Science.gov

Sample records for multiplexed colorimetric solid-phase

  1. Multiplexed Colorimetric Solid-Phase Extraction

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  2. Colorimetric Solid-Phase Extractor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The heart of a colorimetric solid phase extractor (CSPE) test kit quickly measures the concentration of the biocides silver or iodine in astronauts' drinking water to determine whether concentrations are safe. When 10 milliliters (ml) of water is drawn through the disk, the disk will turn color (yellow in this picture for iodine) indicating the presence of the biocides. The device could someday be used to test water safety at reservoirs and water treatment plants on Earth. (photo credit: Microanalytical Instrumentation Center, Iowa State University).

  3. An integrated slidable and valveless microdevice with solid phase extraction, polymerase chain reaction, and immunochromatographic strip parts for multiplex colorimetric pathogen detection.

    PubMed

    Kim, Yong Tae; Lee, Dohwan; Heo, Hyun Young; Kim, Do Hyun; Seo, Tae Seok

    2015-11-07

    A total integrated genetic analysis microsystem was developed, which consisted of solid phase extraction (SPE), polymerase chain reaction (PCR), and immunochromatographic strip (ICS) parts for multiplex colorimetric detection of pathogenic Staphylococcus aureus (S. aureus) and Escherichia coli O157:H7 (E. coli O157:H7) on a portable genetic analyzer. Utilizing a slidable chamber, which is a movable glass wafer, complex microvalves could be eliminated for fluidic control in the microchannel, which could simplify the chip design and chip operation. The integrated slidable microdevice was composed of 4 layers: a 4-point Pt/Ti resistance temperature detector (RTD) wafer, a micro-patterned channel wafer, a 2 μL volume slidable chamber, and an ICS. The entire process from the DNA extraction in the SPE chamber to the detection of the target gene expression by the ICS was serially performed by simply sliding the slidable chamber from one part to another functional part. The total process for multiplex pathogenic S. aureus and E. coli O157:H7 detection on the integrated slidable microdevice was accomplished within 55 min with a detection limit of 5 cells. Furthermore, spiked bacteria samples in milk were also successfully analysed on the portable genetic analysis microsystem with sample-in-answer-out capability. The proposed total integrated microsystem is adequate for point-of-care DNA testing in that no microvalves and complex tubing systems are required due to the use of the slidable chamber and the bulky and expensive fluorescence or electrochemical detectors are not necessary due to the ICS based colorimetric detection.

  4. Colorimetric monitoring of solid-phase aldehydes using 2,4-dinitrophenylhydrazine.

    PubMed

    Shannon, Simon K; Barany, George

    2004-01-01

    A simple and rapid method to achieve colorimetric monitoring of resin-bound aldehydes, based on ambient temperature reaction with 2,4-dinitrophenylhydrazine (DNPH) in the presence of dilute acid, has been developed as an adjunct to solid-phase organic synthesis and combinatorial chemistry. By this test, the presence of aldehydes is indicated by a red to dark-orange appearance, within a minute. Alternatively, resins that are free of aldehydes or in which aldehyde functions have reacted completely retain their original color. The DNPH test was demonstrated for poly(ethylene glycol)-polystyrene (PEG-PS), aminomethyl polystyrene (AMP), cross-linked ethoxylate acrylate resin (CLEAR), and acryloylated O,O'-bis(2-aminopropyl)poly(ethylene glycol) (PEGA) supports and gave results visible to the naked eye at levels as low as 18 micromol of aldehyde per gram of resin.

  5. Determination of colloidal and dissolved silver in water samples using colorimetric solid-phase extraction.

    PubMed

    Hill, April A; Lipert, Robert J; Porter, Marc D

    2010-03-15

    The increase in bacterial resistance to antibiotics has led to resurgence in the use of silver as a biocidal agent in applications ranging from washing machine additives to the drinking water treatment system on the International Space Station (ISS). However, growing concerns about the possible toxicity of colloidal silver to bacteria, aquatic organisms and humans have led to recently issued regulations by the US EPA and FDA regarding the usage of silver. As part of an ongoing project, we have developed a rapid, simple method for determining total silver, both ionic (silver(I)) and colloidal, in 0.1-1mg/L aqueous samples, which spans the ISS potable water target of 0.3-0.5mg/L (total silver) and meets the US EPA limit of 0.1mg/L in drinking water. The method is based on colorimetric solid-phase extraction (C-SPE) and involves the extraction of silver(I) from water samples by passage through a solid-phase membrane impregnated with the colorimetric reagent DMABR (5-[4-(dimethylamino)benzylidene]rhodanine). Silver(I) exhaustively reacts with impregnated DMABR to form a colored compound, which is quantified using a handheld diffuse reflectance spectrophotometer. Total silver is determined by first passing the sample through a cartridge containing Oxone, which exhaustively oxidizes colloidal silver to dissolved silver(I). The method, which takes less than 2 min to complete and requires only approximately 1 mL of sample, has been validated through a series of tests, including a comparison with the ICP-MS analysis of a water sample from ISS that contained both silver(I) and colloidal silver. Potential earth-bound applications are also briefly discussed.

  6. A rapid, simple method for determining formaldehyde in drinking water using colorimetric-solid phase extraction.

    PubMed

    Hill, April A; Lipert, Robert J; Fritz, James S; Porter, Marc D

    2009-02-15

    Formaldehyde has been detected in drinking water supplies across the globe and on board NASA spacecraft. A rapid, simple, microgravity-compatible technique for measuring this contaminant in water supplies using colorimetric-solid phase extraction (C-SPE) is described. This method involves collecting a water sample into a syringe by passage through a cartridge that contains sodium hydroxide, to adjust pH, and Purpald, which is a well-established colorimetric reagent for aldehydes. After completing the reaction in the syringe by agitating for 2 min on a shaker at 400 rpm, the 1.0-mL alkaline sample is passed through an extraction disk that retains the purple product. The amount of concentrated product is then measured on-disk using diffuse reflectance spectroscopy, and compared to a calibration plot generated from Kubelka-Munk transformations of the reflectance data at 700 nm to determine the formaldehyde concentration. This method is capable of determining formaldehyde concentrations from 0.08 to 20 ppm with a total work-up time of less than 3 min using only 1-mL samples.

  7. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    SciTech Connect

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M.

    1995-12-10

    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  8. Colorimetric Solid Phase Extraction (CSPE): Using Color to Monitor Spacecraft Water Quality

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS). The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was launched as a Station Development Test Objective (SDTO) experiment to evaluate the suitability of CSPE technology for routine use monitoring water quality on the ISS. CSPE is a sorption-spectrophotometric technique that combines colorimetric reagents, solid-phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water samples. In CSPE, a known volume of sample is metered through a membrane disk that has been impregnated with an analyte-specific colorimetric reagent and any additives required to optimize the formation of the analyte-reagent complex. As the sample flows through the membrane disk, the target analyte is selectively extracted, concentrated, and complexed. Formation of the analyte-reagent complex causes a detectable change in the color of the membrane disk that is proportional to the amount of analyte present in the sample. The analyte is then quantified by measuring the color of the membrane disk surface using a hand-held diffuse reflectance spectrophotometer (DRS). The CWQMK provides the capability to measure the ionic silver (Ag +) and molecular iodine (I2) in water samples on-orbit. These analytes were selected for the evaluation of CSPE technology because they are the biocides used in the potable water storage and distribution systems on the ISS. Biocides are added to the potable water systems on spacecraft to inhibit microbial growth. On the United States (US) segment of the ISS molecular iodine serves as the biocide, while the Russian space agency utilizes silver as a biocide in their systems. In both cases, the biocides must be maintained at a level sufficient to control bacterial growth, but low enough to avoid any negative effects on crew health. For example, the

  9. Colorimetric Solid Phase Extraction for the Measurement of Total I (Iodine, Iodide, and Triiodide) in Spacecraft Drinking Water

    NASA Technical Reports Server (NTRS)

    Lipert, Robert J.; Porter, Marc D.; Siperko, Lorraine M.; Gazda, Daniel B.; Rutz, Jeff A.; Schultz, John R.; Carrizales, Stephanie M.; McCoy, J. Torin

    2009-01-01

    An experimental drinking water monitoring kit for the measurement of iodine and silver(I) was recently delivered to the International Space Station (ISS). The kit is based on Colorimetric Solid Phase Extraction (CSPE) technology, which measures the change in diffuse reflectance of indicator disks following exposure to a water sample. To satisfy additional spacecraft water monitoring requirements, CSPE has now been extended to encompass the measurement of total I (iodine, iodide, and triiodide) through the introduction of an oxidizing agent, which converts iodide and triiodide to iodine, for measurement using the same indicator disks currently being tested on ISS. These disks detect iodine, but are insensitive to iodide and triiodide. We report here the operational considerations, design, and ground-based performance of the CSPE method for total I. The results demonstrate that CSPE technology is poised to meet NASA's total I monitoring requirements.

  10. Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

    NASA Technical Reports Server (NTRS)

    Hazen-Bosveld, April; Lipert, Robert J.; Nordling, John; Shih, Chien-Ju; Siperko, Lorraine; Porter, Marc D.; Gazda, Daniel B.; Rutz, Jeff A.; Straub, John E.; Schultz, John R.; McCoy, J. Torin

    2007-01-01

    Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples. The ground and flight results showed excellent agreement, demonstrating that manual manipulation is an effective means for collecting bubble-free water samples in microgravity.

  11. Development of colorimetric solid Phase Extraction (C-SPE) for in-flight Monitoring of spacecraft Water Supplies

    SciTech Connect

    Gazda, Daniel Bryan

    2004-01-01

    Although having recently been extremely successful gathering data on the surface of Mars, robotic missions are not an effective substitute for the insight and knowledge about our solar system that can be gained though first-hand exploration. Earlier this year, President Bush presented a ''new course'' for the U.S. space program that shifts NASA's focus to the development of new manned space vehicles to the return of humans to the moon. Re-establishing the human presence on the moon will eventually lead to humans permanently living and working in space and also serve as a possible launch point for missions into deeper space. There are several obstacles to the realization of these goals, most notably the lack of life support and environmental regeneration and monitoring hardware capable of functioning on long duration spaceflight. In the case of the latter, past experience on the International Space Station (ISS), Mir, and the Space Shuttle has strongly underscored the need to develop broad spectrum in-flight chemical sensors that: (1) meet current environmental monitoring requirements on ISS as well as projected requirements for future missions, and (2) enable the in-situ acquisition and analysis of analytical data in order to further define on-orbit monitoring requirements. Additionally, systems must be designed to account for factors unique to on-orbit deployment such as crew time availability, payload restrictions, material consumption, and effective operation in microgravity. This dissertation focuses on the development, ground testing, and microgravity flight demonstration of Colorimetric Solid Phase Extraction (C-SPE) as a candidate technology to meet the near- and long-term water quality monitoring needs of NASA. The introduction will elaborate further on the operational and design requirements for on-orbit water quality monitoring systems by discussing some of the characteristics of an ''ideal'' system. A description of C-SPE and how the individual

  12. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2009-05-15

    Solid-phase assays using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) have been developed for the selective detection of nucleic acids. QDs were immobilized on optical fibers and conjugated with probe oligonucleotides. Hybridization with acceptor labeled target oligonucleotides generated FRET-sensitized acceptor fluorescence that was used as the analytical signal. A sandwich assay was also introduced and avoided the need for target labeling. Green and red emitting CdSe/ZnS QDs were used as donors with Cy3 and Alexa Fluor 647 acceptors, respectively. Quantitative measurements were made via spectrofluorimetry or fluorescence microscopy. Detection limits as low as 1 nM were obtained, and the discrimination of single nucleotide polymorphisms (SNPs) with contrast ratios as high as 31:1 was possible. The assays retained their selectivity and at least 50% of their signal when tested in bovine serum and against a large background of noncomplementary genomic DNA. Mixed films of the two colors of QD and two probe oligonucleotide sequences were prepared for multiplexed solid-phase hybridization assays. It was possible to simultaneously detect two target sequences with retention of selectivity, including SNP discrimination. This research provides an important precedent and framework for the future development of QD-based bioassays and biosensors.

  13. Application of Colorimetric Solid Phase Extraction (C-SPE) to Monitoring Nickel(II) and Lead(II) in Spacecraft Water Supplies

    NASA Technical Reports Server (NTRS)

    Diaz, Neil C.; Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.; Rutz, Jeff; Mudgett, Paul; Schultz, John

    2004-01-01

    Archived water samples collected on the International Space Station (ISS) and returned to Earth for analysis have, in a few instances, contained trace levels of heavy metals. Building on our previous advances using Colorimetric Solid Phase Extraction (C-SPE) as a biocide monitoring technique, we are devising methods for the low level monitoring of nickel(II), lead(II) and other heavy metals. C-SPE is a sorption-spectrophotometric platform based on the extraction of analytes onto a membrane impregnated with a colorimetric reagent that are then quantified on the surface of the membrane using a diffuse reflectance spectrophotometer. Along these lines, we have determined nickel(II) via complexation with dimethylglyoxime (DMG) and begun to examine the analysis of lead(II) by its reaction with 2,5- dimercapto-1,3,4-thiadiazole (DMTD) and 4-(2- pyridylazo)-resorcinol (PAR). These developments are also extending a new variant of C-SPE in which immobilized reagents are being incorporated into this methodology in order to optimize sample reaction conditions and to introduce the colorimetric reagent. This paper describes the status of our development of these two new methods.

  14. Rapid detection of mitochondrial sequence polymorphisms using multiplex solid-phase fluorescent minisequencing

    SciTech Connect

    Tully, G.; Sullivan, K.M.; Nixon, P.

    1996-05-15

    This work describes a novel method, multiplex solidphase fluorescent minisequencing, for the simultaneous detection of several point mutations and/or small deletions and insertions. The method is applied to the analysis of mitochondrial DNA polymorphisms for the purposes of individual identification. A database of 152 British Caucasians and 103 British Afro-Caribbeans has been constructed, and the probability of a chance match between two unrelated individuals is calculated as 0.054 for Caucasians and 0.026 for Afro-Caribbeans. 36 refs., 4 figs., 2 tabs.

  15. Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.

    2007-01-01

    Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.

  16. In-Flight Water Quality Monitoring on the International Space Station (ISS): Measuring Biocide Concentrations with Colorimetric Solid Phase Extraction (CSPE)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2011-01-01

    The colorimetric water quality monitoring kit (CWQMK) was delivered to the International Space Station (ISS) on STS-128/17A and was initially deployed in September 2009. The kit was flown as a station development test objective (SDTO) experiment to evaluate the acceptability of colorimetric solid phase extraction (CSPE) technology for routine water quality monitoring on the ISS. During the SDTO experiment, water samples from the U.S. water processor assembly (WPA), the U.S. potable water dispenser (PWD), and the Russian system for dispensing ground-supplied water (SVO-ZV) were collected and analyzed with the CWQMK. Samples from the U.S. segment of the ISS were analyzed for molecular iodine, which is the biocide added to water in the WPA. Samples from the SVOZV system were analyzed for ionic silver, the biocide used on the Russian segment of the ISS. In all, thirteen in-flight analysis sessions were completed as part of the SDTO experiment. This paper provides an overview of the experiment and reports the results obtained with the CWQMK. The forward plan for certifying the CWQMK as operational hardware and expanding the capabilities of the kit are also discussed.

  17. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J

    2013-07-25

    A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1.

  18. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection.

    PubMed

    Oh, Seung Jun; Park, Byung Hyun; Jung, Jae Hwan; Choi, Goro; Lee, Doh C; Kim, Do Hyun; Seo, Tae Seok

    2016-01-15

    We present a centrifugal microfluidic device which enables multiplex foodborne pathogen identification by loop-mediated isothermal amplification (LAMP) and colorimetric detection using Eriochrome Black T (EBT). Five identical structures were designed in the centrifugal microfluidic system to perform the genetic analysis of 25 pathogen samples in a high-throughput manner. The sequential loading and aliquoting of the LAMP cocktail, the primer mixtures, and the DNA sample solutions were accomplished by the optimized zigzag-shaped microchannels and RPM control. We targeted three kinds of pathogenic bacteria (Escherichia coli O157:H7, Salmonella typhimurium and Vibrio parahaemolyticus) and detected the amplicons of the LAMP reaction by the EBT-mediated colorimetric method. For the limit-of-detection (LOD) test, we carried out the LAMP reaction on a chip with serially diluted DNA templates of E. coli O157:H7, and could observe the color change with 380 copies. The used primer sets in the LAMP reaction were specific only to the genomic DNA of E. coli O157:H7, enabling the on-chip selective, sensitive, and high-throughput pathogen identification with the naked eyes. The entire process was completed in 60min. Since the proposed microsystem does not require any bulky and expensive instrumentation for end-point detection, our microdevice would be adequate for point-of-care (POC) testing with high simplicity and high speed, providing an advanced genetic analysis microsystem for foodborne pathogen detection.

  19. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection.

    PubMed

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong

    2017-04-15

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples.

  20. Development and Certification of Station Development Test Objective (SDTO) Experiment # 15012-U, "Near RealTime Water Quality Monitoring Demonstration for ISS Biocides Using Colorimetric Solid Phase Extraction (CSPE)"

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Shcultz, John R.; Siperko, Lorraine M.; Porter, Marc D,; Lipert, Robert J.; Limardo, Jose G.; McCoy, J. Torin

    2009-01-01

    Scientists and engineers from the Wyle Integrated Science and Engineering Group are working with researchers at the University of Utah and Iowa State University to develop and certify an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE). The kit will be launched as a Station Development Test Objective (SDTO) experiment and evaluated on the International Space Station (ISS) to determine the acceptability of CSPE technology for routine inflight water quality monitoring. Iodine and silver, the biocides used in the US and Russian on-orbit water systems, will serve as test analytes for the technology evaluation. This manuscript provides an overview of the CSPE SDTO experiment and details the development and certification of the experimental water quality monitoring kit. Initial results from reagent and standard solution stability testing and environmental testing performed on the kit hardware are also reported.

  1. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  2. The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)

    SciTech Connect

    Hill, April Ann

    2007-12-01

    The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

  3. Solid-phase PCR for rapid multiplex detection of Salmonella spp. at the subspecies level, with amplification efficiency comparable to conventional PCR.

    PubMed

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas; Hung, Tran Quang; Wolff, Anders; Bang, Dang Duong

    2017-04-01

    Solid-phase PCR (SP-PCR) has attracted considerable interest in different research fields since it allows parallel DNA amplification on the surface of a solid substrate. However, the applications of SP-PCR have been hampered by the low efficiency of the solid-phase amplification. In order to increase the yield of the solid-phase amplification, we studied various parameters including the length, the density, as well as the annealing position of the solid support primer. A dramatic increase in the signal-to-noise (S/N) ratio was observed when increasing the length of solid support primers from 45 to 80 bp. The density of the primer on the surface was found to be important for the S/N ratio of the SP-PCR, and the optimal S/N was obtained with a density of 1.49 × 10(11) molecules/mm(2). In addition, the use of solid support primers with a short overhang at the 5' end would help improve the S/N ratio of the SP-PCR. With optimized conditions, SP-PCR can achieve amplification efficiency comparable to conventional PCR, with a limit of detection of 1.5 copies/μl (37.5 copies/reaction). These improvements will pave the way for wider applications of SP-PCR in various fields such as clinical diagnosis, high-throughput DNA sequencing, and single-nucleotide polymorphism analysis. Graphical abstract Schematic representation of solid-phase PCR.

  4. Low-pH Solid-Phase Amino Labeling of Complex Peptide Digests with TMTs Improves Peptide Identification Rates for Multiplexed Global Phosphopeptide Analysis.

    PubMed

    Böhm, Gitte; Prefot, Petra; Jung, Stephan; Selzer, Stefan; Mitra, Vikram; Britton, David; Kuhn, Karsten; Pike, Ian; Thompson, Andrew H

    2015-06-05

    We present a novel tandem mass tag solid-phase amino labeling (TMT-SPAL) protocol using reversible immobilization of peptides onto octadecyl-derivatized (C18) solid supports. This method can reduce the number of steps required in complex protocols, saving time and potentially reducing sample loss. In our global phosphopeptide profiling workflow (SysQuant), we can cut 24 h from the protocol while increasing peptide identifications (20%) and reducing side reactions. Solid-phase labeling with TMTs does require some modification to typical labeling conditions, particularly pH. It has been found that complete labeling equivalent to standard basic pH solution-phase labeling for small and large samples can be achieved on C18 resins under slightly acidic buffer conditions. Improved labeling behavior on C18 compared to that with standard basic pH solution-phase labeling is demonstrated. We analyzed our samples for histidine, serine, threonine, and tyrosine labeling to determine the degree of overlabeling and observed higher than expected levels (25% of all peptide spectral matches (PSMs)) of overlabeling at all of these amino acids (predominantly at tyrosine and serine) in our standard solution-phase labeling protocol. Overlabeling at all of these sites is greatly reduced (4-fold, to 7% of all PSMs) by the low-pH conditions used in the TMT-SPAL protocol. Overlabeling seems to represent a so-far overlooked mechanism causing reductions in peptide identification rates with NHS-activated TMT labeling compared to that with label-free methods. Our results also highlight the importance of searching data for overlabeling when labeling methods are used.

  5. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens.

    PubMed

    Kersting, Sebastian; Rausch, Valentina; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2014-01-01

    We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in <20 min and results in detection limits of 10 colony-forming units for methicillin-resistant Staphylococcus aureus and Salmonella enterica and 100 colony-forming units for Neisseria gonorrhoeae. The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics. FigureThe combination of multiplex isothermal nucleic acid amplification with RPA and spatially-resolved signal generation on specific immobilized oligonucleotides.

  6. Multiplexed colorimetric detection of Kaposi's sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mancuso, Matthew; Jiang, Li; Cesarman, Ethel; Erickson, David

    2013-01-01

    Kaposi's sarcoma (KS) is an infectious cancer occurring most commonly in human immunodeficiency virus (HIV) positive patients and in endemic regions, such as Sub-Saharan Africa, where KS is among the top four most prevalent cancers. The cause of KS is the Kaposi's sarcoma-associated herpesvirus (KSHV, also called HHV-8), an oncogenic herpesvirus that while routinely diagnosed in developed nations, provides challenges to developing world medical providers and point-of-care detection. A major challenge in the diagnosis of KS is the existence of a number of other diseases with similar clinical presentation and histopathological features, requiring the detection of KSHV in a biopsy sample. In this work we develop an answer to this challenge by creating a multiplexed one-pot detection system for KSHV DNA and DNA from a frequently confounding disease, bacillary angiomatosis. Gold and silver nanoparticle aggregation reactions are tuned for each target and a multi-color change system is developed capable of detecting both targets down to levels between 1 nM and 2 nM. The system developed here could later be integrated with microfluidic sample processing to create a final device capable of solving the two major challenges in point-of-care KS detection.

  7. Solid phase extraction membrane

    DOEpatents

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  8. Solid phase microextraction field kit

    DOEpatents

    Nunes, Peter J.; Andresen, Brian D.

    2005-08-16

    A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.

  9. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB and HPV oligonucleotides.

    PubMed

    Tee-Ngam, Prinjaporn; Siangproh, Weena; Tuantranont, Adisorn; Vilaivan, Tirayut; Chailapakul, Orawon; Henry, Charles S

    2017-04-10

    The development of simple fluorescent and colorimetric assays that enable point-of-care DNA and RNA detection has been a topic of significant research because of the utility of such assays in resource limited settings. The most common motifs utilize hybridization to a complementary detection strand coupled with a sensitive reporter molecule. Here, apaper-based colorimetric assay for DNA detection based on pyrrolidinyl peptide nucleic acid (acpcPNA)-induced nanoparticle aggregationis reported as an alternative to traditional colorimetric approaches. PNA probes are an attractive alternative to DNA and RNA probes because they are chemically and biologically stable, easily synthesized, and hybridize efficiently with the complementary DNA strands. The acpcPNA probe contains a single positive charge from the lysine at C-terminus and causes aggregation of citrate anion-stabilized silver nanoparticles (AgNPs) in the absence of complementary DNA. In the presence of target DNA, formation of the anionic DNA-acpcPNA duplex results in dispersion of the AgNPs as a result of electrostatic repulsion, giving rise to a detectable color change. Factors affecting the sensitivity and selectivity of this assay were investigated, including ionic strength, AgNP concentration, PNA concentration, and DNA strand mismatches. The method was used for screening of synthetic Middle East respiratory syndrome coronavirus (MERS-CoV), mycobacterium tuberculosis (MTB) and human papillomavirus (HPV)DNA based on a colorimetric paper-based analytical device developed using the aforementioned principle. The oligonucleotide targets were detected by measuring the color change of AgNPs, giving detection limits of 1.53 nM (MERS-CoV), 1.27 nM (MTB) and 1.03 nM (HPV).The acpcPNA probe exhibited high selectivity for the complementary oligonucleotides over single-base-mismatch, two-base-mismatch and non-complementary DNA targets. The proposed paper-based colorimetric DNA sensor has potential to be an alternative

  10. Solid phase thermodynamic perturbation theory: test and application to multiple solid phases.

    PubMed

    Zhou, Shiqi

    2007-08-28

    A simple procedure for the determination of hard sphere (HS) solid phase radial distribution function (rdf) is proposed, which, thanks to its physical foundation, allows for extension to other crystal structures besides the fcc structure. The validity of the procedure is confirmed by comparing (1) the predicted HS solid phase rdf's with corresponding simulation data and (2) the predicted non-HS solid phase Helmholtz free energy by the present solid phase first-order thermodynamic perturbation theory (TPT) whose numerical implementation depends on the HS solid phase rdf's as input, with the corresponding predictions also by the first-order TPT but the required HS solid phase rdf is given by an "exact" empirical simulation-fitted formula. The present solid phase first-order TPT predicts isostructural fcc-fcc transition of a hard core attractive Yukawa fluid, in very satisfactory agreement with the corresponding simulation data and is far more accurate than a recent thermodynamically consistent density functional perturbation theory. The present solid phase first-order TPT is employed to investigate multiple solid phases. It is found that a short-ranged potential, even if it is continuous and differentiable or is superimposed over a long-ranged potential, is sufficient to induce the multiple solid phases. When the potential range is short enough, not only isostructural fcc-fcc transition but also isostructural bcc-bcc transition, simple cubic (sc)-sc transition, or even fcc-bcc, fcc-sc, and bcc-sc transitions can be induced. Even triple point involving three solid phases becomes possible. The multiple solid phases can be stable or metastable depending on the potential parameters.

  11. Solid phase synthesis of bifunctional antibodies.

    PubMed

    DeSilva, B S; Wilson, G S

    1995-12-15

    Bifunctional antibodies were prepared using the principle of solid-phase synthesis. The two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')2 fragments from intact IgG were prepared using an immobilized pepsin column. Goat, mouse and human antibodies were digested completely within 4 h. The F(ab')2 fragments thus produced did not contain any IgG impurities. The Fab' fragments were produced by reducing the inter-heavy chain disulfide bonds using 2-mercaptoethylamine. The use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of the bifunctional antibody preparation and the rapid optimization of reaction conditions.

  12. A rapid solid-phase protein microsequencer.

    PubMed Central

    Walker, J E; Fearnley, I M; Blows, R A

    1986-01-01

    A solid-phase protein microsequencer is described that has been designed to determine protein sequences with subnanomolar quantities of protein. Its utility has been demonstrated by the determination of many sequences in subunits of mitochondrial F1-ATPase, in a protein isolated from mouse gap junctions and in the mitochondrial phosphate-transporter protein. It has a number of advantages over liquid- and gas-phase sequencers. Firstly, the degradation cycle takes 24 min, more than twice as fast as any other sequencer. This helps to reduce exposure of proteins to inimical reagents and increases throughput of samples. Secondly, polar amino acids such as phosphoserine, and polar derivatives formed by active-site photoaffinity labelling with 8-azido-ATP, are recovered quantitatively from the reaction column and can be positively identified. In other types of sequencer these polar derivatives, being somewhat insoluble in butyl chloride, tend to remain in the reaction chamber of the instrument and so are more difficult to identify. The solid-phase protein sequencer is also more suited than the liquid-phase instrument for analysis of proteolipids from membranes. These hydrophobic proteins tend to dissolve in organic solvents during washing steps in the liquid-phase instrument and are lost. Covalent attachment as used in the solid-phase instrument solves this problem. PMID:3800890

  13. Offline solid phase microextraction sampling system

    DOEpatents

    Harvey, Chris A.

    2008-12-16

    An offline solid phase microextraction (SPME) sampling apparatus for enabling SPME samples to be taken a number of times from a previously collected fluid sample (e.g. sample atmosphere) stored in a fused silica lined bottle which keeps volatile organics in the fluid sample stable for weeks at a time. The offline SPME sampling apparatus has a hollow body surrounding a sampling chamber, with multiple ports through which a portion of a previously collected fluid sample may be (a) released into the sampling chamber, (b) SPME sampled to collect analytes for subsequent GC analysis, and (c) flushed/purged using a fluidically connected vacuum source and purging fluid source to prepare the sampling chamber for additional SPME samplings of the same original fluid sample, such as may have been collected in situ from a headspace.

  14. Solid phase microextraction device using aerogel

    DOEpatents

    Miller, Fred S.; Andresen, Brian D.

    2005-06-14

    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  15. Solid-phase microextraction in biomedical analysis.

    PubMed

    Ulrich, S

    2000-12-01

    Chromatographic methods are preferred in the analysis of organic molecules with lower molecular mass (<500 g/mol) in body fluids, i.e., the assay of drugs, metabolites, endogenous substances and poisons as well as of environmental exposure by gas chromatography (GC) and liquid chromatography (LC), for example. Sample preparation in biomedical analysis is mainly performed by liquid-liquid extraction and solid-phase extraction. However, new methods are investigated with the aim to increase the sample throughput and to improve the quality of analytical methods. Solid-phase microextraction (SPME) was introduced about a decade ago and it was mainly applied to environmental and food analysis. All steps of sample preparation, i.e., extraction, concentration, derivatization and transfer to the chromatograph, are integrated in one step and in one device. This is accomplished by the intelligent combination of an immobilized extraction solvent (a polymer) with a special geometry (a fiber within a syringe). It was a challenge to test this novel principle in biomedical analysis. Thus, an introduction is provided to the theory of SPME in the present paper. A critical review of the first applications to biomedical analyses is presented in the main paragraph. The optimization of SPME as well as advantages and disadvantages are discussed. It is concluded that, because of some unique characteristics, SPME can be introduced with benefit into several areas of biomedical analysis. In particular, the application of headspace SPME-GC-MS in forensic toxicology and environmental medicine appears to be promising. However, it seems that SPME will not become a universal method. Thus, on-line SPE-LC coupling with column-switching technique may be a good alternative if an analytical problem cannot be sufficiently dealt with by SPME.

  16. β-Galactosidase-based colorimetric paper sensor for determination of heavy metals.

    PubMed

    Hossain, S M Zakir; Brennan, John D

    2011-11-15

    We demonstrate a novel approach for rapid, selective, and sensitive detection of heavy metals using a solid-phase bioactive lab-on-paper sensor that is inkjet printed with sol-gel entrapped reagents to allow colorimetric visualization of the enzymatic activity of β-galactosidase (B-GAL). The bioactive paper assay is able to detect a range of heavy metals, either alone or as mixtures, in as little as 10 min, with detection limits as follows: Hg(II) = 0.001 ppm; Ag(I) = 0.002 ppm, Cu(II) = 0.020 ppm; Cd(II) = 0.020 ppm; Pb(II) = 0.140 ppm; Cr(VI) = 0.150 ppm; Ni(II) = 0.230 ppm. The paper-based assay was immune to interferences from nontoxic metal ions such as Na(+) or K(+), could be used to detect heavy metals that were spiked into tap water or lake water, and provided quantitative data that was in agreement with values obtained by atomic absorption. With the incorporation of standard chromogenic metal sensing reagents into a multiplexed bioactive paper sensor, it was possible to identify specific metals in mixtures, albeit with much lower detection limits than were obtained with the enzymatic assay. The paper-based sensor should be valuable for rapid, on-site screening of trace levels of heavy metals in resource limited areas and developing countries.

  17. A digital microfluidic interface between solid-phase microextraction and liquid chromatography-mass spectrometry.

    PubMed

    Choi, Kihwan; Boyacı, Ezel; Kim, Jihye; Seale, Brendon; Barrera-Arbelaez, Luis; Pawliszyn, Janusz; Wheeler, Aaron R

    2016-04-29

    We introduce a method to couple solid-phase microextraction (SPME) with HPLC-MS using digital microfluidics (DMF). In the new system, SPME fibers are used to extract analytes from complex sample solutions, after which the analytes are desorbed into solvent droplets in a DMF device. The open geometry of DMF allows straightforward insertion of SPME fibers without requiring a complicated interface, and automated droplet manipulation enables multiplexed processing of the fibers. In contrast to other multiplexed SPME elution interfaces, the low volumes inherent to DMF allow for pre-concentration of analytes prior to analysis. The new SPME-DMF-HPLC-MS method was applied to the quantification of pg/mL-level free steroid hormones in urine. We propose that this new method will be useful for a wide range of applications requiring cleanup and pre-concentration with convenient coupling to high-performance analytical techniques.

  18. Solid-phase synthesis of quinolinone library.

    PubMed

    Kwak, Seung-Hwa; Kim, Min Jeong; Lee, So-Deok; You, Hyun; Kim, Yong-Chul; Ko, Hyojin

    2015-01-12

    Quinolinones have various biological activities, including antibacterial, anticancer, and antiviral properties. The 3-substituted amide quinolin-2(1H)-ones not only show antibacterial activity, but also act as immunomodulators, 5-HT4 receptor agonists, cannabinoid receptor inverse agonists, and AchE and, BuchE inhibitors. To investigate the potent biological activity of 3-substituted amide quinolin-2(1H)-ones, a large number of 3,5-amide substituted-2-oxoquinolinones were prepared by parallel solid-phase synthesis. The compound 5-amino-1-(4-methoxybenzyl)-2-oxo-1,2-dihydroquinoline-3-carboxylic acid was loaded onto 4-formyl-3,5-dimethoxyphenoxy (PL-FDMP) resin by reductive amination with high efficiency. Various building blocks were attached to the 3 and 5 positions to yield 3,5-disubstituted-2-oxoquinolinones with high purity and good yield. The ability some of these compound to inhibit the release of IL-1β, a cytokine involved in the immune response was measured, and they showed about 50% inhibition at 10 μM.

  19. Solvent-assisted dispersive solid phase extraction.

    PubMed

    Jamali, Mohammad Reza; Firouzjah, Ahmad; Rahnama, Reyhaneh

    2013-11-15

    In this research, a novel extraction technique termed solvent-assisted dispersive solid phase extraction (SADSPE) was developed for the first time. The new method was based on the dispersion of the sorbent into the sample to maximize the contact surface. In this method, the dispersion of the sorbent at a very low milligram level was achieved by injecting a solution of the sorbent into the aqueous sample. Thereby, a cloudy solution formed. The cloudy state resulted from the dispersion of the fine particles of the sorbent in the bulk aqueous sample. After extraction, phase separation was performed by centrifugation and the enriched analyte in the sedimented phase could be determined by instrumental methods. The performance of SADSPE was illustrated with the determination of the trace amounts of cobalt(II) as a test analyte in food and environmental water samples by using flame atomic absorption spectrometry detection. Some key parameters for SADSPE, such as sorbent selection and amount, type and volume of dispersive solvent, pH, chelating agent concentration, and salt concentration, were investigated. Under the most favorable conditions, good limit of detection (as low as 0.2 µg L(-1)) and repeatability of extraction (RSD below 2.2%, n=10) was obtained. The accuracy of the method was tested with standard reference material (SRM-1643e and SRM-1640a) and spiked addition. The advantages of SADSPE method are simplicity of operation, rapidity, low cost, high recovery, and enrichment factor.

  20. Rapid determination of ions by combined solid-phase extraction--diffuse reflectance spectroscopy

    NASA Technical Reports Server (NTRS)

    Fritz, James S.; Arena, Matteo P.; Steiner, Steven A.; Porter, Marc D.

    2003-01-01

    We introduce colorimetric solid-phase extraction (C-SPE) for the rapid determination of selected ions. This new technique links the exhaustive concentration of an analyte by SPE onto a membrane disk surface for quantitative measurement with a hand-held diffuse reflectance spectrometer. The concentration/measurement procedure is complete in approximately 1 min and can be performed almost anywhere. This method has been used to monitor iodine and iodide in spacecraft water in the 0.1-5.0 ppm range and silver(I) in the range of 5.0-1000 microg/l. Applications to the trace analysis of copper(II), nickel(II), iron(III) and chromium(VI) are described. Studies on the mechanism of extraction showed that impregnation of the disk with a surfactant as well as a complexing reagent results in uptake of additional water, which markedly improves the extraction efficiency.

  1. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification.

    PubMed

    del Río, Jonathan Sabaté; Yehia Adly, Nouran; Acero-Sánchez, Josep Lluis; Henry, Olivier Y F; O'Sullivan, Ciara K

    2014-04-15

    Solid-phase isothermal DNA amplification was performed exploiting the homology protein recombinase A (recA). The system was primarily tested on maleimide activated microtitre plates as a proof-of-concept and later translated to an electrochemical platform. In both cases, forward primer for Francisella tularensis holarctica genomic DNA was surface immobilised via a thiol or an amino moiety and then elongated during the recA mediated amplification, carried out in the presence of specific target sequence and reverse primers. The formation of the subsequent surface tethered amplicons was either colorimetrically or electrochemically monitored using a horseradish peroxidase (HRP)-labelled DNA secondary probe complementary to the elongated strand. The amplification time was optimised to amplify even low amounts of DNA copies in less than an hour at a constant temperature of 37°C, achieving a limit of detection of 1.3×10(-13) M (4×10(6) copies in 50 μL) for the colorimetric assay and 3.3×10(-14) M (2×10(5) copies in 10 μL) for the chronoamperometric assay. The system was demonstrated to be highly specific with negligible cross-reactivity with non-complementary targets or primers.

  2. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.

    2000-01-01

    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  3. Air sampling with solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds

  4. The solid-phase Nicholas reaction: scope and limitations.

    PubMed

    Gachkova, Natalie; Cassel, Johan; Leue, Stefanie; Kann, Nina

    2005-01-01

    Two libraries of alpha-substituted alkynes has been prepared on solid phase using a sequential Sonogashira/Nicholas reaction approach. The scope of nucleophiles in the Nicholas reaction on solid phase has been investigated, including carbon, oxygen, nitrogen, sulfur, fluoride, and hydride nucleophiles. The conditions for the reaction sequence have been optimized in terms of Lewis acid, catalyst for the Sonogashira step, temperature, reaction time, and decomplexation method, enabling the five-step sequence to be performed in 1 day.

  5. Doped colorimetric assay liposomes

    DOEpatents

    Charych, Deborah; Stevens, Raymond C.

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome systems provide high levels of sensitivity through the use of dopant molecules. As these dopants allow the controlled destabilization of the liposome structure, upon exposure of the doped liposomes to analyte(s) of interest, the indicator color change is facilitated and more easily recognized.

  6. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    PubMed

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T

    2001-12-01

    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  7. Diagnostic immunoassay by solid phase separation for digoxin

    SciTech Connect

    Grenier, F.C.; Pry, T.A.; Kolaczkowski, L.

    1988-11-29

    A method is described for conducting a diagnostic immunoassay for digoxin, comprising: (a) forming a reaction mixture of a test sample with a molar excess of labeled anti-digoxin antibodies whereby the labeled antibodies are capable of forming complex with digoxin present in the sample; (b) contacting the reaction mixture with a solid phase material having immobilized thereon a compound; (c) separating the solid phase material from the reaction mixture; and (d) determining the presence of digoxin in the test sample by measuring the amount of complex present in the liquid phase.

  8. Solid Phase Characterization of Tank 241-C-105 Grab Samples

    SciTech Connect

    Ely, T. M.; LaMothe, M. E.; Lachut, J. S.

    2016-01-11

    The solid phase characterization (SPC) of three grab samples from single-shell Tank 241-C-105 (C-105) that were received at the laboratory the week of October 26, 2015, has been completed. The three samples were received and broken down in the 11A hot cells.

  9. Recent Approaches Toward Solid Phase Synthesis of β-Lactams

    NASA Astrophysics Data System (ADS)

    Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb

    Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.

  10. Solid-phase products of bacterial oxidation of arsenical pyrite.

    PubMed

    Carlson, L; Lindström, E B; Hallberg, K B; Tuovinen, O H

    1992-03-01

    Bacterial leaching of an As-containing pyrite concentrate produced acidic (pH < 1) leachates. During the leaching, the bacteria solubilized both As and Fe, and these two elements were distributed in solution-phase and solid-phase products. Jarosite and scorodite were the exclusive crystalline products in precipitate samples from the bacterial leaching of the sulfide concentrate.

  11. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm

    SciTech Connect

    Cooke, Gary A.

    2015-03-09

    The Enclosure to this memo discusses the solid phase characterization of a solid sample that was retrieved from the single-shell Tank 241-C-111 extended reach sluicer #2. This sluicer, removed from riser #3 on September 25, 2014, was found to have approximately 0.4 gallons of solid tank waste adhering to the nozzle area.

  12. Solid-phase-supported synthesis of morpholinoglycine oligonucleotide mimics

    PubMed Central

    Belov, Sergey S; Tarasenko, Yulia V; Silnikov, Vladimir N

    2014-01-01

    Summary An efficient solid-phase-supported peptide synthesis (SPPS) of morpholinoglycine oligonucleotide (MorGly) mimics has been developed. The proposed strategy includes a novel specially designed labile linker group containing the oxalyl residue and the 2-aminomethylmorpholino nucleoside analogues as first subunits. PMID:24991266

  13. Stability of solid phases in the dipolar hard sphere system

    NASA Astrophysics Data System (ADS)

    Levesque, D.; Weis, J.-J.

    2011-12-01

    Free energy differences between solid phases of dipolar hard spheres are estimated by Monte Carlo simulation using a nonequilibrium work method. These calculations allow one to determine which of the considered phases has the minimum free energy. The phase diagram which we obtain is confirmed by simulations in the isothermal-isobaric ensemble over a wide region of the density and temperature domain.

  14. Kinetics of Microbial Reduction of Solid Phase U(VI)

    SciTech Connect

    Liu, Chongxuan; Jeon, Byong Hun; Zachara, John M.; Wang, Zheming; Dohnalkova, Alice; Fredrickson, Jim K.

    2006-10-01

    Sodium boltwoodite (NaUO2SiO3OH ?1.5H2O) was used to assess the kinetics of microbial reduction of solid phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Batch experiments were performed in a non-growth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intraparticle uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated the intimate coupling of biological, chemical, and physical processes in microbial reduction of solid phase U(VI).

  15. Determination of benzalkonium chloride in ophthalmic solutions containing tyloxapol by solid-phase extraction and reversed-phase high-performance liquid chromatography.

    PubMed

    Fan, T Y; Wall, G M

    1993-11-01

    A procedure using solid-phase extraction (Supelcoclean CN) followed by HPLC [Beckman Ultrasphere CN, acetonitrile:phosphate solution (60:40, v/v)] was developed and validated to quantitate the quaternary ammonium preservative benzalkonium chloride in an experimental ophthalmic formulation containing the polymeric material tyloxapol. This procedure makes routine determinations of benzalkonium chloride at concentrations of 0.0035 to 0.01% simpler than the traditional ion-pairing colorimetric methods. This method is quick, specific, and especially useful for drug product stability studies. In addition, because the method distinguishes each homologue, it can be extended to routinely determine the homologue ratio for quality control purposes.

  16. Solid-phase single molecule biosensing using dual-color colocalization of fluorescent quantum dot nanoprobes

    NASA Astrophysics Data System (ADS)

    Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong

    2013-10-01

    The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to

  17. Further optimization of detritylation in solid-phase oligodeoxyribonucleotide synthesis.

    PubMed

    Tram, Kha; Sanghvi, Yogesh S; Yan, Hongbin

    2011-01-01

    Various conditions for optimum detritylation (i.e., the removal of 5'-O-trityl protecting groups) during solid-phase synthesis of oligodeoxyribonucleotides were investigated. Di- and tri-chloroacetic acids of variable concentrations were used to study the removal of the 4,4'-dimethoxytrityl (DMTr) group. It was found that the DMTr group could be completely removed under much milder acidic conditions than what are currently used for automated solid-phase synthesis. The 2,7-dimethylpixyl (DMPx) is proposed as an alternative and more readily removable group for the protection of the 5'-OH functions both in solid- and solution-phase synthesis. The improved detritylation conditions are expected to minimize the waste and offer a protocol for incorporation of acid sensitive building-blocks in oligonucleotides.

  18. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-04

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance.

  19. Studies in Solid Phase Peptide Synthesis: A Personal Perspective

    SciTech Connect

    Mitchell, A R

    2007-06-01

    By the early 1970s it had became apparent that the solid phase synthesis of ribonuclease A could not be generalized. Consequently, virtually every aspect of solid phase peptide synthesis (SPPS) was reexamined and improved during the decade of the 1970s. The sensitive detection and elimination of possible side reactions (amino acid insertion, N{sup {alpha}}-trifluoroacetylation, N{sup {alpha}{var_epsilon}}-alkylation) was examined. The quantitation of coupling efficiency in SPPS as a function of chain length was studied. A new and improved support for SPPS, the 'PAM-resin', was prepared and evaluated. These and many other studies from the Merrifield laboratory and elsewhere increased the general acceptance of SPPS leading to the 1984 Nobel Prize in Chemistry for Bruce Merrifield.

  20. Solid-phase total synthesis of daptomycin and analogs.

    PubMed

    Lohani, Chuda Raj; Taylor, Robert; Palmer, Michael; Taylor, Scott D

    2015-02-06

    An entirely solid-phase synthesis of daptomycin, a cyclic lipodepsipeptide antibiotic currently in clinical use, was achieved using a combination of α-azido and Fmoc amino acids. This methodology was applied to the synthesis of several daptomycin analogs, one of which did not contain kynurenine or the synthetically challenging amino acid (2S,3R)-methylglutamate yet exhibited an MIC approaching that of daptomycin.

  1. Solid-Phase Synthesis of 2-Aminoethyl Glucosamine Sulfoforms

    PubMed Central

    Liu, Runhui

    2012-01-01

    Mono- and disaccharides of sulfonated glucosamines (GlcN sulfoforms) conjugated to 2-aminoethyl linkers were generated by solid-phase synthesis. Orthogonally protected intermediates were tethered onto tritylated polystyrene resin beads, subjected to a modular sequence of deprotection and sulfonation steps, then cleaved from solid support without degradation of N- or O-sulfate esters using solvolytic conditions, and finally purified by reverse-phase HPLC to afford the title compounds. PMID:23180905

  2. Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.

    PubMed

    Tóth, Blanka; Horvai, George

    2012-01-01

    Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.

  3. Clinically relevant interpretation of solid phase assays for HLA antibody

    PubMed Central

    Bettinotti, Maria P.; Zachary, Andrea A.; Leffell, Mary S.

    2016-01-01

    Purpose of review Accurate and timely detection and characterization of human leukocyte antigen (HLA) antibodies are critical for pre-transplant and post-transplant immunological risk assessment. Solid phase immunoassays have provided increased sensitivity and specificity, but test interpretation is not always straightforward. This review will discuss the result interpretation considering technical limitations; assessment of relative antibody strength; and the integration of data for risk stratification from complementary testing and the patient's immunological history. Recent findings Laboratory and clinical studies have provided insight into causes of test failures – false positive reactions because of antibodies to denatured HLA antigens and false negative reactions resulting from test interference and/or loss of native epitopes. Test modifications permit detection of complement-binding antibodies and determination of the IgG subclasses. The high degree of specificity of single antigen solid phase immunoassays has revealed the complexity and clinical relevance of antibodies to HLA-C, HLA-DQ, and HLA-DP antigens. Determination of antibody specificity for HLA epitopes enables identification of incompatible antigens not included in test kits. Summary Detection and characterization of HLA antibodies with solid phase immunoassays has led to increased understanding of the role of those antibodies in graft rejection, improved treatment of antibody-mediated rejection, and increased opportunities for transplantation. However, realization of these benefits requires careful and accurate interpretation of test results. PMID:27200498

  4. Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility

    DTIC Science & Technology

    2008-06-01

    LABORATORY STUDY REPORT Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant...Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility 5a. CONTRACT NUMBER 5b...PDMS poly dimethylsiloxane SPME Solid phase microextraction TOC Total organic carbon     1 1. LABORATORY DEMONSTRATION GOALS The

  5. A comparison of observables for solid-solid phase transitions

    SciTech Connect

    Smilowitz, Laura B; Henson, Bryan F; Romero, Jerry J

    2009-01-01

    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  6. Recent developments in matrix solid-phase dispersion extraction.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Giansanti, Piero; Gubbiotti, Riccardo; Samperi, Roberto; Laganà, Aldo

    2010-04-16

    Matrix solid-phase dispersion is a sample preparation strategy widely applied to solid, semisolid or viscous samples, including animal tissues and foods with a high lipidic content. The process consists in blending the matrix onto a solid support, allowing the matrix cell disruption and the subsequent extraction of target analytes by means of a suitable elution solvent. First introduced in 1989, MSPD employment and developments are still growing because of the feasibility and versatility of the process, as evidenced by the several reviews that have been published since nineties. Therefore, the aim of the present review is to provide a general overview and an update of the last developments of MSPD.

  7. Progress of solid-phase microextraction coatings and coating techniques.

    PubMed

    Jiang, Guibin; Huang, Minjia; Cai, Yaqi; Lv, Jianxia; Zhao, Zongshan

    2006-07-01

    Solid-phase microextraction (SPME) has been popular as an environmentally friendly sample pretreatment technique to extract a very wide range of analytes. This is partly owing to the development of SPME coatings. One of the key factors affecting the extraction performances, such as the sensitivity, selectivity, and reproducibility, is the properties of the coatings on SPME fibers. This paper classifies the materials used as SPME coatings and introduces some common preparation techniques of SPME coating in detail, such as sol-gel technique, electrochemical polymerization technique, particle direct pasting technique, restricted access matrix SPME technique, and molecularly imprinted SPME technique.

  8. The solid phase of ginkgolide K: Structure and physicochemical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwen; Zhang, Guoshun; Wang, Zhenzhong; Lv, Yang; Xiao, Wei

    2016-05-01

    Four solvates of ginkgolide K with dimethyl sulfoxide(I), water molecule(II), acetone-isopropyl alcohol(III), methanol-ethanol(IV) and one solvate-free (V) have been described in this work. And the solid-state techniques such as X-ray diffraction, thermal analysis and Fourier transform infrared spectroscopy were used for characterization of the solid phases. The single crystal structures of ginkgolide K solvates (I-IV) have been determined. Ginkgolide K shows strong inflexibility and solvents being incorporated in the crystal structure results in it forming polymorphs via the diverse hydrogen bond interactions.

  9. Advances in solid-phase extraction disks for environmental chemistry

    USGS Publications Warehouse

    Thurman, E.M.; Snavely, K.

    2000-01-01

    The development of solid-phase extraction (SPE) for environmental chemistry has progressed significantly over the last decade to include a number of new sorbents and new approaches to SPE. One SPE approach in particular, the SPE disk, has greatly reduced or eliminated the use of chlorinated solvents for the analysis of trace organic compounds. This article discusses the use and applicability of various SPE disks, including micro-sized disks, prior to gas chromatography-mass spectrometry for the analysis of trace organic compounds in water. Copyright (C) 2000 Elsevier Science B.V.

  10. Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases

    NASA Astrophysics Data System (ADS)

    Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.

    2010-12-01

    Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement

  11. Solid-Phase S-Alkylation Promoted by Molecular Sieves.

    PubMed

    Calce, Enrica; Leone, Marilisa; Mercurio, Flavia Anna; Monfregola, Luca; De Luca, Stefania

    2015-11-20

    A solid-phase S-alkylation procedure to introduce chemical modification on the cysteine sulfhydryl group of a peptidyl resin is reported. The reaction is promoted by activated molecular sieves and consists of a solid-solid process, since both the catalyst and the substrate are in a solid state. The procedure was revealed to be efficient and versatile, particularly when used in combination with the solution S-alkylation approach, allowing for the introduction of different molecular diversities on the same peptide molecule.

  12. Density-dependent cooperative non-specific binding in solid-phase SELEX affinity selection.

    PubMed

    Ozer, Abdullah; White, Brian S; Lis, John T; Shalloway, David

    2013-08-01

    The non-specific binding of undesired ligands to a target is the primary factor limiting the enrichment of tight-binding ligands in affinity selection. Solution-phase non-specific affinity is determined by the free-energy of ligand binding to a single target. However, the solid-phase affinity might be higher if a ligand bound concurrently to multiple adjacent immobilized targets in a cooperative manner. Cooperativity could emerge in this case as a simple consequence of the relationship between the free energy of binding, localization entropy and the spatial distribution of the immobilized targets. We tested this hypothesis using a SELEX experimental design and found that non-specific RNA aptamer ligands can concurrently bind up to four bead-immobilized peptide targets, and that this can increase their effective binding affinity by two orders-of-magnitude. Binding curves were quantitatively explained by a new statistical mechanical model of density-dependent cooperative binding, which relates cooperative binding to both the target concentration and the target surface density on the immobilizing substrate. Target immobilization plays a key role in SELEX and other ligand enrichment methods, particularly in new multiplexed microfluidic purification devices, and these results have strong implications for optimizing their performance.

  13. Effects of sample homogenization on solid phase sediment toxicity

    SciTech Connect

    Anderson, B.S.; Hunt, J.W.; Newman, J.W.; Tjeerdema, R.S.; Fairey, W.R.; Stephenson, M.D.; Puckett, H.M.; Taberski, K.M.

    1995-12-31

    Sediment toxicity is typically assessed using homogenized surficial sediment samples. It has been recognized that homogenization alters sediment integrity and may result in changes in chemical bioavailability through oxidation-reduction or other chemical processes. In this study, intact (unhomogenized) sediment cores were taken from a Van Veen grab sampler and tested concurrently with sediment homogenate from the same sample in order to investigate the effect of homogenization on toxicity. Two different solid-phase toxicity test protocols were used for these comparisons. Results of amphipod exposures to samples from San Francisco Bay indicated minimal difference between intact and homogenized samples. Mean amphipod survival in intact cores relative to homogenates was similar at two contaminated sites. Mean survival was 34 and 33% in intact and homogenized samples, respectively, at Castro Cove. Mean survival was 41% and 57%, respectively, in intact and homogenized samples from Islais Creek. Studies using the sea urchin development protocol, modified for testing at the sediment/water interface, indicated considerably more toxicity in intact samples relative to homogenized samples from San Diego Bay. Measures of metal flux into the overlying water demonstrated greater flux of metals from the intact samples. Zinc flux was five times greater, and copper flux was twice as great in some intact samples relative to homogenates. Future experiments will compare flux of metals and organic compounds in intact and homogenized sediments to further evaluate the efficacy of using intact cores for solid phase toxicity assessment.

  14. Solid-Phase Purification of Synthetic DNA Sequences.

    PubMed

    Grajkowski, Andrzej; Cieslak, Jacek; Beaucage, Serge L

    2016-08-05

    Although high-throughput methods for solid-phase synthesis of DNA sequences are currently available for synthetic biology applications and technologies for large-scale production of nucleic acid-based drugs have been exploited for various therapeutic indications, little has been done to develop high-throughput procedures for the purification of synthetic nucleic acid sequences. An efficient process for purification of phosphorothioate and native DNA sequences is described herein. This process consists of functionalizing commercial aminopropylated silica gel with aminooxyalkyl functions to enable capture of DNA sequences carrying a 5'-siloxyl ether linker with a "keto" function through an oximation reaction. Deoxyribonucleoside phosphoramidites functionalized with the 5'-siloxyl ether linker were prepared in yields of 75-83% and incorporated last into the solid-phase assembly of DNA sequences. Capture of nucleobase- and phosphate-deprotected DNA sequences released from the synthesis support is demonstrated to proceed near quantitatively. After shorter than full-length DNA sequences were washed from the capture support, the purified DNA sequences were released from this support upon treatment with tetra-n-butylammonium fluoride in dry DMSO. The purity of released DNA sequences exceeds 98%. The scalability and high-throughput features of the purification process are demonstrated without sacrificing purity of the DNA sequences.

  15. Enhanced solid-phase recombinase polymerase amplification and electrochemical detection.

    PubMed

    Del Río, Jonathan Sabaté; Lobato, Ivan Magriñà; Mayboroda, Olena; Katakis, Ioanis; O'Sullivan, Ciara K

    2017-03-02

    Recombinase polymerase amplification (RPA) is an elegant method for the rapid, isothermal amplification of nucleic acids. Here, we elucidate the optimal surface chemistry for rapid and efficient solid-phase RPA, which was fine-tuned in order to obtain a maximum signal-to-noise ratio, defining the optimal DNA probe density, probe-to-lateral spacer ratio (1:0, 1:1, 1:10 and 1:100) and length of a vertical spacer of the probe as well as investigating the effect of different types of lateral spacers. The use of different labelling strategies was also examined in order to reduce the number of steps required for the analysis, using biotin or horseradish peroxidase-labelled reverse primers. Optimisation of the amplification temperature used and the use of surface blocking agents were also pursued. The combination of these changes facilitated a significantly more rapid amplification and detection protocol, with a lowered limit of detection (LOD) of 1 · 10(-15) M. The optimised protocol was applied to the detection of Francisella tularensis in real samples from hares and a clear correlation with PCR and qPCR results observed and the solid-phase RPA demonstrated to be capable of detecting 500 fM target DNA in real samples. Graphical abstract Relative size of thiolated lateral spacers tested versus the primer and the uvsx recombinase protein.

  16. Fast and easy phosphopeptide fractionation by combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis.

    PubMed

    Zarei, Mostafa; Sprenger, Adrian; Rackiewicz, Michal; Dengjel, Joern

    2016-01-01

    Mass spectrometry-based phosphoproteomic analysis is a powerful method for gaining a global, unbiased understanding of cellular signaling. Its accuracy and comprehensiveness stands or falls with the quality and choice of the applied phosphopeptide prefractionation strategy. This protocol covers a powerful but simple and rapid strategy for phosphopeptide prefractionation. The combinatorial use of two distinct chromatographic techniques that address the inverse physicochemical properties of peptides allows for superior fractionation efficiency of multiple phosphorylated peptides. In the first step, multiphosphorylated peptides are separated according to the number of negatively charged phosphosites by electrostatic repulsion-hydrophilic interaction chromatography (ERLIC). A subsequent strong cation exchange (SCX) step separates mostly singly phosphorylated peptides in the ERLIC flow-through according to their positive charge. The presented strategy is inexpensive and adaptable to large and small amounts of starting material, and it allows highly multiplexed sample preparation. Because of its implementation as solid-phase extraction, the entire workflow takes only 2 h to complete.

  17. Determination of nitrate esters in water samples Comparison of efficiency of solid-phase extraction and solid-phase microextraction.

    PubMed

    Jezová, Vera; Skládal, Jan; Eisner, Ales; Bajerová, Petra; Ventura, Karel

    2007-12-07

    This paper deals with comparison of efficiency of extraction techniques (solid-phase extraction, SPE and solid-phase microextraction, SPME) used for extraction of nitrate esters (ethyleneglycoldinitrate, EGDN and nitroglycerin, NG), representing the first step of the method of quantitative determination of trace concentrations of nitrate esters in water samples. EGDN and NG are subsequently determined by means of high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Optimization of SPE and SPME conditions was carried out using model water samples. Seven SPE cartridges were tested and the conditions were optimized (type of sorbent, type and volume of solvent to be used as eluent). For both nitrate esters the limit of detection (LOD) and the limit of quantification (LOQ) obtained using SPE/HPLC-UV were 0.23 microg mL(-1) and 0.70 microg mL(-1), respectively. Optimization of SPME conditions: type of SPME fibre (four fibres were tested), type and time of sorption/desorption, temperature of sorption. PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre coating proved to be suitable for extraction of EGDN and NG. For this fibre the LOD and the LOQ for both nitrate esters were 0.16 microg mL(-1) and 0.50 microg mL(-1), respectively. Optimized methods SPE/HPLC-UV and SPME/HPLC-UV were then used for quantitative determination of nitrate esters content in real water samples from the production of EGDN and NG.

  18. Solid–solid phase transitions via melting in metals

    PubMed Central

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-01-01

    Observing solid–solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid–solid transition via the formation of a metastable liquid in a ‘real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory. PMID:27103085

  19. Porous protective solid phase micro-extractor sheath

    DOEpatents

    Andresen, Brian D.; Randich, Erik

    2005-03-29

    A porous protective sheath for active extraction media used in solid phase microextraction (SPME). The sheath permits exposure of the media to the environment without the necessity of extending a fragile coated fiber from a protective tube or needle. Subsequently, the sheath can pierce and seal with GC-MS septums, allowing direct injection of samples into inlet ports of analytical equipment. Use of the porous protective sheath, within which the active extraction media is contained, mitigates the problems of: 1) fiber breakage while the fiber is extended during sampling, 2) active media coating loss caused by physical contact of the bare fiber with the sampling environment; and 3) coating slough-off during fiber extension and retraction operations caused by rubbing action between the fiber and protective needle or tube.

  20. Microscale solid-phase extraction system for explosives.

    PubMed

    Smith, Matthew; Collins, Greg E; Wang, Joseph

    2003-04-04

    A simple, semi-automated, microcolumn solid-phase extraction (SPE) system is optimized for the extraction, preconcentration and HPLC analysis of seven different explosives and explosive derivatives contaminating seawater, river water and well water samples. The microcolumns were constructed from 1/16 in. O.D. PTFE tubing (1 in.=2.54 cm) packed with 0.5-1.5 mg of SPE material. LiChrolut EN or Porapak R. The extraction system consisted of two syringe pumps and several solenoid valves. Optimal detection limits were realized when the sample water flow-rate was maximally increased within the limits of the pump, 5-10 ml/min (despite exceeding the breakthrough threshold of the SPE microcolumn), and when the eluate volume collected from the column was minimized, <5 microl (despite very low recovery percentages).

  1. Nonthermal solid-to-solid phase transitions in tungsten

    NASA Astrophysics Data System (ADS)

    Giret, Yvelin; Daraszewicz, Szymon L.; Duffy, Dorothy M.; Shluger, Alexander L.; Tanimura, Katsumi

    2014-09-01

    The ab initio calculations of phonon dispersions and nonthermal forces along structural deformation paths were used to study nonthermal solid-to-solid phase transitions in photoexcited tungsten. We assumed that electronic excitation can be described by an electronic temperature and demonstrated that nonthermal, i.e., caused purely by electronic excitation, bcc-to-fcc and bcc-to-hcp phase transitions can occur for electronic temperatures between 1.7 and 4.3 eV. These transitions result from soft modes along the Σ line of the Brillouin zone. Structural path calculations at different electronic temperatures indicate that both transitions are likely to take place in nonequilibrium conditions. We further predict that transient fcc and hcp phases of tungsten could be observed for several ps.

  2. Solid phase epitaxial regrowth of (001) anatase titanium dioxide

    SciTech Connect

    Barlaz, David Eitan; Seebauer, Edmund G.

    2016-03-15

    The growing interest in metal oxide based semiconductor technologies has driven the need to produce high quality epitaxial films of one metal oxide upon another. Largely unrecognized in synthetic efforts is that some metal oxides offer strongly polar surfaces and interfaces that require electrostatic stabilization to avoid a physically implausible divergence in the potential. The present work examines these issues for epitaxial growth of anatase TiO{sub 2} on strontium titanate (001). Solid phase epitaxial regrowth yields only the (001) facet, while direct crystalline growth by atomic layer deposition yields both the (112) and (001). The presence of amorphous TiO{sub 2} during regrowth may provide preferential stabilization for formation of the (001) facet.

  3. Solid-phase genotoxicity assay for organic compounds in soil

    SciTech Connect

    Alexander, R.R.; Chung, N.; Alexander, M.

    1999-03-01

    A genotoxicity assay was developed for samples from environments in which toxic organic compounds are largely sorbed. The assay entails measurement of the rate of mutation of a strain of Pseudomonas putida to rifampicin resistance. The ratio of induced to spontaneous mutants was a function of the concentration of a test mutagen in soil. In studies of the utility of the assay in samples amended with 2-aminofluorene as a test mutagen, the ratio of induced to spontaneous mutants declined with time. The decline paralleled the disappearance of extractable 2-aminofluorene from the soil. The ratio of induced to spontaneous mutants also feel in four other soils with dissimilar properties. The authors suggest that this solid-phase assay is more appropriate for the estimation of genotoxicants sorbed in soil than assays involving extractants or suspensions of soil or sediment samples.

  4. Method for preparing a solid phase microextraction device using aerogel

    DOEpatents

    Miller, Fred S.; Andresen, Brian D.

    2006-10-24

    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  5. Bench-scale solid phase biotreatment: Benfield Industries Superfund site

    SciTech Connect

    Marlowe, M.W.; Harper, T.R.; Semenak, R.K.

    1995-12-31

    The Benfield Industries, Inc. Superfund site located in Hazelwood, North Carolina has been found to have approximately 15,000 cubic yards of polycyclic aromatic hydrocarbon (PAH) contaminated soil. Risk based clean up goals were specified at the site for eight target PAH compounds including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, naphthalene, and pentachlorophenol. Treatability studies were performed to evaluate solid phase bioremediation, which includes ex-situ and in-situ land treatment processes, for treatment of the site soil. All treatments were conducted using only indigenous microorganisms maintained under aerobic conditions. Two soil samples with different levels of PAH contamination were collected from the site for use in the treatability evaluations. The two soil samples were contaminated with total PAHs at concentrations of approximately 30 milligrams per kilogram (mg/kg) and 6,000 mg/kg, respectively. Three solid phase bioremediation studies were conducted over a one and one half year period using starting concentrations of total PAHs of approximately 30; 600; and 6,000 mg/kg. The objectives of the studies included determining (1) if clean up goals could be achieved, (2) the approximate biodegradation rate of PAHs in the site soils, and (3) the optimum environmental conditions for biodegradation of the PAHs. Some of the environmental parameters which were varied during the testing included moisture levels, soil conditioners, nutrients and pH. The results of the testing indicated that total and target PAHs can be reduced by up to 90 percent in less than 50 days, depending on environmental conditions maintained in the reactors. Clean up goals for all of the target compounds were achieved at some point during the study.

  6. Alternative solvents for elevated-temperature solid-phase parallel synthesis. Application to thionation of amides.

    PubMed

    Coats, Steven J; Link, Jeffrey S; Hlasta, Dennis J

    2003-03-06

    A new class of higher-boiling solvents was investigated for elevated-temperature solid-phase parallel synthesis. Extremely low vapor pressures at high temperature and a broader range of solvent effect tuning make this new class of solvents an ideal choice for high-temperature parallel solid-phase synthesis. Benzyl benzoate is identified as a superior high-boiling solvent for parallel solid-phase Lawesson's thionation reactions.

  7. Design, Certification, and Deployment of the Colorimetric Water Quality Monitoring Kit (CWQMK)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeff A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS) aboard STS-128/17A. The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was flown and deployed as a Station Development Test Objective (SDTO) experiment on the ISS. The goal of the SDTO experiment is to evaluate the acceptability of CSPE technology for routine water quality monitoring on the ISS. This paper provides an overview of the SDTO experiment, as well as a detailed description of the CWQMK hardware and a summary of the testing and analysis conducted to certify the CWQMK for use on the ISS. The initial results obtained from the SDTO experiment are also reported and discussed in detail

  8. DNA purification using dynamic solid-phase extraction on a rotationally-driven polyethylene-terephthalate microdevice.

    PubMed

    Jackson, K R; Borba, J C; Meija, M; Mills, D L; Haverstick, D M; Olson, K E; Aranda, R; Garner, G T; Carrilho, E; Landers, J P

    2016-09-21

    We report the development of a disposable polyester toner centrifugal device for semi-automated, dynamic solid phase DNA extraction (dSPE) from whole blood samples. The integration of a novel adhesive and hydrophobic valving with a simple and low cost microfabrication method allowed for sequential addition of reagents without the need for external equipment for fluid flow control. The spin-dSPE method yielded an average extraction efficiency of ∼45% from 0.6 μL of whole blood. The device performed single sample extractions or accommodate up to four samples for simultaneous DNA extraction, with PCR-readiness DNA confirmed by effective amplification of a β-globin gene. The purity of the DNA was challenged by a multiplex amplification with 16 targeted amplification sites. Successful multiplexed amplification could routinely be obtained using the purified DNA collected post an on-chip extraction, with the results comparable to those obtained with commercial DNA extraction methods. This proof-of-principle work represents a significant step towards a fully-automated low cost DNA extraction device.

  9. Solid Phase Microextraction for the Analysis of Nuclear Weapons

    SciTech Connect

    Chambers, D M

    2001-06-01

    This document is a compendium of answers to commonly asked questions about solid phase microextraction as it relates to the analysis of nuclear weapons. We have also included a glossary of terms associated with this analytical method as well as pertinent weapons engineering terminology. Microextraction is a new collection technique being developed to nonintrusively sample chemicals from weapon headspace gases for subsequent analysis. The chemicals that are being targeted outgas from the high explosives and other organic materials used in the weapon assembly. This technique is therefore a valuable tool to: (1) remotely detect and assess the aging of Lawrence Livermore National Laboratory (LLNL) and, in some cases, Sandia National Laboratory (SNL) organic materials; and (2) identify potential compatibility issues (i.e., materials interactions) that should be more carefully monitored during surveillance tear-downs. Microextraction is particularly attractive because of the practical constraints inherent to the weapon surveillance procedure. To remain transparent to other core surveillance activities and fall within nuclear safety guidelines, headspace analysis of the weapons requires a procedure that: (1) maintains ambient temperature conditions; (2) allows practical collection times of less than 20 min; (3) maintains the integrity of the weapon gas volume; (4) provides reproducible and quantitative results; and (5) can identify all possible targets.

  10. Ferrofluid-based dispersive solid phase extraction of palladium.

    PubMed

    Farahani, Malihe Davudabadi; Shemirani, Farzaneh; Gharehbaghi, Maysam

    2013-05-15

    A new mode of dispersive solid phase extraction based on ferrofluid has been developed. In this method, an appropriate amount of ferrofluid is injected rapidly into the aqueous sample by a syringe. Since the sorbent is highly dispersed in the aqueous phase, extraction can be achieved within a few seconds. The ferrofluid can be attracted by a magnet and no centrifugation step is needed for phase separation. Palladium was used as a model compound in the development and evaluation of the extraction procedure in combination with flame atomic absorption spectrometry. The experimental parameters (pH, DDTC concentration, type and concentration of eluent, the amount of adsorbent, extraction time, and the effect of interfering ions) were investigated in detail. Under the optimized conditions, the calibration graph was linear over the range of 1-100 μg L(-1) and relative standard deviation of 3.3% at 0.1 μg mL(-1) was obtained (n=7). The limit of detection and enrichment factor (EF) was obtained to be 0.35 μg L(-1) and 267, respectively. The maximum adsorption capacity of the adsorbent at optimum conditions was found to be 24.6 mg g(-1) for Pd(II). The method was validated using certified reference material, and has been applied for the determination of trace Pd(II) in actual samples with satisfactory results.

  11. Monitoring solid phase synthesis reactions with electrochemical impedance spectroscopy (EIS).

    PubMed

    Hutton, Roger S; Adams, Joseph P; Trivedi, Harish S

    2003-01-01

    This work describes the use of electrochemical impedance spectroscopy (EIS) as a means to monitor solid phase synthesis on resin beads. EIS was used to track changes during the swelling of beads in various solvents, during three typical reactions and throughout cleavage of the final product from the bead. The impedance response was investigated in a chemical reactor and was found to be faintly sensitive to the resin swelling and solvent flow. The position of the electrode within the reactor was found to be critical as polystyrene based beads float or sink dependent upon the solvent used. However, by choosing electrode position it was possible to monitor reaction progress on beads or within the bulk reactant/product mixture. Of the three typical chemical reactions studied impedance spectroscopy successfully followed two. Fitting of the impedance data to an equivalent electrical circuit provided an estimate as to the relative contribution of capacitive and resistive components to the overall response. Kinetic data from two reactions were also modelled, in both cases complex kinetics was observed, in close agreement with other studies.

  12. Molecularly imprinted solid phase extraction of fluconazole from pharmaceutical formulations.

    PubMed

    Manzoor, S; Buffon, R; Rossi, A V

    2015-03-01

    This work encompasses a direct and coherent strategy to synthesise a molecularly imprinted polymer (MIP) capable of extracting fluconazole from its sample. The MIP was successfully prepared from methacrylic acid (functional monomer), ethyleneglycoldimethacrylate (crosslinker) and acetonitrile (porogenic solvent) in the presence of fluconazole as the template molecule through a non-covalent approach. The non-imprinted polymer (NIP) was prepared following the same synthetic scheme, but in the absence of the template. The data obtained from scanning electronic microscopy, infrared spectroscopy, thermogravimetric and nitrogen Brunauer-Emmett-Teller plot helped to elucidate the structural as well as the morphological characteristics of the MIP and NIP. The application of MIP as a sorbent was demonstrated by packing it in solid phase extraction cartridges to extract fluconazole from commercial capsule samples through an offline analytical procedure. The quantification of fluconazole was accomplished through UPLC-MS, which resulted in LOD≤1.63×10(-10) mM. Furthermore, a high percentage recovery of 91±10% (n=9) was obtained. The ability of the MIP for selective recognition of fluconazole was evaluated by comparison with the structural analogues, miconazole, tioconazole and secnidazole, resulting in percentage recoveries of 51, 35 and 32%, respectively.

  13. Immobilization of microorganisms for detection by solid-phase immunoassays.

    PubMed Central

    Ibrahim, G F; Lyons, M J; Walker, R A; Fleet, G H

    1985-01-01

    Several cultures of gram-negative and gram-positive bacteria were successfully immobilized with titanous hydroxide. The immobilization efficiency for the microorganisms investigated in saline and broth media ranged from 80.2 to 99.9%. The immobilization of salmonellae was effective over a wide pH range. The presence of buffers, particularly phosphate buffer, drastically reduced the immobilization rate. However, buffers may be added to immunoassay systems after immobilization of microorganisms. The immobilization process involved only one step, i.e., shaking 100 microliter of culture with 50 microliter of titanous hydroxide suspension in polystyrene tubes for only 10 min. The immobilized cells were so tenaciously bound that vigorous agitation for 24 h did not result in cell dissociation. The nonspecific binding of 125I-labeled antibody from rabbits and 125I-labeled protein A by titanous hydroxide was inhibited in the presence of 2% gelatin and amounted to only 5.6 and 3.9%, respectively. We conclude that this immobilization procedure is a potentially powerful tool which could be utilized in solid-phase immunoassays concerned with the diagnosis of microorganisms. PMID:3900128

  14. ON-SITE SOLID-PHASE EXTRACTION AND LABORATORY ...

    EPA Pesticide Factsheets

    Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are required to verify that a target analyte has been found by comparison with the mass spectra of fragrance compounds in the NIST mass spectral library. A I -L sample usually provides insufficient analyte for full scan data acquisition. This paper describes an on-site extraction method developed at the U.S. Environmental Protection Agency (USEPA)- Las Vegas Nevada - for synthetic musks from 60 L of wastewater effluent. Such a large sample volume permits high-quality, full-scan mass spectra to be obtained for a wide array of synthetic musks. Quantification of these compounds was achieved from the full-scan data directly, without the need to acquire SIM data. The detection limits obtained with this method are an order of magnitude lower than those obtained from liquid-liquid and other solid phase extraction methods. This method is highly reproducible, and recoveries ranged from 80 to 97% in spiked sewage treatment plant effluent. The high rate of sorbent-sample mass transfer eliminated the need for a methanolic activation step, which reduced extraction time, labor, and solvent use, More samples could be extracted in the field at lower cost. After swnple extraction, the light- weight cartridges ar

  15. Characterizing solid phase ammonia toxicity in marine sediments

    SciTech Connect

    Ho, K.T.; Burgess, R.M.; Kuhn, A.

    1994-12-31

    The presence and toxicity of ammonia in sediments represents an interesting scientific and regulatory concern. From a scientific perspective, ammonia toxicity is largely pH dependent and easily detected under special exposure conditions. Regulating the concentration of ammonia is difficult because ammonia concentrations may be elevated by naturally occurring anaerobic sediment bacteria; however, these bacteria may be enhanced by excessive carbon inputs into a system. This presentation will demonstrate progress toward characterizing ammonia toxicity.in solid phase exposure. Toxicity tests were conducted using the mysid (Mysidopsis bahia) and the amphipod (Ampelisca abdita). Results from ammonia spiked and ammonia induced whole marine sediments demonstrate pH dependent toxicity under a graduated pH (7, 8 and 9) testing regime. Several metals (Cd, Cu, Ni, Pb and Zn) tested under the graduated pH testing regime showed varying toxicity patterns also as a function of pH. Other compounds, the toxicity of which are pH dependent will be discussed. In addition the results of testing with complex environmental sediments containing high ammonia concentrations and other contaminants will be reported.

  16. Monolithic graphene fibers for solid-phase microextraction.

    PubMed

    Fan, Jing; Dong, Zelin; Qi, Meiling; Fu, Ruonong; Qu, Liangti

    2013-12-13

    Monolithic graphene fibers for solid-phase microextraction (SPME) were fabricated through a dimensionally confined hydrothermal strategy and their extraction performance was evaluated. For the fiber fabrication, a glass pipeline was innovatively used as a hydrothermal reactor instead of a Teflon-lined autoclave. Compared with conventional methods for SPME fibers, the proposed strategy can fabricate a uniform graphene fiber as long as several meters or more at a time. Coupled to capillary gas chromatography (GC), the monolithic graphene fibers in a direct-immersion (DI) mode achieved higher extraction efficiencies for aromatics than those for n-alkanes, especially for polycyclic aromatic hydrocarbons (PAHs), thanks to π-π stacking interaction and hydrophobic effect. Additionally, the fibers exhibited excellent durability and can be repetitively used more than 160 times without significant loss of extraction performance. As a result, an optimum extraction condition of 40°C for 50min with 20% NaCl (w/w) was finally used for SPME of PAHs in aqueous samples. For the determination of PAHs in water samples, the proposed DI-SPME-GC method exhibited linear range of 0.05-200μg/L, limits of detection (LOD) of 4.0-50ng/L, relative standard deviation (RSD) less than 9.4% and 12.1% for one fiber and different fibers, respectively, and recoveries of 78.9-115.9%. The proposed method can be used for analysis of PAHs in environmental water samples.

  17. Ionic liquids in solid-phase microextraction: a review.

    PubMed

    Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L

    2011-06-10

    Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed.

  18. IN SITU SOLID-PHASE EXTRACTION AND ANALYSIS OF ...

    EPA Pesticide Factsheets

    Fragrance materials, such as synthetic musks in aqueous samples, are normally analyzed by GC/MS in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of 1-L samples. A 1-L sample, however, usually provides too little analyte for full-scan data acquisition.We have developed an on-site extraction method for extracting synthetic musks from 60 L of wastewater effluent. Such a large sample volume permits high-quality, full-scan mass spectra to be obtained for various synthetic musk compounds. Quantification of these compounds was conveniently achieved from the full-scan data directly, without preparing SIM descriptors for each compound to acquire SIM data. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-s

  19. Colorimetric protein assay techniques.

    PubMed

    Sapan, C V; Lundblad, R L; Price, N C

    1999-04-01

    There has been an increase in the number of colorimetric assay techniques for the determination of protein concentration over the past 20 years. This has resulted in a perceived increase in sensitivity and accuracy with the advent of new techniques. The present review considers these advances with emphasis on the potential use of such technologies in the assay of biopharmaceuticals. The techniques reviewed include Coomassie Blue G-250 dye binding (the Bradford assay), the Lowry assay, the bicinchoninic acid assay and the biuret assay. It is shown that each assay has advantages and disadvantages relative to sensitivity, ease of performance, acceptance in the literature, accuracy and reproducibility/coefficient of variation/laboratory-to-laboratory variation. A comparison of the use of several assays with the same sample population is presented. It is suggested that the most critical issue in the use of a chromogenic protein assay for the characterization of a biopharmaceutical is the selection of a standard for the calibration of the assay; it is crucial that the standard be representative of the sample. If it is not possible to match the standard with the sample from the perspective of protein composition, then it is preferable to use an assay that is not sensitive to the composition of the protein such as a micro-Kjeldahl technique, quantitative amino acid analysis or the biuret assay. In a complex mixture it might be inappropriate to focus on a general method of protein determination and much more informative to use specific methods relating to the protein(s) of particular interest, using either specific assays or antibody-based methods. The key point is that whatever method is adopted as the 'gold standard' for a given protein, this method needs to be used routinely for calibration.

  20. New methods and materials for solid phase extraction and high performance liquid chromatography

    SciTech Connect

    Dumont, Philip John

    1996-04-23

    This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.

  1. Rapid synthesis of oligodeoxyribonucleotides. IV. Improved solid phase synthesis of oligodeoxyribonucleotides through phosphotriester intermediates.

    PubMed Central

    Gait, M J; Singh, M; Sheppard, R C; Edge, M D; Greene, A R; Heathcliffe, G R; Atkinson, T C; Newton, C R; Markham, A F

    1980-01-01

    A phosphotriester solid phase method on a polyamide support has been used to prepare oligodeoxyribonucleotides up to 12 units long. Compared to solid phase phosphodiester synthesis the new methodology is quicker, more flexible and gives 10-60-fold better overall yields. PMID:7443540

  2. Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates

    ERIC Educational Resources Information Center

    Kirin, Srecko I.; Noor, Fozia; Metzler-Nolte, Nils; Mier, Walter

    2007-01-01

    A simple and relatively inexpensive procedure for preparing a biologically active peptide using solid phase peptide synthesis (SPPS) is described. Fourth-year undergraduate students have gained firsthand experience from the solid-phase synthesis techniques and they have become familiar with modern analytical techniques based on the particular…

  3. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  4. Novel materials and methods for solid-phase extraction and liquid chromatography

    SciTech Connect

    Ambrose, Diana

    1997-06-24

    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  5. Development of novel solid-phase protein formulations

    NASA Astrophysics Data System (ADS)

    Montalvo Ortiz, Brenda Liz

    Proteins are the next-generation drugs for the treatment of several diseases. However, the number of protein drugs is still limited due to the physical or chemical instability of proteins during processing, formulation, storage, and delivery. The formulation of proteins at the solid state has advantages over liquid state, such as improved stability during long-term storage and delivery and decreases transportation costs. In this dissertation, we developed new solid-phase protein formulations in which the integrity of the protein was not compromised. The long term goal of this research was to use these protein formulations to improve protein stability in drug delivery devices, such as poly(lactic-co-glycolic) acid (PLGA). The first solid-phase protein formulation developed in this investigation was named "glassification". We proposed glassification as an alternative protein dehydration technique to the common used one, lyophilization, because this last method involves a series of steps which are detrimental to protein structure and stability. The glassification method consisted on protein dehydration by the use of organic solvents. As a result of the glassification process a small (micrometer size range) protein solid bead was obtained. The proteins used to study the glassification process were lysozyme (LYS), alpha-chymotrypsin (CHYMO) and horseradish peroxidase (HRP). These studies revealed that the glassification process itself did not alter protein structure and the activity was preserved. Ethyl acetate was the most effective organic solvent for protein glassification because it led to the highest protein residual activity, no insoluble aggregate formation and is a relatively non-toxic solvent, which allow the incorporation of these protein microparticles in PLGA microspheres. The incorporation of spherical HRP microparticles into PLGA microspheres resulted in superior properties when compared with encapsulated lyophilized HRP powder, such as improved release

  6. Solid phase epitaxial regrowth of (100)GaAs

    SciTech Connect

    Almonte, Marlene Isabel

    1996-02-01

    This thesis showed that low temperature (250°C) SPE of stoichiometrically balanced ion implanted GaAs layers can yield good epitaxial recovery for doses near the amorphization threshold. For 250°C anneals, most of the regrowth occurred in the first 10 min. HRTEM revealed much lower stacking fault density in the co-implanted sample than in the As-only and Ga-only samples with comparable doses. After low temp annealing, the nonstoichiometric samples had a large number of residual defects. For higher dose implants, very high temperatures (700°C) were needed to remove residual defects for all samples. The stoichiometrically balanced layer did not regrow better than the Ga-only and As-only samples. The co-implanted sample exhibited a thinner amorphous layer and a room temperature (RT) annealing effect. The amorphous layer regrew about 5 nm, suggesting that stoichiometrically balanced amorphous layers can regrow even at RT. Mechanisms for solid phase crystallization in (100)GasAs is discussed: nucleation and growth of randomly oriented crystallites and SPE. These two mechanisms compete in compound semiconductors at much lower temperatures than in Si. For the low dose As-only and Ga-only samples with low-temp anneals, both mechanisms are active. For this amorphization threshold dose, crystallites remain in the amorphous layer for all as-implants. 250°C annealing showed recrystallization from the surface and bulk for these samples; for the co-implant, the mechanism is not evident.

  7. Smartphone spectrometer for colorimetric biosensing.

    PubMed

    Wang, Yi; Liu, Xiaohu; Chen, Peng; Tran, Nhung Thi; Zhang, Jinling; Chia, Wei Sheng; Boujday, Souhir; Liedberg, Bo

    2016-05-23

    We report on a smartphone spectrometer for colorimetric biosensing applications. The spectrometer relies on a sample cell with an integrated grating substrate, and the smartphone's built-in light-emitting diode flash and camera. The feasibility of the smartphone spectrometer is demonstrated for detection of glucose and human cardiac troponin I, the latter in conjunction with peptide-functionalized gold nanoparticles.

  8. Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering.

    PubMed

    Diwan, Anubhav; Singh, Bhupinder; Roychowdhury, Tuhin; Yan, DanDan; Tedone, Laura; Nesterenko, Pavel N; Paull, Brett; Sevy, Eric T; Shellie, Robert A; Kaykhaii, Massoud; Linford, Matthew R

    2016-02-02

    We describe a new process for preparing porous solid phase microextraction (SPME) coatings by the sputtering of silicon onto silica fibers. The microstructure of these coatings is a function of the substrate geometry and mean free path of the silicon atoms, and the coating thickness is controlled by the sputtering time. Sputtered silicon structures on silica fibers were treated with piranha solution (a mixture of concd H2SO4 and 30% H2O2) to increase the concentration of silanol groups on their surfaces, and the nanostructures were silanized with octadecyldimethylmethoxysilane in the gas phase. The attachment of this hydrophobic ligand was confirmed by X-ray photoelectron spectroscopy and contact angle goniometry on model, planar silicon substrates. Sputtered silicon coatings adhered strongly to their surfaces, as they were able to pass the Scotch tape adhesion test. The extraction time and temperature for headspace extraction of mixtures of alkanes and alcohols on the sputtered fibers were optimized (5 min and 40 °C), and the extraction performances of SPME fibers with 1.0 or 2.0 μm of sputtered silicon were compared to those from a commercial 7 μm poly(dimethylsiloxane) (PDMS) fiber. For mixtures of alcohols, aldehydes, amines, and esters, the 2.0 μm sputtered silicon fiber yielded signals that were 3-9, 3-5, 2.5-4.5, and 1.5-2 times higher, respectively, than those of the commercial fiber. For the heavier alkanes (undecane-hexadecane), the 2.0 μm sputtered fiber yielded signals that were approximately 1.0-1.5 times higher than the commercial fiber. The sputtered fibers extracted low molecular weight analytes that were not detectable with the commercial fiber. The selectivity of the sputtered fibers appears to favor analytes that have both a hydrophobic component and hydrogen-bonding capabilities. No detectable carryover between runs was noted for the sputtered fibers. The repeatability (RSD%) for a fiber (n = 3) was less than 10% for all analytes tested

  9. Determining the solid phases hosting arsenic in Mekong Delta sediments

    NASA Astrophysics Data System (ADS)

    Wucher, M.; Stuckey, J. W.; McCurdy, S.; Fendorf, S.

    2011-12-01

    The major river systems originating from the Himalaya deposit arsenic bearing sediment into the deltas of South and Southeast Asia. High rates of sediment and organic carbon deposition combined with frequent flooding leads to anaerobic processes that release arsenic into the pore-water. Arsenic concentrations in the groundwater of these sedimentary basins are often above the World Health Organization drinking water standard of 10 μg As L-1. As a result, 150 million people are at risk of chronic arsenic poisoning through water and rice consumption. The composition of the iron bearing phases hosting the arsenic in these deltaic sediments is poorly understood. Here we implemented a suite of selective chemical extractions to help constrain the types of arsenic bearing solid phases, which were complimented with synchrotron-based X-ray absorption spectroscopy and X-ray diffraction analyses to define the arsenic and iron mineralogy of the system. Sediment cores were collected in triplicate from a seasonally-inundated wetland in Cambodia at depths of 10, 50, 100, and 150 centimeters. We hypothesize that (i) arsenic will be predominantly associated with iron oxides, and (ii) the ratio of crystalline to amorphous iron oxides will increase with sediment depth (and age). We performed four selective extractions in parallel to quantify the various pools of arsenic. First, 1 M MgCl2 was used to extract electrostatically-bound arsenic (labile forms) from the sediment. Second, 1 M NaH2PO4 targeted strongly adsorbed arsenic. Third, 1 M HCl was used to liberated arsenic coprecipitated with amorphous Fe/Mn oxides, carbonates, and acid-volatile sulfides. Finally, a dithionite extraction was used to account for arsenic associated with reducible Fe/Mn oxides. Through this work, we identified the composition of the phases hosting arsenic at various depths through the soil profile, improving our understanding of how arsenic persists in the aquifer. In addition, defining the arsenic and

  10. Solid-Phase Equilibria for Metal-Silicon-Oxygen Ternary Systems. II. Sc, Y, and La

    DTIC Science & Technology

    1991-02-28

    Organization: Regents of the University of California TECHNICAL REPORT No. 9 SOLID- PHASE EQUILIBRIA FOR METAL-SILICON-OXYGEN TERNARY SYSTEMS: 11: Sc, Y, AND La...34’ SOLID- PHASE EQUILIBRIA FOR METAL-SILICON-OXYGEN TERNARY SYSTEMS: 11: Sc, Y, AND 1a 13 0911OtiA AUTHORCS) Haojie Yuan and R. Stanley Williams lI" TV...0660te tCLhSSWI=) Solid phase equilibria for metal-silicon-oxygen ternary systems I1: Sc, Y and La Haojie Yuan and R. Stanley Williams Department of

  11. Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility. ESTCP Cost and Performance Report

    DTIC Science & Technology

    2012-08-01

    Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility August 2012 Report Documentation Page Form...DATES COVERED - 4. TITLE AND SUBTITLE Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and...polyoxymethylene PRC performance reference compounds SERDP Strategic Environmental Research and Development Program SPME solid phase microextraction

  12. Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility (User’s Manual)

    DTIC Science & Technology

    2012-05-01

    GUIDANCE DOCUMENT Demonstration and Evaluation of Solid Phase Microextraction For the Assessment of Bioavailability and Contaminant Mobility...Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility ER-200624Danny R. Reible...in-situ measurement of sediment pore water concentrations with solid phase microextraction using polydimethyl siloxane as the extractant. The method

  13. EVALUATION OF SOLID PHASE MICROEXTRACTION FOR THE ANALYSIS OF HYDROPHILIC COMPOUNDS

    EPA Science Inventory

    Two commercially available solid phase microextractions (SPME) fibers, polyacrylate and carboxem/polydimethylsiloxane (PDMS), were evaluated for their ability to extract hydrophilic compounds from drinking water. Conditions, such as desorption time, desorption temperature, sample...

  14. DETERMINATION OF CHLOROETHENES IN ENVIRONMENTAL BIOLOGICAL SAMPLES USING GAS CHROMATOGRAPHY COUPLED WITH SOLID PHASE MICRO EXTRACTION

    EPA Science Inventory

    An analytical method has been developed to determine the chloroethene series, tetrachloroethene (PCE), trichloroethene (TCE),cisdichloroethene (cis-DCE) andtransdichloroethene (trans-DCE) in environmental biotreatment studies using gas chromatography coupled with a solid phase mi...

  15. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    PubMed

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N

    2017-03-04

    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  16. Solid Phase Equilibria in the Pi-Ga-As and Pt-Ga-Sb Systems

    DTIC Science & Technology

    1988-07-22

    OFFICE OF NAVAL RESEARCH Research Contract N00014-87-K-0014 R&T Code 413E026---01 AD-A 198 654 TECHNICAL REPORT No. 9 SOLID PHASE EQUILIBRIA IN THE...Classtcation) UNCLASSLFIED: Tech.Rept.#9 SOLID PHASE EQUILIBRIA IN T11: Pt-Ga-As AND Pt-Ga-Sb SYST’IS 12 PERSONAL AuTiOR(S) C.T. Tsai and R.S. Williats 13a TYPE

  17. Colorimetric characterization of LED luminaires

    NASA Astrophysics Data System (ADS)

    Costa, C. L. M.; Vieira, R. R.; Pereira, R. C.; Silva, P. V. M.; Oliveira, I. A. A.; Sardinha, A. S.; Viana, D. D.; Barbosa, A. H.; Souza, L. P.; Alvarenga, A. D.

    2015-01-01

    The Optical Metrology Division of Inmetro - National Institute of Metrology, Quality and Technology has recently started the colorimetric characterization of lamps by implementing Correlated Color Temperature (CCT) and Color Rendering Index (CRI) measurements of incandescent lamps, followed by the CFL, and LED lamps and luminaires. Here we present the results for the verification of the color characterization of samples of SSL luminaires for public as well as indoor illumination that are sold in Brazil.

  18. Determination of melamine in aquaculture feed samples based on molecularly imprinted solid-phase extraction.

    PubMed

    Lian, Ziru; Liang, Zhenlin; Wang, Jiangtao

    2015-10-01

    This research highlights the application of highly efficient molecularly imprinted solid-phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine-imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross-linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid-phase extraction sorbents for the selective cleanup of melamine. An off-line molecularly imprinted solid-phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high-performance liquid chromatography analysis. Optimum molecularly imprinted solid-phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6-96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid-phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre-treatment of melamine in aquaculture feed samples.

  19. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    PubMed

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2016-12-19

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk.

  20. Silica supported Fe(3)O(4) magnetic nanoparticles for magnetic solid-phase extraction and magnetic in-tube solid-phase microextraction: application to organophosphorous compounds.

    PubMed

    Moliner-Martinez, Y; Vitta, Yosmery; Prima-Garcia, Helena; González-Fuenzalida, R A; Ribera, Antonio; Campíns-Falcó, P; Coronado, Eugenio

    2014-03-01

    This work demonstrates the application of silica supported Fe3O4 nanoparticles as sorbent phase for magnetic solid-phase extraction (MSPE) and magnetic on-line in-tube solid-phase microextraction (Magnetic-IT-SPME) combined with capillary liquid chromatography-diode array detection (CapLC-DAD) to determine organophosphorous compounds (OPs) at trace level. In MSPE, magnetism is used as separation tool while in Magnetic-IT-SPME, the application of an external magnetic field gave rise to a significant improvement of the adsorption of OPs on the sorbent phase. Extraction efficiency, analysis time, reproducibility and sensitivity have been compared. This work showed that Magnetic-IT-SPME can be extended to OPs with successful results in terms of simplicity, speed, extraction efficiency and limit of detection. Finally, wastewater samples were analysed to determine OPs at nanograms per litre.

  1. Simple colorimetric method determines uranium in tissue

    NASA Technical Reports Server (NTRS)

    Doran, D.; Frigerio, N. A.

    1967-01-01

    Simple colorimetric micromethod determines concentrations of uranium in tissue. The method involves dry ashing organic extraction, and colorimetric determination of uranyl ferrocyanide. This uranium determination technique could be used in agricultural research, tracer studies, testing of food products, or medical research.

  2. Structural and optical properties of solid-phase singlet oxygen photosensitizers based on fullerene aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Belousova, I. M.; Belousov, V. P.; Kiselev, V. M.; Murav'eva, T. D.; Kislyakov, I. M.; Sirotkin, A. K.; Starodubtsev, A. M.; Kris'ko, T. K.; Bagrov, I. V.; Ermakov, A. V.

    2008-11-01

    The relationship between the structural and photosensitizing properties of solid-phase particles of fullerene C60 in aqueous suspensions is studied using the methods of absorption spectroscopy, electron spin resonance spectroscopy (ESR), X-ray diffraction, and spectrophotometry of solutions of singlet oxygen chemical traps—histidine in combination with p-nitrosodimethylaniline. Two new variants are proposed for obtaining aqueous suspensions of particles of solid-phase fullerene whose structures are disordered and whose degrees of amorphization are 67 and 40%, respectively. It is shown that an increase in the disorder of the structure of particles in suspensions and a decrease in their average size facilitate an increase in the formation efficiency of singlet oxygen by solid-phase fullerene presumably due to an in increase in the concentration of surface localized excitons.

  3. Quarter-filled supersolid and solid phases in the extended Bose-Hubbard model.

    PubMed

    Ng, Kwai-Kong; Chen, Y C; Tzeng, Y C

    2010-05-12

    We numerically study the ground state phase diagram of the two-dimensional hard-core Bose-Hubbard model with nearest-(V(1)) and next-nearest-neighbour (V(2)) repulsions. In particular, we focus on the quarter-filled phases where one supersolid and two solid phases are observed. Using both canonical and grand canonical quantum Monte Carlo (QMC) methods and a mean-field calculation, we provide evidence for the existence of a commensurate supersolid. Despite the two possible diagonal long-range orderings for the solid phase, only one kind of supersolid phase is found to be energetically stable. The competition between the two solid phases manifests itself as a first-order phase transition around 2V(2) ∼ V(1). The change of order parameters as a function of the chemical potential is also presented.

  4. Solid-Phase Synthesis of Amine/Carboxyl Substituted Prolines and Proline Homologues: Scope and Limitations.

    PubMed

    Zhou, Ziniu; Scott, William L; O'Donnell, Martin J

    2016-03-15

    A solid-phase procedure is used to synthesize racemic peptidomimetics based on the fundamental peptide unit. The peptidomimetics are constructed around proline or proline homologues variably substituted at the amine and carbonyl sites. The procedure expands the diversity of substituted peptidomimetic molecules available to the Distributed Drug Discovery (D3) project. Using a BAL-based solid-phase synthetic sequence the proline or proline homologue subunit is both constructed and incorporated into the peptidomimetic by an α-alkylation, hydrolysis and intramolecular cyclization sequence. Further transformations on solid-phase provide access to a variety of piperazine derivatives representing a class of molecules known to exhibit central nervous system activity. The procedure works well with proline cores, but with larger six- and seven-membered ring homologues the nature of the carboxylic acid acylating the cyclic amine can lead to side reactions and result in poor overall yields.

  5. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium.

  6. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase.

    PubMed

    Castro, Vida; Rodríguez, Hortensia; Albericio, Fernando

    2016-01-11

    Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.

  7. Preferential extraction of hydrocarbons from fire debris samples by solid phase microextraction.

    PubMed

    Lloyd, Julie A; Edmiston, Paul L

    2003-01-01

    Headspace analysis by extraction/GC-MS is a common method of detecting volatile hydrocarbon accelerants in fire debris samples. Solid-phase microextraction was tested to determine if there is selective extraction of chemically distinct compounds. It was found that both the polydimethylsiloxane (PDMS) and Carboxen/PDMS solid phase microextraction fibers show preferential extraction of aliphatic or aromatic compounds from the headspace depending on fiber type and temperature. The Carboxen/PDMS fiber type showed particular (although not exclusive) selectivity for extraction of aromatic hydrocarbons. Other experimental considerations of SPME are noted.

  8. Resin Capsules: Permeable Containers for Parallel/Combinatorial Solid-Phase Organic Synthesis

    PubMed Central

    Bouillon, Isabelle; Soural, Miroslav; Krchňák, Viktor

    2009-01-01

    A resin capsule is a permeable container for resin beads designed for multiple/combinatorial solid-phase organic synthesis. Resin capsules consist of a high density polyethylene ring sealed with peek mesh on both sides. The cylindrical shape of resin capsules enabled space-saving packing into plastic column-like reaction vessels commonly used for solid-phase organic synthesis. Resin capsules have been evaluated for their use in combinatorial synthesis, and a set of model compounds with excellent purity was prepared. PMID:18656988

  9. Analysis of the structure of synthetic and natural melanins by solid-phase

    SciTech Connect

    Duff, G.A.; Roberts, J.E.; Foster, N.

    1988-09-06

    The structures of one synthetic and two natural melanins are examined by solid-state NMR using cross polarization, magic angle sample spinning, and high-power proton decoupling. The structural features of synthetic dopa malanin are compared to those of melanin from malignant melanoma cells grown in culture and sepia melanin from squid ink. Natural abundance /sup 13/C and /sup 15/N spectra show resonances consistent with known pyrrolic and indolic structures within the heterogeneous biopolymer; /sup 13/C spectra indicate the presence of aliphatic residues in all three materials. These solid-phase experiments illustrate the promise of solid-phase NMR for elucidating structural from insoluble biomaterials.

  10. Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengwei; Jiang, Jia Qian

    2012-07-01

    A simple and economic solid-phase extraction coupled with UV/Vis spectrophotometric method is described for the analysis of ibuprofen and ciprofloxacin. Following solid-phase extraction from model wastewater samples containing standard ibuprofen or ciprofloxacin, elutes were analyzed by a UV/Vis spectrophotometer at 225 nm for ibuprofen and 280 nm for ciprofloxacin. The assay was linear for both compounds with good coefficients of correlation. This method shows good recoveries for both compounds with 101.0 ± 9.8% for ibuprofen and 99.4 ± 11.8% ciprofloxacin.

  11. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid.

    PubMed

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-12-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L(-1) limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol.

  12. Selective enrichment of phenols from coal liquefaction oil by solid phase extraction method

    SciTech Connect

    Tian, M.; Feng, J.

    2009-07-01

    This study focuses on the solid phase extraction method for the enrichment and separation of phenol from coal liquefaction oil. The phenols' separation efficiency was compared on different solid phase extraction (SPE) cartridges, and the effect of solvents with different polarity and solubility parameter on amino-bonded silica was compared for selection of optimal elution solution. The result showed that amino-bonded silica has the highest selectivity and best extraction capability due to two factors, weak anion exchange adsorption and polar attraction adsorption.

  13. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    PubMed

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides.

  14. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid

    NASA Astrophysics Data System (ADS)

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-03-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L-1 limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol.

  15. Development of orthogonally protected hypusine for solid-phase peptide synthesis.

    PubMed

    Song, Aimin; Tom, Jeffrey; Yu, Zhiyong; Pham, Victoria; Tan, Dajin; Zhang, Dengxiong; Fang, Guoyong; Yu, Tao; Deshayes, Kurt

    2015-04-03

    An orthogonally protected hypusine reagent was developed for solid-phase synthesis of hypusinated peptides using the Fmoc/t-Bu protection strategy. The reagent was synthesized in an overall yield of 27% after seven steps from Cbz-Lys-OBzl and (R)-3-hydroxypyrrolidin-2-one. The side-chain protecting groups (Boc and t-Bu) are fully compatible with standard Fmoc chemistry and can be readily removed during the peptide cleavage step. The utility of the reagent was demonstrated by solid-phase synthesis of hypusinated peptides.

  16. Influence of Geometry on a High Surface Area-Solid Phase Microextraction Sampler for Chemical Vapor Collection

    DTIC Science & Technology

    2007-06-04

    Title of Thesis: Influence of Geometry on a High Surface Area-Solid Phase Microextraction Sampler for Chemical Vapor Collection Name of...TITLE AND SUBTITLE Influence of Geometry on a High Surface Area-Solid Phase Microextraction Sampler for Chemical Vapor Collection 5a. CONTRACT...SUPPLEMENTARY NOTES 14. ABSTRACT The High Surface Area Solid Phase Microextraction (HSA-SPME) device is an internally heated sampling device designed for

  17. THE DISTRIBUTION AND SOLID-PHASE SPECIATION OF AS IN IRON-BASED TREATMENT MEDIA

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These r...

  18. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  19. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees.

  20. Effects of inoculum size on solid-phase fermentation of fodder beets for fuel ethanol production

    SciTech Connect

    Gibbons, W.R.; Westby, C.A.

    1986-10-01

    This fuel ethanol study examined the effects of Saccharomyces cerevisiae inoculum size on solid-phase fermentation of fodder beet pulp. A 5% inoculum (wt/wt) resulted in rapid yeast and ethanol (9.1% (vol/vol)) production. Higher inocula showed no advantages. Lower inocula resulted in lowered final yeast populations and increased fermentation times.

  1. Determination of Plant Volatiles Using Solid Phase Microextraction GC-MS

    ERIC Educational Resources Information Center

    Van Bramer, Scott; Goodrich, Katherine R.

    2015-01-01

    This experiment combines analytical techniques of solid phase microextraction and gas chromatography-mass spectrometry with easily relatable and accessible plant volatile chemistry (floral and vegetative scents of local/available plants). The biosynthesis and structure of these chemicals are of interest in the areas of organic chemistry,…

  2. Solid phase microextraction for active or passive sampling of methyl bromide during fumigations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The high diffusivity and volatility of methyl bromide make it an ideal compound for Solid Phase Micro Extraction (SPME)-based sampling of air prior to gas-chromatographic quantifications. SPME fibers can be used as active methyl bromide samplers, with high capacities and an equilibrium time of 1-2 m...

  3. Headspace analysis of polar organic compounds in biological matrixes using solid phase microextraction (SPME)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...

  4. SOLID PHASE MICROEXTRACTION FOR TRACE LEVEL ANALYSIS OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    This presentation focuses on the development of a solid-phase microextraction (SPME)-gas chromatography (GC)/ion trap mass spectrometry (MS) method for the analysis of semivolatile disinfection by-products (DBPs) in drinking water in the low ug/L range. These DBPs were selected ...

  5. Solid-phase microextraction of hydrocarbons from water in a centrifuge

    NASA Astrophysics Data System (ADS)

    Ryabov, A. Yu.; Chuikin, A. V.; Velikov, A. A.

    2016-06-01

    The results of our study of solid-phase microextraction of substances using a centrifuge for determining the microquantities of hydrocarbon impurities in water are presented. The cartridge diameter, sorbent mass, and solvent volume were shown to affect the percent extraction of substances and the analytical signal intensity. The relationship between the cartridge geometry, the sorbent mass, and the solvent volume was considered.

  6. High performance solid-phase analytical derivatization of phenols for gas chromatography-mass spectrometry.

    PubMed

    Kojima, Miki; Tsunoi, Shinji; Tanaka, Minoru

    2004-07-09

    The solid-phase analytical derivatization of phenols with pentafluoropyridine is performed. Fourteen phenols including chlorophenols and alkylphenols, could be efficiently adsorbed on a strong anion-exchange solid phase, Oasis MAX. The phenols adsorbed on Oasis MAX as phenolate ions were desorbed after derivatization with pentafluoropyridine. After optimization of the adsorption and derivatization, we established a procedure for the determination of the phenols in water samples by means of GC-MS. Under the optimized conditions, calibration curves were linear in the range of 10-1000 ng/l for the alkylphenols (100-10000 ng/l for nonylphenol) and 50-1000 ng/l for the others. By processing 100 ml samples, the method detection limits (MDLs) were in the range of 0.45-2.3 ng/l for the alkylphenols (8.5 ng/l for nonylphenol) and 2.4-16 ng/l for the others. Compared with the biphasic reaction system, the signal-to-noise ratios obtained by the solid-phase analytical derivatization were significantly higher. This is ascribed to the fact that coexisting neutral and acidic compounds are efficiently removed from the sample solution by this solid-phase analytical derivatization system.

  7. A Discovery-Oriented Approach to Solid-Phase Peptide Synthesis

    ERIC Educational Resources Information Center

    Bockman, Matthew R.; Miedema, Christopher J.; Brennan, Brian B.

    2012-01-01

    In this discovery-oriented laboratory experiment, students use solid-phase synthesis techniques to construct a dipeptide containing an unknown amino acid. Following synthesis and cleavage from the polymeric support, electrospray ionization-mass spectrometry is employed to identify the unknown amino acid that was used in the peptide coupling. This…

  8. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  9. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... centrifugation and filtration through a 0.45 micron filter. The suspended particulate phase is the supernatant as obtained above prior to centrifugation and filtration. The solid phase includes all material settling to... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may...

  10. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... centrifugation and filtration through a 0.45 micron filter. The suspended particulate phase is the supernatant as obtained above prior to centrifugation and filtration. The solid phase includes all material settling to... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may...

  11. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... centrifugation and filtration through a 0.45 micron filter. The suspended particulate phase is the supernatant as obtained above prior to centrifugation and filtration. The solid phase includes all material settling to... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may...

  12. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... centrifugation and filtration through a 0.45 micron filter. The suspended particulate phase is the supernatant as obtained above prior to centrifugation and filtration. The solid phase includes all material settling to... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may...

  13. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... centrifugation and filtration through a 0.45 micron filter. The suspended particulate phase is the supernatant as obtained above prior to centrifugation and filtration. The solid phase includes all material settling to... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may...

  14. AUTOMATED SOLID PHASE EXTRACTION GC/MS FOR ANALYSIS OF SEMIVOLATILES IN WATER AND SEDIMENTS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line sampl...

  15. Solid phase stability of molybdenum under compression: Sound velocity measurements and first-principles calculations

    SciTech Connect

    Zhang, Xiulu; Liu, Zhongli; Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang

    2015-02-07

    The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.

  16. Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME).

    PubMed

    Benhabib, Karim; Town, Raewyn M; van Leeuwen, Herman P

    2009-04-09

    Solid phase microextraction (SPME) is applied in the dynamic speciation analysis of the pesticide atrazine in an aqueous medium containing sorbing latex nanoparticles. It is found that the overall rate of extraction of the analyte is faster than in the absence of nanoparticles and governed by the coupled diffusion of free and particle-bound atrazine toward the solid/sample solution interface. In the eventual equilibrium the total atrazine concentration in the solid phase is dictated by the solid phase/water partition coefficient (K(sw)) and the concentration of the free atrazine in the sample solution. These observations demonstrate that the nanoparticles do not enter the solid phase. The experimental data show that the rate of release of sorbed atrazine from the latex particles is fast on the effective time scale of the microextraction process. A lability criterion is derived to quantitatively describe the relative rates of these two processes. All together, the results indicate that SPME has a strong potential for dynamic speciation analysis of organic compounds in media containing sorbing nanoparticles.

  17. COMPARISON OF TWO DIFFERENT SOLID PHASE EXTRACTION/LARGE VOLUME INJECTION PROCEDURES FOR METHOD 8270

    EPA Science Inventory

    Two solid phase (SPE) and one traditional continuous liquid-liquid extraction method are compared for analysis of Method 8270 SVOCs. Productivity parameters include data quality, sample volume, analysis time and solvent waste.

    One SPE system, unique in the U.S., uses aut...

  18. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    PubMed

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  19. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    SciTech Connect

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-06-27

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.

  20. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    PubMed

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater.

  1. Optimetric system facilitates colorimetric and fluorometric measurements

    NASA Technical Reports Server (NTRS)

    Haley, F. C.

    1968-01-01

    Compact, unitary optimetric systems uses a single device for colorimetric, fluorometric and spectral absorption measurements. The basic element of the unitary systems is a test cell containing filter elements with uniquely fabricated lenses.

  2. Determination of triazine herbicides in seaweeds: development of a sample preparation method based on Matrix Solid Phase Dispersion and Solid Phase Extraction Clean-up.

    PubMed

    Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2014-04-01

    A method using dual process columns of Matrix Solid Phase Dispersion (MSPD) and Solid Phase Extraction (SPE) has been developed for extracting and cleaning-up of nine triazine herbicides (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine and terbutryn) in seaweed samples. Under optimized conditions, samples were blended with 2g of octasilyl-derivatized silica (C8) and transferred into an SPE cartridge containing ENVI-Carb II/PSA (0.5/0.5 g) as a clean up co-sorbent. Then the dispersed sample was washed with 10 mL of n-hexane and triazines were eluted with 20 mL ethyl acetate and 5 mL acetonitrile. Finally the extract was concentrated to dryness, re-constituted with 1 mL methanol:water (1:1) and injected into the HPLC-DAD system. The linearity of the calibration curves was excellent in matrix matched standards, and yielded the coefficients of determination>0.995 for all the target analytes. The recoveries ranged from 75% to 100% with relative standard deviations lower than 7%. The achieved LOQs (<10 µg kg(-1)) for all triazines under study permits to ensure proper determination at the maximum allowed residue levels set in the European Union Legislation. Samples of three seaweeds were subjected to the procedure proving the suitability of MSPD method for the analysis of triazines in different seaweeds samples.

  3. Identification of unwanted photoproducts of cosmetic preservatives in personal care products under ultraviolet-light using solid-phase microextraction and micro-matrix solid-phase dispersion.

    PubMed

    Alvarez-Rivera, Gerardo; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta

    2015-04-17

    The photochemical transformation of widely used cosmetic preservatives including benzoates, parabens, BHA, BHT and triclosan has been investigated in this work applying an innovative double-approach strategy: identification of transformation products in aqueous photodegradation experiments (UV-light, 254nm), followed by targeted screening analysis of such photoproducts in UV-irradiated cosmetic samples. Solid-phase microextraction (SPME) was applied, using different fiber coatings, in order to widen the range of detectable photoproducts in water, whereas UV-irradiated personal care products (PCPs) containing the target preservatives were extracted by micro-matrix solid-phase dispersion (micro-MSPD). Both SPME and micro-MSPD-based methodologies were successfully optimized and validated. Degradation kinetics of parent species, and photoformation of their transformation by-products were monitored by gas chromatography coupled to mass spectrometry (GC-MS). Thirty nine photoproducts were detected in aqueous photodegradation experiments, being tentatively identified based on their mass spectra. Transformation pathways between structurally related by-products, consistent with their kinetic behavior were postulated. The photoformation of unexpected photoproducts such as 2- and 4-hydroxybenzophenones, and 2,8-dichlorodibenzo-p-dioxin in PCPs are reported in this work for the first time.

  4. Design, Certification, and Deployment of the Colorimetric Water Quality Monitoring Kit (CWQMK)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeff A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Carrizales, Stephanie M.; McCoy, J. Torin

    2009-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS) aboard STS-128/17A. The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was developed by a team of scientists and engineers from NASA s Habitability and Environmental Factors Division in the Space Life Sciences Directorate at Johnson Space Center, the Wyle Integrated Science and Engineering Group in Houston, Texas, the University of Utah, and Iowa State University. The CWQMK was flown and deployed as a Station Development Test Objective (SDTO) experiment on ISS. The goal of the SDTO experiment was to evaluate the acceptability of CSPE technology for routine water quality monitoring on ISS. This paper provides an overview of the SDTO experiment, as well as a detailed description of the CWQMK hardware and a summary of the testing and analysis conducted to certify the CWQMK for use on ISS. The results obtained from the SDTO experiment are also reported and discussed in detail.

  5. Solid-phase assay of lectin activity using HRP-conjugated glycoproteins.

    PubMed

    Kojima-Aikawa, Kyoko

    2014-01-01

    Various enzyme-conjugated probes have been widely used for detection of specific interactions between biomolecules. In the case of glycan-protein interaction, horseradish peroxidase (HRP)-conjugated glycoproteins (HRP-GPs) are useful for the detection of carbohydrate-binding activity of plant and animal lectins. In this chapter, a typical solid-phase assay of the carbohydrate-binding activity of Sophora japonica agglutinin I, a Gal/GalNAc-specific lectin, using HRP-conjugated asialofetuin is described. HRP-GPs are versatile tools for probing lectin activities in crude extracts, screening many samples at one time, and applicable not only for solid-phase binding assays but also samples which are dot- or Western-blotted onto the membrane.

  6. Solid phase graft copolymerization of acrylic monomers onto thermoplastics and their use as blend compatibilizers

    NASA Astrophysics Data System (ADS)

    Subramanian, Srinivas

    This research work is an extension of some of the earlier work done on the development of solid phase grafting technique to graft various monomers onto polymers as well as postulation of the usefulness of the graft copolymers thus synthesized. Polystyrene grafted with acrylic acid, previously developed in bench scale, was synthesized in pilot-plant scale batches. Process parameter studies on the grafting of acrylic acid onto polypropylene and developmental studies on the grafting of maleic anhydride onto polystyrene were also done. Polymers grafted with polar molecules such as maleic anhydride and acrylic acid have been used to compatibilize immiscible blends of polar and non-polar polymers. On the same note, the applicability of the solid phase graft copolymers as blend compatibilizers were investigated and their performance was compared to commercially available compatibilizers. Solid phase graft copolymerization process is a technique to synthesize graft copolymers. Some of its salient features are use of minimal solvent to conduct the reaction and easy equipment modification. It is a low pressure and low temperature process. This technique provides a viable alternative to the environmentally hazardous, and time consuming conventional process currently in use. Hence, development of this technique could be beneficial not only to the plastics industry, but also to mankind. Also, this technique provides a low-cost and extremely easy method to develop graft copolymers such as acrylic acid functionalized polymers that are rapidly gaining popularity as blend compatibilizers and polymer reinforcing agents. A study that proves the potential of these solid phase graft copolymers as good blend compatibilizers for industrially important immiscible polymers will develop interest in the industries about this grafting process. The free radical solid phase graft copolymerization process was carried in a modified Brabender-type mixer fitted with specially designed blades to

  7. Experimental setup for investigating silicon solid phase crystallization at high temperatures.

    PubMed

    Schmidt, Thomas; Gawlik, Annett; Schneidewind, Henrik; Ihring, Andreas; Andrä, Gudrun; Falk, Fritz

    2013-07-15

    An experimental setup is presented to measure and interpret the solid phase crystallization of amorphous silicon thin films on glass at very high temperatures of about 800 °C. Molybdenum-SiO(2)-silicon film stacks were irradiated by a diode laser with a well-shaped top hat profile. From the relevant thermal and optical parameters of the system the temperature evolution can be calculated accurately. A time evolution of the laser power was applied which leads to a temperature constant in time in the center of the sample. Such a process will allow the observation and interpretation of solid phase crystallization in terms of nucleation and growth in further work.

  8. Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials.

    PubMed

    Gao, Jun; Manard, Benjamin T; Castro, Alonso; Montoya, Dennis P; Xu, Ning; Chamberlin, Rebecca M

    2017-05-15

    Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of nine materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. The microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.

  9. Solid-phase antibody capture hemadsorption assay for detection of hepatitis A virus immunoglobulin M antibodies.

    PubMed Central

    Summers, P L; Dubois, D R; Cohen, W H; Macarthy, P O; Binn, L N; Sjogren, M H; Snitbhan, R; Innis, B L; Eckels, K H

    1993-01-01

    A solid-phase antibody capture hemadsorption (SPACH) assay was developed to detect hepatitis A virus (HAV)-specific immunoglobulin M (IgM) antibodies in sera from humans recently infected with hepatitis. The assay is performed with microtiter plates coated with anti-human IgM antibodies to capture IgM antibodies from the test sera. HAV-specific IgM antibody is detected by the addition of HAV hemagglutinating antigen and goose erythrocytes. Hemadsorption of erythrocytes to antigen-antibody complexes attached to the solid phase indicate the presence of IgM antibodies. The SPACH assay was compared to a commercial radioimmunoassay and was found to be equally or more sensitive and specific for the detection of HAV IgM antibodies. The SPACH assay is an alternative, rapid assay that doesn't require hazardous substrates or radioactivity for the detection of HAV-specific antibodies. PMID:8388890

  10. Quantitation of Binding, Recovery and Desalting Efficiency in Solid Phase Extraction Micropipette Tips

    SciTech Connect

    Palmblad, M N; Vogel, J S

    2004-08-02

    Micropipette-tip solid phase extraction systems are common in proteomic analyses for desalting and concentrating samples for mass spectrometry, removing interferences, and increasing sensitivity. These systems are inexpensive, disposable, and highly efficient. Here we show micropipette-tip solid phase extraction is a direct sample preparation method for {sup 14}C-accelerator mass spectrometry (AMS), removing salts or reagent from labeled macromolecules. We compared loading, recovery and desalting efficiency in commercially available SPE micro-tips using {sup 14}C-labeled peptides and proteins, AMS, and alpha spectrometry ion energy loss quantitation. The polypropylene in the tips was nearly {sup 14}C-free and simultaneously provided low-background carrier for AMS. The silica material did not interfere with the analysis. Alpha spectrometry provided an absolute measurement of desalting efficiency.

  11. Anisotropic kinetics of solid phase transition from first principles: alpha-omega phase transformation of Zr.

    PubMed

    Guan, Shu-Hui; Liu, Zhi-Pan

    2016-02-14

    Structural inhomogeneity is ubiquitous in solid crystals and plays critical roles in phase nucleation and propagation. Here, we develop a heterogeneous solid-solid phase transition theory for predicting the prevailing heterophase junctions, the metastable states governing microstructure evolution in solids. Using this theory and first-principles pathway sampling simulation, we determine two types of heterophase junctions pertaining to metal α-ω phase transition at different pressures and predict the reversibility of transformation only at low pressures, i.e. below 7 GPa. The low-pressure transformation is dominated by displacive Martensitic mechanism, while the high-pressure one is controlled by the reconstructive mechanism. The mechanism of α-ω phase transition is thus highly pressure-sensitive, for which the traditional homogeneous model fails to explain the experimental observations. The results provide the first atomic-level evidence on the coexistence of two different solid phase transition mechanisms in one system.

  12. Solid-phase extraction using hierarchical organosilicates for enhanced detection of nitroenergetic targets.

    PubMed

    Johnson, Brandy J; Melde, Brian J; Leska, Iwona A; Charles, Paul T; Hewitt, Alan D

    2011-05-01

    A novel porous organosilicate material was evaluated for application as a solid phase extraction sorbent for preconcentration of nitroenergetic targets from aqueous solution prior to HPLC analysis. The performance of the sorbent in spiked deionized water, groundwater, and surface water was evaluated. Targets considered included 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, RDX, HMX, and nitroglycerin. The sorbent was shown to provide improved performance over Sep-Pak RDX. The impact of complex matrices on target preconcentration by the sorbent was also found to be less dramatic than that observed for LiChrolut EN. The impact of changes in pH on target preconcentration was considered. Aqueous soil extracts generated from samples collected at sites of ordnance testing were also used to evaluate the materials. The results presented here demonstrate the potential of this novel sorbent for application as a solid phase extraction material for the preconcentration of nitroenergetic targets from aqueous solutions.

  13. Solid-phase epitaxy of silicon amorphized by implantation of the alkali elements rubidium and cesium

    SciTech Connect

    Maier, R.; Haeublein, V.; Ryssel, H.; Voellm, H.; Feili, D.; Seidel, H.; Frey, L.

    2012-11-06

    The redistribution of implanted Rb and Cs profiles in amorphous silicon during solid-phase epitaxial recrystallization has been investigated by Rutherford backscattering spectroscopy and secondary ion mass spectroscopy. For the implantation dose used in these experiments, the alkali atoms segregate at the a-Si/c-Si interface during annealing resulting in concentration peaks near the interface. In this way, the alkali atoms are moved towards the surface. Rutherford backscattering spectroscopy in ion channeling configuration was performed to measure average recrystallization rates of the amorphous silicon layers. Preliminary studies on the influence of the alkali atoms on the solid-phase epitaxial regrowth rate reveal a strong retardation compared to the intrinsic recrystallization rate.

  14. The use of coal in a solid phase reduction of iron oxide

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhihina, I. D.; Hodosov, I. E.

    2015-09-01

    The results of the research process of producing metalized products by solid-phase reduction of iron using solid carbonaceous reducing agents. Thermodynamic modeling was carried out on the model of the unit the Fe-C-O and system with iron ore and coal. As a result of modeling the thermodynamic boundary reducing, oxidizing, and transition areas and the value of the ratio of carbon and oxygen in the system. Simulation of real systems carried out with the gas phase obtained in the pyrolys of coal. The simulation results allow to determine the optimal cost of coal required for complete reduction of iron ore from a given composition. The kinetics of the processes of solid-phase reduction of iron using coal of various technological brands.

  15. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    SciTech Connect

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  16. Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis.

    PubMed

    Sabatino, Giuseppina; Papini, Anna M

    2008-11-01

    Solid-phase strategies speed up the production of both short- and long-sequence peptides compared with solution methodologies. Therefore, solid-phase peptide synthesis (SPPS), proposed by Merrifield in the early 1960s, contributed to the 'Peptide Revolution' in the fields of diagnostics, and drug and vaccine development. Since then, peptide chemistry research has aimed to optimize these synthetic procedures, focusing on areas such as amide bond formation (the coupling step), solid supports and automation. Particular attention was devoted to the environmental impact of SPPS: the requirement for large amounts of organic solvents meant high costs for industrial peptide manufacturing that needed to be reduced. SPPS, alone or in hybrid technologies, has become strategic for the production of peptides as active pharmaceutical ingredients on a commercial scale.

  17. Orthogonally Protected Furanoid Sugar Diamino Acids for Solid-Phase Synthesis of Oligosaccharide Mimetics.

    PubMed

    John, Franklin; Wittmann, Valentin

    2015-08-07

    Sugar diamino acids (SDAs), which differ from the widely used sugar amino acids in the presence of a second amino group connected to the carbohydrate core, share structural features of both amino acids and carbohydrates. They can be used for the preparation of linear and branched amide-linked oligosaccharide mimetics. Such oligomers carry free amino groups, which are positively charged at neutral pH, in a spatially defined way and, thus, represent a potential class of aminoglycoside mimetics. We report here the first examples of orthogonally protected furanoid SDAs and their use in solid-phase synthesis. Starting from d-glucose, we developed a divergent synthetic route to three derivatives of 3,5-diamino-3,5-dideoxy-d-ribofuranose. These building blocks are compatible with solid-phase peptide synthesis following the 9-fluorenylmethoxycarbonyl (Fmoc) strategy, which we demonstrate by the synthesis of an SDA tetramer.

  18. Multiresidue analysis of neonicotinoids by solid-phase extraction technique using high-performance liquid chromatography.

    PubMed

    Mohan, Chander; Kumar, Yogesh; Madan, Jyotsana; Saxena, Navneet

    2010-06-01

    For routine monitoring of pesticides, a multiresidue analysis through solid-phase extraction technique and using high-performance liquid chromatography (HPLC) in cotton seed cake (CSC) has been developed. Extraction of fortified samples was carried out with aqueous acetone under vacuum. The concentrated extract was loaded onto the solid-phase extraction units, preconditioned with acetonitrile. The extraction units were then washed with hexane and finally eluted with acetonitrile. The pesticide residues were determined using a multiresidue method by reversed-phase HPLC. The average percentage recoveries were found to range between 65.47% and 110% at spiking levels of 10 to 40 mg/kg. The method developed shows a healthy rate of recovery and can successfully be utilized for the extraction and screening of neonicotinoid residues in CSC. The detection limits for imidacloprid, acetamiprid, and thiacloprid using this method were found to be 5, 10, and 20 mg/kg, respectively.

  19. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells.

    PubMed

    Hatke, A T; Liu, Yang; Magill, B A; Moon, B H; Engel, L W; Shayegan, M; Pfeiffer, L N; West, K W; Baldwin, K W

    2014-06-20

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  20. Electron Shuttling Capacity of Solid-Phase Organic Matter in Forest Soils

    NASA Astrophysics Data System (ADS)

    Patel, A.; Zhao, Q.; Yang, Y.

    2015-12-01

    Soil organic matter, as an electron shuttle, plays an important role in regulating the biogeochemical cycles of metals, especially the redox reactions for iron. Microorganisms can reduce soil organic matter under anaerobic conditions, and biotically-reduced soil organic matter can abiotically donate electrons to ferric oxides. Such soil organic matter-mediated electron transport can facilitate the interactions between microorganisms and insoluble terminal electron acceptors, i.e. iron minerals. Most previous studies have been focused on the electron shuttling processes through dissolved soil organic matter, and scant information is available for solid-phase soil organic matter. In this study, we aim to quantify the electron accepting capacity for solid-phase organic matter in soils collected from four different forests in the United States, including Truckee (CA), Little Valley (NV), Howland (ME) and Hart (MI). We used Shewanella oneidensisMR-1 to biotically reduce soil slurries, and then quantified the electrons transferred to solid-phase and solution-phase organic matter by reacting them with Fe(III)-nitrilotriacetic acid (Fe(III)-NTA). The generation of Fe(II) was measured by a ferrozine assay to calculate the electron accepting capacity of soil organic matter. Our preliminary results showed that the Truckee soil organic matter can accept 0.51±0.07 mM e-/mol carbon. We will measure the electron accepting capacity for four different soils and correlate them to the physicochemical properties of soils. Potential results will provide information about the electron accepting capacity of solid-phase soil organic matter and its governing factors, with broad implication on the coupled biogeochemical cycles of carbon and iron.

  1. Solid phase synthesis of a GHRP analog containing C-terminal thioamide group.

    PubMed

    Majer, Z; Zewdu, M; Hollósi, M; Sepródi, J; Vadász, Z; Teplán, I

    1988-02-15

    [Lyst6]GHRP, the C-terminally thionated analog of the highly potent growth hormone releasing hexapeptide His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 was prepared by using solid support. The success of the synthesis showed that Lawesson's reagent can be used for selective thionation of an amide group not only in solution but also on the surface of a resin. The C-terminal thioamide group proved to be stable under the conditions of the solid phase synthesis.

  2. The Role of Biogeochemical Dynamics in the Alteration of Uranium Solid Phases Under Oxic Conditions.

    NASA Astrophysics Data System (ADS)

    Letain, T. E.; Silva, R. J.; Nitsche, H.; Nitsche, H.; Hazen, T. C.; Clark, S. B.; Douglas, M.; Gillaspie, C.; Knopp, R.; Panak, P. J.

    2001-12-01

    Microbial reduction of uranium has been shown to lower groundwater concentrations of uranium in anoxic systems, but such biological alterations must be considered temporary unless long-term anoxia can be guaranteed. Under oxic conditions, the more soluble higher oxidation state of uranium, e.g. the uranyl cation UO2(2+), is thermodynamically favored. For example, in U ore deposits in which uraninite - consisting of reduced U(IV) as UO(2+x) - is the parent material, exposure to oxidizing conditions results in alteration to U(VI) minerals, with the U(VI)-phosphates frequently defining the boundaries of the ore body. U(VI)-phosphates are of interest because of their relatively low solubilities compared to other U(VI) solid phases. Since microorganisms are undoubtedly present in such ore deposits, they likely play a role in the formation of U(VI)-phosphate solid phases. To assist the U.S. Department of Energy (DOE) with long-term stewardship issues associated with bioremediation of uranium, the overall goal of this project is to work with model biological systems to define the mechanisms by which microorganisms facilitate the formation of U(VI)-phosphate solid phases. This information can then be used by DOE to design remediation systems that stimulate biological activity to favor the formation of U(VI)-phosphate phases. In this project, we are investigating the role of some individual bacterial strains (Bacillus sphaericus and Shewanella putrefaciens) as well as microbial consortia isolated from the NABIR Field Research Center at Oak Ridge National Laboratory on the alteration of U(VI) solid phases. These strains were selected to reflect a variety of subsurface conditions including aerobic, microaerophilic, and episodically anaerobic. These bacteria or similar species are found throughout subsurface environments. They are believed to influence actinide geochemistry through various mechanisms. These mechanisms are not independent of one another, and together they

  3. Solid phase microextraction analysis of B83 SLTS and Core B compatibility test units

    SciTech Connect

    Chambers, D M; Ithaca, J; King, H A; Malcolm, S

    1999-03-26

    Solid phase microextraction has permitted the efficient collection and analysis of a broad range of volatile and semivolatile compounds outgassed from materials. In 1998, we implemented a microextraction protocol at Mason and Hanger, Pantex Plant, for the analysis of weapons and compatibility test units. The chemical information that was obtained from this work is interpreted by determining the source and outgas mechanism for each compound in the weapon signature, which is a task only accomplished by analysis of material standards.

  4. Influence of impurities on the solid-solid phase transitions in zirconium

    SciTech Connect

    Rigg, Paulo A; Greeff, Carl W; Gray, George T., III; Knudson, Marcus D

    2009-08-04

    In an effort to better understand the influence of impurities on the solid-solid phase transitions in Group IVb metals, experiments have been carried out on polycrystalline zirconium samples using plate impact and isentropic loading techniques. Samples with three levels of impurities were shock-loaded using both gas and powder-driven guns and isentropically loaded using magnetic drive (Sandia's Z-Machine) to determine the properties and characteristics of both the {alpha} {yields} {omega} and {omega} {yields} {beta} transitions.

  5. R. Bruce Merrifield and Solid-Phase Peptide Synthesis: A Historical Assessment

    SciTech Connect

    Mitchell, A R

    2007-12-04

    Bruce Merrifield, trained as a biochemist, had to address three major challenges related to the development and acceptance of solid-phase peptide synthesis (SPPS). The challenges were (1) to reduce the concept of peptide synthesis on a insoluble support to practice, (2) overcome the resistance of synthetic chemists to this novel approach, and (3) establish that a biochemist had the scientific credentials to effect the proposed revolutionary change in chemical synthesis. How these challenges were met is discussed in this article.

  6. Application of solid-phase microextraction to the analysis of volatile compounds in virgin olive oils.

    PubMed

    Jiménez, A; Beltrán, G; Aguilera, M P

    2004-03-05

    Solid-phase microextraction was used as a technique for headspace sampling of extra virgin olive oil and virgin olive oil samples with different off-flavours. A 100 microm coated polydimethylsiloxane fiber was used to extract volatile aldehydes, the sampling temperature was 45 degrees C and the fiber has been exposed to the headspace for 15 min. Nonanal and 2-decenal were present in all the olive oils with extraction off-flavours but were not in extra virgin olive oil sample.

  7. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    PubMed

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed.

  8. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma.

    PubMed

    Hughto, J; Horowitz, C J; Schneider, A S; Medin, Zach; Cumming, Andrew; Berry, D K

    2012-12-01

    The neutron-rich isotope ²²Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of ²²Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semianalytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two-component carbon and oxygen systems. This suggests that small amounts of ²²Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Γ) in our MD simulations compared to the semianalytic model. This difference seems to grow with impurity parameter Q_{imp} and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semianalytic model.

  9. The isolation of soyasaponins by fractional precipitation, solid phase extraction, and low pressure liquid chromatography.

    PubMed

    Gurfinkel, D M; Reynolds, W F; Rao, A V

    2005-11-01

    Bioactive soyasaponins are present in soybean (Glycine max). In this study, the isolation of soyasaponins in relatively pure form (>80%) using precipitation, solid phase extraction and reverse phase low pressure liquid chromatography (RP-LPLC) is described. Soy flour soyasaponins were separated from non-saponins by methanol extraction and precipitation with ammonium sulphate. Acetylated group A soyasaponins were isolated first by solid phase extraction followed by RP-LPLC (solvent: ethanol-water). Soyasaponins, from a commercial preparation, were saponified and fractionated into deacetylated group A and group B soyasaponins by solid phase extraction (methanol-water). Partial hydrolysis of group B soyasaponins produced a mixture of soyasaponin III and soyasapogenol B monoglucuronide. RP-LPLC of deacetylated group A soyasaponins separated soyasaponin A1 and A2 (38% methanol); of group B soyasaponins isolated soyasaponin I (50% ethanol); and of the partial hydrolysate separated soyasaponin III from soyasapogenol B monoglucuronide (50% ethanol). This methodology provides soyasaponin fractions that are suitable for biological evaluation.

  10. New methodological improvements in the Microtox® solid phase assay.

    PubMed

    Burga Pérez, Karen F; Charlatchka, Rayna; Sahli, Leila; Férard, Jean-François

    2012-01-01

    The classic Microtox® solid phase assay (MSPA) based on the inhibition of light production of the marine bacteria recently renamed Aliivibrio fischeri suffers from various bias and interferences, mainly due to physico-chemical characteristics of the tested solid phase. To precisely assess ecotoxicity of sediments, we have developed an alternative method, named Microtox® leachate phase assay (MLPA), in order to measure the action of dissolved pollutants in the aqueous phase. Two hypotheses were formulated to explain the observed difference between MSPA and MLPA results: a real ecotoxicity of the solid phase or the fixation of bacteria to fine particles and/or organic matter. To estimate the latter, flow cytometry analyses were performed with two fluorochromes (known for their ability to stain bacterial DNA), allowing correction of MSPA measurements and generation of new (corrected) IC50. Comparison of results of MLPA with the new IC50 MSPA allows differentiating real ecotoxic and fixation effect in classic MSPA especially for samples with high amount of fines and/or organic matter.

  11. Detection of antinuclear antibodies by indirect immunofluorescence and by solid phase assay.

    PubMed

    Op De Beeck, Katrijn; Vermeersch, Pieter; Verschueren, Patrick; Westhovens, René; Mariën, Godelieve; Blockmans, Daniel; Bossuyt, Xavier

    2011-10-01

    Testing for antinuclear antibodies is useful for the diagnosis of systemic rheumatic diseases. Solid phase assays are increasingly replacing indirect immunofluorescence for detection of antinuclear antibodies. In the most recent generation of solid phase assays, manufacturers attempt to improve the performance of the assays by adding extra antigens. Solid phase assay (EliA CTD Screen, Phadia, in which antibodies to 17 antigens are detected) was compared to indirect immunofluorescence for the detection of antinuclear antibodies in diagnostic samples of 236 patients with autoimmune connective tissue diseases, in 149 healthy blood donors, 139 patients with chronic fatigue syndrome, and 134 diseased controls. The sensitivity of EliA CTD Screen for systemic lupus erythematosus, systemic sclerosis, primary Sjögren's syndrome, mixed connective tissue disease, and inflammatory myopathy was 74%, 72%, 89%, 100%, and 39%, respectively. The reactivity in blood donors, in patients with chronic fatigue syndrome, and in diseased controls was <4%. Likelihood ratios increased with increasing antibody concentrations. Generally, a positive test result by EliA CTD Screen had a higher likelihood ratio for systemic rheumatic disease than a positive test result by indirect immunofluorescence. A negative test result by indirect immunofluorescence, however, had a lower likelihood ratio than a negative test result by EliA CTD Screen, indicating that the negative predictive value was higher for indirect immunofluorescence than for EliA CTD screen.

  12. Solid-phase receptor binding assay for /sup 125/I-hCG

    SciTech Connect

    Bortolussi, M.; Selmin, O.; Colombatti, A.

    1987-01-01

    A solid-phase radioligand-receptor assay (RRA) to measure the binding of /sup 125/I-labelled human chorionic gonadotropin (/sup 125/I-hCG) to target cell membranes has been developed. The binding of /sup 125/I-hCG to membranes immobilized on the wells of microtitration plates reached a maximum at about 3 hours at 37 degrees C, was saturable, displayed a high affinity (Ka = 2.4 X 10(9) M-1) and was specifically inhibited by unlabelled hCG. In comparison with RRAs carried out with membranes in suspension, the solid-phase RRA is significantly simpler and much faster to perform as it avoids centrifugation or filtration procedures. The solid-phase RRA was adapted profitably to process large numbers of samples at the same time. It proved particularly useful as a screening assay to detect anti-hCG monoclonal antibodies with high inhibitory activity for binding of /sup 125/I-hCG to its receptors.

  13. Immobilization and functional reconstitution of antibody Fab fragment by solid-phase refolding.

    PubMed

    Kumada, Yoichi; Hamasaki, Kyoto; Nakagawa, Aya; Sasaki, Eiju; Shirai, Tatsunori; Okumura, Masahiro; Inoue, Manami; Kishimoto, Michimasa

    2013-12-31

    In this study, we demonstrated the successful preparation of a Fab antibody-immobilized hydrophilic polystyrene (phi-PS) plate via one- and two-step solid-phase refolding methods. Both polystyrene-binding peptide (PS-tag)-fused Fd fragment of heavy chain (Fab H-PS) and full-length of light-chain (Fab L-PS) were individually produced in insoluble fractions of Escherichia coli cells, and they were highly purified in the presence of 8M of urea. Antigen-binding activities of Fab antibody immobilized were correctly recovered by the one-step solid-phase refolding method that a mixture of Fab H-PS and Fab L-PS was immobilized in the presence of 0.5-2M urea, followed by surface washing of the phi-PS plate with PBST. These results indicate that by genetic fusion of a PS-tag, a complex between Fab H and Fab L was efficiently immobilized on the surface of a phi-PS plate even in the presence of a low concentration of urea, and was then correctly refolded to retain its high antigen-binding activity via removal of the urea. A two-step solid-phase refolding method whereby Fab H-PS and Fab L-PS were successively refolded on the surface of a phi-PS plate also resulted in Fab antibody formation on the plate. Furthermore, both the binding affinity and the specificity of the Fab antibody produced by the two-step method were highly maintained, according to the results of sandwich ELISA and competitive ELISA using Fab antibody-immobilized plate via two-step solid-phase refolding. Thus, the solid-phase refolding method demonstrated in this study should be quite useful for the preparation of a Fab antibody-immobilized PS surface with high efficiency from individually produced Fab H-PS and Fab L-PS. This method will be applicable to the preparation of a large Fab antibody library on the surface of a PS plate for use in antibody screening.

  14. A Colorimetric Bioassay for Perchlorate

    NASA Astrophysics Data System (ADS)

    Heinnickel, M. L.; Smith, S.; Coates, J. D.

    2007-12-01

    Recognition of perchlorate (ClO4-) as a widespread contaminant across the United States and its potential adverse affects towards human health has motivated the EPA to place ClO4- on its contaminant candidate list for drinking water supplies. While a federal MCL has not yet been set, a recommended public health goal of 1 ppb (μg.L-1) was established by the US EPA in 2002. To date, methods of detection require use of sensitive ion chromatographic equipment that are expensive, time consuming, and require highly trained personnel for use. Our studies are focused on the development of a highly sensitive, simple, and robust colorimetric bioassay based on the primary enzyme involved in microbial ClO4- reduction, the perchlorate reductase (Pcr). A previously published assay used reduced methyl viologen (MV, the dye is reduced with sodium hydrosulfite) as an electron donor to demonstrate Pcr activity. The assay directly correlates the amount of MV oxidized with the amount of ClO4- reduced by assuming a transfer of four electrons. To test this assumption, we compared actual concentrations of MV oxidized to ClO4- reduced in this assay. ClO4- concentrations were determined using a Dionex ICS-500 ion chromatography system, while MV concentrations were determined using a standard curve generated at 578 nm. Comparisons between the two revealed that twelve molecules of MV were oxidized for each molecule of ClO4- reduced. The oxidation of these additional eight MV molecules is explained by the interaction of the dye with chlorite (the product of the Pcr reaction) and other contaminants that could be present in the enzyme prep. This unsettling result indicated this assay would be problematic for the detection of ClO4- in soil, which has many chemicals that could react with MV. To improve upon this assay, we have tried to reduce ClO4- using less reactive dyes and reductants. The reductants ascorbic acid, NADH, and dithiothreitol drive Pcr catalyzed ClO4- reduction, however, they

  15. Spectrophotometric and colorimetric determination of protein concentration.

    PubMed

    Simonian, Michael H; Smith, John A

    2006-11-01

    This unit describes spectrophotometric and colorimetric methods for measuring the concentration of a sample protein in solution. Absorbance measurement at 280 nm is used to calculate protein concentration by comparison with a standard curve or published absorptivity values for that protein. An alternate protocol uses absorbance at 205 nm to calculate the protein concentration. Both methods can be used to quantitate total protein in crude lysates and purified or partially purified protein. Use of a spectrofluorometer or a filter fluorometer to measure the intrinsic fluorescence emission of a sample solution is also described. The measurement is compared with the emissions from standard solutions to determine the concentration of purified protein. The Bradford colorimetric method, based upon binding of the dye Coomassie brilliant blue to an unknown protein, is also presented, as is the Lowry method, which measures colorimetric reaction of tyrosyl residues in an unknown.

  16. Integrating Deoxyribozymes into Colorimetric Sensing Platforms

    PubMed Central

    Chang, Dingran; Zakaria, Sandy; Deng, Mimi; Allen, Nicholas; Tram, Kha; Li, Yingfu

    2016-01-01

    Biosensors are analytical devices that have found a variety of applications in medical diagnostics, food quality control, environmental monitoring and biodefense. In recent years, functional nucleic acids, such as aptamers and nucleic acid enzymes, have shown great potential in biosensor development due to their excellent ability in target recognition and catalysis. Deoxyribozymes (or DNAzymes) are single-stranded DNA molecules with catalytic activity and can be isolated to recognize a wide range of analytes through the process of in vitro selection. By using various signal transduction mechanisms, DNAzymes can be engineered into fluorescent, colorimetric, electrochemical and chemiluminescent biosensors. Among them, colorimetric sensors represent an attractive option as the signal can be easily detected by the naked eye. This reduces reliance on complex and expensive equipment. In this review, we will discuss the recent progress in the development of colorimetric biosensors that make use of DNAzymes and the prospect of employing these sensors in a range of chemical and biological applications. PMID:27918487

  17. Characterization of Human Skin Emanations by Solid Phase Microextraction (SPME) Extraction of Volatiles and Subsequent Analysis by Gas Chromatography-Mass Spectrometry (GC-MS)

    DTIC Science & Technology

    2007-11-02

    1 Characterization of Human Skin Emanations by Solid Phase Microextraction (SPME) Extraction of Volatiles and Subsequent Analysis by Gas...DATES COVERED - 4. TITLE AND SUBTITLE Characterization of Human Skin Emanations by Solid Phase Microextraction (SPME) Extraction of Volatiles...3 Characterization of Human Skin Emanations by Solid Phase Microextraction (SPME) Extraction of Volatiles and Subsequent Analysis by Gas

  18. Sensitiveness of the colorimetric estimation of titanium

    USGS Publications Warehouse

    Wells, R.C.

    1911-01-01

    The accuracy of the colorimetric estimation of titanium is practically constant over concentrations ranging from the strongest down to those containing about 1.5 mg. TiO2 in 100 cc. The change in concentration required to produce a perceptible difference in intensity between two solutions, at favorable concentrations, was found to be about 6.5 per cent, which does not differ much from the results of others with chromium and copper solutions. With suitable precautions, such as comparing by substitution and taking the mean of several settings or of the two perceptibly different extremes, the accuracy of the colorimetric comparisons appears to be about 2 per cent.

  19. Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid phase extraction and UPLC/MS/MS

    EPA Science Inventory

    A rapid and sensitive method has been developed for the analysis of 48 human prescription active pharmaceutical ingredients (APIs) and 6 metabolites of interest, utilizing selective solid-phase extraction (SPE) and ultra performance liquid chromatography in combination with tripl...

  20. Weighted Multiplex Networks

    PubMed Central

    Menichetti, Giulia; Remondini, Daniel; Panzarasa, Pietro; Mondragón, Raúl J.; Bianconi, Ginestra

    2014-01-01

    One of the most important challenges in network science is to quantify the information encoded in complex network structures. Disentangling randomness from organizational principles is even more demanding when networks have a multiplex nature. Multiplex networks are multilayer systems of nodes that can be linked in multiple interacting and co-evolving layers. In these networks, relevant information might not be captured if the single layers were analyzed separately. Here we demonstrate that such partial analysis of layers fails to capture significant correlations between weights and topology of complex multiplex networks. To this end, we study two weighted multiplex co-authorship and citation networks involving the authors included in the American Physical Society. We show that in these networks weights are strongly correlated with multiplex structure, and provide empirical evidence in favor of the advantage of studying weighted measures of multiplex networks, such as multistrength and the inverse multiparticipation ratio. Finally, we introduce a theoretical framework based on the entropy of multiplex ensembles to quantify the information stored in multiplex networks that would remain undetected if the single layers were analyzed in isolation. PMID:24906003

  1. Matrix solid-phase dispersion and solid-phase microextraction applied to study the distribution of fenbutatin oxide in grapes and white wine.

    PubMed

    Montes, R; Canosa, P; Lamas, J Pablo; Piñeiro, A; Orriols, I; Cela, R; Rodríguez, I

    2009-12-01

    The fate of the acaricide fenbutatin oxide (FBTO) during the elaboration of white wine is evaluated. Matrix solid-phase dispersion (MSPD) and solid-phase microextraction (SPME) were used as sample preparation techniques applied to the semi-solid and the liquid matrices involved in this research, respectively. Selective determination of FBTO was achieved by gas chromatography with atomic emission detection (GC-AED). GC coupled to mass spectrometry was also used to establish the identity of FBTO by-products detected in must and wine samples. MSPD extractions were accomplished using C18 as dispersant and co-sorbent. Sugars and other polar interferences were first removed with water and water/acetone mixtures, then FBTO was recovered with 8 mL of acetone. When used in combination with GC-AED, the MSPD method provided limits of quantification (LOQs) in the low nanogram per gram range, recoveries around 90% and relative standard deviations below 13% for extractions performed in different days. Performance of SPME for must and wine was mainly controlled by the extraction temperature, time and fibre coating. Under final conditions, FBTO was extracted in the headspace mode for 45 min at 100 degrees C, using a 100 microm poly(dimethylsiloxane)-coated fibre. The achieved LOQs remained around or below 0.1 ng mL(-1), depending on the type of sample, and the inter-day precision ranged from 10% to 13%. FBTO residues in grapes stayed mostly on the skin of the fruit. Although FBTO was not removed during must and white wine elaboration, it remained associated with suspended particles existing in must and lees, settled after must fermentation, with a negligible risk of being transferred to commercialised wine. On the other hand, two by-products of FBTO (bis and mono (2-methyl-2-phenylpropyl) tin) were identified, for first time, in must and final white wines obtained from FBTO treated grapes. Found values for the first species ranged from 0.03 to 0.9 ng mL(-1).

  2. Geochemistry, mineralogy, solid-phase fractionation and oral bioaccessibility of lead in urban soils of Lisbon.

    PubMed

    Reis, A P; Patinha, C; Wragg, J; Dias, A C; Cave, M; Sousa, A J; Costa, C; Cachada, A; Ferreira da Silva, E; Rocha, F; Duarte, A

    2014-10-01

    An urban survey of Lisbon, the largest city in Portugal, was carried out to investigate its environmental burden, emphasizing metallic elements and their public health impacts. This paper examines the geochemistry of lead (Pb) and its influence on human health data. A total of 51 soil samples were collected from urban recreational areas used by children to play outdoors. The semi-quantitative analysis of Pb was carried out by inductively coupled plasma mass spectrometry after an acid digestion. X-ray diffraction was used to characterize the soil mineralogy. The solid-phase distribution of Pb in the urban soils was investigated on a subset of 7 soils, out of a total of 51 samples, using a non-specific sequential extraction method coupled with chemometric analysis. Oral bioaccessibility measurements were obtained using the Unified BARGE Method developed by the Bioaccessibility Research Group of Europe. The objectives of the study are as follows: (1) investigation of Pb solid-phase distribution; (2) interpretation of Pb oral bioaccessibility measurements; (3) integration of metal geochemistry with human health data; and (4) understanding the influence of geochemistry and mineralogy on oral bioaccessibility. The results show that the bioaccessible fraction of Pb is lower when major metal fractions are associated with less soluble soil phases such as Fe oxyhydroxides, and more increased when the metal is in the highly soluble carbonate phase. However, there is some evidence that the proportion of carbonates in the soil environment is also a key control over the oral bioaccessibility of Pb, irrespective of its solid-phase fractionation.

  3. Laboratory investigation of aluminum solubility and solid-phase properties following alum treatment of lake waters.

    PubMed

    Berkowitz, Jacob; Anderson, Michael A; Graham, Robert C

    2005-10-01

    Water samples from two southern California lakes adversely affected by internal nutrient loading were treated with a 20 mg/L dose of Al3+ in laboratory studies to examine Al solubility and solid-phase speciation over time. Alum [Al2(SO4)3 . 18 H2O] applications to water samples from Big Bear Lake and Lake Elsinore resulted in a rapid initial decrease in pH and alkalinity followed by a gradual recovery in pH over several weeks. Dissolved Al concentrations increased following treatment, reaching a maximum of 2.54 mg/L after 17 days in Lake Elsinore water and 0.91 mg/L after 48 days in Big Bear Lake water; concentrations in both waters then decreased to <0.25 mg/L after 150 days. The solid phase was periodically collected and analyzed using X-ray diffraction (XRD), differential scanning calorimetry-thermogravimetric analysis (DSC-TGA), scanning electron microscopy (SEM), and surface area analyses to investigate the nature of the reaction products and crystallinity development over time. Poorly ordered, X-ray amorphous solid phases transformed over time to relatively well-ordered gibbsite, with strong diffraction peaks at 4.8 and 4.3 A. XRD also indicated the formation of a second (possibly aluminosilicate) crystalline phase after 150 days in Lake Elsinore water. Surface areas also decreased over time as crystals reordered to form gibbsite/microcrystalline gibbsite species. DSC-TGA results suggested that the initially formed amorphous Al(OH)3 underwent transformation to >45% gibbsite. These results were supported by geochemical modeling using Visual MINTEQ, with Al solubility putatively controlled by amorphous Al(OH)3 shortly after treatment and approaching that of microcrystalline gibbsite after about 150 days. These findings indicate that Al(OH)3 formed after alum treatment undergoes significant chemical and mineralogical changes that may alter its effectiveness as a reactive barrier to phosphorus release from lake sediments.

  4. Solid-phase extraction and HPLC assay of nicotine and cotinine in plasma and brain.

    PubMed

    Dawson, Ralph; Messina, S M; Stokes, C; Salyani, S; Alcalay, N; De Fiebre, N C; De Fiebre, C M

    2002-01-01

    The aim of this study was to develop a simple and reliable assay for nicotine (NIC) and its major metabolite, cotinine (COT), in plasma and brain. A method was developed that uses an extraction method compatible with reverse-phase high-performance liquid chromatography (HPLC) separation and ultraviolet (UV) detection. Sequential solid-phase extraction on silica columns followed by extraction using octadecyl (C18) columns resulted in mean percent recovery (n = 5) of 51 +/- 5, 64 +/- 10, and 52 +/- 10% for NIC, COT, and phenylimidazole (PI), respectively, in spiked 1-mL serum samples. Recovery (mean +/- SEM) of the internal standard (PI) from spiked samples of nicotine-injected rats averaged 64.1 +/- 1.5% (n = 138) from plasma, and 20.7+/-0.8% (n = 128) from brain. The limits of detection of NIC in plasma samples were approximately 8 ng per mL, and of COT, 13.6 ng per mL. Further optimization of our extraction method, using slower flow rates and solid-phase extraction on silica columns, followed by C18 column extraction, yielded somewhat better recoveries (38 +/-3%) for 1-mL brain homogenates. Interassay precision (coefficient of variation) was determined on the basis of daily calibrations for 2 months and was found to be 7%, 9%, and 9% for NIC, COT, and PI, respectively, whereas intra-assay variability was 3.9% for both NIC and COT. Limited studies were performed on analytical columns for comparison of retention, resolution, asymmetry, and column capacity. We concluded that a simple two-step solid-phase extraction method, coupled with HPLC separation and UV detection, can be used routinely to measure NIC and COT in biological fluids and tissues.

  5. Mechanisms and prevention of trifluoroacetylation in solid-phase peptide synthesis

    PubMed Central

    Kent, Stephen B. H.; Mitchell, Alexander R.; Engelhard, Martin; Merrifield, R. B.

    1979-01-01

    A novel mechanism for trifluoroacetylation in solid-phase peptide synthesis, independent of the coupling step, has been elucidated. It involves the presence of trifluoroacetoxymethyl groups on the resin support, which react with resin-bound amines by an intersite nucleophilic reaction. The trifluoroacetoxymethyl groups are generated from preexisting hydroxymethyl sites during treatment with trifluoroacetic acid in dichloromethane or by acidolysis of the benzyl ester bond between the peptide and the resin. The transfer of trifluoroacetyl from hydroxyl to amine occurs during the subsequent neutralization with tertiary amine. The mechanism was first elucidated by model studies with aminomethyl-resins. Then the expected transfer of trifluoroacetyl groups from trifluoroacetoxymethyl-resin to the α-amino group of Nε-benzyloxycarbonyllysine benzyl ester in solution was demonstrated; k2, 6 × 10-4 M-1. Lysine-resins were used to examine the extent of trifluoroacetylation under the conditions of solid-phase peptide synthesis. After a series of acid/base cycles simulating synthetic conditions but without coupling, the poorly nucleophilic α-amino group was approximately 1-2% trifluoroacetylated per cycle when attached to resins already containing hydroxymethyl groups. Standard benzyl ester resins without preexisting hydroxymethyl groups gave comparable levels of trifluoroacetylation after the first few synthetic cycles because of gradual acid cleavage of the ester and accumulation of trifluoroacetoxymethyl sites. Peptide chain termination resulting from trifluoroacetylation by this mechanism could be prevented (<0.02% per cycle) by the use of the aminoacyl-4-(oxymethyl)-phenylacetamidomethyl-resin support, which can be synthesized free from extraneous functionalities and which is stable to trifluoroacetic acid under the conditions of solid-phase peptide synthesis. PMID:287055

  6. Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.

    PubMed

    Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela

    2010-02-19

    The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition.

  7. Chromatographic Separations Using Solid-Phase Extraction Cartridges: Separation of Wine Phenolics

    NASA Astrophysics Data System (ADS)

    Brenneman, Charles A.; Ebeler, Susan E.

    1999-12-01

    We describe a simple laboratory experiment that demonstrates the principles of chromatographic separation using solid-phase extraction columns and red wine. By adjusting pH and mobile phase composition, the wine is separated into three fractions of differing polarity. The content of each fraction can be monitored by UV-vis spectroscopy. When the experiment is combined with experiments involving HPLC or GC separations, students gain a greater appreciation for and understanding of the highly automated instrumental systems currently available. In addition, they learn about the chemistry of polyphenolic compounds, which are present in many foods and beverages and which are receiving much attention for their potentially beneficial health effects.

  8. Solid Phase Characterization of Tank 241-AY-102 Annulus Space Particulate

    SciTech Connect

    Cooke, G. A.

    2013-01-30

    The Special Analytical Studies Group at the 222-S Laboratory (222-S) examined the particulate recovered from a series of samples from the annular space of tank 241-AY-102 (AY-102) using solid phase characterization (SPC) methods. These include scanning electron microscopy (SEM) using the ASPEX®1 scanning electron microscope, X-ray diffraction (XRD) using the Rigaku®2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon®3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information.

  9. Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces

    SciTech Connect

    Phillips, Mark C.; Suter, Jonathan D.; Bernacki, Bruce E.; Johnson, Timothy J.

    2012-09-01

    Reliable active and passive hyperspectral imaging and detection of explosives and solid-phase chemical residue on surfaces remains a challenge and an active area of research and development. Both methods rely on reference libraries for material identification, but in many cases the reference spectra do not sufficiently resemble those instrumental signals scattered from real-world objects. We describe a physics-based model using the dispersive complex dielectric constant to explain what is often thought of as anomalous behavior of scattered or non-specular signatures encountered in active and passive sensing of explosives or chemicals on surfaces and show modeling and experimental results for RDX.

  10. The Chemistry, Crystallization, Physicochemical Properties and Behavior of Sodium Aluminosilicate Solid Phases: Final Report

    SciTech Connect

    Rosencrance, S.

    2003-03-12

    The synthesis of sodium aluminosilicate solids phases precipitated from NO{sub 2}/NO{sub 3}-free and NO{sub 2}/NO{sub 3}-rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO{sub 2}/NO{sub 3}-rich crystalline sodalite; and (4) NO{sub 2}/NO{sub 3}-rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing.

  11. Click Reaction on Solid Phase Enables High Fidelity Synthesis of Nucleobase-Modified DNA.

    PubMed

    Tolle, Fabian; Rosenthal, Malte; Pfeiffer, Franziska; Mayer, Günter

    2016-03-16

    The post-synthetic functionalization of nucleic acids via click chemistry (CuAAC) has seen tremendous implementation, extending the applicability of nucleobase-modified nucleic acids in fields like fluorescent labeling, nanotechnology, and in vitro selection. However, the production of large quantities of high-density functionalized material via solid phase synthesis has been hampered by oxidative by-product formation associated with the alkaline workup conditions. Herein, we describe a rapid and cost-effective protocol for the high fidelity large-scale production of nucleobase-modified nucleic acids, exemplified with a recently described nucleobase-modified aptamer.

  12. Solid-phase synthesis of branched oligoribonucleotides related to messenger RNA splicing intermediates.

    PubMed Central

    Damha, M J; Ganeshan, K; Hudson, R H; Zabarylo, S V

    1992-01-01

    The chemical synthesis of oligoribonucleotides containing vicinal (2'-5')- and (3'-5')-phosphodiester linkages is described. The solid-phase method, based on silyl-phosphoramidite chemistry, was applied to the synthesis of a series of branched RNA [(Xp)nA2' (pN)n3'(pN)n] related to the splicing intermediates derived from Saccharomyces cerevisiae rp51a pre-messenger RNA. The branched oligonucleotides have been thoroughly characterized by nucleoside and branched nucleotide composition analysis. Branched oligoribonucleotides will be useful in the study of messenger RNA splicing and in determining the biological role of RNA 'lariats' and 'forks' in vivo. Images PMID:1480476

  13. An efficient protocol for the solid-phase synthesis of glycopeptides under microwave irradiation.

    PubMed

    Garcia-Martin, Fayna; Hinou, Hiroshi; Matsushita, Takahiko; Hayakawa, Shun; Nishimura, Shin-Ichiro

    2012-02-28

    A standardized and smooth protocol for solid-phase glycopeptides synthesis under microwave irradiation was developed. Double activation system was proved to allow for highly efficient coupling of Tn-Ser/Thr and bulky core 2-Ser/Thr derivatives. Versatility and robustness of the present strategy was demonstrated by constructing a Mucine-1 (MUC1) fragment and glycosylated fragments of tau protein. The success of this approach relies on the combination of microwave energy, a resin consisting totally of polyethylene glycol, a low excess of sugar amino acid and the "double activation" method.

  14. Diaminodiacid-based solid-phase synthesis of all-hydrocarbon stapled α-helical peptides.

    PubMed

    Wang, Feng-Liang; Guo, Ye; Li, Si-Jian; Guo, Qing-Xiang; Shi, Jing; Li, Yi-Ming

    2015-06-14

    An alternative stapling strategy is described herein using Fmoc-solid phase peptide synthesis (SPPS) that employed pre-prepared diaminodiacid building blocks to introduce all-hydrocarbon staples into peptides by on-resin cyclization. Compared to unstapled native peptides, diaminodiacid-based stapled peptides exhibited an increased α-helicity ratio and stability toward protease. Moreover, the linkage length was found to affect the bioactivity of the peptides and their ability to inhibit the Wnt pathway. Therefore, the new stapling method provides an alternative way to obtain stapled peptides with tunable linkers of diaminodiacids.

  15. [Anaerobic solid-phase fermentation of plant substrates by Bacillus subtilis].

    PubMed

    Ushakova, N A; Brodskiĭ, E S; Kozlova, A A; Nifatov, A V

    2009-01-01

    Solid-phase growth of Bacillus subtilis 8130 on cellulose-rich plant substrates (presscakes or pulp) under hypoxic conditions was accompanied by cellulose depolymerization, protein hydrolysis, and degradation of other plant components, including some processes of mixed-type carbohydrate fermentation. The bacterial fermentation yielded propionic, butyric, and hexanoic acids and butyric acid derivatives. The bacterial metabolism and fermentation degree can be characterized by the proportions of fatty acids in the reaction mixture. The product of sea buckthorn cake fermentation has a good sorption quality.

  16. The role of energetic processing on solid-phase chemistry in star forming regions

    NASA Astrophysics Data System (ADS)

    Palumbo, M. E.; Urso, R. G.; Kaňuchová, Z.; Scirè, C.; Accolla, M.; Baratta, G. A.; Strazzulla, G.

    2016-05-01

    It is generally accepted that complex molecules observed in star forming regions are formed in the solid phase on icy grain mantles and are released to the gas-phase after desorption of icy mantles. Most of our knowledge on the physical and chemical properties of ices in star forming regions is based on the comparison between observations and laboratory experiments performed at low temperature (10-100 K). Here we present some recent laboratory experiments which show the formation of (complex) molecular species after ion bombardment of simple ices.

  17. Selective Stationary Phase for Solid-Phase Microextraction Analysis of Sarin (GB)

    SciTech Connect

    Harvey, Scott; Nelson, D. A.; Wright, Bob W.; Gates, J. W.

    2002-03-02

    A number of critical field applications require monitoring air samples for trace levels of chemical warfare agents. Solid-phase microextraction (SPME) is a convenient format to conduct these analyses. Measurements could be significantly improved if a SPME phase selective for nerve agents were substituted for nonselective polymers typically used (e.g., polydimethylsiloxane). This paper evaluates a novel stationary phase, previously developed for methylphosphonate sensor applications, for use with SPME sampling. The phenol-based polymer, BSP3, was found to offer far higher selectivity toward sarin (GB) than polydimethylsiloxane due to a pronounced affinity toward the target analyte and a lower affinity toward hydrocarbons.

  18. Selective Stationary Phase for Solid-Phase Microextraction Analysis of Sarin (GB)

    SciTech Connect

    Harvey, Scott D.; Nelson, David A.; Wright, Bob W.; Grate, Jay W.

    2002-04-19

    A number of critical field applications require monitoring air samples for trace levels of chemical warfare agents. Solid-phase microextraction (SPME) is a convenient format to conduct these analyses. Measurements could be significantly improved if a SPME phase selective for nerve agents were substituted for nonselective polymers typically used (e.g.,polydimethylsiloxane). This paper evaluates a novel stationary phase, previously developed for methylphosphonate sensor applications, for use with SPME sampling. The phenol-based polymer, BSP3, was found to offer far higher selectivity toward sarin (GB) than polydimethylsiloxane due to a pronounced affinity toward the target analyte and a lower affinity toward hydrocarbons.

  19. Sequential, solid-phase assay for biotin in physiologic fluids that correlates with expected biotin status

    SciTech Connect

    Mock, D.M.; DuBois, D.B.

    1986-03-01

    Interest in accurate measurement of biotin concentrations in plasma and urine has been stimulated by recent advances in the understanding of biotin-responsive inborn errors of metabolism and by several reports describing acquired biotin deficiency during parenteral alimentation. This paper presents a biotin assay utilizing radiolabeled avidin in a sequential, solid-phase method; the assay has increased sensitivity compared to previous methods (greater than or equal to 10 fmol/tube), correlates with expected trends in biotin concentrations in blood and urine in a rat model of biotin deficiency, and can utilize commercially available radiolabeled avidin.

  20. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  1. Imaging time-of-flight secondary ion mass spectrometry of solid-phase peptide syntheses.

    PubMed

    Aubagnac, J L; Enjalbal, C; Drouot, C; Combarieu, R; Martinez, J

    1999-07-01

    Imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) of solid-phase peptide syntheses carried out by the Merrifield and Sheppard strategies is described. Mixtures of resin beads mixed at random from batch syntheses or obtained in combinatorial chemistry by the mix and split technique, where each bead is functionalized by a unique peptide, were analyzed directly without any chemical cleavage of the growing chains to assess the nature of the growing structure on any bead of the mixture without its isolation.

  2. Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization

    SciTech Connect

    Murakami, Katsuhisa Dong, Tianchen; Kajiwara, Yuya; Takahashi, Teppei; Fujita, Jun-ichi; Hiyama, Takaki; Takai, Eisuke; Ohashi, Gai; Shiraki, Kentaro

    2014-06-16

    Single- and double-layer graphene nanoribbons (GNRs) with widths of around 10 nm were synthesized directly onto an insulating substrate by solid-phase graphitization using a gallium vapor catalyst and carbon templates made of amyloid fibrils. Subsequent investigation revealed that the crystallinity, conductivity, and carrier mobility were all improved by increasing the temperature of synthesis. The carrier mobility of the GNR synthesized at 1050 °C was 0.83 cm{sup 2}/V s, which is lower than that of mechanically exfoliated graphene. This is considered to be most likely due to electron scattering by the defects and edges of the GNRs.

  3. Reducing the sulfur-dioxide binding power of sweet white wines by solid-phase extraction.

    PubMed

    Saidane, Dorra; Barbe, Jean-Christophe; Birot, Marc; Deleuze, Hervé

    2013-11-01

    The high sulfur-dioxide binding power of sweet white wines may be reduced by extracting the naturally present carbonyl compounds from wine that are responsible for carbonyl bisulphites formation. The carbonyl compounds mainly responsible for trapping SO2 are acetaldehyde, pyruvic acid, and 2-oxoglutaric acid. The method employed was selective solid phase extraction, using phenylsulfonylhydrazine as a scavenging agent. The scavenging function was grafted onto a support prepared from raw materials derived from lignin. This approach is more acceptable to winemakers than the polymer media previously reported, as it reduces the possible contamination of wine to molecules already present in the wine making process.

  4. Automated solid-phase extraction of herbicides from water for gas chromatographic-mass spectrometric analysis

    USGS Publications Warehouse

    Meyer, M.T.; Mills, M.S.; Thurman, E.M.

    1993-01-01

    An automated solid-phase extraction (SPE) method was developed for the pre-concentration of chloroacetanilide and triazine herbicides, and two triazine metabolites from 100-ml water samples. Breakthrough experiments for the C18 SPE cartridge show that the two triazine metabolites are not fully retained and that increasing flow-rate decreases their retention. Standard curve r2 values of 0.998-1.000 for each compound were consistently obtained and a quantitation level of 0.05 ??g/l was achieved for each compound tested. More than 10,000 surface and ground water samples have been analyzed by this method.

  5. Facile synthesis of a 3-deazaadenosine phosphoramidite for RNA solid-phase synthesis

    PubMed Central

    2016-01-01

    Access to 3-deazaadenosine (c3A) building blocks for RNA solid-phase synthesis represents a severe bottleneck in modern RNA research, in particular for atomic mutagenesis experiments to explore mechanistic aspects of ribozyme catalysis. Here, we report the 5-step synthesis of a c3A phosphoramidite from cost-affordable starting materials. The key reaction is a silyl-Hilbert–Johnson nucleosidation using unprotected 6-amino-3-deazapurine and benzoyl-protected 1-O-acetylribose. The novel path is superior to previously described syntheses in terms of efficacy and ease of laboratory handling. PMID:28144324

  6. Different methods to select the best extraction system for solid-phase extraction.

    PubMed

    Bielicka-Daszkiewicz, Katarzyna

    2015-02-01

    The optimization methods for planning a solid-phase extraction experiment are presented. These methods are based on a study of interactions between different parts of an extraction system. Determination of the type and strength of interaction depends on the physicochemical properties of the individual components of the system. The main parameters that determine the extraction properties are described in this work. The influence of sorbents' and solvents' polarity on extraction efficiency, Hansen solubility parameters and breakthrough volume determination on sorption and desorption extraction step are discussed.

  7. Screening of Brazilian fruit aromas using solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Augusto, F; Valente, A L; dos Santos Tada, E; Rivellino, S R

    2000-03-17

    Manual headspace solid-phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was used for the qualitative analysis of the aromas of four native Brazilian fruits: cupuassu (Theobroma grandiflorum, Spreng.), cajá (Spondias lutea. L.), siriguela (Spondias purpurea, L.) and graviola (Anona reticulata, L). Industrialized pulps of these fruits were used as samples, and extractions with SPME fibers coated with polydimethylsiloxane, polyacrylate, Carbowax and Carboxen were carried out. The analytes identified included several alcohols, esters, carbonyl compounds and terpernoids. The highest amounts extracted, evaluated from the sum of peak areas, were achieved using the Carboxen fiber.

  8. Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting

    NASA Astrophysics Data System (ADS)

    Alayande, S. Oluwagbemiga; Hlengilizwe, Nyoni; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.

    2016-04-01

    Sample preparation is crucial in the analysis of petroleum and its derivatives. In this study, developing affordable sorbent for petroleum fingerprinting analysis using polymer waste such expanded polystyrene was explored. The potential of electrospun expanded polystyrene (EPS) as a sorbent for the solid-phase extraction (SPE) technique was investigated, and its efficiency was compared with commercial cartridges such as alumina, silica and alumina/silica hybrid commercial for petroleum fingerprinting analysis. The chromatograms showed that the packed electrospun EPS fibre demonstrated excellent properties for SPE applications relative to the hybrid cartridges.

  9. Rapid solid-phase peptide synthesis using thermal and controlled microwave irradiation.

    PubMed

    Bacsa, Bernadett; Desai, Bimbisar; Dibó, Gábor; Kappe, C Oliver

    2006-10-01

    A rapid and efficient microwave-assisted solid-phase synthesis method is described for the preparation of the nonapeptide WDTVRISFK, using conventional Fmoc/Bu(t) orthogonal protection strategy. The synthesis protocol is based on the use of cycles of pulsed microwave irradiation with intermittent cooling of the reaction during the removal of the Fmoc protecting group and during the coupling. The desired nonapeptide was obtained in highest yield and purity by employing MicroKan technology. The chemical reactions were carried out in a single-mode microwave reactor, equipped with a fiber-optic probe to monitor the reaction temperature continuously.

  10. Some applications of solid phase micro extraction (SPME) in the analysis of pesticide residues in food.

    PubMed

    Volante, M; Cattaneo, M; Bianchi, M; Zoccola, G

    1998-05-01

    The Solid Phase Micro-Extraction (SPME) technique was applied to analyze chlorpropham in potatoes and amitraz in honey. The homogenized sample, suspended in water and stirred, was extracted with a 100 microns thick polidimetylsiloxane fiber and desorbed into the injection port of a gas chromatograph/mass-spectrometer (quadrupole) operating in single ion monitoring. Sensitivities down to 0.01 mg/Kg and linear responses in the range of 0.01-0.1 mg/Kg were obtained. The results of SPME pesticide residue analysis in potatoes corresponded to those obtained with a traditional multiresidue method.

  11. Nucleic acid-coupled colorimetric analyte detectors

    DOEpatents

    Charych, Deborah H.; Jonas, Ulrich

    2001-01-01

    The present invention relates to methods and compositions for the direct detection of analytes and membrane conformational changes through the detection of color changes in biopolymeric materials. In particular, the present invention provide for the direct colorimetric detection of analytes using nucleic acid ligands at surfaces of polydiacetylene liposomes and related molecular layer systems.

  12. A colorimetric assay for cytokinin oxidase.

    PubMed

    Libreros-Minotta, C A; Tipton, P A

    1995-11-01

    A simple and rapid colorimetric assay for cytokinin oxidase is described. The assay is based on the formation of a Schiff base between the enzymatic reaction product 3-methyl-2-butenal and p-aminophenol. The assay is effective in the submicromolar concentration range and can be used in crude plant extracts as well as in more highly purified preparations.

  13. Visualizing Capsaicinoids: Colorimetric Analysis of Chili Peppers

    ERIC Educational Resources Information Center

    Thompson, Robert Q.; Chu, Christopher; Gent, Robin; Gould, Alexandra P.; Rios, Laura; Vertigan, Theresa M.

    2012-01-01

    A colorimetric method for total capsaicinoids in chili pepper ("Capsicum") fruit is described. The placental material of the pepper, containing 90% of the capsaicinoids, was physically separated from the colored materials in the pericarp and extracted twice with methanol, capturing 85% of the remaining capsaicinoids. The extract, evaporated and…

  14. Multiplex PageRank.

    PubMed

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  15. Solid-phase microextraction for the analysis of short-chain chlorinated paraffins in water samples.

    PubMed

    Castells, P; Santos, F J; Galceran, M T

    2003-01-10

    A novel solid-phase microextraction (SPME) method coupled to gas chromatography with electron capture detection (GC-ECD) was developed as an alternative to liquid-liquid and solid-phase extraction for the analysis of short-chain chlorinated paraffins (SCCPs) in water samples. The extraction efficiency of five different commercially available fibres was evaluated and the 100-microm polydimethylsiloxane coating was the most suitable for the absorption of the SCCPs. Optimisation of several SPME parameters, such as extraction time and temperature, ionic strength and desorption time, was performed. Quality parameters were established using Milli-Q, tap water and river water. Linearity ranged between 0.06 and 6 microg l(-1) for spiked Milli-Q water and between 0.6 and 6 microg l(-1) for natural waters. The precision of the SPME-GC-ECD method for the three aqueous matrices was similar and gave relative standard deviations (RSD) between 12 and 14%. The limit of detection (LOD) was 0.02 microg l(-1) for Milli-Q water and 0.3 microg l(-1) for both tap water and river water. The optimised SPME-GC-ECD method was successfully applied to the determination of SCCPs in river water samples.

  16. Solid-phase microextraction-gas chromatographic determination of volatile monoaromatic hydrocarbons in soil.

    PubMed

    Zygmunt, B; Namiesnik, J

    2001-08-01

    Benzene, toluene, ethylbenzene, three isomers of xylene, and cumene have been isolated and enriched from soil samples by a combination of water extraction at room and elevated temperature and headspace-solid-phase microextraction before their gas chromatographic-mass spectrometric (GC-MS) determination. The conditions used for all stages of sample preparation and chromatographic analysis were optimized. Analytes sampled on a polydimethylsiloxane-coated solid-phase microextraction fiber were thermally desorbed in the split/splitless injector of a gas chromatograph (GC) coupled with a mass spectrometer (MS). The desorption temperature was optimized. The GC separation was performed in a capillary column. Detection limits were found to be of the order of ca. 1 ng g(-1). Relative recoveries of the analytes from soils were found to be highly dependent on soil organic-matter content and on compound identity; they ranged from ca 92 to 96% for sandy soil (extraction at room temperature) and from ca 27 to 55% for peaty soil (extraction at elevated temperature). A few real-world soil samples were analyzed; the individual monoaromatic hydrocarbon content ranged from below detection limits to 6.4 ng g(-1) for benzene and 8.1 for the total of p- + m-xylene.

  17. Carbon nanocones/disks as new coating for solid-phase microextraction.

    PubMed

    Jiménez-Soto, Juan Manuel; Cárdenas, Soledad; Valcárcel, Miguel

    2010-05-14

    In this article, the potential of carbon nanocones/disks as coating for solid-phase microextraction has been evaluated for the first time. The nanostructures were immobilized on a stainless steel needle by means of an organic binder. The fiber coating obtained was ca. 50 microm of thickness and 35 mm in length. The evaluation of the sorbent capacity was carried out through the determination of toluene, ethylbenzene, xylene isomers and styrene in water samples following the headspace sampling modality (15 min, 30 degrees C). The fiber was then transferred to a 10 mL vial which was sealed and heated at 110 degrees C for 15 min in the headspace module of the instrument to achieve the thermal desorption of the analytes. Then 2.5 mL of the headspace generated were injected in the gas chromatograph-mass spectrometer for analytes separation and quantitation. The detection and quantitation limits obtained for 10 mL of sample were 0.15 and 0.5 ng mL(-1) (0.6 and 2 ng mL(-1) for toluene). The optimized procedure was applied to the determination of the selected volatile compounds in waters collected from different locations. The recovery values obtained (average recovery ca. 92%) demonstrated the usefulness of the carbon nanocones/disks as sorbent material in solid-phase microextraction.

  18. Solid phase extraction and metabolic profiling of exudates from living copepods.

    PubMed

    Selander, Erik; Heuschele, Jan; Nylund, Göran M; Pohnert, Georg; Pavia, Henrik; Bjærke, Oda; Pender-Healy, Larisa A; Tiselius, Peter; Kiørboe, Thomas

    2016-01-01

    Copepods are ubiquitous in aquatic habitats. They exude bioactive compounds that mediate mate finding or induce defensive traits in prey organisms. However, little is known about the chemical nature of the copepod exometabolome that contributes to the chemical landscape in pelagic habitats. Here we describe the development of a closed loop solid phase extraction setup that allows for extraction of exuded metabolites from live copepods. We captured exudates from male and female Temora longicornis and analyzed the content with high resolution LC-MS. Chemometric methods revealed 87 compounds that constitute a specific chemical pattern either qualitatively or quantitatively indicating copepod presence. The majority of the compounds were present in both female and male exudates, but nine compounds were mainly or exclusively present in female exudates and hence potential pheromone candidates. Copepodamide G, known to induce defensive responses in phytoplankton, was among the ten compounds of highest relative abundance in both male and female extracts. The presence of copepodamide G shows that the method can be used to capture and analyze chemical signals from living source organisms. We conclude that solid phase extraction in combination with metabolic profiling of exudates is a useful tool to develop our understanding of the chemical interplay between pelagic organisms.

  19. Improvement of multilayer graphene crystallinity by solid-phase precipitation with current stress application during annealing

    NASA Astrophysics Data System (ADS)

    Sahab Uddin, Md.; Ichikawa, Hiroyasu; Sano, Shota; Ueno, Kazuyoshi

    2016-06-01

    To improve the crystallinity of multilayer graphene (MLG) films by solid-phase precipitation, a new method by which current stress is introduced during annealing of a carbon-doped cobalt (Co-C) layer using cobalt (Co) as the catalyst has been investigated. The effects of current stress on the formation and crystallinity of MLG films were investigated by comparing the characteristics of the films annealed at the same temperature with and without current by taking into account the temperature rise due to Joule heating. The characteristics obtained by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) measurements revealed that the MLG films produced were crystalline in nature and their crystallinity increased with applied current stress at the same temperature. From SEM observations, beside Joule heating, enhancement of Co grain size by agglomeration induced by current stress may be the potential reason for the improvement of the crystallinity of MLG films. We have also improved the uniformity of MLG films by depositing an additional copper (Cu) capping layer over the Co-C layer. Current stress application can lead to low-temperature fabrication of MLG with higher crystallinity by solid-phase precipitation.

  20. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae.

    PubMed

    Chen, Fang-Fang; Wang, Guo-Ying; Shi, Yan-Ping

    2011-10-01

    Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines.

  1. PEGylation of magnetic multi-walled carbon nanotubes for enhanced selectivity of dispersive solid phase extraction.

    PubMed

    Zeng, Qiong; Liu, Yi-Ming; Jia, Yan-Wei; Wan, Li-Hong; Liao, Xun

    2017-02-01

    Carbon nanotubes (CNTs) possess large potential as extraction absorbents in solid phase extraction. They have been widely applied in biomedicine research, while very rare application in natural product chemistry has been reported. In this work, methoxypolyethylene glycol amine (mPEG-NH2) is covalently coupled to CNTs-magnetic nanoparticles (CNTs-MNP) to prepare a novel magnetic nanocomposite (PEG-CNTs-MNP) for use as dispersive solid-phase extraction (DSPE) absorbent. The average particle size was 86nm, and the saturation magnetization was 52.30emu/g. This nanocomposite exhibits excellent dispersibility in aqueous systems, high selectivity and fast binding kinetics when used for extraction of Z-ligustilide, the characteristic bioactive compound from two popular Asian herbal plants, R. chuanxiong and R. ligusticum. HPLC quantification of Z-ligustilide extracted from the standard sample solution showed a high recovery of 98.9%, and the extraction rate from the extracts of the above two herbs are both around 70.0%. To our knowledge, this is the first report on using PEG-CNTs-MNP as DSPE nanosorbents for selective extraction of natural products. This nano-material has promising application in isolation and enrichment of targeted components from complex matrices.

  2. Automation of solid-phase microextraction in high-throughput format and applications to drug analysis.

    PubMed

    Vuckovic, Dajana; Cudjoe, Erasmus; Hein, Dietmar; Pawliszyn, Janusz

    2008-09-15

    The automation of solid-phase microextraction (SPME) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) was accomplished using a 96 multiwell plate format, a SPME multifiber device, two orbital shakers, and a three-arm robotic system. Extensive optimization of the proposed setup was performed including coating selection, optimization of the fiber coating procedure, confirmation of uniform agitation in all wells, and the selection of the optimal calibration method. The system allows the use of pre-equilibrium extraction times with no deterioration in method precision due to reproducible timing of extraction and desorption steps and reproducible positioning of all fibers within the wells. The applicability of the system for the extraction of several common drugs is demonstrated. The optimized multifiber SPME-LC-MS/MS was subsequently fully validated for the high-throughput analysis of diazepam, lorazepam, nordiazepam, and oxazepam in human whole blood. The proposed method allowed the automated sample preparation of 96 samples in 100 min, which represents the highest throughput of any SPME technique to date, while achieving excellent accuracy (87-113%), precision (solid-phase extraction (SPE) including lower cost, the ability to quantitatively determine free and total drug concentrations in a single biofluid sample, and the ability to directly process whole blood samples with absolutely no sample pretreatment required.

  3. Measurements on Melting Pressure, Metastable Solid Phases, and Molar Volume of Univariant Saturated Helium Mixture

    NASA Astrophysics Data System (ADS)

    Rysti, J.; Manninen, M. S.; Tuoriniemi, J.

    2014-06-01

    A concentration-saturated helium mixture at the melting pressure consists of two liquid phases and one or two solid phases. The equilibrium system is univariant, whose properties depend uniquely on temperature. Four coexisting phases can exist on singular points, which are called quadruple points. As a univariant system, the melting pressure could be used as a thermometric standard. It would provide some advantages compared to the current reference, namely pure He, especially at the lowest temperatures below 1 mK. We have extended the melting pressure measurements of the concentration-saturated helium mixture from 10 to 460 mK. The density of the dilute liquid phase was also recorded. The effect of the equilibrium crystal structure changing from hcp to bcc was clearly seen at mK at the melting pressure MPa. We observed the existence of metastable solid phases around this point. No evidence was found for the presence of another, disputed, quadruple point at around 400 mK. The experimental results agree well with our previous calculations at low temperatures, but deviate above 200 mK.

  4. Positional scanning for peptide secondary structure by systematic solid-phase synthesis of amino lactam peptides.

    PubMed

    Jamieson, Andrew G; Boutard, Nicolas; Beauregard, Kim; Bodas, Mandar S; Ong, Huy; Quiniou, Christiane; Chemtob, Sylvain; Lubell, William D

    2009-06-10

    Incorporation of amino lactams into biologically active peptides has been commonly used to restrict conformational mobility, enhance selectivity, and increase potency. A solid-phase method using a Fmoc-protection strategy has been developed for the systematic synthesis of peptides containing configurationally defined alpha- and beta-amino gamma-lactams. N-Alkylation of N-silyl peptides with five- and six-member cyclic sulfamidates 9 and 8 minimized bis-alkylation and provided N-alkyl peptides, which underwent lactam annulation under microwave heating. Employing this solid-phase protocol on the growth hormone secretagogue GHRP-6, as well as on the allosteric modulator of the IL-1 receptor 101.10, has furnished 16 lactam derivatives and validated the effectiveness of this approach on peptides bearing aliphatic, aromatic, branched, charged, and heteroatomic side chains. The binding affinity IC(50) values of the GHRP-6 lactam analogues on both the GHS-R1a and CD36 receptors are reported as well as inhibition of thymocyte proliferation measurements for the 101.10 lactam analogues. In these cases, lactam analogues were prepared exhibiting similar or improved properties compared with the parent peptide. Considering the potential for amino lactams to induce peptide turn conformations, the effective method described herein for their supported construction on growing peptides, and for the systematical amino lactam scan of peptides, has proven useful for the rapid identification of the secondary structure necessary for peptide biological activity.

  5. Introducing Freshmen Students to the Practice of Solid-Phase Synthesis

    NASA Astrophysics Data System (ADS)

    Taralp, Alpay; Hulusi Türkseven, Can; Özgür Çakmak, Atilla; Çengel, Ömer

    2002-01-01

    A one-semester laboratory project on solid-phase peptide chemistry was designed pedagogically to cater to freshman science students. The approach not only permitted multistep syntheses that would be considered impractical in solution, but also gave students insight into fundamental aspects of research at an early stage of development. Young scientists prepared Bz-Asn-Asn-Phe and Bz-Asn-Gln-Phe--peptides envisaged as potential competitive inhibitors of chymotrypsin. The synthesis, defined by an attachment-deprotection cycle, two elongation-deprotection cycles, and a benzoyl-capping protocol, was completed manually on Wang resin using Fmoc chemistry. Students quantified the yield of each condensation and deprotection reaction by measuring levels of dibenzylfulvene chromophore, a stoichiometrically afforded by-product. Benzoylation of the N-terminus was confirmed by employing a cadmium-ninhydrin reagent. The group also ascertained, through use of a chromogenic substrate, that chymotrypsin-catalyzed hydrolysis was impeded slightly when carried out in the presence of target peptides. Supplementary analyses supporting peptide purity and composition were given to students. Grading was based on laboratory participation, project proposals, reports, and a concluding slide-show presentation made to peers and colleagues. While the project was time-consuming overall, students acquired an impression of research work and an appreciation of the utility of solid-phase methods.

  6. Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction

    PubMed Central

    Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua

    2016-01-01

    Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples. PMID:27924944

  7. Determination of cyproheptadine in feeds using molecularly imprinted solid-phase extraction coupled with HPLC.

    PubMed

    Yang, Jianwen; Wang, Zongnan; Zhou, Tong; Song, Xuqin; Liu, Qingyong; Zhang, Yuman; He, Limin

    2015-05-15

    A novel method was developed for the determination of cyproheptadine in feeds using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography. The polymers were prepared using cyproheptadine as a template molecule, methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linking agent, and dichloromethane as a solvent by bulk polymerization. Under the optimum solid-phase extraction conditions, the molecular imprinting cartridge can selectively extract and enrich cyproheptadine from a variety of feeds. Mean recoveries of cyproheptadine from four kinds of feeds spiked at 0.1, 1.0 and 10mgkg(-1) ranged from 85.5% to 96.2%, with intra-day and inter-day relative standard deviation less than 10%. The calibration curve of cyproheptadine was good linear relationship (r>0.9993) within the range of 0.1-50μgmL(-1). The limit of detection (LOD) and the limit of quantification (LOQ) were 0.04 and 0.1mgkg(-1), respectively.

  8. Improved binding of acidic bone matrix proteins to cationized filters during solid phase assays.

    PubMed

    Farach-Carson, M C; Wright, G C; Butler, W T

    1992-01-01

    A number of commercially available matrix filter supports have been designed for the immobilization of proteins following either electrotransfer from sodium dodecyl sulfate (SDS) polyacrylamide gels or direct application during dot blotting assays. These matrices differ with respect to chemical composition, charge, pore size, and degree of hydrophobicity. It follows that the properties of the protein(s) of interest will greatly influence the degree to which they interact with and ultimately bind to various filters. Acidic bone proteins contain diverse post-translational modifications that influence their interactions with solid phase matrices such as those used in immunoblotting (Western or dot blotting) or ion binding (overlay) procedures. This communication describes the results of a study comparing binding of various mixtures of non-collagenous acidic bone matrix phosphoproteins as well as purified osteopontin and osteocalcin to various filters including nitrocellulose and cationized paper or nylon. Based on our findings, we recommend the use of cationized filters for solid phase assays requiring the binding of these acidic macromolecules to background supports.

  9. Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support

    NASA Astrophysics Data System (ADS)

    Saiyed, Z. M.; Ramchand, C. N.; Telang, S. D.

    2008-05-01

    In recent years, techniques employing magnetizable solid-phase supports (MSPS) have found application in numerous biological fields. This magnetic separation procedure offers several advantages in terms of subjecting the analyte to very little mechanical stress compared to other methods. Secondly, these methods are non-laborious, cheap, and often highly scalable. The current paper details a genomic DNA isolation method optimized in our laboratory using magnetic nanoparticles as a solid-phase support. The quality and yields of the isolated DNA from all the samples using magnetic nanoparticles were higher or equivalent to the traditional DNA extraction procedures. Additionally, the magnetic method takes less than 15 min to extract polymerase chain reaction (PCR) ready genomic DNA as against several hours taken by traditional phenol-chloroform extraction protocols. Moreover, the isolated DNA was found to be compatible in PCR amplification and restriction endonuclease digestion. The developed procedure is quick, inexpensive, robust, and it does not require the use of organic solvents or sophisticated instruments, which makes it more amenable to automation and miniaturization.

  10. Determination of explosives in environmental water samples by solid-phase microextraction-liquid chromatography.

    PubMed

    Monteil-Rivera, Fanny; Beaulieu, Chantale; Deschamps, Stéphane; Paquet, Louise; Hawari, Jalal

    2004-09-10

    When explosives are present in natural aqueous media, their concentration is usually limited to trace levels. A preconcentration step able to remove matrix interferences and to enhance sensitivity is therefore necessary. In the present study, we evaluated solid-phase microextraction (SPME) technique for the recovery of nine explosives from aqueous samples using high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Several parameters, including adsorption and desorption time, coating type, rate of stirring, salt addition, and pH, were optimized to obtain reproducible data with good accuracy. Carbowax coating was the only adsorbent found capable of adsorbing all explosives including nitramines. Method detection limits (MDL) were found to range from 1 to 10 microg/L, depending on the analyte. SPME/HPLC-UV coupling was then applied to the analysis of natural ocean and groundwater samples and compared to conventional solid-phase extraction (SPE/HPLC-UV). Excellent agreement was observed between both techniques, but with an analysis time around five times shorter, SPME/HPLC-UV was considered to be applicable for quantitative analysis of explosives.

  11. Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua

    2016-12-01

    Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.

  12. Matrix compatible solid phase microextraction coating, a greener approach to sample preparation in vegetable matrices.

    PubMed

    Naccarato, Attilio; Pawliszyn, Janusz

    2016-09-01

    This work proposes the novel PDMS/DVB/PDMS fiber as a greener strategy for analysis by direct immersion solid phase microextraction (SPME) in vegetables. SPME is an established sample preparation approach that has not yet been adequately explored for food analysis in direct immersion mode due to the limitations of the available commercial coatings. The robustness and endurance of this new coating were investigated by direct immersion extractions in raw blended vegetables without any further sample preparation steps. The PDMS/DVB/PDMS coating exhibited superior features related to the capability of the external PDMS layer to protect the commercial coating, and showed improvements in terms of extraction capability and in the cleanability of the coating surface. In addition to having contributed to the recognition of the superior features of this new fiber concept before commercialization, the outcomes of this work serve to confirm advancements in the matrix compatibility of the PDMS-modified fiber, and open new prospects for the development of greener high-throughput analytical methods in food analysis using solid phase microextraction in the near future.

  13. 5-(hydroxymethyl)oxazoles: versatile scaffolds for combinatorial solid-phase synthesis of 5-substituted oxazoles.

    PubMed

    Grabowska, U; Rizzo, A; Farnell, K; Quibell, M

    2000-01-01

    A scheme combining the preparation of building blocks in solution followed by solid-phase combinatorial chemistry has been developed to side-chain diversify 5-(hydroxymethyl)oxazole scaffold (1) into aryl ethers, thioethers, sulfones, sulfonamides, and carboxamides. Protected heterocyclic scaffolds 2 were linked to the solid phase and N-terminal derivatized using active ester chemistry, providing chemset 4¿1-4,1-4¿. The free side-chain hydroxyl of 4 was smoothly converted to aryl ethers 6 under Mitsunobu conditions, with a broad range of substituted phenols. Alternatively, quantitative conversion of hydroxyl to bromide followed by displacement with alkyl and aryl thiols gave thioethers 8. Thioethers were optionally oxidized to sulfones 9. Bromide displacement by azide, followed by reduction to amine and acylation with a range of carboxylic acids and sulfonyl chlorides gave carboxamides 11 and sulfonamides 13, respectively. Crude purity at typically >90% was observed for each of the five modifications detailed. A series of 20 compounds, exemplifying each modification, was reprepared, purified, and fully characterized.

  14. Solid phase-enhanced photothermal lensing with mesoporous polymethacrylate matrices for optical-sensing chemical analysis.

    PubMed

    Nedosekin, Dmitry A; Saranchina, Nadezhda V; Sukhanov, Aleksey V; Gavrilenko, Nataliya A; Mikheev, Ivan V; Proskurnin, Mikhail A

    2013-07-01

    Procedures for the photothermal lens determination of metals and organic compounds, on the basis of solid-phase mesoporous optical-sensing materials (polymethacrylate [PMA]) matrices with immobilized reagents, were developed. These procedures combine (i) selective and efficient preconcentration of trace substances to be analyzed in specially designed and synthesized transparent mesoporous PMA plates; (ii) sensitive determination with the reliable and traceable photometric reactions previously developed for classical spectrophotometry; and (iii) the sensitivity enhancement of photothermal lens detection in polymers, which provides at least a ten-fold increase in sensitivity compared with solutions due to polymer thermo-optical properties (solid phase-enhanced thermal lensing). It is shown that the overall sensitivity of photothermal lens measurements in PMA matrices is two orders higher than photometric absorbance measurements for the same excitation source power, which is in good agreement with the expected theoretical sensitivity. Changes in the preparation of transparent PMA plates and analytical procedures for photothermal measurements compared with spectrophotometry are discussed. PMA matrices modified with various analytical reagents were applied to trace determination of Hg(II), Fe(II), Ag(I), Cu(II), and ascorbic acid, with subnanomolar to nanomolar limits of detection.

  15. Potential sources of background contaminants in solid phase extraction and microextraction.

    PubMed

    Stiles, Robert; Yang, Ill; Lippincott, Robert Lee; Murphy, Eileen; Buckley, Brian

    2007-05-01

    A study to identify the sources of background contamination from SPE, using a C-18 sorbent, and solid-phase microextraction (SPME), using a 70 microm carbowax/divinylbenzene (CW/DVB) fiber, was carried out. To determine the source of contamination, each material used in the procedure was isolated and examined for their contribution. The solid-phase column components examined were: sorbent material and frits, column housings and each solvent used to elute analytes off the column. The components examined in the SPME procedure were: SPME fiber, SPME vials, water (HPLC grade), and salt (sodium chloride) used to increase the ionic strength. The majority of the background contaminants from SPE were found to be from the SPE sorbent material and frits. The class of contaminants extracted during a blank extraction were phthalates and other plasticizers used during the manufacturing process. All had blank levels corresponding to measured concentrations below 2 ng/ mL, except for undecane, which had a concentration of 5.4 ng/mL. The most prevalent contaminants in the SPME blank procedure are 1,9-nonanediol, a mixture of phthalates and highly bis-substituted phenols. All the concentrations were below 2 ng/mL, with the exception of bis (2-ethylhexyl) phthalate, which had concentrations ranging from 5 to 20 ng/mL.

  16. Fixed bed reactor for solid-phase surface derivatization of superparamagnetic nanoparticles.

    PubMed

    Steitz, Benedikt; Salaklang, Jatuporn; Finka, Andrija; O'Neil, Conlin; Hofmann, Heinrich; Petri-Fink, Alke

    2007-01-01

    The functionalization of nanoparticles is conditio sine qua non in studies of specific interaction with a biological target. Often, their biological functionality is achieved by covalent binding of bioactive molecules on a preexisting single surface coating. The yield and quality of the resulting coated and functionalized superparamagnetic iron oxide nanoparticles (SPIONs) can be significantly improved and reaction times reduced by using solid-phase synthesis strategies. In this study, a fixed bed reactor with a quadrupole repulsive arrangement of permanent magnets was assayed for SPION surface derivatization. The magnet array around the fixed bed reactor creates very high magnetic field gradients that enables the immobilization of SPIONs with a diameter as low as 9 nm. The functionalization on the surface of immobilized 25 nm 3-(aminopropyl)trimethoxysilane-coated SPIONs (APS-SPIONs) was performed using fluorescein-isothiocyanate directly, and by the SV40 large T-antigen nuclear localization signal peptide (PKKKRKVGC) conjugated to acryloylpoly(ethylene glycol)-N-hydroxysuccinimide, where the PEG reagent is conjugated first to create a functionalized nanoparticle and the peptide is added to the acryloyl group. We show that the yield of reactant grafted on the surface of the APS-coated SPIONs was higher in solid-phase within the fixed bed reactor compared to conventional liquid-phase chemistry. In summary, the functionalization of SPIONs using a magnetically fixed bed reactor was superior to the liquid-phase reaction in terms of the yield, reaction times required for derivatization, size distribution, and scalability.

  17. Solid-Phase Synthesis of Triostin A Using a Symmetrical Bis(diphenylmethyl) Linker System.

    PubMed

    Sable, Ganesh A; Lim, Dongyeol

    2015-08-07

    Triostin A is a symmetric bicyclic depsipeptide with very potent antitumoral activity because of its bisintercalation into DNA. In this study, we report a new synthetic strategy that exploits a structural symmetry of triostin A. First, we prepared a novel symmetric linker molecule that is labile under mildly acidic conditions and suitable for a solid-phase synthesis procedure. Two Cys units were attached to a linker-resin conjugate via their free thiol groups, and double deprotection and double coupling reactions were then applied to synthesize linear tetradepsipeptides. Subsequently, the key biscyclization of the tetradepsipeptides was performed on the resin, and the resulting cyclic octapeptide was detached from the linker-resin conjugate to give a peptide with two free thiols. Finally, triostin A was obtained by oxidizing the free thiols in solution to produce a disulfide. The yield was improved through exploration of two different solid-phase synthetic approaches under similar strategy. Mainly, this strategy was developed to enable the ease and rapid preparation of libraries of symmetric bicyclic depsipeptides. It also addresses several synthetic problems with our synthesis, including diketopiperazine (DKP) formation, poor cyclization yields and preparation of noncommercial N-methyl amino acids in good yields.

  18. Comparison of fluorescence microscopy and solid-phase cytometry methods for counting bacteria in water

    USGS Publications Warehouse

    Lisle, John T.; Hamilton, Martin A.; Willse, Alan R.; McFeters, Gordon A.

    2004-01-01

    Total direct counts of bacterial abundance are central in assessing the biomass and bacteriological quality of water in ecological and industrial applications. Several factors have been identified that contribute to the variability in bacterial abundance counts when using fluorescent microscopy, the most significant of which is retaining an adequate number of cells per filter to ensure an acceptable level of statistical confidence in the resulting data. Previous studies that have assessed the components of total-direct-count methods that contribute to this variance have attempted to maintain a bacterial cell abundance value per filter of approximately 106 cells filter-1. In this study we have established the lower limit for the number of bacterial cells per filter at which the statistical reliability of the abundance estimate is no longer acceptable. Our results indicate that when the numbers of bacterial cells per filter were progressively reduced below 105, the microscopic methods increasingly overestimated the true bacterial abundance (range, 15.0 to 99.3%). The solid-phase cytometer only slightly overestimated the true bacterial abundances and was more consistent over the same range of bacterial abundances per filter (range, 8.9 to 12.5%). The solid-phase cytometer method for conducting total direct counts of bacteria was less biased and performed significantly better than any of the microscope methods. It was also found that microscopic count data from counting 5 fields on three separate filters were statistically equivalent to data from counting 20 fields on a single filter.

  19. Determination of amphetamines in hair by integrating sample disruption, clean-up and solid phase derivatization.

    PubMed

    Argente-García, A; Moliner-Martínez, Y; Campíns-Falcó, P; Verdú-Andrés, J; Herráez-Hernández, R

    2016-05-20

    The utility of matrix solid phase dispersion (MSPD) for the direct analysis of amphetamines in hair samples has been evaluated, using liquid chromatography (LC) with fluorescence detection and precolumn derivatization. The proposed approach is based on the employment of MSPD for matrix disruption and clean-up, followed by the derivatization of the analytes onto the dispersant-sample blend. The fluorogenic reagent 9-fluorenylmethyl chloroformate (FMOC) has been used for derivatization. Different conditions for MSPD, analyte purification and solid phase derivatization have been tested, using amphetamine (AMP), methamphetamine (MET), ephedrine (EPE) and 3,4-methylenedioxymethamphetamine (MDMA) as model compounds. The results have been compared with those achieved by using ultrasound-assisted alkaline digestion and by MSPD combined with conventional solution derivatization. On the basis of the results obtained, a methodology is proposed for the analysis of amphetamines in hair which integrates sample disruption, clean-up and derivatization using a C18 phase. Improved sensitivity is achieved with respect to that obtained by the alkaline digestion or by the MSPD followed by solution derivatization methods. The method can be used for the quantification of the tested amphetamines within the 2.0-20.0ng/mg concentration interval, with limits of detection (LODs) of 0.25-0.75ng/mg. The methodology is very simple and rapid (the preparation of the sample takes less than 15min).

  20. Determination of amphetamines in human urine by headspace solid-phase microextraction and gas chromatography.

    PubMed

    Raikos, Nikolaos; Christopoulou, Klio; Theodoridis, Georgios; Tsoukali, Heleni; Psaroulis, Dimitrios

    2003-06-05

    Solid-phase microextraction (SPME) is under investigation for its usefulness in the determination of a widening variety of volatile and semivolatile analytes in biological fluids and materials. Semivolatiles are increasingly under study as analytical targets, and difficulties with small partition coefficients and long equilibration times have been identified. Amphetamines were selected as semivolatiles exhibiting these limitations and methods to optimize their determination were investigated. A 100- micro m polydimethylsiloxane (PDMS)-coated SPME fiber was used for the extraction of the amphetamines from human urine. Amphetamine determination was made using gas chromatography (GC) with flame-ionization detection (FID). Temperature, time and salt saturation were optimized to obtain consistent extraction. A simple procedure for the analysis of amphetamine (AMP) and methamphetamine (MA) in urine was developed and another for 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxy-N-methamphetamine (MDMA) and 3,4-methylenedioxy-N-ethylamphetamine (MDEA) using headspace solid-phase microextraction (HS-SPME) and GC-FID. Higher recoveries were obtained for amphetamine (19.5-47%) and methamphetamine (20-38.1%) than MDA (5.1-6.6%), MDMA (7-9.6%) and MDEA (5.4-9.6%).

  1. Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction.

    PubMed

    Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua

    2016-12-07

    Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What's more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.

  2. Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials

    DOE PAGES

    Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso; ...

    2017-02-02

    Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less

  3. Investigation of solid-phase buffers for sulfur-oxidizing autotrophic denitrification.

    PubMed

    Sengupta, Sukalyan; Ergas, Sarina J; Lopez-Luna, Erika

    2007-12-01

    This paper investigates biological denitrification using autotrophic microorganisms that use elemental sulfur as an electron donor. In this process, for each gram of nitrate-nitrogen removed, approximately 4.5 g of alkalinity (as calcium carbonate) are consumed. Because denitrification is severely inhibited below pH 5.5, and alkalinity present in the influent wastewaters is less than the alkalinity consumed, an external buffer was needed to arrest any drop in pH from alkalinity consumption. A packed-bed bioreactor configuration is ideally suited to handle variations in flow and nitrate loading from decentralized wastewater treatment systems, as it is a passive system and thus requires minimal maintenance; therefore, a solid-phase buffer packed with the elemental sulfur in the bioreactor is most suitable. In this research, marble chips, limestone, and crushed oyster shells were tested as solid-phase buffers. Bench- and field-scale studies indicated that crushed oyster shell was the most suitable buffer based on (1) the rate of dissolution of buffer and the buffering agent released (carbonate, bicarbonate, or hydroxide), (2) the ability of the buffer surface to act as host for microbial attachment, (3) turbidity of the solution upon release of the buffering agent, and (4) economics.

  4. Solid phase extraction and metabolic profiling of exudates from living copepods

    PubMed Central

    Heuschele, Jan; Nylund, Göran M.; Pohnert, Georg; Pavia, Henrik; Bjærke, Oda; Pender-Healy, Larisa A.; Tiselius, Peter; Kiørboe, Thomas

    2016-01-01

    Copepods are ubiquitous in aquatic habitats. They exude bioactive compounds that mediate mate finding or induce defensive traits in prey organisms. However, little is known about the chemical nature of the copepod exometabolome that contributes to the chemical landscape in pelagic habitats. Here we describe the development of a closed loop solid phase extraction setup that allows for extraction of exuded metabolites from live copepods. We captured exudates from male and female Temora longicornis and analyzed the content with high resolution LC-MS. Chemometric methods revealed 87 compounds that constitute a specific chemical pattern either qualitatively or quantitatively indicating copepod presence. The majority of the compounds were present in both female and male exudates, but nine compounds were mainly or exclusively present in female exudates and hence potential pheromone candidates. Copepodamide G, known to induce defensive responses in phytoplankton, was among the ten compounds of highest relative abundance in both male and female extracts. The presence of copepodamide G shows that the method can be used to capture and analyze chemical signals from living source organisms. We conclude that solid phase extraction in combination with metabolic profiling of exudates is a useful tool to develop our understanding of the chemical interplay between pelagic organisms. PMID:26788422

  5. Development of andrographolide molecularly imprinted polymer for solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Yin, Xiaoying; Liu, Qingshan; Jiang, Yifan; Luo, Yongming

    2011-06-01

    A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C 18-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata ( Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9 ± 0.6 μmol/g and 12.1 ± 0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n = 5) and 96.0% and 104.2% (RSD 2.9-3.7%, n = 5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.

  6. Rapid detection of salmonellae by immunoassays with titanous hydroxide as the solid phase.

    PubMed Central

    Ibrahim, G F; Lyons, M J; Walker, R A; Fleet, G H

    1985-01-01

    Radioimmunometric and enzyme-immunometric assays were developed for the detection of salmonellae in pure and mixed cultures as well as in 59 food samples. The performances of titanous hydroxide suspension and microtiter plates as the solid phase for the immobilization of microorganisms were compared in these immunoassays. Detection of populations of salmonella cells in pure culture, diluted with saline, was 4- to 10-fold more sensitive with the microtiter plates. However, with mixed culture of salmonella and other enterobacterial species, the detection sensitivity with titanous hydroxide was 100- to 160-fold more sensitive than with microtiter plates. Good correlation existed between results of a standard cultural method for the detection of salmonellae in foods and those obtained from radioimmunometric and enzyme-immunometric assays utilizing titanous hydroxide. However, a high incidence of false-positive and false-negative results with food samples occurred with the enzyme-immunometric assay utilizing microtiter plates. The results provided strong evidence for the merits of substituting titanous hydroxide for microtiter plates as the solid phase for the immobilization of salmonellae for their detection by immunoassays. The immunoassays were rapid and enabled the analysis of a large number of selective enrichment cultures of food samples for salmonellae within 8 h. PMID:3907499

  7. Multiplexity and multireciprocity in directed multiplexes

    NASA Astrophysics Data System (ADS)

    Gemmetto, Valerio; Squartini, Tiziano; Picciolo, Francesco; Ruzzenenti, Franco; Garlaschelli, Diego

    2016-10-01

    Real-world multilayer networks feature nontrivial dependencies among links of different layers. Here we argue that if links are directed, then dependencies are twofold. Besides the ordinary tendency of links of different layers to align as the result of "multiplexity," there is also a tendency to antialign as a result of what we call "multireciprocity," i.e., the fact that links in one layer can be reciprocated by opposite links in a different layer. Multireciprocity generalizes the scalar definition of single-layer reciprocity to that of a square matrix involving all pairs of layers. We introduce multiplexity and multireciprocity matrices for both binary and weighted multiplexes and validate their statistical significance against maximum-entropy null models that filter out the effects of node heterogeneity. We then perform a detailed empirical analysis of the world trade multiplex (WTM), representing the import-export relationships between world countries in different commodities. We show that the WTM exhibits strong multiplexity and multireciprocity, an effect which is, however, largely encoded into the degree or strength sequences of individual layers. The residual effects are still significant and allow us to classify pairs of commodities according to their tendency to be traded together in the same direction and/or in opposite ones. We also find that the multireciprocity of the WTM is significantly lower than the usual reciprocity measured on the aggregate network. Moreover, layers with low (high) internal reciprocity are embedded within sets of layers with comparably low (high) mutual multireciprocity. This suggests that, in the WTM, reciprocity is inherent to groups of related commodities rather than to individual commodities. We discuss the implications for international trade research focusing on product taxonomies, the product space, and fitness and complexity metrics.

  8. An engineered nano-plasmonic biosensing surface for colorimetric and SERS detection of DNA-hybridization events

    NASA Astrophysics Data System (ADS)

    Heydari, Esmaeil; Thompson, David; Graham, Duncan; Cooper, Jonathan M.; Clark, Alasdair W.

    2015-03-01

    We report a versatile nanophotonic biosensing platform that enables both colorimetric detection and enhanced Raman spectroscopy detection of molecular binding events. Through the integration of electron-beam lithography, dip-pennanolithography and molecular self-assembly, we demonstrate plasmonic nanostructures which change geometry and plasmonic properties in response to molecularly-mediated nanoparticle binding events. These biologically-active nanostructured surfaces hold considerable potential for use as multiplexed sensor platforms for point-of-care diagnostics, and as scaffolds for a new generation of molecularly dynamic metamaterials.

  9. Multiplexed Engineering in Biology.

    PubMed

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  10. Microfluidic multiplexing in bioanalyses.

    PubMed

    Araz, M Kursad; Tentori, Augusto M; Herr, Amy E

    2013-10-01

    The importance of biological assays spans from clinical diagnostics to environmental monitoring. Simultaneous detection of multiple analytes enhances the efficacy of bioassays by providing more data per assay under standardized conditions. Nevertheless, simultaneous handling and assaying of multiple samples, targets, and experimental conditions can be laborious, reagent consuming, and time intensive. Given these demands, microfluidic platforms have emerged over the past two decades as well-suited approaches for multiplexed assays. Microfluidic design supports integration of assay steps and reproducible sample manipulation across large sets of conditions--all relevant to multiplexed assays. Taken together, reduced reagent consumption, faster assay times, and potential for automation stemming from microfluidic assay design are attractive and needed multiplexed assay performance attributes. This review highlights recent advances in multiplexed bioanalyses benefitting from microfluidic integration.

  11. Multiplex gas chromatography

    NASA Technical Reports Server (NTRS)

    Valentin, Jose R.

    1990-01-01

    The principles of the multiplex gas chromatography (GC) technique, which is a possible candidate for chemical analysis of planetary atmospheres, are discussed. Particular attention is given to the chemical modulators developed by present investigators for multiplex GC, namely, the thermal-desorption, thermal-decomposition, and catalytic modulators, as well as to mechanical modulators. The basic technique of multiplex GC using chemical modulators and a mechanical modulator is demonstrated. It is shown that, with the chemical modulators, only one gas stream consisting of the carrier in combination with the components is being analyzed, resulting in a simplified instrument that requires relatively few consumables. The mechanical modulator demonstrated a direct application of multiplex GC for the analysis of gases in atmosphere of Titan at very low pressures.

  12. Multiplex television transmission system

    NASA Technical Reports Server (NTRS)

    Reed, W. R.

    1967-01-01

    Time-multiplexing system enables several cameras to share a single commercial television transmission channel. This system is useful in industries for visually monitoring several operating areas or instrument panels from a remote location.

  13. Multiplexed chirp waveform synthesizer

    DOEpatents

    Dudley, Peter A.; Tise, Bert L.

    2003-09-02

    A synthesizer for generating a desired chirp signal has M parallel channels, where M is an integer greater than 1, each channel including a chirp waveform synthesizer generating at an output a portion of a digital representation of the desired chirp signal; and a multiplexer for multiplexing the M outputs to create a digital representation of the desired chirp signal. Preferably, each channel receives input information that is a function of information representing the desired chirp signal.

  14. Downlink data multiplexer

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor); Steele, Glen F. (Inventor); Romero, Denise M. (Inventor); Koudelka, Robert David (Inventor)

    2008-01-01

    A data multiplexer that accommodates both industry standard CCSDS data packets and bits streams and standard IEEE 1394 data is described. The multiplexer provides a statistical allotment of bandwidth to the channels in turn, preferably four, but expandable in increments of four up to sixteen. A microcontroller determines bandwidth requested by the plurality of channels, as well as the bandwidth available, and meters out the available bandwidth on a statistical basis employing flow control to the input channels.

  15. Iron solid-phase differentiation along a redox gradient in basaltic soils

    NASA Astrophysics Data System (ADS)

    Thompson, Aaron; Rancourt, Denis G.; Chadwick, Oliver A.; Chorover, Jon

    2011-01-01

    Iron compounds in soil are multifunctional, providing physical structure, ion sorption sites, catalytic reaction-centers, and a sink for respiratory electrons. Basaltic soils contain large quantities of iron that reside in different mineral and organic phases depending on their age and redox status. We investigated changes in soil iron concentration and its solid-phase speciation across a single-aged (400 ky) lava flow subjected to a gradient in precipitation (2200-4200 mm yr -1) and hence redox history. With increasing rainfall and decreasing Eh, total Fe decreased from about 25% to <1% of the soil mass. Quantitative speciation of soil solid-phase iron was constrained by combining 57Fe Mössbauer spectroscopy (MBS) at 295 and 4.2 K with powder X-ray diffraction, selective chemical extractions, and magnetic susceptibility measurements. This approach allowed us to partition iron into (1) nanoparticulate and microcrystalline Fe III-(oxy)hydroxides, (2) microcrystalline and bulk Fe III-oxides, (3) organic/silicate bound Fe III, and (4) ferrous iron. The Fe III-(oxy)hydroxide fraction dominated solid-phase Fe, exhibiting a crystallinity continuum based on magnetic ordering temperature. The continuum extended from well-ordered microcrystalline goethite through nanocrystalline Fe III-(oxy)hydroxides to a nano Fe III-(oxy)hydroxide phase of extremely low crystallinity. Magnetic susceptibility was correlated ( R2 = 0.77) with Fe III-oxide concentration, consistent with a contribution of maghemite to the otherwise hematite dominated Fe-oxide fraction. The Fe III-(oxy)hydroxide fraction of total Fe decreased with increasing rainfall and was replaced by corresponding increase in the organic/silicate Fe III fraction. The crystallinity of the Fe III-(oxy)hydroxides also decreased with increasing rainfall and leaching, with the most disordered members of the crystallinity continuum, the nano Fe III-(oxy)hydroxides, gaining proportional abundance in the wetter sites. This finding

  16. Enumerating Pathogenic Microorganism Surrogates for Groundwater Experiments Using Solid-Phase Cytometry

    NASA Astrophysics Data System (ADS)

    Stevenson, M. E.; Blaschke, A. P.; Kirschner, A.

    2010-12-01

    Regulators need a dependable method that would enable them to calculate with confidence the setback distance of a drinking water well from a potential point of contamination. Since it is not permissible to perform field tests using pathogenic microorganisms, it is necessary to predict the transport of dangerous microbes in a different way, using surrogates. One such surrogate method involves using bacteriophages, which are viruses that are pathogenic to bacteria, but are not dangerous to humans. Another possible surrogate to model the potential travel time of microbial contamination is the use of synthetic microspheres; we will test microspheres ranging in size from 0.025 to 1 µm. The constraining factor for comparing the transport of microspheres and bacteriophages is the detection limit of the measuring apparatus. Appropriate measuring techniques are mandatory for a comparison. Traditionally, bacteriophages are measured using plaque forming analysis, the detection limit being one plaque forming unit per petri dish. In our study, the use of solid-phase cytometry for enumerating microspheres for wellhead protection projects is being investigated, as the detection limit using this technology is one cell per filter. To the best of our knowledge, there is no other technique available that enables a comparable detection limit. The solid-phase cytometer used for this study is a ChemScan RDI (Chemunex, France). For comparison, epifluorescence microscopy will also be used. The ChemScan RDI device automatically drives an epifluorescent microscope to the site of each cell detected, in order to confirm the validity of the reading. In this way, it is possible to observe whether clumping together of microspheres is a problem or if non-target cells were labelled. Keywords: Microspheres, Solid-phase cytometry, ChemScan, Drinking water protection Acknowledgements: We would like to thank the Austrian Science Fund (FWF) for financial support as part of the Doctoral Program on

  17. Variable-cell double-ended surface walking method for fast transition state location of solid phase transitions.

    PubMed

    Zhang, Xiao-Jie; Liu, Zhi-Pan

    2015-10-13

    To identify the low energy pathway for solid-to-solid phase transition has been a great challenge in physics and material science. This work develops a new theoretical method, namely, variable-cell double-ended surface walking (VC-DESW) to locate the transition state (TS) and deduce the pathway in solid phase transition. Inherited from the DESW method ( J. Chem. Theory Comput. 2013 , 9 , 5745 ) for molecular systems, the VC-DESW method implements an efficient mechanism to couple the lattice and atom degrees of freedom. The method features with fast pseudopathway building and accurate TS location for solid phase transition systems without requiring expensive Hessian computation and iterative pathway optimization. A generalized coordinate, consisting of the lattice vectors and the scaled atomic coordinates, is designed for describing the crystal potential energy surface (PES), which is able to capture the anisotropic behavior in phase transition. By comparing with the existing method for solid phase transition in different systems, we show that the VC-DESW method can be much more efficient for finding the TS in crystal phase transition. With the combination of the recently developed unbiased stochastic surface walking pathway sampling method, the VC-DESW is further utilized to resolve the lowest energy pathway of SiO2 α-quartz to quartz-II phase transition from many likely reaction pathways. These new methods provide a powerful platform for understanding and predicting the solid phase transition mechanism and kinetics.

  18. Compact spatial multiplexers for mode division multiplexing.

    PubMed

    Chen, Haoshuo; van Uden, Roy; Okonkwo, Chigo; Koonen, Ton

    2014-12-29

    Spatial multiplexer (SMUX) for mode division multiplexing (MDM) has evolved from mode-selective excitation, multiple-spot and photonic-lantern based solutions in order to minimize both mode-dependent loss (MDL) and coupler insertion loss (CIL). This paper discusses the implementation of all the three solutions by compact components in a small footprint. Moreover, the compact SMUX can be manufactured in mass production and packaged to assure high reliability. First, push-pull scheme and center launch based SMUXes are demonstrated on two mostly-popular photonic integration platforms: Silicon-on-insulator (SOI) and Indium Phosphide (InP) for selectively exciting LP01 and LP11 modes. 2-dimensional (2D) top-coupling by using vertical emitters is explored to provide a coupling interface between a few-mode fiber (FMF) and the photonic integrated SMUX. SOI-based grating couplers and InP-based 45° vertical mirrors are proposed and researched as vertical emitters in each platform. Second, a 3-spot SMUX is realized on an InP-based circuit through employing 45° vertical mirrors. Third, as a newly-emerging photonic integration platform, laser-inscribed 3D waveguide (3DW) technology is applied for a fully-packaged dual-channel 6-mode SMUX including two 6-core photonic lantern structures as mode multiplexer and demultiplexer, respectively.

  19. A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique.

    PubMed

    Feng, Juanjuan; Sun, Min; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2011-09-09

    A novel silver-coated solid-phase microextraction fiber was prepared based on electroless plating technique. Good extraction performance of the fiber for model compounds including phthalate esters (dibutyl phthalate, dioctyl phthalate, dicyclohexyl phthalate and diallyl phthalate) and polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene) in aqueous solution was obtained. Under the optimized conditions (extraction temperature, extraction time, ionic strength and desorption temperature), the proposed SPME-GC method showed wide linear ranges with correlation coefficients (R(2)) ranging from 0.9745 to 0.9984. The limits of detection were at the range of 0.02 to 0.1 μg L(-1). Single fiber repeatability and fiber-to-fiber reproducibility as well as stability to acid, alkali and high temperature were studied and the results were all satisfactory. The method was applied successfully to the aqueous extracts of disposable paper cup and instant noodle barrel. Several kinds of analytes were detected and quantified.

  20. Improvements in the vapor-time profile analysis of explosive odorants using solid-phase microextraction.

    PubMed

    Young, Mimy; Schantz, Michele; MacCrehan, William

    2016-07-15

    A modified approach for characterization of the vapor-time profile of the headspace odors of explosives was developed using solid-phase microextraction (SPME) incorporating introduction of an externally-sampled internal standard (ESIS) followed by gas chromatography/mass spectrometry (GC/MS) analysis. With this new method, reproducibility of the measurements of 2-ethyl-1-hexanol and cyclohexanone were improved compared to previous work (Hoffman et al., 2009; Arthur and Pawliszyn, 1990) through the use of stable-isotope-labeled internal standards. Exposing the SPME fiber to the ESIS after sampling the target analyte proved to be advantageous, while still correcting for fiber variability and detector drift. For the analysis of high volatility compounds, incorporation of the ESIS using the SPME fiber in the retracted position minimized the subsequent competitive loss of the target analyte, allowing for much longer sampling times.

  1. Headspace solid-phase microextraction analysis of volatile components in Phalaenopsis Nobby's Pacific Sunset.

    PubMed

    Yeh, Chih-Hsin; Tsai, Wan-Yu; Chiang, Hsiu-Mei; Wu, Chin-Sheng; Lee, Yung-I; Lin, Li-Yun; Chen, Hsin-Chun

    2014-09-09

    Phalaenopsis is the most important economic crop in the Orchidaceae family. There are currently numerous beautiful and colorful Phalaenopsis flowers, but only a few species of Phalaenopsis have an aroma. This study reports the analysis volatile components present in P. Nobby's Pacific Sunset by solid-phase microextraction (SPME) coupled with gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS). The results show that the optimal extraction conditions were obtained by using a DVB/CAR/PDMS fiber. A total of 31 compounds were identified, with the major compounds being geraniol, linalool and α-farnesene. P. Nobby's Pacific Sunset had the highest odor concentration from 09:00 to 13:00 on the eighth day of storage. It was also found that in P. Nobby's Pacific Sunset orchids the dorsal sepals and petals had the highest odor concentrations, whereas the column had the lowest.

  2. Solid-phase microextraction technology for in vitro and in vivo metabolite analysis

    PubMed Central

    Zhang, Qihui; Zhou, Liandi; Chen, Hua; Wang, Chong-Zhi; Xia, Zhining; Yuan, Chun-Su

    2016-01-01

    Analysis of endogenous metabolites in biological samples may lead to the identification of biomarkers in metabolomics studies. To achieve accurate sample analysis, a combined method of continuous quick sampling and extraction is required for online compound detection. Solid-phase microextraction (SPME) integrates sampling, extraction and concentration into a single solvent-free step for chemical analysis. SPME has a number of advantages, including simplicity, high sensitivity and a relatively non-invasive nature. In this article, we reviewed SPME technology in in vitro and in vivo analyses of metabolites after the ingestion of herbal medicines, foods and pharmaceutical agents. The metabolites of microorganisms in dietary supplements and in the gastrointestinal tract will also be examined. As a promising technology in biomedical and pharmaceutical research, SPME and its future applications will depend on advances in analytical technologies and material science. PMID:27695152

  3. Solid-phase crystallization of amorphous silicon nanowire array and optical properties

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryousuke; Kato, Shinya; Yamazaki, Tatsuya; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Konagai, Makoto

    2014-02-01

    An amorphous silicon nanowire (a-SiNW) array perpendicular to a glass substrate can be successfully obtained through the metal-assisted chemical etching of amorphous silicon (a-Si) thin films. The solid-phase crystallization of a-SiNWs was carried out by thermal annealing in a forming gas in the temperature range from 600 to 900 °C. The effects of hydrogen in the film and the film morphology on the crystallization of a-SiNWs were investigated by Raman spectroscopy and transmission electron microscopy. A higher hydrogen concentration of a-SiNWs reduced the crystallization temperature, as in a-Si thin films. It was also revealed that the large surface area of the a-SiNW array affected the crystallization process. We also studied the optical property of the fabricated SiNW array and demonstrated its high potential as an active layer in solar cells.

  4. [Determination of histamine in fish and fish products by tandem solid-phase extraction].

    PubMed

    Awazu, Kaoru; Nomura, Chie; Yamaguchi, Mizuka; Obana, Hirotaka

    2011-01-01

    A simple and practical method was developed for the determination of histamine in fish and fish products by solid-phase extraction and fluorescence derivatization. Histamine was extracted with trichloroacetic acid. The extract was neutralized and diluted with phosphate buffer (pH 6.8), and cleaned up with a tandem-connected octadecyl silica (ODS) and strong cation exchange silica (SCX) cartridge. After removal of the solvent, histamine was derivatized with fluorescamine and analyzed by ion-paired reversed-phase high-performance liquid chromatography with fluorescence detection. Recovery tests of histamine from six kinds of fish and fish products showed acceptable recovery (83-92%) with low relative standard deviation (less than 5%). This method could be useful for determination of histamine in fish.

  5. Thermal desorption solid-phase microextraction inlet for differential mobility spectrometry.

    PubMed

    Rainsberg, Matthew R; de Harrington, Peter B

    2005-06-01

    A splitless thermal desorber unit that interfaces a differential mobility spectrometry (DMS) sensor has been devised. This device was characterized by the detection of benzene, toluene, and xylene (BTX) in water. The detection of BTX in water is important for environmental monitoring, and ion mobility measurements are traditionally difficult for hydrocarbons in water because water competes for charge and quenches the hydrocarbon signals. This paper reports the use of a DMS with a photoionization source that is directly coupled to a solid-phase microextraction (SPME) desorber. The separation and detection capabilities of the DMS were demonstrated using BTX components. Detection limits for benzene, toluene, and m-xylene were 75, 50, and 5 microg mL(-1), respectively.

  6. Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits.

    PubMed

    Li, Jing-Wen; Wang, Yu-Long; Yan, Shan; Li, Xiu-Juan; Pan, Si-Yi

    2016-02-01

    Calixarene was used as a functional monomer to fabricate a molecularly imprinted polymer (MIP) by sol-gel technique for solid-phase microextraction (SPME) of parathion-methyl and its structural analogs. The MIP-coated fiber possessed excellent thermal and chemical stability as well as high extraction capacity. Its selectivity and possible recognition mechanism were investigated. The similarities in molecular shape and functional group play a key role in the selective recognition of the imprinted material. Any changes to the structure of the template would decrease the imprinting factor. A comparison of MIP-SPME was made with liquid-liquid extraction coupled with gas chromatography for the determination of organophosphorus pesticides (OPPs) in fruits. Much lower limits of detection and better recoveries were achieved by SPME in spiked apple and pineapple samples. The experiment demonstrates that the proposed method using the calixarene MIP fiber was more suitable for selective determination of trace OPPs in those fruit samples.

  7. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification.

    PubMed

    Akse, J R; Thompson, J O; Sauer, R L; Atwater, J E

    1998-07-01

    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  8. Dissolved oxygen determination by electrocatalysed chemiluminescence with in-line solid phase media.

    PubMed

    Atwater, J E; DeHart, J; Wheeler, R R

    1998-01-01

    Dissolved elemental oxygen is determined in a flowing aqueous stream using glucose oxidase to catalyse the reaction between D-glucose and O2 to produce hydrogen peroxide. The levels of the resulting H2O2 are detected and quantified by luminol chemiluminescence using in-line solid phase media for pH adjustment of the reagent stream and for controlled release of the luminophore. The reaction is initiated by electrochemical catalysis. By the use of excess D-glucose in the reagent flow stream, the intensity of chemiluminescence is rendered proportional only to fluctuations in the dissolved O2 concentration. The methodology provides a means for the detection of aqueous O2 in the range 0-10 mg/L.

  9. A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.

    PubMed

    Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya

    2014-03-17

    This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min.

  10. Density-functional theory for fluid-solid and solid-solid phase transitions

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Atul S.; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u (r ) =ɛ "close="1 /n )">σ /r n , where parameter n measures softness of the potential. We find that for 1 /n ≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  11. Microfluidic chips with reversed-phase monoliths for solid phase extraction and on-chip labeling.

    PubMed

    Nge, Pamela N; Pagaduan, Jayson V; Yu, Ming; Woolley, Adam T

    2012-10-26

    The integration of sample preparation methods into microfluidic devices provides automation necessary for achieving complete micro total analysis systems. We have developed a technique that combines on-chip sample enrichment with fluorescence labeling and purification. Polymer monoliths made from butyl methacrylate were fabricated in cyclic olefin copolymer microdevices and used for solid phase extraction. We studied the retention of fluorophores, amino acids and proteins on these columns. The retained samples were subsequently labeled with both Alexa Fluor 488 and Chromeo P503, and unreacted dye was rinsed off the column before sample elution. Additional purification was obtained from the differential retention of proteins and fluorescent labels. A linear relation between the eluted peak areas and concentrations of on-chip labeled heat shock protein 90 samples demonstrated the utility of this method for on-chip quantitation. Our fast and simple method of simultaneously concentrating and labeling samples on-chip is compatible with miniaturization and desirable for automated analysis.

  12. Profiling flavor compounds of potato crisps during storage using solid-phase microextraction.

    PubMed

    Sanches-Silva, A; Lopez-Hernández, J; Paseiro-Losada, P

    2005-02-04

    Headspace solid-phase microextraction (HS-SPME) was studied as a solvent free alternative method for the extraction and characterisation of volatile compounds in stored potato crisps by capillary gas chromatography coupled with mass detection. Better results were obtained when extraction was carried out at 70 degrees C using a divinylbenzene (DVB)-carboxen (CAR)-polydimethylsiloxane fiber. The fiber was exposed for 20 min (extraction time) to the sample headspace, immediately after an equilibrium time of 5 min (time needed to reach the equilibrium between sample and above headspace). A total of 31 compounds were identified in oxidised potato crisps and resulted mainly from the degradation/rearrangement of lipids and carbohydrates.

  13. Automated solid-phase subcloning based on beads brought into proximity by magnetic force.

    PubMed

    Hudson, Elton P; Nikoshkov, Andrej; Uhlen, Mathias; Rockberg, Johan

    2012-01-01

    In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications.

  14. Atomic transport during solid-phase epitaxial recrystallization of amorphous germanium

    SciTech Connect

    Radek, M.; Bracht, H.; Johnson, B. C.; McCallum, J. C.; Posselt, M.; Liedke, B.

    2015-08-24

    The atomic mixing of matrix atoms during solid-phase epitaxy (SPE) is studied by means of isotopically enriched germanium (Ge) multilayer structures that were amorphized by Ge ion implantation up to a depth of 1.5 μm. Recrystallization of the amorphous structure is performed at temperatures between 350 °C and 450 °C. Secondary-ion-mass-spectrometry is used to determine the concentration-depth profiles of the Ge isotope before and after SPE. An upper limit of 0.5 nm is deduced for the displacement length of the Ge matrix atoms by the SPE process. This small displacement length is consistent with theoretical models and atomistic simulations of SPE, indicating that the SPE mechanism consists of bond-switching with nearest-neighbours across the amorphous-crystalline (a/c) interface.

  15. Solid-phase microextraction of hop volatiles. Potential use for determination and verification of hop varieties.

    PubMed

    Kovacevic, M; Kac, M

    2001-05-18

    The composition of hop essential oil is an important tool for evaluation of hop quality. As each hop variety has a typical essential oil pattern (fingerprint), hop oil analyses can be used to distinguish between hop varieties. The headspace solid-phase microextraction (SPME) method as described in this contribution is a simple sample preparation technique and represents an alternative procedure for essential oil fingerprint determination. Different SPME parameters (extraction temperature, extraction time and sample mass) were studied and the results were compared with those obtained by the routine distillation method. It is shown that SPME results can be used for determination and verification of varieties grown in Slovenia by means of principal components analysis.

  16. Solid-phase microextraction (SPME) of drugs and poisons from biological samples.

    PubMed

    Junting, L; Peng, C; Suzuki, O

    1998-11-09

    Solid-phase microextraction (SPME), a new solvent-free sample preparation technique, was invented by C. Arthur and J. Pawliszyn in 1990. This method mainly was applied for the extraction of volatile and semi-volatile organic pollutants in water samples. However, since 1995, SPME has been developed to various biological samples, such as whole blood, plasma, urine, hair and breath, in order to extract drugs and poisons in forensic field. The main advantages of SPME are: high sensitivity, solventless, small sample volume, simplicity and rapidity. We have reviewed the papers published in recent years about SPME in biological samples, and sorted out main experimental conditions, such as fibers, matrixes, the extraction approaches and time, as well as the acceleration method. We would expect SPME technique to have a promising future for toxicological analysis in forensic practice.

  17. Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates.

    PubMed

    Knapinska, Anna M; Tokmina-Roszyk, Dorota; Amar, Sabrina; Tokmina-Roszyk, Michal; Mochalin, Vadym N; Gogotsi, Yury; Cosme, Patrick; Terentis, Andrew C; Fields, Gregg B

    2015-05-01

    Nanodiamonds (NDs) have received considerable attention as potential drug delivery vehicles. NDs are small (∼5 nm diameter), can be surface modified in a controllable fashion with a variety of functional groups, and have little observed toxicity in vitro and in vivo. However, most biomedical applications of NDs utilize surface adsorption of biomolecules, as opposed to covalent attachment. Covalent modification provides reliable and reproducible ND-biomolecule ratios, and alleviates concerns over biomolecule desorption prior to delivery. The present study has outlined methods for the efficient solid-phase conjugation of ND to peptides and characterization of ND-peptide conjugates. Utilizing collagen-derived peptides, the ND was found to support or even enhance the cell adhesion and viability activities of the conjugated sequence. Thus, NDs can be incorporated into peptides and proteins in a selective manner, where the presence of the ND could potentially enhance the in vivo activities of the biomolecule it is attached to.

  18. Determination of chloroacetic acids in drinking water using suppressed ion chromatography with solid-phase extraction.

    PubMed

    Yoshikawa, Kenji; Soda, Yuko; Sakuragawa, Akio

    2009-12-01

    Suppressed ion chromatography with a conductivity detector was developed for the determination of trace amounts of underivatized chloroacetic acids (CAAs). When sodium carbonate and methanol were used as a mobile phase, the simultaneous determination of each CAA took approximately 25 min. The linearity, reproducibility and detection limits were determined for the proposed method. For the solid-phase extraction step, the effects of the pH of the sample solution, sample volume and the eluting agent were tested. Under the optimized extracting conditions, the average recoveries for CAAs spiked in tap water were 83-107%, with an optimal preconcentration factor of 20. The reproducibility of recovery rate for CAAs was 1.2-3.8%, based upon 6 repetitions of the recovery experiments.

  19. [Preparation of a novel polymer monolith using atom transfer radical polymerization method for solid phase extraction].

    PubMed

    Shen, Ying; Qi, Li; Qiao, Juan; Mao, Lanqun; Chen, Yi

    2013-04-01

    In this study, a novel polymer monolith based solid phase extraction (SPE) material has been prepared by two-step atom transfer radical polymerization (ATRP) method. Firstly, employing ethylene glycol dimethacrylate (EDMA) as a cross-linker, a polymer monolith filled in a filter head has been in-situ prepared quickly under mild conditions. Then, the activators generated by electron transfer ATRP (ARGET ATRP) was used for the modification of poly(2-(dimethylamino)ethyl-methacrylate) (PDMAEMA) on the monolithic surface. Finally, this synthesized monolith for SPE was successfully applied in the extraction and enrichment of steroids. The results revealed that ATRP can be developed as a facile and effective method with mild reaction conditions for monolith construction and has the potential for preparing monolith in diverse devices.

  20. Explosive ordnance detection in land and water environments with solid phase extraction/ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Chambers, William B.; Phelan, James M.; Rodacy, Philip J.; Reber, Steven; Woodfin, Ronald L.

    1999-08-01

    The qualitative and quantitative determination of nitroaromatic compounds such as trinitrotoluene (TNT) and dinitrotoluene (DNT) in water and soil has applications to environmental remediation and the detection of buried military ordnance. Recent results of laboratory and field test have shown that trace level concentrations of these compounds can be detected in water, soil, and solid gas samples taken from the vicinity of submerged or buried ordnance using specialized sampling and signal enhancement techniques. Solid phase micro-extraction methods have been combined with Ion Mobility Spectroscopy to provide rapid, sub-parts-per-billion analysis of these compounds. In this paper, we will describe the gas. These sampling systems, when combined with field-portable IMS, are being developed as a means of classifying buried or submerged objects as explosive ordnance.

  1. Soxhlet-assisted matrix solid phase dispersion to extract flavonoids from rape (Brassica campestris) bee pollen.

    PubMed

    Ma, Shuangqin; Tu, Xijuan; Dong, Jiangtao; Long, Peng; Yang, Wenchao; Miao, Xiaoqing; Chen, Wenbin; Wu, Zhenhong

    2015-11-15

    Soxhlet-assisted matrix solid phase dispersion (SA-MSPD) method was developed to extract flavonoids from rape (Brassica campestris) bee pollen. Extraction parameters including the extraction solvent, the extraction time, and the solid support conditions were investigated and optimized. The best extraction yields were obtained using ethanol as the extraction solvent, silica gel as the solid support with 1:2 samples to solid support ratio, and the extraction time of one hour. Comparing with the conventional solvent extraction and Soxhlet method, our results show that SA-MSPD method is a more effective technique with clean-up ability. In the test of six different samples of rape bee pollen, the extracted content of flavonoids was close to 10mg/g. The present work provided a simple and effective method for extracting flavonoids from rape bee pollen, and it could be applied in the studies of other kinds of bee pollen.

  2. Plate-to-plate fluorous solid-phase extraction for solution-phase parallel synthesis.

    PubMed

    Zhang, Wei; Lu, Yimin; Nagashima, Tadamichi

    2005-01-01

    A commercially available Argonaut VacMaster-96 plate-to-plate solid-phase extraction (SPE) station equipped with 24 FluoroFlash cartridges is employed for parallel purification of fluorous reaction mixtures. Each cartridge charged with 3 g of fluorous silica gel has the capability to produce up to 100 mg of purified small molecules. The 24-well receiving plate has a standard footprint that can be directly concentrated in a Genevac vacuum centrifuge. Important issues such as sample loading, product cross-contamination, cartridge reuse, and reproducibility are investigated. The SPE system has been demonstrated in the purification of three small libraries that were produced involving amine scavenging reactions with fluorous isatoic anhydride, amide coupling reactions with 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (fluorous CDMT), and amide coupling reactions with a newly developed fluorous Mukaiyama condensation reagent.

  3. Solid-Phase Synthesis, Characterization, and Cellular Activities of Collagen-Model Nanodiamond-Peptide Conjugates

    PubMed Central

    Knapinska, Anna M.; Tokmina-Roszyk, Dorota; Amar, Sabrina; Tokmina-Roszyk, Michal; Mochalin, Vadym N.; Gogotsi, Yury; Cosme, Patrick; Terentis, Andrew C.; Fields, Gregg B.

    2015-01-01

    Nanodiamonds (NDs) have received considerable attention as potential drug delivery vehicles. NDs are small (~5 nm diameter), can be surface modified in a controllable fashion with a variety of functional groups, and have little observed toxicity in vitro and in vivo. However, most biomedical applications of NDs utilize surface adsorption of biomolecules, as opposed to covalent attachment. Covalent modification provides reliable and reproducible ND–biomolecule ratios, and alleviates concerns over biomolecule desorption prior to delivery. The present study has outlined methods for the efficient solid-phase conjugation of ND to peptides and characterization of ND–peptide conjugates. Utilizing collagen-derived peptides, the ND was found to support or even enhance the cell adhesion and viability activities of the conjugated sequence. Thus, NDs can be incorporated into peptides and proteins in a selective manner, where the presence of the ND could potentially enhance the in vivo activities of the biomolecule it is attached to. PMID:25753561

  4. Static secondary ion mass spectrometry to monitor solid-phase peptide synthesis.

    PubMed

    Maux, D; Enjalbal, C; Martinez, J; Aubagnac, J L; Combarieu, R

    2001-10-01

    Insights into the direct monitoring of supported peptide synthesis were realized through the design of time of flight static secondary ion mass spectrometry (TOF-S-SIMS) experiments. The mass spectrometric method was carried out at the resin bead level and was found reproducible (intra- and inter-day assays), sensitive (femtomol level) and non-destructive (only 0.01% of the peptides were destroyed by the primary ion beam bombardment). The nature of the peptide-resin linkage governed the recovery of ions characterizing the whole peptide sequence. A S-SIMS cleavable bond was thus required solely in that position to achieve the release of the growing structures from the insoluble support into the gas phase without any fragmentation. Results are presented with standard solid-phase resins allowing linkage through an amide or an ester bond. The latter was orthogonally broken upon the bombardment and thus constituted a convenient S-SIMS cleavable bond.

  5. Lateral solid-phase epitaxy of oxide thin films on glass substrate seeded with oxide nanosheets.

    PubMed

    Taira, Kenji; Hirose, Yasushi; Nakao, Shoichiro; Yamada, Naoomi; Kogure, Toshihiro; Shibata, Tatsuo; Sasaki, Takayoshi; Hasegawa, Tetsuya

    2014-06-24

    We developed a technique to fabricate oxide thin films with uniaxially controlled crystallographic orientation and lateral size of more than micrometers on amorphous substrates. This technique is lateral solid-phase epitaxy, where epitaxial crystallization of amorphous precursor is seeded with ultrathin oxide nanosheets sparsely (≈10% coverage) deposited on the substrate. Transparent conducting Nb-doped anatase TiO2 thin films were fabricated on glass substrates by this technique. Perfect (001) orientation and large grains with lateral sizes up to 10 μm were confirmed by X-ray diffraction, atomic force microscopy, and electron beam backscattering diffraction measurements. As a consequence of these features, the obtained film exhibited excellent electrical transport properties comparable to those of epitaxial thin films on single-crystalline substrates. This technique is a versatile method for fabricating high-quality oxide thin films other than anatase TiO2 and would increase the possible applications of oxide-based thin film devices.

  6. A carbon nanotube confinement strategy to implement homogeneous asymmetric catalysis in the solid phase.

    PubMed

    Hashimoto, Kazuki; Kumagai, Naoya; Shibasaki, Masakatsu

    2015-03-09

    A readily recyclable asymmetric catalyst has been developed based on the self-assembly of a homogeneous catalyst in a fibrous network of multiwalled carbon nanotubes (MWNTs). Dimerization of an amide-based chiral ligand with a suitable spacer allows for the efficient formation of a heterogeneous catalyst by self-assembly on addition of Er(OiPr)3. The self-assembly proceeds in the MWNT fibrous network and small clusters of assembled catalyst are confined in the MWNTs, producing an easily handled solid-phase catalyst. The resulting MWNT-confined catalyst exhibits a good catalytic performance in a catalytic asymmetric Mannich-type reaction, which can be conducted in a repeated batch system and in a continuous-flow platform.

  7. First-derivative solid-phase spectrophotometric determination of molybdenum at the ng ml(-1) level.

    PubMed

    Molína-Diaz, A; Pascual-Reguera, M I; Liñán-Veganzones, E; Fernández de Córdova, M L; Capitán-Vallvey, L F

    1996-02-01

    Derivative spectrophotometry was applied to solid-phase spectrophotometry in order to enhance its sensitivity and remove the large background noise caused by the absorption of the resin layer itself, and avoid the necessity of preparing a blank. The determination of micro-amounts of molybdenum (at the ng ml(-1) level) with pyrocatechol violet to form a 11 blue complex in acid medium, which is fixed on a dextran-type anion-exchange resin (Sephadex QAE-A-25), is described as an example of the application of this technique. The absorbance of the resin, packed in a 1 mm spectrophotometric cell, was measured directly. The characteristic peak amplitude of the signal at 716 nm in the first-derivative spectra is useful for quantitative determination of molybdenum (2-8 ng ml(-1); RSD = 4, 30%) in natural and industrial water samples, plant tissues and soil extracts.

  8. Evidence for Two Different Solid Phases of Two-Dimensional Electrons in High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Chen, Yong P.; Lewis, R. M.; Engel, L. W.; Tsui, D. C.; Ye, P. D.; Wang, Z. H.; Pfeiffer, L. N.; West, K. W.

    2004-11-01

    We have observed two different rf resonances in the frequency dependent real diagonal conductivity of very high quality two-dimensional electron systems in the high magnetic field insulating phase and interpret them as coming from two different pinned electron solid phases (labeled as “A” and “B”). The “A” resonance is observable for Landau level filling ν<2/9 [reentrant around the ν=1/5 fractional quantum Hall effect (FQHE)] and then crosses over to the different “B” resonance which dominates at sufficiently low ν. Moreover, the “A” resonance is found to show dispersion with respect to the size of the transmission line, indicating that the “A” phase has a large correlation length. We suggest that quantum correlations such as those responsible for FQHE may play an important role in giving rise to such different solids.

  9. Combination of solid phase extraction and surface-enhanced Raman spectroscopy for rapid analysis.

    PubMed

    Lai, Yongchao; Cui, Jingcheng; Jiang, Xiaohong; Zhu, Sha; Zhan, Jinhua

    2013-05-07

    A surface-enhanced Raman spectroscopy (SERS)-active extraction column based on propanethiol modified silver dendrites was fabricated. The column, which combines the advantages of solid phase extraction and SERS, may facilitate the development of rapid analysis with high reliability and accuracy. High temporal stability (under a continuous and intensive laser radiation) and excellent repeatability (repeated extraction and elution) were also achieved using this column. As an example, the quantitative analysis of fluoranthene was accomplished in the concentration range of 0.01-100 μg mL(-1) with this column. The extraction process could be accomplished in 10 s and the total time of one sample analysis including extraction, spectral acquisition, elution and intermediate process could be less than 30 s. This method can greatly simplify the sample preparation and reduce the total analysis time.

  10. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    DOEpatents

    Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  11. Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria

    SciTech Connect

    Benton, M.J.; Malott, M.L. |; Knight, S.S.; Cooper, C.M.; Benson, W.H.

    1995-03-01

    Clean and spiked sediment formulations of various silt:sand and clay:sand ratios were tested for toxicity using a bioassay that utilizes bioluminescent bacteria. Measured toxicities of clean and copper sulfate-spiked sediments were negatively but nonlinearly related with percent silt and percent clay, but no significant relationship existed between measured toxicity and sediment composition for methyl parathion-spiked formulations. Results suggest that solid-phase sediment bioassays using bioluminescence bacteria may be useful for testing the toxicities of single contaminants in formulated artificial sediments of known particle-size composition, and for repeated samples collected from the same site. However, extreme caution must be taken when testing sediments of varying composition or which may be differentially contaminated or contain a suite of contaminants.

  12. A Facile Solid-Phase Route to Renewable Aromatic Chemicals from Biobased Furanics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; van der Waal, Jan C; de Jong, Ed; Weckhuysen, Bert M; van Haveren, Jacco; Bruijnincx, Pieter C A; van Es, Daan S

    2016-01-22

    Renewable aromatics can be conveniently synthesized from furanics by introducing an intermediate hydrogenation step in the Diels-Alder (DA) aromatization route, to effectively block retro-DA activity. Aromatization of the hydrogenated DA adducts requires tandem catalysis, using a metal-based dehydrogenation catalyst and solid acid dehydration catalyst in toluene. Herein it is demonstrated that the hydrogenated DA adducts can instead be conveniently converted into renewable aromatics with up to 80% selectivity in a solid-phase reaction with shorter reaction times using only an acidic zeolite, that is, without solvent or dehydrogenation catalyst. Hydrogenated adducts from diene/dienophile combinations of (methylated) furans with maleic anhydride are efficiently converted into renewable aromatics with this new route. The zeolite H-Y was found to perform the best and can be easily reused after calcination.

  13. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements.

    PubMed

    Basozabal, Itsaso; Guerreiro, Antonio; Gomez-Caballero, Alberto; Aranzazu Goicolea, M; Barrio, Ramón J

    2014-08-15

    A new potentiometric sensor based on molecularly imprinted nanoparticles produced via the solid-phase imprinting method was developed. For histamine quantification, the nanoparticles were incorporated within a membrane, which was then used to fabricate an ion-selective electrode. The use of nanoparticles with high affinity and specificity allowed for label-free detection/quantification of histamine in real samples with short response times. The sensor could selectively quantify histamine in presence of other biogenic amines in real wine and fish matrices. The limit of detection achieved was 1.12×10(-6)molL(-1), with a linear range between 10(-6) and 10(-2)molL(-1) and a response time below 20s, making the sensor as developed a promising tool for direct quantification of histamine in the food industry.

  14. Microtiter solid-phase radioimmunoassay for detection of human calicivirus in stools.

    PubMed Central

    Nakata, S; Chiba, S; Terashima, H; Sakuma, Y; Kogasaka, R; Nakao, T

    1983-01-01

    A microtiter solid-phase radioimmunoassay (RIA) was developed for detection of human calicivirus in stool specimens. Seventy-eight stool specimens were tested by RIA. All 17 specimens positive for human calicivirus by electron microscopy (EM) were also positive by RIA. In addition, of 21 specimens obtained from an outbreak of caliciviral gastroenteritis, 11 were positive by RIA but negative by EM. Of 20 specimens positive for rotavirus by EM and 20 nondiarrheic specimens with no virus, 2 and 1, respectively, were positive by RIA but were subsequently shown to be falsely positive by a blocking test. There was no cross-reaction between human and feline caliciviruses. Thus, the test was more sensitive than EM and, with an appropriate blocking test, was specific for human calicivirus. It might be especially useful for screening large numbers of stool specimens. PMID:6833476

  15. [Determination of organophosphorous pesticide residues in red wine by solid phase microextraction-gas chromatography].

    PubMed

    Hu, Yuan; Liu, Wenmin; Zhou, Yanming; Guan, Yafeng

    2006-05-01

    A method for the determination of 12 organophosphorus pesticide residues (OPs) in red wine by fiber solid phase microextraction (SPME) coupled with gas chromatography (GC) was developed and validated. The SPME phase was prepared by sol-gel technology of physical incorporation. The extraction conditions were optimized with the results of stirring rate of 1,250 r/min, NaCl mass concentration of 150 g/L, and extraction time of 30 min. With the sample volume of 25 mL, the relative standard deviations (RSD) of peak areas for most of OPs were below 5%, and the detection limits of OPs were in the range of 5 ng/L-0.38 microg/L. It can be seen from the results that this method has the potential to analyze OPs in other beverages and soft drinking materials.

  16. Synthesis of chitosan molecularly imprinted polymers for solid-phase extraction of methandrostenolone.

    PubMed

    Wang, Yun; Wang, Enlan; Wu, Ziming; Li, Huan; Zhu, Zhi; Zhu, Xinsheng; Dong, Ying

    2014-01-30

    Chitosan molecularly imprinted polymers (CHI-MIPs) for selective extraction of methandrostenolone (MA) was synthesized by cross-linking of chitosan with epichlorohydrin in the presence of MA as the template molecule. Systematic investigations of the influences of template, functional polymer, cross-linker as well as porogen concentrations on the rebinding capacity of CHI-MIPs were carried out. Adsorption and kinetic binding experiments indicated that the synthesized CHI-MIPs had high adsorption and excellent affinity to MA. Solid-phase extraction (SPE) using the prepared CHI-MIPs as adsorbent was then investigated, and the optimum loading and eluting conditions for SPE of the MA were established. The optimized SPE procedure was used to extract the MA from several spiked samples and a good sample clean-up was obtained with the average recoveries ranged from 95.97 to 101.79%.

  17. Solid Phase Luminescence of Several Rare Earth Ions on Ion-Exchange Films

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.; Street, Kenneth W., Jr.

    1999-01-01

    The development and characterization of a novel ion-exchange film for solid-phase fluorometry and phosphorimetry is reported. This new cation-exchange material is suitable for spectroscopic applications in the ultraviolet and visible regions. It is advantageous because it, as a single entity, is easily recovered from solution and mounted in the spectrofluorometers. After preconcentration on the film, the luminescence intensity of lanthanide ions is several orders of magnitude greater than that of the corresponding solution, depending on the volume of solution and the amount of film. This procedure allows emission spectral measurements and determination of lanthanide ions at solution concentrations of < 5 (micro)g/L. The film may be stored for subsequent reuse or as a permanent record of the analysis. The major drawback to the use of the film is slow uptake of analyte due to diffusion limitations.

  18. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification

    NASA Technical Reports Server (NTRS)

    Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.

    1998-01-01

    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  19. Ballpoint pen inks: the quantitative analysis of ink solvents on paper by solid-phase microextraction.

    PubMed

    Brazeau, Luc; Gaudreau, Marc

    2007-01-01

    We wish to describe further developments to a method previously reported on the detection of 2-phenoxyethanol in ink. The solid-phase microextraction (SPME) sampling technique, together with gas chromatography-mass spectrometry (GC-MS), has been used to quantify solvents in writing ink. In conventional approaches, the analysis of ink on documents requires some degree of destructive sampling. The methods commonly used remove ink samples from paper using a scalpel or a paper punch. To avoid document destruction, a sampling cell was constructed that allows solvents to be adsorbed directly onto the SPME fiber from the headspace above the document surface. Analytes (ink volatiles) are then desorbed from the SPME fiber on a gas chromatograph equipped with a mass selective detector (GC-MSD). With this method, it was possible to detect the presence of ink solvents on documents for a period lasting up to c. 2 years.

  20. Nickel nanoparticles in carbon structures prepared by solid-phase pyrolysis of nickel-phthalocyanine

    NASA Astrophysics Data System (ADS)

    Manukyan, A. S.; Mirzakhanyan, A. A.; Badalyan, G. R.; Shirinyan, G. H.; Fedorenko, A. G.; Lianguzov, N. V.; Yuzyuk, Yu I.; Bugaev, L. A.; Sharoyan, E. G.

    2012-07-01

    By using a modified method of solid-phase pyrolysis of metal-phthalocyanines, we have synthesized ferromagnetic Ni nanoparticles in different carbon structures: amorphous carbon plates, multiwall carbon nanotubes, carbon fibers, and graphitized capsules. The composition, structure and morphology of prepared composite materials have been studied by energy dispersive X-ray microanalysis, scanning and transmission electron microscopy, and X-ray diffraction technique. It has been found that the sizes of nickel nanoparticles (10-500 nm) and the type of carbon structures strongly depend on the pyrolysis conditions. By using the X-band ferromagnetic resonance measurements, we have revealed features of the temperature dependence of resonance spectra of single-domain and multi-domain Ni nanoparticles in Ni/C composites.

  1. Solid Phase Characterization of Tank 241-C-108 Residual Waste Solids Samples

    SciTech Connect

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.

    2013-05-29

    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted the SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.

  2. Application of solid-phase microextraction combined with derivatization to the enantiomeric determination of amphetamines.

    PubMed

    Cháfer-Pericás, C; Campíns-Falcó, P; Herráez-Hernández, R

    2006-03-18

    The utility of combining chiral derivatization and solid-phase microextraction (SPME) for the enantiomeric analysis of primary amphetamines by liquid chromatography has been investigated. Different derivatization/extraction strategies have been evaluated and compared using the chiral reagent o-phthaldialdehyde (OPA)-N-acetyl-l-cysteine (NAC) and fibres with a Carbowax-templated resin coating. Amphetamine, norephedrine and 3,4-methylenedioxyamphetamine (MDA) were used as model compounds. On the basis of the results obtained, a new method is presented based on the derivatization of the analytes in solution followed by SPME of the OPA-NAC derivatives formed. The proposed conditions have been applied to determine the compounds of interest at low ppm levels (

  3. Solid-phase synthesis and biological evaluation of Joro spider toxin-4 from Nephila clavata.

    PubMed

    Barslund, Anne F; Poulsen, Mette H; Bach, Tinna B; Lucas, Simon; Kristensen, Anders S; Strømgaard, Kristian

    2011-03-25

    Polyamine toxins from orb weaver spiders are attractive pharmacological tools particularly for studies of ionotropic glutamate (iGlu) receptors in the brain. These polyamine toxins are biosynthesized in a combinatorial manner, providing a plethora of related, but structurally complex toxins to be exploited in biological studies. Here, we have used solid-phase synthetic methodology for the efficient synthesis of Joro spider toxin-4 (JSTX-4) (1) from Nephila clavata, providing sufficient amounts of the toxin for biological evaluation at iGlu receptor subtypes using electrophysiology. Biological evaluation revealed that JSTX-4 inhibits iGlu receptors only in high μM concentrations, thereby being substantially less potent than structurally related polyamine toxins.

  4. Anomalous bond length behavior and a new solid phase of bromine under pressure

    PubMed Central

    Wu, Min; Tse, John S.; Pan, Yuanming

    2016-01-01

    The behavior of diatomic molecular solids under pressure have attracted great interest and been extensively studied. Under ambient pressure, the structure of bromine is known to be a molecular phase (phase I). With increasing pressure, it transforms into an incommensurate phase (phase V) before eventually to a monoatomic phase (phase II). However, between phases I and V, the interatomic distance was found to first increase with pressure and then decreased abruptly. This anomalous bond length behavior is accompanied by the splitting of the Raman bands. These phenomena have not been resolved. Here we suggest a new solid phase that explains the Raman spectra. Furthermore, the anomalous bond length behavior is found to be the result of subtle second neighbor intermolecular interactions and is an intrinsic property of bromine in molecular phases. PMID:27156710

  5. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    NASA Astrophysics Data System (ADS)

    Blair, D. S.; Frye, G. C.; Hughes, R. C.; Martin, S. J.; Ricco, A. J.

    1990-05-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material in contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  6. Syringe-cartridge solid-phase extraction method for patulin in apple juice.

    PubMed

    Eisele, Thomas A; Gibson, Midori Z

    2003-01-01

    A syringe-cartridge solid-phase extraction (SPE) method was developed for determination of patulin in apple juice. A 2.5 mL portion of test sample was passed through a conditioned macroporous SPE cartridge and washed with 2 mL 1% sodium bicarbonate followed by 2 mL 1% acetic acid. Patulin was eluted with 1 mL 10% ethyl acetate in ethyl ether and determined by reversed-phase liquid chromatography using a mobile phase consisting of 81% acetonitrile, 9% water, and 10% 0.05M potassium phosphate buffer, pH 2.4. Recoveries averaged 92% and the relative standard deviation was 8.0% in test samples spiked with 50 ng/mL patulin. The method appears to be applicable for monitoring apple juice samples to meet the U.S. Food and Drug Administration compliance action level of 50 microg/kg in an industrial quality assurance laboratory environment.

  7. Modelling the large strain solid phase deformation behaviour of polymer nanoclay composites

    NASA Astrophysics Data System (ADS)

    Spencer, P. E.; Spares, R.; Sweeney, J.; Coates, P. D.

    2008-12-01

    This work concerns the solid phase deformation processing of polypropylene/nanoclay composites, for which the materials are stretched to large tensile deformations at elevated temperatures. Under these conditions the polymer matrix is nonlinearly dependent on time and strain rate. A constitutive model that is a combination of an Eyring process and physically-based molecular chain models has been shown to give a good representation of the polymer behavior, which includes strain-rate dependent yielding and stress relaxation. In order to model the nanocomposite, platelike regions that are relatively stiff are introduced into a continuum of model polymer material. This is done using a Monte Carlo approach that sequentially places non-overlapping platelets in the matrix. The process for introducing the platelets has the potential to produce platelet orientation distributions that conform with prescribed statistics, such as may be deduced from observations on real nanocomposite.

  8. Regiospecific solid-phase synthesis of branched oligoribonucleotides that mimic intronic lariat RNA intermediates.

    PubMed

    Katolik, Adam; Johnsson, Richard; Montemayor, Eric; Lackey, Jeremy G; Hart, P John; Damha, Masad J

    2014-02-07

    We have developed new solid phase methods for the synthesis of branched RNAs that mimic intronic lariat RNA intermediates. These methods produce branched oligoribonucleotide sequences of arbitrary length, base composition, and regiochemistry at the branchpoint junction. The methods utilize branching monomers that allow for the growth of each branch regioselectively from any of the hydroxyl positions (5′, 3′, or 2′) at the branch-point junction. The integrity and branchpoint connectivity of the synthetic products have been confirmed by HPLC and MS analysis, and cleavage of the 2′,5′ linkage by recombinant debranching enzyme. Nonhydrolyzable branched RNA analogues containing arabinose instead of ribose at the branchpoint junction were shown to inhibit debranching activity and, hence, represent “decoys” for sequestering RNA binding proteins thought to drive amyotrophic lateral sclerosis (ALS).

  9. New monoclonal-antibody two-site solid-phase immunoradiometric assay for human thyrotropin evaluated

    SciTech Connect

    Pekary, A.E.; Hershman, J.M.

    1984-07-01

    The authors compared results with a commercial solid-phase two-site immunoradiometric assay kit for human thyrotropin in which monoclonal antibodies are used with those by our radioimmunoassay, which is optimized for measurement of low concentrations of thyrotropin. In the immunoradiometric assay a specific antibody to the beta subunit of human thyrotropin is immobilized on a polystyrene bead, and a radiolabeled monoclonal antibody directed against the alpha subunit provides a measure of bead-immobilized hormone. The mean thyrotropin concentrations in 70 euthyroid serum samples were similar in the two assays. Values for hypothyroid patients were clearly higher in both assays than values for euthyroid individuals. In commercial assays the major source of error in measurement of thyrotropin response to thyroliberin in terms of the increment over the basal concentration of thyrotropin has been systematic errors in the measurement of those basal concentrations. With the present assay, however, basal values are obtained with good precision and accuracy.

  10. Solid-phase synthesis of lidocaine and procainamide analogues using backbone amide linker (BAL) anchoring.

    PubMed

    Shannon, Simon K; Peacock, Mandy J; Kates, Steven A; Barany, George

    2003-01-01

    New solid-phase strategies have been developed for the synthesis of lidocaine (1) and procainamide (2) analogues, using backbone amide linker (BAL) anchoring. Both sets were prepared starting from a common resin-bound intermediate, followed by four general steps: (i) attachment of a primary aliphatic or aromatic amine to the solid support via reductive amination (as monitored by a novel test involving reaction of 2,4-dinitrophenylhydrazine with residual aldehyde groups); (ii) acylation of the resultant secondary amine; (iii) displacement of halide with an amine; and (iv) trifluoroacetic acid-mediated release from the support. A manual parallel strategy was followed to provide 60 novel compounds, of which two dozen have not been previously described. In most cases, initial crude purities were >80%, and overall isolated yields were in the 40-88% range.

  11. Analysis of volatiles of malt whisky by solid-phase microextraction and stir bar sorptive extraction.

    PubMed

    Demyttenaere, Jan C R; Martínez, Jorge I Sánchez; Verhé, Roland; Sandra, Pat; De Kimpe, Norbert

    2003-01-24

    Blended Scotch whisky was analysed by solid-phase microextraction (SPME) and stir bar sorptive extraction (SBSE) to study the composition of the volatiles. For SPME analysis, three different fibres were compared, poly(dimethylsiloxane) (PDMS) (100 microm). poly(acrylate) (PA) (85 microm) and divinylbenzene-Carboxen on poly(dimethylsiloxane) (DVB-CAR-(PDMS) (50/30 microm). It was found that the PDMS and DVB-CAR-PDMS fibres showed a higher enrichment capacity than PA as well as a better reproducibility. The influence of sampling time, temperature and salt addition on the enrichment of volatiles as well as the difference between liquid and headspace SPME were studied. An optimum SPME method was developed. Finally a more recent sample preparation technique, namely SBSE was evaluated to extract whisky volatiles.

  12. Determination of naphthenic acids in crude oils using nonaqueous ion exchange solid-phase extraction.

    PubMed

    Jones, D M; Watson, J S; Meredith, W; Chen, M; Bennett, B

    2001-02-01

    A method is presented for the routine, rapid, and quantitative analysis of aliphatic and naphthenic acids in crude oils, based on their isolation using nonaqueous ion exchange solid-phase extraction cartridges. The isolated acid fractions are methylated and analyzed by gas chromatography and gas chromatography/mass spectrometry. The method is effective on both light and heavy oils and is capable of providing mechanistic information of geochemical significance on the origin of the acids in the oils. Analysis of oils that were solvent extracted from laboratory and field mesocosm marine sediment oil degradation studies indicate that this new method of analyzing the products of hydrocarbon biodegradation may be a useful tool for monitoring the progress of bioremediation of oil spills in the environment.

  13. CO2 in the mantle: Melting and solid-solid phase boundaries

    NASA Astrophysics Data System (ADS)

    Teweldeberhan, A. M.; Boates, B.; Bonev, S. A.

    2013-07-01

    The high temperature phase boundaries of CO2 in the proximity of the Earth's adiabat are determined using first-principles molecular dynamics simulations based on density functional theory. The melting curve, predicted here up to 71 GPa, and the molecular to polymeric solid phase transition are computed through a phase coexistence approach from free energy calculations. The resulting CO2 phase IV-phase V-liquid triple point is at 31.8 GPa and 1636 K, in excellent agreement with the available experimental data. The Earth's geotherm crosses into the non-molecular phase V near 40 GPa and 2160 K, indicating that free deposits of carbon dioxide in the lower mantle would exist as a polymeric solid. We have also examined the thermodynamic stability of phase V and find no indication of transformations into a dissociated diamond and oxygen phase at mantle conditions.

  14. Anomalous bond length behavior and a new solid phase of bromine under pressure

    NASA Astrophysics Data System (ADS)

    Wu, Min; Tse, John S.; Pan, Yuanming

    2016-05-01

    The behavior of diatomic molecular solids under pressure have attracted great interest and been extensively studied. Under ambient pressure, the structure of bromine is known to be a molecular phase (phase I). With increasing pressure, it transforms into an incommensurate phase (phase V) before eventually to a monoatomic phase (phase II). However, between phases I and V, the interatomic distance was found to first increase with pressure and then decreased abruptly. This anomalous bond length behavior is accompanied by the splitting of the Raman bands. These phenomena have not been resolved. Here we suggest a new solid phase that explains the Raman spectra. Furthermore, the anomalous bond length behavior is found to be the result of subtle second neighbor intermolecular interactions and is an intrinsic property of bromine in molecular phases.

  15. Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer.

    PubMed

    Quesada-Molina, Carolina; Claude, Bérengère; García-Campaña, Ana M; del Olmo-Iruela, Monsalud; Morin, Philippe

    2012-11-15

    In this paper, a molecularly imprinted polymer (MIP) for cephalosporin molecules (cephalexin (CFL) and cephapirin (CFP)), was prepared by non covalent molecular imprinting approach and applied to solid phase extraction (SPE). For MIP synthesis, a tributylammonium cefadroxil salt (TBA-CFD) was used as template with methacrylic acid and ethylene glycol dimethacrylate as monomer and cross-linker, respectively, in acetone-methanol 92/8 (v/v) mixture. The selectivity of MIP versus non imprinted polymer (NIP) was confirmed for CFL, CFD and CFP in standard solutions as well as in milk samples. The efficiency of the synthesized MIP was evaluated by means of the application of the proposed MIP-SPE procedure to spiked milk samples previous to the HPLC method for the detection of cephalosporins. The MIP-SPE recoveries were higher than 60% for the three target analytes in spiked milk.

  16. Development of a Paper Spray Mass Spectrometry Cartridge with Integrated Solid Phase Extraction for Bioanalysis.

    PubMed

    Zhang, Chengsen; Manicke, Nicholas E

    2015-06-16

    A novel paper spray cartridge with an integrated solid phase extraction (SPE) column is described. The cartridge performs extraction and pre-concentration, as well as sample ionization by paper spray, from complex samples such as plasma. The cartridge allows for selective enrichment of target molecules from larger sample volumes and removal of the matrix, which significantly improved the signal intensity of target compounds in plasma samples by paper spray ionization. Detection limits, quantitative performance, recovery, ionization suppression, and the effects of sample volume were evaluated for five drugs: carbamazepine, atenolol, sulfamethazine, diazepam, and alprazolam. Compared with direct paper spray analysis of dried plasma spots, paper spray analysis using the integrated solid phase extraction improved the detection limits significantly by a factor of 14-70, depending on the drug. The improvement in detection limits was, in large part, due to the capability of analyzing larger sample volumes. In addition, ionization suppression was found to be lower and recovery was higher for paper spray with integrated SPE, as compared to direct paper spray analysis. By spiking an isotopically labeled internal standard into the plasma sample, a linear calibration curve for the drugs was obtained from the limit of detection (LOD) to 1 μg/mL, indicating that this method can be used for quantitative analysis. The paper spray cartridge with integrated SPE could prove valuable for analytes that ionize poorly, in applications where lower detection limits are required, or on portable mass spectrometers. The improved performance comes at the cost of requiring a more complex paper spray cartridge and requiring larger sample volumes than those used in typical direct paper spray ionization.

  17. Solid phase treatment of an aged soil contaminated by polycyclic aromatic hydrocarbons.

    PubMed

    Negri, Marco; Manfredini, Andrea; Saponaro, Sabrina; Sorlini, Claudia; Bonomo, Luca; Valle, Anna; Zanardini, Elisabetta

    2004-01-01

    Laboratory scale tests were carried out in order to evaluate the removal efficiency of polyaromatic hydrocarbons (PAHs) during the different biological treatments of a Manufacturing Gas Plant site aged soil, heavily contaminated by high molecular weight compounds. Biodegradation studies were carried out at nearly 25 degrees C in solid phase reactors. Three tests were performed, over a period of 100 days for each test. In the first test (P1-bioaugmentated), soil was mixed with wood chips and urea at the start of the treatment and after six weeks from the beginning of the test was also periodically inoculated (at 42, 54, 69, 82, and 96 days) with selected consortia of autochthonous PAH-degrading bacteria. The second test (P2-biostimulated) was performed similarly to the previous one, but without any inoculations. In the third test (P3-control) only soil was introduced. All systems were aerated daily and humidified at the occurrence. PAH concentration, total cultivable heterotrophs, PAH-degrading bacteria, mycetes, pH, ATP concentration, and enzymatic activities were monitored every two weeks during the treatments. Tests showed that nearly 50% of light (three rings) PAHs, 35% of benzo-PAHs and 40% of the total PAHs could be removed in the reactor P2 following 100 days of treatment. Lower removal efficiency could be observed for light PAHs (28%) in the inoculated reactor (P1) at the end of the treatment: comparable abatements were obtained for benzo- and total PAHs. In the reactor P3 (control), the concentration of all polyaromatic hydrocarbons was nearly always constant, suggesting that the physical losses were negligible during the solid phase treatments. Therefore the C to N ratio balance resulted to be the key factor in promoting the biodegradation process of all PAHs.

  18. Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography

    SciTech Connect

    Freeze, Ronald

    1997-10-08

    Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 μl injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few μl of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

  19. Utility of solid phase extraction for spectrophotometric determination of gold in water, jewel and ore samples

    NASA Astrophysics Data System (ADS)

    Amin, Alaa S.

    2010-12-01

    A highly sensitive, selective and rapid method for the determination μg L -1 level of Au(III) based on the rapid reaction of Au(III) with 2,3-dichloro-6-(3-carboxy-2-hydroxy-1-naphthylazo)quinoxaline (DCHNAQ) and the solid phase extraction of the colored complex with a reversed phase polymer-based C18 cartridge have been developed. The DCHNAQ reacted with Au(III) to form a violet complex of a molar ratio 3:1 [DCHNAQ to Au(III)] in the presence of 5.0 M of phosphoric acid solution and Triton X-100 medium. This complex was enriched by the solid phase extraction with a polymer-based C18 cartridge. The enrichment factor of 100 was achieved. The molar absorptivity of the complex is 2.73 × 10 5 l mol -1 cm -1 at 633 nm in the measured solution. The system obeys Beer's law in the range of 0.02-1.30 μg ml -1, whereas the optimum concentration ranges obtained from Ringbom plot was 0.08-1.24 μg ml -1. The relative standard deviation for ten replicates sample of 0.6 μg ml -1 level is 1.28%. The detection and quantification limits, are 6.1 and 19.5 ng ml -1 in the original sample. This method was applied to the determination of gold in water, jewel and ore samples with good results comparing to the GFAAS method.

  20. Aluminum effect on dissolution and precipitation under hyperalkaline conditions: II. Solid phase transformations.

    PubMed

    Qafoku, Nikolla P; Ainsworth, Calvin C; Szecsody, James E; Bish, David L; Young, James S; McCready, David E; Qafoku, Odeta S

    2003-01-01

    The high-level radioactive, Al-rich, concentrated alkaline and saline waste fluids stored in underground tanks have accidentally leaked into the vadose zone at the Hanford Site in Washington State. In addition to dissolution, precipitation is likely to occur when these waste fluids contact the sediments. The objective of this study was to investigate the solid phase transformations caused by dissolution and precipitation in the sediments treated with solutions similar to the waste fluids. Batch experiments at 323 K were conducted in metal- and glass-free systems under CO2 and O2 free conditions. Results from X-ray diffraction (XRD), quantitative X-ray diffraction (QXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and energy dispersive X-ray fluorescence spectroscopy (EDXRF) indicated that significant solid phase transformations occurred in the sediments contacted with Al-rich, hyperalkaline, and saline solutions. The XRD and QXRD analyses confirmed that smectite and most likely biotite underwent dissolution. The SEM and the qualitative EDS analyses confirmed the formation of alumino-silicates in the groups of cancrinite and probably sodalite. The morphology of the alumino-silicates secondary phases changed in response to changes in the Si/Al aqueous molar ratio. The transformations in the sediments triggered by dissolution (weathering of soil minerals) and precipitation (formation of secondary phases with high specific surface area and probably high sorption capacities) may play a significant role in the immobilization and ultimate fate of radionuclides and contaminants such as Cs, Sr, and U in the Hanford vadose zone.

  1. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis

    PubMed Central

    2015-01-01

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the “structure elucidation problem”: the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS’s utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 104 molecules/bead and sequencing allowed for elucidation of each compound’s synthetic history. We applied DESPS to the combinatorial synthesis of a 75 645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and

  2. A metal organic framework-polyaniline nanocomposite as a fiber coating for solid phase microextraction.

    PubMed

    Bagheri, Habib; Javanmardi, Hasan; Abbasi, Alireza; Banihashemi, Solmaz

    2016-01-29

    A metal organic framework-polyaniline (MOF/PANI) nanocomposite was electrodeposited on a stainless steel wire and used as a solid phase microextraction (SPME) fiber coating. The electropolymerization process was carried out under a constant deposition potential and applied to the corresponding aqueous electrolyte containing aniline and MOF particles. The employment of MOFs with their large and small cages and 3-D structures in synthesizing a nanocomposite was assumed to be efficient constitutes to induce more non-smooth and porous structures, approved by scanning electron microscopy (SEM) images. Three different MOFs were incorporated to synthesize the desired nanocomposites and the preliminary experiments showed that all of them, particularly the one containing MOF2, have higher extraction performances in compared with PANI. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some chlorobenzenes (CBs) from aqueous samples. Influencing parameters on the synthesize and extraction processes including the electrodeposition voltage and its duration time, the weight ratio of PANI and MOF, the ionic strength, desorption temperature and time, and extraction time and temperature were optimized. The developed method was validated by analyzing the spiked distilled water and gas chromatography-mass spectrometry (GC-MS). Under optimum condition, the relative standard deviation (RSD%) values for a double distilled water spiked with the selected CBs at 20ngL(-1) were 5-8% (n=3) and the detection limits were below 0.2ngL(-1). The linear dynamic range (LDR) of the method was in the concentration range of 0.5-1000ngL(-1) (R(2)>0.9994). The fiber-to-fiber reproducibility was found to be in the range of 4-7%. Eventually, various real-water samples were analyzed by the MOF/PANI-based HS-SPME and GC-MS and the relative recovery values were found to be in the range of 92-98%.

  3. Cold fiber solid-phase microextraction device based on thermoelectric cooling of metal fiber.

    PubMed

    Haddadi, Shokouh Hosseinzadeh; Pawliszyn, Janusz

    2009-04-03

    A new cold fiber solid-phase microextraction device was designed and constructed based on thermoelectric cooling. A three-stage thermoelectric cooler (TEC) was used for cooling a copper rod coated with a poly(dimethylsiloxane) (PDMS) hollow fiber, which served as the solid-phase microextraction (SPME) fiber. The copper rod was mounted on a commercial SPME plunger and exposed to the cold surface of the TEC, which was enclosed in a small aluminum box. A heat sink and a fan were used to dissipate the generated heat at the hot side of the TEC. By applying an appropriate dc voltage to the TEC, the upper part of the copper rod, which was in contact to the cold side of the TEC, was cooled and the hollow fiber reached a lower temperature through heat transfer. A thermocouple was embedded in the cold side of the TEC for indirect measurement of the fiber temperature. The device was applied in quantitative analysis of off-flavors in a rice sample. Hexanal, nonanal, and undecanal were chosen as three off-flavors in rice. They were identified according to their retention times and analyzed by GC-flame ionization detection instrument. Headspace extraction conditions (i.e., temperature and time) were optimized. Standard addition calibration graphs were obtained at the optimized conditions and the concentrations of the three analytes were calculated. The concentration of hexanal was also measured using a conventional solvent extraction method (697+/-143ng/g) which was comparable to that obtained from the cold fiber SPME method (644+/-8). Moreover, the cold fiber SPME resulted in better reproducibility and shorter analysis time. Cold fiber SPME with TEC device can also be used as a portable device for field sampling.

  4. Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review.

    PubMed

    Herrero-Latorre, C; Barciela-García, J; García-Martín, S; Peña-Crecente, R M; Otárola-Jiménez, J

    2015-09-10

    Magnetic solid-phase extraction (M-SPE) is a procedure based on the use of magnetic sorbents for the separation and preconcentration of different organic and inorganic analytes from large sample volumes. The magnetic sorbent is added to the sample solution and the target analyte is adsorbed onto the surface of the magnetic sorbent particles (M-SPs). Analyte-M-SPs are separated from the sample solution by applying an external magnetic field and, after elution with the appropriate solvent, the recovered analyte is analyzed. This approach has several advantages over traditional solid phase extraction as it avoids time-consuming and tedious on-column SPE procedures and it provides a rapid and simple analyte separation that avoids the need for centrifugation or filtration steps. As a consequence, in the past few years a great deal of research has been focused on M-SPE, including the development of new sorbents and novel automation strategies. In recent years, the use of magnetic carbon nanotubes (M-CNTs) as a sorption substrate in M-SPE has become an active area of research. These materials have exceptional mechanical, electrical, optical and magnetic properties and they also have an extremely large surface area and varied possibilities for functionalization. This review covers the synthesis of M-CNTs and the different approaches for the use of these compounds in M-SPE. The performance, general characteristics and applications of M-SPE based on magnetic carbon nanotubes for organic and inorganic analysis have been evaluated on the basis of more than 110 references. Finally, some important challenges with respect the use of magnetic carbon nanotubes in M-SPE are discussed.

  5. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases.

    PubMed

    Boyacı, Ezel; Rodríguez-Lafuente, Ángel; Gorynski, Krzysztof; Mirnaghi, Fatemeh; Souza-Silva, Érica A; Hein, Dietmar; Pawliszyn, Janusz

    2015-05-11

    In chemical analysis, sample preparation is frequently considered the bottleneck of the entire analytical method. The success of the final method strongly depends on understanding the entire process of analysis of a particular type of analyte in a sample, namely: the physicochemical properties of the analytes (solubility, volatility, polarity etc.), the environmental conditions, and the matrix components of the sample. Various sample preparation strategies have been developed based on exhaustive or non-exhaustive extraction of analytes from matrices. Undoubtedly, amongst all sample preparation approaches, liquid extraction, including liquid-liquid (LLE) and solid phase extraction (SPE), are the most well-known, widely used, and commonly accepted methods by many international organizations and accredited laboratories. Both methods are well documented and there are many well defined procedures, which make them, at first sight, the methods of choice. However, many challenging tasks, such as complex matrix applications, on-site and in vivo applications, and determination of matrix-bound and free concentrations of analytes, are not easily attainable with these classical approaches for sample preparation. In the last two decades, the introduction of solid phase microextraction (SPME) has brought significant progress in the sample preparation area by facilitating on-site and in vivo applications, time weighted average (TWA) and instantaneous concentration determinations. Recently introduced matrix compatible coatings for SPME facilitate direct extraction from complex matrices and fill the gap in direct sampling from challenging matrices. Following introduction of SPME, numerous other microextraction approaches evolved to address limitations of the above mentioned techniques. There is not a single method that can be considered as a universal solution for sample preparation. This review aims to show the main advantages and limitations of the above mentioned sample

  6. Utility of solid phase extraction for spectrophotometric determination of gold in water, jewel and ore samples.

    PubMed

    Amin, Alaa S

    2010-12-01

    A highly sensitive, selective and rapid method for the determination μg L(-1) level of Au(III) based on the rapid reaction of Au(III) with 2,3-dichloro-6-(3-carboxy-2-hydroxy-1-naphthylazo)quinoxaline (DCHNAQ) and the solid phase extraction of the colored complex with a reversed phase polymer-based C18 cartridge have been developed. The DCHNAQ reacted with Au(III) to form a violet complex of a molar ratio 3:1 [DCHNAQ to Au(III)] in the presence of 5.0 M of phosphoric acid solution and Triton X-100 medium. This complex was enriched by the solid phase extraction with a polymer-based C18 cartridge. The enrichment factor of 100 was achieved. The molar absorptivity of the complex is 2.73×10(5) l mol(-1) cm(-1) at 633 nm in the measured solution. The system obeys Beer's law in the range of 0.02-1.30 μg ml(-1), whereas the optimum concentration ranges obtained from Ringbom plot was 0.08-1.24 μg ml(-1). The relative standard deviation for ten replicates sample of 0.6 μg ml(-1) level is 1.28%. The detection and quantification limits, are 6.1 and 19.5 ng ml(-1) in the original sample. This method was applied to the determination of gold in water, jewel and ore samples with good results comparing to the GFAAS method.

  7. Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction.

    PubMed

    Beaulieu, John C; Lea, Jeanne M

    2006-10-04

    Seedless triploid watermelons have increased in popularity since the early 1990s, and the demand for seedless fruit is on the rise. Sweetness and sugars are crucial breeding focuses for fruit quality. Volatiles also play an important role; yet, we found no literature for seedless varieties and no reports using solid-phase microextraction (SPME) in watermelon. The objective of this experiment was to identify volatile and semivolatile compounds in five seedless watermelon varieties using carboxen divinylbenzene polydimethylsiloxane solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS). Fully ripe watermelon was squeezed through miracloth to produce rapid juice extracts for immediate headspace SPME GC-MS. Aldehydes, alcohols, ketones, and one furan (2-pentyl furan, a lipid oxidation product) were recovered. On the basis of total ion count peak area, the most abundant compounds in five varieties were 3-nonen-1-ol/(E,Z)-2,6-nonadienal (16.5-28.2%), (E)-2-nonenal (10.6-22.5%), and (Z)-6-nonenal (2.0-11.3%). Hexanal was most abundant (37.7%) in one variety (Petite Perfection) [corrected] The most abundant ketone was 6-methyl-5-hepten-2-one (2.7-7.7%). Some sensory attributes reported for these compounds are melon, citrus, cucumber, orange, rose, floral, guava, violet, vegetable, green, grassy, herbaceous, pungent, fatty, sweet, and waxy. Identifying and relating these compounds to sensory attributes will allow for future monitoring of the critical flavor compounds in seedless watermelon after processing and throughout fresh-cut storage.

  8. Solid-phase immunoradiometric assay for serum amyloid A protein using magnetisable cellulose particles.

    PubMed

    De Beer, F C; Dyck, R F; Pepys, M B

    1982-10-29

    An immunoradiometric assay for human serum amyloid A protein (SAA) was developed using magnetisable cellulose particles as the solid phase. Rabbit antiserum to to SAA was raised by immunization with SAA isolated from acute-phase serum by gel filtration in formic acid. The antiserum was rendered monospecific for SAA by solid-phase immunoabsorption with normal human serum, which contains only traces of SAA, and some was coupled covalently to the cellulose particles. Immunopurified anti-SAA antibodies were isolated from the monospecific anti-SAA serum by binding to, and elution from insolubilized acute-phase serum and were radiolabelled with 125I. The assay was calibrated with an acute phase serum which contained 6000 times more SAA than normal sera with the lowest detectable level of SAA, and an arbitrary value of 6000 U/l was assigned to this standard. Sera were tested in the native, undenatured state and there was no increase in SAA immunoreactivity following alkali treatment or heating. The assay range was from 1-2000 U/l so that all SAA levels above 6 U/l could be measured on a single (1:6) dilution of serum. The intra- and interassay coefficients of variation were 11.7 and 15.0% respectively. Among 100 healthy normal subjects (50 male, 50 female) the median SAA level was 9 U/l, range less than 1-100, with 93% below 20 U/l and only 2% below the lower limit of sensitivity of the assay (1 U/l).

  9. Selective enrichment of the degradation products of organophosphorus nerve agents by zirconia based solid-phase extraction.

    PubMed

    Kanaujia, Pankaj K; Pardasani, Deepak; Tak, Vijay; Purohit, Ajay K; Dubey, D K

    2011-09-23

    Selective extraction and enrichment of nerve agent degradation products has been achieved using zirconia based commercial solid-phase extraction cartridges. Target analytes were O-alkyl alkylphosphonic acids and alkylphosphonic acids, the environmental markers of nerve agents such as sarin, soman and VX. Critical extraction parameters such as modifier concentration, nature and volume of washing and eluting solvents were investigated. Amongst other anionic compounds, selectivity in extraction was observed for organophosphorus compounds. Recoveries of analytes were determined by GC-MS which ranged from 80% to 115%. Comparison of zirconia based solid-phase extraction method with anion-exchange solid-phase extraction revealed its selectivity towards phosphonic acids. The limits of detection (LOD) and limit of quantification (LOQ) with selected analytes were achieved down to 4.3 and 8.5 ng mL(-1), respectively, in selected ion monitoring mode.

  10. Hydrophilic solid-phase extraction of melamine with ampholine-modified hybrid organic-inorganic silica material.

    PubMed

    Wang, Tingting; Zhu, Yiming; Ma, Junfeng; Xuan, Rongrong; Gao, Haoqi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2015-01-01

    In this work, an ampholine-functionalized hybrid organic-inorganic silica sorbent was successfully used to extract melamine from a milk formula sample by a hydrophilic interaction solid-phase extraction protocol. Primary factors affecting the extraction efficiency of the material such as extraction solvent, elution solvent, sample loading volume, and elution volume have been thoroughly optimized. Under the optimized hydrophilic solid-phase extraction conditions, the recoveries of melamine spiked in milk formula samples ranged from 86.2 to 101.8% with relative standard deviations of 4.1-9.4% (n = 3). The limit of detection (S/N = 3) was 0.32 μg/g. The adsorption capacity toward melamine was 30 μg of melamine per grams of sorbent. Due to its simplicity, rapidity and cost effectiveness, the newly developed hydrophilic solid-phase extraction method should provide a promising tool for daily monitoring of doped melamine in milk formula.

  11. A composite agarose-polyacrylamide matrix as two-dimensional hard support for solid-phase protein assays.

    PubMed

    Krajewski, Wladyslaw A

    2016-03-15

    The solid-phase protein assays using blotting membranes as hard support do not allow achieving the low background and sensitivity of protein staining in clear gels. The membrane opacity complicates imaging of results on standard lab documentation systems. We describe a low-cost transparent matrix that can be used as an alternative to polymeric membranes for solid-phase assays. Protein samples are spotted onto a dry film of composite agarose-polyacrylamide matrix covering standard glass microscopic slides. After rehydration in protein-fixing solution, matrix with protein samples can be detached from glass support and stained as conventional protein polyacrylamide gels.

  12. Genetics Home Reference: steatocystoma multiplex

    MedlinePlus

    ... Genetic Changes Steatocystoma multiplex can be caused by mutations in the KRT17 gene. This gene provides instructions ... skin, nails, and other tissues. The KRT17 gene mutations that cause steatocystoma multiplex alter the structure of ...

  13. Solid phase immobilization of optically responsive liposomes insol-gel materials for chemical and biological sensing

    SciTech Connect

    Yamanaka, Stacey A.; Charych, Deborah H.; Loy, Douglas A.; Sasaki, Darryl Y.

    1997-04-01

    Liposomes enhanced with surface recognition groups have previously been found to have high affinity for heavy metal ions and virus particles with unique fluorescent and colorimetric responses, respectively. These lipid aggregate systems have now been successfully immobilized in a silica matrix via the sol-gel method, affording sensor materials that are robust, are easily handled, and offer optical clarity. The mild processing conditions allow quantitative entrapment of preformed liposomes without modification of the aggregate structure. Lipid extraction studies of immobilized nonpolymerized liposomes showed no lipid leakage in aqueous solution over a period of 3 months. Heavy metal fluorescent sensor materials prepared with 5 percent N-[8-[1-octadecyl-2-(9-(1-pyrenyl)nonyl)-rac-glyceroyl]-3,6-dioxaoctyl]imino acid/distearylphosphatidylcholineliposomes exhibited a 4-50-fold enhancement in sensitivity to various metal ions compared to that of the liposomes in free solution. Through ionic attraction the anionic silicate surface, at the experimental pH of 7.4, may act as a preconcentrator of divalent metal ions, boosting the gel's internal metal concentration. Entrapped sialic acid-coated polydiacetylene liposomes responded with colorimetric signaling to influenza virus X31, although slower than the free liposomes in solution. The successful transport of the virus (50-100 nm diameter) reveals a large pore diameter of the gel connecting the liposome to the bulk solution. The porous and durable silica matrix additionally provides a protective barrier to biological attack (bacterial, fungal) and allows facile recycling of the liposome heavy metal sensor.

  14. Computer assisted multiplex sequencing

    SciTech Connect

    Church, G.M.

    1992-08-01

    The objectives of this project are automation and optimization of multiplex sequencing. This year we have integrated direct transfer electrophoresis, automated multiplex hybridizations and automated film reading and applied this toward sequencing of three contiguous E. coli cosmids. Primers for the directed dideoxy sequence walking and sequence confirmation steps were synthesized with a 15 base tag complimentary to an alkaline phosphatase conjugate. A higher throughput synthesis device is well along in testing as are new automated hybridization devices. We have developed software for automatically annotating ORFs and databases of precise termini of proteis and RNA.

  15. Adaptive Telemetry Multiplexer

    NASA Technical Reports Server (NTRS)

    Sinderson, R. L.; Salazar, G. A.; Haddick, C. M., Jr.; Spahn, C. J.; Venkatesh, C. N.

    1989-01-01

    Telemetry-data-acquisition unit adjusted remotely to produce changes in sampling rate, sampling channels, measurement scale, and output-bias level. Functional configuration adapted to changing conditions or new requirements by distant operator over telemetry link. Reconfiguration done in real time, without removing equipment from service. Bus-interface unit accepts reprogramming commands and translates them for low-rate adaptive multiplexer. Reprogrammable equipment reduces need for spare parts, since not necessary to stock variety of hardware with fixed characteristics. Adaptive multiplexer performs well in tests, amplitude errors less than 0.5 percent, distortion less than 0.25 percent, and crosstalk and common-mode rejection indiscernible.

  16. An integrated microsystem for multiplex processing of encoded silicon microbeads

    NASA Astrophysics Data System (ADS)

    Hoffmann, Daniel; Curtin, Maeve; Loughran, Michael

    2007-01-01

    A novel integrated microsystem for multiplex processing of encoded microbeads on a single microchip is presented. Conventional bio-analysis of proteins and DNA requires a combination of different techniques including: accurate delivery of reagents, mixing, then reaction at controlled temperature to yield a detectable product. Standard laboratory bio-assays require intervention at several stages to manipulate samples. Furthermore, ultra sensitive quantification with a colorimetric or fluorescent label is required to obtain the necessary results. This process is time consuming and labour intensive. However the new multiplex microsystem reported here enhances logical bio-assay development due to the integration of a compact optical detection system with customized analysis software in an enclosed microfluidic environment. The bioassay was realised by careful integration of a Peltier cell and associated control electronics which enabled specific identification of a hybridized DNA sequence from a 4 x 4 cDNA library at a fixed temperature of 42 °C. The multiple fluorescence measurements of complementary hybridised DNA at the surface of encoded microbeads was confirmed. Thus, the complete integration of the different bio-assay components on a single multiplex assay platform provides distinct advantages of reduced sample volume, rapid analysis and low cost.

  17. THE DISTRIBUTION, SOLID-PHASE SPECIATION, AND DESORPTION/DISSOLUTION OF AS IN IRON-BASED TREATMENT MEDIA

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These re...

  18. Mycoestrogen determination in cow milk: Magnetic solid-phase extraction followed by liquid chromatography and tandem mass spectrometry analysis.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; La Barbera, Giorgia; Samperi, Roberto; Ventura, Salvatore; Laganà, Aldo

    2016-12-01

    Recently, magnetic solid-phase extraction has gained interest because it presents various operational advantages over classical solid-phase extraction. Furthermore, magnetic nanoparticles are easy to prepare, and various materials can be used in their synthesis. In the literature, there are only few studies on the determination of mycoestrogens in milk, although their carryover in milk has occurred. In this work, we wanted to develop the first (to the best of our knowledge) magnetic solid-phase extraction protocol for six mycoestrogens from milk, followed by liquid chromatography and tandem mass spectrometry analysis. Magnetic graphitized carbon black was chosen as the adsorbent, as this carbonaceous material, which is very different from the most diffuse graphene and carbon nanotubes, had already shown selectivity towards estrogenic compounds in milk. The graphitized carbon black was decorated with Fe3 O4 , which was confirmed by the characterization analyses. A milk deproteinization step was avoided, using only a suitable dilution in phosphate buffer as sample pretreatment. The overall process efficiency ranged between 52 and 102%, whereas the matrix effect considered as signal suppression was below 33% for all the analytes even at the lowest spiking level. The obtained method limits of quantification were below those of other published methods that employ classical solid-phase extraction protocols.

  19. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: a review.

    PubMed

    Herrero Latorre, C; Álvarez Méndez, J; Barciela García, J; García Martín, S; Peña Crecente, R M

    2012-10-24

    New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes--due to their high adsorption and desorption capacities--have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  20. SCREENING METHOD FOR NITROAROMATIC COMPOUNDS IN WATER BASED ON SOLID-PHASE MICROEXTRACTION AND INFRARED SPECTROSCOPY. (R825343)

    EPA Science Inventory

    A new method is described for determining nitroaromatic compounds in water
    that combines solid-phase microextraction (SPME) and infrared (IR) spectroscopy. In this method, the compounds are extracted from a 250-mL volume of water into a small square (3.2 cm ? 3.2 cm ? 61.2...

  1. Rapid staining and enumeration of small numbers of total bacteria in water by solid-phase laser cytometry

    NASA Technical Reports Server (NTRS)

    Broadaway, Susan C.; Barton, Stephanie A.; Pyle, Barry H.

    2003-01-01

    The nucleic acid stain SYBR Green I was evaluated for use with solid-phase laser cytometry to obtain total bacterial cell counts from several water sources with small bacterial numbers. Results were obtained within 30 min and exceeded or equaled counts on R2A agar plates incubated for 14 days at room temperature.

  2. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey.

    PubMed

    He, Juan; Song, Lixin; Chen, Si; Li, Yuanyuan; Wei, Hongliang; Zhao, Dongxin; Gu, Keren; Zhang, Shusheng

    2015-11-15

    A novel restricted access materials (RAM) combined to molecularly imprinted polymers (MIPs), using malathion as template molecule and glycidilmethacrylate (GMA) as pro-hydrophilic co-monomer, were prepared for the first time. RAM-MIPs with hydrophilic external layer were characterized by scanning electron microscopy and recognition and selectivity properties were compared with the restricted access materials-non-molecularly imprinted polymers (RAM-NIPs) and unmodified MIPs. RAM-MIPs were used as the adsorbent enclosed in solid phase extraction column and several important extraction parameters were comprehensively optimized to evaluate the extraction performance. Under the optimum extraction conditions, RAM-MIPs exhibited comparable or even higher selectivity with greater extraction capacity toward six kinds of organophosphorus pesticides (including malathion, ethoprophos, phorate, terbufos, dimethoate, and fenamiphos) compared with the MIPs and commercial solid phase extraction columns. The RAM-MIPs solid phase extraction coupled with gas chromatography was successfully applied to simultaneously determine six kinds of organophosphorus pesticides from honey sample. The new established method showed good linearity in the range of 0.01-1.0 μg mL(-1), low limits of detection (0.0005-0.0019 μg mL(-1)), acceptable reproducibility (RSD, 2.26-4.81%, n = 6), and satisfactory relative recoveries (90.9-97.6%). It was demonstrated that RAM-MIPs solid phase extraction with excellent selectivity and restricted access function was a simple, rapid, selective, and effective sample pretreatment method.

  3. Combinatorial synthesis of heterocycles: solid-phase synthesis of 2-amino-4(1H)-quinazolinone derivatives.

    PubMed

    Gopalsamy, A; Yang, H

    2000-01-01

    A new solid-phase synthesis of various substituted 2-amino-4(1H)-quinazolinones from a resin bound amine component is described. The amine was readily converted to the corresponding polymer bound S-methylthiopseudourea. Condensation with different substituted isatoic anhydrides afforded 2-amino-4(1H)-quinazolinone derivatives. The method is amenable for combinatorial library generation.

  4. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    EPA Science Inventory

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  5. PARTITION INFRARED METHOD FOR TOTAL GASOLINE RANGE ORGANICS IN WATER BASED ON SOLID PHASE MICROEXTRACTION. (R825343)

    EPA Science Inventory

    A new method is described for determining total gasoline-range organics
    (TGRO) in water that combines solid-phase microextraction (SPME) and infrared
    (IR) spectroscopy. In this method, the organic compounds are extracted from
    250-mL of water into a small square (3....

  6. Preparation of environmental samples for determination of sulfonylurea herbicides by solid-phase extraction using a polymeric sorbent.

    PubMed

    Young, M S

    1998-01-01

    An analytical procedure was developed for rapid determination of sulfonylurea herbicides in water or soil. Samples were prepared by solid-phase extraction using polymeric sorbents in cartridges and analyzed by liquid chromatography with photodiode array detection. Recoveries were consistent for all sample matrixes tested and were generally > 85%, except for tribenuron methyl (75%). Detection limits were < 100 ng/L for water samples.

  7. QUANTIFICATION OF 2,4-D ON SOLID-PHASE EXPOSURE SAMPLING MEDIA BY LC/MS/MS

    EPA Science Inventory

    Three types of solid phase chemical exposure sampling media: cellulose, polyurethane foam (PUF) and XAD-2, were analyzed for 2,4-D and the amine salts of 2,4-D. Individual samples were extracted into acidified methanol and the extracts were analyzed via LC/MS/MS using electrospra...

  8. Temperature-induced solid-phase oriented rearrangement route to the fabrication of NaNbO3 nanowires.

    PubMed

    Liu, Lei; Li, Bo; Yu, Dinghua; Cui, Yuming; Zhou, Xingfu; Ding, Weiping

    2010-01-21

    We proposed here a temperature-induced solid-phase oriented rearrangement route to the fabrication of NaNbO(3) nanowires by using sandia octahedral molecular sieves (SOMS) Na(2)Nb(2)O(6) x H(2)O as a precursor. The SOMS precursor was prepared by using metal Nb powder as a raw material through the hydrothermal approach.

  9. Combinatorial Solid-Phase Synthesis of Aromatic Oligoamides: A Research-Based Laboratory Module for Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Fuller, Amelia A.

    2016-01-01

    A five-week, research-based experiment suitable for second-semester introductory organic laboratory students is described. Each student designs, prepares, and analyzes a combinatorial array of six aromatic oligoamides. Molecules are prepared on solid phase via a six-step synthetic sequence, and purities and identities are determined by analysis of…

  10. Molecularly imprinted polymers based on SBA-15 for selective solid-phase extraction of baicalein from plasma samples.

    PubMed

    He, Hongliang; Gu, Xiaoli; Shi, Liying; Hong, Junli; Zhang, Hongjuan; Gao, Yankun; Du, Shuhu; Chen, Lina

    2015-01-01

    Highly selective molecularly imprinted mesoporous silica polymer (SBA-15@MIP) for baicalein (BAI) extraction was synthesized using a surface molecular imprinting technique on the SBA-15 supporter. Computational simulation was used to predict the optimal functional monomer for the rational design of SBA-15@MIP. Meanwhile, high adsorption capacity was obtained when a suitable yield of molecularly imprinted polymers (MIPs) layer was grafted onto the surface of SBA-15. Characterization and performance tests of the obtained polymer revealed that SBA-15@MIP possessed a highly ordered mesoporous structure, reached saturated adsorption within 60 min, and exhibited higher sorption capacity to the target molecule BAI compared with non-imprinted mesoporous silica polymer (SBA-15@NIP) and SBA-15. Finally, SBA-15@MIP was successfully applied to solid-phase extraction (SPE) coupled with high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of trace BAI in plasma samples. Mean recoveries of BAI through the molecularly imprinted solid-phase extraction (MISPE) sorbent, non-imprinted solid-phase extraction (NISPE) sorbent, and SBA-15 solid-phase extraction (SBA-15-SPE) sorbent were 94.4, 22.7, and 10.7 %, respectively, and the relative standard deviations were 2.9, 2.6, and 3.6 %, respectively. These results reveal that SBA-15@MIP as a SPE sorbent has good applicability to selectively separate and enrich trace BAI from complex samples.

  11. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike

  12. Determination of Scopolamine in Human Saliva Using Solid Phase Extraction and LC/MS/MS

    NASA Technical Reports Server (NTRS)

    Wang, Zuwei; Vaksman, Zalman; Boyd, Jason; Putcha, Lakshmi

    2007-01-01

    Purpose: Scopolamine is the preferred treatment for motion sickness during space flight because of its quick onset of action, short half-life and favorable side-effect profile. The dose administered depends on the mode of administration and usually ranges between 0.1 and 0.8 mg. Such small doses make it difficult to detect concentrations of scopolamine in biological fluids by using conventional HPLC methods. To measure scopolamine in saliva and thereby to evaluate the pharmacokinetics of scopolamine, we developed an LC/MS/MS method using off-line solid phase extraction. Method: Samples (0.5mL) were loaded onto Waters Oasis HLB co-polymer cartridges (10 mg, 1 mL) and eluted with 0.5 mL methanol without evaporation and reconstitution. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 4 minutes. The mobile phase for separation was 90:10 (v/v) methanol: ammonium acetate (2 mM) in water, pH 5.0 +/- 0.1. Concentrations of scopolamine were determined using a Micromass Quattro Micro(TM) mass spectrometer with electrospray ionization (ESI). ESI mass spectra were acquired in positive ion mode with multiple reaction monitoring for the determination of scopolamine m/z = 304.2 yields 138.1 and internal standard (IS) hyoscyamine m/z = 290.2 yields 124.1. Results: The method is rapid, reproducible, specific and has the following parameters: scopolamine and the IS are eluted at 1.7 and 3.2 min respectively. The linear range is 50-5000 pg/mL for scopolamine in saliva with correlation coefficients > 0.99 with a CV < 0.5 %. The intra-day and inter-day CVs are < 15 % for quality control samples with concentrations of 75, 300, 750 and 3000 pg/mL of scopolamine in human saliva. Conclusion: Solid phase extraction allows more rapid sample preparation and greater precision than liquid extraction. Furthermore, we increased the sensitivity and specificity by adjusting the LC mobile phase and using an MS

  13. Total integrated slidable and valveless solid phase extraction-polymerase chain reaction-capillary electrophoresis microdevice for mini Y chromosome short tandem repeat genotyping.

    PubMed

    Kim, Yong Tae; Lee, Dohwan; Heo, Hyun Young; Sim, Jeong Eun; Woo, Kwang Man; Kim, Do Hyun; Im, Sung Gap; Seo, Tae Seok

    2016-04-15

    A fully integrated slidable and valveless microsystem, which performs solid phase DNA extraction (SPE), micro-polymerase chain reaction (μPCR) and micro-capillary electrophoresis (μCE) coupled with a portable genetic analyser, has been developed for forensic genotyping. The use of a slidable chip, in which a 1 μL-volume of the PCR chamber was patterned at the center, does not necessitate any microvalves and tubing systems for fluidic control. The functional micro-units of SPE, μPCR, and μCE were fabricated on a single glass wafer by conventional photolithography, and the integrated microdevice consists of three layers: from top to bottom, a slidable chip, a channel wafer in which a SPE chamber, a mixing microchannel, and a CE microchannel were fabricated, and a Ti/Pt resistance temperature detector (RTD) wafer. The channel glass wafer and the RTD glass wafer were thermally bonded, and the slidable chip was placed on the designated functional unit. The entire process from the DNA extraction using whole human blood sample to identification of target Y chromosomal short tandem repeat (STR) loci was serially carried out with simply sliding the slidable chamber from one to another functional unit. Monoplex and multiplex detection of amelogenin and mini Y STR loci were successfully analysed on the integrated slidable SPE-μPCR-μCE microdevice by using 1 μL whole human blood within 60 min. The proposed advanced genetic analysis microsystem is capable of point-of-care DNA testing with sample-in-answer-out capability, more importantly, without use of complicated microvalves and microtubing systems for liquid transfer.

  14. Detection of proteases using an immunochemical method with haptenylated-gelatin as a solid-phase substrate.

    PubMed

    Abuknesha, Ramadan A; Jeganathan, Fiona; DeGroot, Rens; Wildeboer, Dirk; Price, Robert G

    2010-04-01

    A simplified method for the measurement of proteases utilising solid-phase substrates incorporating an ELISA end-point detection step is described. Gelatin-hapten conjugates adsorbed onto polystyrene surfaces were found to be efficient substrates for proteases. Digestion of the solid-phase protein-hapten complexes resulted in proportional desorption of the attached conjugates and decrease in the detectable hapten species. Gelatin-cholic acid conjugates, affinity-purified sheep anti-cholic acid antibody-HRP and a chromogenic substrate were incorporated into a convenient and highly sensitive solid-phase immunochemical method. The detectable signal is inversely proportional to enzyme activity. Bacterial proteases (alpha-chymotrypsin Type II, Type IX from Bacillus polymyxa, Type XIV from Streptomyces griseus, Type XXIV from Bacillus licheniformens) were assayed. Dose-response curves for enzyme activities were measured within ranges of 0-550 microunits mL(-1) for chymotrypsin, 0-12 microunits mL(-1) for type IX, 0-35 microunits mL(-1) for type XIV and 0-100 microunits mL(-1) for type XXIV. The detection limits of the proteases studied were 89 microunits mL(-1) for chymotrypsin, 0.26 microunits mL(-1) for type IX, 5.8 microunits mL(-1) for type XIV and 6.5 microunits mL(-1) for type XXIV. It was demonstrated that the two-step immunochemical method combines the simplicity and sensitivity of solid-phase enzyme immunoassays, the broad specificity of gelatin as a protease substrate and the flexibility of the solid-phase format.

  15. Determination of nanomolar chromate in drinking water with solid phase extraction and a portable spectrophotometer.

    PubMed

    Ma, Jian; Yang, Bo; Byrne, Robert H

    2012-06-15

    Determination of chromate at low concentration levels in drinking water is an important analytical objective for both human health and environmental science. Here we report the use of solid phase extraction (SPE) in combination with a custom-made portable light-emitting diode (LED) spectrophotometer to achieve detection of chromate in the field at nanomolar levels. The measurement chemistry is based on a highly selective reaction between 1,5-diphenylcarbazide (DPC) and chromate under acidic conditions. The Cr-DPC complex formed in the reaction can be extracted on a commercial C18 SPE cartridge. Concentrated Cr-DPC is subsequently eluted with methanol and detected by spectrophotometry. Optimization of analytical conditions involved investigation of reagent compositions and concentrations, eluent type, flow rate (sample loading), sample volume, and stability of the SPE cartridge. Under optimized conditions, detection limits are on the order of 3 nM. Only 50 mL of sample is required for an analysis, and total analysis time is around 10 min. The targeted analytical range of 0-500 nM can be easily extended by changing the sample volume. Compared to previous SPE-based spectrophotometric methods, this analytical procedure offers the benefits of improved sensitivity, reduced sample consumption, shorter analysis time, greater operational convenience, and lower cost.

  16. Enhanced spectrofluorimetric determination of aflatoxin M1 in liquid milk after magnetic solid phase extraction

    NASA Astrophysics Data System (ADS)

    Hashemi, Mahdi; Taherimaslak, Zohreh; Rashidi, Somayeh

    2014-07-01

    A simple and sensitive method using magnetic solid phase extraction (MSPE) followed by spectrofluorimetric detection has been developed for separation and determination of aflatoxin M1 (AFM1) in liquid milk. The method is based on the extraction of AFM1 on the modified magnetic nanoparticles (MMNPs) and subsequent derivatization of extracted AFM1 to AFM1 hemi-acetal derivative (AFM2a) by reaction with trifluoroacetic acid (TFA) for spectrofluorimetric detection. Magnetic nanoparticles (MNPs) coated by 3-(trimethoxysilyl)-1-propantiol (TMSPT) and modified with 2-amino-5-mercapto-1,3,4-thiadiazole (AMT) were used as adsorbent in MSPE procedure. Influential parameters affecting the extraction efficiency were investigated and optimized. Under the optimum conditions the calibration curve for AFM1 determination showed good linearity in the range 0.030-10.0 μg L-1 (R2 = 0.9991). The repeatability and reproducibility (RSD%) for 0.050 μg L-1 of AFM1 were 4.5% and 5.3%, respectively and limit of detection limit (S/N = 3) was estimated to be 0.010 μg L-1. The developed method was successfully applied for extraction of AFM1 from spiked liquid milk and natural contaminated liquid milk. The good spiked recoveries ranging from 91.6% to 96.1% were obtained. The results demonstrated that the developed method is simple, inexpensive, accurate and remarkably free from interference effects.

  17. A 210-min solid phase cytometry test for the enumeration of Escherichia coli in drinking water.

    PubMed

    Van Poucke, S O; Nelis, H J

    2000-09-01

    A 210-min-test for the enumeration of Escherichia coli in drinking water is described, based on solid phase cytometry (SPC) and a two-step enzymatic procedure for fluorescence labelling of single cells and small microcolonies. The test involves membrane filtration through a 25-mm black polyester filter, induction of beta-glucuronidase in the retained target cells, fluorescence labelling with fluorescein-di-beta-Dglucuronide as an enzyme substrate and laser scanning of the membrane filter. Scan results can be confirmed on-line by epifluorescence microscopy. Application to 149 naturally contaminated and uncontaminated well, tap, out-of-pump centre (distribution), surface and sewage-spiked water samples indicated > or =90% agreement and equivalence with plate count methods, including Chromocult Coliform agar and m FC agar. In 5.4% of all samples examined, SPC detected between 1 and 11 E. coli per 100 ml, while the two plate methods yielded negative results. Cases of a negative SPC result but a positive E. coli count on both reference media were not observed. This test would primarily be useful for 'emergency' monitoring of drinking water when rapid results are crucial.

  18. Facile preparation and applications of graphitic carbon nitride coating in solid-phase microextraction.

    PubMed

    Xu, Na; Wang, Yiru; Rong, Mingcong; Ye, Zhifeng; Deng, Zhuo; Chen, Xi

    2014-10-17

    In this study, graphitic carbon nitride (g-C3N4) was used as a coating material for solid-phase microextraction (SPME) applications. Coupled to gas chromatography (GC), the extraction ability of the SPME fiber was investigated and compared with the commercial fibers of 100 μm PDMS and 85 μm CAR/PDMS using six target analytes including deltamethrin, nerolidol, amphetamine, dodecane, ametryn and acrylamide. The g-C3N4 coating revealed excellent extraction ability and durability comparing with those of the commercial fibers due to its loose structure and unique physicochemical properties. The repeatability for each single fiber was found to be 3.46% and reproducibility for fiber to fiber was 8.53%. The g-C3N4 SPME fiber was applied to the determination of acrylamide in potato chips, the linearity and detection limit was 0.5-250 μg g(-1) and 0.018 μg g(-1), respectively.

  19. Improved solid-phase extraction method for systematic toxicological analysis in biological fluids.

    PubMed

    Soriano, T; Jurado, C; Menéndez, M; Repetto, M

    2001-03-01

    A method for the simultaneous qualitative and quantitative determination of drugs of abuse (opiates, cocaine, or amphetamines) and prescribed drugs (tricyclic antidepressants, phenotiazines, benzodiazepines, etc.) in biological fluids--blood, urine, bile, and gastric contents--was developed. This procedure involves solid-phase extraction with Bond-Elut Certify columns followed by analysis by gas chromatography-nitrogen-phosphorus detection (GC-NPD) and confirmation by gas chromatography-mass spectrometry (GC-MS), after derivatization, when necessary. Pretreatment was performed on all samples: sonication for 15 min plus enzymatic hydrolysis with beta-glucuronidase in urine. With respect to the internal standards, nalorphine and trihexylamine were used for basic substances, allobarbital for acidic drugs, and prazepam for benzodiazepines. Acidic and basic compounds were extracted from different aliquots of samples at different pH levels: 6-6.5 for the acidic and neutral and 8-8.5 for the basic and the benzodiazepines. Several areas of experimental design were considered in the process of method optimization. These included internal standards, pH, sonication, flow rate and washing solvents. It was found that systematic analysis could be reliably performed using optimized extraction conditions. The recovery rates for the compounds tested were always higher than 61.02%.

  20. Plasma mitomycin C concentrations determined by HPLC coupled to solid-phase extraction.

    PubMed

    Paroni, R; Arcelloni, C; De Vecchi, E; Fermo, I; Mauri, D; Colombo, R

    1997-04-01

    The aim of this study was to set up a method for quantification of plasma mitomycin C (MMC) concentrations during intravesical chemotherapy delivered in the presence of local bladder hyperthermia (HT). In comparison with existing methods, this assay, characterized by relative simplicity and efficiency, resulted in the facilitation of performance with nondedicated instrumentation or nonspecialized staff. Purification from plasma matrix was carried out by solid-phase extraction under vaccuum. The purified drug was then collected directly into the vials of the HPLC autosampler. Chromatographic analysis was performed on a reversed-phase C18 column with water:acetonitrile (85:15 by vol) as the mobile phase and the UV detector set at 365 nm. The use of porfiromycin as internal standard provided a method with good within-day precision (CV 6.0% at 5 micrograms/L, n = 6), linearity (0.5-50 micrograms/L), and specificity. The lower limit of detection (< or = 0.5 microgram/L) proved to be suitable for plasma pharmacokinetics monitoring in two tested patients treated with MMC + HT for superficial bladder cancer.

  1. Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction.

    PubMed

    Soylak, Mustafa; Unsal, Yunus Emre; Yilmaz, Erkan; Tuzen, Mustafa

    2011-08-01

    A new solid phase extraction method is described for sensitive and selective determination of trace levels of rhodamine B in soft drink, food and industrial waste water samples. The method is based on the adsorption of rhodamine B on the Sepabeads SP 70 resin and its elution with 5 mL of acetonitrile in a mini chromatographic column. Rhodamine B was determined by using UV visible spectrophotometry at 556 nm. The effects of different parameters such as pH, amount of rhodamine B, flow rates of sample and eluent solutions, resin amount, and sample volume were investigated. The influences of some alkali, alkali earth and transition metals on the recoveries of rhodamine B were investigated. The preconcentration factor was found 40. The detection limit based on three times the standard deviation of the reagent blank for rhodamine B was 3.14 μg L⁻¹. The relative standard deviations of the procedure were found as 5% in 1×10⁻⁵ mol L⁻¹ rhodamine B. The presented procedure was successfully applied to real samples including soft drink, food and industrial waste water and lipstick samples.

  2. Solid-phase microextraction gas chromatography-mass spectrometry determination of fragrance allergens in baby bathwater.

    PubMed

    Lamas, J Pablo; Sanchez-Prado, Lucia; Garcia-Jares, Carmen; Llompart, Maria

    2009-07-01

    A method based on solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) has been optimized for the determination of fragrance allergens in water samples. This is the first study devoted to this family of cosmetic ingredients performed by SPME. The influence of parameters such as fibre coating, extraction and desorption temperatures, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mixed-level factorial design, which allowed the study of the main effects as well as two-factor interactions. Excluding desorption temperature, the other parameters were, in general, very important for the achievement of high response. The final procedure was based on headspace sampling at 100 degrees C, using polydimethylsiloxane/divinylbenzene fibres. The method showed good linearity and precision for all compounds, with detection limits ranging from 0.001 to 0.3 ng mL(-1). Reliability was demonstrated through the evaluation of the recoveries in different real water samples, including baby bathwater and swimming pool water. The absence of matrix effects allowed the use of external standard calibration to quantify the target compounds in the samples. The proposed procedure was applied to the determination of allergens in several real samples. All the target compounds were found in the samples, and, in some cases, at quite high concentrations. The presence and the levels of these chemicals in baby bathwater should be a matter of concern.

  3. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  4. Carbonized polydopamine as coating for solid-phase microextraction of organochlorine pesticides.

    PubMed

    Huang, Zhenzhen; Chua, Pey Ee; Lee, Hian Kee

    2015-06-19

    A facile preparation route for coating a stainless steel fiber with carbonaceous material derived from polydopamine is reported in this work. The self-oxidation induced polymerization of dopamine in alkaline solution enables growth of polydopamine on the inert surface of the fiber. The robust adhesion of dopamine to metal oxides ensured sufficient stability of the polymer coating. After carbonization of the polymer coating, the obtained carbon coated fiber was utilized for solid-phase microextraction and exhibited effectiveness in the extraction of organochlorine pesticides (OCPs) from aqueous solution. Extraction time, agitation speed and salt addition were optimized. The possible interference of humic acid on the extraction of these analytes was also investigated. The results showed that most of the analytes could be detected efficiently in the presence of humic acid at a concentration of 20mg/L. Under the optimized conditions, enrichment factors of 102-757 were obtained for the selected OCPs in aqueous solution. The proposed method provided low limits of detection (1.4-15 ng/L), good linearity (correlation coefficients>0.9971) and acceptable precision (relative standard deviations<16.3%).

  5. Microcapillary reactors using solid-phase DNA sequencing for direct sample introduction into slab gels.

    PubMed

    Xu, Y; Bruch, R C; Soper, S A

    2000-05-01

    Solid-phase micro-reactors have been prepared in glass capillaries for DNA sequencing applications using slab gel electrophoresis, which consisted of a fused silica capillary (i.d. = 100 microns; o.d. = 365 microns; length = 15 cm; volume = 1.2 microL) that contained a covalently bound biotin molecule. With the addition of streptavidin to the capillary, an anchoring site was produced for the tethering of biotinylated DNA sequencing templates to the wall of the capillary. Using a four-lane, single dye primer chemistry sequencing strategy, the individual tracts were prepared in the capillaries using cycle sequencing (20 thermal cycles) on a PCR-generated lambda-bacteriophage template (about 1000 bp). The dye label in this case was a fluorescent tag that displayed emission properties in the near-IR and could be processed on an automated sequencer. The read length was found to be 589 bases, which was determined primarily by the fractionating power of the gel. It was also found that the tethering system was very stable to typical cycle sequencing conditions, with the amount of tethered DNA lost amounting to 40% after 120 thermal cycles. The ability to use dye terminator chemistry was also investigated by using a near-IR dye-labeled terminator (ddGTP). It was found that the quality of the ladder that was generated was comparable to that obtained in a conventional sample preparation format. However, ethanol precipitation was required before gel loading to remove excess terminator.

  6. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-07

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.

  7. Conductive polymeric ionic liquids for electroanalysis and solid-phase microextraction.

    PubMed

    Young, Joshua A; Zhang, Cheng; Devasurendra, Amila M; Tillekeratne, L M Viranga; Anderson, Jared L; Kirchhoff, Jon R

    2016-03-03

    Three novel electropolymerizable thiophene-based ionic liquids (ILs) were synthesized and characterized as potential candidates for developing selective extraction media for chemical analysis. Electropolymerization of the bis[(trifluoromethyl)sulfonyl]imide ([NTf2](-)) analogs successfully produced uniform polymeric thin-films on macro- and microelectrode substrates from both vinyl and methylimidazolium IL monomer derivatives. The resultant conducting polymer IL (CPIL) films were characterized by electrochemical methods and found to exhibit attractive behavior towards anionic species while simultaneously providing an exclusion barrier toward cationic species. Thermogravimetric analysis of the thiophene-based IL monomers established a high thermal stability, particularly for the methylimidazolium IL, which was stable until temperatures above 350 °C. Subsequently, the methylimidazolium IL was polymerized on 125 μm platinum wires and utilized for the first time as a sorbent coating for headspace solid-phase microextraction (HS-SPME). The sorbent coating was easily prepared in a reproducible manner, provided high thermal stability, and allowed for the gas chromatographic analysis of polar analytes. The normalized response of the poly[thioph-C6MIm][NTf2]-based sorbent coating exhibited higher extraction efficiency compared to an 85 μm polyacrylate fiber and excellent fiber-to-fiber reproducibility. Therefore, the electropolymerizable thiophene-based ILs were found to be viable new materials for the preparation of sorbent coatings for HS-SPME.

  8. Lattice model theory of the equation of state covering the gas, liquid, and solid phases

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Tanaka, T.; Chan, E. M.; Horiguchi, T.; Foreman, J. C.

    1975-01-01

    The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon.

  9. Solid phase stability of a double-minimum interaction potential system

    SciTech Connect

    Suematsu, Ayumi; Yoshimori, Akira Saiki, Masafumi; Matsui, Jun; Odagaki, Takashi

    2014-06-28

    We study phase stability of a system with double-minimum interaction potential in a wide range of parameters by a thermodynamic perturbation theory. The present double-minimum potential is the Lennard-Jones-Gauss potential, which has a Gaussian pocket as well as a standard Lennard-Jones minimum. As a function of the depth and position of the Gaussian pocket in the potential, we determine the coexistence pressure of crystals (fcc and bcc). We show that the fcc crystallizes even at zero pressure when the position of the Gaussian pocket is coincident with the first or third nearest neighbor site of the fcc crystal. The bcc crystal is more stable than the fcc crystal when the position of the Gaussian pocket is coincident with the second nearest neighbor sites of the bcc crystal. The stable crystal structure is determined by the position of the Gaussian pocket. These results show that we can control the stability of the solid phase by tuning the potential function.

  10. Spectral and thermal studies of solid-phase thermochromism of Co(II) double metal complexes

    NASA Astrophysics Data System (ADS)

    AL-Sha'alan, Noura H.

    2007-09-01

    Tetrahedral solid state structures of the blue potassium tris(aryloxo)cobaltate(II)-tetrahydrofurane complexes of the formula KCo(OAr) 3·2thf (OAr = o-chloro-, o-bromo-, m-chloro-, p-bromo, 2,6-dichloro-, 2,4-dichloro- or 2,4-dimethylphenoxide) undergo solid-phase thermal tetrahedral to octahedral transformation accompanied by change in their colours from blue to rose (one-step thermochromism). Magnetic moments, electronic and infrared spectral studies supported these results. Thermal treatment of theses complexes leads to the loss of the crystallized thf molecule yielding also blue tetrahedral complexes. However, further heating leads to the loss of the coordinated thf molecule and the formation of rose octahedral trimeric products. TG-DTA results showed that the, two solvated thf molecules were eliminated in two steps. Mass spectral studies and IR intensity measurements confirmed the trimeric behaviour of the rose octahedral geometry of thermal products. Conductance measurements of solutions of these complexes in thf indicated that they behave as non-electrolytes.

  11. Air sampling of aromatic hydrocarbons in the presence of ozone by solid-phase microextraction.

    PubMed

    Xiong, Gouhua; Koziel, Jacek A; Pawliszyn, Janusz

    2004-01-30

    Effects of ozone on air sampling of standard gas mixtures of aromatic hydrocarbons were tested using solid-phase microextraction (SPME). Standard concentrations of ozone ranging from 10 ppb (v/v) to 6400 ppm (v/v) were generated using an in-house built ozone generator based on corona discharge. Effects of temperature, discharge voltage, and oxygen flow on the ozone generation were tested. The working dc voltage had the greatest effect on generated ozone concentration and was proportional to the ozone concentration. Generation temperature and oxygen flow rate were inversely proportional to ozone concentrations. Produced ozone was mixed with standard benzene, toluene, ethylbenzene, and xylenes (BTEX) gas at less than 100 ppb (v/v). Air samples were collected with poly(dimethylsiloxane) (PDMS) 100 microm SPME fibers and analyzed by gas chromatography (GC)-flame ionization detection (FID) and GC-MS. Significant reductions of BTEX concentrations were observed. In addition, some products of BTEX-ozone-oxygen reactions were identified. SPME worked well as a rapid sampler for BTEX and BTEX-ozone-oxygen reaction products. No significant deterioration of the PDMS coating and no significant reduction of absorption capacity were observed after repeated exposure to ozone.

  12. Passive sampling of ambient ozone by solid phase microextraction with on-fiber derivatization.

    PubMed

    Lee, I-Su; Tsai, Shih-Wei

    2008-03-10

    The solid phase microextraction (SPME) device with the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used as a passive sampler for ambient ozone. Both O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and 1,2-di-(4-pyridyl)ethylene (DPE) were loaded onto the fiber before sampling. The SPME fiber assembly was then inserted into a PTFE tubing as a passive sampler. Known concentrations of ozone around the ambient ground level were generated by a calibrated ozone generator. Laboratory validations of the SPME passive sampler with the direct-reading ozone monitor were performed side-by-side in an exposure chamber at 25 degrees C. After exposures, pyriden-4-aldehyde was formed due to the reaction between DPE and ozone. Further on-fiber derivatizations between pyriden-4-aldehyde and PFBHA were followed and the derivatives, oximes, were then determined by portable gas chromatography with electron capture detector. The experimental sampling rate of the SPME ozone passive sampler was found to be 1.10 x 10(-4) cm(3) s(-1) with detection limit of 58.8 microg m(-3) h(-1). Field validations with both SPME device and the direct-reading ozone monitor were also performed. The correlations between the results from both methods were found to be consistent with r=0.9837. Compared with other methods, the current designed sampler provides a convenient and sensitive tool for the exposure assessments of ozone.

  13. Volatile composition of peppermint (Mentha piperita L.) commercial teas through solid phase extraction.

    PubMed

    Riachi, L G; Abi-Zaid, I E; Moreira, R F A; De Maria, C A B

    2012-12-01

    Volatiles from aqueous extract of peppermint commercial sachets were investigated through gas chromatography/flame ionization detection (GC/FID) and GC/mass spectrometry (MS). Samples were prepared under similar conditions as in homemade tea. Volatiles were isolated using solid phase extraction method (SPE) with Porapak Q trap followed by desorption with acetone. Estimated mean values for short and medium chain carboxylic acids (C2-C12) and ketones lay in the range of 50-64 microg kg(-1) whilst aliphatic alcohols and acyclic hydrocarbons had values lower than 6 microg kg(-1). The major volatiles were terpenes (275-382 microg kg(-1)) that reached 89 % of the total composition. A total of 16 compounds, among them dodecane, acetoin, acetol, citral, geraniol and octanoic acid have been described by the first time in peppermint tea. These findings could be attributed to the different analytical approach employed, mainly to the use of different extraction/pre-concentration techniques. Given the apparently lower proportion of terpenes in the aqueous extract it may be that the chemical properties of the peppermint essential oil are not entirely reproduced with homemade tea.

  14. On-line solid-phase extraction for liquid chromatography-mass spectrometry analysis of pesticides.

    PubMed

    Lucci, Paolo; Núñez, Oscar

    2014-10-01

    Public concern about pesticides in food and water has increased dramatically in the last two decades. In order to guarantee consumers' health and safety, analytical methods that could provide fast and reliable answers without compromising accuracy and precision are required. Sample treatment is probably the most tedious and time-consuming step in many analytical procedures and, despite the significant advances in chromatographic separations and mass spectrometry techniques, sample treatment is still one of the most important parts of the analytical process for achieving good analytical results. Therefore, over the last years, considerable efforts have been made to simplify the stage and to develop fast, accurate, and robust methods that allow the determination of a wide range of pesticides without compromising the integrity of the extraction process. This review article intends to give a short overview of recently developed on-line solid-phase extraction, preconcentration, and clean-up procedures for the determination of pesticides in complex matrices by liquid chromatography-mass spectrometry techniques.

  15. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography.

    PubMed

    Yu, Honglian; Merib, Josias; Anderson, Jared L

    2016-03-18

    Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively.

  16. Solid Phase Microextraction and Related Techniques for Drugs in Biological Samples

    PubMed Central

    Moein, Mohammad Mahdi; Said, Rana; Bassyouni, Fatma

    2014-01-01

    In drug discovery and development, the quantification of drugs in biological samples is an important task for the determination of the physiological performance of the investigated drugs. After sampling, the next step in the analytical process is sample preparation. Because of the low concentration levels of drug in plasma and the variety of the metabolites, the selected extraction technique should be virtually exhaustive. Recent developments of sample handling techniques are directed, from one side, toward automatization and online coupling of sample preparation units. The primary objective of this review is to present the recent developments in microextraction sample preparation methods for analysis of drugs in biological fluids. Microextraction techniques allow for less consumption of solvent, reagents, and packing materials, and small sample volumes can be used. In this review the use of solid phase microextraction (SPME), microextraction in packed sorbent (MEPS), and stir-bar sorbtive extraction (SBSE) in drug analysis will be discussed. In addition, the use of new sorbents such as monoliths and molecularly imprinted polymers will be presented. PMID:24688797

  17. Magnetic solid-phase extraction of protein by ionic liquid-coated Fe@graphene oxide.

    PubMed

    Wen, Qian; Wang, Yuzhi; Xu, Kaijia; Li, Na; Zhang, Hongmei; Yang, Qin; Zhou, Yigang

    2016-11-01

    Amino functional dicationic ionic liquid (AFDCIL) was prepared and then coated on the surface of magnetic graphene oxide (GO) as a new magnetic adsorbent (Fe@GO@AFDCIL) for the magnetic solid-phase extraction (MSPE) of protein. The Fe@GO@AFDCIL composite was characterized by vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and zeta-potential nanoparticles. The bovine hemoglobin (BHb) was used as the analyte, and the extraction performance of Fe@GO@AFDCIL was investigated in the MSPE procedure. The concentration of BHb in samples was determined by a UV-vis spectrophotometer. A comparative investigation of Fe@GO@AFDCIL composite and traditional IL-coated Fe@GO composites (Fe@GO@IL) exhibited the benefits of Fe@GO@AFDCIL. The adsorbed BHb could be eluted from the Fe@GO@AFDCIL by 4% sodium dodecyl sulfate (SDS) solution. The Fe@GO@AFDCIL exhibited favorable stability which could be reused at least 15 times. Under the optimized condition, the real samples were investigated, which demonstrated that the Fe@GO@AFDCIL was able to be applied in extracting bovine hemoglobin (BHb) from real biological samples.

  18. Development of a sensitive solid-phase radioimmunoassay for melanin-concentrating hormone

    SciTech Connect

    Eberle, A.N.; Baumann, J.B.; Girard, J. ); Baker, B.I.; Kishida, M. )

    1989-01-01

    A two-step solid-phase radioimmunoassay for melanin-concentrating hormone (MCH) was developed for direct determination of the hormone in plasma samples. To this end, synthetic MCH was coupled to bovine thyreoglobulin and the complex was injected into rabbits. Specific antisera of high titer were obtained which did not crossreact with other hormones. The IgGs were chemically linked to immunobeads, an acrylamide/acrylic acid polymer matrix. In the first step, plasma MCH was immunoextracted by incubation of diluted plasma samples with anti-MCH immunobeads. In the second step, the washed polymer was incubated with radioiodinated MCH tracer for titration of non-occupied sites. This procedure made it possible to determine as little as 4 pg MCH per ml of plasma. Application of the radioimmunoassay to plasma levels of black or white background-adapted trout showed a marked difference in circulating MCH: while trout on a black background contained a mean value of 29 {plus minus} 5.6 pg/ml, animals on a white background had 106 {plus minus} 19 pg/ml.

  19. Zinc sulfide nanosheets as a novel solid-phase extraction material for flavonoids.

    PubMed

    Wang, Licheng; Fan, Wei; Li, Shuman; Jia, Yong; Hou, Xiudan; Wang, Xusheng; Wang, Shuai; Guo, Yong

    2017-03-01

    As a novel solid-phase extraction material, zinc sulfide nanosheets were prepared by a simple method and were used to extract flavonoids. We used scanning electron microscopy to show its nanosheet morphology and energy dispersive X-ray spectroscopy and powder X-ray diffraction to confirm its chemical and phase compositions. Coupled to a high-performance liquid chromatography, the zinc sulfide nanosheets were packed into a microcolumn and were used to extract four model flavonoids to examine their extraction ability. The parameters of sample loading and elution were investigated. Under optimized conditions, the analytical method for flavonoids was established. For the method, wide linearities from 1 to 250 μg/L and low limits of detection from 0.25 to 0.5 μg/L were obtained. The relative standard deviations for single column repeatability and column to column reproducibility were less than 7.7 and 10.4%, respectively. The established method was also used to analyze two real samples and the recoveries from 88.7 to 98.2% further proved the reliability of the method. Moreover, the zinc sulfide nanosheets have good stability and that in one column can be reused for more than 50 times. This work proves that the prepared zinc sulfide nanosheets are a good candidate as the flavonoids sorbent.

  20. Robust aptamer sol-gel solid phase microextraction of very polar adenosine from human plasma.

    PubMed

    Mu, Li; Hu, Xiangang; Wen, Jianping; Zhou, Qixing

    2013-03-01

    Conventional solid phase microextraction (SPME) has a limited capacity to extract very polar analytes, such as adenosine. To solve this problem, aptamer conjugating sol-gel methodology was coupled with an SPME fiber. According to the authors' knowledge, this is the first reported use of aptamer SPME. The fiber of aptamer sol-gel SPME with a mesoporous structure has high porosity, large surface area, and small water contact angle. Rather than employing direct entrapment, covalent immobilization was the dominant method of aptamer loading in sol-gel. Aptamer sol-gel fiber captured a specified analyte from among the analog molecules, thereby, exhibiting an excellent selective property. Compared with commercial SPME fibers, this aptamer fiber was suitable for extracting adenosine, presenting an extraction efficiency higher than 20-fold. The values of repeatability and reproducibility expressed by relative standard deviation were low (9.4%). Interestingly, the sol-gel network enhanced the resistance of aptamer SPME to both nuclease and nonspecific proteins. Furthermore, the aptamer sol-gel fiber was applied in human plasma with LOQ 1.5 μg/L, which is an acceptable level. This fiber also demonstrates durability and regeneration over 20-cycles without significant loss of efficiency. Given the various targets (from metal ions to biomacromolecules and cells) of aptamers, this methodology will extend the multi-domain applications of SPME.

  1. Automated solid-phase extraction approaches for large scale biomonitoring studies.

    PubMed

    Kuklenyik, Zsuzsanna; Ye, Xiaoyun; Needham, Larry L; Calafat, Antonia M

    2009-01-01

    The main value in measuring environmental chemicals in biological specimens (i.e., biomonitoring) is the ability to minimize risk assessment uncertainties. The collection of biomonitoring data for risk assessment requires the analysis of a statistically significant number of samples from subjects with a significant prevalence of detectable internal dose levels. This paper addresses the practical laboratory challenges that arise from these statistical requirements: development of high throughput techniques that can handle, with high accuracy and precision, a large number of samples and can do a trace level analysis of multiple and diverse environmental chemicals (i.e., analytes). We review here examples of high throughput, automated solid-phase extraction methods developed in our laboratory for biomonitoring of analytes with representative hydrophobic properties and for typical biomonitoring matrices. We discuss key aspects of sample preparation, column, and solvent selection for off- and online extractions, and the so-called nuts-and-bolts of online column-switching systems necessary for developing-with minimal sample handling-rugged, automated methods.

  2. Oxysterols in cosmetics-Determination by planar solid phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Schrack, S; Hohl, C; Schwack, W

    2016-11-18

    Sterol oxidation products (SOPs) are linked to several toxicological effects. Therefore, investigation of potential dietary uptake sources particularly food of animal origin has been a key issue for these compounds. For the simultaneous determination of oxysterols from cholesterol, phytosterols, dihydrolanosterol and lanosterol in complex cosmetic matrices, planar solid phase extraction (pSPE) was applied as clean-up tool. SOPs were first separated from more non-polar and polar matrix constituents by normal phase thin-layer chromatography and then focussed into one target zone. Zone extraction was performed with the TLC-MS interface, followed by gas chromatography-mass spectrometry analysis. pSPE showed to be effective for cleaning up cosmetic samples as sample extracts were free of interferences, and gas chromatographic columns did not show any signs of overloading. Recoveries were between 86 and 113% with relative standard deviations of below 10% (n=6). Results of our market survey in 2016 showed that some cosmetics with ingredients of plant origin contained phytosterol oxidation products (POPs) in the low ppm range and therefore in line with levels reported for food. In lanolin containing products, total SOPs levels (cholesterol oxidation products (COPs), lanosterol oxidation products (LOPs), dihydrolanosterol oxidation products (DOPs)) being in the low percent range exceeded reported levels for food by several orders of magnitudes.

  3. Development and application of molecularly imprinted polymers as solid-phase sorbents for erythromycin extraction.

    PubMed

    Song, Suquan; Wu, Aibo; Shi, Xizhi; Li, Rongxiu; Lin, Zhixin; Zhang, Dabing

    2008-04-01

    Six molecularly imprinted polymers (MIPs) of erythromycin (ERY) were prepared by noncovalent bulk polymerization using methacrylic acid (MAA) as the functional monomer. On the basis of binding analysis, the MIPs with 1:2 optimum ratio of template to MAA were selected for subsequent scanning electron microscopy and Brunauer-Emmett-Teller analyses, which indicated that the MIPs had more convergent porous structures than the nonimprinted polymers. The equilibrium binding experiments showed that the binding sites of MIPs were heterogeneous, with two dissociation constants of 0.005 and 0.63 mg mL(-1), respectively. Furthermore, the performance of the MIPs as solid-phase extraction (SPE) sorbents was evaluated, and the selectivity analysis showed that the MIPs could recognize ERY with moderate cross-reactivity for other macrolides. The overall investigation of molecularly imprinted SPE for cleanup and enrichment of the ERY in pig muscle and tap water confirmed the feasibility of utilizing the MIPs obtained as specific SPE sorbents for ERY extraction in real samples. [figure: see text

  4. Development of an integrated microfluidic solid-phase extraction and electrophoresis device.

    PubMed

    Kumar, Suresh; Sahore, Vishal; Rogers, Chad I; Woolley, Adam T

    2016-03-07

    This study focuses on the design and fabrication of a microfluidic platform that integrates solid-phase extraction (SPE) and microchip electrophoresis (μCE) on a single device. The integrated chip is a multi-layer structure consisting of polydimethylsiloxane valves with a peristaltic pump, and a porous polymer monolith in a thermoplastic layer. The valves and pump are fabricated using soft lithography to enable pressure-based fluid actuation. A porous polymer monolith column is synthesized in the SPE unit using UV photopolymerization of a mixture consisting of monomer, cross-linker, photoinitiator, and porogens. The hydrophobic, porous structure of the monolith allows protein retention with good through flow. The functionality of the integrated device in terms of pressure-controlled flow, protein retention and elution, on-chip enrichment, and separation is evaluated using ferritin (Fer). Fluorescently labeled Fer is enriched ∼80-fold on a reversed-phase monolith from an initial concentration of 100 nM. A five-valve peristaltic pump produces higher flow rates and a narrower Fer elution peak than a three-valve pump operated under similar conditions. Moreover, the preconcentration capability of the SPE unit is demonstrated through μCE of enriched Fer and two model peptides in the integrated system. FA, GGYR, and Fer are concentrated 4-, 12-, and 50-fold, respectively. The loading capacity of the polymer monolith is 56 fmol (25 ng) for Fer. This device lays the foundation for integrated systems that can be used to analyze various disease biomarkers.

  5. SOLID PHASE MICROEXTRACTION SAMPLING OF FIRE DEBRIS RESIDUES IN THE PRESENCE OF RADIONUCLIDE SURROGATE METALS

    SciTech Connect

    Duff, M; Keisha Martin, K; S Crump, S

    2007-03-23

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work in facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.

  6. A solid-phase microextraction method for the detection of ignitable liquids in fire debris.

    PubMed

    Yoshida, Hiroaki; Kaneko, Tsuyoshi; Suzuki, Shinichi

    2008-05-01

    A solid-phase microextraction (SPME) procedure involving direct contact between the SPME fibers and the solid matrix and subsequent gas chromatography/mass spectrometric analysis for the detection of accelerants in fire debris is described. The extraction performances of six fibers (100 mum polydimethylsiloxane, 65 mum polydimethylsiloxane-divinylbenzene, 85 mum polyacrylate, 85 mum carboxen-polydimethylsiloxane, 70 mum Carbowax-divinylbenzene, and 50/30 mum divinylbenzene-Carboxen-polydimethylsiloxane) were investigated by directly immersing the fibers into gasoline, kerosene, and diesel fuel. For simulated fire debris, in the direct contact extraction method, the SPME fiber was kept in contact with the fire debris matrix during extraction by penetrating plastic bags wrapping the sample. This method gave comparable results to the headspace SPME method in the extraction of gasoline and kerosene, and gave an improved recovery of low-volatile components in the extraction of diesel fuel from fire debris. The results demonstrate that this procedure is suitable as a simple and rapid screening method for detecting ignitable liquids in fire debris packed in plastic bags.

  7. Altering the interfacial activation mechanism of a lipase by solid-phase selective chemical modification.

    PubMed

    López-Gallego, Fernando; Abian, Olga; Guisán, Jose Manuel

    2012-09-04

    This study presents a combined protein immobilization, directed mutagenesis, and site-selective chemical modification approach, which was used to create a hyperactivated semisynthetic variant of BTL2. Various alkane chains were tethered at three different positions in order to mimic the lipase interfacial activation exogenously triggered by detergents. Optimum results were obtained when a dodecane chain was introduced at position 320 by solid-phase site-selective chemical modification. The resulting semisynthetic variant showed a 2.5-fold higher activity than the wild-type nonmodified variant in aqueous conditions. Remarkably, this is the maximum hyperactivation ever observed for BTL2 in the presence of detergents such as Triton X-100. We present evidence to suggest that the endogenous dodecane chain hyperactivates the enzyme in a similar fashion as an exogenous detergent molecule. In this way, we also observe a faster irreversible enzyme inhibition and an altered detergent sensitivity profile promoted by the site-selective chemical modification. These findings are also supported by fluorescence studies, which reveal that the structural conformation changes of the semisynthetic variant are different to those of the wild type, an effect that is more pronounced in the presence of detergent. Finally, the optimal immobilized semisynthetic variant was successfully applied to the selective synthesis of oxiran-2-yl butyrate. Significantly, this biocatalyst is 12-fold more efficient than the immobilized wild-type enzyme, producing the S-enantiomer with higher enantiospecificity (ee = 92%).

  8. Solid-phase microextraction for cannabinoids analysis in hair and its possible application to other drugs.

    PubMed

    Strano-Rossi, S; Chiarotti, M

    1999-01-01

    This paper describes the application of solid-phase microextraction (SPME) to cannabis testing in hair. Fifty milligrams of hair was washed with petroleum ether, hydrolyzed with NaOH, neutralized, deuterated internal standard was added and directly submitted to SPME. The SPME was analyzed by GC-MS. The limit of detection was 0.1 ng/mg for cannabinol (CBN) and delta9-tetrahydrocannabinol (THC) and 0.2 ng/mg for cannabidiol (CBD). THC was detected in a range spanning from 0.1 to 0.7 ng/mg. CBD concentrations ranged from 0.7 to 14.1 ng/mg, and CBN concentrations ranged from 0.4 to 0.7 ng/mg. The effectiveness of different decontamination procedures was also studied on passively contaminated hair. The proposed method is also suitable for the analysis of methadone in hair; cocaine and cocaethylene can be detected in hair with SPME extraction after enzymatic hydrolysis.

  9. Magnetism-Enhanced Monolith-Based In-Tube Solid Phase Microextraction.

    PubMed

    Mei, Meng; Huang, Xiaojia; Luo, Qing; Yuan, Dongxin

    2016-02-02

    Monolith-based in-tube solid phase microextraction (MB/IT-SPME) has received wide attention because of miniaturization, automation, expected loading capacity, and environmental friendliness. However, the unsatisfactory extraction efficiency becomes the main disadvantage of MB/IT-SPME. To overcome this circumstance, magnetism-enhanced MB/IT-SPME (ME-MB/IT-SPME) was developed in the present work, taking advantage of magnetic microfluidic principles. First, modified Fe3O4 nanoparticles were mixed with polymerization solution and in situ polymerized in the capillary to obtain a magnetic monolith extraction phase. After that, the monolithic capillary column was placed inside a magnetic coil that allowed the exertion of a variable magnetic field. The effects of intensity of magnetic field, adsorption and desorption flow rate, volume of sample, and desorption solvent on the performance of ME-MB/IT-SPME were investigated in detail. The analysis of six steroid hormones in water samples by the combination of ME-MB/IT-SPME with high-performance liquid chromatography with diode array detection was selected as a paradigm for the practical evaluation of ME-MB/IT-SPME. The application of a controlled magnetic field resulted in an obvious increase of extraction efficiencies of the target analytes between 70% and 100%. The present work demonstrated that application of different magnetic forces in adsorption and desorption steps can effectively enhance extraction efficiency of MB/IT-SPME systems.

  10. Graphene-coated fiber for solid-phase microextraction of triazine herbicides in water samples.

    PubMed

    Wu, Qiuhua; Feng, Cheng; Zhao, Guangying; Wang, Chun; Wang, Zhi

    2012-01-01

    Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber-coating material for the solid-phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene-coated fiber coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05-0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0  ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene-coated fiber showed higher extraction efficiency.

  11. Determination of polychlorinated biphenyls in transformer oil using various adsorbents for solid phase extraction.

    PubMed

    Na, Yun-Cheol; Kim, Kang-Jin; Hong, Jongki; Seo, Jung-Ju

    2008-08-01

    Various adsorbents for a solid phase extraction (SPE) method were used to study their ability to separate PCBs from transformer oil to rapidly determine their sub-ppm concentration in the transformer oil. Approximately 90% of the transformer oil could be removed from the PCBs by using a hydrophilic-lipophilic balanced copolymer (HLB) adsorbent, but the recovery of deca-chlorobiphenyl (deca-CB) used as a surrogate was only 24.5% due to lose during this cleanup process. The use of a silica adsorbent gave good results with 89.9% recovery of the deca-CB. The recovery of Aroclor 1242 and 1260 were 95.4 and 90.3% on silica, and 98.9 and 83.5% on HLB, respectively. Acid treatment was an essential step in removing the ambiguous interference peaks to help identify the PCBs. A decreased sensitivity of the electron capture detection (ECD) for PCBs was observed due to the presence of the remaining trace oil after the workup procedure. This loss in sensitivity was allowed for by using tetrachloroxylene as an internal standard, and this was found to be reliable for the criteria of quality control by employing an experiment in which LCS was spiked with 2mg/l of Aroclor 1260 and analyzed each day over a 25 day period. The MDL for the analytical method established in this study is 0.05 mg/l.

  12. Ferrofluid based dispersive-solid phase extraction for spectrophotometric determination of dyes.

    PubMed

    Davudabadi Farahani, Malihe; Shemirani, Farzaneh

    2013-10-01

    For the first time, ferrofluid based dispersive-solid phase extraction (D-SPE) has been applied for determination of trace levels of dyes in aqueous and fish samples. The contaminant used as a model compound was crystal violet (CV), a cationic dye, and was preconcentrated without any derivatization or ion-pair formation. The method is based on rapid injection of ferrofluid into the aqueous sample by a syringe. The sample preparation time is decreased by the fact that the sorbent dispersed in the bulk solution and extraction can be achieved very fast. In this way, the separation of sorbent from the aqueous bulk was achieved by a magnet, and no centrifugation is required. These significant features which obtained with this method are of key interest for routine trace laboratory analysis. The influence of different variables on D-SPE was investigated. Under optimum conditions, the calibration graph was linear over the range of 3.3-90 μg L(-1), and the enrichment factor (EF) 267 was obtained. Detection limit was 1.51 μg L(-1) (n=7), and the relative standard deviation of 5.6% at 50 ng mL(-1) was obtained (n=7). The proposed method was successfully applied for the determination of crystal violet in various samples.

  13. Characterisation of volatile organic compounds in stemwood using solid-phase microextraction.

    PubMed

    Wajs, A; Pranovich, A; Reunanen, M; Willför, S; Holmbom, B

    2006-01-01

    Solid-phase microextraction (SPME), hydrodistillation and dynamic headspace combined with GC and GC-MS were applied and compared for the analysis of volatile organic compounds (VOCs) from coniferous wood. The SPME conditions (type of fibre, size of wood sample, temperature and exposure time) were optimised, and more than 100 VOCs and semi-volatile compounds extracted and identified from the sapwood and heartwood of Norway spruce (Picea abies). The total number of mono- and sesquiterpenes eluted and identified was similar for the SPME and hydrodistillation methods, but more semi-volatile compounds were released by hydrodistillation. By applying dynamic headspace at room temperature, it was possible to analyse only the most volatile compounds. The qualitative composition of VOCs was similar in spruce sapwood and heartwood, although Z-beta-ocimene occurred only in sapwood while fenchol was present only in heartwood. SPME sampling coupled with GC, applied here to the analysis of VOCs released from stemwood of firs for the first time, is a convenient, sensitive, fast, solvent-free and simple method for the determination of wood volatiles. The technique requires much smaller sample amounts compared with hydrodistillation, and the total amount of VOCs extracted and identified is higher than that obtained by hydrodistillation or dynamic headspace. The relative ratios of the main mono- and sesquiterpenes and -terpenoids were similar using the SPME-GC and hydrodistillation methods.

  14. Cholesterol transport via ABCA1: new insights from solid-phase binding assay.

    PubMed

    Reboul, Emmanuelle; Dyka, Frank M; Quazi, Faraz; Molday, Robert S

    2013-04-01

    It is now well established that the ATP-binding cassette transporter A1 (ABCA1) plays a pivotal role in HDL metabolism, reverse cholesterol transport and net efflux of cellular cholesterol and phospholipids. We aimed to resolve some uncertainties related to the putative function of ABCA1 as a mediator of lipid transport by using a methodology developed in the laboratory to isolate a protein and study its interactions with other compounds. ABCA1 was tagged with the 1D4 peptide at the C terminus and expressed in human HEK 293 cells. Preliminary experiments showed that the tag modified neither the protein expression/localization within the cells nor the ability of ABCA1 to promote cholesterol cellular efflux to apolipoprotein A-I. ABCA1-1D4 was then purified and reconstituted in liposomes. ABCA1 displayed an ATPase activity in phospholipid liposomes that was significantly decreased by cholesterol. Finally, interactions with either cholesterol or apolipoprotein A-I were assessed by binding experiments with protein immobilized on an immunoaffinity matrix. Solid-phase binding assays showed no direct binding of cholesterol or apolipoprotein A-I to ABCA1. Overall, our data support the hypothesis that ABCA1 is able to mediate the transport of cholesterol from cells without direct interaction and that apo A-I primarily binds to membrane surface or accessory protein(s).

  15. Knitting aromatic polymers for efficient solid-phase microextraction of trace organic pollutants.

    PubMed

    Liu, Shuqin; Hu, Qingkun; Zheng, Juan; Xie, Lijun; Wei, Songbo; Jiang, Ruifen; Zhu, Fang; Liu, Yuan; Ouyang, Gangfeng

    2016-06-10

    A series of knitting aromatic polymers (KAPs) were successfully synthesized using a simple one-step Friedel-Crafts alkylation of aromatic monomers and were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Then, as-synthesized KAPs with large surface areas, unique pore structures and high thermal stability were prepared as solid-phase microextraction (SPME) coatings that exhibited good extraction abilities for a series of benzene compounds (i.e., benzene, toluene, ethylbenzene and m-xylene, which are referred to as BTEX) and polycyclic aromatic hydrocarbons (PAHs). Under the optimized conditions, the methodologies established for the determination of BTEX and PAHs using the KAPs-triPB and KAPs-B coatings, respectively, possessed wide linear ranges, low limits of detection (LODs, 0.10-1.13ngL(-1) for BTEX and 0.05-0.49ngL(-1) for PAHs) and good reproducibility. Finally, the proposed methods were successfully applied to the determination of BTEX and PAHs in environmental water samples, and satisfactory recoveries (93.6-124.2% for BTEX and 77.2-113.3% for PAHs) were achieved. This study provides a benchmark for exploiting novel microporous organic polymers (MOPs) for SPME applications.

  16. In-syringe dispersive solid phase extraction: a novel format for electrospun fiber based microextraction.

    PubMed

    Zhu, Gang-Tian; He, Xiao-Mei; Cai, Bao-Dong; Wang, Han; Ding, Jun; Yuan, Bi-Feng; Feng, Yu-Qi

    2014-12-07

    A novel in-syringe dispersive solid phase extraction (dSPE) system using electrospun silica fibers as adsorbents has been developed in the current work. A few milligrams of electrospun silica fibers were incubated in sample solution in the barrel of a syringe for microextraction assisted by vortex. Due to the benefit of dispersion and the high mass transfer rate of the sub-microscale electrospun silica fibers, the extraction equilibrium was achieved in a very short time (less than 1 min). Moreover, thanks to the long fibrous properties of electrospun fibers, the separation of the adsorbent from sample solution was easily achieved by pushing out the sample solution which therefore simplified the sample pretreatment procedure. Besides, the analytical throughput was largely increased by using a multi-syringe plate to perform the extraction experiment. The performance of the in-syringe dSPE device was evaluated by extraction of endogenous cytokinins from plant tissue samples based on the hydrophilic interaction. Six endogenous cytokinins in 20 mg of Oryza sativa L. (O. sativa) leaves were successfully determined under optimized conditions using in-syringe dSPE combined with liquid chromatography-mass spectrometry analysis. The results demonstrated that the in-syringe dSPE method was a rapid and high-throughput strategy for the extraction of target compounds, which has great potential in microscale sample pretreatment using electrospun fibers.

  17. Sampling gaseous compounds from essential oils evaporation by solid phase microextraction devices

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hsi; Lai, Chin-Hsing

    2014-12-01

    Needle trap samplers (NTS) are packed with 80-100 mesh divinylbenzene (DVB) particles to extract indoor volatile organic compounds (VOCs). This study compared extraction efficiency between an NTS and a commercially available 100 μm polydimethylsiloxane-solid phase microextration (PDMS-SPME) fiber sampler used to sample gaseous products in heated tea tree essential oil in different evaporation modes, which were evaporated respectively by free convection inside a glass evaporation dish at 27 °C, by evaporation diffuser at 60 °C, and by thermal ceramic wicks at 100 °C. The experimental results indicated that the NTS performed better than the SPME fiber samplers and that the NTS primarily adsorbed 5.7 ng ethylbenzene, 5.8 ng m/p-xylenes, 11.1 ng 1,2,3-trimethylbenzene, 12.4 ng 1,2,4-trimethylbenzene and 9.99 ng 1,4-diethylbenzene when thermal ceramic wicks were used to evaporate the tea tree essential oil during a 1-hr evaporation period. The experiment also indicated that the temperature used to heat the essential oils should be as low as possible to minimize irritant VOC by-products. If the evaporation temperature does not exceed 100 °C, the concentrations of main by-products trimethylbenzene and diethylbenzene are much lower than the threshold limit values recommended by the National Institute for Occupational Safety and Health (NIOSH).

  18. Solid-phase diffusion mechanism for GaAs nanowire growth

    NASA Astrophysics Data System (ADS)

    Persson, Ann I.; Larsson, Magnus W.; Stenström, Stig; Ohlsson, B. Jonas; Samuelson, Lars; Wallenberg, L. Reine

    2004-10-01

    Controllable production of nanometre-sized structures is an important field of research, and synthesis of one-dimensional objects, such as nanowires, is a rapidly expanding area with numerous applications, for example, in electronics, photonics, biology and medicine. Nanoscale electronic devices created inside nanowires, such as p-n junctions, were reported ten years ago. More recently, hetero-structure devices with clear quantum-mechanical behaviour have been reported, for example the double-barrier resonant tunnelling diode and the single-electron transistor. The generally accepted theory of semiconductor nanowire growth is the vapour-liquid-solid (VLS) growth mechanism, based on growth from a liquid metal seed particle. In this letter we suggest the existence of a growth regime quite different from VLS. We show that this new growth regime is based on a solid-phase diffusion mechanism of a single component through a gold seed particle, as shown by in situ heating experiments of GaAs nanowires in a transmission electron microscope, and supported by highly resolved chemical analysis and finite element calculations of the mass transport and composition profiles.

  19. Selective separation of flavonoid glycosides in Dalbergia odorifera by matrix solid-phase dispersion using titania.

    PubMed

    Xu, Lingyan; Shi, Hui; Liang, Tu; Feng, Jiatao; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao

    2011-06-01

    Dalbergia odorifera contains high concentrations of flavonoid aglycones and trace flavonoid glycosides. In this study, trace flavonoid glycosides were separated from D. odorifera by titania with matrix solid-phase dispersion (MSPD). Before the MSPD experiment, four standards, including two isoflavone glycosides (genistin and formononetin-8-C-apiosyl (1-6)-glucoside) and their aglycones (genistein and formononetin), were used to compare their retention on a titania column. The effect of acetonitrile concentration and pH on their retention was investigated and a conclusion was drawn that high acetonitrile concentration and pH lead to the greatest difference in the retention of flavonoid as glycosides and aglycones. Besides hydrophilic interaction and ligand-exchange interaction may exist between sugar moiety of flavonoid glycoside and titania, so that flavonoid glycosides have stronger retention than that of aglycones. Based on the chromatographic rule of flavonoid as glycosides and aglycones on the titania column, the MSPD method was optimized to elute high concentration flavonoid aglycones first with 90% acetonitrile and 10% water containing 100 mM ammonium acetate buffer, and then to elute trace flavonoid glycosides with 20% acetonitrile and 80% water containing 1% trifluoroacetate (TFA). Isolated flavonoid glycosides were further analyzed by UPLC-MS/MS, and their fragmentation in MS(2) showed they are C-glycosyl flavonoids.

  20. [Determination of trace haloacetic acids in drinking water using ion chromatography coupled with solid phase extraction].

    PubMed

    Sun, Yingxue; Huang, Jianjun; Gu, Ping

    2006-05-01

    The combined solid phase extraction (SPE)-ion chromatography (IC) method was developed for the analysis of trace haloacetic acids (HAAs) in drinking water. The tested HAAs included monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA). For trace determination of HAAs in real drinking water samples, conditions of LiChrolut EN SPE cartridge were investigated for HAAs preconcentration and matrix elimination. Elution was carried out by 2 mL of sodium hydroxide (10 mmol/L) with the flow rate of 2 mL/min. The Dionex IonPac AS16 column (250 mm x 4 mm i. d.), a high capacity and hydroxide-selective anion-exchange column designed for the determination of polarizable anions, was chosen for chromatographic separation. HAAs were analyzed with a concentration gradient of NaOH with the flow rate of 0.8 mL/min and detected by suppressed conductivity. A 500 microL sample loop was used. The detection limits of this SPE-IC method for MCAA, DCAA, DBAA and TCAA were 0.38-1.69 microg/L and MBAA was 12.5 microg/L under 25-fold preconcentration. The results demonstrate that the method is suitable for the analysis of trace haloacetic acids in drinking water.

  1. Hierarchical Graphene coating for highly sensitive solid phase microextraction of organochlorine pesticides.

    PubMed

    Wang, Fuxin; Liu, Shuqin; Yang, Hao; Zheng, Juan; Qiu, Junlang; Xu, Jianqiao; Tong, Yexiang; Zhu, Fang; Ouyang, Gangfeng

    2016-11-01

    Graphene, a novel class of carbon nanostructures, has received great attention as sorbents due to its fascinating structures, ultrahigh specific surface area, and good extraction ability. In this paper, a new type of hierarchical graphene was synthesized through employing a mild and environment-friendly method. Such 3D interconnected graphene own a high specific surface area up to 524m(2)g(-1), which is about 2.5 fold larger than the graphene, since the synthetic material has interlayer pores between nanosheets and in-plane pores. Then a superior solid-phase microextraction fiber was fabricated by sequentially coating the stainless steel fiber with silicone sealant film and hierarchical graphene powder. Since the novel hierarchical graphene possessed large surface area and good adsorption property, the as-prepared fiber exhibited good extraction properties of the organochlorine pesticides (OCPs). As for the analytical performance, the as-prepared fiber achieved low detection limits (0.08-0.80ngL(-1)) and wide linearity (10-30,000ngL(-1)) under the optimal conditions. The repeatability (n=5) for single fiber were between 5.1% and 11%, while the reproducibility (n=3) of fiber-to-fiber were range from 6.2% to14%. Moreover, the fiber was successfully applied to the analysis of OCPs in the Pearl River water.

  2. A rapid ceramide synthase activity using NBD-sphinganine and solid phase extraction

    PubMed Central

    Tidhar, Rotem; Sims, Kacee; Rosenfeld-Gur, Eden; Shaw, Walter; Futerman, Anthony H.

    2015-01-01

    Ceramides are synthesized by six mammalian ceramide synthases (CerSs), each of which uses fatty acyl-CoAs of different chain lengths for N-acylation of the sphingoid long-chain base. We now describe a rapid and reliable CerS assay that uses a fluorescent N-[6-[(7-nitrobenzo-2-oxa-1,3-diazol-4-yl) (NBD) sphinganine substrate followed by separation of the NBD-lipid substrate and products using solid phase extraction (SPE) C18 chromatography. SPE chromatography is a quick and reliable alternative to TLC, and moreover, there is no degradation of either NBD-sphinganine or NBD-ceramide. We have optimized the assay for use with minimal amounts of protein in a minimal volume. This assay will prove useful for the analysis of CerS activity, which is of particular importance in light of the growing involvement of CerS in cell regulation and in the pathology of human diseases. PMID:25368106

  3. Estimation of the main dill seeds odorant carvone by solid-phase microextraction and gas chromatography.

    PubMed

    Zawirska-Wojtasiak, Renata; Wasowicz, Erwin

    2002-10-01

    Solid-phase microextraction (SPME) was examined for its suitability for isolation of volatiles from seeds of dill in comparison with the traditional steam distillation procedure. Two main dill seeds volatiles, carvone and limonene, were taken into consideration. Two Supelco SPME fibers were used for the extraction: polyacrylic (PAc) and polydimethylsiloxane (PDMS). The time required to saturate the fibers was 3 min, while distillation took 3 h. Gas chromatography (GC) separation was reduced to 5 min by use of microcapillary column HP-5 cross-linked 5% Ph Me Siloxane. The standards of limonene and carvone were used to prepare calibration curves. PAc fiber responses were described by quadratic curves while PDMS responded linearly. Six varieties of dill were examined by distillation and SPME with both fibers. The good results were achieved for carvone by SPME-PDMS with significant regression between distillation and SPME. This compound can be measured in dill seeds samples within 10 min. The SPME-PDMS were also tested for its application to chiral resolution of carvone and limonene enantiomers in dill seeds oil. The enantiomeric separation was done with two chiral columns. The enantiomeric ratios measured by SPME were just the same as with distillation.

  4. Dynamic solid phase microextraction sampling for reactive terpenes in the presence of ozone.

    PubMed

    Shu, Shi; Morrison, Glenn

    2010-10-15

    Dynamic gas sampling using solid phase microextraction (SPME) was evaluated for recovery of reactive terpenes and terpenoids in the presence of ozone. For limonene, α-terpineol and dihydromyrcenol in the 20-60 ppb range, this method achieves >80% recovery for ozone mixing ratios up to 100 ppb. Both the experimental results and a model analysis indicate that higher ozone concentrations and longer sampling times result in lower percent recovery. Typically greater than 90% recovery and ppb level method detection limits were achieved with a 5 min sample time. Increasing the flow rate from 100 to 400 sccm flow (5-20 cms(-1)) through the active sampler did not significantly affect sensitivity or recovery in most cases, probably due to negligible mass-transfer improvements. The recovery for each compound improves when sampling from a mixture of different species than that from a single compound sample. This may be due to competition for ozone amongst adsorbed species. Dynamic SPME sampling can improve detection and quantification of terpenes in reactive environments, especially for low vapor pressure (<5 mm Hg at 25°C) compounds that can be adsorbed to ozone scrubbers used in other methods.

  5. Heavy-metal contamination and solid-phase fractionation in street dust.

    PubMed

    Merrikhpour, Hajar; Mahdavi, Shahriar

    2016-08-05

    Fourteen street-dust samples were collected from Hamedan, western Iran. Street-dust samples received different amounts of heavy-metal pollution. The samples were analyzed for total cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), and binding forms of heavy metal were determined in five fractions. The results showed Cd was the only metal present appreciably, 25.21% and 25.92%, in the exchangeable and carbonates fractions, respectively, and Cu was the only metal predominantly associated, 31.77%, with organic fraction. Zn, 45.84%, was present mainly in the Fe-Mn oxide fraction, and the residual fraction was the most dominant solid phase pool of Ni and Pb, respectively, with 42.56% and 41.31%. The order of apparent mobility and potential metal bioavailability for these contaminated street-dust samples is Cd > Zn > Cu > Pb > Ni. The risk-assessment code results showed very high risk for Cd; medium risk for Cu, Pb, and Zn; and low risk for Ni.

  6. Solid phase synthesis of partially protected tocinoic acid: optimization with respect to resin and protecting groups.

    PubMed

    Hlavácek, J; Ragnarsson, U

    2001-07-01

    A few solid phase and solution approaches of good repute were applied in parallel with the aim to provide optimized routes to Boc- and Fmoc-tocinoic acid (3a and 3c) and the corresponding Tyr(Bu(t)) derivatives (3b and 3d). Boc-tocinoic acid is known to couple with tripeptide amides to give substituted oxytocin precursors in high yields, requiring only Boc-cleavage to furnish the corresponding hormone analogs with minimal loss of material. For comparison, two protected linear hexapeptides (2a and 2b) were prepared on three polystyrene supports, two with acid-labile handles and one a conventional chloromethylated resin, in yields of 62-82 and 58-76%, respectively. The intermediate 2a could be converted to 3a with physical data in agreement with those earlier reported. Similarly, the intermediate 2b was converted to 3b. The highest yields for both 2a and 2b were obtained with a 2-chlorotrityl chloride resin, which in addition provided advantages with respect to overall speed and convenience. Additional syntheses of 3c and 3d on this and of 3c on SASRIN resin, in conjunction with trityl instead of benzyl for side-chain protection of cysteine, were also elaborated.

  7. Antioxidative properties of defatted dabai pulp and peel prepared by solid phase extraction.

    PubMed

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah

    2012-08-14

    Solid phase extraction (SPE) using Sep-Pak® cartridges is one of the techniques used for fractionation of antioxidant compounds in waste of dabai oil extraction (defatted dabai parts). The aim of this study was to determine the phenolic compounds and antioxidant capacity in crude extracts and several SPE fractions from methanolic extract of defatted dabai pulp and peel. Based on SPE, Sep-Pak® cyanopropyl and C₁₈ cartridges were used to fractionate the antioxidant-rich crude extracts into water and methanolic fractions. Analyzed using LC-MS, flavonoids, anthocyanins, saponin derivatives and other unknown antioxidative compounds were detected in the defatted dabai crude extracts and their SPE fractions. Anthocyanins were the major phenolic compounds identified in the defatted dabai peel and detected in most of the SPE fractions. Methanolic fractions of defatted dabai parts embraced higher total phenolics and antioxidant capacity than water fractions. This finding also revealed the crude extracts of defatted dabai peel have the most significant antioxidant properties compared to the methanolic and water fractions studied. The crude extract of defatted dabai parts remain as the most potent antioxidant as it contains mixture of flavonoids, anthocyanins and other potential antioxidants.

  8. Solid phase extraction-spectrophotometric determination of dissolved aluminum in soil extracts and ground waters.

    PubMed

    Luo, Mingbiao; Bi, Shuping

    2003-09-15

    An on-line solid-phase extraction (SPE) technique, linked to spectrophotometry, has been developed to overcome the problem of high matrix concentration, which is thought to interfere with the determination of low levels of aluminum (Al) in environmental samples. Tiron modified resin was prepared and used as a SPE absorbent, which can quantitatively adsorb Al(III) at pH 4-6 with an adsorption capacity of 5.6 mg g(-1) resin. The main advantages of this novel method are: (1) a much higher sensitivity has been obtained by SPE technology; and (2) a large amount of Na(+), K(+), Ca(2+) and Mg(2+) can be removed and the interference of Fe(III), Mn(II) and F(-) can be efficiently eliminated by eluting with 0.25 mol l(-1) NaOH. It is a highly selective and sensitive method for simple and quick determination of dissolved Al in soil extracts and ground waters, particularly suitable for the analysis of complex environmental samples.

  9. Improved solid-phase extraction and HPLC measurement of torasemide and its important metabolites.

    PubMed

    Engelhardt, Sabine; Meineke, Ingolf; Brockmöller, Jürgen

    2006-02-02

    Torasemide is a "loop type" diuretic drug. For pharmacokinetic studies sensitive analytic methods are essential for authentic qualitative and quantitative information. A robust, selective and sensitive HPLC method is described for the simultaneous determination of torasemide, its major metabolite M5 and its active metabolites M1 and M3 and an internal standard within 17 min. Solid-phase extraction with C(2)-cartridges was used for the clean-up of plasma samples. The chromatographic separation was carried out on a CN-column with a mobile phase consisting of perchloric acid (0.02 M, pH 2.5)/acetonitrile (90/10, v/v)). The calibration range used reached from 20 to 1000 ng/ml for all analytes. Coefficients of variation were less than 10% at every calibration point for each analyte. Plasma concentrations in samples obtained from volunteers in the course of a clinical study could be reliably measured with this method. Median maximum concentrations in plasma after a 10mg oral dose during a 24h study interval were located at 1h for torasemide, 1h for M1 and 2h for M5. Concentrations between 2226 and <20 ng/ml for torasemide, between 159 and <20 ng/ml for M1 and between 420 and <20 ng/ml for M5 were observed.

  10. Electrospun polyamide-polyethylene glycol nanofibers for headspace solid-phase microextration.

    PubMed

    Bagheri, Habib; Najarzadekan, Hamid; Roostaie, Ali

    2014-07-01

    A solution of polyamide (PA) containing polyethylene glycol (PEG) as a side low-molecular-weight polymer was electrospun. After synthesizing the PA-PEG nanofibers, the constituent was subsequently removed (modified PA) and confirmed by Fourier transform infrared spectroscopy. The scanning electron microscopy images showed an average diameter of 640 and 148 nm for PA and PA-PEG coatings, respectively, while the latter coating structure was more homogeneous and porous. The extraction efficiencies of PA, PA-PEG, and the modified PA fiber coatings were assayed by headspace solid-phase microextraction of a number of chlorophenols from real water samples followed by their determination by gas chromatography with mass spectrometry. To prepare the most appropriate coatings, the amounts and the flow rate of the electrospinning solution were investigated. Various extraction parameters, such as the salt content, desorption condition, extraction temperature, and time were optimized. The limits of detection of the method were in the range of 0.8-25 ng/L, while the RSDs at two concentration levels of 200 and 80 ng/L were between 2.1 and 12.2%. The analysis of real water samples led to relative recoveries between 85 and 98% with a linearity of 8-1500 ng/L.

  11. Preparation and characterization of porous carbon material-coated solid-phase microextraction metal fibers.

    PubMed

    Zhu, Fang; Guo, Jiaming; Zeng, Feng; Fu, Ruowen; Wu, Dingcai; Luan, Tiangang; Tong, Yexiang; Lu, Tongbu; Ouyang, Gangfeng

    2010-12-10

    Two kinds of porous carbon materials, including carbon aerogels (CAs), wormhole-like mesoporous carbons (WMCs), were synthesized and used as the coatings of solid-phase microextraction (SPME) fibers. By using stainless steel wire as the supporting core, six types of fibers were prepared with sol-gel method, direct coating method and direct coating plus sol-gel method. Headspace SPME experiments indicated that the extraction efficiencies of the CA fibers are better than those of the WMC fibers, although the surface area of WMCs is much higher than that of CAs. The sol-gel-CA fiber (CA-A) exhibited excellent extraction properties for non-polar compounds (BTEX, benzene, toluene, ethylbenzene, o-xylene), while direct-coated CA fiber (CA-B) presented the best performance in extracting polar compounds (phenols). The two CA fibers showed wide linear ranges, low detection limits (0.008-0.047μgL(-1) for BTEX, 0.15-5.7μgL(-1) for phenols) and good repeatabilities (RSDs less than 4.6% for BTEX, and less than 9.5% for phenols) and satisfying reproducibilities between fibers (RSDs less than 5.2% for BTEX, and less than 9.9% for phenols). These fibers were successfully used for the analysis of water samples from the Pearl River, which demonstrated the applicability of the home-made CA fibers.

  12. Solid-phase control on lead bioaccessibility in smelter-impacted soils.

    PubMed

    Romero, F M; Villalobos, M; Aguirre, R; Gutiérrez, M E

    2008-11-01

    The goal of this work was to identify the solid-phase control on lead (Pb) bioaccessibility in soils impacted by smelter activities in the city of San Luis Potosi, in north-central Mexico. Total Pb concentrations in 30 ha of soil terrain from a residential area adjacent to the smelter showed levels above the 400-mg/kg intervention guideline dictated by Mexican Environmental regulations. These concentrations, although raising human health and environmental concerns, showed low water-soluble lead (<0.1 mg/L) and relatively low lead bioaccessibility (2.4-20.5%). X-ray diffraction and electron microscopy techniques showed, in addition to common Pb phases reported in similar contaminated environments [galena (PbS) and anglesite (PbSO(4))], the presence of a solid lead arsenate phase. The Pb solubility measured in soils agrees very well with the low solubility reported for the Pb minerals identified and explains the relatively low Pb bioaccessibility values measured, presumably from their low dissolution during passage through the gastrointestinal tract. The results reported are highly relevant for smelter-originated environmental contamination scenarios in general.

  13. Hyphenating Centrifugal Partition Chromatography with Nuclear Magnetic Resonance through Automated Solid Phase Extraction.

    PubMed

    Bisson, Jonathan; Brunel, Marion; Badoc, Alain; Da Costa, Grégory; Richard, Tristan; Mérillon, Jean-Michel; Waffo-Téguo, Pierre

    2016-10-18

    Centrifugal partition chromatography (CPC) and all countercurrent separation apparatus provide chemists with efficient ways to work with complex matrixes, especially in the domain of natural products. However, despite the great advances provided by these techniques, more efficient ways of analyzing the output flow would bring further enhancement. This study describe a hyphenated approach made by coupling NMR with CPC through a hybrid-indirect coupling made possible by using a solid phase extraction (SPE) apparatus intended for high-pressure liquid chromatography (HPLC)-NMR hyphenation. Some hardware changes were needed to adapt the incompatible flow-rates and a reverse-engineering approach that led to the specific software required to control the apparatus. 1D (1)HNMR and (1)H-(1)H correlation spectroscopy (COSY) spectra were acquired in reasonable time without the need for any solvent-suppression method thanks to the SPE nitrogen drying step. The reduced usage of expensive deuterated solvents from several hundreds of milliliters to the milliliter order is the major improvement of this approach compared to the previously published ones.

  14. Universal Solid-Phase Reversible Sample-Prep for Concurrent Proteome and N-Glycome Characterization.

    PubMed

    Zhou, Hui; Morley, Samantha; Kostel, Stephen; Freeman, Michael R; Joshi, Vivek; Brewster, David; Lee, Richard S

    2016-03-04

    We describe a novel solid-phase reversible sample-prep (SRS) platform that enables rapid sample preparation for concurrent proteome and N-glycome characterization for nearly all protein samples. SRS utilizes a uniquely functionalized, silica-based bead that has strong affinity toward proteins with minimal to no affinity for peptides and other small molecules. By leveraging this inherent size difference between proteins and peptides, SRS permits high-capacity binding of proteins, rapid removal of small molecules (detergents, metabolites, salts, peptides, etc.), extensive manipulation including enzymatic and chemical treatments on bead-bound proteins, and easy recovery of N-glycans and peptides. SRS was evaluated in a wide range of samples including glycoproteins, cell lysate, murine tissues, and human urine. SRS was also coupled to a quantitative strategy to investigate the differences between DU145 prostate cancer cells and its DIAPH3-silenced counterpart. Previous studies suggested that DIAPH3 silencing in DU145 induced transition to an amoeboid phenotype that correlated with tumor progression and metastasis. In this pilot study we identified distinct proteomic and N-glycomic alterations between them. A metastasis-associated tyrosine kinase receptor ephrin-type-A receptor (EPHA2) was highly up-regulated in DIAPH3-silenced cells, indicating a possible connection between EPHA2 and DIAPH3. Moreover, distinct alterations in the N-glycome were identified, suggesting cross-links between DIAPH3 and glycosyltransferase networks.

  15. Solid-phase dispersive extraction method for analysis of benzodiazepine drugs in serum and urine samples.

    PubMed

    Saito, Koichi; Kikuchi, Yuu; Saito, Rieko

    2014-11-01

    A simple yet highly efficient pretreatment method called solid-phase dispersive extraction (SPDE) was developed and used in combination with liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) for the analysis of benzodiazepines (BZPs) in serum and urine samples. By using a custom-made centrifugal filter, SPDE could be performed in a closed system, thereby minimizing exposure to infectious microbes or hazardous chemicals. The limit of detection and the limit of quantification of nine BZPs were 1-10 and 5-50ng/mL, respectively. The average recoveries of BZPs from pooled serum samples spiked at 50 and 500ng/mL were 89.6-105.0% (RSD: 2.1-6.8%) and 93.6-110.4% (RSD: 2.1-4.2%), respectively, and those from urine samples were 88.7-105.5% (RSD: 2.9-6.4%) and 91.5-101.1% (RSD: 3.6-5.5%), respectively. SPDE-LC/TOF-MS has potential application in forensic science and emergency medicine.

  16. Mechanisms of Neutral and Anionic Surfactant Sorption to Solid-Phase Microextraction Fibers.

    PubMed

    Haftka, Joris J-H; Hammer, Jort; Hermens, Joop L M

    2015-09-15

    Octanol-water partitioning (Kow) is considered a key parameter for hydrophobicity and is often applied in the prediction of the environmental fate and exposure of neutral organic compounds. However, surfactants can create difficulties in the determination of Kow because of emulsification of both water and octanol phases. Moreover, not only is sorption behavior of ionic surfactants related to hydrophobicity, but also other interactions are relevant in sorption processes. A different approach to develop parameters that can be applied in predictive modeling of the fate of surfactants in the environment is therefore required. Distribution between solid-phase microextraction (SPME) fibers and water was used in this study to measure the affinity of surfactants to a hydrophobic phase. Fiber-water sorption coefficients of alcohol ethoxylates, alkyl carboxylates, alkyl sulfates, and alkyl sulfonates were determined at pH 7 by equilibration of the test analytes between fiber and water. Distribution between fiber and water of anionic compounds with pKa ∼ 5 (i.e., alkyl carboxylates) was dominated by the neutral fraction. Anionic surfactants with pKa ≤ 2 (i.e., alkyl sulfates and alkyl sulfonates) showed strong nonlinear distribution to the fiber. The fiber-water sorption coefficients for alcohol ethoxylates and alkyl sulfates showed a linear trend with bioconcentration factors from the literature. Fiber-water sorption coefficients are promising as a parameter to study the effects of hydrophobicity and other potential interactions on sorption behavior of neutral and anionic surfactants.

  17. Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon.

    PubMed

    Wang, Hang; Ma, Lijian; Cao, Kecheng; Geng, Junxia; Liu, Jun; Song, Qiang; Yang, Xiaodan; Li, Shoujian

    2012-08-30

    A new salicylideneimine-functionalized hydrothermal-carbon-based solid-phase extractant was developed for the purpose of separating uranium selectively for sustainability of uranium resources. The resulting adsorption material was obtained via hydrothermal carbonization, calcination at mild temperature (573.15K), amination, and grafting with salicylaldehyde in sequence. Both Fourier transform infrared spectra and elemental analysis proved the successful grafting of salicylideneimine onto hydrothermal carbon matrix. Adsorption behaviors of the extractant on uranium(VI) were investigated by varying pH values of solution, adsorbent amounts, contact times, initial metal concentrations, temperatures, and ionic strengths. An optimum adsorption capacity of 1.10 mmol g(-1) (261 mg g(-1)) for uranium(VI) was obtained at pH 4.3. The present adsorption process obeyed pseudo-second-order model and Langmuir isotherm. Thermodynamic parameters (ΔH=+8.81 kJ mol(-1), ΔS=+110 J K(-1)mol(-1), ΔG=-23.0 kJ mol(-1)) indicated the adsorption process was endothermic and spontaneous. Results from batch adsorption test in simulated nuclear industrial effluent, containing Cs(+), Sr(2+), Ba(2+), Mn(2+), Co(2+), Ni(2+), Zn(2+), La(3+), Ce(3+), Nd(3+), Sm(3+), and Gd(3+), showed the adsorbent could separate uranium(VI) from those competitive ions with high selectivity. The adsorbent might be promising for use in certain key steps in any future sustainable nuclear fuel cycle.

  18. Analysis of trace dicyandiamide in stream water using solid phase extraction and liquid chromatography UV spectrometry.

    PubMed

    Qiu, Huidong; Sun, Dongdi; Gunatilake, Sameera R; She, Jinyan; Mlsna, Todd E

    2015-09-01

    An improved method for trace level quantification of dicyandiamide in stream water has been developed. This method includes sample pretreatment using solid phase extraction. The extraction procedure (including loading, washing, and eluting) used a flow rate of 1.0mL/min, and dicyandiamide was eluted with 20mL of a methanol/acetonitrile mixture (V/V=2:3), followed by pre-concentration using nitrogen evaporation and analysis with high performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV). Sample extraction was carried out using a Waters Sep-Pak AC-2 Cartridge (with activated carbon). Separation was achieved on a ZIC(®)-Hydrophilic Interaction Liquid Chromatography (ZIC-HILIC) (50mm×2.1mm, 3.5μm) chromatography column and quantification was accomplished based on UV absorbance. A reliable linear relationship was obtained for the calibration curve using standard solutions (R(2)>0.999). Recoveries for dicyandiamide ranged from 84.6% to 96.8%, and the relative standard deviations (RSDs, n=3) were below 6.1% with a detection limit of 5.0ng/mL for stream water samples.

  19. Sampling of benzene in tar matrices from biomass gasification using two different solid-phase sorbents.

    PubMed

    Osipovs, Sergejs

    2008-06-01

    Biomass tar mainly consists of stable aromatic compounds such as benzene and polyaromatic hydrocarbons, benzene being the biggest tar component in real biomass gasification gas. For the analysis of individual tar compounds, the solid-phase adsorption method was chosen. According to this method, tar samples are collected on a column with an amino-phase sorbent. With a high benzene concentration in biomass tar, some of the benzene will not be collected on the amino-phase sorbent. To get over this situation, we have installed another column with activated charcoal which is intended for collection of volatile organic compounds, including benzene, after the column with the amino-phase sorbent. The study of maximal adsorption amounts of various compounds on both adsorbents while testing different sampling volumes led to the conclusion that benzene is a limiting compound. The research proved that the use of two sorbents (500 mg + 100 mg) connected in series allows for assessment of tar in synthesis gas with a tar concentration up to 30-40 g m(-3), which corresponds to the requirements of most gasifiers.

  20. Determination of Volatile Organic Compounds in Snow Using Solid Phase Micro Extraction (SPME)

    NASA Astrophysics Data System (ADS)

    Kos, G.; Ariya, P. A.

    2004-12-01

    Volatile organic compounds (VOC) in snow-samples from different environments were determined. Samples were collected in Resolute, Nunavut in the high Arctic (latitude: 74.70° /longitude: - 94.91° ), the Gaspé Peninsula in Quebec (at Mont Albert near Ste-Anne-des Monts: 49.12° /- 66.49° ) and downtown Montreal, Quebec ( 45.54° /- 73.60° ) in order to reflect different degrees of anthropogenic influence. In order to assess the ability of compounds contained in the sample to perform photochemistry, samples were irradiated with UV-light in the 300-400 nm range. Filtering through a 0.2 μ m-filter provided information about compounds primarily associated with the liquid phase. A solid phase micro extraction (SPME) procedure was developed for sample preparation and VOC were identified using gas chromatography with mass spectrometric detection (GC-MS). We will present our results at several urban and remote sites, and the implication of the result to atmospheric chemistry will be discussed.

  1. Ultrasensitive and selective spectrofluorimetric determination of S-nitrosothiols by solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Wang, Ling-Ling; Yu, Sheng; Yu, Meng

    2012-12-01

    This present work describes the ultrasensitive and selective spectrofluorimetric determination of S-nitrosothiols by solid-phase extraction based on a novel adsorbent TiO2-graphene nanocomposite. 1,3,5,7-Tetramethyl-2,6-dicarbethoxy-8-(3,4-diaminophenyl)-difluoroboradiaza-s-indacence is used as fluorescent probe for S-nitrosothiols label. The procedure is based on the fluorescent probe selective reaction with S-nitrosothiols to form highly fluorescent product, its extraction to the TiO2-graphene-packed SPE cartridge and spectrofluorimetric determination. The experimental variables affecting the extraction procedure, such as the type of the eluent and its volume, sample pH, and sample volume, have been studied. Under the optimized extraction conditions, the method showed good linearity in the range of 0.5-100 nM. The limit of detection was 0.08 nM (signal-to-noise ratio = 3). Relative standard deviation was 2.5%. The developed method was applied to the determination of S-nitrosothiols in human blood samples with recoveries of 92.0-104.0%. This work revealed the great potentials of TiO2-graphene as an excellent sorbent material in the analysis of biological samples.

  2. A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges.

    PubMed

    Bodennec, J; Koul, O; Aguado, I; Brichon, G; Zwingelstein, G; Portoukalian, J

    2000-09-01

    Solid-phase extraction (SPE) methods are easy, rapid, and reliable. Their growing popularity is in part due to their operational simplicity and cost reduction in solvents, and partly because they are easier to automate. Sphingolipids are implicated in various cellular events such as growth, differentiation, and apoptosis. However, their separation by small SPE cartridges has attracted limited attention. Here we describe an SPE procedure on aminopropyl cartridges that by sequential elution allows the separation of a lipid mixture into free ceramides, neutral glycosphingolipids, neutral phospholipids (sphingomyelin), and a fraction containing the acidic phospholipids and phosphorylated sphingoid bases, phosphoceramides and sulfatides. Individual components are obtained in high yield and purity. We applied the procedure to obtain data on separation of [(3)H]myristic acid-labeled sphingolipids from fish gills, and from human melanoma tumor tissue. Individual lipids in the SPE fractions were identified by chromatography on several high-performance thin-layer chromatography (HPTLC) systems. The chromatographic behavior of free sphingoid bases is also reported.

  3. Novel chromatographic separation and carbon solid-phase extraction of acetanilide herbicide degradation products.

    PubMed

    Shoemaker, Jody A

    2002-01-01

    One acetamide and 5 acetanilide herbicides are currently registered for use in the United States. Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of these acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. Alachlor ESA and other acetanilide degradation products are listed on the U.S. Environmental Protection Agency's (EPA) 1998 Drinking Water Contaminant Candidate List. Consequently, EPA is interested in obtaining national occurrence data for these contaminants in drinking water. EPA currently does not have a method for determining these acetanilide degradation products in drinking water; therefore, a research method is being developed using liquid chromatography/negative ion electrospray/mass spectrometry with solid-phase extraction (SPE). A novel chromatographic separation of the acetochlor/alachlor ESA and OA structural isomers was developed which uses an ammonium acetate-methanol gradient combined with heating the analytical column to 70 degrees C. Twelve acetanilide degradates were extracted by SPE from 100 mL water samples using carbon cartridges with mean recoveries >90% and relative standard deviations < or =16%.

  4. Applications of monolithic solid-phase extraction in chromatography-based clinical chemistry assays.

    PubMed

    Bunch, Dustin R; Wang, Sihe

    2013-04-01

    Complex matrices, for example urine, serum, plasma, and whole blood, which are common in clinical chemistry testing, contain many non-analyte compounds that can interfere with either detection or in-source ionization in chromatography-based assays. To overcome this problem, analytes are extracted by protein precipitation, solid-phase extraction (SPE), and liquid-liquid extraction. With correct chemistry and well controlled material SPE may furnish clean specimens with consistent performance. Traditionally, SPE has been performed with particle-based adsorbents, but monolithic SPE is attracting increasing interest of clinical laboratories. Monoliths, solid pieces of stationary phase, have bimodal structures consisting of macropores, which enable passage of solvent, and mesopores, in which analytes are separated. This structure results in low back-pressure with separation capabilities similar to those of particle-based adsorbents. Monoliths also enable increased sample throughput, reduced solvent use, varied support formats, and/or automation. However, many of these monoliths are not commercially available. In this review, application of monoliths to purification of samples from humans before chromatography-based assays will be critically reviewed.

  5. Solid Phase Extraction for Monitoring of Occupational Exposure to Cr (III)

    PubMed Central

    Shahtaheri, S.J.; Khadem, M.; Golbabaei, F.; Rahimi-Froushani, A.

    2007-01-01

    Chromium is an important constituent widely used in different industrial processes for production of various synthetic materials. For evaluation of workers’ exposure to trace toxic metal of Cr (III), environmental and biological monitoring are essential processes, in which, preparation of samples is one of the most time-consuming and error-prone aspects prior to analysis. The use of solid-phase extraction (SPE) has grown and is a fertile technique of sample preparation as it provides better results than those produced by liquid-liquid extraction (LLE). SPE using mini columns filled with XAD-4 resin was optimized regarding to sample pH, ligand concentration, loading flow rate, elution solvent, sample volume, elution volume, amount of resins, and sample matrix interferences. Chromium was retained on solid sorbent and was eluted with 2 M HNO3 followed by simple determination of analytes by using flame atomic absorption spectrometery. Obtained recoveries of metal ion were more than 92%. The optimized procedure was also validated with three different pools of spiked urine samples and showed a good reproducibility over six consecutive days as well as six within-day experiments. Through this study, suitable results were obtained for relative standard deviation, therefore, it is concluded that, this optimized method can be considered to be successful in simplifying sample preparation for trace residue analysis of Cr in different matrices for evaluation of occupational and environmental exposures. To evaluate occupational exposure to chromium, 16 urine samples were taken, prepared, and analyzed based on optimized procedure. PMID:19662187

  6. Selective Separation of Fe-Concentrates in EAF Slags Using Mechanical Dissimilarity of Solid Phases

    NASA Astrophysics Data System (ADS)

    Jung, Sung Suk; Jung, Keeyoung; Sohn, Il

    2017-02-01

    We sought to develop an optimized particle size-dependent separation method to lower the Fe content of pulverized glass-ceramic electric arc furnace (EAF) slag for its improved reclamation as construction materials by considering the structures and the mechanical behavior of the discrete solid phases. After an isothermal crystallization process to enhance the spinel growth, the Vickers hardness and fracture toughness were measured on the spinel and amorphous phases separately from the solidified slag using indentation methods. The characteristic differences in the hardness of the phases were magnified when this glass-ceramic composite was isothermally crystallized. The hardness of the spinel was observed to be lower in slags with higher FetO/Al2O3 mass ratios due to the triclinic unit cell expansion of the spinel, whereas the hardness of the amorphous phase decreased with increasing isothermal period because of the structural transformation into a silicate-dominant network. Fracture toughness could be calculated based on the hardness and crack length, where the Young's modulus was determined using nanoindentation. The amorphous phase with a lower Fe content and lower fracture toughness resulted in finer powder distribution after pulverization, allowing better separation of the primary crystalline spinel containing higher Fe content from the Fe-deficient amorphous phase according to the particle size.

  7. Solid-phase microextraction and chiral HPLC analysis of ibuprofen in urine.

    PubMed

    de Oliveira, Anderson Rodrigo Moraes; Cesarino, Evandro José; Bonato, Pierina Sueli

    2005-04-25

    A simple and rapid solid-phase microextraction method was developed for the enantioselective analysis of ibuprofen in urine. The sampling was made with a polydimethylsiloxane-divinylbenzene coated fiber immersed in the liquid sample. After desorptioning from the fiber, ibuprofen enantiomers were analyzed by HPLC using a Chiralpak AD-RH column and UV detection. The mobile phase was made of methanol-pH 3.0 phosphoric acid solution (75:25, v/v), at a flow rate of 0.45 mL/min. The mean recoveries of SPME were 19.8 and 19.1% for (-)-R-ibuprofen and (+)-(S)-ibuprofen, respectively. The method was linear at the range of 0.25-25 microg/mL. Within-day and between-day assay precision and accuracy were below 15% for both ibuprofen enantiomers at concentrations of 0.75, 7.5 and 20 microg/mL. The method was tested with urine quality control samples and human urine fractions after administration of 200 mg rac-ibuprofen.

  8. Enumerating Microorganism Surrogates for Groundwater Transport Studies Using Solid-Phase Cytometry.

    PubMed

    Stevenson, Margaret E; Blaschke, A Paul; Schauer, Sonja; Zessner, Matthias; Sommer, Regina; Farnleitner, Andreas H; Kirschner, Alexander K T

    2014-01-01

    Investigations on the pollution of groundwater with pathogenic microorganisms, e.g. tracer studies for groundwater transport, are constrained by their potential health risk. Thus, microspheres are often used in groundwater transport studies as non-hazardous surrogates for pathogenic microorganisms. Even though pathogenic microorganisms occur at low concentrations in groundwater, current detection methods of microspheres (spectrofluorimetry, flow cytometry and epifluorescence microscopy) have rather high detection limits and are unable to detect rare events. Solid-phase cytometry (SPC) offers the unique capability of reliably quantifying extremely low concentrations of fluorescently labelled microorganisms or microspheres in natural waters, including groundwater. Until now, microspheres have been used in combination with SPC only for instrument calibration purposes and not for environmental applications. In this study, we explored the limits of the SPC methodology for its applicability to groundwater transport studies. The SPC approach proved to be a highly sensitive and reliable enumeration system for microorganism surrogates down to a minimum size of 0.5 μm, in up to 500 ml of groundwater, and 0.75 μm, in up to 1 ml of turbid surface water. Hence, SPC is proposed to be a useful method for enumerating microspheres for groundwater transport studies in the laboratory, as well as in the field when non-toxic, natural products are used.

  9. Dynamic microwave assisted extraction coupled with dispersive micro-solid-phase extraction of herbicides in soybeans.

    PubMed

    Li, Na; Wu, Lijie; Nian, Li; Song, Ying; Lei, Lei; Yang, Xiao; Wang, Kun; Wang, Zhibing; Zhang, Liyuan; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei

    2015-09-01

    Non-polar solvent dynamic microwave assisted extraction was firstly applied to the treatment of high-fat soybean samples. In the dispersive micro-solid-phase extraction (D-µ-SPE), the herbicides in the high-fat extract were directly adsorbed on metal-organic frameworks MIL-101(Cr). The effects of several experimental parameters, including extraction solvent, microwave absorption medium, microwave power, volume and flow rate of extraction solvent, amount of MIL-101(Cr), and D-µ-SPE time, were investigated. At the optimal conditions, the limits of detection for the herbicides ranged from 1.56 to 2.00 μg kg(-1). The relative recoveries of the herbicides were in the range of 91.1-106.7%, and relative standard deviations were equal to or lower than 6.7%. The present method was simple, rapid and effective. A large amount of fat was also removed. This method was demonstrated to be suitable for treatment of high-fat samples.

  10. Dynamics of Vibrio cholerae abundance in Austrian saline lakes, assessed with quantitative solid-phase cytometry.

    PubMed

    Schauer, Sonja; Jakwerth, Stefan; Bliem, Rupert; Baudart, Julia; Lebaron, Philippe; Huhulescu, Steliana; Kundi, Michael; Herzig, Alois; Farnleitner, Andreas H; Sommer, Regina; Kirschner, Alexander

    2015-11-01

    In order to elucidate the main predictors of Vibrio cholerae dynamics and to estimate the risk of Vibrio cholera-related diseases, a recently developed direct detection approach based on fluorescence in situ hybridization and solid-phase cytometry (CARD-FISH/SPC) was applied in comparison to cultivation for water samples from the lake Neusiedler See, Austria and three shallow alkaline lakes over a period of 20 months. Vibrio cholerae attached to crustacean zooplankton was quantified via FISH and epifluorescence microscopy. Concentrations obtained by CARD-FISH/SPC were significantly higher than those obtained by culture in 2011, but were mostly of similar magnitude in 2012. Maximum cell numbers were 1.26 × 10(6) V. cholerae per L in Neusiedler See and 7.59 × 10(7) V. cholerae per L in the shallow alkaline lakes. Only on a few occasions during summer was the crustacean zooplankton the preferred habitat for V. cholerae. In winter, V. cholerae was not culturable but could be quantified at all sites with CARD-FISH/SPC. Beside temperature, suspended solids, zooplankton and ammonium were the main predictors of V. cholerae abundance in Neusiedler See, while in the shallow alkaline lakes it was organic carbon, conductivity and phosphorus. Based on the obtained concentrations a first estimation of the health risk for visitors of the lake could be performed.

  11. Solid phase extraction-spectrophotometric determination of salicylic acid using magnetic iron oxide nanoparticles as extractor.

    PubMed

    Parham, Hooshang; Rahbar, Nadereh

    2009-08-15

    This method shows a novel, fast and simple solid phase extraction-spectrophotometric procedure for preconcentration and determination of salicylic acid (SA) in blood serum using magnetic iron oxide nanoparticles (MIONs) as extractor. It is shown that the novel magnetic nano-adsorbent is quite efficient for fast adsorption of SA at 25 degrees C. Various parameters affecting the adsorption of SA on MIONs, such as pH of solution, type, volume and concentration of desorbing reagent and amount of adsorbent and matrix effects, have been investigated. The calibration graph for the determination of SA was linear in the range of 0.025-1.250microgmL(-1). The limit of detection (LOD) based on three times the standard deviation of the blank (3S(b)) was 5.5x10(-3)microgmL(-1) (n=10) for SA. The intra-day precision (R.S.D.) was below 10.1% and inter-day R.S.D. was less than 17.5%, while accuracy (relative error R.E.) was within +/-3.6 determined from quality control samples for salicylic acid (SA) which corresponded to requirement of the guidance of Food and Drug Administration (FDA). The preconcentration factor of 100 was achieved in this method. The proposed procedure has been successfully applied to the determination of SA in blood serum.

  12. Polarization effects on the electric properties of urea and thiourea molecules in solid phase

    SciTech Connect

    Santos, O. L.; Fonseca, T. L. Sabino, J. R.; Georg, H. C.; Castro, M. A.

    2015-12-21

    We present theoretical results for the dipole moment, linear polarizability, and first hyperpolarizability of the urea and thiourea molecules in solid phase. The in-crystal electric properties were determined by applying a supermolecule approach in combination with an iterative electrostatic scheme, in which the surrounding molecules are represented by point charges. It is found for both urea and thiourea molecules that the influence of the polarization effects is mild for the linear polarizability, but it is marked for the dipole moment and first hyperpolarizability. The replacement of oxygen atoms by sulfur atoms increases, in general, the electric responses. Our second-order Møller–Plesset perturbation theory based iterative scheme predicts for the in-crystal dipole moment of urea and thiourea the values of 7.54 and 9.19 D which are, respectively, increased by 61% and 58%, in comparison with the corresponding isolated values. The result for urea is in agreement with the available experimental result of 6.56 D. In addition, we present an estimate of macroscopic quantities considering explicit unit cells of urea and thiourea crystals including environment polarization effects. These supermolecule calculations take into account partially the exchange and dispersion effects. The results illustrate the role played by the electrostatic interactions on the static second-order nonlinear susceptibility of the urea crystal.

  13. [Development of novel solid-phase polymeric catalysts for organic syntheses].

    PubMed

    Yamada, Yoichi M A

    2005-10-01

    Highly active and reusable polymeric catalysts were produced by a self-assembly process of non-cross-linked amphiphilic polymeric ligands with inorganic species. Thus a new insoluble tungsten polymeric catalyst PWAA 1 was prepared from H(3)PW(12)O(40) and poly[(N-isopropylacrylamide)-co-(acrylamide with ammonium salt)], which was suitable for the oxidation of alcohols, amines, and sulfides in aqueous hydrogen peroxide. A new insoluble palladium polymeric catalyst PdAS 2 was produced by self-organization of (NH(4))(2)PdCl(4) and poly[(N-isopropylacrylamide)(10)-co-diphenylphosphinostyrene], which is an excellent recyclable catalyst for the Suzuki-Miyaura reaction in water, water-organic solvents, and organic solvents. It is commercially available from Tokyo Kasei Kogyo (TCI). An improved insoluble palladium polymeric catalyst PdAS-V 3 was assembled from (NH(4))(2)PdCl(4) and poly[(N-isopropylacrylamide)(5)-co-diphenylphosphinostyrene], providing a reusable system for the Mizorogi-Heck reaction. A solid-phase titanium asymmetric polymeric catalyst TiSS 4 was made from Ti (O-i-Pr)(4) and poly(styryl-linked binaphtholate-co-styrene) which promotes an enantioselective carbonyl-ene reaction as a recyclable catalyst.

  14. Development of a Matrix Solid Phase Dispersion methodology for the determination of triazine herbicides in mussels.

    PubMed

    Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S

    2015-04-15

    A method based on Matrix Solid Phase Dispersion (MSPD) for determination of nine triazines in mussels has been optimised in terms of the sorbents used for extracting and cleaning-up. Two dispersing agents: C18 and florisil, and eight cleanup co-sorbents: florisil, silica, silica/alumina, Envi™ Carb, Envi-Carb-II/PSA, SAX/PSA, Envi-Carb-II /SAX/PSA and C18 were assayed. Analytes were eluted using 20 mL of ethyl acetate and 5 mL of acetonitrile and finally the extract was concentrated to dryness, re-constituted with 1 mL methanol and determined by HPLC-DAD. The best results were obtained with C18 as dispersing agent and Envi-Carb-II/SAX/PSA as clean-up co-column. Recoveries ranged between 79% and 99% and repeatability and reproducibility were below than 16% for all compounds. The linearity of the calibration curves yielded the R(2)⩾0.9993. The LOQ values ranged from 0.10 to 0.18 mg kg(-1) dried sample. Finally the method was applied to the analysis of mussel samples from Galicia (NW Spain).

  15. Determination of terpenes in tequila by solid phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Peña-Alvarez, Araceli; Capella, Santiago; Juárez, Rocío; Labastida, Carmen

    2006-11-17

    Solid phase microextraction and capillary gas chromatography-mass spectrometry were used for the determination of seven terpenes in tequila. The method was selected based on the following parameters: coating selection (PA, PDMS, CW/DVB, and PDMS/DVB), extraction temperature, addition of salt, and extraction time profile. The extraction conditions were: PDMS/DVB fiber, Headspace, 100% NaCl, 25 degrees C extraction temperature, 30 min extraction time and stirring at 1200 rpm. The calibration curves (50-1000 ng/ml) for the terpenes followed linear relationships with correlation coefficients (r) greater than 0.99, except for trans,trans-farnesol (r = 0.98). RSD values were smaller than 10% confirmed that the technique was precise. Samples from 18 different trade brands of "Aged" tequila analyzed with the developed method showed the same terpenes in different concentrations. The analytical procedure used is selective, robust (more than 100 analyses with the same fiber), fast and of low-cost.

  16. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Varlamov, Sergey; Xue, Chaowei

    2014-09-01

    This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, Voc and Jsc than the one on the seed layer without RTA treatment.

  17. Bio-inspired solid phase extraction sorbent material for cocaine: a cross reactivity study.

    PubMed

    Montesano, Camilla; Sergi, Manuel; Perez, German; Curini, Roberta; Compagnone, Dario; Mascini, Marcello

    2014-12-01

    The binding specificity of a bio-inspired hexapeptide (QHWWDW) versus cocaine and four other drugs such as 3,4-methylenedioxy-N-methylamphetamine (MDMA), 3,4-methylenedioxy-N-ethylamphetamine (MDEA), phencyclidine and morphine was computationally studied and then experimentally confirmed in solid phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC/MS) detection. In simulation, the hexapeptide-drug complexes were docked with different scoring functions and considering pH chemical environment. In experimental, the cross reactivity of the selected hexapeptide was tested as SPE sorbent versus cocaine and other four drugs using buffer solutions at pH 4 and 7. Significant differences in specific retention were found between cocaine (97% of recovery) and both morphine (45% of recovery) and phencyclidine (60% of recovery), but less for ecstasies (average recovery 69%). In agreement with docking simulation, the hexapeptide showed the highest recovery with best specificity versus cocaine at pH 7 with an experimentally binding constant of 2.9 × 10(6)M(-1). The bio-inspired sorbent material analytical performances were compared with a commercial reversed phase cartridge confirming the hexapeptide specificity to cocaine and validating simulated data.

  18. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    PubMed

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K

    2012-06-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  19. Solid phase stability of a double-minimum interaction potential system

    NASA Astrophysics Data System (ADS)

    Suematsu, Ayumi; Yoshimori, Akira; Saiki, Masafumi; Matsui, Jun; Odagaki, Takashi

    2014-06-01

    We study phase stability of a system with double-minimum interaction potential in a wide range of parameters by a thermodynamic perturbation theory. The present double-minimum potential is the Lennard-Jones-Gauss potential, which has a Gaussian pocket as well as a standard Lennard-Jones minimum. As a function of the depth and position of the Gaussian pocket in the potential, we determine the coexistence pressure of crystals (fcc and bcc). We show that the fcc crystallizes even at zero pressure when the position of the Gaussian pocket is coincident with the first or third nearest neighbor site of the fcc crystal. The bcc crystal is more stable than the fcc crystal when the position of the Gaussian pocket is coincident with the second nearest neighbor sites of the bcc crystal. The stable crystal structure is determined by the position of the Gaussian pocket. These results show that we can control the stability of the solid phase by tuning the potential function.

  20. Improving the solid-phase extraction of "quat" pesticides from water samples. Removal of interferences.

    PubMed

    Ibáñez, M; Picó, Y; Mañes, J

    1998-10-09

    A novel strategy, based on the addition of a cationic surfactant, for preventing the interferences associated with a diminution in the efficacy of solid-phase extraction (SPE) with silica cartridges of diquat, paraquat and difenzoquat in water is developed. Conditions for extraction are optimised with respect to pH, cationic surfactant and its concentration. Humic acids, anionic surfactants, inorganic salts and other organic contaminants like pesticides, phenols, polycyclic aromatic hydrocarbons and polychlorinated biphenyls produce the studied interferences. The best performance is shown in the improvement of the "quats" recovery from waters with high levels of humic acids and anionic surfactants (recovery is increased from ca. 30% to more than 80%). Unfortunately, the strong interference from inorganic salts remains. The presence in the water sample of other organic contaminants only affected the extraction efficiency of difenzoquat at high concentrations (more than 1 mg/l). Analytic utility is illustrated by selective measurements of the three herbicides, in real water samples. Overall, the results show that in spite of its drawbacks, SPE is a useful technique that allows the detection and quantification of the "quats" at limits below 100 ng/l as established by the European Union.

  1. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions.

    PubMed

    Wojciechowski, K W; Tretiakov, K V; Kowalik, M

    2003-03-01

    Systems of model planar, nonconvex, hard-body "molecules" of fivefold and sevenfold symmetry axes are studied by constant pressure Monte Carlo simulations with variable shape of the periodic box. The molecules, referred to as pentamers (heptamers), are composed of five (seven) identical hard disks "atoms" with centers forming regular pentagons (heptagons) of sides equal to the disk diameter. The elastic compliances of defect-free solid phases are computed by analysis of strain fluctuations and the reference (equilibrium) state is determined within the same run in which the elastic properties are computed. Results obtained by using pseudorandom number generators based on the idea proposed by Holian and co-workers [Holian et al., Phys. Rev. E 50, 1607 (1994)] are in good agreement with the results generated by DRAND48. It is shown that singular behavior of the elastic constants near close packing is in agreement with the free volume approximation; the coefficients of the leading singularities are estimated. The simulations prove that the highest density structures of heptamers (in which the molecules cannot rotate) are auxetic, i.e., show negative Poisson ratios.

  2. Time-weighted average water sampling in Lake Ontario with solid-phase microextraction passive samplers.

    PubMed

    Ouyang, Gangfeng; Zhao, Wennan; Bragg, Leslie; Qin, Zhipei; Alaee, Mehran; Pawliszyn, Janusz

    2007-06-01

    In this study, three types of solid-phase microextraction (SPME) passive samplers, including a fiber-retracted device, a polydimethylsiloxane (PDMS)-rod and a PDMS-membrane, were evaluated to determine the time weighted average (TWA) concentrations of polycyclic aromatic hydrocarbons (PAHs) in Hamilton Harbor (the western tip of Lake Ontario, ON, Canada). Field trials demonstrated that these types of SPME samplers are suitable for the long-term monitoring of organic pollutants in water. These samplers possess all of the advantages of SPME: they are solvent-free, sampling, extraction and concentration are combined into one step, and they can be directly injected into a gas chromatograph (GC) for analysis without further treatment. These samplers also address the additional needs of a passive sampling technique: they are economical, easy to deploy, and the TWA concentrations of target analytes can be obtained with one sampler. Moreover, the mass uptake of these samplers is independent of the face velocity, or the effect can be calibrated, which is desirable for long-term field sampling, especially when the convection conditions of the sampling environment are difficult to measure and calibrate. Among the three types of SPME samplers that were tested, the PDMS-membrane possesses the highest surface-to-volume ratio, which results in the highest sensitivity and mass uptake and the lowest detection level.

  3. Isothermal solid-phase amplification system for detection of Yersinia pestis.

    PubMed

    Mayboroda, Olena; Gonzalez Benito, Angel; Sabaté del Rio, Jonathan; Svobodova, Marketa; Julich, Sandra; Tomaso, Herbert; O'Sullivan, Ciara K; Katakis, Ioanis

    2016-01-01

    DNA amplification is required for most molecular diagnostic applications, but conventional polymerase chain reaction (PCR) has disadvantages for field testing. Isothermal amplification techniques are being developed to respond to this problem. One of them is the recombinase polymerase amplification (RPA) that operates at isothermal conditions without sacrificing specificity and sensitivity in easy-to-use formats. In this work, RPA was used for the optical detection of solid-phase amplification of the potential biowarfare agent Yersinia pestis. Thiolated forward primers were immobilized on the surface of maleimide-activated microtitre plates for the quantitative detection of synthetic and genomic DNA, with elongation occurring only in the presence of the specific template DNA and solution phase reverse primers. Quantitative detection was achieved via the use of biotinylated reverse primers and post-amplification addition of streptavidin-HRP conjugate. The overall time of amplification and detection was less than 1 h at a constant temperature of 37 °C. Single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) sequences were detected, achieving detection limits of 4.04*10(-13) and 3.14*10(-16) M, respectively. The system demonstrated high specificity with negligible responses to non-specific targets.

  4. Rotating rod renewable microcolumns for automated, solid-phase DNA hybridization studies.

    PubMed

    Bruckner-Lea, C J; Stottlemyre, M S; Holman, D A; Grate, J W; Brockman, F J; Chandler, D P

    2000-09-01

    The development of a new temperature-controlled renewable microcolumn flow cell for solid-phase nucleic acid hybridization in an automated sequential injection system is described. The flow cell included a stepper motor-driven rotating rod with the working end cut to a 45 degrees angle. In one position, the end of the rod prevented passage of microbeads while allowing fluid flow; rotation of the rod by 180 degrees releases the beads. This system was used to rapidly test many hybridization and elution protocols to examine the temperature and solution conditions required for sequence-specific nucleic acid hybridization. Target nucleic acids labeled with a near-infrared fluorescent dye were detected immediately postcolumn during all column perfusion and elution steps using a flow-through fluorescence detector. Temperature control of the column and the presence of Triton X-100 surfactant were critical for specific hybridization. Perfusion of the column with complementary oligonucleotide (200 microL, 10 nM) resulted in hybridization with 8% of the DNA binding sites on the microbeads with a solution residence time of less than 1 s and a total sample perfusion time of 40 s. The use of the renewable column system for detection of an unlabeled PCR product in a sandwich assay was also demonstrated.

  5. Solution- and solid-phase oligosaccharide synthesis using glucosyl iodides: a comparative study.

    PubMed

    Lam, Son N; Gervay-Hague, Jacquelyn

    2002-11-19

    Glycosyl iodide donors have been used in both solid- and solution-phase syntheses yielding alpha-(1 --> 6)-linked glucosyl oligomers in highly efficient protocols. While the solid-phase strategy offers advantages in terms of ease of purification, it requires a total of 7.5 equiv of donor and approximately 12 h to complete the incorporation of one monosaccharide unit. In contrast, solution-phase methods require only 2.5 equiv of donor and 2-3 h reaction time per glycosylation. Moreover, since the reactions are virtually quantitative (> 90%) column chromatography of the material is facile. The overall advantages of solution-phase oligosaccharide synthesis were further illustrated in the convergent synthesis of a hexamer (methoxycarbonylmethyl 6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl-(1 --> 6)-tetrakis-(2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl-(1 --> 6))-2,3,4-tri-O-benzyl-1-thio-alpha-D-glucopyranoside) that was constructed from dimer donor iodides in a two-plus-two and a two-plus-four fashion.

  6. Determination of amphetamines in biological samples using electro enhanced solid-phase microextraction-gas chromatography.

    PubMed

    Zeng, Jingbin; Chen, Jingjing; Li, Min; Subhan, Fazle; Chong, Fayun; Wen, Chongying; Yu, Jianfeng; Cui, Bingwen; Chen, Xi

    2015-09-01

    In this work, an ordered mesoporous carbon (OMC)/Nafion coated fiber for solid-phase microextraction (SPME) was prepared and used as the working electrode for electro-enhanced SPME (EE-SPME) of amphetamines. The EE-SPME strategy is primarily based on the electro-migration and complementary charge interaction between fiber coating and ionic compounds. Compared with traditional SPME, EE-SPME exhibited excellent extraction efficiency for amphetamine (AP) and methamphetamine (MA) with an enhancement factor of 7.8 and 12.1, respectively. The present strategy exhibited good linearity for the determination of AP and MA in urine samples in the range of 10-1000ngmL(-1) and 20-1000ngmL(-1), respectively. The detection limits were found to be 1.2ngmL(-1) for AP and 4.8ngmL(-1) for MA. The relative standard deviations were calculated to be 6.2% and 8.5% for AP and MA, respectively. Moreover, the practical application of the proposed method was demonstrated by analyzing the amphetamines in urine and serum samples with satisfactory results.

  7. [Application of solid-phase microextraction technique to the detection of amphetamines in urine by GC].

    PubMed

    Liu, W; Shen, M

    1999-05-01

    A simple and rapid detection of nine amphetamines co-existing in urine was described. In the test, the method of solid-phase micro-extraction (SPME) by GC technique was used. Urine (1.0 ml), NaCl (0.3 g) and 4-phenylbutylamine (internal standard) were added into a vial (1.5 ml), then the sample was adjusted to pH 12 with 10% NaOH and sealed with a teflon-coated septum. After immersion of the SPME fiber (100 PDME) in the sample for 15 min, the SPME needle was inserted into the injection port of the GC and extruded for 3 min. The result showed that each peak from nine amphetamines compounds and internal standard was clearly separated. The calibration curves were linear from 0.2 to 15 micrograms/ml for most of five amphetamines with r between 0.9928-0.9995. The CV were less 10%. It is concluded that the method is simple, quick, accurate and useful for the practical detection of urine concentration of amphetamines.

  8. A method for controlling hydrogen sulfide in water by adding solid phase oxygen.

    PubMed

    Chang, Yu-Jie; Chang, Yi-Tang; Chen, Hsi-Jien

    2007-01-01

    This work evaluates the addition of solid phase oxygen, a magnesium peroxide (MgO(2)) formulation manufactured by Regenesis (oxygen-releasing compounds, ORC), to inhibit the production of hydrogen sulfide (H(2)S) in an SRB-enriched environment. The initial rate of release of oxygen by the ORC was determined over a short period by adding sodium sulfite (Na(2)SO(3)), which was a novel approach developed for this study. The ability of ORCs to control H(2)S by releasing oxygen was evaluated in a bench-scale column containing cultured sulfate reducing bacteria (SRB). After a series of batch tests, 0.4% ORC was found to be able to inhibit the formation of H(2)S for more than 40 days. In comparison, the concentration of H(2)S dropped from 20 mg S/L to 0.05 mg S/L immediately after 0.1% hydrogen peroxide (H(2)O(2)) was added, but began to recover just four days later. Thus, H(2)O(2) does not seem to be able to inhibit the production of sulfide for an extended period of time. By providing long-term inhibition of the SRB population, ORC provides a good alternative means of controlling the production of H(2)S in water.

  9. Optimisation of matrix solid-phase dispersion for the determination of Dechlorane compounds in marketed fish.

    PubMed

    Chen, Chien-Liang; Tsai, Dung-Ying; Ding, Wang-Hsien

    2014-12-01

    A method for the determination of chlorinated flame retardants: Dechlorane Plus, Dechlorane (Dec) 602, Dec 603 and Dec 604, in marketed fish is described. The method involves the use of matrix solid-phase dispersion (MSPD) prior to their determination by gas chromatography-electron-capture negative-ion chemical-ionisation mass spectrometry (GC-ECNICI-MS). Parameters that affect the extraction efficiency of the target analytes from fish samples were optimised using a Box-Behnken design method. MSPD integrated the extraction and clean-up procedures into a single step, which provides the benefits of being simple and convenient. The optimal extraction conditions involved dispersing a freeze-dried fish (1-g) in 2-g of silica gel, and packed with 1-g of Florisil, and then the target analytes were eluted with 20 mL of n-hexane. The limits of quantification were 9-15 pg/g-lipid weight. Preliminary results showed that the total concentrations of the target analytes ranged from 0.15 to 1.3 ng/g-lipid weight.

  10. A new interface for coupling solid phase microextraction with liquid chromatography.

    PubMed

    Chen, Yong; Sidisky, Leonard M

    2014-03-19

    A modified Rheodyne 7520 microsample injector was used as a new solid phase microextraction (SPME)-liquid chromatography (LC) interface. The modification was focused on the construction of a new sample rotor, which was built by gluing two sample rotors together. The new sample rotor was further reinforced with 3 pieces of stainless steel tubing. The enlarged central flow passage in the new sample rotor was used as a desorption chamber. SPME fiber desorption occurred in static mode. But all desorption solvent in the desorption chamber was injected into LC system with the interface. The analytical performance of the interface was evaluated by SPME-LC analysis of PAHs in water. At least 90% polycyclic aromatic hydrocarbons (PAHs) were desorbed from a polyacrylonitrile (PAN)/C18 bonded fuse silica fiber in 30s. And injection was completed in 20s. About 10-20% total carryovers were found on the fiber and in the interface. The carryover in the interface was eliminated by flushing the desorption chamber with acetonitrile at 1mL min(-1) for 2min. The repeatability of the method was from 2% to 8%. The limit of detection (LOD) was in the mid pg mL(-1) range. The linear ranges were from 0.1 to 100ng mL(-1). The new SPME-LC interface was reliable for coupling SPME with LC for both qualitative and quantitative analysis.

  11. Magnetic solid phase extraction and gas chromatography-mass spectrometrical analysis of sixteen polycyclic aromatic hydrocarbons.

    PubMed

    Cai, Ying; Yan, Zhihong; NguyenVan, Manh; Wang, Lijia; Cai, Qingyun

    2015-08-07

    Fluorenyl functionalized superparamagnetic core/shell magnetic nanoparticles (MNPs, Fe3O4@SiO2@Flu) were prepared and characterized by transmission electron microscope, X-ray diffraction and infrared spectroscopy. The MNPs having an average diameter of 200nm were then used as solid-phase extraction sorbent for the determination of 16 priority pollutants polycyclic aromatic hydrocarbons (PAHs) in water samples designated by United States Environmental Protection Agency (U.S. EPA). The main influencing parameters, including sorbent amount, desorption solvent, sample volume and extraction time were optimized. Analyses were performed on gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring (SIM) mode. Method validation proved the feasibility of the developed sorbents for the quantitation of the investigated analytes at trace levels. Limit of detection ranging from 0.5 to 4.0ng/L were obtained. The repeatability was investigated by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) lower than 13.1%. Finally, the proposed method was successfully applied for the determination of PAHs in water samples with the recoveries in the range of 96.0-106.7%.

  12. On-line solid phase extraction for polycyclic aromatic hydrocarbons in soil column effluents

    SciTech Connect

    Weigand, H.; Koegel-Knabner, I.; Totsche, K.U.

    1999-03-01

    On-line solid phase extraction with C-18 cartridges provided a reliable method for the extraction of polycyclic aromatic hydrocarbons (PAHs) from soil column effluents. The on-line extraction was compared to the common off-line extraction of effluent fractions with respect to the mass recoveries of an internal standard. The effluent was obtained from a water unsaturated soil column under steady state water flow conditions. The column was packed with an artificially anthracene-contaminated soil material. The results showed superior and more reproducible PAH trapping when the on-line extraction was used. The PAH mass recoveries were unaffected by the range of dissolved organic carbon (DOC) concentrations covered in the experiment. This held true over a range of pHs and water unsaturated conditions of the C-18 material. By using the on-line extraction procedure, losses of PAHs due to sorption to the surfaces of collection vessels were avoided. The combination with a fraction collector allowed for the extraction of very small sample volumes. Thus, the method is suitable for an unbiased evaluation of PAH mobility in soil column experiments.

  13. Germanium ion implantation to Improve Crystallinity during Solid Phase Epitaxy and the effect of AMU Contamination

    SciTech Connect

    Lee, K. S.; Yoo, D. H.; Son, G. H.; Lee, C. H.; Noh, J. H.; Han, J. J.; Yu, Y. S.; Hyung, Y. W.; Kim, Y. K.; Lee, S. C.; Lee, H. D.; Moon, J. T.; Yang, J. K.; Song, D. G.; Lim, T. J.

    2006-11-13

    Germanium ion implantation was investigated for crystallinity enhancement during solid phase epitaxial regrowth (SPE) using high current implantation equipment. Electron back-scatter diffraction(EBSD) measurement showed numerical increase of 19 percent of <100> signal, which might be due to pre-amorphization effect on silicon layer deposited by LPCVD process with germanium ion implantation. On the other hand, electrical property such as off-leakage current of NMOS transistor degraded in specific regions of wafers, which implied non-uniform distribution of donor-type impurities into channel area. It was confirmed that arsenic atoms were incorporated into silicon layer during germanium ion implantation. Since the equipment for germanium pre-amorphization implantation(PAI) was using several source gases such as BF3 and AsH3, atomic mass unit(AMU) contamination during PAI of germanium with AMU 74 caused the incorporation of arsenic with AMU 75 which resided in arc-chamber and other parts of the equipment. It was effective to use germanium isotope of AMU 72 to suppress AMU contamination, however it led serious reduction of productivity because of decrease in beam current by 30 percent as known to be difference in isotope abundance. It was effective to use enriched germanium source gas with AMU 72 in order to improve productivity. Spatial distribution of arsenic impurities in wafers was closely related to hardware configuration of ion implantation equipment.

  14. Advanced Si solid phase crystallization for vertical channel in vertical NANDs

    SciTech Connect

    Lee, Sangsoo; Son, Yong-Hoon; Hwang, Kihyun; Shin, Yoo Gyun; Yoon, Euijoon

    2014-07-01

    The advanced solid phase crystallization (SPC) method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND) devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM) when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers were shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.

  15. Graphenized pencil lead fiber: facile preparation and application in solid-phase microextraction.

    PubMed

    Liu, Qian; Cheng, Mengting; Long, Yanmin; Yu, Miao; Wang, Thanh; Jiang, Guibin

    2014-01-17

    Graphenized pencil lead fiber was facilely prepared by in situ chemical exfoliation of graphite in pencil lead fiber to few-layered graphene sheets via a one-pot, one-step pressurized oxidation reaction for the first time. This new fiber was characterized and demonstrated to be a highly efficient but low-cost solid-phase microextraction (SPME) fiber. The extraction performance of the fiber was evaluated with four bisphenol analogs [bisphenol A (BPA), bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA)] as model analytes in direct SPME mode. Unlike commercially available fibers, the graphenized pencil lead fiber showed an excellent chemical stability in highly saline, acidic, alkaline and organic conditions due to its coating-free configuration. The fiber also showed a very long lifespan. Furthermore, high extraction efficiency and good selectivity for the analytes with a wide polarity range could be obtained due to the exceptional properties of graphene. The detection limits (LODs) for the analytes were in the range of 1.1-25ng/L. The fiber was successfully applied in the analysis of tap water and effluent samples from a waste water treatment plant with spike recoveries ranging from 68.5 to 105.1%. Therefore, the graphenized pencil lead fiber provides a high performance, cheap, robust, and reliable tool for SPME.

  16. Analysis of phenothiazines in human body fluids using disk solid-phase extraction and liquid chromatography.

    PubMed

    Marumo, Akemi; Kumazawa, Takeshi; Lee, Xiao-Pen; Fujimaki, Koichiro; Kuriki, Ayako; Hasegawa, Chika; Sato, Keizo; Seno, Hiroshi; Suzuki, Osamu

    2005-01-01

    Seven phenothiazine derivatives, perazine, perphenazine, prochlorperazine, propericiazine, thioproperazine, trifluoperazine, and flupentixol, have been found to be extractable from human plasma and urine samples using disk solid-phase extraction (SPE) with an Empore C18 cartridge. Human plasma and urine (1 mL each) containing the 7 phenothiazine derivatives were mixed with 2 mL of 0.1M NaOH and 7 mL distilled water and then poured into the disk SPE cartridges. The drugs were eluted with 1 mL chloroform- acetonitrile (8 + 2) and determined by liquid chromatography with ammonium formate/formic acid-acetonitrile gradient elution. The detection was performed by ultraviolet absorption at 250 nm. The separation of the 7 phenothiazine derivatives from each other and from impurities was generally satisfactory using a SymmetryShield RP8 column (150 x 2.1 mm id, 3.5 microm particle size). The recoveries of the 7 phenothiazine derivatives spiked into plasma and urine samples were 64.0-89.9% and 65.1-92.1%, respectively. Regression equations for the 7 phenothiazine derivatives showed excellent linearity, with detection limits of 0.021-0.30 microg/mL for plasma and 0.017-0.30 microg/mL for urine. The within-day and day-to-day coefficients of variation for both samples were commonly below 9.0 and 14.9%, respectively.

  17. Molecularly imprinted polymers-curcuminoids and its application for solid phase extraction

    NASA Astrophysics Data System (ADS)

    Wulandari, Meyliana; Amran, M. B.; Lopez, A. B. Descalzo; Urraca, J. L.; Moreno-Bondi, M. C.

    2014-03-01

    Molecularly Imprinted Polymers (MIPs) for the selective recognition properties of curcumin (CUR), a cancer chemopreventive agent were obtained by a non-covalent imprinting approach with bisdemetoxycurcumin (BDMC) as the template molecule. The double bond of BDMC has been reduced in order not to be involved in polymerization and make the template molecules easy to be eluted. Several functional monomers have been evaluated to maximize the interactions with the template molecule during polymerization. MIPs prepared by bulk of N-(2-aminoethyl) metacrylamid hydrochlorideas functional monomer, ethylene glycol dimethacrylate as crosslinker, 2,2'-azobis (2'4-dimethyl valeronitril) as initiator and acetonitrile as porogen. Non-imprinted polymer (NIP) have been also synthesized for reference purposes. UV-vis spectroscopy has been used to predict the template to functional monomer ratio which indicates the formation of 2:1 complexes between monomer and curcumin and the association constants (K11 = 2529 μM and K12 = 1960.75 μM in acetonitrile). The capacity and imprinting factor have been evaluated as stationary phases in high-pressure liquid chromatography to CUR and BDMC. The binding properties and the homogeneity of the binding sites of the different polymers have been studied by Freundlich isotherm modeling and weight average affinity and number of binding sites. One of the foremost applications of molecular imprinting has been in molecularly imprinted solid phase extraction and it has the ability to separate and preconcentrate between closely related compounds in curcuminoids.

  18. Rapid Detection and Enumeration of Naegleria fowleri in Surface Waters by Solid-Phase Cytometry

    PubMed Central

    Pougnard, Claire; Catala, Philippe; Drocourt, Jean-Louis; Legastelois, Stephane; Pernin, Pierre; Pringuez, Emmanuelle; Lebaron, Philippe

    2002-01-01

    A new method for the rapid and accurate detection of pathogenic Naegleria fowleri amoebae in surface environmental water was developed. The method is based on an immunofluorescent assay combined with detection by solid-phase cytometry. In this study we developed and compared two protocols using different reporter systems conjugated to antibodies. The monoclonal antibody Ac5D12 was conjugated with biotin and horseradish peroxidase, and the presence of cells was revealed with streptavidin conjugated to both R-phycoerythrin and cyanine Cy5 (RPE-Cy5) and tyramide-fluorescein isothiocyanate, respectively. The RPE-Cy5 protocol was the most efficient protocol and allowed the detection of both trophozoite and cyst forms in water. The direct counts obtained by this new method were not significantly different from those obtained by the traditional culture approach, and results were provided within 3 h. The sensitivity of the quantitative method is 200 cells per liter. The limit is due only to the filtration capacity of the membrane used. PMID:12039772

  19. Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34

    SciTech Connect

    Giagnoni L.; Taghavi S.; Magherini, F.; Landi, L.; van der Lelie, D.; Puglia, M.; Bianchi, L.; Bini, L.; Nannipieri, P.; Renella, G.; Modesti, A.

    2012-05-01

    Cupriavidus metallidurans CH34 is a completely sequenced soil-borne beta-proteobacterium with known genome and proteome. Comparative 2-D electrophoresis and protein mass spectrometry were used to compare the proteome of C. metallidurans CH34 from liquid culture and after incubation for 1, 3, and 12 days in microcosms containing quartz sand, kaolinite, montmorillonite, or an artificial soil. Results showed that proteome from liquid culture was similar to CH34 proteins extracted from sand and kaolinite, whereas the proteins extracted from artificial soil differed significantly and no proteins were detected from C. metallidurans CH34 incubated in the montmorillonite microcosms. Protein recovery decreased on prolonging incubation time in all microcosms. Mass spectrometry identification showed that the trend of lower recovery upon incubation time was independent on the putative function of protein. These results suggest that the soil solid phase influences the protein recovery and soil proteomic analysis and that distinction between protein recovery and protein expression in soil will be a challenging for soil proteomic researchers.

  20. Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015.

    PubMed

    Ramautar, Rawi; Somsen, Govert W; de Jong, Gerhardus J

    2016-01-01

    An overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems reported in the literature between July 2013 and June 2015 is provided in this paper. The present article is a continuation of our previous review papers on this topic which covered the time period 2000-2013 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250; Electrophoresis 2014, 35, 128-137). The use of in-line and on-line SPE-CE approaches is treated and outlined in this review. Recent advancements, such as, for example, the use of aptamers as affinity material for in-line SPE-CE, the use of a bead string design for in-line fritless SPE-CE, and new interfacing techniques for the on-line coupling of SPE to CE, are outlined. Selected examples demonstrate the applicability of the coupled SPE-CE systems for biomedical, pharmaceutical, environmental, and food studies. A complete overview of the recent SPE-CE studies is given in table format, providing information on sample type, SPE sorbent, coupling mode, detection mode, and LOD. Finally, some general conclusions and perspectives are provided.

  1. A microtiter solid-phase radioimmunoassay for platelet-associated immunoglobulin G

    SciTech Connect

    Cheung, N.V.; McFall, P.; Schulman, I.

    1983-03-01

    An MSPRIA is described for measuring platelet-associated immunoglobulins by competitive inhibition of the binding of radiolabeled goat anti-human class-specific antibody to solid-phase immunoglobulins. PAIgG can be estimated from calibration curves constructed from soluble IgG inhibitors. The MSPRIA for IgG is antibody class-specific. The coefficient of variability is between 6% and 20%. The MSPRIA is more sensitive than other described assays. Comparative studies demonstrated that ACD-A is the preferred anticoagulant for collecting platelets for the MSPRIA and that sonicated platelets are more reliable than intact platelets in demonstrating elevated PAIgG in immune thrombocytopenias. Intact platelets from 18 normal volunteers had PAIgG ranging from 0.4 to 3.3 fg/platelet (mean +/- S.D. = 1.5 +/- 1). The same platelets when sonicated had a mean +/- S.D. PAIgG of 3.3 +/- 1 fg/platelet, with a range of 1 to 5. Only 60% of 30 adult ITP patients with presumed immune thrombocytopenia had elevated PAIgG levels when their intact platelets were studied. When these same platelets were sonicated, 87% of them had abnormal levels of PAIgG.

  2. Ordered mesoporous carbon/Nafion as a versatile and selective solid-phase microextraction coating.

    PubMed

    Zeng, Jingbin; Zhao, Cuiying; Chen, Jingjing; Subhan, Fazle; Luo, Liwen; Yu, Jianfeng; Cui, Bingwen; Xing, Wei; Chen, Xi; Yan, Zifeng

    2014-10-24

    In this study, ordered mesoporous carbon (OMC) with large surface area (1019m(2)g(-1)), uniform mesoporous structure (pore size distribution centering at 4.2nm) and large pore volume (1.46cm(3)g(-1)) was synthesized using 2D hexagonally mesoporous silica MSU-H as the hard template and sucrose as the carbon precursor. The as-synthesized OMC was immobilized onto a stainless steel wire using Nafion as a binder to prepare an OMC/Nafion solid-phase microextraction (SPME) coating. The extraction characteristics of the OMC/Nafion coating were extensively investigated using a wide range of analytes including non-polar (light petroleum and benzene homologues) and polar compounds (amines and phenols). The OMC/Nafion coating exhibited much better extraction efficiency towards all selected analytes than that of a multi-walled carbon nanotubes/Nafion coating with similar length and thickness, which is ascribed to its high surface area, well-ordered mesoporous structure and large pore volume. When the OMC/Nafion coating was used to extract a mixture containing various kinds of analytes, it possessed excellent extraction selectivity towards aromatic non-polar compounds. In addition, the feasibility of the OMC/Nafion coating for application in electrochemically enhanced SPME was demonstrated using protonated amines as model analytes.

  3. Predicting bioavailability of PAHs and PCBs with porewater concentrations measured by solid-phase microextraction fibers.

    PubMed

    Lu, Xiaoxia; Skwarski, Alison; Drake, Brian; Reible, Danny D

    2011-05-01

    Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) was measured in the deposit-feeding oligochaete Ilyodrilus templetoni exposed for 28 d to Anacostia River sediment (Washington, DC, USA) and to an initially uncontaminated sediment from Brown Lake (Vicksburg, MS, USA) sequentially diluted with 3 to 25% contaminated New Bedford Harbor sediment (New Bedford, MA, USA). The Anacostia River sediment studies represented exposure to a historically contaminated sediment with limited availability, whereas exposure to the other sediment included both the historically contaminated New Bedford Harbor sediment and fresh redistribution of contaminants into the Brown Lake sediments. Organism tissue concentrations did not correlate with bulk sediment concentrations in the Anacostia River sediment but did correlate with the sequentially diluted sediment. Porewater concentrations measured via disposable solid-phase microextraction fiber (SPME) with polydimethylsiloxane (PDMS), however, correlated well with organism uptake in all sediments. Bioaccumulation was predicted well by a linear relationship with the product of porewater concentration and compound octanol-water partition coefficient (Anacostia, slope = 1.08, r² = 0.76; sequentially diluted sediments, slope = 1.24, r² = 0.76). The data demonstrate that the octanol-water partition coefficient is a good indicator of the lipid-water partition coefficient and that porewater concentrations provide a more reliable indicator of bioaccumulation in the organism than sediment concentrations, even when the route of uptake is expected to be via sediment ingestion.

  4. Imprinted functionalized silica sol-gel for solid-phase extraction of triazolamin.

    PubMed

    Jin, Guoyou; Zhang, Baofei; Tang, Youwen; Zuo, Xiongjun; Wang, Songcai; Tang, Jingyi

    2011-05-15

    A triazolam-imprinted silica microsphere was prepared by combining a surface molecular-imprinting technique with the sol-gel process. The results illustrate that the triazolam-imprinted silica microspheres provided using γ-aminopropyltriethoxysilane and phenyltrimethoxysilane as monomers exhibited higher selectivity than those provided from γ-aminopropyltriethoxysilane and methyltriethoxysilane. In addition, the optimum affinity occurred when the molar ratio of γ-aminopropyltriethoxysilane, phenyltrimethoxysilane, and the template molecule was 4.2:4.7:0.6. Retention factor (k) and imprinting factor (IF) of triazolam on the imprinted and non-imprinted silica microsphere columns were characterized using high performance liquid chromatography (HPLC) with different mobile phases including methanol, acetonitrile, and water solutions. The molecular selectivity of the imprinted silica microspheres was also evaluated for triazolam and its analogue compounds in various mobile phases. The better results indicated that k and IF of triazolam on the imprinted silica microsphere column were 2.1 and 35, respectively, when using methanol/water (1/1, v/v) as the mobile phase. Finally, the imprinted silica was applied as a sorbent in solid-phase extraction (SPE), to selectively extract triazolam and its metabolite, α-hydroxytriazolam, from human urine samples. The limits of detection (LOD) for triazolam and α-hydroxytriazolam in urine samples were 30 ± 0.21 ng mL(-1) and 33 ± 0.26 ng mL(-1), respectively.

  5. Facile fabrication of reduced graphene oxide-encapsulated silica: a sorbent for solid-phase extraction.

    PubMed

    Luo, Yan-Bo; Zhu, Gang-Tian; Li, Xiao-Shui; Yuan, Bi-Feng; Feng, Yu-Qi

    2013-07-19

    In this study, a facile hydrothermal reduction strategy was developed for the preparation of reduced graphene oxide-encapsulated silica (SiO2@rGO). Compared with other conventional methods for the synthesis of SiO2@rGO, the proposed strategy endowed the obtained SiO2@rGO with larger amount of immobilized rGO. The prepared functionalized silica shows remarkable adsorption capacity toward chlorophenols (CPs) and peptides. When it was used as solid-phase extraction (SPE) sorbent, a superior recovery could be obtained compared to commercial sorbents, such as C18 silica, graphitized carbon black and carbon nanotubes. Based on these, the prepared material was used as SPE sorbent for the enrichment of CPs, and a method for the analysis of CPs in water samples was established by coupling SPE with high performance liquid chromatography-ultra violet detection (SPE-HPLC/UV). In addition, the obtained SiO2@rGO was further successfully extended to the enrichment of peptides in bovine serum albumin (BSA) digests.

  6. Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon.

    PubMed

    Zhao, Yongsheng; Liu, Chunxia; Feng, Miao; Chen, Zhen; Li, Shuqiong; Tian, Gan; Wang, Li; Huang, Jingbo; Li, Shoujian

    2010-04-15

    A new solid phase extractant selective for uranium(VI) based on benzoylthiourea anchored to activated carbon was developed via hydroxylation, amidation and reaction with benzoyl isothiocyanate in sequence. Fourier transform infrared spectroscopy and total element analysis proved that benzoylthiourea had been successfully grafted to the surface of the activated carbon, with a loading capacity of 1.2 mmol benzoylthiourea per gram of activated carbon. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature, have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The maximum sorption capacity (82 mg/g) for uranium(VI) was obtained at experimental conditions. The rate constant for the uranium sorption by the as-synthesized extractant was 0.441 min(-1) from the first order rate equation. Thermodynamic parameters (DeltaH(0)=-46.2 kJ/mol; DeltaS(0)=-98.0 J/mol K; DeltaG(0)=-17.5 kJ/mol) showed the adsorption of an exothermic process and spontaneous nature, respectively. Additional studies indicated that the benzoylthiourea-anchored activated carbon (BT-AC) selectively sorbed uranyl ions in the presence of competing ions, Na(+), Co(2+), Sr(2+), Cs(+) and La(3+).

  7. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    SciTech Connect

    Kumar, Avishek E-mail: dalapatig@imre.a-star.edu.sg; Law, Felix; Widenborg, Per I.; Dalapati, Goutam K. E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R.; Aberle, Armin G.

    2014-11-01

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30 μm in width, and with high Hall mobility of about 71.5 cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18 μm with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900 MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  8. Carbon nanotube-coated solid-phase microextraction metal fiber based on sol-gel technique.

    PubMed

    Jiang, Ruifen; Zhu, Fang; Luan, Tiangang; Tong, Yexiang; Liu, Hong; Ouyang, Gangfeng; Pawliszyn, Janusz

    2009-05-29

    A novel carbon nanotube (CNT)-coated solid-phase microextraction fiber was prepared based on sol-gel technique. Commonly used fragile fused silica fiber was replaced with stainless steel wire, which made the fiber unbreakable. An approach was also proposed for batch producing, and good reproducibilities for fiber to fiber and between fibers were achieved. Experiments showed that the sol-gel-CNT fiber exhibited high thermal stability to resist 350 degrees C and excellent solvent durability in methanol and acetonitrile. Compared to commercial polydimethylsiloxane (PDMS) fiber, the sol-gel-CNT fiber represented significantly improved extraction efficiencies for both polar (phenols) and non-polar (benzene, toluene, ethylbenzene, and o-xylene) compounds. Meanwhile, no replacement effect, low carry-over and wide linear range demonstrated that the newly prepared sol-gel-CNT coating has liquid properties, which allow a relatively easy quantification procedure. Moreover, the characterization of the sol-gel-CNT coating was also evaluated with McReynold probe solutes. The results showed that the coating has better affinity for all the five types of solutes compared to commercial 7microm PDMS fiber, which suggested that the coating has the potential to be developed as GC stationary phase.

  9. Bioremediation of diethylhexyl phthalate contaminated soil: a feasibility study in slurry- and solid-phase reactors.

    PubMed

    Di Gennaro, P; Collina, E; Franzetti, A; Lasagni, M; Luridiana, A; Pitea, D; Bestetti, G

    2005-01-01

    The aim of the research was to verify the possibility of applying bioremediation as a treatment strategy on a poly(vinyl chloride) (PVC) manufacturing site in the north of Italy contaminated by diethylhexyl phthalate (DEHP) at a concentration of 5.51 mg/g of dry soil. Biodegradation kinetic experiments with DEHP contaminated soil samples were performed in both slurry- and solid-phase systems. The slurry-phase results showed that the cultural conditions, such as N and P concentrations and the addition of a selected DEHP degrading strain, increased the natural DEHP degradation rate. On the basis of these data, experiments to simulate bioventing on contaminated soil columns were performed. The DEHP concentration reached 0.63 mg/g of dry soil in 76 days (89% of degradation). A kinetic equation was developed to fit the experimental data and to predict the concentration of contaminant after treatment. The data obtained are encouraging for a future in situ application of the bioventing technology.

  10. Ionic liquid coated copper wires and tubes for fiber-in-tube solid-phase microextraction.

    PubMed

    Sun, Min; Feng, Juanjuan; Bu, Yanan; Luo, Chuannan

    2016-08-05

    A fiber-in-tube solid-phase microextraction (SPME) device was developed by filling eleven copper wires into a copper tube, and all of those were functionalized with ionic liquids. Its morphology and surface properties were characterized by scanning electron microscopy. It was connected into high performance liquid chromatography (HPLC) equipment by replacing the sample loop of six-port injection valve, building the online SPME-HPLC system. In the optimization of extraction conditions, sampling rate, sample volume, pH of sample and desorption time were investigated with five estrogens as model analytes. Under the optimum conditions, an online SPME-HPLC analysis method was achieved, showing enrichment efficiency from 611 to 1661 and a good linearity of 0.06-60μgL(-1) with low detection limits of 0.02-0.05μgL(-1). It was applied to detect estrogens analytes in two water samples, with recoveries in the range of 85-114%. Relative standard deviation (n=3) of extraction repeatability is in the range of 1.9-3.0%. Relative standard deviation of extraction tubes (n=3) is in the range of 12-19%. The extraction mechanism is probably related to hydrophobic, π-π and dipole-dipole interactions between ionic liquids coating and estrogens analytes.

  11. Solid-Phase Extraction of Sulfur Mustard Metabolites Using an Activated Carbon Fiber Sorbent.

    PubMed

    Lee, Jin Young; Lee, Yong Han

    2016-01-01

    A novel solid-phase extraction method using activated carbon fiber (ACF) was developed and validated. ACF has a vast network of pores of varying sizes and microporous structures that result in rapid adsorption and selective extraction of sulfur mustard metabolites according to the pH of eluting solvents. ACF could not only selectively extract thiodiglycol and 1-methylsulfinyl-2-[2-(methylthio)-ethylsulfonyl]ethane eluting a 9:1 ratio of dichloromethane to acetone, and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] and 1,1'-sulfonylbis- [2-S-(N-acetylcysteinyl)ethane] eluting 3% hydrogen chloride in methanol, but could also eliminate most interference without loss of analytes during the loading and washing steps. A sample preparation method has been optimized for the extraction of sulfur mustard metabolites from human urine using an ACF sorbent. The newly developed extraction method was applied to the trace analysis of metabolites of sulfur mustard in human urine matrices in a confidence-building exercise for the analysis of biomedical samples provided by the Organisation for the Prohibition of Chemical Weapons.

  12. Evaluation of electrochemically synthesized sulfadimethoxine-imprinted polymer for solid-phase microextraction of sulfonamides.

    PubMed

    Díaz-Álvarez, Myriam; Mazzotta, Elisabetta; Malitesta, Cosimino; Martín-Esteban, Antonio

    2014-06-01

    Solid-phase microextraction (SPME) is widely used in analytical laboratories for the analysis of organic compounds, thanks to its simplicity and versatility. In the present work, the synthesis and evaluation of imprinted films for SPME by electropolymerisation of pyrrole alone or in the presence of ethylene glycol dimethacrylate is proposed. Sulfadimethoxine (SDM), a sulfonamide antibiotic, was used as template molecule. Initially, a molecularly imprinted polymer film was prepared by electropolymerisation of pyrrole onto a platinum foil, using SDM as template. The SDM template was removed by overoxidation. The behaviour of SDM on imprinted and non-imprinted polymers was investigated by differential pulse voltammetry, and a clear imprinting effect was observed, which was confirmed by rebinding experiments using both conventional and electrochemically enhanced-SPME. However, in general, the extraction efficiency was rather low (<6%) and unspecific interactions are too high. Attempts to increase extraction efficiency were unsuccessful, but the incorporation of ethylene glycol dimethacrylate to the films reduced unspecific interactions to a certain extent.

  13. Sol-gel molecularly imprinted polymer for selective solid phase microextraction of organophosphorous pesticides.

    PubMed

    Wang, Yu-Long; Gao, Yuan-Li; Wang, Pei-Pei; Shang, Huan; Pan, Si-Yi; Li, Xiu-Juan

    2013-10-15

    A sol-gel technique was applied for the preparation of water-compatible molecularly imprinted polymer (MIP) for solid phase microextraction (SPME) using diazinon as template and polyethylene glycol as functional monomer. The MIP-coated fiber demonstrated much better selectivity to diazinon and its structural analogs in aqueous cucumber sample than in distilled water, indicating its potential in real samples. Thanks to its specific adsorption as well as rough and porous surface, the coating revealed rather larger extraction capability than the non-imprinted polymer and commercial fibers. In addition, the fiber exhibited excellent thermal (about 350°C) and chemical stability (organic and inorganic). After optimization of several parameters affecting extraction efficiency, a method based on MIP-SPME combined with gas chromatography was developed for the determination of organophosphorus pesticides (OPPs) in vegetable samples. The limits of detection for the tested OPPs were in the range of 0.017-0.77 μg kg(-1). The proposed method was applied to evaluate OPPs in spiked cucumber, green pepper, Chinese cabbage, eggplant and lettuce samples, and recoveries of 81.2-113.5% were obtained by the standard addition method with three spiking levels in each kind of vegetable.

  14. Magnetic three-dimensional graphene solid-phase extraction of chlorophenols from honey samples.

    PubMed

    Liu, Xingli; Zhou, Xin; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2015-01-01

    A novel magnetic three-dimensional graphene nano-composite (3D-G@Fe3O4) with a high surface area was synthesised by a vacuum freeze-dried method. Due to its high surface area, specific 3D nanoporous structure and excellent magnetic properties, it can be used as a magnetic solid-phase extraction adsorbent. Some chlorophenols in a honey samples were enriched by this nanocomposite prior to their determination by HPLC with ultraviolet detection. Factors that affect the extraction efficiency, such as the amount of 3D-G@Fe3O4, extraction time, sample pH, ionic strength and desorption conditions, were investigated and optimised. Under the optimum conditions, good linearity existed in the range of 10.0-1000.0 ng g(-1). The enrichment factors of the method for the analytes were in the range from 101 to 248. The limits of detection of the method (S/N = 3) were 1.0-1.5 ng g(-1). The recoveries of the method for the analytes at spiking levels of 100.0 and 400.0 ng g(-1) were in the range of 93.2-98.9%. The results showed that the proposed method is simple, reliable and sensitive. It will be a useful tool for the routine monitoring of chlorophenols in honey products.

  15. In silico scaffold evaluation and solid phase approach to identify new gelatinase inhibitors.

    PubMed

    Topai, Alessandra; Breccia, Perla; Minissi, Franco; Padova, Alessandro; Marini, Stefano; Cerbara, Ilaria

    2012-04-01

    Among matrix metalloproteinases (MMPs), gelatinases MMP-2 (gelatinase A) and MMP-9 (gelatinase B) play a key role in a number of physiological processes such as tissue repair and fibrosis. Many evidences point out their involvement in a series of pathological events, such as arthritis, multiple sclerosis, cardiovascular diseases, inflammatory processes and tumor progression by degradation of the extracellular matrix. To date, the identification of non-specific MMP inhibitors has made difficult the selective targeting of gelatinases. In this work we report the identification, design and synthesis of new gelatinase inhibitors with appropriate drug-like properties and good profile in terms of affinity and selectivity. By a detailed in silico protocol and innovative and versatile solid phase approaches, a series of 4-thiazolydinyl-N-hydroxycarboxyamide derivatives were identified. In particular, compounds 9a and 10a showed a potent inhibitory activity against gelatinase B and good selectivity over the other MMP considered in this study. The identified compounds could represent novel potential candidates as therapeutic agents.

  16. Preparation of novel polydimethylsiloxane solid-phase microextraction film and its application in liquid sample pretreatment.

    PubMed

    Wei, Fang; Zhang, Fang-Fang; Liao, Hui; Dong, Xu-Yan; Li, Yan-Hua; Chen, Hong

    2011-02-01

    In this paper, an extraction approach based on the use of a novel polydimethylsiloxane (PDMS) film as the extraction medium was described. Two kinds of PDMS films with smooth surface and frosted surface were prepared and were practically evaluated for extraction. A model analytical problem, the determination of organochlorine pesticides in water samples, was selected for practical evaluation of the film extraction procedure by direct extraction and solvent desorption, followed by gas chromatography (GC) analysis with electron capture detection (ECD). The main variables affecting the extraction process such as the extraction time, the extraction temperature, the elution conditions, etc. were studied. The method was characterized on the basis of its linearity, precision, and limits of detection. The novel approach was sensitive and precise enough for the detection of the target analytes in the low nanogram per liter range using 5 mL of sample. In fact, limits of detection ranging from 0.77 to 10.25 ng/L were obtained. Compared with the solid-phase microextraction (SPME) fiber, the robust extraction film has a large extraction capacity, low cost of preparation. Besides, owing to the simplicity of the extraction procedures, in-site sample preparation for environmental monitor may be realized.

  17. Determination of Pd(II) content in catalysts and tap water samples via photoacoustic spectroscopy analysis of Pd(II)-3-[2'-thiazolylazo]-2,6-diaminopyridine complex on solid phase.

    PubMed

    Saavedra, Renato; Soto, César; Yañez, Jorge; Toral, Mara Ines

    2009-08-15

    In this work a simple method for the determination of Pd(II) by photoacoustic spectroscopy (PAS) is introduced. The method is based on Pd(II) colorimetric reaction with immobilized 3-[2(')-thiazolylazo]-2,6 diaminopyridine (2,6 TADAP) retained in a cationic resin Dowex 50W X4 20/50. The immobilization of Pd(II) on solid phase is combined with PAS. The Pd(II) concentration was determined by conventional photoacoustic measurement in the range of 625-645 nm. The calibration for Pd(II) was linear over the range 12-210 microg L(-1). The obtained analytical features were LOD 4 microg L(-1) and LOQ 12 microg L(-1). The relative standard deviation of the method was <5%. The proposed method has been successfully tested in determination of leachable Pd in disposed catalyst and in spiked samples of tap water. In the introduced method, complicated preparatory steps became simple, inexpensive, and it is suitable for applications in environmental samples. Results obtained by PAS agree with those obtained by using conventional FAAS. The figures of merit in this method make it an attractive alternative to UV-vis and FAAS.

  18. Extracting information from multiplex networks

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ ˜ S for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  19. Extracting information from multiplex networks.

    PubMed

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ̃(S) for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  20. Application of Headspace Solid Phase Microextraction and Gas Chromatography/Mass Spectrometry for Rapid Detection of the Chemical Warfare Agent Sulfur Mustard

    DTIC Science & Technology

    2002-05-16

    Title of Thesis: “Application of Headspace Solid Phase Microextraction and Gas Chromatography/Mass Spectrometry for Rapid...TITLE AND SUBTITLE Application of Headspace Solid Phase Microextraction and Gas Chromatography/Mass Spectrometry for Rapid Detection of the Chemical...phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS). Five commercially available SPME fibers were investigated to determine the