEVELOPMENT OF AN ASTROVIRUS RT-PCR DETECTION ASSAY FOR USE WITH CONVENTIONAL, REAL-TIME, AND INTEGRATED CELL CULTURE/RT-PCR

    EPA Science Inventory

    Astrovirus is a common cause of gastroenteritis in humans that has been determined to be responsible for outbreaks of illness in several countries. Since astrovirus can be waterborne, it is important to be able to identify this virus in environmental water. We have developed an...

  5. Patterned Plasmonic Nanoparticle Arrays for Microfluidic and Multiplexed Biological Assays.

    PubMed

    He, Jie; Boegli, Michelle; Bruzas, Ian; Lum, William; Sagle, Laura

    2015-11-17

    For applications ranging from medical diagnostics and drug screening to chemical and biological warfare detection, inexpensive, rapid-readout, portable devices are required. Localized surface plasmon resonance (LSPR) technologies show substantial promise toward meeting these goals, but the generation of portable, multiplexed and/or microfluidic devices incorporating sensitive nanoparticle arrays is only in its infancy. Herein, we have combined photolithography with Hole Mask Colloidal lithography to pattern uniform nanoparticle arrays for both microfluidic and multiplexed devices. The first proof-of-concept study is carried out with 5- and 7-channel microfluidic devices to acquire one-shot binding curves and protein binding kinetic data. The second proof-of-concept study involved the fabrication of a 96-spot plate that can be inserted into a standard plate reader for the multiplexed detection of protein binding. This versatile fabrication technique should prove useful in next generation chips for bioassays and genetic screening. PMID:26494412

  6. Ring test evaluation of the detection of influenza A virus in swine oral fluids by real-time, reverse transcription polymerase chain reaction (rRT-PCR) and virus isolation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The probability of detecting influenza A virus (IAV) in oral fluid (OF) specimens was calculated for each of 13 real-time, reverse transcription polymerase chain reaction (rRT-PCR) and 7 virus isolation (VI) assays. To conduct the study, OF was inoculated with H1N1 or H3N2 IAV and serially 10-fold d...

  7. Viral Multiplex Quantitative PCR Assays for Tracking Sources of Fecal Contamination▿

    PubMed Central

    Wolf, Sandro; Hewitt, Joanne; Greening, Gail E.

    2010-01-01

    Human and animal fecal pollution of the environment presents a risk to human health because of the presence of pathogenic viruses and bacteria. To distinguish between human and animal sources of pollution, we designed specific real-time reverse transcription (RT)-PCR assays for human and animal enteric viruses, including norovirus genogroups I, II, and III; porcine adenovirus types 3 and 5; ovine adenovirus; atadenovirus; and human adenovirus species C and F, which are excreted by infected humans, pigs, cattle, sheep, deer, and goats, and for the detection of F+ RNA bacteriophage genogroups I to IV, which are associated with human and animal wastes. The sensitivity of this viral toolbox (VTB) was tested against 10-fold dilution series of DNA plasmids that carry the target sequences of the respective viruses and was shown to detect at least 10 plasmid copies for each assay. A panel of human and animal enteric and respiratory viruses showed these assays to be highly sensitive and specific to their respective targets. The VTB was used to detect viruses in fecal and environmental samples, including raw sewage and biosolids from municipal sewage treatment plants, abattoir sewage, and fecally contaminated shellfish and river water, which were likely to contain animal or human viruses. PMID:20061455

  8. Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bead based multiplex assays (BBMA) also referred to as Luminex, MultiAnalyte Profiling or cytometric bead array (CBA) assays, are applicable for high throughput, simultaneous detection of multiple analytes in solution (from several, up to 50-500 analytes within a single, small sample volume). Curren...

  9. Biosurveillance of avian influenza and Newcastle disease viruses in the Barda region of Azerbaijan using real time RT-PCR and hemagglutination inhibition

    PubMed Central

    Zeynalova, Shalala; Guliyev, Fizuli; Vatani, Mahira; Abbasov, Bahruz

    2015-01-01

    The Azerbaijan State Veterinary Control Service (SVCS) has conducted active serological surveillance for avian influenza (AI) in poultry since 2006, when the first outbreak of AI H5N1 occurred in Azerbaijan. Samples are collected from September to May annually and tested using a hemagglutination inhibition (HI) assay to detect antibodies against H5 AI viruses. HI testing is also performed for Newcastle disease virus (NDV) upon request, but since this method cannot distinguish between natural infections and immune responses to vaccination, all positive results require follow-up epidemiological investigations. Furthermore, blood collection for the surveillance program is time-intensive and can be stressful to birds. In order to improve the national surveillance program, alternative sampling and testing methodologies were applied among a population of birds in the Barda region and compared with results of the national surveillance program. Tracheal and cloacal swabs were collected instead of blood. Rather than testing individual samples, RNA was pooled to conserve resources and time, and pools were tested by real-time reverse transcription polymerase chain reaction (rRT-PCR). Environmental sampling at a live bird market was also introduced as another surveillance mechanism. A total of 1,030 swabs were collected, comprising tracheal, and cloacal samples from 441 birds and 148 environmental surface samples from farms or the live bird market. During the same time, 3,890 blood samples were collected nationally for the surveillance program; 400 of these samples originated in the Barda region. Birds sampled for rRT-PCR were likely different than those tested as part of national surveillance. All swab samples tested negative by rRT-PCR for both AI and NDV. All blood samples tested negative for H5 by HI, while 6.2% of all samples and 5% of the Barda samples tested positive for exposure to NDV. Follow-up investigations found that positive samples were from birds vaccinated in

  10. The use of a one-step real-time reverse transcription polymerase chain reaction (rRT-PCR) for the surveillance of viral hemorrhagic septicemia virus (VHSV) in Minnesota.

    PubMed

    Phelps, Nicholas B D; Patnayak, Devi P; Jiang, Yin; Goyal, Sagar M

    2012-12-01

    Viral hemorrhagic septicemia virus (VHSV) is a highly contagious and pathogenic virus of fish. The virus infects more than 70 fish species worldwide, in both fresh and salt water. A new viral strain (VHSV-IVb) has proven both virulent and persistent, spreading throughout the Great Lakes of North America and to inland water bodies in the region. To better understand the geographic distribution of the virus, we used a modified real-time reverse transcription polymerase chain reaction (rRT-PCR) assay for high-throughput testing of fish for VHSV. The assay was shown to be twice as sensitive as the gold standard, virus isolation, and did not cross react with other viruses found in fish. In addition, the diagnostic turnaround time was reduced from 28 to 30 d for virus isolation to 2-4 d for rRT-PCR. To demonstrate the usefulness of the rRT-PCR assay, 115 high-priority water bodies in Minnesota were tested by both methods from April 2010 to June 2011. All survey sites tested negative for VHSV by both methods. The survey results have informed fisheries managers on the absence of VHSV in Minnesota and have better prepared them for the eventual arrival of the disease. In addition, the results demonstrate the value of this rRT-PCR as a surveillance tool to rapidly identify an outbreak so that it can be controlled in a timely manner.

  11. Detection of occult carcinomatous diffusion in lymph nodes from head and neck squamous cell carcinoma using real-time RT-PCR detection of cytokeratin 19 mRNA.

    PubMed

    Tao, L; Lefèvre, M; Ricci, S; Saintigny, P; Callard, P; Périé, S; Lacave, R; Bernaudin, J-F; Lacau St Guily, J

    2006-04-24

    The aim of the present study was to evaluate the occult lymph node carcinomatous diffusion in head and neck squamous cell carcinoma (HNSCC). A total of 1328 lymph nodes from 31 patients treated between 2004 and 2005 were prospectively evaluated by routine haematoxylin-eosin-safran (HES) staining, immunohistochemistry (IHC) and real-time Taqman reverse-transcriptase polymerase chain reaction (real-time RT-PCR) assay. Amplification of cytokeratin 19 (CK19) mRNA transcripts using real-time RT-PCR was used to quantify cervical micrometastatic burden. The cervical lymph node metastatic rates determined by routine HES staining and real-time RT-PCR assay were 16.3 and 36.0%, respectively (P<0.0001). A potential change in the nodal status was observed in 13 (42.0%) of the 31 patients and an atypical pattern of lymphatic spread was identified in four patients (12.9%). Moreover, CK19 mRNA expression values in histologically positive lymph nodes were significantly higher than those observed in histologically negative lymph nodes (P<0.0001). These results indicate that real-time RT-PCR assay for the detection of CK19 mRNA is a sensitive and reliable method for the detection of carcinomatous cells in lymph nodes. This type of method could be used to reassess lymph node status according to occult lymphatic spread in patients with HNSCC.

  12. A novel multiplex assay for simultaneously analysing 13 rapidly mutating Y-STRs.

    PubMed

    Alghafri, Rashed; Goodwin, Will; Ralf, Arwin; Kayser, Manfred; Hadi, Sibte

    2015-07-01

    A multiplex polymerase chain reaction (PCR) assay (RM-Yplex) was developed which is capable of simultaneously amplifying 13 recently introduced rapidly mutating Y-STR markers (RM Y-STRs). This multiplex assay is expected to aid human identity testing in forensic and other applications to improve differentiating unrelated males and allow separating related males. The 13 RM Y-STR markers included in the multiplex are: DYF387S1, DYF399S1, DYF403S1ab, DYF404S1, DYS449, DYS518, DYS526ab, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627. This study reflects the proof of concept to analyse all currently known RM Y-STRs simultaneously and describes the optimization of the multiplex assay. The RM-Yplex assay generated complete RM Y-STR profiles down to 62.5pg of male template DNA, and from male-female DNA mixtures at all ratios tested. We herewith introduce and make available for widespread use in forensic and anthropological studies, an effective and sensitive single multiplex assay for simultaneous genotyping of 13 RM Y-STRs.

  13. Development of a real-time RT-PCR assay for the detection of marine caliciviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than forty different marine caliciviruses (family Caliciviridae, genus Vesivirus) have been identified from marine and terrestrial host since their initial isolation in 1972. Marine vesiviruses have previously infected swine along the Western coast of the United States and produce a disease cl...

  14. Development and application of an RT-PCR test for detecting avian nephritis virus.

    PubMed

    Todd, D; Trudgett, J; McNeilly, F; McBride, N; Donnelly, B; Smyth, V J; Jewhurst, H L; Adair, B M

    2010-06-01

    The development of a reverse transcriptase-polymerase chain reaction (RT-PCR) test for detecting avian nephritis virus (ANV) is described. Primers, which amplified a fragment of 182 base pairs (bp), were located in the conserved 3' untranslated region (UTR) of the genome. The limit of detection of the test was estimated to be approximately 18 viral copies using a 10-fold dilution series of in vitro transcribed RNA. Positive signals were produced with representative ANV samples, some of which were not detected by previously described RT-PCR tests for detecting ANV, but other avian astroviruses including chicken astrovirus isolates and duck hepatitis virus types 2 and 3 tested negative. When applied to gut content samples from UK, German and US broiler flocks with enteritis/growth problems, ANVs were detected by RT-PCR in 82/82 (100%) samples. ANVs were also detected in 80/96 (83%) pooled gut content samples from longitudinal surveys of four broiler flocks displaying below-average performance. Whereas all samples collected on day 0 from the surveys were negative for ANV, all samples collected at days 4/5, 7, 10, 14, 21 and 28 tested positive. Sequence determinations performed with amplicons produced with 14 field samples confirmed the ANV specificity of the test, while comparative and phylogenetic analyses based on 109-nucleotide 3'-UTR sequences demonstrated that the majority of ANVs investigated were more closely related to the serotype 2 ANV (accession number AB 046864) than to the serotype 1 ANV (accession number NC 003790).

  15. Effective detection of human noroviruses in Hawaiian waters using enhanced RT-PCR methods.

    PubMed

    Tong, Hsin-I; Connell, Christina; Boehm, Alexandria B; Lu, Yuanan

    2011-11-15

    The current recreational water quality criteria using growth-based measurements of fecal indicator bacteria (FIB) concentration have their limitations for swimmer protection. To evaluate the possible use of enteric viruses as an improved indicator of human sewage contamination in recreational waters for enhanced health risk assessment, human norovirus (huNoV) was tested as a model in this study. To establish a highly sensitive protocol for effective huNoV detection in waters, 16 published and newly designed reverse transcription polymerase chain reaction (RT-PCR) primer pairs specific for huNoV genogroup I (GI) and genogroup II (GII) were comparatively evaluated side-by-side using single sources of huNoV RNA stock extracted from local clinical isolates. Under optimized conditions, these RT-PCR protocols shared a very different pattern of detection sensitivity for huNoV. The primer sets COG2F/COG2R and QNIF4/NV1LCR were determined to be the most sensitive ones for huNoV GII and GI, respectively, with up to 10(5)- and 10(6)-fold more sensitive as compared to other sets tested. These two sensitive protocols were validated by positive detection of huNoV in untreated and treated urban wastewater samples. In addition, these RT-PCR protocols enabled detection of the prevalence of huNoV in 5 (GI) and 10 (GII) of 16 recreational water samples collected around the island of O'ahu, which was confirmed by DNA sequencing and sequence analysis. Findings from this study support the possible use of enteric viral pathogens for environmental monitoring and argue the importance and essentiality for such monitoring activity to ensure a safe use of recreational waters. PMID:21945082

  16. Genotyping and Classification of Tunisian Strains of Avian Reovirus using RT-PCR and RFLP Analysis.

    PubMed

    Kort, Ymene Hellal; Bourogâa, Hager; Gribaa, Latifa; Hassen, Jihene; Ghram, Abdelgelil

    2015-03-01

    Since 1998, avian reovirus (ARV) infection has been detected in broiler and breeding chicken flocks in Tunisia. The genotype of avian reoviruses was established using simple and rapid approaches. Reverse transcription PCR (RT-PCR) on both sigma C (σC) and sigma B (σB)-encoding genes followed by restriction fragment length polymorphism (RFLP) analyses were used to better characterize Tunisian isolated strains. The RT-PCR amplified fragments of 738 and 540 bp for σC- and σB-encoding genes, respectively, of 15 ARV Tunisian strains. DNA fragments amplified from S 1133 vaccine and isolated strains were digested with different restrictions enzymes. RFLP on the σC gene indicated that the field isolates and the S 1133 vaccine strain have identical profiles when separately digested with TaqI, PstI, DdeI, and HincII. Considering the σB gene, RFLP profiles were identical with RsaI, BclI, DpnII, and NciI restriction enzymes for all the strains. However, using MseI and AciI enzymes, it was shown that all tested isolates could be clearly distinguished from the vaccine strain. ARV strains could be classified in groups with strong relatedness. Strain-typing based on cleavage site results are in agreement with ARV clustering based on nucleotide sequences of both the σC and σB genes. RT-PCR-RFLP provides a simple and a rapid approach for genotyping ARV isolates, especially when a large number of isolates are being studied. Additionally, this approach may also determine whether a new variant strain has been introduced into a flock or if a given virus strain is being spread from one flock to another. PMID:26292528

  17. Progress curve analysis of qRT-PCR reactions using the logistic growth equation.

    PubMed

    Liu, Meile; Udhe-Stone, Claudia; Goudar, Chetan T

    2011-01-01

    We present an alternate approach for analyzing data from real-time reverse transcription polymerase chain reaction (qRT-PCR) experiments by fitting individual fluorescence vs. cycle number (F vs. C) curves to the logistic growth equation. The best fit parameters determined by nonlinear least squares were used to compute the second derivative of the logistic equation and the cycle threshold, C(t), was determined from the maximum value of the second derivative. This C(t) value was subsequently used to determine ΔΔC(t) and the amplification efficiency, E(n), thereby completing the analysis on a qRT-PCR data set. The robustness of the logistic approach was verified by testing ~600 F vs. C curves using both new and previously published data sets. In most cases, comparisons were made between the logistic estimates and those from the standard curve and comparative C(t) methods. Deviations between the logistic and standard curve method ranged between 3-10% for C(t) estimates, 2-10% for ΔΔC(t) estimates, and 1-11% for E(n) estimates. The correlations between C(t) estimates from the logistic and standard curve methods were very high, often >0.95. When compared with five other established methods of qRT-PCR data analysis to predict initial concentrations of two genes encompassing a total of 500 F vs. C curves, the logistic estimates were of comparable accuracy. This reliable performance of the logistic approach comes without the need to construct standard curves which can be a laborious undertaking. Also, no a priori assumptions for E(n) are necessary while some other methods assume equal E(n) values for the reference and target genes, an assumption that is not universally valid. In addition, by accurately describing the data in the plateau region of the F vs. C curve, the logistic method overcomes the limitations of the sigmoidal curve fitting method. The streamlined nature of the logistic approach makes it ideal for complete automation on a variety of computing

  18. Evaluation of RT-PCR as a tool for diagnosis of secondary dengue virus infection.

    PubMed

    Sa-ngasang, Areerat; Wibulwattanakij, Sasitorn; Chanama, Sumalee; O-rapinpatipat, Anantchai; A-nuegoonpipat, Atchareeya; Anantapreecha, Surapee; Sawanpanyalert, Pathom; Kurane, Ichiro

    2003-01-01

    Dengue fever and dengue hemorrhagic fever are serious illnesses in many tropical and subtropical countries. Laboratory tests are essential for the confirmation of dengue virus infection. In the present study, we examined the reliability of reverse transcriptase polymerase chain reaction (RT-PCR) in the laboratory diagnosis of dengue, especially in secondary dengue virus infections. We defined the day when fever subsided as fever day 0. In primary dengue virus infection, the dengue viral genome was detected in all of the 7 samples which were collected on fever day -1 or earlier, in 3 of 4 samples on fever day 0, and in 1 of 2 samples on fever day 1. None of the samples collected on fever day 2 or later were positive by RT-PCR. In secondary dengue virus infection, the dengue viral genome was detected in all of the 28 samples which were collected on fever day -2 or earlier, in 25 of 26 on fever day -1, in 29 of 34 on fever day 0, and in 5 of 10 on fever days 1-2. None of the samples collected on fever day 3 or later were positive. Virus isolation and direct titration were attempted using the plasma samples. When the data of secondary infection cases were analyzed based on fever day, dengue viruses were isolated from all of the 5 samples which were collected on fever day -2 or earlier, in 5 of 13 samples on fever day -1, and in 4 of 22 on fever day 0, but were not isolated from any of the 4 samples collected on fever days 1-2. Viruses were directly detected in 7 of 11 samples on fever day -2 or earlier, in 4 of 13 on fever day -1, and in 1 of 16 on fever day 0. These results indicate that RT-PCR is more sensitive than virus isolation and direct virus titration for determining secondary dengue virus infection. The results also suggest that RT-PCR is a useful diagnostic test for confirmation of dengue virus infection in secondary infection as well as in primary infection, especially when plasma samples are collected before the fever subsides.

  19. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR.

    PubMed

    Agindotan, Bright O; Shiel, Patrick J; Berger, Philip H

    2007-06-01

    The requirements of sprouting dormant potato tubers for biological or serological assays or RNA extraction for nucleic acid and PCR assays add to the cost of virus screening. Recently, cheaper, reliable and more rapid methods for the screening of potato tuber-seed pieces for viruses have been developed that do not require sprouted tubers for indexing, including TaqMan real-time RT-PCR. Although the assays are often designed for minimal time and reagent use, they still require a time-consuming and laborious RNA extraction step. This paper describes an assay where four common potato-infecting viruses, Potato leafroll virus, Potato virus A, Potato virus X and Potato virus Y, were detected simultaneously from total RNA and saps of dormant potato tubers in a quadruplex real-time RT-PCR. Factors critical for the detection of these viruses in saps of dormant potato tubers included: optimum dilution and inhibition of RNAses, and the optimization of the reverse transcription and PCR steps. Potato virus detection directly from tuber saps was comparable to that from purified total plant RNA, and this represents significant savings of time and expense. The TaqMan system developed in this study detected between 200 and 400 copies of potato virus RNA.

  20. Microarray screening and qRT-PCR evaluation of microRNA markers for forensic body fluid identification.

    PubMed

    Park, Jong-Lyul; Park, Seong-Min; Kwon, Oh-Hyung; Lee, Han-chul; Kim, Jin-young; Seok, Hyun Ha; Lee, Woo Sik; Lee, Seung-Hwan; Kim, Yong Sung; Woo, Kwang-Man; Kim, Seon-Young

    2014-11-01

    MicroRNAs (miRNA) are a class of small (∼22 nucleotides) noncoding RNAs that regulate diverse biological processes at the post-transcriptional level. MiRNAs have great potential for forensic body fluid identification because they are expressed in a tissue specific manner and are less prone to degradation. Previous studies reported several miRNAs as body fluid specific, but there are few overlaps among them. Here, we used a genome-wide miRNA microarray containing over 1700 miRNAs to assay 20 body fluid samples and identify novel miRNAs useful for forensic body fluid identification. Based on Shannon Entropy and Q-statistics, 203 miRNAs specifically expressed in each body fluid were first selected. Eight miRNAs were then selected as novel forensically relevant miRNA markers: miR-484 and miR-182 for blood, miR-223 and miR-145 for saliva, miR-2392 and miR-3197 for semen, and miR-1260b and miR-654-5p for vaginal secretions. When the eight selected miRNAs were evaluated in 40 additional body fluid samples by qRT-PCR, they showed high sensitivity and specificity for the identification of the target body fluid. We suggest that the eight miRNAs may be candidates for developing an effective molecular assay for forensic body fluid identification.

  1. A multiplex-PCR assay for identification of the quarantine plant pathogen Xanthomonas axonopodis pv. phaseoli.

    PubMed

    Boureau, T; Kerkoud, M; Chhel, F; Hunault, G; Darrasse, A; Brin, C; Durand, K; Hajri, A; Poussier, S; Manceau, C; Lardeux, F; Saubion, F; Jacques, M-A

    2013-01-01

    In this study we developed an algorithm to screen for all exact molecular signatures of the quarantine pathogen Xanthomonas axonopodis pv. phaseoli (Xap), based on available data of the presence or absence of virulence-associated genes. The simultaneous presence of genes avrBsT and xopL is specific to Xap. Therefore we developed a multiplex PCR assay targeting avrBsT and xopL for the molecular identification of Xap. The specificity of this multiplex was validated by comparison to that of other molecular identification assays aimed at Xap, on a wide collection of reference strains. This multiplex was further validated on a blind collection of Xanthomonas isolates for which pathogenicity was assayed by stem wounding and by dipping leaves into calibrated inocula. This multiplex was combined to the previously described X4c/X4e molecular identification assay for Xap. Such a combination enables the molecular identification of all strains of Xanthomonas pathogenic on bean. Results also show that assay by stem wounding does not give reliable results in the case of Xap, and that pathogenicity assays by dipping should be preferred. PMID:23142341

  2. Nested reverse transcriptase-polymerase chain reaction (RT-PCR) for typing ruminant pestiviruses: bovine viral diarrhea viruses and border disease virus.

    PubMed Central

    Fulton, R W; d'Offay, J M; Saliki, J T; Burge, L J; Helman, R G; Confer, A W; Bolin, S R; Ridpath, J F

    1999-01-01

    A nested reverse transcription (RT) polymerase chain reaction (PCR) assay was evaluated for differentiating reference bovine viral diarrhea virus (BVDV) strains, BVDV from diagnostic accessions, modified-live virus (MLV) BVDV strains in bovine viral vaccines, and a reference border disease virus (BDV). The detection level of this assay was compared to viral infection in cell culture. The PCR assay was used to distinguish 3 ruminant pestiviruses, types 1 and 2 BVDV, and type 3 BDV. The consensus (first) PCR assay detected all 3 ruminant pestiviruses, a result of the shared sequence homology. The consensus PCR product was subjected to a second (nested) PCR which used type-specific primers. The nested PCR was able to differentiate the 3 ruminant pestiviruses. Viral stocks of BVDV were diluted 10-fold and processed for the 2-step PCR assay. The sensitivity of this 2-step PCR assay was compared to viral infectivity in cell culture based on identical volumes of the system tested (cell culture assay and processing for RNA). The RT-PCR type-specific assay differentiated BVDV laboratory reference strains (12), diagnostic laboratory isolates (15), 2 MLV BVDV vaccine strains, and a BDV strain. The 30 ruminant pestiviruses typed included: (1) 27 reference strains and diagnostic laboratory isolates; 18 cytopathic (CP) type 1 strains, 3 CP type 2 strains, 3 noncytopathic (NCP) type 1 strains, and 3 NCP type 2 strains; (2) 2 MLV strains, type 1; and (3) 1 CP BDV type 3. The PCR assay had a detection limit of 10 TCID50/0.025 mL of virus when 3 separate BVDV were tested. This 2 step RT-PCR assay would be useful for the typing of ruminant pestiviruses, particularly BVDV isolates from the diagnostic laboratory. Images Figure 1. Figure 2. Figure 3. PMID:10534007

  3. Detection of potato mop-top virus in soils and potato tubers using bait-plant bioassay, ELISA and RT-PCR.

    PubMed

    Arif, Muhammad; Ali, Murad; Rehman, Anayatur; Fahim, Muhammad

    2014-01-01

    The hilly region of Northwest of Pakistan is leading seed potato producing areas of the country. Soil and plant samples were collected from the region and tested for PMTV using both conventional and molecular techniques. The bait plants exhibited PMTV-characteristic v-shaped yellow leaf markings in Nicotiana debneyi plants grown in putative viruliferious soils from 20/26 locations. The results were confirmed by back inoculation of sap from both roots and leaves of bait plant on indicator hosts (N. debneyi, Nicotiana benthamiana). The root samples of bait plants grown in soils of 25 locations and leaves of 24 locations reproduced systemic infection on indicator hosts upon back inoculation. The virus was identified in bait plants grown in soils from 25/26 locations using double antibody sandwich-enzyme linked immunosorbent assay (DAS)-ELISA and reverse transcription and polymerase chain reaction (RT-PCR) methods. The products of the 566bp were amplified from coat protein region of PMTV RNA 3 in both root and leaf samples of baited plants. The virus was detected in 10 potato cultivars commercially grown in the region using DAS-ELISA and RT-PCR. The virus was also detected in zoospores of Spongospora subterranea derived from the peels of selected scabby tubers using triple antibody sandwich (TAS)-ELISA. The results indicate that a bait plant bioassay, infectivity assay, ELISA and RT-PCR can detect PMTV in roots and leaves of baited plants, field samples, zoospores of S. subterranea and tubers of 10 potato cultivars commercially grown in the region.

  4. Development of a real-time quantitative RT-PCR to detect REV contamination in live vaccine.

    PubMed

    Luan, Huaibiao; Wang, Yixin; Li, Yang; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2016-09-01

    Based on the published Avian reticuloendotheliosis virus (REV) whole genome sequence, primers and TaqMan probes were designed and synthesized, and the TaqMan probe fluorescence real-time quantitative RT-PCR (qRT-PCR) method for detecting the REV pol gene was established by optimizing the reaction conditions. Sensitivity analysis showed that the qRT-PCR method had a sensitivity that was 1,000-fold higher than conventional PCR. Additionally, no amplification signals were obtained when we attempted to detect DNA or cDNA of ALV-A/B/J, MDV, CIAV, IBDV, ARV, NDV, AIV, or other viruses, suggesting a high specificity for our method. Various titers of REV were artificially "spiked" into the FPV and MDV vaccines to simulate REV contamination in attenuated vaccines to validate this qRT-PCR method. Our findings indicated that this qRT-PCR method could detect REV contamination at a dose of 1 TCID50/1,000 feathers, which was 10,000-fold more sensitive than the regular RT-PCR detection (10(4) TCID50/1000 feathers).

  5. Rapid detection for primary screening of influenza A virus: microfluidic RT-PCR chip and electrochemical DNA sensor.

    PubMed

    Yamanaka, Keiichiro; Saito, Masato; Kondoh, Kenji; Hossain, Mohammad Mosharraf; Koketsu, Ritsuko; Sasaki, Tadahiro; Nagatani, Naoki; Ikuta, Kazuyoshi; Tamiya, Eiichi

    2011-05-21

    Rapid and definitive diagnosis is critical to the prevention of the spread of endemic human pathogenic viruses. Detection of variant specific genes by reverse transcription polymerase chain reaction (RT-PCR) has become a routine diagnostic test for accurate subtyping of RNA viruses, such as influenza. In this paper, we demonstrate the use of a continuous-flow polydimethylsiloxane (PDMS) microfluidic RT-PCR chip and disposable electrical printed (DEP) chips for rapid amplification and sensing of new influenza (AH1pdm) virus of swine-origin. The RT-PCR chip consisted of four zones: RT reaction zone, initial denaturation zone, thermal cycle zone for PCR (2-step PCR) and pressurizing-channel zone for preventing air-bubble formation. In order to measure electrochemical signals, methylene blue (MB), an electro-active DNA intercalator, was added to the RT-PCR mixture. The RT-PCR was completed within 15 min which was the total flow-through time from the inlet to the outlet, and the reduction signals from amplifications could be detected quickly on the DEP chip. The MB reduction current on the DEP chip with the amplicon significantly reduced compared to non-amplified controls. This microfluidic platform for rapid RT-PCR and the DEP chip for quick electrochemical sensing are suitable for integration, and have the potential to be a portable system for diagnostic tests.

  6. Quantification of llama inflammatory cytokine mRNAs by real-time RT-PCR.

    PubMed

    Odbileg, Raadan; Konnai, Satoru; Usui, Tatsufumi; Ohashi, Kazuhiko; Onuma, Misao

    2005-02-01

    We have developed a method by which llama cytokine mRNAs can be quantified using real-time reverse transcription polymerase chain reaction (RT-PCR). Total RNA was extracted from lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) of llama, reverse transcribed to cDNA, and cytokine profiles for interleukin (IL)-1alpha, IL-1beta, IL-6 and tumor necrosis factor (TNF) alpha were quantified by real-time PCR. The expressions of mRNAs of inflammatory cytokines IL-1alpha, IL-1beta, IL-6 and TNFalpha were upregulated upon stimulation with LPS in a dose- and time-dependent manner. Incubation of PBMCs with 100 and 1,000 pg/ml of LPS for 3 to 6 hr resulted in the acceleration of the mRNA levels of inflammatory cytokines. Here, we describe a highly sensitive and reproducible method to quantify the transcription of llama cytokine mRNAs by real-time RT-PCR with the double-stranded DNA-binding dye SYBR Green I.

  7. Detection of tumor cell contamination in peripheral blood by RT-PCR in gastrointestinal cancer patients.

    PubMed

    Noh, Y H; Im, G; Ku, J H; Lee, Y S; Ahn, M J

    1999-12-01

    We analyzed the peripheral blood of patients with gastrointestinal tract cancer at different stages to assess the presence of carcinoembryonic antigen (CEA) mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR), which we used as an indicator for micrometastatic malignant cells. A total of 35 gastric, 24 colorectal, 4 esophageal and 4 biliary tract cancer patients and nine normal healthy subjects were studied. No CEA mRNA was detected in the nine normal healthy volunteers. CEA mRNA was detected in 100% (10/10) of metastatic, 33.3% (3/9) of early gastric cancer (EGC), and 18.8% (3/16) resectable gastric cancer patients, respectively. In colorectal cancer, 55.6% (5/9) of metastatic cancers were positive for CEA mRNA, and 26.7% (4/15) Duke stage B/C showed positive. One patient with stage III gastric cancer who was negative CEA mRNA initially and turned positive during follow-up, developed multiple bone metastasis one month later. Another stage III patient, who was positive for CEA mRNA, preoperatively revealed early relapse in two months. These results suggest that the identification of circulating tumor cells using RT-PCR for the detection of CEA mRNA is feasible and this analysis may be a promising tool for early detection of micrometastatic circulating malignant cells in patients with gastrointestinal tract cancer.

  8. Cross-Platform Evaluation of Commercial Real-Time SYBR Green RT-PCR Kits for Sensitive and Rapid Detection of European Bat Lyssavirus Type 1

    PubMed Central

    Picard-Meyer, Evelyne; Peytavin de Garam, Carine; Schereffer, Jean Luc; Marchal, Clotilde; Robardet, Emmanuelle; Cliquet, Florence

    2015-01-01

    This study evaluates the performance of five two-step SYBR Green RT-qPCR kits and five one-step SYBR Green qRT-PCR kits using real-time PCR assays. Two real-time thermocyclers showing different throughput capacities were used. The analysed performance evaluation criteria included the generation of standard curve, reaction efficiency, analytical sensitivity, intra- and interassay repeatability as well as the costs and the practicability of kits, and thermocycling times. We found that the optimised one-step PCR assays had a higher detection sensitivity than the optimised two-step assays regardless of the machine used, while no difference was detected in reaction efficiency, R2 values, and intra- and interreproducibility between the two methods. The limit of detection at the 95% confidence level varied between 15 to 981 copies/µL and 41 to 171 for one-step kits and two-step kits, respectively. Of the ten kits tested, the most efficient kit was the Quantitect SYBR Green qRT-PCR with a limit of detection at 95% of confidence of 20 and 22 copies/µL on the thermocyclers Rotor gene Q MDx and MX3005P, respectively. The study demonstrated the pivotal influence of the thermocycler on PCR performance for the detection of rabies RNA, as well as that of the master mixes. PMID:25785274

  9. DNA methylation-specific multiplex assays for body fluid identification.

    PubMed

    An, Ja Hyun; Choi, Ajin; Shin, Kyoung-Jin; Yang, Woo Ick; Lee, Hwan Young

    2013-01-01

    Recent advances in whole-genome epigenetic analysis indicate that chromosome segments called tissue-specific differentially methylated regions (tDMRs) show different DNA methylation profiles according to cell or tissue type. Therefore, body fluid-specific differential DNA methylation is a promising indicator for body fluid identification. However, DNA methylation patterns are susceptible to change in response to environmental factors and aging. Therefore, we investigated age-related methylation changes in semen-specific tDMRs using body fluids from young and elderly men. After confirming the stability of the body fluid-specific DNA methylation profile over time, two different multiplex PCR systems were constructed using methylation-sensitive restriction enzyme PCR and methylation SNaPshot, in order to analyze the methylation status of specific CpG sites from the USP49, DACT1, PRMT2, and PFN3 tDMRs. Both multiplex systems could successfully identify semen with spermatozoa and could differentiate menstrual blood and vaginal fluids from blood and saliva. Although including more markers for body fluid identification might be necessary, this study adds to the support that body fluid identification by DNA methylation profiles could be a valuable tool for forensic analysis of body fluids. PMID:22653424

  10. DNA methylation-specific multiplex assays for body fluid identification.

    PubMed

    An, Ja Hyun; Choi, Ajin; Shin, Kyoung-Jin; Yang, Woo Ick; Lee, Hwan Young

    2013-01-01

    Recent advances in whole-genome epigenetic analysis indicate that chromosome segments called tissue-specific differentially methylated regions (tDMRs) show different DNA methylation profiles according to cell or tissue type. Therefore, body fluid-specific differential DNA methylation is a promising indicator for body fluid identification. However, DNA methylation patterns are susceptible to change in response to environmental factors and aging. Therefore, we investigated age-related methylation changes in semen-specific tDMRs using body fluids from young and elderly men. After confirming the stability of the body fluid-specific DNA methylation profile over time, two different multiplex PCR systems were constructed using methylation-sensitive restriction enzyme PCR and methylation SNaPshot, in order to analyze the methylation status of specific CpG sites from the USP49, DACT1, PRMT2, and PFN3 tDMRs. Both multiplex systems could successfully identify semen with spermatozoa and could differentiate menstrual blood and vaginal fluids from blood and saliva. Although including more markers for body fluid identification might be necessary, this study adds to the support that body fluid identification by DNA methylation profiles could be a valuable tool for forensic analysis of body fluids.

  11. Development of a novel multiplex beads-based assay for autoantibody detection for colorectal cancer diagnosis.

    PubMed

    Villar-Vázquez, Roi; Padilla, Guillermo; Fernández-Aceñero, María Jesús; Suárez, Adolfo; Fuente, Eduardo; Pastor, Carlos; Calero, Miguel; Barderas, Rodrigo; Casal, J Ignacio

    2016-04-01

    Humoral response in cancer patients can be used for early cancer detection. By screening high-density protein microarrays with sera from colorectal cancer (CRC) patients and controls, we identified 16 tumor-associated antigens (TAAs) exhibiting high diagnostic value. This high number of TAAs requires the development of multiplex assays combining different antigens for a faster and more accurate prediction of CRC. Here, we have developed and optimized a bead-based assay using nine selected TAAs and two controls to provide a multiplex test for early CRC diagnosis. We screened a collection of 307 CRC patients' and control sera with the beads assay to identify and validate the best TAA combination for CRC detection. The multiplex bead-based assay exhibited a similar diagnostic performance to detect the humoral response in comparison to multiple ELISA analyses. After multivariate analysis, a panel composed of GTF2B, EDIL3, HCK, PIM1, STK4, and p53, together with gender and age, was identified as the best combination of TAAs for CRC diagnosis, achieving an AUC of 89.7%, with 66% sensitivity at 90.0% fixed specificity. The model was validated using bootstrapping analysis. In summary, we have developed a novel multiplex bead assay that after validation with a larger independent cohort of sera could be utilized in a high-throughput manner for population screening to facilitate the detection of early CRC patients. PMID:26915739

  12. Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp

    SciTech Connect

    Liu Wangjing; Chang Yunshiang; Wang Chunghsiung; Kou, Guang-Hsiung; Lo Chufang . E-mail: gracelow@ntu.edu.tw

    2005-04-10

    Here, we report for the first time the successful use of cycloheximide (CHX) as an inhibitor to block de novo viral protein synthesis during WSSV (white spot syndrome virus) infection. Sixty candidate IE (immediate-early) genes were identified using a global analysis microarray technique. RT-PCR showed that the genes corresponding to ORF126, ORF242 and ORF418 in the Taiwan isolate were consistently CHX-insensitive, and these genes were designated ie1, ie2 and ie3, respectively. The sequences for these IE genes also appear in the two other WSSV isolates that have been sequenced. Three corresponding ORFs were identified in the China WSSV isolate, but only an ORF corresponding to ie1 was predicted in the Thailand isolate. In a promoter activity assay in Sf9 insect cells using EGFP (enhanced green fluorescence protein) as a reporter, ie1 showed very strong promoter activity, producing higher EGFP signals than the insect Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus (OpMNPV) ie2 promoter.

  13. Development of universal primers for detection of potato carlaviruses by RT-PCR.

    PubMed

    Nie, Xianzhou; Bai, Yanju; Molen, Teresa A; Desjardins, David C

    2008-05-01

    To facilitate efficient and accurate detection of potato-infecting carlaviruses, degenerated universal primers were designed based on conserved amino acid and nucleotide sequences. Two sense primers, Car-F1 and Car-F2, were based on the amino acid sequences "SNNMA" and "GLGVPTE", respectively, in the coat protein. The reverse primer, Car-R, which was located at the border of the nucleic acid binding protein gene and the 3' untranslated region, and dT-B, which was derived from the oligo-dT targeting the poly(A) tail, were selected. Successful application of fragments within the predicted size range of carlaviruses was obtained using Car-F1 paired with either Car-R or dT-B from tested carlaviruses (Potato virus S, M and latent) by RT-PCR. The Car-F2 failed to yield clear-cut fragments within the predicted size range when paired with either Car-R or dT-B in RT-PCR. However, a less degenerated version of the primer, Car-F2b, resulted in amplicons within the predicted size range when paired with either Car-R or dT-B. Sequencing of the tentative carlavirus-fragments resulting from Car-F1/Car-R and Car-F2b/dT-B proved their carlavirus-origin, thus indicating the high specificity of these primers. The sensitivity of Car-F1/Car-R or Car-F2b/Car-R mediated RT-PCR for the detection of carlavirus-infected potato tubers were assessed using composite samples containing one carlavirus-infected-potato-tuber RNA sample with up to 49 virus-free-potato-tuber RNA samples under the optimal annealing temperature. The target carlaviruses were detected readily from all composites, demonstrating a high sensitivity. The method was further evaluated using presumed virus-free or carlavirus-infected potatoes of several cultivars, and reliable results were obtained. PMID:18353450

  14. Foot-and-mouth disease virus: a first inter-laboratory comparison trial to evaluate virus isolation and RT-PCR detection methods.

    PubMed

    Ferris, N P; King, D P; Reid, S M; Hutchings, G H; Shaw, A E; Paton, D J; Goris, N; Haas, B; Hoffmann, B; Brocchi, E; Bugnetti, M; Dekker, A; De Clercq, K

    2006-10-31

    Five European reference laboratories participated in an exercise to evaluate the sensitivity and specificity of their routinely employed RT-PCR tests and cell cultures for the detection and isolation of foot-and-mouth disease (FMD) virus. Five identical sets of 20 coded samples were prepared from 10 vesicular epithelia, which were derived from submissions from suspect cases of FMD or swine vesicular disease (SVD). Sixteen samples were derived from six FMD virus positive epithelia representing four different serotypes (two each of types O and A and one each of types Asia 1 and SAT 2), two from samples which had been found to be negative by antigen ELISA and virus isolation (VI) in cell culture and two from SVD virus positive epithelia. Some of the FMD virus positive samples were prepared from 10-fold serial dilutions of three of the initial suspensions. Each laboratory tested the samples by one or more of its available RT-PCR procedures and inoculated cell cultures that it routinely uses for FMD diagnosis in attempts to isolate virus, the specificity of which was confirmed by antigen ELISA. The best of the RT-PCR assays used in each laboratory gave comparable results while the sensitivity of cell cultures was variable from high in one laboratory, moderate in two and low in two others. This prototype panel of samples would appear suitable for external quality assurance of these tests but would benefit from the inclusion of more negative samples and an extension in the serial dilution range of one or more of the FMD positive sample titration series.

  15. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain.

    PubMed

    Tanga, F Y; Raghavendra, V; DeLeo, J A

    2004-01-01

    Activated spinal glial cells have been strongly implicated in the development and maintenance of persistent pain states following a variety of stimuli including traumatic nerve injury. The present study was conducted to characterize the time course of surface markers indicative of microglial and astrocytic activation at the transcriptional level following an L5 nerve transection that results in behavioral hypersensitivity. Male Sprague-Dawley rats were divided into a normal group, a sham surgery group with an L5 spinal nerve exposure and an L5 spinal nerve transected group. Mechanical allodynia (heightened response to a non-noxious stimulus) of the ipsilateral hind paw was assessed throughout the study. Spinal lumbar mRNA levels of glial fibrillary acidic protein (GFAP), integrin alpha M (ITGAM), toll-like receptor 4 (TLR4) and cluster determinant 14 (CD14) were assayed using real-time reverse transcription polymerase chain reaction (RT-PCR) at 4 h, 1, 4, 7, 14 and 28 days post surgery. The spinal lumbar mRNA expression of ITGAM, TLR4, and CD14 was upregulated at 4 h post surgery, CD14 peaked 4 days after spinal nerve transection while ITGAM and TLR4 continued to increase until day 14 and returned to almost normal levels by postoperative day 28. In contrast, spinal GFAP mRNA did not significantly increase until postoperative day 4 and then continued to increase over the duration of the study. Our optimized real-time RT-PCR method was highly sensitive, specific and reproducible at a wide dynamic range. This study demonstrates that peripheral nerve injury induces an early spinal microglial activation that precedes astrocytic activation using mRNA for surface marker expression; the delayed but sustained expression of mRNA coding for GFAP implicates astrocytes in the maintenance phase of persistent pain states. In summary, these data demonstrate a distinct spinal glial response following nerve injury using real-time RT-PCR. PMID:15145554

  16. Design and validation of a real-time RT-PCR for the simultaneous detection of enteroviruses and parechoviruses in clinical samples.

    PubMed

    Cabrerizo, María; Calvo, Cristina; Rabella, Nuria; Muñoz-Almagro, Carmen; del Amo, Eva; Pérez-Ruiz, Mercedes; Sanbonmatsu-Gámez, Sara; Moreno-Docón, Antonio; Otero, Almudena; Trallero, Gloria

    2014-11-01

    Human enteroviruses (EVs) and parechoviruses (HPeVs) are important etiological agents causing infections such as meningitis, encephalitis and sepsis-like disease in neonates and young children. We have developed a real-time RT-PCR for simultaneous detection of EV and HPeV in clinical samples. Primers and probe sets were designed from the conserved 5'-noncoding region of the genomes. The sensitivity, specificity and reproducibility of the technique were measured using a set of 25 EV and 6 HPeV types. All EVs but no HPeVs were detected with the EV primers-probe set. The HPeV primers-probe set detected only the 6 HPeV types. The lower detection limit was found to be 4 and 40CCID50/ml for HPeV and EV respectively, demonstrating high sensitivity of the technique for both viruses. The threshold cycle values were highly reproducible on repeat testing of positive controls among assay runs. The assay was evaluated in 53 clinical samples of suspected meningitis, sepsis or febrile syndromes from children under 3 years. In 11 of these (21%) EVs were detected, while 4, i.e. 7.5%, were HPeV positive. Molecular typing was carried out for 73% of the viruses. In summary, the RT-PCR method developed demonstrated effectively both EV and HPeV detection, which can cause similar clinical symptoms in infants.

  17. Distinction between persistent and transient infection in a bovine viral diarrhoea (BVD) control programme: appropriate interpretation of real-time RT-PCR and antigen-ELISA test results.

    PubMed

    Hanon, J-B; Van der Stede, Y; Antonissen, A; Mullender, C; Tignon, M; van den Berg, T; Caij, B

    2014-04-01

    Control of bovine viral diarrhoea (BVD) in Belgium is currently implemented on a voluntary basis at herd level and mainly relies on detection and culling of persistently infected (PI) animals. The present field study was conducted during the winter of 2010/2011 to assess the performances of diagnostic assays used in the testing scheme for BVD as proposed by the two Belgian regional laboratories. Individual blood samples were collected from 4972 animals, and individual samples from the same herd were pooled (maximum of 30 individual samples per pool) and screened for the presence of Bovine Viral Diarrhoea Virus (BVDV)-specific RNA using a commercial real-time RT-PCR test (ADIAGENE). Individual samples from positive pools were then tested in parallel with the same RT-PCR test and with an antigen-capture ELISA test (IDEXX) to detect viremic animals. This study demonstrated that individual results differed according to the type of assay used (P < 0.001): 140 animals (2.8%) were positive by RT-PCR and 72 (1.4%) by antigen-ELISA. A second blood sample was taken 40 days later from 74 PCR positive animals to detect persistent viremia: 17 (23%) of these were still PCR positive and considered to be PI and the 57 that no longer tested positive were assumed to be transiently infected (TI) animals. All PI animals were positive also by antigen-ELISA at both time points. Among TI animals, 10 (16%) were positive by antigen-ELISA at the first but none at the second sampling. A highly significant difference in cycle threshold (Ct ) values obtained by RT-PCR was observed between PI and TI animals. ROC analysis was performed to establish thresholds to confirm with high probability that an animal is PI, based on the result of RT-PCR test performed on a single individual blood sample.

  18. MMAC/PTEN gene expression in endometrial cancer: RT-PCR studies.

    PubMed

    Sobczuk, Anna; Smolarz, Beata; Romanowicz-Makowska, Hanna; Pertyński, Tomasz

    2006-01-01

    Mutations in the MMAC/PTEN (phosphatase and tensin homologue deleted on chromosome 10) gene are documented in cancers of the breast, prostate, ovary, colon, melanoma, glioblastoma, lymphoma and endometrium. In the present work MMAC/PTEN gene expression in women with endometrial adenocarcinoma (n=70) in RNA samples obtained from cancer tissue were investigated. Control DNA was obtained from 68 normal endometrial tissue. The MMAC/PTEN expression was determined by RT-PCR analysis. The expression of MMAC/PTEN gene in endometrial adenocarcinoma cases was significantly reduced compared to the expression in the normal samples (P < 0.05). Furthermore the significant difference (P < 0.05) was observed between the expression of MMAC/PTEN in stage III versus lower stages of endometrial cancer. The results support the hypothesis that the MMAC/PTEN gene expression may be associated with the incidence of endometrial cancer.

  19. Emulating a crowded intracellular environment in vitro dramatically improves RT-PCR performance

    SciTech Connect

    Lareu, Ricky R.; Harve, Karthik S.; Raghunath, Michael

    2007-11-09

    The polymerase chain reaction's (PCR) phenomenal success in advancing fields as diverse as Medicine, Agriculture, Conservation, or Paleontology is based on the ability of using isolated prokaryotic thermostable DNA polymerases in vitro to copy DNA irrespective of origin. This process occurs intracellularly and has evolved to function efficiently under crowded conditions, namely in an environment packed with macromolecules. However, current in vitro practice ignores this important biophysical parameter of life. In order to more closely emulate conditions of intracellular biochemistry in vitro we added inert macromolecules into reverse transcription (RT) and PCR. We show dramatic improvements in all parameters of RT-PCR including 8- to 10-fold greater sensitivity, enhanced polymerase processivity, higher specific amplicon yield, greater primer annealing and specificity, and enhanced DNA polymerase thermal stability. The faster and more efficient reaction kinetics was a consequence of the cumulative molecular and thermodynamic effects of the excluded volume effect created by macromolecular crowding.

  20. Seasonal variation in transcript abundance in cork tissue analyzed by real time RT-PCR.

    PubMed

    Soler, Marçal; Serra, Olga; Molinas, Marisa; García-Berthou, Emili; Caritat, Antònia; Figueras, Mercè

    2008-05-01

    The molecular processes underlying cork biosynthesis and differentiation are mostly unknown. Recently, a list of candidate genes for cork biosynthesis and regulation was made available opening new possibilities for molecular studies in cork oak (Quercus suber L.). Based on this list, we analyzed the seasonal variation in mRNA abundance in cork tissue of selected genes by real time reverse-transcriptase polymerase chain reaction (RT-PCR). Relative transcript abundance was evaluated by principal component analysis and genes were clustered in several functional subgroups. Structural genes of suberin pathways such as CYP86A1, GPAT and HCBT, and regulatory genes of the NAM and WRKY families showed highest transcript accumulation in June, a crucial month for cork development. Other cork structural genes, such as FAT and F5H, were significantly correlated with temperature and relative humidity. The stress genes HSP17.4 and ANN were strongly positively correlated to temperature, in accord with their protective role.

  1. Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions.

    PubMed

    Yang, Qi; Yin, Jiajia; Li, Gao; Qi, Liwang; Yang, Feiyun; Wang, Ruigang; Li, Guojing

    2014-01-01

    Caragana korshinskii Kom., which is widely distributed in the northwest China and Mongolia, is an important forage bush belonging to the legume family with high economic and ecological value. Strong tolerance ability to various stresses makes C. korshinskii Kom. a valuable species for plant stress research. In this study, suitable reference genes for quantitative real-time reverse transcription PCR (qRT-PCR) were screened from 11 candidate reference genes, including ACT, GAPDH, EF1α, UBQ, TUA, CAP, TUB, TUB3, SKIP1, SKIP5-1 and SKIP5-2. A total of 129 samples under drought, heat, cold, salt, ABA and high pH treatment were profiled, and software such as geNORM, NormFinder and BestKeeper were used for reference gene evaluation and selection. Different suitable reference genes were selected under different stresses. Across all 129 samples, GAPDH, EF1α and SKIP5-1 were found to be the most stable reference genes, and EF1α+SKIP5-1 is the most stable reference gene combination. Conversely, TUA, TUB and SKIP1 were not suitable for using as reference genes owing to their great expression variation under some stress conditions. The relative expression levels of CkWRKY1 were detected using the stable and unstable reference genes and their applicability was confirmed. These results provide some stable reference genes and reference gene combinations for qRT-PCR under different stresses in C. korshinskii Kom. for future research work, and indicate that CkWRKY1 plays essential roles in response to stresses in C. korshinskii.

  2. Quantitative Evaluation and Selection of Reference Genes for Quantitative RT-PCR in Mouse Acute Pancreatitis

    PubMed Central

    Yan, Zhaoping; Gao, Jinhang; Lv, Xiuhe; Yang, Wenjuan; Wen, Shilei; Tong, Huan; Tang, Chengwei

    2016-01-01

    The analysis of differences in gene expression is dependent on normalization using reference genes. However, the expression of many of these reference genes, as evaluated by quantitative RT-PCR, is upregulated in acute pancreatitis, so they cannot be used as the standard for gene expression in this condition. For this reason, we sought to identify a stable reference gene, or a suitable combination, for expression analysis in acute pancreatitis. The expression stability of 10 reference genes (ACTB, GAPDH, 18sRNA, TUBB, B2M, HPRT1, UBC, YWHAZ, EF-1α, and RPL-13A) was analyzed using geNorm, NormFinder, and BestKeeper software and evaluated according to variations in the raw Ct values. These reference genes were evaluated using a comprehensive method, which ranked the expression stability of these genes as follows (from most stable to least stable): RPL-13A, YWHAZ > HPRT1 > GAPDH > UBC > EF-1α > 18sRNA > B2M > TUBB > ACTB. RPL-13A was the most suitable reference gene, and the combination of RPL-13A and YWHAZ was the most stable group of reference genes in our experiments. The expression levels of ACTB, TUBB, and B2M were found to be significantly upregulated during acute pancreatitis, whereas the expression level of 18sRNA was downregulated. Thus, we recommend the use of RPL-13A or a combination of RPL-13A and YWHAZ for normalization in qRT-PCR analyses of gene expression in mouse models of acute pancreatitis. PMID:27069927

  3. Investigation of HLA class I downregulation in breast cancer by RT-PCR.

    PubMed

    Palmisano, G L; Pistillo, M P; Capanni, P; Pera, C; Nicolò, G; Salvi, S; Perdelli, L; Pasciucco, G; Ferrara, G B

    2001-02-01

    Downregulation of HLA class I antigen expression has been reported in a significant proportion of primary breast carcinomas suggesting an escape mechanism from CTL mediated lysis leading to tumor dissemination and metastasis. We have previously reported the biochemical and immunohistochemical analysis of HLA total class I (W6/32 mAb), alpha-chain (Q1/28,TP25.99 mAbs) and beta(2)-microglobulin (Namb-1 mAb) subunits expression in 25 primary breast carcinomas. This study at protein level resulted in the observation of three different HLA class I expression patterns by both techniques: high, low, and absent downregulation patterns. To better characterize the HLA class I antigens downregulation we extended such analysis also at RNA level by RT-PCR using HLA-A, HLA-B, HLA-C, and beta(2)-microglobulin specific primers either in breast cancer or normal tissues derived from the same patient. None (100%) of the alpha-chain genes analyzed in patient tumor tissues showed significant reduction of expression. In 10 patients out of 25 (40%) the beta(2)-microglobulin gene showed complete loss of expression compared with the corresponding normal tissue counterpart, which showed a constitutive expression, whereas in 2 patients (12.5%) its expression was comparable with the normal counterpart. Sequence analysis at genomic level revealed no defects affecting beta(2)-microglobulin gene in those patients showing lack of expression. Also TAP1 and TAP2 genes expression were investigated in order to confirm or exclude involvement of the MHC class I molecules assembling machinery. The RT-PCR approach mainly confirmed our beta(2)-microglobulin biochemical analysis indicating that in breast cancer specimens it is possible to address the HLA class I gene downregulation as a phenomenon occurring at post-transcriptional level mainly affecting the beta(2)-microglobulin gene expression.

  4. A Protocol for a High-Throughput Multiplex Cell Viability Assay.

    PubMed

    Gilbert, Daniel F; Boutros, Michael

    2016-01-01

    High-throughput cell viability assays are broadly used in RNAi and small molecule screening experiments to identify compounds that selectively kill cancer cells or as counter screens to exclude the compounds that have a generic effect on cell growth. While there are several assaying techniques available, cellular fitness is often assessed on the basis of one single and often rather indirect physiological indicator. This can lead to inconsistencies and poor correspondence between cell viability screening experiments, conducted under comparable conditions but with different viability indicators. Multiplexing, i.e., the combination of different individual assaying techniques in one experiment and subsequent comparative analysis of multiparametric data can decrease inter-assay variability and increase dataset concordance. Here, we describe a protocol for a multiplexing approach for high-throughput cell viability screening to address the issues encountered in the classical strategy using a single fitness indicator described above. The method combines a biochemical, luminescence-based approach and two fluorescence-based assay types. The biochemical method assesses cellular fitness by quantifying intracellular ATP concentration. Calcein labeling reflects cell fitness through membrane integrity and indirect measurement of ATP-dependent enzymatic esterase activity. Hoechst DNA stain correlates cell fitness with cellular DNA content. The presented multiplexing approach is suitable for low, medium and high-throughput screening and has the potential to decrease inter-assay variability and increase dataset concordance as well as reproducibility of experimental results. PMID:27581285

  5. Evaluation of Multiplexed Foot-and-Mouth Disease Nonstructural Protein Antibody Assay Against Standardized Bovine Serum Panel

    SciTech Connect

    Perkins, J; Parida, S; Clavijo, A

    2007-05-14

    Liquid array technology has previously been used to show proof-of-principle of a multiplexed non structural protein serological assay to differentiate foot-and-mouth infected and vaccinated animals. The current multiplexed assay consists of synthetically produced peptide signatures 3A, 3B and 3D and recombinant protein signature 3ABC in combination with four controls. To determine diagnostic specificity of each signature in the multiplex, the assay was evaluated against a naive population (n = 104) and a vaccinated population (n = 94). Subsequently, the multiplexed assay was assessed using a panel of bovine sera generated by the World Reference Laboratory for foot-and-mouth disease in Pirbright, UK. This sera panel has been used to assess the performance of other singleplex ELISA-based non-structural protein antibody assays. The 3ABC signature in the multiplexed assay showed comparative performance to a commercially available non-structural protein 3ABC ELISA (Cedi test{reg_sign}) and additional information pertaining to the relative diagnostic sensitivity of each signature in the multiplex is acquired in one experiment. The encouraging results of the evaluation of the multiplexed assay against a panel of diagnostically relevant samples promotes further assay development and optimization to generate an assay for routine use in foot-and-mouth disease surveillance.

  6. Heminested reverse-transcriptase polymerase chain reaction (hnRT-PCR) as a tool for rabies virus detection in stored and decomposed samples

    PubMed Central

    Araújo, Danielle B; Langoni, Helio; Almeida, Marilene F; Megid, Jane

    2008-01-01

    Background The use of methods, both sensitive and specific, for rabies diagnosis are important tools for the control and prophylaxis of the disease. Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR) has been used in rabies diagnosis with good results, even in decomposed materials. Additionally, molecular techniques have been used for epidemiological studies and to gain a better knowledge of viral epidemiology. Findings The aim of this work was to evaluate the RT-PCR and hnRT-PCR for rabies virus detection in original tissues stored at -20°C for different periods considering their use for rabies virus detection in stored and decomposed samples. RT-PCR and hnRT-PCR were evaluated in 151 brain samples from different animal species, thawed and left at room temperature for 72 hours for decomposition. The RT-PCR and hnRT-PCR results were compared with previous results from Direct Fluorescent Antibody Test and Mouse Inoculation Test. From the 50 positive fresh samples, 26 (52%) were positive for RT-PCR and 45 (90%) for hnRT-PCR. From the 48 positive decomposed samples, 17 (34, 3%) were positive for RT-PCR and 36 (75%) for hnRT-PCR. No false-positives results were found in the negatives samples evaluated to the molecular techniques. Conclusion These results show that the hnRT-PCR was more sensitive than RT-PCR, and both techniques presented lower sensibility in decomposed samples. The hnRT-PCR demonstrated efficacy in rabies virus detection in stored and decomposed materials suggesting it's application for rabies virus retrospective epidemiological studies. PMID:18710536

  7. Multiplexed chemiluminescent assays in ArrayPlates for high-throughput measurement of gene expression

    NASA Astrophysics Data System (ADS)

    Martel, Ralph R.; Rounseville, Matthew P.; Botros, Ihab W.; Seligmann, Bruce E.

    2002-06-01

    Multiplexed Molecular Profiling (MMP) assays for drug discovery are performed in ArrayPlates. ArrayPlates are 96- well microtiter plates that contain a 16-element array at the bottom of each well. Each element within an array measures one analyte in a sample. A CCD imager records the quantitative chemiluminescent readout of all 1,536 elements in a 96-well plate simultaneously. Since array elements are reagent modifiable by the end-user, ArrayPlates can be adapted to a broad range of nucleic acid- and protein-based assays. Such multiplexed assays are rapidly established, flexible, robust, automation-friendly and cost-effective. Nucleic acid assays in ArrayPlates can detect DNA and RNA, including SNPs and ESTs. A multiplexed mRNA assay to measure the expression of 16 genes is described. The assay combines a homogeneous nuclease protection assay with subsequent probe immobilization to the array by means of a sandwich hybridization followed with chemiluminescent detection. This assay was used to examine cells grown and treated in microplates and avoided cloning, transfection, RNA insolation, reverse transcription, amplification and fluorochrome labeling. Standard deviations for the measurement of 16 genes ranged from 3 percent to 13 percent in samples of 30,000 cells. Such ArrayPlates transcription assays are useful in drug discovery and development for target validation, screening, lead optimization, metabolism and toxicity profiling. Chemiluminescent detection provides ArrayPlates assays with high signal-to-noise readout and simplifies imager requirements. Imaging a 2D surface that contains arrays simplifies lens requirements relative to imaging columns of liquid in microtiter plate wells. The Omix imager for ArrayPlates is described.

  8. Identification of shared TCR sequences from T cells in human breast cancer using emulsion RT-PCR

    PubMed Central

    Munson, Daniel J.; Egelston, Colt A.; Chiotti, Kami E.; Parra, Zuly E.; Bruno, Tullia C.; Moore, Brandon L.; Nakano, Taizo A.; Simons, Diana L.; Jimenez, Grecia; Yim, John H.; Rozanov, Dmitri V.; Falta, Michael T.; Fontenot, Andrew P.; Reynolds, Paul R.; Leach, Sonia M.; Borges, Virginia F.; Kappler, John W.; Spellman, Paul T.; Slansky, Jill E.

    2016-01-01

    Infiltration of T cells in breast tumors correlates with improved survival of patients with breast cancer, despite relatively few mutations in these tumors. To determine if T-cell specificity can be harnessed to augment immunotherapies of breast cancer, we sought to identify the alpha–beta paired T-cell receptors (TCRs) of tumor-infiltrating lymphocytes shared between multiple patients. Because TCRs function as heterodimeric proteins, we used an emulsion-based RT-PCR assay to link and amplify TCR pairs. Using this assay on engineered T-cell hybridomas, we observed ∼85% accurate pairing fidelity, although TCR recovery frequency varied. When we applied this technique to patient samples, we found that for any given TCR pair, the dominant alpha- or beta-binding partner comprised ∼90% of the total binding partners. Analysis of TCR sequences from primary tumors showed about fourfold more overlap in tumor-involved relative to tumor-free sentinel lymph nodes. Additionally, comparison of sequences from both tumors of a patient with bilateral breast cancer showed 10% overlap. Finally, we identified a panel of unique TCRs shared between patients’ tumors and peripheral blood that were not found in the peripheral blood of controls. These TCRs encoded a range of V, J, and complementarity determining region 3 (CDR3) sequences on the alpha-chain, and displayed restricted V-beta use. The nucleotides encoding these shared TCR CDR3s varied, suggesting immune selection of this response. Harnessing these T cells may provide practical strategies to improve the shared antigen-specific response to breast cancer. PMID:27307436

  9. qRT-PCR quantification of the biological control agent Trichoderma harzianum in peat and compost-based growing media.

    PubMed

    Beaulieu, Robert; López-Mondéjar, Rubén; Tittarelli, Fabio; Ros, Margarita; Pascual, José Antonio

    2011-02-01

    To ensure proper use of Trichoderma harzianum in agriculture, accurate data must be obtained in population monitoring. The effectiveness of qRT-PCR to quantify T. harzianum in different growing media was compared to the commonly used techniques of colony counting and qPCR. Results showed that plate counting and qPCR offered similar T. harzianum quantification patterns of an initial rapid increase in fungal population that decreased over time. However, data from qRT-PCR showed a population curve of active T. harzianum with a delayed onset of initial growth which then increased throughout the experiment. Results demonstrated that T. harzianum can successfully grow in these media and that qRT-PCR can offer a more distinct representation of active T. harzianum populations. Additionally, compost amended with T. harzianum exhibited a lower Fusarium oxysporum infection rate (67%) and lower percentage of fresh weight loss (11%) in comparison to amended peat (90% infection rate, 23% fresh weight loss).

  10. Validation of Reference Genes for Gene Expression by Quantitative Real-Time RT-PCR in Stem Segments Spanning Primary to Secondary Growth in Populus tomentosa.

    PubMed

    Wang, Ying; Chen, Yajuan; Ding, Liping; Zhang, Jiewei; Wei, Jianhua; Wang, Hongzhi

    2016-01-01

    The vertical segments of Populus stems are an ideal experimental system for analyzing the gene expression patterns involved in primary and secondary growth during wood formation. Suitable internal control genes are indispensable to quantitative real time PCR (qRT-PCR) assays of gene expression. In this study, the expression stability of eight candidate reference genes was evaluated in a series of vertical stem segments of Populus tomentosa. Analysis through software packages geNorm, NormFinder and BestKeeper showed that genes ribosomal protein (RP) and tubulin beta (TUBB) were the most unstable across the developmental stages of P. tomentosa stems, and the combination of the three reference genes, eukaryotic translation initiation factor 5A (eIF5A), Actin (ACT6) and elongation factor 1-beta (EF1-beta) can provide accurate and reliable normalization of qRT-PCR analysis for target gene expression in stem segments undergoing primary and secondary growth in P. tomentosa. These results provide crucial information for transcriptional analysis in the P. tomentosa stem, which may help to improve the quality of gene expression data in these vertical stem segments, which constitute an excellent plant system for the study of wood formation. PMID:27300480

  11. A novel quantitative reverse-transcription PCR (qRT-PCR) for the enumeration of total bacteria, using meat micro-flora as a model.

    PubMed

    Dolan, Anthony; Burgess, Catherine M; Barry, Thomas B; Fanning, Seamus; Duffy, Geraldine

    2009-04-01

    A sensitive quantitative reverse-transcription PCR (qRT-PCR) method was developed for enumeration of total bacteria. Using two sets of primers separately to target the ribonuclease-P (RNase P) RNA transcripts of gram positive and gram negative bacteria. Standard curves were generated using SYBR Green I kits for the LightCycler 2.0 instrument (Roche Diagnostics) to allow quantification of mixed microflora in liquid media. RNA standards were used and extracted from known cell equivalents and subsequently converted to cDNA for the construction of standard curves. The number of mixed bacteria in culture was determined by qRT-PCR, and the results correlated (r(2)=0.88, rsd=0.466) with the total viable count over the range from approx. Log(10) 3 to approx. Log(10) 7 CFU ml(-1). The rapid nature of this assay (8 h) and its potential as an alternative method to the standard plate count method to predict total viable counts and shelf life are discussed.

  12. Genome-Wide Identification and Validation of Reference Genes in Infected Tomato Leaves for Quantitative RT-PCR Analyses

    PubMed Central

    Müller, Oliver A.; Grau, Jan; Thieme, Sabine; Prochaska, Heike; Adlung, Norman; Sorgatz, Anika; Bonas, Ulla

    2015-01-01

    The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria (Xcv) causes bacterial spot disease of pepper and tomato by direct translocation of type III effector proteins into the plant cell cytosol. Once in the plant cell the effectors interfere with host cell processes and manipulate the plant transcriptome. Quantitative RT-PCR (qRT-PCR) is usually the method of choice to analyze transcriptional changes of selected plant genes. Reliable results depend, however, on measuring stably expressed reference genes that serve as internal normalization controls. We identified the most stably expressed tomato genes based on microarray analyses of Xcv-infected tomato leaves and evaluated the reliability of 11 genes for qRT-PCR studies in comparison to four traditionally employed reference genes. Three different statistical algorithms, geNorm, NormFinder and BestKeeper, concordantly determined the superiority of the newly identified reference genes. The most suitable reference genes encode proteins with homology to PHD finger family proteins and the U6 snRNA-associated protein LSm7. In addition, we identified pepper orthologs and validated several genes as reliable normalization controls for qRT-PCR analysis of Xcv-infected pepper plants. The newly identified reference genes will be beneficial for future qRT-PCR studies of the Xcv-tomato and Xcv-pepper pathosystems, as well as for the identification of suitable normalization controls for qRT-PCR studies of other plant-pathogen interactions, especially, if related plant species are used in combination with bacterial pathogens. PMID:26313760

  13. The diagnostic utility of combination of HMGA2 and IMP3 qRT-PCR testing in thyroid neoplasms.

    PubMed

    Jin, Long; Lloyd, Ricardo V; Henry, Michael R; Erickson, Lori A; Sebo, Thomas J; Rumilla, Kandelaria M; Zhang, Jun

    2015-01-01

    The diagnosis of malignant thyroid tumors in some cytologic and histologic specimens remains challenging. High-mobility group A2 (HMGA2) expression and insulin-like growth factor II mRNA-binding protein-3 (IMP3) expression were evaluated by relative quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The aim of this study was to evaluate whether the combination of HMGA2 and IMP3 qRT-PCR was diagnostically useful in differentiating benign from malignant thyroid neoplasms. Fine-needle aspiration (FNA) specimens from 120 patients including 56 benign lesions and 64 carcinomas were used. The available 80 corresponding formalin-fixed paraffin-embedded (FFPE) thyroid tissues from 66 patients were also included in this study. HMGA2 and IMP3 expression levels were detected by qRT-PCR and reported as relative fold change after normalizing with a calibrator. The diagnostic utilities of HMGA2 and IMP3 qRT-PCR tests were evaluated individually and in combination. In FNA specimens, HMGA2 and IMP3 expression was consistently higher in thyroid malignancies compared with benign lesions in all subgroups except in Hürthle cell tumors. After exclusion of Hürthle cell tumors, the sensitivity was 90.2% for HMGA2, 88.2% for IMP3, and 98% for HMGA2+IMP3; the specificity was 97.1% for HMGA2, 79.4% for IMP3, and 79.4% for HMGA+IMP3. qRT-PCR data showed similar results in FFPE tissues: the sensitivity was 84.2% for HMGA2, 85.7% for IMP3, and 94.7% for HMGA2+IMP3; the specificity was 96.9% for HMGA2, 91.2% for IMP3, and 90.6% for HMGA2+IMP3. qRT-PCR data were concordant between FNA and FFPE samples for HMGA2 (97.4%) and IMP3 (96.9%). The results indicate that HMGA2 qRT-PCR with high specificity may be a useful ancillary technique to assist in the classification of difficult thyroid specimens, excluding Hürthle cell tumors. The HMGA2 and IMP3 qRT-PCR combination model with increased sensitivity and negative predictive value (96.4%) may be useful in screening thyroid

  14. Multiplex SYBR Green Real-Time PCR Assay for Detection of Respiratory Viruses

    PubMed Central

    Sultani, Mozhdeh; Mokhtari Azad, Talat; Eshragian, Mohammadreza; Shadab, Azadeh; Naseri, Maryam; Eilami, Owrang; Yavarian, Jila

    2015-01-01

    Background: It is often difficult for a physician to distinguish between viral and bacterial causes of respiratory infections and this may result in overuse of antibiotics. In many cases of community-acquired respiratory infections, clinicians treat patients empirically. The development of molecular methods for direct detection of viruses has been progressed recently. Objectives: The objective of this study was recognizing the panel of respiratory RNA viruses by multiplex SYBR Green real-time polymerase chain reaction (PCR). Materials and Methods: Randomized 172 influenza-negative respiratory specimens of all age groups of hospitalized patients were collected. After RNA extraction, cDNA was synthesized. Three SYBR Green multiplex real-time PCR assays were developed for simultaneous detection of 12 respiratory RNA viruses. Each set of multiplex methods detected four viruses, the first set: respiratory syncytial virus, human metapneumovirus, rhinovirus, enterovirus; the second set: parainfluenza viruses 1 - 4 (PIV1-4); the third set: coronaviruses NL63, 229E, severe acute respiratory syndrome (SARS), and OC43. Results: Application of the multiplex SYBR Green real-time PCR in clinical samples from 172 patients in a one-year study resulted in detection of 19 (11.04%) PIV3, 9 (5.23%) PIV4, and 1 (0.58%) coronavirus NL63. All the positive samples were detected during December to March (2011 - 2012). Conclusions: Multiplex SYBR Green real-time PCR is a rapid and relatively inexpensive method for detection of respiratory viruses. PMID:26468358

  15. Development and Evaluation of an Enterovirus D68 Real-Time Reverse Transcriptase PCR Assay

    PubMed Central

    Wylie, Todd N.; Wylie, Kristine M.; Buller, Richard S.; Cannella, Maria

    2015-01-01

    We have developed and evaluated a real-time reverse transcriptase PCR (RT-PCR) assay for the detection of human enterovirus D68 (EV-D68) in clinical specimens. This assay was developed in response to the unprecedented 2014 nationwide EV-D68 outbreak in the United States associated with severe respiratory illness. As part of our evaluation of the outbreak, we sequenced and published the genome sequence of the EV-D68 virus circulating in St. Louis, MO. This sequence, along with other GenBank sequences from past EV-D68 occurrences, was used to computationally select a region of EV-D68 appropriate for targeting in a strain-specific RT-PCR assay. The RT-PCR assay amplifies a segment of the VP1 gene, with an analytic limit of detection of 4 copies per reaction, and it was more sensitive than commercially available assays that detect enteroviruses and rhinoviruses without distinguishing between the two, including three multiplex respiratory panels approved for clinical use by the FDA. The assay did not detect any other enteroviruses or rhinoviruses tested and did detect divergent strains of EV-D68, including the first EV-D68 strain (Fermon) identified in California in 1962. This assay should be useful for identifying and studying current and future outbreaks of EV-D68 viruses. PMID:26063859

  16. Prevalence of BPV genotypes in a German cowshed determined by a novel multiplex BPV genotyping assay.

    PubMed

    Schmitt, Markus; Fiedler, Volker; Müller, Martin

    2010-12-01

    Bovine papillomaviruses (BPV) induce benign tumours of the cutaneous or mucosal epithelia in cattle, but are also involved in the development of cancer of the urinary bladder and of the upper gastrointestinal tract. Current BPV genotyping assays employ techniques developed originally for the detection of human papillomaviruses. These methods rely on consensus PCR amplification and subsequent sequencing and are cumbersome and limited in their analytic sensitivity to detect BPV, especially in multiple infections. In this study, a novel multiplex BPV genotyping assay is described to detect sensitively and specifically BPV-1 to -10 as well as BaPV-11. The assay is based on a multiplex PCR using novel broad-spectrum bovine papillomavirus (BSBP) primers followed by multiplex bovine genotyping (MBG) by Luminex xMAP technology. The detection limit of the assay was shown to be between 10 and 100 BPV genomes. In a first application, BPV was detected in 100% of wart preparations with BPV-8 being most prevalent, followed by types 6, 1 and 10. The majority of warts were positive for at least four BPV types. In conclusion, BSBP-PCR/MBG is a powerful high-throughput method suitable for the study of the natural history of BPV and could be useful to veterinarians for the monitoring of the efficacy of future BPV vaccines.

  17. One-step multiplex reverse transcription-polymerase chain reaction for the simultaneous detection of three rice viruses.

    PubMed

    Cho, Sang-Yun; Jeong, Rae-Dong; Yoon, Young-Nam; Lee, Su-Heon; Shin, Dong Bum; Kang, Hang-Won; Lee, Bong Choon

    2013-11-01

    Rice stripe virus (RSV), Rice black-streaked dwarf virus (RBSDV), and Rice dwarf virus (RDV) are major rice-infecting viruses in Korea that can cause serious crop losses. A one-step multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed for the simultaneous detection of these rice viruses. Three sets of specific primers targeted to the capsid protein coding genes of RSV, RBSDV, and RDV were used to amplify fragments that were 703 bp, 485 bp, and 252 bp, respectively. The one-step mRT-PCR assay proved to be a sensitive and rapid method for detecting the three rice viruses. This method could be used to facilitate better control of rice viruses.

  18. Differentiation of five tuna species by a multiplex primer-extension assay.

    PubMed

    Bottero, Maria Teresa; Dalmasso, Alessandra; Cappelletti, Marco; Secchi, Camillo; Civera, Tiziana

    2007-05-01

    A novel methodology based on analysis of mtDNA-cytb diagnostic sites was performed to discriminate four closely related species of Thunnus (Thunnus alalunga, Thunnus albacares, Thunnus obesus and Thunnus thynnus) and one species of Euthynnus (Katsuwonus pelamis) genus in raw and canned tuna. The primers used in the preliminary PCR designed in well conserved region upstream and downstream of the diagnosis sites successfully amplified a 132bp region from the cytb gene of all the species taken into consideration. The sites of diagnosis have been interrogate simultaneously using a multiplex primer-extension assay (PER) and the results were confirmed by fragment sequencing. The applicability of the multiplex PER assay to commercial canned tuna samples was also demonstrated. The proposed test could be useful for detection of fraud and for seafood traceability. PMID:17353060

  19. Final Report Nucleic Acid System - PCR, Multiplex Assays and Sample Preparation Project

    SciTech Connect

    Koopman, R.P.; Langlois, R.G.; Nasarabadi, S.; Benett, W.J.; Richards, J.B.; Hadley, D.R.; Miles, R.R.; Brown, S.B.; Stratton, P.L.; Milanovich, F.P.

    2001-04-20

    The objective of this project was to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction). This entailed not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This project had two principal deliverables: (1) design, construct, test and deliver a 24 chamber, multiplex capable suitcase sized PCR instrument, and (2) develop and reduce to practice a multiplex assay for the detection of PCR product by flow cytometry. In addition, significant resources were allocated to test and evaluation of the Hand-held Advanced Nucleic Acid Analyzer (HANAA). This project helps provide the signature and intelligence gathering community the ability to perform, on-site or remote, rapid analysis of environmental or like samples for the presence of a suite of biological warfare pathogens.

  20. Quantitative RT-PCR Gene Evaluation and RNA Interference in the Brown Marmorated Stink Bug.

    PubMed

    Bansal, Raman; Mittapelly, Priyanka; Chen, Yuting; Mamidala, Praveen; Zhao, Chaoyang; Michel, Andy

    2016-01-01

    The brown marmorated stink bug (Halyomorpha halys) has emerged as one of the most important invasive insect pests in the United States. Functional genomics in H. halys remains unexplored as molecular resources in this insect have recently been developed. To facilitate functional genomics research, we evaluated ten common insect housekeeping genes (RPS26, EF1A, FAU, UBE4A, ARL2, ARP8, GUS, TBP, TIF6 and RPL9) for their stability across various treatments in H. halys. Our treatments included two biotic factors (tissues and developmental stages) and two stress treatments (RNAi injection and starvation). Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). The qRT-PCR results indicated ARP8 and UBE4A exhibit the most stable expression across tissues and developmental stages, ARL2 and FAU for dsRNA treatment and TBP and UBE4A for starvation treatment. Following the dsRNA treatment, all genes except GUS showed relatively stable expression. To demonstrate the utility of validated reference genes in accurate gene expression analysis and to explore gene silencing in H. halys, we performed RNAi by administering dsRNA of target gene (catalase) through microinjection. A successful RNAi response with over 90% reduction in expression of target gene was observed. PMID:27144586

  1. Selection and Validation of Reference Genes for qRT-PCR in Cycas elongata.

    PubMed

    Hu, Yanting; Deng, Tian; Chen, Letian; Wu, Hong; Zhang, Shouzhou

    2016-01-01

    Quantitative reverse transcription PCR (qRT-PCR) is a sensitive technique used in gene expression studies. To achieve a reliable quantification of transcripts, appropriate reference genes are required for comparison of transcripts in different samples. However, few reference genes are available for non-model taxa, and to date, reliable reference genes in Cycas elongata have not been well characterized. In this study, 13 reference genes (ACT7, TUB, UBQ, EIF4, EF1, CLATHRIN1, PP2A, RPB2, GAPC2, TIP41, MAPK, SAMDC and CYP) were chosen from the transcriptome database of C. elongata, and these genes were evaluated in 8 different organ samples. Three software programs, NormFinder, GeNorm and BestKeeper, were used to validate the stability of the potential reference genes. Results obtained from these three programs suggested that CeGAPC2 and CeRPB2 are the most stable reference genes, while CeACT7 is the least stable one among the 13 tested genes. Further confirmation of the identified reference genes was established by the relative expression of AGAMOUSE gene of C. elongata (CeAG). While our stable reference genes generated consistent expression patterns in eight tissues, we note that our results indicate that an inappropriate reference gene might cause erroneous results. Our systematic analysis for stable reference genes of C. elongata facilitates further gene expression studies and functional analyses of this species.

  2. Survey and RT-PCR Based Detection of Cardamom mosaic virus Affecting Small Cardamom in India.

    PubMed

    Biju, C N; Siljo, A; Bhat, A I

    2010-10-01

    Mosaic or marble or katte disease caused by Cardamom mosaic virus (CdMV) is an important production constraint in all cardamom growing regions of the world. In the present study, 84 cardamom plantations in 44 locations of Karnataka and Kerala were surveyed. The incidence of the disease ranged from 0 to 85%. The incidence was highest in Madikeri (Karnataka) while no incidence was recorded in Peermade (Kerala). In general, incidence and severity of the disease was higher in cardamom plantations of Karnataka. A procedure for total RNA isolation from cardamom and detection of CdMV through reverse transcription-polymerase chain reaction (RT-PCR) using primers targeting the conserved region of coat protein was standardized and subsequently validated by testing more than 50 field cardamom samples originating from Karnataka and Kerala states. The method can be used for indexing the planting material and identifying resistant lines/cultivars before either they are further multiplied in large scale or incorporated in breeding. PMID:23637495

  3. Selection and Validation of Reference Genes for qRT-PCR in Cycas elongata

    PubMed Central

    Deng, Tian; Chen, Letian; Wu, Hong; Zhang, Shouzhou

    2016-01-01

    Quantitative reverse transcription PCR (qRT-PCR) is a sensitive technique used in gene expression studies. To achieve a reliable quantification of transcripts, appropriate reference genes are required for comparison of transcripts in different samples. However, few reference genes are available for non-model taxa, and to date, reliable reference genes in Cycas elongata have not been well characterized. In this study, 13 reference genes (ACT7, TUB, UBQ, EIF4, EF1, CLATHRIN1, PP2A, RPB2, GAPC2, TIP41, MAPK, SAMDC and CYP) were chosen from the transcriptome database of C. elongata, and these genes were evaluated in 8 different organ samples. Three software programs, NormFinder, GeNorm and BestKeeper, were used to validate the stability of the potential reference genes. Results obtained from these three programs suggested that CeGAPC2 and CeRPB2 are the most stable reference genes, while CeACT7 is the least stable one among the 13 tested genes. Further confirmation of the identified reference genes was established by the relative expression of AGAMOUSE gene of C. elongata (CeAG). While our stable reference genes generated consistent expression patterns in eight tissues, we note that our results indicate that an inappropriate reference gene might cause erroneous results. Our systematic analysis for stable reference genes of C. elongata facilitates further gene expression studies and functional analyses of this species. PMID:27124298

  4. [Problems related to the use of real-time RT-PCR in environmental analysis].

    PubMed

    Donia, Domenica Tommasa; Divizia, Maurizio; Panà, Augusto

    2006-01-01

    Molecular biology techniques allow high sensitivity and specificity in the detection of enteric viruses in various environmental samples, and are considerably less costly and more rapid than traditional analytical methods. Real time RT-PCR technology allows accurate, efficient, and reproducible quantification of viral genes, by amplifying enteroviral RNA directly from an adequately treated environmental sample. It uses different chemical systems, including TaqMan and Syber Green probes, for detection of the amplificon. Both systems allow quantification of the initial number of copies in each cycle by comparing values with those of an external calibration curve (standard curve), generated by serial dilutions of a reference RNA sample with a known concentration. Difficulties in generating a standard curve for each enteric virus however, make standardization of the system time consuming. In an attempt to overcome this obstacle, we used an internal standard with a known concentration, to obtain a valid calibration curve for the quantification of environmental enteroviruses. A comparative analysis was performed with various commercially available extraction and amplification systems to evaluate the method's efficiency and reproducibility.

  5. Quantitative RT-PCR Gene Evaluation and RNA Interference in the Brown Marmorated Stink Bug

    PubMed Central

    Bansal, Raman; Mittapelly, Priyanka; Chen, Yuting; Mamidala, Praveen; Zhao, Chaoyang; Michel, Andy

    2016-01-01

    The brown marmorated stink bug (Halyomorpha halys) has emerged as one of the most important invasive insect pests in the United States. Functional genomics in H. halys remains unexplored as molecular resources in this insect have recently been developed. To facilitate functional genomics research, we evaluated ten common insect housekeeping genes (RPS26, EF1A, FAU, UBE4A, ARL2, ARP8, GUS, TBP, TIF6 and RPL9) for their stability across various treatments in H. halys. Our treatments included two biotic factors (tissues and developmental stages) and two stress treatments (RNAi injection and starvation). Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). The qRT-PCR results indicated ARP8 and UBE4A exhibit the most stable expression across tissues and developmental stages, ARL2 and FAU for dsRNA treatment and TBP and UBE4A for starvation treatment. Following the dsRNA treatment, all genes except GUS showed relatively stable expression. To demonstrate the utility of validated reference genes in accurate gene expression analysis and to explore gene silencing in H. halys, we performed RNAi by administering dsRNA of target gene (catalase) through microinjection. A successful RNAi response with over 90% reduction in expression of target gene was observed. PMID:27144586

  6. Survey and RT-PCR Based Detection of Cardamom mosaic virus Affecting Small Cardamom in India.

    PubMed

    Biju, C N; Siljo, A; Bhat, A I

    2010-10-01

    Mosaic or marble or katte disease caused by Cardamom mosaic virus (CdMV) is an important production constraint in all cardamom growing regions of the world. In the present study, 84 cardamom plantations in 44 locations of Karnataka and Kerala were surveyed. The incidence of the disease ranged from 0 to 85%. The incidence was highest in Madikeri (Karnataka) while no incidence was recorded in Peermade (Kerala). In general, incidence and severity of the disease was higher in cardamom plantations of Karnataka. A procedure for total RNA isolation from cardamom and detection of CdMV through reverse transcription-polymerase chain reaction (RT-PCR) using primers targeting the conserved region of coat protein was standardized and subsequently validated by testing more than 50 field cardamom samples originating from Karnataka and Kerala states. The method can be used for indexing the planting material and identifying resistant lines/cultivars before either they are further multiplied in large scale or incorporated in breeding.

  7. Systematic validation of candidate reference genes for qRT-PCR normalization under iron deficiency in Arabidopsis.

    PubMed

    Han, Bin; Yang, Zheng; Samma, Muhammad Kaleem; Wang, Ren; Shen, Wenbiao

    2013-06-01

    A reliable result obtained by qRT-PCR highly depends on accurate transcript normalization using stably expressed reference genes. However, the transcript levels of traditional reference genes are not always stable. Also, the inaccurate normalization could easily lead to the false conclusions. In this report, by using geNorm and NormFinder algorithms, 12 candidate reference genes were evaluated in Arabidopsis under iron deficiency. Our results revealed that three novel reference genes (SAND, YLS8 and TIP41-like) were identified and validated as suitable reference genes for qRT-PCR normalization in both iron deprivation (the addition of Ferrozine to the medium) and starvation (withdrawal of iron from the medium) conditions. This conclusion was also confirmed by publicly available microarray data. In addition, when using SAND, YLS8 and TIP41-like as multiple reference genes, the expression patterns of FIT1 and IRT1, two iron deficiency marker genes, were approximately similar with that reported previously. However, a weaker inducible response was obtained from qRT-PCR by normalizating EF-1α alone. Together, we proposed that the combination of SAND, YLS8 and TIP41-like can be used for accurate normalization of gene expression in iron deficiency research. These results provide a valuable evidence for the importance of adequate reference genes in qRT-PCR normalization, insisting on the use of appropriate reference gene validation in all transcriptional analyses.

  8. Characterization of cytokine expression induced by avian influenza virus infection with real-time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of how birds react to infection from avian influenza virus is critical to understanding disease pathogenesis and host response. The use of real-time (R), reverse-transcriptase (RT), PCR to measure innate immunity, including cytokine and interferon gene expression, has become a standard tec...

  9. The Use of Collagenase to Improve the Detection of Plant Viruses in Vector Nematodes by RT/PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato ringspot virus (ToRSV) Tobacco ringspot virus (TRSV) and Tobacco rattle virus (TRV) are transmitted to healthy plants by viruliferous nematodes in the soil. We developed a method for extraction of genomic viral RNA from virus particles carried within nematodes and a sensitive nested RT/PCR ...

  10. Molecular detection of infectious bronchitis and Newcastle disease viruses in broiler chickens with respiratory signs using Duplex RT-PCR

    PubMed Central

    Saba Shirvan, Aylar; Mardani, Karim

    2014-01-01

    Infectious bronchitis (IB) and Newcastle disease (ND) are highly contagious and the most economically important diseases of the poultry affecting respiratory tract and causing economic losses in poultry industry throughout the world. In the present study, the simultaneous detection and differentiation of causative agents of these diseases were investigated using duplex-RT-PCR. RNA was extracted from vaccinal and reference strains of infectious bronchitis virus (IBV) and Newcastle disease virus (NDV) and then cDNA was synthesized. Using two universal primer sets for detection of IBV and NDV, the duplex-RT-PCR was developed. In order to assess the efficiency of the developed duplex RT-PCR, a number of 12 broiler farms with the symptoms of respiratory tract infection was sampled (trachea, lung and kidney were sampled from affected birds suspicious for IBV and NDV infections). After RNA extraction from tissues and cDNA synthesis, the presence of IBV and NDV genome were investigated using duplex-PCR. The results showed that three of twelve examined broiler farms were positive for IBV and two farms were positive for NDV and IBV. The results revealed that the duplex-RT-PCR is a quick and sensitive procedure for simultaneously detecting IBV and NDV in birds with respiratory infections. PMID:25610585

  11. RT-PCR and Northern blot analysis in search for a putative Paramecium beta-adrenergic receptor.

    PubMed

    Płatek, A; Wiejak, J; Wyroba, E

    1999-01-01

    RT-PCR and Northern blot analysis were performed in order to search for a putative beta-adrenergic receptor (beta-AR) in Paramecium using several beta2-adrenergic-specific molecular probes. Under strictly defined RT-PCR conditions DNA species of expected molecular size about 360 bp were generated with the primers corresponding to the universal mammalian beta2-AR sequence tagged sites (located within the 4th and the 6th transmembrane regions of the receptor). This RT-PCR product hybridized in Southern blot analysis with the oligonucleotide probe designed to the highly conservative beta2-AR region involved in G-proteins interaction and located within the amplified region. Northern hybridization was performed on Paramecium total RNA and mRNA with human beta2-AR cDNA and two oligonucleotide probes: the first included Phe 290 involved in agonist binding (Strader et al., 1995) and the second was the backward RT-PCR primer. All these probes revealed the presence of about 2 kb mRNA which is consistent with the size of beta2-AR transcripts found in higher eukaryotes.

  12. Bluetongue virus RNA detection by real-time rt-PCR in post-vaccination samples from cattle.

    PubMed

    De Leeuw, I; Garigliany, M; Bertels, G; Willems, T; Desmecht, D; De Clercq, K

    2015-04-01

    Bluetongue virus serotype 8 (BTV-8) was responsible for a large outbreak among European ruminant populations in 2006-2009. In spring 2008, a massive vaccination campaign was undertaken, leading to the progressive disappearance of the virus. During surveillance programmes in Western Europe in 2010-2011, a low but significant number of animals were found weakly positive using BTV-specific real-time RT-PCR, raising questions about a possible low level of virus circulation. An interference of the BTV-8 inactivated vaccine on the result of the real-time RT-PCR was also hypothesized. Several studies specifically addressed the potential association between a recent vaccination and BTV-8 RNA detection in the blood of sheep. Results were contradictory and cattles were not investigated. To enlighten this point, a large study was performed to determine the risks of detection of bluetongue vaccine-associated RNA in the blood and spleen of cattle using real-time RT-PCR. Overall, the results presented clearly demonstrate that vaccine viral RNA can reach the blood circulation in sufficient amounts to be detected by real-time RT-PCR in cattle. This BTV-8 vaccine RNA carriage appears as short lasting.

  13. Use of RT-PCR on oral fluid samples to assist the identification of measles cases during an outbreak.

    PubMed

    Oliveira, S A; Siqueira, M M; Camacho, L A B; Castro-Silva, R; Bruno, B F; Cohen, B J

    2003-02-01

    This study investigated the occurrence of mild modified measles cases during an outbreak in Niterói, RJ, Brazil by using RT-PCR on oral fluid samples. From August to December 1997 a total of 76 patients with rash were seen at the study sites. Confirmed diagnosis by serology was achieved in 47 cases: measles (39.5%), rubella (13.2%), HHV-6 (3.9%), human parvovirus B19 (3.9%), dengue fever (3%). For 19 of the 29 patients without a conclusive diagnosis paired serum and saliva samples were available for further tests. In four of them, measles virus RNA was detected by RT-PCR in saliva samples in the absence of specific IgM in serum samples. Vaccination histories obtained from three of the RT-PCR positive cases showed that individuals previously immunized can still be infected and contribute to the circulation of measles virus. This study demonstrated the usefulness of RT-PCR on non-invasive clinical samples for the investigation of measles cases.

  14. Development of multiplex serological assay for the detection of human African trypanosomiasis.

    PubMed

    Nzou, Samson Muuo; Fujii, Yoshito; Miura, Masashi; Mwau, Matilu; Mwangi, Anne Wanjiru; Itoh, Makoto; Salam, Md Abdus; Hamano, Shinjiro; Hirayama, Kenji; Kaneko, Satoshi

    2016-04-01

    Human African trypanosomiasis (HAT) is a disease caused by Kinetoplastid infection. Serological tests are useful for epidemiological surveillance. The aim of this study was to develop a multiplex serological assay for HAT to assess the diagnostic value of selected HAT antigens for sero-epidemiological surveillance. We cloned loci encoding eight antigens from Trypanosoma brucei gambiense, expressed the genes in bacterial systems, and purified the resulting proteins. Antigens were subjected to Luminex multiplex assays using sera from HAT and VL patients to assess the antigens' immunodiagnostic potential. Among T. b. gambiense antigens, the 64-kDa and 65-kDa invariant surface glycoproteins (ISGs) and flagellar calcium binding protein (FCaBP) had high sensitivity for sera from T. b. gambiense patients, yielding AUC values of 0.871, 0.737 and 0.858 respectively in receiver operating characteristics (ROC) analysis. The ISG64, ISG65, and FCaBP antigens were partially cross-reactive to sera from Trypanosoma brucei rhodesiense patients. The GM6 antigen was cross-reactive to sera from T. b. rhodesiense patients as well as to sera from VL patients. Furthermore, heterogeneous antibody responses to each individual HAT antigen were observed. Testing for multiple HAT antigens in the same panel allowed specific and sensitive detection. Our results demonstrate the utility of applying multiplex assays for development and evaluation of HAT antigens for use in sero-epidemiological surveillance.

  15. A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYS

    EPA Science Inventory

    AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...

  16. Choice of a stable set of reference genes for qRT-PCR analysis in Amblyomma maculatum (Acari: Ixodidae).

    PubMed

    Browning, Rebecca; Adamson, Steven; Karim, Shahid

    2012-11-01

    Quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) is a widely used laboratory tool to quantify mRNA levels of target genes involved in various biological processes. The most commonly used method for analyzing qRT-PCR data are the normalizing technique where a housekeeping gene is used to determine the transcriptional regulation of the target gene. The choice of a reliable internal standard is pivotal for relative gene expression analysis to obtain reproducible results, especially when measuring small differences in transcriptional expression. In this study, we used geNorm, NormFinder, and BestKeeper programs to analyze the gene expression results using qRT-PCR. Five candidate reference genes, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), beta-actin, alpha-tubulin, elongation factor 1-alpha, and glutathione s-transferase, were used to evaluate the expression stability during prolonged blood-feeding on the vertebrate host. These five genes were evaluated in all life stages of Amblyomma maculatum (Koch) as well as in the salivary gland and midgut tissues of adult females to determine which are the most stably expressed gene for use in qRT-PCR studies. Beta-actin is the most stably expressed gene in salivary glands and midguts ofA. maculatum, and throughout all developmental stages both Actin and GAPDH were found to have the most stable expression with the lowest degree of variance. We recommend the use of beta-actin and/ or GAPDH as reference genes for qRT-PCR analysis of gene expression in A. maculatum.

  17. Identification of reference genes for qRT-PCR in human lung squamous-cell carcinoma by RNA-Seq.

    PubMed

    Zhan, Cheng; Zhang, Yongxing; Ma, Jun; Wang, Lin; Jiang, Wei; Shi, Yu; Wang, Qun

    2014-04-01

    Although the accuracy of quantitative real-time polymerase chain reaction (qRT-PCR) is highly dependent on the reliable reference genes, many commonly used reference genes are not stably expressed and as such are not suitable for quantification and normalization of qRT-PCR data. The aim of this study was to identify novel reliable reference genes in lung squamous-cell carcinoma. We used RNA sequencing (RNA-Seq) to survey the whole genome expression in 5 lung normal samples and 44 lung squamous-cell carcinoma samples. We evaluated the expression profiles of 15 commonly used reference genes and identified five additional candidate reference genes. To validate the RNA-Seq dataset, we used qRT-PCR to verify the expression levels of these 20 genes in a separate set of 100 pairs of normal lung tissue and lung squamous-cell carcinoma samples, and then analyzed these results using geNorm and NormFinder. With respect to 14 of the 15 common reference genes (B2M, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC, and YWHAZ), the expression levels were either too low to be easily detected, or exhibited a high degree of variability either between lung normal and squamous-cell carcinoma samples, or even among samples of the same tissue type. In contrast, 1 of the 15 common reference genes (ACTB) and the 5 additional candidate reference genes (EEF1A1, FAU, RPS9, RPS11, and RPS14) were stably and constitutively expressed at high levels in all the samples tested. ACTB, EEF1A1, FAU, RPS9, RPS11, and RPS14 are ideal reference genes for qRT-PCR analysis of lung squamous-cell carcinoma, while 14 commonly used qRT-PCR reference genes are less appropriate in this context.

  18. Comparison and optimization of detection methods for noroviruses in frozen strawberries containing different amounts of RT-PCR inhibitors.

    PubMed

    Bartsch, Christina; Szabo, Kathrin; Dinh-Thanh, Mai; Schrader, Christina; Trojnar, Eva; Johne, Reimar

    2016-12-01

    Frozen berries have been repeatedly identified as vehicles for norovirus (NoV) transmission causing large gastroenteritis outbreaks. However, virus detection in berries is often hampered by the presence of RT-PCR-inhibiting substances. Here, several virus extraction methods for subsequent real-time RT-PCR-based NoV-RNA detection in strawberries were compared and optimized. NoV recovery rates (RRs) between 0.21 ± 0.13% and 10.29 ± 6.03% were found when five different artificially contaminated strawberry batches were analyzed by the ISO/TS15216-2 method indicating the presence of different amounts of RT-PCR inhibitors. A comparison of five different virus extraction methods using artificially contaminated strawberries containing high amounts of RT-PCR inhibitors revealed the best NoV RRs for the ISO/TS15216 method. Further improvement of NoV RRs from 2.83 ± 2.92% to 15.28 ± 9.73% was achieved by the additional use of Sephacryl(®)-based columns for RNA purification. Testing of 22 frozen strawberry samples from a batch involved in a gastroenteritis outbreak resulted in 5 vs. 13 NoV GI-positive and in 9 vs. 20 NoV GII-positive samples using the original ISO/TS15216 method vs. the extended protocol, respectively. It can be concluded that the inclusion of an additional RNA purification step can increase NoV detection by the ISO/TS15216-2 method in frozen berries containing high amounts of RT-PCR inhibitors. PMID:27554153

  19. Expansion of a SNaPshot assay to a 55-SNP multiplex: Assay enhancements, validation, and power in forensic science.

    PubMed

    Wang, Qian; Fu, Lihong; Zhang, Xiaojing; Dai, Xinyu; Bai, Mei; Fu, Guangping; Cong, Bin; Li, Shujin

    2016-05-01

    A previously developed multiplex assay with 44 individual identification SNPs was expanded to a 55plex assay. Fifty-four highly informative SNPs and an amelogenin sex marker were amplified in one PCR reaction and then detected with two SNaPshot reactions using CE. PCR primers for four loci, 28 single-base extension primers, and the reaction conditions were altered to improve the robustness of the method. A detailed approach for allele calling was developed to guide analysis of the electropherogram. One hundred and eighty unrelated individuals and 100 father-child-mother trios of the Han population in Hebei, China were analyzed. No mutation was found in the SNP loci. The combined mean match probability and cumulative probability of exclusion were 1.327 × 10(-22) and 0.999932, respectively. Analysis of the 54 SNPs and 26 STRs (included in the AmpFLSTR Identifiler and Investigator HDplex kits) showed no significant linkage disequilibriums. Our research shows that the expanded SNP multiplex assay is an easily performed and valuable method to supplement STR analysis.

  20. Rapid discrimination of rabies viruses isolated from various host species in Brazil by multiplex reverse transcription-polymerase chain reaction.

    PubMed

    Sato, Go; Tanabe, Hitomi; Shoji, Youko; Itou, Takuya; Ito, Fumio H; Sato, Tetsuo; Sakai, Takeo

    2005-08-01

    Rabies is carried mainly by mammalian carnivores and vampire bats in Latin America. However, rabies virus (RV) has been isolated in recent years from not only vampire bats in rural areas but also from several non-vampire bat species in urban areas, respectively. Therefore, rapid molecular screening is necessary for efficient epidemiology of these RVs. In this study, we investigated the usefulness of multiplex reverse transcription-polymerase chain reaction (RT-PCR) for determining the origins of 54 RV isolates from various host species in Brazil. And to evaluate the multiplex RT-PCR as a potential diagnostic tool, we investigated the sensitivity of this method. In addition, we compared the results with a phylogenetic tree developed from sequences of the RV glycoprotein (G protein) gene. Multiplex RT-PCR products showed five different sizes of products, whereas the phylogenic tree showed six groups. Of these six groups, four corresponded with the four sizes of the multiplex RT-PCR products. The other two groups showed correspondance with another one size of the multiplex RT-PCR products, indicating that multiplex RT-PCR results reflected the lineage of the 54 isolates. This study also showed that this method can detect trace amounts of RNA. In conclusion, this multiplex RT-PCR method allows the rapid, specific, and simultaneous detection of RVs isolated from various host species in Brazil. PMID:16036175

  1. Rapid detection of hepatitis B virus variants associated with lamivudine and adefovir resistance by multiplex ligation-dependent probe amplification combined with real-time PCR.

    PubMed

    Jia, Shuangrong; Wang, Feng; Li, Fake; Chang, Kai; Yang, Shaojun; Zhang, Kejun; Jiang, Wenbin; Shang, Ya; Deng, Shaoli; Chen, Ming

    2014-02-01

    Drug-resistant mutations of hepatitis B virus (HBV) are the major obstacles to successful therapy for chronic hepatitis B infection. Although there are many methods for detecting the antiviral drug-resistant mutations of HBV, their applications are restricted because of their shortcomings, such as low sensitivity, the time required, and the high cost. For this study, a multiplex ligation-dependent probe real-time PCR (MLP-RT-PCR) method was developed to simultaneously detect lamivudine (LAM)- and adefovir (ADV)-resistant HBV mutants (those with the mutations rtM204V/I, rtA181V/T, and rtN236T). The new method combined the high-throughput nature of multiplex ligation-dependent probe amplification (MLPA) with the rapid and sensitive detection of real-time PCR. In this report, MLP-RT-PCR was evaluated by detecting drug-resistant mutants in 116 patients with chronic hepatitis B infection. By MLP-RT-PCR analysis, LAM-resistant mutations were detected in 41 patients (35.3%), ADV-resistant mutations were detected in 17 patients (14.7%), and LAM- and-ADV-resistant mutations were detected in 5 patients (4.3%). Based on the results of MLP-RT-PCR, the mutations rtM204V, rtM204I, rtA181T, rtA181V, and rtN236T were 95.7% (111/116 patients), 98.3% (114/116 patients), 99.1% (115/116 patients), 98.3% (114/116 patients), and 99.1% (115/116 patients) concordant, respectively, with those of direct sequencing. The MLP-RT-PCR assay was more sensitive than direct sequencing for detecting mutations with low frequencies. Four samples containing the low-frequency (<10%) mutants were identified by MLP-RT-PCR and further confirmed by clonal sequencing. MLP-RT-PCR is a rapid and sensitive method that enables the detection of multidrug-resistant HBV mutations in clinical practice.

  2. Rapid Detection of Hepatitis B Virus Variants Associated with Lamivudine and Adefovir Resistance by Multiplex Ligation-Dependent Probe Amplification Combined with Real-Time PCR

    PubMed Central

    Jia, Shuangrong; Wang, Feng; Li, Fake; Chang, Kai; Yang, Shaojun; Zhang, Kejun; Jiang, Wenbin; Shang, Ya

    2014-01-01

    Drug-resistant mutations of hepatitis B virus (HBV) are the major obstacles to successful therapy for chronic hepatitis B infection. Although there are many methods for detecting the antiviral drug-resistant mutations of HBV, their applications are restricted because of their shortcomings, such as low sensitivity, the time required, and the high cost. For this study, a multiplex ligation-dependent probe real-time PCR (MLP-RT-PCR) method was developed to simultaneously detect lamivudine (LAM)- and adefovir (ADV)-resistant HBV mutants (those with the mutations rtM204V/I, rtA181V/T, and rtN236T). The new method combined the high-throughput nature of multiplex ligation-dependent probe amplification (MLPA) with the rapid and sensitive detection of real-time PCR. In this report, MLP-RT-PCR was evaluated by detecting drug-resistant mutants in 116 patients with chronic hepatitis B infection. By MLP-RT-PCR analysis, LAM-resistant mutations were detected in 41 patients (35.3%), ADV-resistant mutations were detected in 17 patients (14.7%), and LAM- and-ADV-resistant mutations were detected in 5 patients (4.3%). Based on the results of MLP-RT-PCR, the mutations rtM204V, rtM204I, rtA181T, rtA181V, and rtN236T were 95.7% (111/116 patients), 98.3% (114/116 patients), 99.1% (115/116 patients), 98.3% (114/116 patients), and 99.1% (115/116 patients) concordant, respectively, with those of direct sequencing. The MLP-RT-PCR assay was more sensitive than direct sequencing for detecting mutations with low frequencies. Four samples containing the low-frequency (<10%) mutants were identified by MLP-RT-PCR and further confirmed by clonal sequencing. MLP-RT-PCR is a rapid and sensitive method that enables the detection of multidrug-resistant HBV mutations in clinical practice. PMID:24478474

  3. Recommendations for Use and Fit-for-Purpose Validation of Biomarker Multiplex Ligand Binding Assays in Drug Development.

    PubMed

    Jani, Darshana; Allinson, John; Berisha, Flora; Cowan, Kyra J; Devanarayan, Viswanath; Gleason, Carol; Jeromin, Andreas; Keller, Steve; Khan, Masood U; Nowatzke, Bill; Rhyne, Paul; Stephen, Laurie

    2016-01-01

    Multiplex ligand binding assays (LBAs) are increasingly being used to support many stages of drug development. The complexity of multiplex assays creates many unique challenges in comparison to single-plexed assays leading to various adjustments for validation and potentially during sample analysis to accommodate all of the analytes being measured. This often requires a compromise in decision making with respect to choosing final assay conditions and acceptance criteria of some key assay parameters, depending on the intended use of the assay. The critical parameters that are impacted due to the added challenges associated with multiplexing include the minimum required dilution (MRD), quality control samples that span the range of all analytes being measured, quantitative ranges which can be compromised for certain targets, achieving parallelism for all analytes of interest, cross-talk across assays, freeze-thaw stability across analytes, among many others. Thus, these challenges also increase the complexity of validating the performance of the assay for its intended use. This paper describes the challenges encountered with multiplex LBAs, discusses the underlying causes, and provides solutions to help overcome these challenges. Finally, we provide recommendations on how to perform a fit-for-purpose-based validation, emphasizing issues that are unique to multiplex kit assays. PMID:26377333

  4. A multiplex reverse transcription PCR assay for simultaneous detection of five tobacco viruses in tobacco plants.

    PubMed

    Dai, Jin; Cheng, Julong; Huang, Ting; Zheng, Xuan; Wu, Yunfeng

    2012-07-01

    Tobacco viruses including Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Tobacco etch virus (TEV), Potato virus Y (PVY) and Tobacco vein banding mosaic virus (TVBMV) are major viruses infecting tobacco and can cause serious crop losses. A multiplex reverse transcription polymerase chain reaction assay was developed to detect simultaneously and differentiate all five viruses. The system used specific primer sets for each virus producing five distinct fragments 237, 273, 347, 456 and 547 bp, representing TMV, CMV subgroup I, TEV, PVY(O) and TVBMV, respectively. These primers were used for detection of the different viruses by single PCR and multiplex PCR and the results were confirmed by DNA sequencing analysis. The protocol was used to detect viruses from different parts of China. The simultaneous and sensitive detection of different viruses using the multiplex PCR is more efficient and economical than other conventional methods for tobacco virus detection. This multiplex PCR provides a rapid and reliable method for the detection and identification of major tobacco viruses, and will be useful for epidemiological studies.

  5. Multiplex PCR Assay for Detection of Vibrio vulnificus Biotype 2 and Simultaneous Discrimination of Serovar E Strains▿

    PubMed Central

    Sanjuán, Eva; Amaro, Carmen

    2007-01-01

    In the present work we develop a multiplex PCR assay for the detection and identification of the fish pathogen Vibrio vulnificus biotype 2 with discriminating potential for zoonotic strains (serovar E). The PCR assay allowed the identification of two new biotype 2 serovar E human isolates from culture collections. Finally, the multiplex was successfully applied to both diagnosis and carrier detection in field samples. PMID:17277209

  6. Multiplex PCR Assay Targeting a Diguanylate Cyclase-Encoding Gene, cgcA, To Differentiate Species within the Genus Cronobacter

    PubMed Central

    Carter, L.; Lindsey, L. A.; Grim, C. J.; Sathyamoorthy, V.; Jarvis, K. G.; Gopinath, G.; Lee, C.; Sadowski, J. A.; Trach, L.; Pava-Ripoll, M.; McCardell, B. A.; Tall, B. D.

    2013-01-01

    In a comparison to the widely used Cronobacter rpoB PCR assay, a highly specific multiplexed PCR assay based on cgcA, a diguanylate cyclase gene, that identified all of the targeted six species among 305 Cronobacter isolates was designed. This assay will be a valuable tool for identifying suspected Cronobacter isolates from food-borne investigations. PMID:23144142

  7. Reference Gene Validation for Quantitative RT-PCR during Biotic and Abiotic Stresses in Vitis vinifera

    PubMed Central

    Borges, Alexandre Filipe; Fonseca, Catarina; Ferreira, Ricardo Boavida; Lourenço, Ana Maria; Monteiro, Sara

    2014-01-01

    Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies. PMID:25340748

  8. Identification of suitable grapevine reference genes for qRT-PCR derived from heterologous species.

    PubMed

    Tashiro, Rebecca M; Philips, Joshua G; Winefield, Christopher S

    2016-02-01

    Identification and validation of suitable reference genes that exhibit robust transcriptional stability across many sample types is an absolute requirement of all qRT-PCR experiments. Often, however, only small numbers of reference genes, validated across limited sample types, are available for non-model species. This points to a clear need to assess and validate a wider range of potential reference genes than is currently available. We therefore looked to test and validate a large number of potential reference genes across a wide range of tissue types and treatments to determine the applicability of these reference genes for use in grapevine and other non-model plant species. Potential reference genes were selected based on stability of gene transcription in the model plant species Arabidopsis or due to their common use in the grapevine community. The selected reference genes were analyzed across two datasets consisting of a range of either 'Sauvignon blanc' or 'Pinot noir' tissues. A total of 11 potential reference genes were screened across the two datasets. Gene stability was analyzed by GeNorm, a widely used Excel application, or an ANOVA-based method developed in red clover. Both analysis methods showed that all 11 potential reference genes are stably expressed in the datasets tested, but the rankings of gene stability differed based on the datasets and analysis method used. Furthermore, the transcript stability of these genes, initially identified in Arabidopsis and now validated in grapevine, suggests applicability across a wide range of non-model plant species in addition to their utility in grapevine.

  9. Methods for effective real-time RT-PCR analysis of virus-induced gene silencing.

    PubMed

    Rotenberg, Dorith; Thompson, Thea S; German, Thomas L; Willis, David K

    2006-12-01

    We applied real-time RT-PCR to the analysis of Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) of the phytoene desaturase (PDS) gene in Nicotiana benthamiana and tomato. Using a combination of direct measurement and mathematical assessment, we evaluated three plant genes, ubiquitin (ubi3), elongation factor-1 alpha (EF-1), and actin, for use as internal reference transcripts and found that EF-1 and ubi3 were least variable under our experimental conditions. Primer sets designed to amplify the 5' or 3' regions of endogenous PDS transcripts in tomato yielded similar reductions in transcript levels indicating a uniform VIGS-mediated degradation of target RNA. By measuring the ratio of the abundance of the PDS insert transcript to the TRV coat protein RNA, we established that the PDS insert within TRV was stable in both hosts. VIGS in N. benthamiana resulted in complete photo-bleaching of all foliar tissue compared to chimeric bleaching in tomato. PDS transcript levels were decreased eleven- and seven-fold in photobleached leaves of N. benthamiana and tomato, respectively, while sampling tomato leaflets on the basis of age rather than visible bleaching resulted in only a 17% reduction in PDS coupled with a large leaf-to-leaf variation. There was a significant inverse relationship (r2=76%, P=0.01) between the relative abundance of CP RNA and the amount of PDS transcript in rTRV::tPDS-infected tomato suggesting that virus spread and accumulation are required precursors for successful VIGS in this host. PMID:16959330

  10. RT-PCR amplification of the complete NF1 coding sequence

    SciTech Connect

    Ming Hong Shen; Meena Upadhyaya

    1994-09-01

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder. The NF1 gene is a large gene, 350kb in size, with at least 51 exons. It has proved hard to detect mutations in the gene by examining genomic DNA due to the high mutation rate and the large size of the gene. Since the cloning of the gene, only 45 causative mutations have been reported from over 500 unrelated NF1 patients screened. The coding sequence of the NF1 gene is approximately 3% of the genomic sequence; it will therefore be easier to search for unknown mutations by the study of mRNA. We describe a simple RT-PCR-based strategy to amplify the total coding sequence of the NF1 transcript from peripheral blood lymphocyte RNA. This strategy involves an initial cDNA synthesis step utilizing a set of random hexamers, followed by two consecutive rounds of PCR amplifications. The first round of amplification was performed using four NF1-specific nested primer pairs. This amplification allows the construction of overlapping fragments which span a 8694 bp cDNA sequence of the gene. For mutation analysis, the amplified products or their digests were subjected to electrophoresis on Hydrolink gels. Two disease-causing mutations, a 3 bp deletion in exon 17 and a 10 bp deletion in exon 44, originally detected in the genomic DNA from two unrelated NF1 patients, have been confirmed at the RNA level. The combination of this strategy with other established techniques such as SSCP, chemical cleavage of mismatch, protein truncation test (PTT) and quantitative PCR should greatly facilitate mutation and expression analyses in the NF1 gene.

  11. Proteomic Analysis and qRT-PCR Verification of Temperature Response to Arthrospira (Spirulina) platensis

    PubMed Central

    Huili, Wang; Xiaokai, Zhao; Meili, Lin; Dahlgren, Randy A.; Wei, Chen; Jaiopeng, Zhou; Chengyang, Xu; Chunlei, Jin; Yi, Xu; Xuedong, Wang; Li, Ding; Qiyu, Bao

    2013-01-01

    Arthrospira (Spirulina) platensis (ASP) is a representative filamentous, non-N2-fixing cyanobacterium that has great potential to enhance the food supply and possesses several valuable physiological features. ASP tolerates high and low temperatures along with highly alkaline and salty environments, and can strongly resist oxidation and irradiation. Based on genomic sequencing of ASP, we compared the protein expression profiles of this organism under different temperature conditions (15°C, 35°Cand 45°C) using 2-DE and peptide mass fingerprinting techniques. A total of 122 proteins having a significant differential expression response to temperature were retrieved. Of the positively expressed proteins, the homologies of 116 ASP proteins were found in Arthrospira (81 proteins in Arthrospira platensis str. Paraca and 35 in Arthrospira maxima CS-328). The other 6 proteins have high homology with other microorganisms. We classified the 122 differentially expressed positive proteins into 14 functions using the COG database, and characterized their respective KEGG metabolism pathways. The results demonstrated that these differentially expressed proteins are mainly involved in post-translational modification (protein turnover, chaperones), energy metabolism (photosynthesis, respiratory electron transport), translation (ribosomal structure and biogenesis) and carbohydrate transport and metabolism. Others proteins were related to amino acid transport and metabolism, cell envelope biogenesis, coenzyme metabolism and signal transduction mechanisms. Results implied that these proteins can perform predictable roles in rendering ASP resistance against low and high temperatures. Subsequently, we determined the transcription level of 38 genes in vivo in response to temperature and identified them by qRT-PCR. We found that the 26 differentially expressed proteins, representing 68.4% of the total target genes, maintained consistency between transcription and translation levels. The

  12. Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with the linear array HPV genotyping PCR assay and influence of DNA extraction method on HPV detection.

    PubMed

    Roberts, Christine C; Swoyer, Ryan; Bryan, Janine T; Taddeo, Frank J

    2011-05-01

    Real-time human papillomavirus (HPV) type-specific multiplex PCR assays were developed to detect HPV DNA in specimens collected for the efficacy determination of the quadrivalent HPV (type 6, 11, 16, and 18) L1 virus-like particle (VLP) vaccine (Gardasil). We evaluated the concordance between type-specific multiplex HPV PCR and the widely used, commercially available Roche Linear Array genotyping PCR assay. Female genital swab specimens were tested for the presence of L1, E6, and E7 sequences of HPV type 6 (HPV6), HPV11, HPV16, HPV18, HPV31, HPV45, HPV52, and HPV58 and E6 and E7 sequences of HPV33, HPV35, HPV39, HPV51, HPV56, and HPV59 in type- and gene-specific real-time multiplex PCR assays. Specimens were also tested for the presence of L1 sequences using two versions of the Roche Linear Array genotyping assay. Measures of concordance of a modified version of the Linear Array and the standard Linear Array PCR assay were evaluated. With specimen DNA extraction using the Qiagen Spin blood kit held as the constant, multiplex PCR assays detect more HPV-positive specimens for the 14 HPV types common to both than either version of the Linear Array HPV genotyping assay. Type-specific agreements between the assays were good, at least 0.838, but were often driven by negative agreement in HPV types with low prevalence, as evidenced by reduced proportions of positive agreement. Overall HPV status agreements ranged from 0.615 for multiplex PCR and standard Linear Array to 0.881 for multiplex PCR and modified Linear Array. An alternate DNA extraction technique, that used by the Qiagen MinElute kit, impacted subsequent HPV detection in both the multiplex PCR and Linear Array assays.

  13. A comparative study of digital RT-PCR and RT-qPCR for quantification of Hepatitis A virus and Norovirus in lettuce and water samples.

    PubMed

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Guillier, Laurent; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2015-05-18

    Sensitive and quantitative detection of foodborne enteric viruses is classically achieved by quantitative RT-PCR (RT-qPCR). Recently, digital PCR (dPCR) was described as a novel approach to genome quantification without need for a standard curve. The performance of microfluidic digital RT-PCR (RT-dPCR) was compared to RT-qPCR for detecting the main viruses responsible for foodborne outbreaks (human Noroviruses (NoV) and Hepatitis A virus (HAV)) in spiked lettuce and bottled water. Two process controls (Mengovirus and Murine Norovirus) were used and external amplification controls (EAC) were added to examine inhibition of RT-qPCR and RT-dPCR. For detecting viral RNA and cDNA, the sensitivity of the RT-dPCR assays was either comparable to that of RT-qPCR (RNA of HAV, NoV GI, Mengovirus) or slightly (around 1 log10) decreased (NoV GII and MNV-1 RNA and of HAV, NoV GI, NoV GII cDNA). The number of genomic copies determined by dPCR was always from 0.4 to 1.7 log10 lower than the expected numbers of copies calculated by using the standard qPCR curve. Viral recoveries calculated by RT-dPCR were found to be significantly higher than by RT-qPCR for NoV GI, HAV and Mengovirus in water, and for NoV GII and HAV in lettuce samples. The RT-dPCR assay proved to be more tolerant to inhibitory substances present in lettuce samples. This absolute quantitation approach may be useful to standardize quantification of enteric viruses in bottled water and lettuce samples and may be extended to quantifying other human pathogens in food samples.

  14. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  15. Intra-laboratory validation of chronic bee paralysis virus quantitation using an accredited standardised real-time quantitative RT-PCR method.

    PubMed

    Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali

    2012-03-01

    Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. PMID:22207079

  16. Multiplex mRNA profiling for the identification of body fluids.

    PubMed

    Juusola, Jane; Ballantyne, Jack

    2005-08-11

    We report the development of a multiplex reverse transcription-polymerase chain reaction (RT-PCR) method for the definitive identification of the body fluids that are commonly encountered in forensic casework analysis, namely blood, saliva, semen, and vaginal secretions. Using selected genes that we have identified as being expressed in a tissue-specific manner we have developed a multiplex RT-PCR assay which is composed of eight body fluid-specific genes and that is optimized for the detection of blood, saliva, semen, and vaginal secretions as single or mixed stains. The genes include beta-spectrin (SPTB) and porphobilinogen deaminase (PBGD) for blood, statherin (STATH) and histatin 3 (HTN3) for saliva, protamine 1 (PRM1) and protamine 2 (PRM2) for semen, and human beta-defensin 1 (HBD-1) and mucin 4 (MUC4) for vaginal secretions. The known or presumed functions of these genes suggest an extremely restricted pattern of gene expression, which is a basic requirement for incorporation into a tissue-specific assay. The methodology is based upon gene expression profiling analysis in which the body fluid-specific genes are identified by detecting the presence of appropriate mRNA species using capillary electrophoresis/laser induced fluorescence. An mRNA-based approach, such as the multiplex RT-PCR method described in the present work, allows for the facile identification of the tissue components present in a body fluid stain and could supplant the battery of serological and biochemical tests currently employed in the forensic serology laboratory.

  17. Evaluation of internal control genes for qRT-PCR normalization in tissues and cell culture for antiviral studies of grass carp (Ctenopharyngodon idella).

    PubMed

    Su, Jianguo; Zhang, Rongfang; Dong, Jie; Yang, Chunrong

    2011-03-01

    Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) has become one of the most commonly used techniques for RNA expression. To obtain more reliable results with biological significance, it requires data normalization using an appropriate internal control gene. Here, we cloned partial sequence of elongation factor 1α (EF1α) gene from grass carp (Ctenopharyngodon idella). The stabilities of four commonly used internal control genes encoding 18S rRNA, β-actin, EF1α, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were integratedly assessed using the geNorm, NormFinder and BestKeeper programs. Integrative analyses of qRT-PCR data indicated that the stability ranking of the examined genes was 18S rRNA > EF1α > GAPDH > β-actin in gill, head kidney, heart, intestine, liver, muscle, skin, spleen, and trunk kidney tissues in untreated grass carp. When the same calculations were done in spleen tissue at different time points post grass carp reovirus (GCRV) infection, the gene ranking was 18S rRNA > β-actin > GAPDH > EF1α. The rank ordering of expression stability was EF1α > β-actin>18S rRNA > GAPDH in C. idella kidney (CIK) cell culture stimulated by poly(I:C). The recommended ranking was EF1α > GAPDH > β-actin>18S rRNA in CIK cells infected by GCRV. The results indicated that 18S rRNA was the best invariant internal control gene in individual level in grass carp, EF1α was the most suitable in CIK cell culture stimulated by poly(I:C) or infected by GCRV. As an assay, EF1α was employed to examine the changes of Toll-like receptor 3 (TLR3) and melanoma differentiation associated gene 5 (MDA5) after virus infection in CIK cells. These data laid the foundation for more precise results in qRT-PCR studies of gene expression in grass carp.

  18. [Detection of puma mRNA levels by real-time quantitative RT-PCR in chronic lymphocytic leukemia and its clinical significance].

    PubMed

    Zhu, Hai-Jia; Xu, Wei; Cao, Xin; Fang, Cheng; Zhu, Dan-Xia; Dong, Hua-Jie; Wang, Dong-Mei; Qiao, Chun; Miao, Kou-Rong; Liu, Peng; Li, Jian-Yong

    2010-08-01

    above-mentioned molecular cytogenetic abnormalities. It is concluded that the qRT-PCR assay is reliable and sensitive. Puma mRNA expression is significantly correlated with a great deal of prognostic factors, and may be a prognostic marker of CLL.

  19. Simultaneous detection and differentiation of four closely related sweet potato potyviruses by a multiplex one-step RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four closely related potyviruses, Sweet potato feathery mottle virus (SPFMV), Sweet potato virus C (SPVC), Sweet potato virus G (SPVG) and/or Sweet potato virus 2 (SPV2), are involved in Sweet Potato Viral Disease, the most devastating disease of sweet potato worldwide. Identification and detection ...

  20. DEVELOPMENT OF MULTIPLEX RT-PCR FOR THE DETECTION OF REOVIRUS, HEPATITIS A VIRUS, POLIOVIRUS, NORWALK VIRUS AND ROTAVIRUS

    EPA Science Inventory

    Water sources are often found to be contaminated by enteric viruses. This is a public health concern as food and waterborne outbreaks caused by enteric viruses such as noroviruses, rotaviruses, hepatitis A virus (HAV) and enteroviruses are a common occurrence. All of these viru...

  1. Development of a Single-Reaction Multiplex PCR Toxin Typing Assay for Staphylococcus aureus Strains

    PubMed Central

    Sharma, Naresh K.; Rees, Catherine E. D.; Dodd, Christine E. R.

    2000-01-01

    We describe here the development of a single-reaction multiplex PCR assay for the enterotoxin genes from Staphylococcus aureus that utilizes a universal toxin gene primer in combination with toxin-specific primers to amplify characteristic toxin gene products. In combination with a new DNA purification method, the assay can detect enterotoxin genes A to E from a pure culture within 3 to 4 h. The test was used to characterize a diverse set of environmental S. aureus isolates, and a 99% correlation with toxin typing using standard immunological tests was found. The design of the assay allows it to be extended to include both newly characterized and as-yet-unknown toxin genes. PMID:10742210

  2. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods.

    PubMed

    Ali, Md Eaqub; Razzak, Md Abdur; Hamid, Sharifah Bee Abd; Rahman, Md Mahfujur; Amin, Md Al; Rashid, Nur Raifana Abd; Asing

    2015-06-15

    Food falsification has direct impact on public health, religious faith, fair-trades and wildlife. For the first time, here we described a multiplex polymerase chain reaction assay for the accurate identification of five meat species forbidden in Islamic foods in a single assay platform. Five pairs of species-specific primers were designed targeting mitochondrial ND5, ATPase 6, and cytochrome b genes to amplify 172, 163, 141, 129 and 108 bp DNA fragments from cat, dog, pig, monkey and rat meats, respectively. All PCR products were identified in gel-images and electrochromatograms obtained from Experion Bioanalyzer. Species-specificity checking against 15 important meat and fish and 5 plant species detected no cross-species amplification. Screening of target species in model and commercial meatballs reflected its application to detect target species in process foods. The assay was tested to detect 0.01-0.02 ng DNA under raw states and 1% suspected meats in meatball formulation.

  3. Evaluating a particular circulating microRNA species from an SLE patient using stem-loop qRT-PCR.

    PubMed

    Sui, Weiguo; Liu, Fuhua; Chen, Jiejing; Ou, Minglin; Dai, Yong

    2014-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease, and correct judgment of SLE activity is very important in guiding precise clinical treatment. Circulating microRNAs (miRNAs) could serve as potential biomarkers of disease activity or status in SLE, and here we describe a modified qRT-PCR method for detecting them. Stem loop has become one of the most powerful methods for determining miRNA expression because it is highly sensitive and accurate and requires only small amount of sample. In this chapter, we focus on a stem-loop reverse transcription-bound SYBR green qRT-PCR protocol for evaluating a particular circulating miRNA species in SLE patients.

  4. Global RT-PCR and RT-qPCR Analysis of the mRNA Expression of the Human PTPome.

    PubMed

    Nunes-Xavier, Caroline E; Pulido, Rafael

    2016-01-01

    Comprehensive comparative gene expression analysis of the tyrosine phosphatase superfamily members (PTPome) under cell- or tissue-specific growth conditions may help to define their individual and specific role in physiology and disease. Semi-quantitative and quantitative PCR are commonly used methods to analyze and measure gene expression. Here, we describe technical aspects of PTPome mRNA expression analysis by semi-quantitative RT-PCR and quantitative RT-PCR (RT-qPCR). We provide a protocol for each method consisting in reverse transcription followed by PCR using a global platform of specific PTP primers. The chapter includes aspects from primer validation to the setup of the PTPome RT-qPCR platform. Examples are given of PTP-profiling gene expression analysis using a human breast cancer cell line upon long-term or short-term treatment with cell signaling-activation agents. PMID:27514798

  5. Screening of mosquitoes using SYBR Green I-based real-time RT-PCR with group-specific primers for detection of Flaviviruses and Alphaviruses in Taiwan.

    PubMed

    Yang, Cheng-Fen; Chen, Chien-Fu; Su, Chien-Ling; Teng, Hwa-Jen; Lu, Liang-Chen; Lin, Cheo; Wang, Chih-Yuan; Shu, Pei-Yun; Huang, Jyh-Hsiung; Wu, Ho-Sheng

    2010-09-01

    Surveillance for infectious agents carried by mosquitoes is important for predicting the risk of vector-borne infectious diseases. In this study, a method was established to mass-screen mosquitoes for viral infections. The assay detected the viral load of 4 dengue virus (DENV) serotypes (DENV-1, DENV-2, DENV-3, and DENV-4), the Japanese encephalitis virus (JEV), the Sindbis virus and the Chikungunya virus at 1PFU/mL (determined by real-time RT-PCR) in 36.64-43.45 cycles. This method was applied to 75,364 field-captured mosquitoes that were grouped into 10,343 pools. Japanese encephalitis viruses were detected in 25 pools of 906 Culex tritaeniorhynchus females and a single pool of 44 Cx. fuscocephala females. These viruses were isolated from half of the positive pools. Dengue viruses were detected in 2 pools of 43 Aedes aegypti females. Additionally, mosquitoes that were infected orally with dengue viruses in the laboratory were also used to verify the test. The best detection times for individual mosquitoes after being fed virally-contaminated blood were at day 0 and day 10. The number of mosquitoes detected per pool was up to one infected mosquito plus 59 non-infected mosquitoes; the appropriate storage substances for holding samples within 24h included ice cubes and dry ice. This method, combined with a robust and automated RNA-extraction method and a 96 well real-time RT-PCR machine, allows the processing of a large number of samples at once, making it a powerful tool for monitoring simultaneously local and emerging vector-borne infectious diseases of Flaviviruses and Alphaviruses. This study is the first to quantify the viral load in individual mosquitoes over the course of a 16-day extrinsic incubation period. PMID:20471427

  6. Isolation of bovine coronavirus (bcoV) in vero cell line and its confirmation by direct FAT and RT-PCR.

    PubMed

    Hansa, A; Rai, R B; Dhama, K; Wani, M Y; Saminathan, M; Ranganath, G J

    2013-11-01

    Bovine Coronavirus (BCoV) is widespread both in dairy and beef cattle throughout the world. The virus is one of the largest RNA virus and has specific tropism for intestinal and pulmonary epithelial cells. It is responsible for huge economic losses by causing winter dysentery in adult dairy cattle and respiratory and intestinal tract infections leading to pneumo-enteritis in young calves. Isolation of BCoV has been reported to be difficult. Studies regarding epidemiology, virus isolation and molecular detection from India are very few. In the present study Vero cell line was used for isolation of the BCoV from Enzyme Linked Immunosorbent Assay (ELISA) positive samples. Direct florescent antibody technique (dFAT) and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to confirm the isolated virus strains at antigenic and genomic levels, respectively. Out of the 15 positive fecal samples, virus from only seven was able to infect vero cell line. Subsequently BCoV got adapted to the vero cell line upto three passages, which was confirmed both at genomic and antigenic levels by dFAT and RT-PCR testing. It can be concluded that vero cell line can be used for isolation of BCoV, however due to the enormous stain diversity of the virus it is possible that many stains can't grow and get adapt in this cell line. Further studies are required for isolation of different viral strains, finding the susceptible cell lines and also to confirm the variations among the BCoV isolates at antigenic/genomic levels.

  7. Quantitation of cytokine mRNA by real-time RT-PCR during a vaccination trial in a rabbit model of fascioliasis.

    PubMed

    Espino, Ana M; Rivera, Francheska

    2010-04-19

    Use of the rabbit as disease model has long been hampered by a lack of immunological assays specific to this species. In the present study we developed a SYBR Green-based, real-time RT-PCR protocol to quantitate cytokine mRNA in freshly harvested rabbit peripheral mononuclear cells. The method was validated in the course of a vaccination trial in which animals vaccinated with the recombinant antigen FhSAP2 were challenged with Fasciola hepatica metacercariae. Changes in the levels of rabbit interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-alpha (TNFalpha), and interferon-gamma (IFNgamma) mRNA were determined. Messenger RNA from the universally expressed housekeeping gene GAPDH was used as an amplification control and allowed for correction of variations in the efficiencies of RNA extraction and reverse transcription. Rabbits vaccinated with FhSAP2 showed an 83.3% reduction in liver fluke burden after challenge infection when compared to non-vaccinated controls. All cytokine mRNAs were found at detectable levels; however, the levels of IFNgamma, TNFalpha, IL-2 and IL-10 were significantly higher in the vaccinated group compared to the non-vaccinated group. These results suggest that protection conferred by FhSAP2 protein could be associated with a mixed Th1/Th2 immune response in which Th1 cytokines are dominant. The real-time RT-PCR method described herein can be a useful tool for monitoring changes in basic immune functions in the rabbit model of fascioliasis and may also aid in studies of human diseases for which the rabbit is an important experimental model. PMID:20056331

  8. Validation of reference genes in Penicillium echinulatum to enable gene expression study using real-time quantitative RT-PCR.

    PubMed

    Zampieri, Denise; Nora, Luísa C; Basso, Vanessa; Camassola, Marli; Dillon, Aldo J P

    2014-08-01

    Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is a methodology that facilitates the quantification of mRNA expression in a given sample. Analysis of relative gene expression by qRT-PCR requires normalization of the data using a reference gene that is expressed at a similar level in all evaluated conditions. Determining an internal control gene is essential for gene expression studies. Gene expression studies in filamentous fungi frequently use the β-actin gene (actb), β-tubulin, and glyceraldehyde-3-phosphate dehydrogenase as reference genes because they are known to have consistent expression levels. Until now, no study has been performed to select an internal control gene for the filamentous fungal species Penicillium echinulatum. The aim of this study was to evaluate and validate internal control genes to enable the study of gene expression in P. echinulatum using qRT-PCR. P. echinulatum strain S1M29 was grown in conditions to either induce (cellulose and sugar cane bagasse) or repress (glucose) gene expression to analyze 23 candidate normalization genes for stable expression. Two software programs, BestKeeper and geNorm, were used to assess the expression of the candidate normalization genes. The results indicate that the actb reference gene is more stably expressed in P. echinulatum. This is the first report in the literature that determines a normalization gene for this fungus. From the results obtained, we recommend the use of the P. echinulatum actb gene as an endogenous control for gene expression studies of cellulases and hemicellulases by qRT-PCR. PMID:24509829

  9. Increased sensitivity of RT-PCR for Potato virus Y detection using RNA isolated by a procedure with differential centrifugation.

    PubMed

    Zhang, Jianhua; Nie, Xianzhou; Boquel, Sébastien; Al-Daoud, Fadi; Pelletier, Yvan

    2015-12-01

    The sensitivity of reverse transcription-polymerase chain reaction (RT-PCR) for virus detection is influenced by many factors such as specificity of primers and quality of templates. These factors become extremely important for successful detection when virus concentration is low. Total RNA isolated from Potato virus Y (PVY)-infected potato plants using the sodium sulfite RNA isolation method or RNeasy plant mini kit contains a high proportion of host RNA and may also contain trace amount of phenolic and polysaccharide residues, which may inhibit RT-PCR. The goal of this study was to enhance the sensitivity of PVY detection by reducing host RNA in the extract by differential centrifugation followed by extraction using an RNeasy mini kit (DCR method). One-step RT-PCR had relatively low amplification efficiency for PVY RNA when a high proportion of plant RNA was present. SYBR Green-based real time RT-PCR showed that the RNA isolated by the DCR method had a higher cycle threshold value (Ct) for the elongation factor 1-α mRNA (Ef1α) of potato than the Ct value of the RNA extracted using the RNeasy plant mini kit, indicating that the DCR method significantly reduced the proportion of potato RNA in the extract. The detectable amount of RNA extracted using the DCR method was <0.001ng when plant sap from 10 PVY-infected and PVY-free potato leaflets in a 1.5:100 fresh weight ratio was extracted, compared with 0.01 and 0.02ng of RNA using the RNeasy plant mini kit and sodium sulfite RNA isolation methods, respectively. PMID:26210699

  10. Validation of reference genes in Penicillium echinulatum to enable gene expression study using real-time quantitative RT-PCR.

    PubMed

    Zampieri, Denise; Nora, Luísa C; Basso, Vanessa; Camassola, Marli; Dillon, Aldo J P

    2014-08-01

    Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is a methodology that facilitates the quantification of mRNA expression in a given sample. Analysis of relative gene expression by qRT-PCR requires normalization of the data using a reference gene that is expressed at a similar level in all evaluated conditions. Determining an internal control gene is essential for gene expression studies. Gene expression studies in filamentous fungi frequently use the β-actin gene (actb), β-tubulin, and glyceraldehyde-3-phosphate dehydrogenase as reference genes because they are known to have consistent expression levels. Until now, no study has been performed to select an internal control gene for the filamentous fungal species Penicillium echinulatum. The aim of this study was to evaluate and validate internal control genes to enable the study of gene expression in P. echinulatum using qRT-PCR. P. echinulatum strain S1M29 was grown in conditions to either induce (cellulose and sugar cane bagasse) or repress (glucose) gene expression to analyze 23 candidate normalization genes for stable expression. Two software programs, BestKeeper and geNorm, were used to assess the expression of the candidate normalization genes. The results indicate that the actb reference gene is more stably expressed in P. echinulatum. This is the first report in the literature that determines a normalization gene for this fungus. From the results obtained, we recommend the use of the P. echinulatum actb gene as an endogenous control for gene expression studies of cellulases and hemicellulases by qRT-PCR.

  11. Aptamers-based sandwich assay for silver-enhanced fluorescence multiplex detection.

    PubMed

    Wang, Ying; Li, Hui; Xu, Danke

    2016-01-28

    In this work, aptamers-modified silver nanoparticles (AgNPs) were prepared as capture substrate, and fluorescent dyes-modified aptamers were synthesized as detection probes. The sandwich assay was based on dual aptamers, which was aimed to accomplish the highly sensitive detection of single protein and multiplex detection of proteins on one-spot. We found that aptamers-modified AgNPs based microarray was much superior to the aptamer based microarray in fluorescence detection of proteins. The result shows that the detection limit of the sandwich assay using AgNPs probes for thrombin or platelet-derived growth factor-BB (PDGF-BB) is 80 or 8 times lower than that of aptamers used directly. For multiplex detection of proteins, the detection limit was 625 pM for PDGF-BB and 21 pM for thrombin respectively. The sandwich assay based on dual aptamers and AgNPs was sensitive and specific. PMID:26755149

  12. Two-Color Lateral Flow Assay for Multiplex Detection of Causative Agents Behind Acute Febrile Illnesses.

    PubMed

    Lee, Seoho; Mehta, Saurabh; Erickson, David

    2016-09-01

    Acute undifferentiated febrile illnesses (AFIs) represent a significant health burden worldwide. AFIs can be caused by infection with a number of different pathogens including dengue (DENV) and Chikungunya viruses (CHIKV), and their differential diagnosis is critical to the proper patient management. While rapid diagnostic tests (RDTs) for the detection of IgG/IgM against a single pathogen have played a significant role in enabling the rapid diagnosis in the point-of-care settings, the state-of-the-art assay scheme is incompatible with the multiplex detection of IgG/IgM to more than one pathogen. In this paper, we present a novel assay scheme that uses two-color latex labels for rapid multiplex detection of IgG/IgM. Adapting this assay scheme, we show that 4-plex detection of the IgG/IgM antibodies to DENV and CHIKV is possible in 10 min by using it to correctly identify 12 different diagnostic scenarios. We also show that blue, mixed, and red colorimetric signals corresponding to IgG, IgG/IgM, and IgM positive cases, respectively, can be associated with distinct ranges of hue intensities, which could be exploited by analyzer systems in the future for making accurate, automated diagnosis. This represents the first steps toward the development of a single RDT-based system for the differential diagnosis of numerous AFIs of interest. PMID:27490379

  13. Design and Validation of DNA Libraries for Multiplexing Proximity Ligation Assays

    PubMed Central

    Gobet, Nicolas; Ketterer, Simon; Meier, Matthias

    2014-01-01

    Here, we present an in silico, analytical procedure for designing and testing orthogonal DNA templates for multiplexing of the proximity ligation assay (PLA). PLA is a technology for the detection of protein interactions, post-translational modifications, and protein concentrations. To enable multiplexing of the PLA, the target information of antibodies was encoded within the DNA template of a PLA, where each template comprised four single-stranded DNA molecules. Our DNA design procedure followed the principles of minimizing the free energy of DNA cross-hybridization. To validate the functionality, orthogonality, and efficiency of the constructed template libraries, we developed a high-throughput solid-phase rolling-circle amplification assay and solid-phase PLA on a microfluidic platform. Upon integration on a microfluidic chip, 640 miniaturized pull-down assays for oligonucleotides or antibodies could be performed in parallel together with steps of DNA ligation, isothermal amplification, and detection under controlled microenvironments. From a large computed PLA template library, we randomly selected 10 template sets and tested all DNA combinations for cross-reactivity in the presence and absence of antibodies. By using the microfluidic chip application, we determined rapidly the false-positive rate of the design procedure, which was less than 1%. The combined theoretical and experimental procedure is applicable for high-throughput PLA studies on a microfluidic chip. PMID:25386748

  14. Identification multiplex assay of 19 terrestrial mammal species present in New Zealand.

    PubMed

    Ramón-Laca, Ana; Linacre, Adrian M T; Gleeson, Dianne M; Tobe, Shanan S

    2013-12-01

    An identification assay has been developed that allows accurate detection of 19 of the most common terrestrial mammals present in New Zealand (cow, red deer, goat, dog, horse, hedgehog, cat, tammar wallaby, mouse, weasel, ferret, stoat, sheep, rabbit, Pacific rat, Norway rat, ship rat, pig, and brushtail possum). This technique utilizes species-specific primers that, combined in a multiplex PCR, target small fragments of the mitochondrial cytochrome b gene. Each species, except hedgehog, produces two distinctive species-specific fragments, making the assay self-confirmatory and enabling the identification of multiple species simultaneously in DNA mixtures. The multiplex assay detects as little as 100 copies of mitochondrial DNA, which makes it a very reliable tool for degraded and trace samples. Reliability, accuracy, reproducibility, and sensitivity tests to validate the technique were performed. The technique featured here enabled a prompt response in a predation specific event, but can also be useful for wildlife management and conservation, pest incursions detection, forensic, and industrial purposes in a very simple and cost-effective manner.

  15. Detection of four important Eimeria species by multiplex PCR in a single assay.

    PubMed

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl.

  16. Multiplex assays for biomarker research and clinical application: translational science coming of age.

    PubMed

    Fu, Qin; Schoenhoff, Florian S; Savage, William J; Zhang, Pingbo; Van Eyk, Jennifer E

    2010-03-01

    Over the last decade, translational science has come into the focus of academic medicine, and significant intellectual and financial efforts have been made to initiate a multitude of bench-to-bedside projects. The quest for suitable biomarkers that will significantly change clinical practice has become one of the biggest challenges in translational medicine. Quantitative measurement of proteins is a critical step in biomarker discovery. Assessing a large number of potential protein biomarkers in a statistically significant number of samples and controls still constitutes a major technical hurdle. Multiplexed analysis offers significant advantages regarding time, reagent cost, sample requirements and the amount of data that can be generated. The two contemporary approaches in multiplexed and quantitative biomarker validation, antibody-based immunoassays and MS-based multiple (or selected) reaction monitoring, are based on different assay principles and instrument requirements. Both approaches have their own advantages and disadvantages and therefore have complementary roles in the multi-staged biomarker verification and validation process. In this review, we discuss quantitative immunoassay and multiple reaction monitoring/selected reaction monitoring assay principles and development. We also discuss choosing an appropriate platform, judging the performance of assays, obtaining reliable, quantitative results for translational research and clinical applications in the biomarker field. PMID:21137048

  17. Validation of reference genes for quantitative gene expression studies in Volvox carteri using real-time RT-PCR.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2013-12-01

    Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) is a sensitive technique for analysis of gene expression under a wide diversity of biological conditions. However, the identification of suitable reference genes is a critical factor for analysis of gene expression data. To determine potential reference genes for normalization of qRT-PCR data in the green alga Volvox carteri, the transcript levels of ten candidate reference genes were measured by qRT-PCR in three experimental sample pools containing different developmental stages, cell types and stress treatments. The expression stability of the candidate reference genes was then calculated using the algorithms geNorm, NormFinder and BestKeeper. The genes for 18S ribosomal RNA (18S) and eukaryotic translation elongation factor 1α2 (eef1) turned out to have the most stable expression levels among the samples both from different developmental stages and different stress treatments. The genes for the ribosomal protein L23 (rpl23) and the TATA-box binding protein (tbpA) showed equivalent transcript levels in the comparison of different cell types, and therefore, can be used as reference genes for cell-type specific gene expression analysis. Our results indicate that more than one reference gene is required for accurate normalization of qRT-PCRs in V. carteri. The reference genes in our study show a much better performance than the housekeeping genes used as a reference in previous studies.

  18. Identification of reliable reference genes for qRT-PCR studies of the developing mouse mammary gland

    PubMed Central

    van de Moosdijk, Anoeska Agatha Alida; van Amerongen, Renée

    2016-01-01

    Cell growth and differentiation are often driven by subtle changes in gene expression. Many challenges still exist in detecting these changes, particularly in the context of a complex, developing tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) allows relatively high-throughput evaluation of multiple genes and developmental time points. Proper quantification of gene expression levels by qRT-PCR requires normalization to one or more reference genes. Traditionally, these genes have been selected based on their presumed “housekeeping” function, with the implicit assumption that they are stably expressed over the entire experimental set. However, this is rarely tested empirically. Here we describe the identification of novel reference genes for the mouse mammary gland based on their stable expression in published microarray datasets. We compared eight novel candidate reference genes (Arpc3, Clock, Ctbp1, Phf7, Prdx1, Sugp2, Taf11 and Usp7) to eight traditional ones (18S, Actb, Gapdh, Hmbs, Hprt, Rpl13a, Sdha and Tbp) and analysed all genes for stable expression in the mouse mammary gland from pre-puberty to adulthood using four different algorithms (GeNorm, DeltaCt, BestKeeper and NormFinder). Prdx1, Phf7 and Ctbp1 were validated as novel and reliable, tissue-specific reference genes that outperform traditional reference genes in qRT-PCR studies of postnatal mammary gland development. PMID:27752147

  19. Validation of reference genes for quantitative gene expression studies in Volvox carteri using real-time RT-PCR.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2013-12-01

    Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) is a sensitive technique for analysis of gene expression under a wide diversity of biological conditions. However, the identification of suitable reference genes is a critical factor for analysis of gene expression data. To determine potential reference genes for normalization of qRT-PCR data in the green alga Volvox carteri, the transcript levels of ten candidate reference genes were measured by qRT-PCR in three experimental sample pools containing different developmental stages, cell types and stress treatments. The expression stability of the candidate reference genes was then calculated using the algorithms geNorm, NormFinder and BestKeeper. The genes for 18S ribosomal RNA (18S) and eukaryotic translation elongation factor 1α2 (eef1) turned out to have the most stable expression levels among the samples both from different developmental stages and different stress treatments. The genes for the ribosomal protein L23 (rpl23) and the TATA-box binding protein (tbpA) showed equivalent transcript levels in the comparison of different cell types, and therefore, can be used as reference genes for cell-type specific gene expression analysis. Our results indicate that more than one reference gene is required for accurate normalization of qRT-PCRs in V. carteri. The reference genes in our study show a much better performance than the housekeeping genes used as a reference in previous studies. PMID:24057254

  20. RT-PCR for mammaglobin genes, MGB1 and MGB2, identifies breast cancer micrometastases in sentinel lymph nodes.

    PubMed

    Ouellette, Rodney J; Richard, Dominique; Maïcas, Emmanuel

    2004-05-01

    In the present study, we examined the expression of the mammaglobin genes, MGB1 and MGB2, in the sentinel lymph nodes (SLNs) of patients with breast cancer and compared our results with the histologic status of the same SLNs. Compared with immunohistochemical staining for cytokeratin 8, which detected metastases in 17 of 42 patients, reverse transcription-polymerase chain reaction (RT-PCR) for MGB1 or MGB2 genes was positive in 22 patients. The concordance between the expression of any mammaglobin and histologic status was 79% (33/42), with a sensitivity of 88% and specificity of 72%. The detection of patients with metastases was more sensitive when testing for both MGB1 and MGB2 (P < .0001) rather than MGB2 (P < .0005) or MGB1 (P < .05) alone. The increased detection rate relative to histologic examination suggests that using RT-PCR for the mammaglobin genes might identify patients at higher risk compared with patients with negative RT-PCR results.

  1. Evaluation of Clostridium ljungdahlii DSM 13528 reference genes in gene expression studies by qRT-PCR.

    PubMed

    Liu, Juanjuan; Tan, Yang; Yang, Xiaohong; Chen, Xiaohua; Li, Fuli

    2013-10-01

    Clostridium ljungdahlii DSM 13528 is a promising platform organism for biofuel production from syngas. Gene expression analysis permits a better understanding of the important molecular biological characteristics of this organism, such as carbon fixation and solvent adaptation. Normalization is a prerequisite for accurate gene expression analysis, but until now, no valid reference genes have been proposed for quantitative real-time polymerase chain reaction (qRT-PCR) analysis of C. ljungdahlii DSM 13528. In this study, seven candidate reference genes (gyrA, rho, fotl, rpoA, gukl, recA, 16S rRNA) were selected for qRT-PCR quantification of their expression levels in various culture conditions that corresponded to different carbon sources and stresses. Two analytical programs, geNorm and NormFinder, were used to evaluate reference gene stability. The results showed that gyrA, rho and fotl exhibited the most stable expression levels across all tested samples and can be confidently used as reference genes to normalize the transcriptional data of target genes in qRT-PCR analyses of C. ljungdahlii DSM 13528. This study presents the first attempt to explore the validity of candidate reference genes and provide a set of valid reference genes for normalizing C. ljungdahlii DSM 13528 target gene expression and transcriptome analysis.

  2. Molecular characterization and clinical impact of TMPRSS2-ERG rearrangement on prostate cancer: comparison between FISH and RT-PCR.

    PubMed

    Fernández-Serra, A; Rubio, L; Calatrava, A; Rubio-Briones, J; Salgado, R; Gil-Benso, R; Espinet, B; García-Casado, Z; López-Guerrero, J A

    2013-01-01

    Prostate cancer (PCa) is a very heterogeneous disease, and there are constraints in its current diagnosis. Serum PSA levels, digital rectal examination (DRE), and histopathologic analysis often drive to overdiagnosis and overtreatment. Since 2005, the presence of the genetic rearrangement between transmembrane-serine protease gene (TMPRSS2) and the erythroblast transformation-specific (ETS) member ERG (v-ets erythroblastosis virus E26 oncogene homolog avian) has been demonstrated in almost half of PCa cases. Both FISH and RT-PCR are useful tools for detecting these rearrangements, but very few comparatives between both techniques have been published. In this study, we included FFPE tumors from 294 PCa patients treated with radical prostatectomy with more than 5 years of followup. We constructed a total of 20 tissue microarrays in order to perform break-apart and tricolor probe FISH approaches that were compared with RT-PCR, showing a concordance of 80.6% (P < 0.001). The presence of TMPRSS2-ERG rearrangement was observed in 56.6% of cases. No association between TMPRSS2-ERG status and clinicopathological parameters nor biochemical progression and clinical progression free survival was found. In conclusion, this study demonstrates that both FISH and RT-PCR are useful tools in the assessment of the TMPRSS2-ERG fusion gene status in PCa patients and that this genetic feature per se lacks prognostic value. PMID:23781502

  3. [Comparison of cell culture and RT-PCR for the detection of enterovirus in sewage and shellfish].

    PubMed

    Sdiri, K; Khelifi, H; Belghith, K; Aouni, M

    2006-05-01

    Enteric viruses contaminating the environment represent a danger for public health notably enteroviruses that are excreted in stools and can contaminate wastewater and shellfish. The ability of enteroviruses to grow in cell culture and the development of techniques of molecular biology applied to their detection make these viruses a good marker of viral pollution of aquatic environment. The aim of our study was to develop a rapid and sensitive RT-PCR technique, able to detect enterovirus RNA in wastewater and shellfish. From 26 samples of wastewater and 56 samples of shellfish, 50.0 and 42.8% were found positive by RT-PCR, respectively, whereas 38.4 and 28.5% were positive by culture, respectively (P=0.077 by chi square test). The two techniques were found concordant in 57.3% of the 82 combined samples, whereas 23 samples (28.0%) were positive only by RT-PCR and that 12 samples (14.6%) were positive only by culture. These discrepancies illustrate the fact that the two techniques are not equivalent: the molecular technique allows the detection of not cultivable samples but is sensitive to PCR inhibitors that are present in large amounts in environmental samples.

  4. Determination of HCV RNA concentration by direct quantitation of the products from a single RT-PCR.

    PubMed

    Pérez-Ruiz, M; Torres, C; García-López, P A; Ruiz-Extremera, A; Salmerón, J; Berzal-Herranz, A

    1997-12-01

    A novel method for the estimation of HCV RNA levels in vivo was developed, based on competitive RT-PCR. The use of the Tth DNA polymerase and 5' 32P-labeled antisense primer respectively reduced cross-contamination and permitted the direct quantification of viral loads by the analysis of the radioactivity of PCR products derived from a clinical sample and a competitive deleted template, separated previously on a polyacrilamide gel. A HCV fragment (H) and a competitive (deltaH) RNA templates were synthesized for optimizing the method. The minimal starting RNA detectable by RT-PCR was 40 copies. RT-PCR performed with ratios deltaH/H ranging from 1/1 to 1/20 revealed different relative percentages of both H and deltaH products, changing from 90% of deltaH product when the ratio was 1/1 to 5%, when it was 1/20. Regression analysis was adjusted to a linear model and served to further estimate HCV RNA loads from clinical samples. HCV RNA quantitation was carried out in 19 patients. Higher viral loads were related to type 1b infection and persistence of HCV RNA after interferon therapy. This method is simple, reproducible and useful for rapid estimation of HCV RNA load in vivo.

  5. A comprehensive assay for targeted multiplex amplification of human DNA sequences

    PubMed Central

    Krishnakumar, Sujatha; Zheng, Jianbiao; Wilhelmy, Julie; Faham, Malek; Mindrinos, Michael; Davis, Ronald

    2008-01-01

    We developed a robust and reproducible methodology to amplify human sequences in parallel for use in downstream multiplexed sequence analyses. We call the methodology SMART (Spacer Multiplex Amplification Reaction), and it is based, in part, on padlock probe technology. As a proof of principle, we used SMART technology to simultaneously amplify 485 human exons ranging from 100 to 500 bp from human genomic DNA. In multiple repetitions, >90% of the targets were successfully amplified with a high degree of uniformity, with 70% of targets falling within a 10-fold range and all products falling within a 100-fold range of each other in abundance. We used long padlock probes (LPPs) >300 bases in length for the assay, and the increased length of these probes allowed for the capture of human sequences up to 500 bp in length, which is optimal for capturing most human exons. To engineer the LPPs, we developed a method that generates ssDNA molecules with precise ends, using an appropriately designed dsDNA template. The template has appropriate restriction sites engineered into it that can be digested to generate nucleotide overhangs that are suitable for lambda exonuclease digestion, producing a single-stranded probe from dsDNA. The SMART technology is flexible and can be easily adapted to multiplex tens of thousands of target sequences in a single reaction. PMID:18599465

  6. A comprehensive assay for targeted multiplex amplification of human DNA sequences.

    PubMed

    Krishnakumar, Sujatha; Zheng, Jianbiao; Wilhelmy, Julie; Faham, Malek; Mindrinos, Michael; Davis, Ronald

    2008-07-01

    We developed a robust and reproducible methodology to amplify human sequences in parallel for use in downstream multiplexed sequence analyses. We call the methodology SMART (Spacer Multiplex Amplification Reaction), and it is based, in part, on padlock probe technology. As a proof of principle, we used SMART technology to simultaneously amplify 485 human exons ranging from 100 to 500 bp from human genomic DNA. In multiple repetitions, >90% of the targets were successfully amplified with a high degree of uniformity, with 70% of targets falling within a 10-fold range and all products falling within a 100-fold range of each other in abundance. We used long padlock probes (LPPs) >300 bases in length for the assay, and the increased length of these probes allowed for the capture of human sequences up to 500 bp in length, which is optimal for capturing most human exons. To engineer the LPPs, we developed a method that generates ssDNA molecules with precise ends, using an appropriately designed dsDNA template. The template has appropriate restriction sites engineered into it that can be digested to generate nucleotide overhangs that are suitable for lambda exonuclease digestion, producing a single-stranded probe from dsDNA. The SMART technology is flexible and can be easily adapted to multiplex tens of thousands of target sequences in a single reaction.

  7. Hyaluronidase treatment of synovial fluid to improve assay precision for biomarker research using multiplex immunoassay platforms.

    PubMed

    Jayadev, Chethan; Rout, Raj; Price, Andrew; Hulley, Philippa; Mahoney, David

    2012-12-14

    Synovial fluid (SF) is a difficult biological matrix to analyse due to its complex non-Newtonian nature. This can result in poor assay repeatability and potentially inefficient use of precious samples. This study assessed the impact of SF treatment by hyaluronidase and/or dilution on intra-assay precision using the Luminex and Meso Scale Discovery (MSD) multiplex platforms. SF was obtained from patients with knee osteoarthritis at the time of joint replacement surgery. Aliquots derived from the same sample were left untreated (neat), 2-fold diluted, 4-fold diluted or treated with 2mg/ml testicular hyaluronidase (with 2-fold dilution). Preparation methods were compared in a polysterene-bead Luminex 10-plex (N=16), magnetic-bead Luminex singleplex (N=7) and MSD 4-plex (N=7). Each method was assessed for coefficient of variation (CV) of replicate measurements, number of bead events (for Luminex assays) and dilution-adjusted analyte concentration. Percentage recovery was calculated for dilutions and HAse treatment. Hyaluronidase treatment significantly increased the number of wells with satisfactory bead events/region (95%) compared to neat (48%, p<0.001) in the polystyrene-bead Luminex assay, but the magnetic-bead Luminex assay achieved ≥50 bead events irrespective of treatment method. Hyaluronidase treatment resulted in lower intra-assay CVs for detectable ligands (group average CV<10%) than neat, 2-fold and 4-fold dilution (CV~25% for all, p<0.05) in both polystyrene- and magnetic-bead Luminex assays. In addition, measured sample concentrations were higher and recovery was poor (elevated) after hyaluronidase treatment. In the MSD 4-plex, within-group comparison of the intra-assay CV or concentration was not conclusively influenced by SF preparation. However, only hyaluronidase treatment resulted in CV<25% for all samples for TNF-α. There was no effect on analyte concentrations or recovery. Hyaluronidase treatment can improve intra-assay precision and assay signal

  8. From SOMAmer-Based Biomarker Discovery to Diagnostic and Clinical Applications: A SOMAmer-Based, Streamlined Multiplex Proteomic Assay

    PubMed Central

    Kraemer, Stephan; Vaught, Jonathan D.; Bock, Christopher; Gold, Larry; Katilius, Evaldas; Keeney, Tracy R.; Kim, Nancy; Saccomano, Nicholas A.; Wilcox, Sheri K.; Zichi, Dom; Sanders, Glenn M.

    2011-01-01

    Recently, we reported a SOMAmer-based, highly multiplexed assay for the purpose of biomarker identification. To enable seamless transition from highly multiplexed biomarker discovery assays to a format suitable and convenient for diagnostic and life-science applications, we developed a streamlined, plate-based version of the assay. The plate-based version of the assay is robust, sensitive (sub-picomolar), rapid, can be highly multiplexed (upwards of 60 analytes), and fully automated. We demonstrate that quantification by microarray-based hybridization, Luminex bead-based methods, and qPCR are each compatible with our platform, further expanding the breadth of proteomic applications for a wide user community. PMID:22022604

  9. Rapid detection of foot-and-mouth disease virus, influenza A virus and classical swine fever virus by high-speed real-time RT-PCR.

    PubMed

    Wernike, Kerstin; Beer, Martin; Hoffmann, Bernd

    2013-10-01

    High sensitivity, minor risk of cross-contamination and in particular the rapid reaction time make quantitative real-time polymerase chain reaction (qPCR) assays well suited for outbreak investigations as well as for monitoring epidemics of pathogens. In this study qPCR assays for three highly contagious animal diseases, namely foot-and-mouth-disease (FMD), influenza A (IA) and classical swine fever (CSF) have been developed. Furthermore, an amplification control targeting 18S ribosomal RNA was included. Each assay was validated with samples from infected animals using three different standard qPCR-machines in two thermal profiles: one standard and one high-speed approach, respectively. The high-speed PCR assays allowed the reliable diagnosis of FMD, influenza A and CSF in less than 28 min with an analytical sensitivity of at least 200 genome copies/μl in every case, with slight differences regarding reaction time and sensitivity for the individual PCR-cycler instruments. Therefore, the newly established rapid RT-PCR systems will be a valuable method for the monitoring and control of these three important viruses and will be a robust option for the development of novel molecular pen-side tests. PMID:23702025

  10. How can we reduce costs of solid-phase multiplex-bead assays used to determine anti-HLA antibodies?

    PubMed

    Kamburova, E G; Wisse, B W; Joosten, I; Allebes, W A; van der Meer, A; Hilbrands, L B; Baas, M C; Spierings, E; Hack, C E; van Reekum, F E; van Zuilen, A D; Verhaar, M; Bots, M L; Drop, A C A D; Plaisier, L; Seelen, M A J; Sanders, J S F; Hepkema, B G; Lambeck, A J; Bungener, L B; Roozendaal, C; Tilanus, M G J; Vanderlocht, J; Voorter, C E; Wieten, L; van Duijnhoven, E M; Gelens, M; Christiaans, M H L; van Ittersum, F J; Nurmohamed, A; Lardy, N M; Swelsen, W; van der Pant, K A; van der Weerd, N C; Ten Berge, I J M; Bemelman, F J; Hoitsma, A; van der Boog, P J M; de Fijter, J W; Betjes, M G H; Heidt, S; Roelen, D L; Claas, F H; Otten, H G

    2016-09-01

    Solid-phase multiplex-bead assays are widely used in transplantation to detect anti-human leukocyte antigen (HLA) antibodies. These assays enable high resolution detection of low levels of HLA antibodies. However, multiplex-bead assays are costly and yield variable measurements that limit the comparison of results between laboratories. In the context of a Dutch national Consortium study we aimed to determine the inter-assay and inter-machine variability of multiplex-bead assays, and we assessed how to reduce the assay reagents costs. Fifteen sera containing a variety of HLA antibodies were used yielding in total 7092 median fluorescence intensities (MFI) values. The inter-assay and inter-machine mean absolute relative differences (MARD) of the screening assay were 12% and 13%, respectively. The single antigen bead (SAB) inter-assay MARD was comparable, but showed a higher lot-to-lot variability. Reduction of screening assay reagents to 50% or 40% of manufacturers' recommendations resulted in MFI values comparable to 100% of the reagents, with an MARD of 12% or 14%, respectively. The MARD of the 50% and 40% SAB assay reagent reductions were 11% and 22%, respectively. From this study, we conclude that the reagents can be reliably reduced at least to 50% of manufacturers' recommendations with virtually no differences in HLA antibody assignments.

  11. How can we reduce costs of solid-phase multiplex-bead assays used to determine anti-HLA antibodies?

    PubMed

    Kamburova, E G; Wisse, B W; Joosten, I; Allebes, W A; van der Meer, A; Hilbrands, L B; Baas, M C; Spierings, E; Hack, C E; van Reekum, F E; van Zuilen, A D; Verhaar, M; Bots, M L; Drop, A C A D; Plaisier, L; Seelen, M A J; Sanders, J S F; Hepkema, B G; Lambeck, A J; Bungener, L B; Roozendaal, C; Tilanus, M G J; Vanderlocht, J; Voorter, C E; Wieten, L; van Duijnhoven, E M; Gelens, M; Christiaans, M H L; van Ittersum, F J; Nurmohamed, A; Lardy, N M; Swelsen, W; van der Pant, K A; van der Weerd, N C; Ten Berge, I J M; Bemelman, F J; Hoitsma, A; van der Boog, P J M; de Fijter, J W; Betjes, M G H; Heidt, S; Roelen, D L; Claas, F H; Otten, H G

    2016-09-01

    Solid-phase multiplex-bead assays are widely used in transplantation to detect anti-human leukocyte antigen (HLA) antibodies. These assays enable high resolution detection of low levels of HLA antibodies. However, multiplex-bead assays are costly and yield variable measurements that limit the comparison of results between laboratories. In the context of a Dutch national Consortium study we aimed to determine the inter-assay and inter-machine variability of multiplex-bead assays, and we assessed how to reduce the assay reagents costs. Fifteen sera containing a variety of HLA antibodies were used yielding in total 7092 median fluorescence intensities (MFI) values. The inter-assay and inter-machine mean absolute relative differences (MARD) of the screening assay were 12% and 13%, respectively. The single antigen bead (SAB) inter-assay MARD was comparable, but showed a higher lot-to-lot variability. Reduction of screening assay reagents to 50% or 40% of manufacturers' recommendations resulted in MFI values comparable to 100% of the reagents, with an MARD of 12% or 14%, respectively. The MARD of the 50% and 40% SAB assay reagent reductions were 11% and 22%, respectively. From this study, we conclude that the reagents can be reliably reduced at least to 50% of manufacturers' recommendations with virtually no differences in HLA antibody assignments. PMID:27534609

  12. Acoustic trapping as a generic non-contact incubation site for multiplex bead-based assays.

    PubMed

    Tenje, Maria; Xia, Hongyan; Evander, Mikael; Hammarström, Björn; Tojo, Axel; Belák, Sándor; Laurell, Thomas; LeBlanc, Neil

    2015-01-01

    In this study, we show a significantly reduced assay time and a greatly increased bead recovery for a commercial Luminex-based multiplex diagnostic immunoassay by performing all liquid handling steps of the assay protocol in a non-contact acoustic trapping platform. The Luminex assay is designed for detecting antibodies in poultry serum for infectious bursal disease virus, infectious bronchitis virus, Newcastle disease virus and avian reovirus. Here, we show proof-of-concept of a microfluidic system capable of being fully automated and handling samples in a parallel format with a miniature physical footprint where the affinity beads are retained in a non-contact levitated mode in a glass capillary throughout the assay protocol. The different steps are: incubation with the serum sample, secondary antibodies and fluorescent reporters and finally washing to remove any non-specifically bound species. A Luminex 200 instrument was used for the readout. The flow rates applied to the capillary during the initial trapping event and the wash steps were optimised for maximum bead recovery, resulting in a bead recovery of 75% for the complete assay. This can be compared to a bead recovery of approximately 30% when an automatic wash station was used when the assay was performed in the conventional manual format. The time for the incubation steps for a single assay was reduced by more than 50%, without affecting assay performance, since intermediate wash steps became redundant in the continuously perfused bead trapping capillary. We analyzed seven samples, in triplicates, and we can show that the readout of the assay performed in the acoustic trap compared 100% to the control ELISAs (positive or negative readout) and resulted in comparable S/P values as the conventional manual protocol. As the acoustic trapping does not require the particles to have magnetic properties, a greater degree of freedom in selecting microparticles can be provided. In extension, this can provide an

  13. Development, optimization, and validation of a Classical swine fever virus real-time reverse transcription polymerase chain reaction assay.

    PubMed

    Eberling, August J; Bieker-Stefanelli, Jill; Reising, Monica M; Siev, David; Martin, Barbara M; McIntosh, Michael T; Beckham, Tammy R

    2011-09-01

    Classical swine fever (CSF) is an economically devastating disease of pigs. Instrumental to the control of CSF is a well-characterized assay that can deliver a rapid, accurate diagnosis prior to the onset of clinical signs. A real-time fluorogenic-probe hydrolysis (TaqMan) reverse transcription polymerase chain reaction (RT-PCR) for CSF was developed by the United States Department of Agriculture (USDA) at the Plum Island Animal Disease Center (CSF PIADC assay) and evaluated for analytical and diagnostic sensitivity and specificity. A well-characterized panel including Classical swine fever virus (CSFV), Bovine viral diarrhea virus (BVDV), and Border disease virus (BDV) isolates was utilized in initial feasibility and optimization studies. The assay was initially designed and validated for use on the ABI 7900HT using the Qiagen QuantiTect® Probe RT-PCR chemistry. However, demonstrating equivalency with multiple one-step RT-PCR chemistries and PCR platforms increased the versatility of the assay. Limit of detection experiments indicated that the Qiagen QuantiTect® Multiplex (NoROX) and the Invitrogen SuperScript® III RT-PCR kits were consistently the most sensitive one-step chemistries for use with the CSF PIADC primer/probe set. Analytical sensitivity of the CSF PIADC assay ranged from <1-2.95 log(10) TCID(50)/ml on both the ABI 7900HT and ABI 7500 platforms. The CSF PIADC assay had 100% diagnostic sensitivity and specificity when tested on a panel of 152 clinical samples from the Dominican Republic and Colombia. The ability to perform this newly developed assay in 96-well formats provides an increased level of versatility for use in CSF surveillance programs.

  14. Wide spectral-range imaging spectroscopy of photonic crystal microbeads for multiplex biomolecular assay applications

    NASA Astrophysics Data System (ADS)

    Li, Jianping

    2014-05-01

    Suspension assay using optically color-encoded microbeads is a novel way to increase the reaction speed and multiplex of biomolecular detection and analysis. To boost the detection speed, a hyperspectral imaging (HSI) system is of great interest for quickly decoding the color codes of the microcarriers. Imaging Fourier transform spectrometer (IFTS) is a potential candidate for this task due to its advantages in HSI measurement. However, conventional IFTS is only popular in IR spectral bands because it is easier to track its scanning mirror position in longer wavelengths so that the fundamental Nyquist criterion can be satisfied when sampling the interferograms; the sampling mechanism for shorter wavelengths IFTS used to be very sophisticated, high-cost and bulky. In order to overcome this handicap and take better usage of its advantages for HSI applications, a new wide spectral range IFTS platform is proposed based on an optical beam-folding position-tracking technique. This simple technique has successfully extended the spectral range of an IFTS to cover 350-1000nm. Test results prove that the system has achieved good spectral and spatial resolving performances with instrumentation flexibilities. Accurate and fast measurement results on novel colloidal photonic crystal microbeads also demonstrate its practical potential for high-throughput and multiplex suspension molecular assays.

  15. Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.

    PubMed

    Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L

    2016-07-01

    Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR. PMID:27143320

  16. Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.

    PubMed

    Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L

    2016-07-01

    Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR.

  17. Discrimination between E. granulosus sensu stricto, E. multilocularis and E. shiquicus Using a Multiplex PCR Assay

    PubMed Central

    Li, Li; Yan, Hong-Bin; Blair, David; Lei, Meng-Tong; Cai, Jin-Zhong; Fan, Yan-Lei; Li, Jian-Qiu; Fu, Bao-Quan; Yang, Yu-Rong; McManus, Donald P.; Jia, Wan-Zhong

    2015-01-01

    Background Infections of Echinococcus granulosus sensu stricto (s.s), E. multilocularis and E. shiquicus are commonly found co-endemic on the Qinghai-Tibet plateau, China, and an efficient tool is needed to facilitate the detection of infected hosts and for species identification. Methodology/Principal Findings A single-tube multiplex PCR assay was established to differentiate the Echinococcus species responsible for infections in intermediate and definitive hosts. Primers specific for E. granulosus, E. multilocularis and E. shiquicus were designed based on sequences of the mitochondrial NADH dehydrogenase subunit 1 (nad1), NADH dehydrogenase subunit 5 (nad5) and cytochrome c oxidase subunit 1 (cox1) genes, respectively. This multiplex PCR accurately detected Echinococcus DNA without generating nonspecific reaction products. PCR products were of the expected sizes of 219 (nad1), 584 (nad5) and 471 (cox1) bp. Furthermore, the multiplex PCR enabled diagnosis of multiple infections using DNA of protoscoleces and copro-DNA extracted from fecal samples of canine hosts. Specificity of the multiplex PCR was 100% when evaluated using DNA isolated from other cestodes. Sensitivity thresholds were determined for DNA from protoscoleces and from worm eggs, and were calculated as 20 pg of DNA for E. granulosus and E. shiquicus, 10 pg of DNA for E. multilocularis, 2 eggs for E. granulosus, and 1 egg for E. multilocularis. Positive results with copro-DNA could be obtained at day 17 and day 26 after experimental infection of dogs with larval E. multilocularis and E. granulosus, respectively. Conclusions/Significance The multiplex PCR developed in this study is an efficient tool for discriminating E. granulosus, E. multilocularis and E. shiquicus from each other and from other taeniid cestodes. It can be used for the detection of canids infected with E. granulosus s.s. and E. multilocularis using feces collected from these definitive hosts. It can also be used for the identification

  18. Sensitive, multiplex and direct quantification of RNA sequences using a modified RASL assay

    PubMed Central

    Larman, H. Benjamin; Scott, Erick R.; Wogan, Megan; Oliveira, Glenn; Torkamani, Ali; Schultz, Peter G.

    2014-01-01

    A sensitive and highly multiplex method to directly measure RNA sequence abundance without requiring reverse transcription would be of value for a number of biomedical applications, including high throughput small molecule screening, pathogen transcript detection and quantification of short/degraded RNAs. RNA Annealing, Selection and Ligation (RASL) assays, which are based on RNA template-dependent oligonucleotide probe ligation, have been developed to meet this need, but technical limitations have impeded their adoption. Whereas DNA ligase-based RASL assays suffer from extremely low and sequence-dependent ligation efficiencies that compromise assay robustness, Rnl2 can join a fully DNA donor probe to a 3′-diribonucleotide-terminated acceptor probe with high efficiency on an RNA template strand. Rnl2-based RASL exhibits sub-femtomolar transcript detection sensitivity, and permits the rational tuning of probe signals for optimal analysis by massively parallel DNA sequencing (RASL-seq). A streamlined Rnl2-based RASL-seq protocol was assessed in a small molecule screen using 77 probe sets designed to monitor complex human B cell phenotypes during antibody class switch recombination. Our data demonstrate the robustness, cost-efficiency and broad applicability of Rnl2-based RASL assays. PMID:25063296

  19. Multiplex polymerase chain reaction assay developed to diagnose adult bacterial meningitis in Taiwan.

    PubMed

    Lee, Chi-Tsung; Hsiao, Kuang-Ming; Chen, Jin-Cherng; Su, Cheng-Chuan

    2015-11-01

    Acute bacterial meningitis causes high morbidity and mortality; the associated clinical symptoms often are insensitive or non-specific; and the pathogenic bacteria are geographically diverse. Clinical diagnosis requires a rapid and accurate methodology. This study aimed to develop a new multiplex polymerase chain reaction (mPCR) assay to detect simultaneously six major bacteria that cause adult bacterial meningitis in Taiwan: Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii. Species-specific primers for the six bacteria were developed using reference strains. The specificities of the mPCRs for these bacteria were validated, and the sensitivities were evaluated via serial dilutions. The mPCR assay specifically detected all of the six pathogens, particularly with sensitivities of 12 colony forming units (CFU)/mL, 90 CFU/mL, and 390 CFU/mL for E. coli, S. pneumoniae, and K. pneumoniae, respectively. This mPCR assay is a rapid and specific tool to detect the six major bacterial pathogens that cause acute adult meningitis in Taiwan, particularly sensitive for detecting E. coli, S. pneumoniae, and K. pneumoniae. The assay may facilitate early diagnosis and guidance for antimicrobial therapy for adult patients with this deadly disease in Taiwan. PMID:26332098

  20. Identification of Novel Reference Genes Suitable for qRT-PCR Normalization with Respect to the Zebrafish Developmental Stage.

    PubMed

    Hu, Yu; Xie, Shuying; Yao, Jihua

    2016-01-01

    Reference genes used in normalizing qRT-PCR data are critical for the accuracy of gene expression analysis. However, many traditional reference genes used in zebrafish early development are not appropriate because of their variable expression levels during embryogenesis. In the present study, we used our previous RNA-Seq dataset to identify novel reference genes suitable for gene expression analysis during zebrafish early developmental stages. We first selected 197 most stably expressed genes from an RNA-Seq dataset (29,291 genes in total), according to the ratio of their maximum to minimum RPKM values. Among the 197 genes, 4 genes with moderate expression levels and the least variation throughout 9 developmental stages were identified as candidate reference genes. Using four independent statistical algorithms (delta-CT, geNorm, BestKeeper and NormFinder), the stability of qRT-PCR expression of these candidates was then evaluated and compared to that of actb1 and actb2, two commonly used zebrafish reference genes. Stability rankings showed that two genes, namely mobk13 (mob4) and lsm12b, were more stable than actb1 and actb2 in most cases. To further test the suitability of mobk13 and lsm12b as novel reference genes, they were used to normalize three well-studied target genes. The results showed that mobk13 and lsm12b were more suitable than actb1 and actb2 with respect to zebrafish early development. We recommend mobk13 and lsm12b as new optimal reference genes for zebrafish qRT-PCR analysis during embryogenesis and early larval stages.

  1. Identification of Novel Reference Genes Suitable for qRT-PCR Normalization with Respect to the Zebrafish Developmental Stage

    PubMed Central

    Hu, Yu; Xie, Shuying; Yao, Jihua

    2016-01-01

    Reference genes used in normalizing qRT-PCR data are critical for the accuracy of gene expression analysis. However, many traditional reference genes used in zebrafish early development are not appropriate because of their variable expression levels during embryogenesis. In the present study, we used our previous RNA-Seq dataset to identify novel reference genes suitable for gene expression analysis during zebrafish early developmental stages. We first selected 197 most stably expressed genes from an RNA-Seq dataset (29,291 genes in total), according to the ratio of their maximum to minimum RPKM values. Among the 197 genes, 4 genes with moderate expression levels and the least variation throughout 9 developmental stages were identified as candidate reference genes. Using four independent statistical algorithms (delta-CT, geNorm, BestKeeper and NormFinder), the stability of qRT-PCR expression of these candidates was then evaluated and compared to that of actb1 and actb2, two commonly used zebrafish reference genes. Stability rankings showed that two genes, namely mobk13 (mob4) and lsm12b, were more stable than actb1 and actb2 in most cases. To further test the suitability of mobk13 and lsm12b as novel reference genes, they were used to normalize three well-studied target genes. The results showed that mobk13 and lsm12b were more suitable than actb1 and actb2 with respect to zebrafish early development. We recommend mobk13 and lsm12b as new optimal reference genes for zebrafish qRT-PCR analysis during embryogenesis and early larval stages. PMID:26891128

  2. Development of an in situ magnetic beads based RT-PCR method for electrochemiluminescent detection of rotavirus

    NASA Astrophysics Data System (ADS)

    Zhan, Fangfang; Zhou, Xiaoming

    2012-12-01

    Rotaviruses are double-stranded RNA viruses belonging to the family of enteric pathogens. It is a major cause of diarrhoeal disease in infants and young children worldwide. Consequently, rapid and accurate detection of rotaviruses is of great importance in controlling and preventing food- and waterborne diseases and outbreaks. Reverse transcription-polymerase chain reaction (RT-PCR) is a reliable method that possesses high specificity and sensitivity. It has been widely used to detection of viruses. Electrochemiluminescence (ECL) can be considered as an important and powerful tool in analytical and clinical application with high sensitivity, excellent specificity, and low cost. Here we have developed a method for the detection of rotavirus by combining in situ magnetic beads (MBs) based RT-PCR with ECL. RT of rotavirus RNA was carried out in a traditional way and the resulting cDNA was directly amplified on MBs. Forward primers were covalently bounded to MBs and reverse primers were labeled with tris-(2, 2'-bipyridyl) ruthenium (TBR). During the PCR cycling, the TBR labeled products were directly loaded and enriched on the surface of MBs. Then the MBs-TBR complexes could be analyzed by a magnetic ECL platform without any post-modification or post-incubation which avoid some laborious manual operations and achieve rapid yet sensitive detection. In this study, rotavirus from fecal specimens was successfully detected within 2 h, and the limit of detection was estimated to be 104copies/μL. This novel in situ MBs based RT-PCR with ECL detection method can be used for pathogen detection in food safety field and clinical diagnosis.

  3. Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon.

    PubMed

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Shuang; Jiang, Wei; Huang, Yuan; Bie, Zhilong

    2014-01-01

    Watermelon is one of the major Cucurbitaceae crops and the recent availability of genome sequence greatly facilitates the fundamental researches on it. Quantitative real-time reverse transcriptase PCR (qRT-PCR) is the preferred method for gene expression analyses, and using validated reference genes for normalization is crucial to ensure the accuracy of this method. However, a systematic validation of reference genes has not been conducted on watermelon. In this study, transcripts of 15 candidate reference genes were quantified in watermelon using qRT-PCR, and the stability of these genes was compared using geNorm and NormFinder. geNorm identified ClTUA and ClACT, ClEF1α and ClACT, and ClCAC and ClTUA as the best pairs of reference genes in watermelon organs and tissues under normal growth conditions, abiotic stress, and biotic stress, respectively. NormFinder identified ClYLS8, ClUBCP, and ClCAC as the best single reference genes under the above experimental conditions, respectively. ClYLS8 and ClPP2A were identified as the best reference genes across all samples. Two to nine reference genes were required for more reliable normalization depending on the experimental conditions. The widely used watermelon reference gene 18SrRNA was less stable than the other reference genes under the experimental conditions. Catalase family genes were identified in watermelon genome, and used to validate the reliability of the identified reference genes. ClCAT1and ClCAT2 were induced and upregulated in the first 24 h, whereas ClCAT3 was downregulated in the leaves under low temperature stress. However, the expression levels of these genes were significantly overestimated and misinterpreted when 18SrRNA was used as a reference gene. These results provide a good starting point for reference gene selection in qRT-PCR analyses involving watermelon.

  4. Development of a rapid multiplexed assay for the direct screening of antimicrobial residues in raw milk.

    PubMed

    McGrath, Terry F; McClintock, Laura; Dunn, John S; Husar, Gregory M; Lochhead, Michael J; Sarver, Ronald W; Klein, Frank E; Rice, Jennifer A; Campbell, Katrina; Elliott, Christopher T

    2015-06-01

    Antimicrobial residues found to be present in milk can have both health and economic impacts. For these reasons, the widespread routine testing of milk is required. Due to delays with sample handling and test scheduling, laboratory-based tests are not always suited for making decisions about raw material intake and product release, especially when samples require shipping to a central testing facility. Therefore, rapid on-site screening tests that can produce results within a matter of minutes are required to facilitate rapid intake and product release processes. Such tests must be simple for use by non-technical staff. There is increasing momentum towards the development and implementation of multiplexing tests that can detect a range of important antimicrobial residues simultaneously. A simple in situ multiplexed planar waveguide device that can simultaneously detect chloramphenicol, streptomycin and desfuroylceftiofur in raw dairy milk, without sample preparation, has been developed. Samples are simply mixed with antibody prior to an aliquot being passed through the detection cartridge for 5 min before reading on a field-deployable portable instrument. Multiplexed calibration curves were produced in both buffer and raw milk. Buffer curves, for chloramphenicol, streptomycin and desfuroylceftiofur, showed linear ranges (inhibitory concentration (IC)20-IC80) of 0.1-0.9, 3-129 and 12-26 ng/ml, whilst linear range in milk was 0.13-0.74, 11-376 and 2-12 ng/ml, respectively, thus meeting European legislated concentration requirements for both chloramphenicol and streptomycin, in milk, without the need for any sample preparation. Desfuroylceftiofur-contaminated samples require only simple sample dilution to bring positive samples within the range of quantification. Assay repeatability and reproducibility were lower than 12 coefficient of variation (%CV), whilst blank raw milk samples (n = 9) showed repeatability ranging between 4.2 and 8.1%CV when measured on all

  5. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    SciTech Connect

    Cary; R. Bruce; Stubben, Christopher J.

    2011-03-22

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  6. High-throughput qRT-PCR validation of blood microRNAs in non-small cell lung cancer.

    PubMed

    Leidinger, Petra; Brefort, Thomas; Backes, Christina; Krapp, Medea; Galata, Valentina; Beier, Markus; Kohlhaas, Jochen; Huwer, Hanno; Meese, Eckart; Keller, Andreas

    2016-01-26

    Validation of biomarkers is essential to advance the translational process to clinical application. Although there exists an increasing number of reports on small non-coding RNAs (microRNAs) as minimally-invasive markers from blood, serum or plasma, just a limited number is verified in follow-up studies. We used qRT-PCR to evaluate a known miRNA signature measured from blood that allowed for separation between patients with non-small cell lung cancer (NSCLC), COPD and healthy controls.From the data of our previous microarray studies we selected a panel of 235 miRNAs related to lung cancer and COPD. We observed a high concordance between the AUC values of our initial microarray screening and the qRT-PCR data (correlation of 0.704, p < 10-16). Overall, 90.3% of markers were successfully validated. Among the top markers that were concordant between both studies we found hsa-miR-20b-5p, hsa-miR-20a-5p, hsa-miR-17-5p, and hsa-miR-106a-5p. The qRT-PCR analysis also confirmed that non-small cell lung cancer patients could be accurately differentiated from unaffected controls: a subset of five markers was sufficient to separate NSCLC patients from unaffected controls with accuracy of 94.5% (specificity and sensitivity of 98% and 91%). Beyond differentiation from controls, we also succeeded in separating NSCLC patients from patients with COPD. MiRNAs that were identified as relevant for the separation between lung cancer and COPD by both qRT-PCR and the array-based studies included hsa-miR-26a-5p, hsa-miR-328-3p and hsa-miR-1224-3p. Although for differentiation between NSCLC patients from COPD patients more markers were required, still high accuracy rates were obtained (5 markers: 78.8%; 10 markers: 83.9%; 50 markers: 87.6%).

  7. Evaluation of optimal extracellular vesicle small RNA isolation and qRT-PCR normalisation for serum and urine.

    PubMed

    Crossland, Rachel E; Norden, Jean; Bibby, Louis A; Davis, Joanna; Dickinson, Anne M

    2016-02-01

    MicroRNAs are small regulatory molecules that demonstrate useful biomarker potential. They have been recognised in biofluids, where they are protected from degradation by encapsulation into extracellular vesicles (EVs). A number of commercial products are available for the isolation of EVs and their RNA content; however, extensive protocol comparisons are lacking. Furthermore, robust qRT-PCR assessment of microRNA expression within EVs is problematic, as endogenous controls (ECs) previously used in cellular samples may not be present. This study compares EV isolation and RNA extraction methods (EV precipitation reagents, RNA isolation kits and ultracentrifugation) from serum or urine samples and evaluates suitable ECs for incorporation into qRT-PCR analysis. Results were assessed by electron microscopy, nanoparticle tracking analysis and bioanalyzer concentrations. The stability of 8 ECs was compared for both serum and urine EV RNA and retrospectively validated in independent cohorts (serum n=55, urine n=50). The Life Technologies precipitation reagent gave superior serum EV recovery compared to SBI reagent, as assessed by NTA size distribution, increased RNA concentration, and lower small RNA Ct values. Similarly, the Norgen Biotek Urine Exosome RNA Isolation Kit gave improved results for urine EV isolation compared to ultracentrifugation, when determined by the same parameters. The Qiagen miRNeasy™ RNA isolation kit gave suitable serum EV RNA concentrations compared to other kits, as assessed by Bioanalyzer and small RNA qRT-PCR. Small RNAs HY3 (S.D=1.77, CoV=6.2%) and U6 (S.D=2.14, CoV=8.6%) were selected as optimal ECs for serum EV microRNA expression analysis, while HY3 (S.D=1.67, CoV=6.5%) and RNU48 (S.D=1.85, CoV=5.3%) were identified as suitable for urine studies. In conclusion, this study identifies optimal methods for isolation of serum and urine EV RNA, and suitable ECs for normalisation of qRT-PCR studies. Such reports should aid in the

  8. Automated Microchromatography Enables Multiplexing of Immunoaffinity Enrichment of Peptides to Greater than 150 for Targeted MS-Based Assays.

    PubMed

    Ippoliti, Paul J; Kuhn, Eric; Mani, D R; Fagbami, Lola; Keshishian, Hasmik; Burgess, Michael W; Jaffe, Jacob D; Carr, Steven A

    2016-08-01

    Immunoaffinity enrichment of peptides coupled with analysis by stable isotope dilution multiple reaction mass spectrometry has been shown to have analytical performance and detection limits suitable for many biomarker verification studies and biological applications. Prior studies have shown that antipeptide antibodies can be multiplexed up to 50 in a single assay without significant loss of performance. Achieving higher multiplex levels is relevant to all studies involving precious biological material as this minimizes the amount of sample that must be consumed to measure a given set of analytes and reduces the assay cost per analyte. Here we developed automated methods employing the Agilent AssayMAP Bravo microchromatography platform and used these methods to characterize the performance of immunoaffinity enrichment of peptides up to multiplex levels of 172. Median capture efficiency for the target peptides remained high (88%) even at levels of 150-plex and declined to 70% at 172-plex compared to antibody performance observed at standard lower multiplex levels (n = 25). Subsequently, we developed and analytically characterized a multiplexed immuno-multiple reaction monitoring-mass spectrometry (immuno-MRM-MS) assay (n = 110) and applied it to measure candidate protein biomarkers of cardiovascular disease in plasma of patients undergoing planned myocardial infarction. The median lower limit of detection of all peptides was 71.5 amol/μL (nM), and the coefficient of variation (CV) was less than 15% at the lower limit of quantification. The results demonstrate that high multiplexed immuno-MRM-MS assays are readily achievable using the optimized sample processing and peptide capture methods described here. PMID:27321643

  9. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays.

    PubMed

    Inderbitzin, Patrik; Davis, R Michael; Bostock, Richard M; Subbarao, Krishna V

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers.

  10. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays

    PubMed Central

    Inderbitzin, Patrik; Davis, R. Michael; Bostock, Richard M.; Subbarao, Krishna V.

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers. PMID:23823707

  11. A bead-based multiplex assay for the detection of DNA viruses infecting laboratory rodents.

    PubMed

    Höfler, Daniela; Nicklas, Werner; Mauter, Petra; Pawlita, Michael; Schmitt, Markus

    2014-01-01

    The Federation of European Laboratory Animal Science Association (FELASA) recommends screening of laboratory rodents and biological materials for a broad variety of bacterial agents, viruses, and parasites. Methods commonly used to date for pathogen detection are neither cost-effective nor time- and animal-efficient or uniform. However, an infection even if silent alters experimental results through changing the animals' physiology and increases inter-individual variability. As a consequence higher numbers of animals and experiments are needed for valid and significant results. We developed a novel high-throughput multiplex assay, called rodent DNA virus finder (rDVF) for the simultaneous identification of 24 DNA viruses infecting mice and rats. We detected all 24 DNA viruses with high specificity and reproducibility. Detection limits for the different DNA viruses varied between 10 and 1000 copies per PCR. The validation of rDVF was done with DNA isolated from homogenised organs amplified by pathogen specific primers in one multiplex PCR. The biotinylated amplicons were detected via hybridisation to specific oligonucleotide probes coupled to spectrally distinct sets of fluorescent Luminex beads. In conclusion, rDVF may have the potential to replace conventional testing and may simplify and improve routine detection of DNA viruses infecting rodents.

  12. Identification of cytoplasm types in rapeseed (Brassica napus L.) accessions by a multiplex PCR assay.

    PubMed

    Zhao, H X; Li, Z J; Hu, S W; Sun, G L; Chang, J J; Zhang, Z H

    2010-08-01

    Cytoplasmic male sterility (CMS) has widely been used as an efficient pollination control system in rapeseed hybrid production. Identification of cytoplasm type of rapeseed accessions is becoming the most important basic work for hybrid-rapeseed breeding. In this study, we report a simple multiplex PCR method to distinguish the existing common cytoplasm resources, Pol, Nap, Cam, Ogu and Ogu-NWSUAF cytoplasm, in rapeseed. Cytoplasm type of 35 F(1) hybrids and 140 rapeseed open pollinated varieties or breeding lines in our rapeseed breeding programme were tested by this method. The results indicated that 10 of 35 F(1) hybrids are the Nap, and 25 the Pol cytoplasm type, which is consistent with the information provided by the breeders. Out of 140 accessions tested, 100 (71.4%), 21 (15%) and 19 (13.6%) accessions possess Nap, Cam and Pol cytoplasm, respectively. All 19 accessions with Pol cytoplasm are from China. Pedigree analysis indicated that these accessions with Pol cytoplasm were either restorers for Pol CMS, including Shaan 2C, Huiyehui, 220, etc. or derived from hybrids with Pol CMS as female parent. Our molecular results are consistent with those of the classical testcross, suggesting the reliability of this method. The multiplex PCR assay method can be applied to CMS "three-line" breeding, selection and validation of hybrid rapeseed. PMID:20401459

  13. Image Decoding of Photonic Crystal Beads Array in the Microfluidic Chip for Multiplex Assays

    NASA Astrophysics Data System (ADS)

    Yuan, Junjie; Zhao, Xiangwei; Wang, Xiaoxia; Gu, Zhongze

    2014-10-01

    Along with the miniaturization and intellectualization of biomedical instruments, the increasing demand of health monitoring at anywhere and anytime elevates the need for the development of point of care testing (POCT). Photonic crystal beads (PCBs) as one kind of good encoded microcarriers can be integrated with microfluidic chips in order to realize cost-effective and high sensitive multiplex bioassays. However, there are difficulties in analyzing them towards automated analysis due to the characters of the PCBs and the unique detection manner. In this paper, we propose a strategy to take advantage of automated image processing for the color decoding of the PCBs array in the microfluidic chip for multiplex assays. By processing and alignment of two modal images of epi-fluorescence and epi-white light, every intact bead in the image is accurately extracted and decoded by PC colors, which stand for the target species. This method, which shows high robustness and accuracy under various configurations, eliminates the high hardware requirement of spectroscopy analysis and user-interaction software, and provides adequate supports for the general automated analysis of POCT based on PCBs array.

  14. Standardization of Gene Expression Quantification by Absolute Real-Time qRT-PCR System Using a Single Standard for Marker and Reference Genes.

    PubMed

    Zhou, Yi-Hong; Raj, Vinay R; Siegel, Eric; Yu, Liping

    2010-08-16

    In the last decade, genome-wide gene expression data has been collected from a large number of cancer specimens. In many studies utilizing either microarray-based or knowledge-based gene expression profiling, both the validation of candidate genes and the identification and inclusion of biomarkers in prognosis-modeling has employed real-time quantitative PCR on reverse transcribed mRNA (qRT-PCR) because of its inherent sensitivity and quantitative nature. In qRT-PCR data analysis, an internal reference gene is used to normalize the variation in input sample quantity. The relative quantification method used in current real-time qRT-PCR analysis fails to ensure data comparability pivotal in identification of prognostic biomarkers. By employing an absolute qRT-PCR system that uses a single standard for marker and reference genes (SSMR) to achieve absolute quantification, we showed that the normalized gene expression data is comparable and independent of variations in the quantities of sample as well as the standard used for generating standard curves. We compared two sets of normalized gene expression data with same histological diagnosis of brain tumor from two labs using relative and absolute real-time qRT-PCR. Base-10 logarithms of the gene expression ratio relative to ACTB were evaluated for statistical equivalence between tumors processed by two different labs. The results showed an approximate comparability for normalized gene expression quantified using a SSMR-based qRT-PCR. Incomparable results were seen for the gene expression data using relative real-time qRT-PCR, due to inequality in molar concentration of two standards for marker and reference genes. Overall results show that SSMR-based real-time qRT-PCR ensures comparability of gene expression data much needed in establishment of prognostic/predictive models for cancer patients-a process that requires large sample sizes by combining independent sets of data.

  15. Carrier-resolved technology for homogeneous and multiplexed DNA assays in a 'one-pot reaction'.

    PubMed

    Li, Huan; Lau, Choiwan; Lu, Jianzhong

    2008-09-01

    For clinical diagnosis, a small number of targets (2-10 biomarkers) are often all that is required for disease assessment and accurate early disease diagnosis. In the current paper we have developed novel, carrier-resolved, single-label-based multiplexed assays for the simultaneous detection and quantification of a limited number of DNA targets associated with breast cancer. In contrast to current encoding strategies, every hybridization signal for the corresponding DNA target in our protocol is uniquely immobilized onto one carrier vehicle with a unique and intrinsic physico-chemical signature. Moreover, a simple chemiluminescence setup is employed to read the carrier code instead of expensive and complicated flow-cytometer or imaging-systems commonly used for multiplexed assays. Herein we demonstrate a new protocol using three homogeneous carriers, i.e. thermo-sensitive poly(N-isopropylacrylamide) (PNIP), polystyrene beads, and magnetic beads respectively. This new methodology allowed for the simultaneous determination of three oligonucleotide sequences (60 bases in length) associated with the breast cancer gene (BRCA1) and showed high selectivity and attomolar-femtomolar sensitivity. The mixture of three different capture probe conjugates first hybridizes with three corresponding target sequences, sandwiches with three biotinylated DNAs, and then reacts with peroxidase-streptavidin polymer in a single vessel without any washing, leading to the development of a 'one-pot reaction system'. Only one washing step in our protocol is required prior to detection leading to our whole procedure being simple and efficient. The results show that the hybridization response to sample mixtures containing increasing levels of each target is proportional to the amount of corresponding DNA targets, indicating minimal cross-interferences. The work presented here validates the design and concept of a system for the detection of a limited number of DNA targets and provides the

  16. A New Multiplex Assay of 17 Autosomal STRs and Amelogenin for Forensic Application

    PubMed Central

    Zhang, Suhua; Tian, Huaizhou; Wu, Jun; Zhao, Shumin; Li, Chengtao

    2013-01-01

    This paper describes a newly devised autosomal short tandem repeat (STR) multiplex polymerase chain reaction (PCR) systems for 17 autosomal loci (D1S1656, D2S441, D3S1358, D3S3045, D6S477, D7S3048, D8S1132, D10S1435, D10S1248, D11S2368, D13S325, D14S608, D15S659, D17S1290, D18S535, D19S253 and D22-GATA198B05) and Amelogenin. Primers for the loci were designed and optimized so that all of the amplicons were distributed from 50 base pairs (bp) to less than 500 bp within a five-dye chemistry design with the fifth dye reserved for the sizing standard. Strategies were developed to overcome challenges that encountered in creating the final assay. The limits of the multiplex were tested, resulting in the successful amplification of genomic DNA range from 0.25–4 ng with 30 PCR cycles. A total of 681 individuals from the Chinese Han population were studied and forensic genetic data were present. No significant deviations from Hardy–Weinberg equilibrium were observed. A total of 180 alleles were detected for the 17 autosomal STRs. The cumulative mean exclusion chance in duos (CMECD) was 0.999967, and cumulative mean exclusion chance in trios (CMECT) was 0.99999995. We conclude that the present 17plex autosomal STRs assay provides an additional powerful tool for forensic applications. PMID:23451235

  17. Development of 2, 7-Diamino-1, 8-Naphthyridine (DANP) Anchored Hairpin Primers for RT-PCR Detection of Chikungunya Virus Infection.

    PubMed

    Chen, Huixin; Parimelalagan, Mariya; Takei, Fumie; Hapuarachchi, Hapuarachchige Chanditha; Koay, Evelyn Siew-Chuan; Ng, Lee Ching; Ho, Phui San; Nakatani, Kazuhiko; Chu, Justin Jang Hann

    2016-08-01

    A molecular diagnostic platform with DANP-anchored hairpin primer was developed and evaluated for the rapid and cost-effective detection of Chikungunya virus (CHIKV) with high sensitivity and specificity. The molecule 2, 7-diamino-1, 8-naphthyridine (DANP) binds to a cytosine-bulge and emits fluorescence at 450 nm when it is excited by 400 nm light. Thus, by measuring the decline in fluorescence emitted from DANP-primer complexes after PCR reaction, we could monitor the PCR progress. By adapting this property of DANP, we have previously developed the first generation DANP-coupled hairpin RT-PCR assay. In the current study, we improved the assay performance by conjugating the DANP molecule covalently onto the hairpin primer to fix the DANP/primer ratio at 1:1; and adjusting the excitation emission wavelength to 365/430 nm to minimize the background signal and a 'turn-on' system is achieved. After optimizing the PCR cycle number to 30, we not only shortened the total assay turnaround time to 60 minutes, but also further reduced the background fluorescence. The detection limit of our assay was 0.001 PFU per reaction. The DANP-anchored hairpin primer, targeting nsP2 gene of CHIKV genome, is highly specific to CHIKV, having no cross-reactivity to a panel of other RNA viruses tested. In conclusion, we report here a molecular diagnostic assay that is sensitive, specific, rapid and cost effective for CHIKV detection and can be performed where no real time PCR instrumentation is required. Our results from patient samples indicated 93.62% sensitivity and 100% specificity of this method, ensuring that it can be a useful tool for rapid detection of CHIKV for outbreaks in many parts of the world. PMID:27571201

  18. Development of 2, 7-Diamino-1, 8-Naphthyridine (DANP) Anchored Hairpin Primers for RT-PCR Detection of Chikungunya Virus Infection

    PubMed Central

    Chen, Huixin; Parimelalagan, Mariya; Takei, Fumie; Hapuarachchi, Hapuarachchige Chanditha; Koay, Evelyn Siew-Chuan; Ng, Lee Ching; Ho, Phui San; Nakatani, Kazuhiko; Chu, Justin Jang Hann

    2016-01-01

    A molecular diagnostic platform with DANP-anchored hairpin primer was developed and evaluated for the rapid and cost-effective detection of Chikungunya virus (CHIKV) with high sensitivity and specificity. The molecule 2, 7-diamino-1, 8-naphthyridine (DANP) binds to a cytosine-bulge and emits fluorescence at 450 nm when it is excited by 400 nm light. Thus, by measuring the decline in fluorescence emitted from DANP—primer complexes after PCR reaction, we could monitor the PCR progress. By adapting this property of DANP, we have previously developed the first generation DANP-coupled hairpin RT-PCR assay. In the current study, we improved the assay performance by conjugating the DANP molecule covalently onto the hairpin primer to fix the DANP/primer ratio at 1:1; and adjusting the excitation emission wavelength to 365/430 nm to minimize the background signal and a ‘turn-on’ system is achieved. After optimizing the PCR cycle number to 30, we not only shortened the total assay turnaround time to 60 minutes, but also further reduced the background fluorescence. The detection limit of our assay was 0.001 PFU per reaction. The DANP-anchored hairpin primer, targeting nsP2 gene of CHIKV genome, is highly specific to CHIKV, having no cross-reactivity to a panel of other RNA viruses tested. In conclusion, we report here a molecular diagnostic assay that is sensitive, specific, rapid and cost effective for CHIKV detection and can be performed where no real time PCR instrumentation is required. Our results from patient samples indicated 93.62% sensitivity and 100% specificity of this method, ensuring that it can be a useful tool for rapid detection of CHIKV for outbreaks in many parts of the world. PMID:27571201

  19. A novel multiplex assay amplifying 13 Y-STRs characterized by rapid and moderate mutation rate.

    PubMed

    Rogalla, Urszula; Woźniak, Marcin; Swobodziński, Jacek; Derenko, Miroslava; Malyarchuk, Boris A; Dambueva, Irina; Koziński, Marek; Kubica, Jacek; Grzybowski, Tomasz

    2015-03-01

    As microsatellites located on Y chromosome mutate with different rates, they may be exploited in evolutionary studies, genealogical testing of a variety of populations and even, as proven recently, aid individual identification. Currently available commercial Y-STR kits encompass mostly low to moderately mutating loci, making them a perfect choice for the first two applications. Some attempts have been made so far to utilize Y-STRs to provide a discriminatory tool for forensic purposes. Although all 13 rapidly mutating Y-STRs were already multiplexed, no single assay based on single-copy markers allowing at least a portion of close male relatives to be differentiated from one another is available. To fill in the blanks, we constructed and validated an assay comprised of single-copy Y-STR markers only with a mutation rate ranging from 8×10(-3) to 1×10(-2). Performance of the resulting combination of nine RM Y-STRs and four moderately mutating ones was tested on 361 father-son pairs and 1326 males from 9 populations revealing an overall mutation rate of 1.607×10(-1) for the assay as a whole. Application of the proposed 13 Y-STR set to differentiation of haplotypes present among homogenous population of Buryats resulted in a threefold increase of discrimination as compared with 10 Y-STRs from the PowerPlex(®) Y.

  20. Assay of multiplex proteins from cell metabolism based on tunable aptamer and microchip electrophoresis.

    PubMed

    Lin, Xuexia; Chen, Qiushui; Liu, Wu; Yi, Linglu; Li, Haifang; Wang, Zhihua; Lin, Jin-Ming

    2015-01-15

    A simple and rapid method for multiplex protein assay based on tunable aptamer by microchip electrophoresis has been developed. Different lengths of aptamers can modulate the electrophoretic mobility of proteins, allowing the protein molecules to be effectively separated in hydroxyethyl cellulose buffer with 1.00 mM magnesium ion. A non-specific DNA was exploited as an internal standard to achieve the quantitative assay and to reduce the interference. A fluorescence dye SYBR gold was exploited to improve the sensitivity and to suppress the interference from sample matrix. Under optimum conditions, quantitative assay of PDGF-BB (R(2)=0.9986), VEGF165 (R(2)=0.9909), and thrombin (R(2)=0.9947) were achieved with a dynamic range in the 5.00-150.0 nM and RSDs in the 5.87-16.3% range. The recoveries were varied from 83.6% to 113.1%. Finally, the proposed method was successfully applied to analyze cell secretions, and then the concentration of PDGF-BB and VEGF165 were detected from 5.15 nM to 2.03 nM, and 3.14 to 2.53 nM, respectively, indicating the established method can be used to analyze cell secretions.

  1. Real-Time Reverse Transcription-PCR Assay for Detection of Mumps Virus RNA in Clinical Specimens▿

    PubMed Central

    Boddicker, Jennifer D.; Rota, Paul A.; Kreman, Trisha; Wangeman, Andrea; Lowe, Louis; Hummel, Kimberly B.; Thompson, Robert; Bellini, William J.; Pentella, Michael; DesJardin, Lucy E.

    2007-01-01

    The mumps virus is a negative-strand RNA virus in the family Paramyxoviridae. Mumps infection results in an acute illness with symptoms including fever, headache, and myalgia, followed by swelling of the salivary glands. Complications of mumps can include meningitis, deafness, pancreatitis, orchitis, and first-trimester abortion. Laboratory confirmation of mumps infection can be made by the detection of immunoglobulin M-specific antibodies to mumps virus in acute-phase serum samples, the isolation of mumps virus in cell culture, or by detection of the RNA of the mumps virus by reverse transcription (RT)-PCR. We developed and validated a multiplex real-time RT-PCR assay for rapid mumps diagnosis in a clinical setting. This assay used oligonucleotide primers and a TaqMan probe targeting the mumps SH gene, as well as primers and a probe that targeted the human RNase P gene to assess the presence of PCR inhibitors and as a measure of specimen quality. The test was specific, since it did not amplify a product from near-neighbor viruses, as well as sensitive and accurate. Real-time RT-PCR results showed 100% correlation with results from viral culture, the gold standard for mumps diagnostic testing. Assay efficiency was over 90% and displayed good precision after performing inter- and intraassay replicates. Thus, we have developed and validated a molecular method for rapidly diagnosing mumps infection that may be used to complement existing techniques. PMID:17652480

  2. Antigen sandwich ELISA predicts RT-PCR detection of dengue virus genome in infected culture fluids of Aedes albopictus C6/36 cells.

    PubMed

    Buerano, Corazon C; Natividad, Filipinas F; Contreras, Rodolfo C; Ibrahim, Ima Nurisa; Mangada, Marlou Noel M; Hasebe, Futoshi; Inoue, Shingo; Matias, Ronald R; Igarashi, Akira

    2008-09-01

    Antigen detection by sandwich ELISA was evaluated to predict RT-PCR detection of dengue viral genome in infected culture fluid of Aedes albopictus clone C6/36 cells. Serum specimens collected from dengue patients within 5 days from onset of fever in 2 hospitals in Metro Manila, Philippines, were inoculated into C6/36 cells, and incubated at 28 degrees C. A total of 282 infected culture fluid specimens were harvested and examined by sandwich ELISA and RT-PCR to detect dengue viral antigen and genome, respectively. In the sandwich ELISA, the P/N ratio was calculated by dividing optical density (OD) of a given test specimen by the OD of the standard negative specimen. Samples with a P/N ratio > or = 4.001 were positive for viral genome detection by RT-PCR. The sensitivity and specificity of antigen sandwich ELISA with RT-PCR as the standard, were 90.4% and 100%, respectively. Although antigen sandwich ELISA is less sensitive than RT-PCR, its usefulness lies in its capability to screen a large number of samples at a minimum cost, especially during an outbreak. Samples that meet a set cutoff value can undergo confirmation by RT-PCR for further epidemiological studies. PMID:19058574

  3. Antigen sandwich ELISA predicts RT-PCR detection of dengue virus genome in infected culture fluids of Aedes albopictus C6/36 cells.

    PubMed

    Buerano, Corazon C; Natividad, Filipinas F; Contreras, Rodolfo C; Ibrahim, Ima Nurisa; Mangada, Marlou Noel M; Hasebe, Futoshi; Inoue, Shingo; Matias, Ronald R; Igarashi, Akira

    2008-09-01

    Antigen detection by sandwich ELISA was evaluated to predict RT-PCR detection of dengue viral genome in infected culture fluid of Aedes albopictus clone C6/36 cells. Serum specimens collected from dengue patients within 5 days from onset of fever in 2 hospitals in Metro Manila, Philippines, were inoculated into C6/36 cells, and incubated at 28 degrees C. A total of 282 infected culture fluid specimens were harvested and examined by sandwich ELISA and RT-PCR to detect dengue viral antigen and genome, respectively. In the sandwich ELISA, the P/N ratio was calculated by dividing optical density (OD) of a given test specimen by the OD of the standard negative specimen. Samples with a P/N ratio > or = 4.001 were positive for viral genome detection by RT-PCR. The sensitivity and specificity of antigen sandwich ELISA with RT-PCR as the standard, were 90.4% and 100%, respectively. Although antigen sandwich ELISA is less sensitive than RT-PCR, its usefulness lies in its capability to screen a large number of samples at a minimum cost, especially during an outbreak. Samples that meet a set cutoff value can undergo confirmation by RT-PCR for further epidemiological studies.